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ABSTRACT 
 

 

Recent works highlighted that one of the fundamental roles of sleep is the removal of 

toxic metabolites produced during wakefulness. Consequently, a correlation was 

found between the quality of both rapid-eye movement (REM) sleep and deep sleep 

(i.e., slow wave sleep, SWS) and the development of neurodegenerative diseases. 

In this regard, the study of RBD has assumed great importance as it is considered a 

symptom that precedes, even by decades, the development of α-synucleinopathies, 

and a conversion rate to Parkinson's disease of around 90% has been found. 

The diagnosis of REM sleep behaviour disorder (RBD) is a lengthy and cumbersome 

process involving the analysis of polysomnography (approximately 8 hours of 

recording on more than 10 tracings) by a sleep expert. Consequently, the aim of this 

study is to develop a model capable of easing the physician's workload by performing 

an automatic binary classification between healthy and RBD patients. 

To date, some steps have already been taken in this direction often by exploiting 

electroencephalography (EEG) and electromyography (EMG) signals. However, 

following the indications of the latest research highlighting a relationship between 

heart rate variability (HRV) and RBD, this work aims to assess the predictive properties 

of the ECG signal, either singly or conjugated with the EMG signal, in detecting RBD. 

Different combinations of feature selection algorithms and machine learning models 

(preferred over deep learning due to the explainability of the results provided) were 

evaluated, obtaining accuracy values over 85%. This supports and confirms the 

research conducted on HRV and could further reduce the costs associated with the 

diagnosis of RBD, leading to the possibility of implementing screening procedures on 

the over-60 population. This would result in a very early diagnosis and, consequently, 

more effective treatment. 
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INTRODUCTION 
 

 

I. Sleep in general 
Sleep is a cyclically recurring condition in most living beings and is essential in many 

physiological functions necessary for proper growth and development of the 

organism. 

The study of sleep is a relatively recent discipline, born in the 1930s with Berger. 

The definition of sleep used to be expressed on an exclusively behavioural basis 

(considering motility, response to external stimuli, eye closure, posture, and 

reversibility of the state). Recently, it has become essential to supplement the 

behavioural definition model with physiological parameters that define certain 

peculiarities of the different sleep stages. The instrumental tests used for this purpose 

are: 

EEG (electroencephalogram): analyses cortical dynamic activity and, by extension, 

subcortical activity. 

EOG (electrooculogram): records eye movements, used to differentiate certain sleep 

phases that would otherwise be very similar and to identify REM sleep.  

Registration is based on the potential difference between the cornea (positive) and 

retina (negative). 

EMG (electromyogram): analyses basic muscle tone.  

Sleep is roughly divided into REM sleep (25% - with Rapid Eyes Movements) and NREM 

sleep (75% - in which the eyes do not stand still but do not make rapid movements). 

NREM sleep is further subdivided into N1 sleep (5% - wakefulness transition sleep), 

N2 sleep (50% - more stable sleep), N3 sleep (20% - Slow Wave Sleep). The 

percentages of the different phases change throughout life and according to the 

duration of wakefulness: the child spends more time in the N3 phase than the adult, 

the elderly show a reduction in slow wave sleep and an increase in transitions to the 

waking state - up to 6-7). 

The most important phases in homeostatic terms are N3 sleep and REM sleep, the 
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others are expendable: in case of a sleepless night, during the following night, N3 

sleep is recovered with a doubling of its normal duration and a large part of REM sleep, 

to the detriment of N1-N2 sleep (transition phases). These different phases are 

organised in 70-90 minutes cycles that follow each other until awakening.  

Figure 1 Example of physiological hypnogram 

Observing the graph in Figure 1, which shows a physiological hypnogram, it can be 

seen that initially one moves from wakefulness to deep sleep N3 (N4 sleep has 

recently been merged with N3 sleep), then follows the reverse path back to the N1 

stage from which one moves on to REM sleep which closes the cycle. In the first part 

of sleep, N3 sleep is more represented, while REM sleep prevails in the second part. 

This is due to physiological necessity and has great pathological impacts as REM sleep 

parasomnias frequently appear in this part of sleep. 

It now remains to be determined how the different sleep stages can be differentiated. 

For this purpose, the most decisive electrophysiological signal is certainly the EEG, 

which is characterised by different frequency bands. The analysis of these provides 

critical information about the regulation of wakefulness by the several brain areas and 

the succession of sleep stages. 

o Awake stage: rapid, low-amplitude brain activity à α band (9-15 Hz) and β band 

(15-30Hz). 

o N1 stage: decrease in amplitude (less than 75 to 50 µV) and frequency à θ band 

(4-9 Hz).  
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o N2 stage: It is characterized by predominant θ activity and occasional quick 

bursts of faster activity. K complexes and sleep spindles occur for the first time 

and are typically episodic. K complexes are sharp, monophasic or polyphasic 

slow waves, with a sharply negative (upward) deflection followed by a slower 

positive (downward) deflection. They characteristically stand out from the rest 

of the background. 

o N3 stage: even slower and more extensive activity δ band (0.5-4 Hz). K-

complexes may be detected. When the sleep becomes even deeper, cortical 

activity decreases further becoming particularly wide and slow (what used to 

be called N4 sleep). 

o REM stage: desynchronisation of brain activity that appears similar to 

wakefulness associated with Rapid Eyes Movements and generalised atonia. 

 

II. Sleep role 
Over the years, numerous research studies have given sleep a wide variety of 

functions, including energy conservation, immunological processing, memory 

consolidation, emotion regulation, and threat simulation.  

More recently, it was hypothesised, and subsequently demonstrated [2], that another 

fundamental role of sleep was the elimination of toxic metabolites that accumulate 

during wakefulness. 

One of the most studied neurodegenerative effects is the formation of senile plaques 

due to the accumulation, and subsequent aggregation, of the protein Amyloid-β(Aβ). 

 

III. Amyloid-β 
The amyloid precursor protein (APP) is a long transmembrane protein that, when 

processed incorrectly, gives rise to β-peptide (most frequently in the form Aβ42), 

which causes the accumulation of Aβ. 

The processing of APP follows the so-called amyloid cascade and is carried out by 

different isoforms of the secretase enzyme, of which α-secretase causes the 

formation of a non-amyloidogenic fragment, while the conjugated β- and γ-secretase 
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produces β-peptide.  

Aggregation into fibrils/platelets of β-peptide usually occurs from fragments (seeds) 

of 8-12 subunits, which are first deposited within the neuron and later, with neuron 

death, escape into the extracellular space. 

The result of β-peptide aggregation is neuronal damage to synaptic function and 

nerve transmission, with parallel activation of microglia in attempt to clear the protein 

aggregates. The progressive deposition of Aβ evokes a neuroinflammatory response 

from glial cells, with production of neurotoxic cytokines (IL-1, IL-6, TNF-α). 

Neuronal death and degeneration then appear. Indeed, a depletion of acetylcholine 

has been noted in the basal ganglia and in the nucleus basalis of Meynert, responsible 

at least in part of the cognitive and mnestic decline. 

Elements called extracellular vesicles have also been identified that can contain and 

transport β-peptide protein aggregates, transmitting the pathology to contiguous 

areas of the CNS. 

Early studies looked for and found a relationship between Aβ accumulation and 

macroscopic sleep measurements. Going into greater detail, analysing the EEG trace 

in the 0.5-4Hz band, Slow Wave Activity (SWA), an inverse proportionality was 

discovered between spectral power for frequencies below 1Hz and Aβ aggregation 

and, at the same time, a direct proportionality for frequencies above 1Hz. This 

phenomenon confirms the results of early studies and can be translated into a 

correlation between sleep quality and the onset of several neurodegenerative 

diseases [3]. 

 

IV. RBD 
IV.1 Etiology 

In this context REM Sleep Behaviour Disorder (RBD) plays an important role in 

increasing the risk of developing neurodegenerative syndrome, with a conversion rate 

of 6.3% per year and a total of 74% converting after 12-year follow-up. It is defined, 

by the International Classification of Sleep Disorders 3rd Edition (ICSD-3) [1], as a 

parasomnia manifested by vivid, often frightening dreams accompanied by simple or 
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complex motor behaviours during REM sleep. 

RBD can be divided into three categories: 

1. Idiopathic RBD: it is most suggestive in neurodegenerative synucleinopathies, 

including dementia with Lewy bodies, Parkinson's disease, 

olivopontocerebellar degeneration, multiple-system atrophy, and Shy-Drager 

syndrome. [5] 

2. Drug-induced RBD: it is common in individuals who are taking antidepressants 

as serotonin reuptake inhibitors (fluoxetine), tricyclic antidepressants 

(mirtazapine, protriptyline, amitriptyline, nortriptyline, desipramine, 

imipramine), and monoamine oxidase inhibitors (phenelzine and selegiline). 

[6,7] 

3. Secondary RBD due to medical condition: it may be considered a distinct 

phenotype of RBD. It is characterized by less violent or complex behaviour 

during REM sleep, earlier age of onset, equal sex distribution, and hypocretin 

(orexin) deficiency (a lab diagnosis specific for narcolepsy type 1). [8] 

 

IV.2 Epidemiology 

The prevalence of this disease is around 0.5-1.25% in the entire world population and 

increases to 2% if only the population over 60 is considered. In fact, the average age 

of diagnosis is around 52-65 years and a higher incidence, around 78%, can be noted 

in the male sex [4], but it is worth mentioning the fact that female cases are likely 

underreported and underdiagnosed [9]. 

Since isolated RBD is a prodromal syndrome of alpha-synuclein neuropathology, it is 

widespread among patients with Parkinson’s disease (PD) (33-50%), multiple system 

atrophy (80-95%), and dementia with Lewy bodies (80%) [10]. 

 

IV.3 Pathophysiology 

Physiologically, REM sleep is associated with skeletal muscle atonia, producing 

paralysis. This confers a protective measure, preventing people from acting what they 

dream in the setting of dream mentation. Quiescence of motor activity during REM 

sleep may also facilitate sleep-related memory consolidation. 
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The physiologic suppression of motor activity during REM sleep is the cumulative 

result of multiple neuronal circuits that predominantly originate in the pons and 

ultimately terminate on spinal cord motor neurons. While the exact lesion that causes 

RBD is unknown, evidence suggests that in both isolated and medication-induced 

RBD, the loss of REM sleep atonia is related to dysfunction of the subcoeruleus 

complex in the rostral pons [11,12]. 

The neurodegenerative α-synucleinopathies consist of glial cytoplasmic inclusions 

aggregates of insoluble alpha-synuclein protein [11]. However, it is unclear if the link 

between this neurodegenerative classification and RBD results from these 

accumulated aggregates or through another pathology. Animal studies showed that 

progressive alpha-synuclein aggregation and neuronal apoptosis occurred in the 

ventricular reticular nucleus in the brainstem and resulted in RBD symptoms in a 

chronic rat model of Parkinson disease [13]. 

While the relationship between RBD and synucleinopathies is more frequently 

described, other non-synucleinopathies such as progressive supranuclear palsy (PSP) 

[14], familial amyotrophic lateral sclerosis [15], frontotemporal dementia [16], 

myotonic dystrophy [17] were reported less commonly. 

 

IV.4 Clinical features and diagnosis 

Patients with RBD exhibit abnormal motor behaviours during REM sleep, 

predominantly while in bed. These behaviours include talking, screaming, swearing, 

gesturing, arm flailing, punching, kicking, and leaping or falling off the bed. Although 

violent behaviours are most common, nonviolent activities such as laughing, 

whistling, singing, and masturbation may occur occasionally (about in 1 on 5 patients). 

An early warning bell for suspecting the presence of this pathology may be a positive 

history of injuries reported by both the patient and his or her bed partner, who, in 6 

out of 10 cases, reports being a victim of nocturnal assaults. The aggressive attitudes 

are a direct consequence of the dreams content that the study [18] describes to be of 

a more violent nature than those reported by the control group. This difference does 

not appear to be correlated with greater aggression, as measured by a questionnaire, 

shown throughout the day. In fact, it appears to be in range and even lower than the 

average of the healthy group. 
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Screening questionnaires or a history of abnormal sleep behaviours (particularly when 

obtained from the bedpartner) can be highly suggestive of RBD in the appropriate 

context, in particular, the question "Have you ever been told, or suspected yourself 

of acting out the content of your dreams while asleep?" is considered in itself sensitive 

to suspect RBD [11]. 

Anyway, the guidelines [1] require polysomnography (PSG) to provide a formal 

diagnosis, and the following criteria are necessary: 

o Repeated episodes of sleep-related vocalization and/or complex motor 

behaviours. 

o Behaviours are documented by polysomnography to occur during REM sleep 

or, based on clinical history of dream enactment, are presumed to occur 

during REM sleep. 

o Presence of REM Sleep Without Atonia (RSWA) on PSG 

o Absence of epileptiform activity during REM sleep, unless RBD can be clearly 

distinguished from any concurrent REM sleep-related seizure disorder. 

o The sleep disturbance is not better explained by another sleep disorder, 

medical or neurologic disorder, mental disorder, or substance use disorder. 

This, to date, mandatorily implies the analysis of PSG by a physician or expert in the 

field and, as it involves the all-night recording of about 8 EEG-derived traces, at least 

one EMG, EOG and ECG trace and often a video, the amount of work is burdensome 

and time-consuming. 

To try to provide a solution to this challenge, several approaches have recently been 

tried out that exploit artificial intelligence algorithms to process PSG data. Since the 

ultimate goal is not only a correct health-RBD classification, but also a good results 

explicability in order to meet the physician's needs, the use of Machine Learning (ML) 

models has often been preferred over Deep Learning ones.  
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MATERIALS AND METHODS 
 

I. Subjects and Data 
Polysomnographic data from two different databases, one public and the other 

private, were used to conduct the study. 

The public one is the CAP Sleep Database, available on PhysioNet [19], and from it the 

PSG traces of 15 healthy (7 males, aged 31 ± 5 years) and 22 RBD (19 males, aged 70 

± 6 years) patients were used, for a total of 37 subjects. For the sake of completeness, 

it should be specified that this database contains data from 16 healthy patients, one 

of whom was excluded from the study due to the lack of EMG and ECG traces. 

The private one, called Turin Sleep Disorders Database (TuSDi Database), is composed 

by the polysomnographic recordings collected at the Centre for Sleep Disorders at 

Molinette Hospital (Turin, Italy) from which were extracted the data of 10 healthy and 

19 pathological patients, out of whom 10 affected by RBD and 9 by RSWA. 

The procedure has been conducted in accordance with the Declaration of Helsinki and 

approved by the Ethics Committee of A.O.U. Città della Salute e della Scienza di Torino 

(approval No. 00384/2020). Informed consent for observational study was obtained 

from the participants. Inclusion criteria were suspected or diagnosed RBD, with 

polysomnographic evidence of REM Sleep Without Atonia; exclusion criteria included 

dementia or other psychiatric conditions that could affect the correct execution of the 

PSG exam. All participants received detailed information on the study purpose and 

execution, and informed consent was obtained.  

Therefore, in summary, the database exploited has 66 subjects, 25 healthy and 41 

pathological. 

The data most indicative of the presence of RBD are found in slow-wave sleep (SWS) 

and REM sleep. Bearing in mind that the primary purpose of this study is to evaluate 

the effectiveness of features extracted from EMG and ECG polysomnographic records 

in correctly identifying a healthy patient from one with RBD, sleep staging was not 

performed automatically in order to avoid introducing an error variable. 
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The manual staging and classification, according to the AASM standard, by a sleep 

expert from both databases was used for this purpose. 

 

II. Data pre-processing 
In addition to the presence of the ECG and EMG traces, another parameter for 

inclusion within the study is the presence, throughout the recording, of at least 5 

minutes of SWS sleep and REM sleep. Therefore, the signals were first examined and 

subsequently resampled, if necessary, at 512 Hz to unify them. 

Once the channels corresponding to the signals in question were found, they were 

filtered in order to reduce the high and low frequency noise while leaving the specific 

band of the signal under investigation unchanged. 

For both signals, a zero-phase Chebyschev Type 1 bandpass filter was applied. For the 

ECG signal, the frequency band between 0.5 and 30 Hz was retained, while in the case 

of the EMG signal, the frequency band between 10 and 100 Hz was preserved. Since 

the filter applied on the EMG signal does not attenuate the 50 Hz line noise, it was 

decided to apply a Notch filter if it had not been already done previously. 

As a final step to prepare the data for the subsequent feature extraction algorithms, 

all signals employed were converted in µV, thus preventing the analysis from being 

affected by the acquisition conditions. 

 

III. Feature Extraction 
A total of 257 features were extracted in this work, of which 270 from the ECG signal 

and 87 from the EMG signal. A detailed description of the extracted features follows 

in the subsequent paragraphs. 

The algorithm was developed in the MATLAB R2022b (MathWorks, Natick, MA) 

software environment. 

 

III.1 ECG features 

In recent scientific literature, an association between RBD and autonomic nervous 

system dysfunction has emerged [19]. Going into detail, patients with idiopathic RBD 

predominantly showed symptoms in the gastrointestinal, genito-urinary and 
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cardiovascular regions, all of which are in some way connected to or governed by the 

autonomic nervous system [20, 21]. 

An important indicator of its functioning is the Heart Rate Variability (HRV) and recent 

studies have reported a lowering of some of its parameters, especially in those linked 

with the sympathetic system, in RBD patients. 

As mentioned above, the sleep phases with the greatest relevance in the case of RBD 

are those belonging to SWS sleep (equivalent to the N3 stage) and REM sleep. For this 

reason, the ECG signal was not analysed in its entirety, but features were calculated 

on ECG traces resulting from the concatenation of the sleep stages of interest. 

Furthermore, in previous studies performed on EEG, a partial correlation with RBD 

was also found on features calculated within the N2 stage of sleep.  

For both databases, the specialist, relying on all available traces, assigned each 30-

second PSG recording epoch to the corresponding sleep stage. In accordance with 

this, five ECG traces were created as a result of the concatenation of different sleep 

stages: 

- concatenation of N2 stages 

- concatenation of N3 stages 

- concatenation of REM stages 

- concatenation of N3 + REM stages 

- concatenation of N2 + N3 + REM stages 

First, to reach the calculation of HRV-related features, it is necessary to determine the 

R-R intervals (i.e. the time lapse between one peak of the R-wave and the next), and, 

consequently, it is essential to find the time instants of each R-peak. 

To do this as accurately as possible, the wavelet transform was exploited to enhance 

the R peaks in the ECG waveform. 

Subsequently, thanks to the R-R intervals just found, three HRV features related to 

the time domain (meanHR, SDNN, RMSSD) and six related to the frequency domain 

(VLF, LF, HF, normalizedLF, normalizedHF, LF-HF ratio) were calculated on each 30-

second signal epoch. The frequency bands over which the above parameters were 

calculated are defined in the table below. 
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Of these, meanHR and SDNN are considered general measures of HRV; RMSSD, HF 

and normalisedHF are parameters influenced by the parasympathetic nervous 

system, while LF is an index of the autonomic nervous system in general, both 

sympathetic and parasympathetic [22]. Regarding the physiological significance of 

normalisedLF, some authors indicate a correlation only with the sympathetic nervous 

system, others correlate it also with the parasympathetic, and still others consider the 

normalised parameters to be redundant [23]. As the topic is still debated, it was 

decided to include all parameters in the study. 

 

Feature name Meaning 

meanHR mean heart rate 

SDNN standard deviation of the R-R interval 

RMSSD root mean square of successive R-R interval differences 

VLF spectral power in < 0.04 Hz frequency band 

LF spectral power in 0.04-0.15 Hz frequency band 

HF spectral power in 0.15-0.4 Hz frequency band 

normalizedLF 𝐿𝐹

𝐿𝐹 + 𝐻𝐹
 

normalizedHF 𝐻𝐹

𝐿𝐹 + 𝐻𝐹
 

LF-HF ratio 𝐿𝐹

𝐻𝐹
 

 

Then, once the entire signal has been processed, nine arrays are obtained (one for 

each extracted feature), with a length equal to the number of 30-second epochs in 

the examined signal. On each of these, six statistical parameters were calculated: 

mean, standard deviation, 25th percentile, 75th percentile, kurtosis, skewness. 

To summarise, six statistical parameters were calculated on nine arrays obtained from 

the analysis of five different concatenations, resulting in 270 features from the ECG 

signal. 
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III.2 EMG features 

In the introduction to this thesis, the importance of the presence of RSWA for the 

correct diagnosis of RBD was explained. RSWA can be defined either as the sustained 

(tonic) loss of normal muscle atonia, as well as the intermittent (phasic) increase in 

EMG activity during REM sleep. 

For the same reasons as described in the chapter on ECG feature extraction, it was 

also chosen for the EMG not to work on the signal in its entirety, but to create five 

different subsets. These, as before, are the result of the concatenation of the sleep 

stages considered most indicative: 

- concatenation of N2 stages 

- concatenation of N3 stages 

- concatenation of REM stages 

- concatenation of N3 + REM stages 

- concatenation of N2 + N3 + REM stages 

Among the several assessment methods of muscle atonia in REM sleep, developed 

over the years, in this work, to extract features from the EMG signal, it was chosen to 

follow the guidelines provided by the SINBAR group [24] by integrating them with an 

automatic RSWA scoring algorithm called REM Sleep Atonia Index (RAI) [25]. 

The method developed by the SINBAR group examines each 30-second epoch of EMG 

signal and defines the muscle activity as ‘tonic’ if it is above a threshold value for at 

least 50% of the epoch duration. ‘phasic’ EMG activity was scored into 3-second mini-

epochs and was defined as any burst of EMG activity lasting 0.1 to 5 seconds with 

amplitude exceeding twice the background EMG activity. 

The threshold referred to in the SINBAR method is defined as twice the background 

EMG muscle tone or 10µV. In the case of the algorithm developed in this work, it was 

set by calculating the 75th percentile of the entire EMG signal in order to have the 

most accurate estimate of background EMG activity. Three features are derived from 

this, namely the percentage of ‘tonic’ epochs within the track, the percentage of 

‘phasic’ mini-epochs and the percentage of 30-second epochs containing at least five 

‘phasic’ classified mini-epochs. 

Turning to frequency analysis, the Spectral Edge Frequency at 50% and 95% was 

calculated on each 1-second epoch referred to as SEF50 and SEF95 respectively. These 
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show the frequency value below which 50 and 95 per cent of the signal's spectral 

power lies, respectively. Given this, SEF50 is nothing more than the median frequency 

of the analysed signal. 

Following the same procedure used in the ECG features extraction, of the vectors 

obtained (having a length equal to the number of 1-second epochs present in the 

examined concatenation) the six statistical parameters were calculated: mean, 

standard deviation, 25th percentile, 75th percentile, kurtosis, skewness. 

Finally, on the first three listed concatenations, those formed by the succession of 

epochs of the same stage, the REM Sleep Atonia Index (RAI) was assessed. This metric 

provides an index regarding the level of atonia during the REM stage. In the study, this 

concept was extended not only to the REM stage, but also to the N2 and N3 stages.  

Together with the RAI, p1, p2 and p3 were calculated, namely the percentage of 

epochs with an average amplitude below 1µV, between 1 and 2 µV and above 2µV, 

respectively. 

 

IV. Feature Selection 
To verify the actual ability of the features extracted from the ECG to reach a correct 

automatic identification of the RBD patients, the supervised learning algorithms were 

trained and tested on 3 different feature sets. The first consisted of the 87 features 

extracted from the EMG signal, the second of the 270 features extracted from the ECG 

and the third given by the combination of the two previous ones (357 features in 

total). 

Before the tuning of feature selection and classification models parameters could 

proceed, it was decided to apply a z-score normalization to all extracted features, so 

that they would all have the same weight during subsequent steps. 

In order to choose the best combination of feature selection algorithm and 

classification model, in this work the performance of three of the former and six of 

the latter was evaluated. 

With regard to feature selection algorithms, the aim here is to find the smallest 

possible set of parameters that has the highest predictive power, which is called the 
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minimal-optimal approach. A brief description of the chosen feature selection 

algorithms follows: 

- ANOVA F-test: Analysis of variance (ANOVA) can determine whether the 

means of three or more groups are different. ANOVA uses F-tests to 

statistically test the equality of means. 

- Mutual information: is calculated between two variables and measures the 

reduction in uncertainty for one variable given a known value of the other 

variable. 

- Principal Component Analysis (PCA): uses an orthogonal transformation to 

convert a set of observations of possibly correlated variables into a set of 

values of uncorrelated variables called principal components. 

 

V. Classification 
In this study, the classification models had the task of performing a binary 

classification between healthy and RBD patients. For this purpose, the performance 

of six models was assessed: 

- KNN: it is a non-parametric method that classifies observations based on their 

similarity to its closest data-points in the datasets (i.e., neighbours). 

- SVM: it aims at finding a hyperplane in an N-dimensional space (with N equal 

to the number of features) that distinctly classifies the data points, seeking to 

maximise the distance between the data points (support vectors) and the 

hyperplane. 

- NB: it is a probabilistic classifier based on the Naive-Bayes theorem. 

- DT: it is a non-parametric supervised learning method used for classification 

and regression. It wants to attain prediction of the target variable by learning 

simple decision rules inferred from the data features. 

- BAG: it is an ensemble meta-estimator that fits base classifiers each on 

random subsets of the original dataset and then aggregate their individual 

predictions (either by voting or by averaging) to form a final prediction. 

- XGB: is a decision tree-based ensemble learning algorithm like random forest, 

for classification and regression. It improves a single weak model by combining 
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it with several other weak models in order to generate a collectively strong 

model. 

- RF: it fits a number of decision tree classifiers on various sub-samples of the 

dataset and uses averaging to improve the predictive accuracy and control 

over-fitting. 

For each combination of a feature selection algorithm with a classification model, 

tuning of the hyper-parameters was carried out. This step is crucial as it tests all 

possible configurations looking for the one that outputs the best F1-score, a metric 

preferred over accuracy due to the slightly unbalanced dataset. 

Finally, two different cross validation algorithms were evaluated. The first, more 

traditional, is called 'Repeated k-Fold Cross-Validation' and aims to improve the 

prediction performance of the classification model by repeating the cross-validation 

procedure several times. In fact, since the dataset is not particularly large, different 

splits of the data may result in very different results. The second takes even more 

account of the aspect just described, in fact the training set will consist of all but one 

patient who will make up the test set. Training the model many times by varying the 

patient that composes the test set allows a more accurate estimate of the actual 

performance of the model. 
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RESULTS 
 

I. Classification Performance 
The study compared the predictive capabilities of the models trained on three 

different datasets, the first consisting of the features extracted from the EMG, the 

second consisting of those extracted from the ECG and the third given by the union of 

the previous two. The number of trained models for each dataset corresponds to the 

total number of possible combinations of feature selection algorithms and 

classification models, resulting in 18 models for each dataset. In addition, the two 

cross-validation algorithms described in the previous chapter were evaluated, thus 

doubling the number of trainings performed. 

In the case of the models in which the Repeated k-fold Cross-Validation algorithm was 

applied, a hold-out approach was also adopted, and 20% of the dataset was used to 

evaluate the performance, thus composing the test set. With regard to the Leave One 

Out cross-validation, the entire dataset was used for model training, so in order to 

assess its performance, a confusion matrix was constructed by evaluating the 

prediction of the algorithm at every single iteration. 

Figure 2 Graph of performance averaged over all trained models 
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DISCUSSION 
 

Several considerations can be made with respect to the results reported in the 

previous chapter.  

Firstly, by examining the results obtained from the training on the CAP Sleep dataset 

alone, it can definitely be said that the correlation between HRV and RBD is indeed 

present. To be able to make this assertion is in itself a very good omen for research in 

the field of sleep disorders, regardless of the numerical results. Going into more detail 

about the results that enabled the above statement to be made, one finds an average 

accuracy, calculated on the 20/80 cross-validation, that is 6.9% better than that 

obtained from the EMG features (going from 78.8±0.03% to 85.5±0.02%). In addition, 

the combination of features obtained from the ECG with those obtained from the 

EMG further improved, giving a mean result of 89.9±0.02%. The same trend can also 

be seen on the training performed on the dataset formed from the union of the CAP 

Sleep and the TuSDi dataset. This is reassuring and further confirms what has been 

said so far. It should, in any case, be noted that with the introduction of the patients 

examined in the Turin hospital, although the trand remained unchanged, the 

performance dropped by about 3%. This should not be a cause for concern, as the 

same procedure (in this case polysomnography) conducted in different clinical 

structures may introduce variability due to factors external to the pathology being 

examined. 

That said, the performance of the models on patients not included in the training set 

should be evaluated. This subset of the dataset is called the test set. Here, as 

expected, there is a small decrease in performance, which nevertheless remains very 

satisfactory. If only the results from the training on the CAP Sleep dataset are taken 

into consideration, the expected values are found, in fact, with regard to the average 

accuracy, they remain consistent with those described above, showing a reduction of 

approximately 3%: 74.3±0.1% on EMG, 85.0±0.09% on ECG and 82.4±0.12% on 

EMG+ECG.  The same does not happen when training the models on the two datasets 

combined, in fact in this case there is a significant deterioration in performance. Not 
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so much for the models trained on the features extracted only from the EMG, which 

indeed show a slight improvement, obtaining an average accuracy of 78.2±0.07%, but 

rather for those trained on the HRV features and, consequently, for those trained on 

the EMG+ECG features. In fact, they obtained a mean accuracy of 68.7±0.15% (16.3% 

worsening) and 62.2±0.1% (20.2% worsening) respectively. 

This effect may be a consequence of a modification made in the dedicated HRV 

feature extraction algorithm of the TuSDi dataset. In it, seeking to further improve the 

detection of R peaks within the ECG signal, a threshold was set for which it was 

ensured that at least 20 R peaks were identified for each 30-second epoch. This 

approach, at first glance, appeared to be indeed ameliorative, but most likely reduced 

the specific variability of each signal by flattening its differences. Consequently, it is 

much more complex for the machine learning algorithm to distinguish a pathological 

subject from a healthy one. 

In any case, going into more detail on the performance of each individual model 

trained, it can be seen that the one with the best performance of all those tested is 

the one that applies the 'mutual information' feature selection algorithm followed by 

the 'SVC' classification model and is trained solely on the HRV features of the dataset 

made up of the union of the two available datasets (CAP Sleep + TuSDi). After being 

validated on the test set, it performs as follows: 

- Accuracy: 92.9% 

- Precision: 91.7% 

- Recall: 100% 

- F1-score: 95.7% 
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CONCLUSION AND FUTURE 

WORK  
 

In conclusion, considering all the results obtained, it can be said that there is indeed 

a correlation between HRV and RBD and that it can be exploited to distinguish healthy 

from pathological subjects. A major advantage of leveraging HRV-related features lies 

in the fact that the sequence of R-R intervals, which can also be measured with a 

simple wrist accessory equipped with a heart rate reader, is all you need to obtain 

them. In this way, it might no longer be necessary to perform a traditional 

polysomnography, an examination that requires spending at least one night in 

hospital, but it would be possible to instruct the patient to perform the examination 

in the comfort of his or her own home. This would lead to multiple advantages: 

- The examination would more accurately describe the patient's sleep, as it is 

common experience that sleeping in a bed other than one's own can change 

the quality of sleep. 

- It would be less expensive for public healthcare, which would save on hospital-

based examinations. 

- It would make possible a screening campaign potentially on the whole 

population over 50, which could lead to positive results for the early diagnosis, 

even by decades, of sleep-related neurodegenerative synucleinopathies such 

as dementia with Lewy bodies, Parkinson's disease. 

Note that the algorithm developed in this work uses the classification of sleep stages 

done manually by a specialist in this field. Obviously, if one ever achieved the 

possibility of implementing a population-wide screening campaign this would not be 

possible, but it would be necessary to exploit algorithms for automatic sleep stage 

detection. Fortunately these have already been developed with also very promising 

performance and in some cases make use of a single EEG trace [26], potentially not 

hindering the home course of the examination. 
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Certainly, a major limitation of this study is the small size of the dataset as well as its 

strong bias. In fact, it is not representative of the true incidence of the disease in the 

population, of about 2% if only the population over 60 is taken into account. 

Consequently, in order to have a more realistic indication of the algorithm's 

performance, it would first of all be necessary to address these two flaws just 

described. In addition, the number of trained models should be expanded by opening 

up a greater variety of parameters to choose from when tuning the hyperparameters, 

which has not been done because of their high computational cost.  
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