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1 ABSTRACT 

 

Fracturing, stick-slip movements, water flow, seepage and other natural events 

related to the glacial and periglacial environment release energy in the form of elastic 

waves, also known as microseismic events. Microseismic activity represents therefore 

a useful tool to study glacier dynamics as it can provide information about their 

mechanical and structural variations. For this reason, a network of passive 

seismometers has been installed on the Gran Sometta rock glacier (Aosta Valley, NW 

Italy) since July 2020 to continuously record ambient seismic noise and detect 

microseismicity.  

As a first step of this study, microseismic signals generated in and around the glacier 

have been detected in the continuous noise recordings through a short-time-average 

over long-time-average (STA/LTA) algorithm. It was applied directly on the raw signals 

after the setting of some key parameters (STA window length, LTA window length, 

pre-event window, post-event window etc.).  

The second part of the study was the classification of the detected events. It was 

performed in two ways: visual analysis of the event spectrograms and cluster analysis 

on four key time- and frequency-domain parameters. These are kurtosis, bracketed 

duration, 5-Hz frequency class containing the highest energy amount and peak 

frequency of the amplitude spectrum. The visual classification led to the recognition 

of six types of recurrent events: low frequency and long duration events (below 10 Hz, 

tens of seconds), earthquakes, rockfalls, rain-related noise events, snow-related 

events, high frequency and short duration events (in the range 10-40 Hz).  

Events characterized by very high frequencies and long durations were removed from 

the dataset since they were found to be mostly related to the rainfall seismic 

signatures and other events occurring in the rock glacier surroundings. This filtering 

procedure allowed to get a more stable clustering of the events likely related to the 

rock glacier internal processes. The automatic classification of the remaining events 

was then conducted through a k-means clustering algorithm. The latter was selected 

since the only required input is the number of desired clusters. Initially, four clusters 

were defined on the basis of the visual classification but through a trial-and-error 

procedure, the number of sub-clusters was increased to 8 to better describe the 

dataset. 

The seasonal trend of these classes was then computed and compared to 

meteorological parameters of the site (air temperature and precipitation) to get a 

more complete interpretation of the different processes involved. 
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Similarities among the seasonal and hourly occurrence of these 8 classes were found 

and this allowed to combine the 8 sub-classes back into 4 main clusters, including i) 

low frequency deep quakes (likely related to the rock glacier basal movements); ii) 

high-frequency shallow quakes (likely icequakes and other processes related to the 

seasonal modifications in the rock glacier active layer); iii) snow-related events (likely 

due to a stress redistribution on the rock glacier due to the presence of a high snow 

cover) ; iv) residual hybrid events still related to rain and other high-frequency short 

duration quakes.  

The analysis of the temporal rate of the different clusters may provide a valuable 

monitoring tool for the rock glacier activity and internal processes.  
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2 INTRODUCTION 

 

2.1 MICROSEISMIC APPLICATIONS  
  

Microseismic monitoring is a passive seismic method that finds potentially widespread 

application in climate change mitigation, monitoring and adaptation efforts. The word 

“passive” means that these methods use recording-capabilities only and no input is 

required from the user, in contrast with common active seismic methods for which 

seismic sources are required to illuminate the subsurface. 

The monitoring involves the recording of seismic signals, commonly referred to as 

ambient seismic noise or ambient vibrations, which are characterized by a low 

frequency content. Indeed, the frequency range of application of these systems is 

generally below 100 Hz.  

The ambient vibrations are generated by natural phenomena, such as winds, oceanic 

waves, rivers, earthquakes and icequakes, as well as by anthropic disturbances like 

traffic and industrial noise. All these sources can be exploited to retrieve information 

about the investigated subsurface. In particular, microseismic (MS) events related to 

the target of interest can be extracted from the continuous ambient seismic noise 

recordings through detection algorithms. Their classification, temporal rates and 

source locations can provide valuable information about the investigated processes. 

Therefore, one of the main advantages of microseismic monitoring is that it is a 

completely non-invasive technique. In fact, it does not require the use of active 

seismic sources such as guns, hammers, and explosives to generate the seismic signal, 

as the recorded signal is naturally occurring. This feature makes it even a more 

attractive option when dealing with remote sites or environmentally sensitive areas.  

Regarding the applications of microseismic monitoring, it can be used to study the 

effects of climate change on the stability and movement of glaciers, permafrost and 

rock mass settings. 

One of the well-known effects of climate change is the warming and thawing of 

permafrost. When permafrost melts, it can lead to alterations in ground stability and 

water movements in the subsurface. Recently, passive seismic monitoring has been 

used to observe freeze-thaw processes of permafrost. These processes can cause rock 

detachments in permafrost areas that may pose a potential hazard to infrastructure 

and settlements. Linder et al. (2021) conducted a study on microseismic events at Mt. 
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Zugspitze in Germany, in which they analysed passive seismic data to obtain seasonal 

seismic velocity changes and velocity decreases in the area of interest. They also 

compared the results with meteorological data, suggesting that seasonal freeze-thaw 

cycles and permafrost degradation contribute to these velocity variations.  

In addition, MS monitoring can be employed to investigate the effects of climate 

change on the stability of rock mass settings such as volcanic edifices, lahars, debris 

flow and ice-avalanches. In relation to rock-slope stability, microseismic activity can 

be useful to evaluate damage and cracking processes that may be indicative of 

macroscopic failure. More precisely, MS events associated with fractures can provide 

information about acceleration to failure and identification of the unstable 

compartments and slip surfaces, as demonstrated by Senfaute et al. (2009). They 

analysed microseismic events detected prior to the collapse of a coastal cliff sector in 

Normandie and established that MS signals are useful to understand incipient failure 

of internal rock bridges. Then, they also found a correlation between seismic events, 

displacement-rate measurements and climatic parameters.  

More precisely, variations in air temperature or temperature differences on the rock 

mass can induce thermal dilation and thermal stresses leading to microcracking 

processes, as demonstrated by Colombero et al. (2018). The authors performed a 

microseismic study of an unstable granitic cliff located in north-western Italian Alps 

(Madonna del Sasso, VB), in order to assess its stability and the correlation with 

climate data. They found peaks of microseismic activity during summer, likely related 

to the rock mass thermal expansion, and low daily rates during colder periods. 

The correlation between seismic events and rainfall is another field that is 

continuously investigated in the literature. Rainfall is often found to be a triggering 

factor for rockfalls and microseismicity occurrence. As a matter of fact, Helmestetter 

et al. (2010) demonstrated that rockfall activity increases immediately during a rainfall 

event and lasts several days after through a seismic study on Sèchillienne rockslide 

(French Alps). Rain also induces strong accelerations of the rockslide movement and 

then peaks in microseismicity. 

Another field of application for MS technology is rock engineering, specifically in 

mines, underground powerhouse and deep tunnels. It is clear that rock excavation 

results in stress modification of rocks in the surrounding area, leading to cracks 

generation and energy release. To address these issues, Ruochen Jiang et al. (2020) 

used MS sensors to capture signals released by rock fracture. By analysing the signals, 

they were able to obtain parameters such as occurrence time, source location and 

intensity that were useful for early warnings of possible hazards, such as rockbursts.  
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Microseismic monitoring is a valuable technique also for a wide range of applications 

related to climate change mitigation, including Carbon Capture and Storage (CCS) 

systems and renewable energies. 

CCS is a technology that involves capturing carbon dioxide emissions and storing them 

underground in geological formations to prevent their release into the atmosphere. 

The goal is to reduce greenhouse gas emissions, which contribute to climate change. 

CCS technology is still in the early stages of development, and there are some technical 

challenges that need to be addressed. These challenges include the potential risk of 

inducing earthquakes during the injection process. 

As a matter of fact, seismic monitoring is an important tool for ensuring the safe and 

effective deployment of carbon capture and storage projects. It is used to detect and 

analyse vibrations in the Earth caused by activities such as drilling, CO2 injection, 

increasing pore pressure of the formation and re-activation of pre-existing faults that 

may lead to CO2 leakage. 

However, geomechanical response to injection can vary significantly based on the 

geological setting. For instance, Stork et al. (2015) found that injection activities 

triggered a deep fracture zone in In Salah CO2 storage. The installation of geophones 

on the site helped them to identify that the rate of these events increases when the 

injection rate exceeds a certain threshold. 

As previously said, microseismic monitoring is also used in renewable energy 

applications, such as geothermal energy. This form of energy can be used to generate 

electricity or provide heat for industrial processes and building heating purposes. 

Albaric et al. (2014) showed that more than 7000 induced microearthquakes were 

recorded during the stimulation of a geothermal reservoir. As a matter of fact, the 

possible causes of induced seismicity in geothermal areas are pore pressure change, 

thermoelastic stressing due to temperature changes, excavation-related stresses, 

chemical changes of fault properties and dynamic triggering. 

 

 

 

 



15 
 

2.2 MICROSEISMIC APPLICATION FOR ROCK GLACIERS MONITORING  
 

Climate change is having a significant impact on glaciers and rock glaciers around the 

world. Glaciers are melting at an unprecedented rate, with significant mass loss and 

rapid retreat. This is primarily due to increasing global temperatures, which are 

causing the ice to melt at a faster rate than it can be replenished by rainfall.  

For these reasons, the study of local targets, such as mountain or alpine glaciers and 

rock glaciers, is gaining more and more importance in recent years.  

Rock glaciers are creeping landforms of ice and rock debris. Due to their small size and 

peculiar structure, they are highly sensitive to changes in temperature and 

precipitation, and thus represent key features to understand the response of the 

glacial and periglacial environment to climate change. This latter, and in particular the 

increase of air temperature, strongly influence the thermal state of permafrost. 

The external characteristics of the rock glacier (topographical conditions) and the 

internal ones (i.e., internal structure and composition), together with ground 

temperature control perennially frozen ground deformation and the associated 

glacier flow velocities. 

Variations of these features may lead to destabilization and collapse of the rock 

glaciers, making these targets not only useful for climate change evaluation and 

monitoring, but often an issue in the light of climate change adaptation. These targets 

are indeed showing evidence of high instability with the ongoing climate 

modifications, with potentially serious consequences and melting-related natural 

hazards. Destabilization events are characterized by high horizontal velocities, high 

front advance rates and crevasse-like cracks opening. As demonstrated by Delaloye et 

al. (2012), the main causes of rock glacier destabilizations are:  

● morphological forcing (steep slope angle, higher shear stress, convex bedrock 

topography, local thinning of the glacier); 

● mechanical forcing due to external factors (landslides, rock avalanche and 

rockfalls); 

● thermal forcing and increasing pore water pressure. 

All these events may increase the rate of mass wasting at the front of the rock glacier 

and change its geometry. On the contrary, torrential and debris flows can increase the 

hazard related to rock glaciers. However, these variations related to the internal 

glacial processes release energy in the form of elastic waves, also known as 

microseismic events.  



16 
 

For this reason, microseismic monitoring has become a useful tool to assess changes 

in rock glacier properties at depth and to characterize the damage and destabilization 

processes.  

Seismic monitoring of glaciers involves detecting, locating and characterizing seismic 

activity induced by several phenomena such as rock falls, debris flows, crack 

propagation, basal sliding or melt-water runoff. The different mechanisms of 

deformation can be discriminated using the properties of seismic events such as 

frequency, duration, location and temporal distribution, as performed by Gulliemot et 

al. (2020) who conducted a passive seismic study on Gugla rock glacier, in Switzerland.  

Based on duration and frequency, they classified the microseismic signals into quakes 

and rockfalls and analysed their seasonal occurrence, demonstrating that bursts of 

microseismicity took place during melting periods, such as during the spring.  

Short and impulsive signals with frequencies within the 10 – 40 Hz range are generally 

indicative of small crack formation and propagation. Conversely, long and complex 

signals characterized by high amplitude are likely attributable to serac collapses (Roux 

et al., 2008). 

Furthermore, low frequency events may also be a manifestation of increasing fluid 

flow within the glacier, whereas high frequency signals can be correlated to water 

pressure increase that changes the stress distribution in the glacier. 

 

 

2.3 THESIS OBJECTIVE 
 

The primary objective of this thesis is to conduct a microseismic survey to investigate 

the dynamics and internal processes of the Gran Sometta rock glaciers located in the 

upper Valtournenche Valley (Aosta Valley, NW Italian Alps).  

To achieve this goal, a network of four passive seismometers (GEA2 – GEA5) was 

installed on the rock glacier (Figure 1) in July 2020. Ambient seismic noise was 

continuously recorded on site for a long period (more than one year) with a sampling 

frequency of 250 Hz. One of the main aims of the microseismic network is to detect 

the microseismicity related to the rock glacier processes.  

The study is divided into three phases: 

1. Detection of microseismic signals embedded in the continuous ambient 

seismic noise recordings; 
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2. Classification of the detected events using visual (manual) and clustering 

(automatic) analysis; 

3. Interpretation and comparison of the resulting clusters with meteorological 

parameters. 

The aim of the first step is to detect the microseismic signals, separating them from 

the rest of the recordings. This is accomplished through a short-time average over 

long-time average (STA/LTA) algorithm, widely used in seismological applications.  

In the second part of the thesis, the detected signals are classified integrating two 

modalities: visual analysis of the events spectrograms and clustering analysis on key 

time- and frequency-domain parameters.  

To conduct the visual classification, a MATLAB script is utilized to obtain the 

seismogram, Fourier spectrum and spectrogram for each detected event. 

In order to carry out the clustering analysis, first a semi-automatic procedure is 

applied. As a matter of fact, eleven different parameters will be computed for each 

extracted event, drawing upon the research conducted by Hibert et al. (2014). 

These parameters include maximum amplitude over the mean amplitude, kurtosis, 

bracketed duration, uniform duration, total time of the event, increasing time to 

decreasing time, 5-Hz frequency classes containing the maximum energy peak 

frequency, maximum amplitude on the N component and the ratio of maximum 

amplitude to the bracketed duration.  

After computing the eleven parameters, a trial-and-error procedure is used to select 

the most relevant ones for the cluster analysis. This latter is performed applying the 

k-means algorithm, since the only input needed is the number of desired clusters.  

The classification outcomes provide valuable information about the types and 

characteristics of the microseismic events. 

The final step of this thesis involves a comparison of the obtained classes with 

meteorological parameters. This analysis is useful to investigate the occurrence of 

each class and to understanding any correlation with climate data. By identifying the 

occurrence of a class during a specific season or in a particular meteorological 

scenario, this study may help in determining whether environmental factors trigger 

certain cluster events that may be related to inner processes of the rock glacier. 
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3 TEST SITE AND MONITORING NETWORK  

 

Gran Sometta is located on the south-western side of the central Alps, at the head of 

the Valtournenche Valley (Aosta Valley, Italy). It is a landform classified as a rock 

glacier and it is characterized by two distinct lobes with elevations ranging from 2630 

to 2770 m in the frontal area. It is approximately 400 m in length, between 150 and 

300 m wide and exhibits a thickness of 20-30 m, estimated from active geophysical 

investigations, such as electrical resistivity tomography and seismic reflection. 

Additionally, a third lobe is present, with its front located at an altitude of 

approximately 2700 m a.s.l, measuring 215 m in width and 192 m in length.  

Since 2012, Gran Sometta has been under investigation for the purpose of evaluating 

its flow rates. Indeed, it has been selected by the Regional Agency for Environmental 

Protection (ARPA Valle d’Aosta) as a long-term monitoring site of permafrost 

degradation and response to climate change. The ski resort of Cervinia and the Goillet 

Lake (which spans over an area of 0.48 km2, with a maximum depth of 37 m) are 

located downstream the rock glacier flow, posing additional concern on possible 

collapses and fluidification of the ice and debris material. 

As a matter of fact, the interannual fluctuations in creep rates of the rock glacier 

permafrost are consistent with the observed trend in other Alpine glaciers. Between 

2012 and 2020, the maximum peak surface velocities were reached in 2015 (0.21 – 

1.45 m/y), with subsequent deceleration in velocity until 2017 – 2018. However, over 

the following two years (2019 and 2020) the surface velocity exhibited a gradual 

increase reaching values of 0.23 cm/y up to a maximum of 1.9 m/y (Bearzot et al., 

2022).   

Figure 1 shows the location of the study site.  



19 
 

 

 

 

Figure 1. (a) Geographic location of the study site (Gran Sometta), in south-western side of the central 

Alps. (b) View of the Goillet Lake from the rock glacier. 

 

For these reasons, a network of four wireless passive monitoring stations (GEA2-GEA5 

in Figure 2) was installed on site in July 2020 to continuously record ambient seismic 

noise.   

Each station is composed of a 2-Hz triaxial high-sensitivity geophone (200 V/(m/s)) 

and a digitizer / recorder (GEA-GPS, developed by PASI s.r.l. and Iridium Italia s.a.s.) as 

shown in Figure 2.  

Turin 

Milan 

a 

(a) 

(b) 
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These instruments have guaranteed continuous seismic noise recording at 250 Hz 

sampling rate, low-weight to reach remote areas, low power consumption and daily 

remote information about the system by a GSM-GPRS module.   

Synchronization between the monitoring system was provided by GPS timing. Data 

are stored in 1 h files in an internal 32 GB memory card. 

 

 

Figure 2. Instruments for the monitoring network. 
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Two monitoring stations, GEA2 and GEA5 (Figure 3), were installed on the black lobe 

of the glacier. A third station, GEA04, was installed on the white lobe. Additionally, a 

reference station, GEA03, was installed outside of the lobes. 

 

 

Figure 3. Geometry of the monitoring network. 

 

In the following table the coordinates of the seismic stations are reported. 

 

Table 1. Location of seismic monitoring stations (GEA2 – GEA5). 

STATION X [m] Y [m] Z [m] 

 WGS84 UTM32N WGS84 UTM32N GPS 

GEA02 396704 5086284 2654 

GEA03 396672 5086215 2661 

GEA04 396762 5086268 2660 

GEA05 396717 5086228 2667 
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4 METHODS 

 

The methodology employed in this work is based on the detection, classification and 

interpretation of recorded events at the monitoring stations (GEA2 – GEA5) during a 

monitoring period of more than one year (July 2020 - September 2021). Few data 

gaps are present due to insufficient power supply at the monitoring stations.  

Figure 4 summarises the main steps of the methodology developed and followed in 

this thesis. 

 

 

Figure 4. Workflow of this study. 
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4.1 EVENTS DETECTION 
 

The detection of microseismic events was accomplished using a Short Time Average 

to Long Time Average (STA/LTA) detection algorithm, which is the most used approach 

in seismology for event detection.  

This algorithm is able to filter seismic signals in consecutive moving-time windows: a 

short-time average window (STA) and a long-time average window (LTA). The STA 

approximates the instant amplitude of the seismic signal, the LTA represents the 

average seismic noise amplitude.  

The algorithm calculates the absolute amplitude of each data sample of the incoming 

signal and determines the average of absolute amplitudes in both windows. 

Subsequently, the ratio of these two values (STA/LTA ratio) is computed.  

An event is detected when this ratio exceeds a user-predetermined threshold. The 

optimal threshold value for detecting events, called STA/LTA trigger on threshold, 

depends on the seismic noise condition and on the tolerance to false-trigger events. 

Therefore, it is advisable to use a high value of the ratio to detect fewer false-trigger 

events. In quiet areas, the ratio can conversely be kept low.  

The STA/LTA trigger on threshold is not the only parameter to set in order to apply the 

algorithm, but also: 

● STA window duration (in s) 

● LTA window duration (in s) 

● Pre-event window (in s)  

● Post-event window (in s)  

● STA/LTA trigger off threshold level (-) 

Their selection depends on several factors including the objective of the study, the 

seismic noise condition at the site, the properties of seismic signal at a given location 

and on the type of sensor used.  

More precisely, the STA duration should be longer than a few periods of the expected 

seismic signal but shorter than the expected shortest events, to ensure that the 

average operates effectively.  

The LTA window should be longer than a few periods of typical seismic noise 

fluctuations. Changing its value, the recording may be more or less sensitive to 

regional events. A longer LTA window increases the trigger sensitivity to earthquakes, 

whereas a shorter LTA window improves the recorder sensitivity to man-induced 

seismic noise. 
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The STA/LTA trigger off threshold level is also crucial as it determines the termination 

of data recording and the capture of coda waves. A low value is recommended to 

include as much of the coda waves as possible. However, an excessively low level may 

result in very long records. 

The algorithm’s ability to capture the signal during an event is limited to when the 

waves with the maximum amplitude reach the station, rather than at the beginning.  

To address this issue, a pre-event window is considered. It assures that the entire 

event is recorded. 

Similarly, the post-event window has the same purpose: it is used to capture the 

remaining coda of events that is smaller than the STA/LTA trigger off threshold.  

Additionally, it is possible to define a window length to skip after the STA/LTA 

threshold is exceeded, in order to avoid multiple detections of the same event. 

The parameters applied in the algorithm adopted for this study are shown in Table 2. 

 

Table 2. Parameters used for event detection. 

STA/LTA parameters 

STA window length 0.5 s 

LTA window length 10 s 

Pre-event window 3 s 

Post-event window 15 s 

Skip after end of the event 0.5 s 

STA/LTA trigger on threshold level 6 

STA/LTA trigger off threshold level 1.5 

 

The advantages of this method are that it is fast and can be used directly on raw 

signals. However, it requires careful setting of the above-mentioned parameters.   
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4.2 EVENTS CLASSIFICATION 
 

The second step of the analysis was to classify the recorded events. It was performed 

integrating two options: 

● Visual classification; 

● Semi-automatic classification. 

The visual classification approach relied on the observation of event spectrograms, 

which provide a graphical representation of the frequency spectrum of a signal over 

time. 

As an example, microseismic events related to fracturing are impulsive and short 

duration signals characterised by a triangular shape with a clear coda in the time 

domain. These events can occur as single isolated events or in sequences with varying 

time intervals. 

The spectrogram of a microseismic event typically exhibits a sharp energy increase 

followed by an exponential decay of high-frequency content over time (Figure 5). The 

maximum amplitude of the event is variable, and, in some cases, the high-frequency 

content is partially or totally missing.  

Due to these peculiar features, these events can be easily recognized by the user with 

visual classification. The method has the advantage of being completely user-

controlled, but the main disadvantages of being potentially subjective and depending 

on the observer. In addition, it might become time-consuming with big datasets of 

thousands of events. If the monitoring network has early warning purposes, this 

approach cannot be applied in near real-time. 
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Figure 5. Example of a microseismic event recorded at GEA5 station. From the top to the bottom: 

seismogram recorded on channel N of GEA5, related Fourier spectrum and spectrogram. 

 

The semi-automatic procedure had the aim to transform the seismic-signal 

characteristics into objective criteria. These criteria must be both discriminating and 

simple enough to ensure a fast and reliable computation.  

For these reasons, a matrix containing ten time- and frequency-domain signal 

parameters has been calculated using MATLAB.  

These parameters are:  

▪ Ratio of the maximum to the mean amplitude of the signal in time domain; 

▪ Kurtosis; 

▪ Bracketed duration; 

▪ Uniform duration; 

▪ Total time of the extracted event; 

▪ Duration of the increasing and decreasing phase of the signal; 

▪ 5 Hz frequency classes with the maximum energy content; 

▪ Peak frequency; 

▪ Maximum amplitude on one of the three components (e.g. N); 

▪ Ratio of the maximum amplitude to the bracketed duration. 
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All these parameters were computed to find the most sensitive for the classification 

of the detected events.  

However, after this preliminary analysis, the cluster analysis was based on four of 

these parameters: kurtosis, bracketed duration, 5-Hz frequency class with maximum 

energy and peak frequency.  These four parameters were indeed found to have the 

largest variations between different recorded events. 

Kurtosis is a statistical parameter that characterizes the shape of a given distribution 

(a normal distribution has kurtosis equal to 3). Therefore, it corresponds to a 

measurement of the flatness or peakedness of the distribution. In seismic 

applications, low kurtosis values are indicative of ambient seismic noise recording and 

non-impulsive signals, while high kurtosis values are related to sharp impulsive seismic 

signals.  

The bracketed duration parameter represents the time interval between the first and 

last samples exceeding a threshold equal to 20% of the signal maximum amplitude. 

The Peak frequency refers to the frequency at which the signal has its highest 

amplitude in the frequency domain. It is typically identified through the peak in the 

frequency spectrum of the signal. 

The 5-Hz frequency classes with maximum energy are related to the event spectrum. 

Indeed, the spectrum can be divided in 5 Hz frequency classes (5-10 to 95-100 Hz) to 

identify the frequency range having maximum amplitude. 

Afterwards, k-means clustering was applied. This algorithm is widely used for 

clustering large datasets, and it is able to classify a set of n-dimensional observations 

into k different clusters, where k is a subjective parameter and the only required input 

for the algorithm. 

First, the algorithm randomly selects k centres, then it assigns each observation to the 

nearest center (computing the distance in n-dimensions), recalculating the cluster 

centroid after each assignment. 

The iterative process continues until the cluster assignments do not change anymore 

or a maximum number of iterations is reached. 

The Euclidean distance is used to determine the distance between each data object 

and the cluster centres. Considering two vectors x = (x1, x2...xn) and y = (y1, y2...yn), the 

Euclidean distance d (xi, yi) is obtained as follow: 

 

 



28 
 

𝑑 (𝑥𝑖, 𝑦𝑖) = [∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

]

1/2

     (1). 

 

Thus, the only input needed are the number of desired clusters, k, and a dataset 

containing n observations.  

The steps performed by k-means are better explained below: 

1. Random selection of k data objects from the data set as initial cluster centres 

2. Repetition of point 1 

3. Calculation of the distance between each data object ni (1 ≤ i ≤ n) and all k 

clusters cj (1 ≤ j ≤ k) and assignment of observation ni to the nearest cluster 

4. For each cluster j (1 ≤ j ≤ k), recalculate the centroid until no change in the 

center of clusters is obtained.  
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5 RESULTS 

 

5.1 EXTRACTED EVENTS 
 

The total number of extracted events from the original data set (July 2020-October 

2021) was 45326. Many events were recorded simultaneously at the four stations, 

while the majority of them were recorded by a lower number of stations. 

In Table 3, the number of recorded events and the reference monitoring period are 

summarized for each station.  

 

Table 3. Number of detected events for each monitoring station (GEA2 – GEA5). 

Station Number of events Monitoring period 

GEA2 7884 21 July 2020– 4 August 2021 

GEA3 19996 21 July 2020 – 5 October 2021 

GEA4 8308 21 July 2020 – 4 September 2021 

GEA5 9138 21 July 2020 – 4 October2021 

 

It is important to note that the monitoring periods for each station are different, and 

this may affect the number of events recorded. The station with the longest 

monitoring period is GEA3, which recorded the highest number of events (19996). This 

station is located outside the lobes, on a slope characterized by debris and rock falls, 

which may explain why it recorded more events than the other stations.  

However, it is also interesting to note that the stations with shorter monitoring 

periods (GEA2 and GEA4), still recorded a significant number of events (7884 and 

8308, respectively).  
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5.2 VISUAL CLASSIFICATION ANALYSIS 
 

The visual classification is based on the analysis of the results obtained from a MATLAB 

code able to display events in three graphs: 

• The seismogram for the whole duration of the event;  

• The Fourier amplitude spectrum;  

• The spectrogram, i.e. frequency content variations over time.  

The seismogram is a graph that plots the amplitude (in m/s) of the seismic waves over 

time (in s, time domain). The Fourier amplitude spectrum is a way of representing a 

signal in terms of its frequency components (frequency domain): the signal is 

decomposed into a series of sinusoidal components of different frequencies, each 

with its own amplitude. This allows to analyse the frequency content and identify the 

frequencies that are present.  

The spectrogram of a seismic signal is a graphical representation of the frequency 

content of the seismic waves over time (time and frequency domain). It is a time-

frequency analysis tool that provides a more detailed view of the seismic signal 

compared to the seismogram.  

After conducting a comprehensive analysis of these figures, six primary categories of 

events have been distinguished.  

The first class is composed of events with very low frequencies and long durations 

(around 10 s) with a slowly emerging signal. The Fourier spectrum associated with this 

class is marked by intense peaks that lie below 10 Hz while the spectrogram is 

characterized by a persistent low frequency band (Figure 6). 

Due to the frequency and duration characteristics, these events may be associated to 

the basal movements of the rock glaciers and/or the slip of the materials along pre-

existing fractures. 
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Figure 6. Seismogram, Fourier spectrum and spectrogram of a typical event belonging to the first 

(visually recognized) class, registered at GEA2 on 13/08/20. 

Another class of recurrent events is characterized by higher frequency content in the 

Fourier spectrum (between 10 and 30 Hz) with respect to the first class and short 

duration (typically few seconds). The spectral data show a clear high-frequency 

emerging onset followed by an exponential decay of the high frequency content with 

time.  

This class of events may be associated with variations of the active layer of the rock 

glaciers or with micro-cracking and micro-fracturing processes as indicated by 

Colombero et al. (2018). The frequency content of these signals depends on the size 

and distance of the source, but independently from the source, they are always 

characterized by the strong and fast attenuation of the high frequencies. Based on the 

available information, it is possible to classify these events as "quakes". 

In Figure 7, an example of event belonging to this class is shown. 
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Figure 7. Example of series of two short events belonging to the second class registered at GEA2 on 

28/08/20. From top to bottom: seismogram, Fourier amplitude spectrum and related spectrogram. 

 

On the contrary, events belonging to the third class reach the highest energy at 

around 40 Hz, potentially accompanied by additional peaks at 60 and 80 Hz. These 

events tend to last for roughly 20 s. 

It is possible that this class is related to compaction or melting of snow, leading to 

stress alterations within the glacier. An illustration of an event related to snow is 

presented in Figure 8.   
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Figure 8. Example of third-class event probably due to snow compaction, registered at GEA2 on 

21/03/21. 

Events of the fourth class have long durations (around 20 s or more) and significant 

variations in the frequency content in time. Smaller events have the highest energy at 

20 – 30 Hz. These features are typical of rockfall events, as studied by Helmstetter et 

al. (2010). The recorded signals may exhibit multiple subsequent peaks, which may be 

attributed to successive rock impacts. 

The differences in frequency content can be explained by differences in the material 

involved or by different propagation conditions. The low-frequency spectral content 

observed in some recorded signals may be attributed to the larger distance of these 

events from the recording stations while the short duration may be due to a too weak 

impact to be detected. 

Two examples of such events are shown in Figure 9. In these cases, the highest energy 

is reached at approximately 30 Hz and the duration is around 20 s.  
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Figure 9. (a-b) Example of fourth-class events. From top to bottom: seismogram, Fourier spectrum and 
spectrogram.  

The fifth class of events is represented by earthquakes. Although their occurrence is 

limited to less than ten events, their seismogram is easily recognizable since it is 

characterized by long durations and an impulsive signal. The Fourier spectrum of 

(a) 

(b) 
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these events displays low peak frequency, typically below 10 Hz, as visible in Figure 

10.  

 

 

Figure 10. Earthquake registered at GEA5 station on 25th October 2020 (depth = 1 km, Mt = 2.6). It 

lasts for approximately 20 s and the peak frequency is below 10 Hz. 

 

The final class of events have a spectrogram characterized by high amplitude vertical 

strips including a broad frequency band, generally above 60 Hz. This characteristic, 

along with the insights presented by Dean (2018), indicate that this class of events is 

associated with rain drops and infiltration close to the monitoring station. 

An example of event related to rain is shown in  Figure 11. 
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Figure 11. Examples of events due to rain infiltration registered at GEA2. 

 

According to Dean (2018), rain represents a significant source of noise. The author 

demonstrated that when water falls directly on the geophone casing, the resulting 

noise is 30 times greater than when the water drops falls next to it. His study has also 

shown that even if seismic stations are buried, rain noise is not entirely attenuated. 

For these reasons, the events characterized by frequencies greater than 60 Hz have 

been removed before the clustering procedure to avoid interference from rain-related 

noise.  
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5.3 AUTOMATIC CLASSIFICATION 
 

As previously said, the time- and frequency-domain parameters used in the 

clustering were kurtosis, bracketed duration, peak frequency and 5-Hz frequency 

classes with the maximum energy content.  

These parameters were displayed for each station to check the existence of 

recurrent parameter values and their distribution over time. In this paragraph, the 

results of GEA2 station (front of the black lobe) are shown, while the results of the 

other stations (GEA3 to GEA5) are reported in Appendix A. 

The peak frequency of the detected events over time, that was automatically picked 

from the event amplitude spectrum, is shown in Figure 12a. 
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Figure 12. (a) Peak frequency in time (b) Histogram of peak frequency of GEA2 station events. 

 

It is clear that most events (2330) have a peak frequency of approximately 40 Hz. 

These events are likely associated with snow compaction, as suggested in section 5.2. 

Additionally, there are many events that exhibit lower frequencies, including those 

with peak frequencies with peak frequencies below 10 Hz, which are related to the 

basal movements of the rock glacier or earthquakes (5.2). The remaining events are 

(b) 

(a) 
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characterized by peak frequencies that fall within the range of 10 to 45 Hz, while only 

a small number of events (41) exhibit peak frequencies greater than 45 Hz.  

The second parameter analysed is the kurtosis. Figure 13 displays the temporal 

variation of kurtosis for GEA2 events. 

 

 

Figure 13. Temporal variation of the kurtosis of GEA2 station’s events. 

It is known that the kurtosis is a statistical parameter characterizing the shape of a 

given amplitude distribution (e.g., normal distribution has kurtosis equal to 3). In 

seismic applications, high kurtosis values are typically indicative of sharp and 

impulsive signals. As a matter of fact, most of the events of GEA2 station have kurtosis 

lower than 40 but there are also many events with very high values. Indeed, only 21 

events are characterized by values lower than 3, so the distribution is defined as 

leptokurtic. 

The third parameter is bracketed duration and its temporal evolution is shown in 

Figure 14. Except for sixteen events, the bracketed duration is always lower than 25 

s. 
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Figure 14. Temporal evolution of bracketed duration of GEA2 station events. 

 

The last parameter is the 5-Hz frequency classes displaying the maximum energy 

content. This latter is useful to identify the frequency range characterized by 

maximum amplitude, and to verify if it is matching the peak frequency. The result is 

shown in Figure 15. 
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Figure 15. Histogram of 5-Hz frequency classes containing the maximum energy amount of GEA2 

station events.  

 

As visible in the previous graph, the frequency class with most events (1990) is 5-10 

Hz followed by another class with events having frequencies between 40 and 45 Hz. 

In this case, the number of events that fall in this range is 1650. On the contrary, the 

classes with the least events are 0-5 Hz and 30-35 Hz.  

 

5.3.1 K-means with 4 clusters 
 

First, events with high frequencies and long durations were removed from the 

original dataset due to their likely relation to rainfall noise and other events 

occurring in the rock glacier surroundings. This filtering process, conducted using 

MATLAB, allowed to obtain a more stable clustering of events probably related to 

rock glacier internal processes. 

Secondly, k-means cluster analysis was undertaken on the four classification 

parameters previously computed: peak frequency, bracketed duration, 5 Hz 

frequency classes and kurtosis, using a number of desired classes equal to 4.  

For each cluster, the four-dimension centroid is computed. Each event is 

automatically assigned to the cluster having the nearest centroid.  
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The peak frequency of the assigned events has been plotted in time in order to 

understand the seasonal occurrence of each cluster. The grey rectangle indicates a 

period in which the station was tilted.  

The results are shown in Figure 16. 

  

 

Figure 16. Peak frequency in time of the four clusters (C1-C4) obtained using k-means algorithm on 

bracketed duration, kurtosis, peak frequency and 5 Hz frequency classes with the highest energy 

amount.  

 

The first cluster (C1, red in Figure 16) is mainly composed of events with frequencies 

around 40 Hz. The most events occur between January 2021 and May 2021, with 

only a few occurring during the remaining monitoring period, and in some cases, 

exhibiting lower frequencies. This may be a further indication that these events may 

be linked to snow compaction or melting. 

The second cluster (C2, green in Figure 16) is characterized by events with strong 

frequency variability. Some events have low frequencies (around 10 Hz) while others 

reach up to approximately 50 Hz. Most events of this cluster take place in summer 

and autumn, even if some events do occur in other months, although infrequently. 

The third cluster (C3, blue in Figure 16) contains events with frequencies ranging 

from approximately 10 Hz to 30 Hz, with the majority occurring between August and 

December. A small number of events occur in subsequent months. As a first 
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approximation, these events have been attributed to high-frequency shallow quakes, 

due to the fact that their frequency is variable over time and might be linked to 

shallow subsurface processes (e.g., icequakes in the active layer).  

On the contrary, the last cluster (C4, black in Figure 16) does not display any 

seasonal variations. In fact, its events occur throughout the monitoring period and 

are always characterized by frequencies below or slightly above 10 Hz. Due to these 

characteristics, this cluster is probably representing low-frequency deep quakes and 

considering the visual classification, they may represent events correlated to the 

basal movements of the rock glacier.  

To better understand the characteristics of the four clusters of events, a cross-plot of 

the peak frequency related to the bracketed duration has been computed, as shown 

in Figure 17. 

 

 

Figure 17. Cross-plot of peak frequency vs bracketed duration of the four clusters (C1-C4). 

 

Looking at Figure 17, it is evident that events of clusters C1, C3 and C4 are 

characterized by comparable bracketed duration, ranging between 1 and 9 seconds.  

On the contrary, most events of the second class (C2) exhibit considerably lower 

bracketed durations, typically within the range of 0 to 2 seconds. Though there exist 

several "outliers" with more extended durations, they are few.  
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Table 4. Frequency and duration characteristics of the clusters C1 – C4.  

Cluster Frequency (Hz) Duration (s) 

C1 40 1 – 9 

C2 2 – 60 0 – 2 

C3 ≤ 10 1 – 9 

C4 10 – 30 1 – 9 

 

 

5.3.2 Relation with air temperature and precipitation data for 4 

clusters analysis 
 

The seasonal trend of the four classes obtained using k-means algorithm was then 

computed and compared to meteorological parameters of the site to get a more 

complete interpretation. 

Air temperature and precipitation data are available from the meteorological station 

of ARPA Valle d’Aosta (Regional Agency for Environmental Protection) located close 

to the dam of the Goillet Lake, at 500-m distance from the rock glacier 

(https://presidi2.regione.vda.it/str_dataview_station/1700).  

Hourly data are open access and can be downloaded from the web portal of the 

institution (https://presidi2.regione.vda.it/str_dataview_download). 

The first step of the analysis was to perform the monthly occurrence of the events of 

each cluster and compare the result with monthly maximum, average and minimum 

temperature. This step would provide insights about the correlation between the 

temperature and the frequency of occurrence of each cluster.  

For example, if a cluster occurs more frequently during summer when temperatures 

are higher, it could indicate that temperature plays a role in the behaviour of that 

cluster. 

In a second moment, the events hourly occurrence of the month with the most 

events has been computed for each cluster (C1-C4) and compared to hourly 

maximum, average and minimum temperature. 

The result for the cluster C1 is shown in the following graphs (Figure 18 and Figure 

19). 
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Figure 18. Monthly occurrence of events of the first class (C1) compared to monthly maximum 

temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin).  

 

It is clear that the most events occur in March. In this month the maximum 

temperature registered is 8.2°C, the mean temperature is – 4.5 °C and the minimum 

temperature is – 15.7°C.  

On the contrary, the months characterized by few events are the ones with highest 

temperature values. It is clear that this class of events is strongly related to colder 

periods.  

Then, events of March have been investigated computing the hourly occurrence 

compared to hourly temperature values, as shown in figure Figure 19. 
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Figure 19. Hourly occurrence of C1 events in March compared to hourly maximum temperature 

(Thmax), hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

 

Looking at the figure above, the majority of C1 events occur in the afternoon, until 

midnight, then they decrease. Specifically, the highest incidence of events is at 7 

p.m., whereas the lowest occurrence is observed during the time frame of 1 a.m. to 

5 a.m. 

The same analysis has been conducted on the C2 cluster and the outcomes are 

visible in Figure 20. 
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Figure 20. (a) Monthly occurrence of events of the second class (C2) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 

(b) Hourly occurrence of C2 events in August compared to hourly maximum temperature (Thmax), 
hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

 

Regarding the monthly occurrence of C2 events, they are strongly related to high 

temperature values. In fact, they mainly take place in August (126), when it is also 

reached the peak of temperature (Tmax = 19.2 °C, Tmean = 9.7 °C, Tmin = 0.9 °C). 

(a) 

(b) 
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However, the remaining events span all over the other months, but always with a 

number lower than 60.  

Looking at the hourly occurrence of C2 events in August (Figure 20b), there is a 

strong peak of events at 9 a.m., when the maximum temperature is 16.8 °C, the 

mean temperature is approximately 11 °C and the minimum temperature is 1.6 °C. 

The lower incidence of events is in the afternoon and during night. For the cluster 

C3, the results of this analysis are visible in Figure 21. 

 

 

Figure 21. (a) Monthly occurrence of events of the third class (C3) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 
(b) Hourly occurrence of C3 events in December compared to hourly maximum temperature (Thmax), 

hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

(a) 

(b) 
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The most of events of the third cluster take place in December (around 280), when 

the maximum temperature is 5.8 °C, the mean temperature is – 6.3 °C and the 

minimum temperature is -14.2 °C. The months with the low occurrence are instead 

July and August, corresponding to the warmer month, confirming that this class is 

related to colder periods. Looking at Figure 21b, it is possible to see that the hourly 

occurrence of these events is concentrated in the evening and during night (peak at 

11 p.m.), while they decrease from 6 a.m. and 15 p.m.  

Finally, the same analysis has been performed on the fourth cluster, as shown in 

Figure 22. 

 

 

Figure 22. (a) Monthly occurrence of events of the fourth class (C4) compared to monthly maximum temperature 
(Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). (b) Hourly occurrence of 

C4 events in August compared to hourly maximum temperature (Thmax), hourly average temperature (Thmean) and 
hourly minimum temperature (Thmin). 

(a) 

(b) 
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The last cluster (C4) has the peak of occurrence in August, as for the second one 

(C2). Even the hourly occurrence is very similar because they both have most of the 

events in the early morning, reaching the peak at 9 a.m.   

Table 5 shows a summary of the clusters’ monthly and hourly occurrence previously 

described.  

 

Table 5. Monthly occurrence and hourly occurrence of the month with most events of the four clusters 

(C1-C4). 

Cluster Highest occurrence month Peak hour occurrence 

C1 March 7 p.m. 

C2 August 9 a.m. 

C3 December 11 p.m. 

C4 August 9 a.m. 

 

 

5.3.3 K-means with 8 clusters 
 

To better describe the dataset, the k-means algorithm was then applied on the same 

four parameters (peak frequency, bracketed duration, 5 Hz frequency classes 

containing the maximum energy amount and kurtosis) increasing the number of 

subclusters to 8. The objective is to better define the classes and to further analyse 

their characteristics as it may be necessary to use more than a single centroid to 

accurately define a class of events. 

The peak frequency of the assigned events (C1 – C8) has been plotted in time to 

understand the seasonal occurrence of each cluster. The result is shown in Figure 23. 

The grey rectangle indicates a long period without data. 
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Figure 23. (a) Peak frequency in time of the eight clusters (C1-C8) obtained using k-means algorithm 

on bracketed duration, kurtosis, peak frequency and 5 Hz frequency classes with the highest energy 

amount. (b) Peak frequency vs bracketed duration of the eight clusters (C1-C8). 

 

The red and magenta clusters (C1 and C6) are characterized by events with 

frequencies that fall below or slightly above 10 Hz. The duration of events belonging 

to cluster C1 ranges from 1 to 5 seconds, whereas those in the sixth cluster (C6) last 

longer, typically between 4 and 9 seconds.   

(a) 

(b) 



52 
 

They are both registered throughout the monitoring period. It may be useful to 

compare them with climate data to identify further similarities in order to join them 

in a unique class. 

The third cluster (C3, black) is analogous to the first class of the previous clustering 

attempt. Then, it is composed of events with frequency around 40 Hz and a 

bracketed duration of 1-9 seconds. These events occur predominantly from January 

2021 to May 2021.  

Clusters C2 and C4 (green and blue) are similar to each other with events that are 

the shortest in duration (below 1 second), exhibit strongly variable frequency, 

ranging from low values (around 2 Hz) to higher values (around 60 Hz). While many 

events in these clusters occur during autumn, outliers are observed in other months 

as well. 

The fifth cluster (C5, cyan) contains events with frequencies ranging from 

approximately from 10 Hz to 40 Hz and short bracketed durations. These events 

primarily occur from August to December.  

The yellow cluster (C7) is characterized by events with duration between 1 and 9 

seconds and frequencies ranging from 10 Hz to 20 Hz. They are observed during the 

whole monitoring period but strongly decrease in winter.   

Finally, eighth cluster (C8, bordeaux) is composed of events having frequencies that 

fall between 10 and 30 Hz. The bracketed duration of this class ranges from 3 s to 9 s 

but most of them lasts from 6 to 9 seconds.   

In Table 6 are shown the characteristics of the eight classes previously specified.   

 

Table 6. Frequency and duration range for the eight clusters obtained (C1-C8). 

Cluster Frequency (Hz) Duration (s) 

C1 ≤ 10 1 - 5 

C2 2 - 60 ≤ 1 

C3 40  1 - 9 

C4 2 - 60 ≤ 1 

C5 10 - 40 1 - 5 

C6 ≤ 10 1 - 5 

C7 10 - 40 1 - 9 

C8 10 - 30 3 - 9 
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Upon conducting a preliminary analysis of the results presented in the table above, 

similarities among the various classes have been observed. 

Specifically, it appears that the first and sixth clusters could be combined, as could 

the C4 and C2 clusters.  

Furthermore, the seventh and eighth classes exhibit comparable frequencies and 

durations, suggesting that they may be merged. Conversely, the C3 cluster stands 

out as a distinct class due to its unique frequency characteristics.  

The remaining cluster (C5) may be comparable to C7 and C8 in terms of frequency, 

but the duration is different.  

To better investigate the characteristics of these classes and the possibility to merge 

some of them, their seasonal trend is computed and compared to meteorological 

parameters. This analysis can provide insights into the factors that are driving the 

differences in frequency and duration of the eight clusters.  

 

 

5.3.4 Relation with air temperature and precipitation data for 8 

clusters analysis 
 

The aim of this analysis is to explore similarities in the seasonal occurrence patterns 

of eight different classes (C1 – C8) and compare them to meteorological parameters, 

specifically temperature and precipitation data, recorded at the climate station of 

Goillet Lake.  

As in the paragraph 5.3.2, the first analysis computed is the monthly occurrence for 

each cluster and the comparison to temperature data.  

The second step involves identifying the month characterized by the most events for 

each class and then analysing the hourly occurrence of that month. This step would 

help to identify the specific time of the day when events’ cluster is most likely to 

occur.  

Overall, the aim of these analysis is to identify similarities in the seasonal occurrence 

patterns of the clusters and potentially merge some of them into a single class. 

By merging clusters that have similar seasonal occurrence patterns, it may be 

possible to simplify the classification system and improve the understanding of the 

underlying meteorological and environmental factors that influence the formation 
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and behaviour of these clusters. The results for cluster C1 are shown in the following 

graphs (Figure 24). 

 

 

  

Figure 24. (a) Monthly occurrence of events of the first class (C1) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 
(b) Hourly occurrence of C1 events in June compared to hourly maximum temperature (Thmax), hourly 

average temperature (Thmean) and hourly minimum temperature (Thmin). 

 

(a) 

(b) 
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The temporal distribution of cluster C1 (Figure 24a) shows a monthly pattern with 

multiple peaks of roughly 120 events occurring in March, June and December. 

This pattern appears to be independent of temperature variations. Conversely, 

Figure 24b demonstrates an inverse relationship between cluster C1 and 

temperature. Specifically, during the hours of the day with the highest temperature 

(from 6 a.m. to 2 p.m.), the occurrence of events is observed to decrease. 

The following image (Figure 25) shows the same analysis for the second cluster. 
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Figure 25. (a) Monthly occurrence of events of the second class (C2) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 

(b) Hourly occurrence of C2 events in August compared to hourly maximum temperature (Thmax), 
hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

 

The most events of the second class C2 take place in August and then in September.  

It is possible that the high occurrence of cluster C2 in these months is related to the 

peak in temperature that occurs in July (monthly maximum temperature =19.4 °C, 

(a) 

(b) 
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monthly average temperature=10°C and monthly minimum temperature=0.4°C), as 

the effects of high temperatures may persist during the following months. The low 

occurrence of C2 events is in February, May, and November. 

Looking at the hourly occurrence in August, it is visible that the peak of events 

happens in the morning, at 9 a.m.  

 

 

 

Figure 26. (a) Monthly occurrence of events of the third class (C3) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 

(b) Hourly occurrence of C3 events in March compared to hourly maximum temperature (Thmax), 
hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

(a) 

(b) 
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The figures above (Figure 26) suggest that the third class (C3) is mainly characterized 

by events that occur in March, and the second month with the highest occurrence is 

January. This pattern may suggest that this class is related to colder periods, possibly 

related to snow compaction. 

Furthermore, the fact that the majority of events in March occur in the afternoon 

and evening hours, with a peak at 7 p.m., when the temperature is low, suggests 

that this class may be related to specific atmospheric conditions that occur during 

those hours. For example, the cooling of the atmosphere as the sun sets may 

contribute to the conditions that lead to C3 events. 
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Figure 27. (a) Monthly occurrence of events of the fourth class (C4) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 

(b) Hourly occurrence of C4 events in August compared to hourly maximum temperature (Thmax), 
hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

 

 

The fourth category of events (C4) predominantly occurs in October with 25 events 

registered (Figure 27a). Nevertheless, high occurrences of this event type are also 

observed in August and September. It appears that the prevalence of C4 events is 

(a) 

(b) 
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correlated to periods of elevated temperature, as the number of occurrences 

decreases in other months, even though by a marginal amount.  

Regarding the hourly occurrence in August, the peak occurs at 9 a.m, with 22 events 

registered and a maximum temperature of 16.8 °C, a mean temperature of 11.1 °C 

and and a minimum temperature of 1.6 °C. 

 

 

 

Figure 28. (a) Monthly occurrence of events of the fifth class (C5) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 

(b) Hourly occurrence of C5 events in August compared to hourly maximum temperature (Thmax), 
hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

(a) 

(b) 
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In the fifth cluster (C5) a total of 429 events were observed, with the majority taking 

place during the month of August (130) when the highest recorded temperature was 

19.2 °C (Figure 28). The second most frequent month for these events was 

September, with a total of 94 occurrences. On the contrary, the remaining months of 

the year registered a low number of events (below 60). 

In August, the peak of events (37) occurs at 9 a.m when the maximum temperature 

was 16.8 °C and the lowest temperature is 1.6 °C.  

It is not the warmer hour of the day, but it is clear that the most events take place in 

the morning. 
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Figure 29. (a) Monthly occurrence of events of the sixth class (C6) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 
(b) Hourly occurrence of C6 events in December compared to hourly maximum temperature (Thmax), 

hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

 

The cluster C6 is characterized by events that mainly occur in December (157), as 

shown in Figure 29. The other two months with highest occurrence are March and 

April, with 95 and 100 events, respectively.  

(a) 

(b) 
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In December, there is no evident peak of events during any particular hour of the 

day. However, the majority of events take place between 11 p.m. and 5 a.m. when 

air temperature is low.  

 

 

 

Figure 30. (a) Monthly occurrence of events of seventh class (C7) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 

(b) Hourly occurrence of C7 events in August compared to hourly maximum temperature (Thmax), 
hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

 

(a) 

(b) 
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The monthly occurrence of cluster C7 is characterized by a strong peak of events in 

August (170) followed by a subsequent peak in September (119). These occurrences 

are correlated with elevated temperatures observed during this period, whereby the 

maximum temperature (Tmax) averages at 19.2 °C, the mean temperature (Tmean) is 

9.7 °C and the minimum temperature (Tmin) is 0.9 °C.  

In August, the time range featuring the highest incidence of cluster C7 events is from 

6 a.m. to 2 p.m., corresponding with the period of the day in which temperatures are 

highest (Figure 30). 

 

 

Figure 31. (a) Monthly occurrence of events of eighth class (C8) compared to monthly maximum 
temperature (Tmax), monthly average temperature (Tmean) and monthly minimum temperature (Tmin). 

(b) Hourly occurrence of C8 events in August compared to hourly maximum temperature (Thmax), 
hourly average temperature (Thmean) and hourly minimum temperature (Thmin). 

(a) 

(b) 
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Regarding the final class of events (C8), August stands out as the month with the 

highest number of registered occurrences, with a total of 147. The second month 

with highest incidence is November, with 101 events recorded (Figure 31).  

Furthermore, the majority of events within this cluster take place in the morning, 

specifically between 5 a.m. to 9 a.m., with a peak incidence at 8 a.m. Subsequently, 

the frequency of recorded events gradually decreases throughout the day, with very 

few events occurring during the afternoon hours.  

The Table 7 summarises the occurrence characteristics of each cluster previously 

specified.  

 

Table 7. Month with highest events’ occurrence and hourly occurrence peak during that month of each 

cluster (C1-C8). 

Cluster Highest occurrence month Peak hour occurrence 

C1 June 11 p.m. 

C2 August 9 a.m. 

C3 March 7 p.m. 

C4 October 9 a.m. 

C5 August 9 a.m. 

C6 December 11 p.m. 

C7 August 6 a.m. 

C8 August 8 a.m. 

 

 

In addition, the occurrence cumulative curves of the eight classes (C1-C8) have been 

plotted in time and compared to meteorological data, such as temperature (T°C), 

precipitation (mm/h) and snowfall (cm) registered at the reference meteorological 

station during the monitoring period.  

The occurrence cumulative curves of the different classes give us information about 

the periods with most events. When the curve for a particular class is steep, it 

indicates a high occurrence of events during that period, while a flat curve indicates 

a low occurrence. The result is visible in Figure 32. 

 

 

  



66 
 

 

Figure 32. Occurrence cumulative curves of the eight clusters (C1-C8) and temperature (°C), 
precipitation (mm/h) and snowfall (cm) registered during the monitoring period. 

 

Taking into account the similarities observed among the eight clusters (C1 – C8) in 

terms of seasonal incidence and correlation with temperature data and the 

cumulative curves of occurrence, it may be advisable to merge certain classes.  

In particular, the clusters C7 and C8 exhibit similar peak frequency ranges and 

durations (Table 6). In addition, both clusters display a peak of events in August, 

concomitant with high temperatures (Table 7). Moreover, these events occur during 

the hours of the day when temperatures begin to rise (morning). For these reasons 

they are probably related to variations of the active layers of the rock glaciers that 

may lead to icequakes and other fracturing processes. They are finally classified as 

“high-frequency shallow quakes”. 
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Other two classes that may be merged are C1 and C6, given their occurrence during 

colder months. Although C1 exhibits two notable peaks in March and June, both 

clusters are characterized by nocturnal events that coincide with lower 

temperatures. These events may be linked to basal movements of the rock glaciers, 

as well as rock and debris slides on the rock glaciers and in the surroundings. The 

events captured by the peak in June of cluster C1 are likely attributable to rock falls, 

while events of cluster C6 are predominantly deeper quakes. Differentiating 

between quakes and rock falls based on the clustering analysis parameters is 

challenging. However, these classes are merged and classified as “low-frequency 

deep quakes”. 

On the contrary, the third cluster of events (C3) represents a unique class. They are 

related to snow compaction or melting that lead to stress variation within the rock 

glaciers, as confirmed also by the steep period of the occurrence cumulative curve in 

Figure 32. These events occur during periods of snow cover, with a peak incidence in 

March, occurring later than the peak of air temperature. The delay may be 

attributed to the time required for thermal propagation within the snow and the 

rock glaciers.  

The remaining clusters C2, C4 and C5 are characterised by similar histograms but 

they are further investigated in relation to rainfall to assess the feasibility of merging 

them.   

More precisely, the monthly occurrence of the three classes (C2, C4 and C5) has 

been computed and compared to the monthly maximum precipitation (Pmax) and to 

the monthly mean precipitation (Pmean). In addition, the hourly occurrence in the 

month with highest number of events of the three clusters has been compared to 

the hourly maximum precipitation (Phmax) and to the hourly mean precipitation 

(Phmin).  

The following figure shows the results for the cluster C2. 
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Figure 33. (a) Monthly occurrence of events of the second class (C2) compared to monthly maximum 
precipitation (Pmax) and monthly average precipitation (Pmean). (b) Hourly occurrence of C2 events in 

August compared to hourly maximum precipitation (Phmax) and hourly average precipitation (Phmean). 

 

Figure 33a shows that the peak of 61 events occurs in August, concurrently with a 

peak in the monthly maximum precipitation (11.6 mm), even if the hourly 

occurrence during August does not indicate any correlation with rainfall events. It is 

only visible that there are always events during rainfall. 

 

(a) 

(b) 
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Figure 34. (a) Monthly occurrence of events of the fourth class (C4) compared to monthly maximum 
precipitation (Pmax) and monthly average precipitation (Pmean). (b) Hourly occurrence of C4 events in 

October compared to hourly maximum precipitation (Phmax) and hourly average precipitation (Phmean). 

 

The C4 class is characterized by a peak of events in October, as visible in Figure 34a. 

This month is the one with the highest level of precipitation with August following 

closely behind, recording 12.6 and 11.6 mm, respectively. Thus, it appears to be a 

significant correlation between these events and rainfall patterns. Figure 34b, on the 

other hand, does not demonstrate this correlation as explicitly.   

(a) 

(b) 



70 
 

 

 

 

Figure 35. Monthly occurrence of events of the fifth class (C5) compared to monthly maximum 
precipitation (Pmax) and monthly average precipitation (Pmean). (b) Hourly occurrence of C5 events in 

August compared to hourly maximum precipitation (Phmax) and hourly average precipitation (Phmean). 

 

Even the fifth class (C5) is characterized by a peak of 130 events in August, when the 

precipitation registered is 11.6 mm, as shown in Figure 35a. 

(a) 

(b) 
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As for the other classes (C2 and C4), the hourly occurrence in August does not 

explicitly indicate this correlation.  

Subsequently, to better understand the correlation of the three classes (C2, C4 and 

C5) with rainfall patterns, the percentage of clusters events occurred during 

precipitations events has been computed. The outcomes are shown in Table 8. 

 

Table 8. Percentage of events occurring during rainfall for clusters C2, C4 and C5. 

Cluster Events (%) 

C2 21.6  

C4 22.2 

C5 16.2 

 

Looking at the table above, it is possible to see that the percentage of events that 

occur during precipitation, even if low, is not negligible. 

Finally, these three clusters have been merged in a singular class mainly composed 

by “rainfall-related events” even though including high-frequency short duration 

events as well.  

As a final analysis, the comparison between the cumulative curves resulting from the 

clustering with four classes and those of the clustering with 8 sub-classes is 

computed. The result is shown in Figure 36. 
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Figure 36. Comparison between the occurrence cumulative curves of clustering with 4 classes and 8 
classes. 

 

It is clear that there are no substantial differences between the cumulative curves of 

the two cluster analyses. In particular, clusters C1 (4 classes) and C3 (8 classes) show 

an identical trend. The same is for the comparison between clusters C3 (4 classes) 

and C7+C8 (8 classes). Clusters C4 (4 classes) and C7+C8 (8 classes) show similar 

trends, but a slightly different number of events. The main differences occur 

between the combined class C2+C4+C5 (8 classes), in comparison with cluster C2 (4 

classes). The first clustering attempt had a small number of occurrences within this 

class (C2) with respect to the second attempt(C2+C4+C5). 

Such observations may imply that in the first case, some events were allocated to 

other classes, indicating a potential for errors or misclassifications. 

Therefore, increasing the number of sub-clusters may enhance the clustering 

algorithm’s ability to assign each event to its appropriate class, avoiding outliers and 

inaccuracies. 
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In any case, the coherence of the two clustering results highlights the robustness of 

the selected clustering parameters to obtain a fast and reliable automatic 

classification of the detected events.  
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6 CONCLUSIONS  

 

As previously discussed, the objective of this thesis was to perform a seismic survey 

to investigate the dynamics and internal processes of Gran Sometta rock glaciers. To 

achieve this, the analysis of the seismic dataset obtained through the installation of 

four monitoring stations (GEA2-GEA5) has revealed the existence of a significant 

number of microseismic events throughout the monitoring period, as indicated in 

the Section 5.1. 

Specifically, the application of the short-time average over the long-time average 

(STA/LTA) algorithm to the raw signals resulted in the extraction of 45326 total 

events, which were differentially distributed among the four seismic stations (Table 

3). 

The events identified at the GEA2 station were subjected to a process of 

classification through both visual analysis and cluster analysis based on kurtosis, 

bracketed duration, 5-Hz frequency classes containing the highest energy amount 

and peak frequency of the amplitude spectrum.  

The visual (manual) classification conducted analysing the seismogram, Fourier 

spectrum and spectrogram, yielded six distinct types of events, namely: low 

frequency and long duration events, earthquakes, rockfalls, rain-related noise 

events, snow-related events and high frequency and short duration events. This step 

allowed for a deeper understanding of the seismic signature of the most frequently 

occurring events. However, it is a time-consuming and subjective method when 

dealing with a high number of detected events. 

To address this issue, an automatic cluster analysis (automatic) was carried out using 

the k-means algorithm, initially using a number of classes equal to 4. However, to 

achieve a more accurate classification of events, the number of sub-clusters was 

then further increased to 8. This automated classification method proved to be both 

efficient and accurate, enabling the fast classification of a large number of events. 

Moreover, the analysis of frequency and duration characteristics, as well as the 

seasonal and hourly occurrence of events in relation to air temperature and 

precipitation, provided valuable insights into the triggering factors behind these 

events. 

After applying the clustering analysis some of the eight classes (C1 – C8) were 

merged due to their similarities. As a result, the final classification of events was 

condensed into four categories: 
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i. High frequency shallow quakes; 

ii. Low frequency deep quakes;  

iii. Snow-related events; 

iv. Residual hybrid events related to rain and other high-frequency short 

duration quakes. 

In conclusion, the seismic survey conducted on Gran Sometta rock glaciers has 

provided valuable insights into the dynamics and internal processes of the glaciers.  

While this classification approach allows for a more streamlined and efficient 

analysis of the events, further efforts are still needed to achieve a higher level of 

precision in detecting and characterizing the origin of these events, including 

estimating their location. 

Overall, seismic monitoring of rock glaciers is an essential tool for understanding 

their behaviour and mitigation potential hazards associated with them. 
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APPENDICES 

 

APPENDIX A 
 

In this paragraph the time- and frequency-domain parameters used in the clustering 

analysis for stations GEA3 – GEA5 are shown. The five following figures are related to 

GEA3 station. 

 

 

 

Figure 28. (a) Peak frequency in time (b) Histogram of peak frequency of GEA3 station’s events. 

(a) 

(b) 
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Figure 29. Kurtosis in time of GEA3 station’s events. 

 

 

Figure 30. Temporal evolution of bracketed duration of GEA3 station’s events. 
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Figure 31. Histogram of 5-Hz Frequency classes containing the maximum energy amount of GEA3 

station’s events. 

 

The events at GEA4 station are characterized by the parameters shown in the 

following images.  
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Figure 32. (a) Peak frequency in time (b) Histogram of peak frequency of GEA4 station’s events. 

 

(a) 

(b) 
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Figure 33. Kurtosis in time of GEA4 station’s events. 

 

 

Figure 34. Bracketed duration in time of GEA4 station’s events. 
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Figure 35. Histogram of 5-Hz Frequency classes containing the maximum energy amount of GEA4 

station’s events. 
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The following figures show the parameters for the last station, GEA5. 

 

 

 

Figure 36. (a) Peak frequency in time (b) Histogram of peak frequency of GEA5 station’s events. 
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Figure 37. Kurtosis in time of GEA5 station’s events. 

 

 

Figure 38. Bracketed duration in time of GEA5 station’s events. 
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Figure 39. Histogram of 5-Hz Frequency classes containing the maximum energy amount of GEA5 

station’s events. 

 

APPENDIX B 
 

The clustering procedure has been computed also to the other station’s events. 

Even in this case the clusters were obtained through the application of k-means 

algorithm on the same four parameters (kurtosis, bracketed duration, 5 Hz 

frequency classes and peak frequency).  

In the following pictures are shown the peak frequency in time of the clustered 

events and the peak frequency related to the bracketed duration, for each station 

(GEA3 – GEA5).  
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Figure 40. (a) Peak frequency in time (b) Peak frequency vs bracketed duration of clustering events of 

GEA3 station. 
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Figure 41. (a) Peak frequency in time (b) Peak frequency vs bracketed duration of clustering events of 

GEA4 station. 
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Figure 42. (a) Peak frequency in time (b) Peak frequency vs bracketed duration of clustering events of 

GEA5 station. 

 

 

(a) 

(b) 


