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Abstract

This thesis explores the field of image/video recognition of continuous emotional
states, with the goal of improving our understanding of human emotions and the
role of non-verbal cues in their expression. This is a critical area of research that has
numerous practical applications such as mental health, human-computer interaction,
and marketing. One of the most important viewpoint on emotion recognition is
the affective state, which can be described by two primary dimensions: arousal and
valence. Arousal refers to the intensity or the energy level of the emotion, while
valence refers to its pleasantness or unpleasantness. In further details, this thesis is
focused on arousal and valence automatic recognition from video frames containing
human subjects’ faces, by applying machine learning and deep learning techniques.
The purpose of this study is to compare performance between simpler models (e.g.,
SVM, MLP) and deep learning architectures (e.g., Resnet, VGG, MobileNet) to
appreciate whether simpler models could produce comparable performance in the
task, given an effective preprocessing of the input data. As a preprocessing, the
raw images were cropped and realigned. Then, face landmarks were computed
using the Mediapipe library and Histogram of Gradients using the Py-feat library.
To reduce the number of features obtained, a principal component analysis was
performed on the HOGs.
The employed data contain more then five hours of video recordings of stress-
eliciting experiments in a controlled environment - e.g., a public speaking task
in front of an audience. Video clips of different subjects, capturing individuals
exhibiting a variety of expressions are included and annotated with arousal and
valance values for each video frame. Several state-of-the-art deep learning models,
including Convolutional Neural Networks (CNNs) were used to evaluate the perfor-
mance in recognizing arousal and valence.
Results showed that deep learning models do not necessarily outperformed tra-
ditional machine learning models in recognizing arousal and valence, therefore a
powerful preprocessing, based on relevant features of the input image could produce
similar effects while saving long training time typical of deep architectures.



This work may contribute to the development of more accurate and reliable video
recognition systems based on simpler and faster models.
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Chapter 1

Introduction

The field of artificial intelligence has become increasingly involved in various aspects
of human life, enabling technology to better cater to our needs. One area where AI
may be particularly useful is in the recognition of human emotions. Non-verbal
communication constitutes a significant portion of human communication, and AI
learning techniques can be used to help machines identify and understand these
emotions.
Arousal and valence have a significant impact on many areas of research, including
psychology, neuroscience, healthcare and human-computer interaction [1]. The
ability to accurately recognize and measure emotions such as arousal and valence
from videos can help us better understand how people respond to different stimuli
and situations, and can provide valuable insights into the factors that influence
human behavior. In psychology and neuroscience, the measurement of these two
dimensions is used to study emotions and their effects on behavior, cognition, and
physiological responses [2]. In human-computer interaction, they are used to design
more effective and engaging systems that can adapt to the user’s emotional state [3].
Facial expressions are a universal means of conveying emotions, and algorithms can
be trained to recognize these expressions and estimate the corresponding emotions.
Unlike humans who have been using facial recognition and emotion recognition
in our daily lives for a long time, computers were initially not as adept at these
tasks. However, with the advancement of computer hardware, computers have now
become capable of performing these tasks. This has led to increased interest in face
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recognition, emotion recognition, and related topics among researchers in various
fields. The face is considered the area where emotions are most concentrated,
and expressions have been divided into several patterns that can be recognized by
computers.
The main objective of this thesis is to evaluate the performance of different machine
learning algorithms for recognizing arousal and valence from video data, and to
develop a model that can achieve high accuracy while maintaining a structure
that is as simple as possible. Performance of different algorithms (e.g., support
vector machines, multilayer perceptron) and preprocessing methods are compared
to find the best combination among them. Subsequently, the results obtained were
compared with state-of-the-art deep neural networks to verify the goodness of the
selected model.

1.1 Thesis Outline

To accomplish the primary objectives of this thesis, the following outline is proposed:

• Examine and elucidate the primary datasets and comprehend their benefits
and limitations.

• Develop distinct solutions for preprocessing the data to train the models.
Consider different modalities of data as features, such as facial landmarks (i.e.,
facial geometry), facial action unit.

• Analyze, implement, and evaluate a machine learning model to recognize facial
action unit from video frames using Python, Sklearn.

• Analyze, implement, and evaluate a machine learning model to recognize facial
expressions from video frames using Python, Sklearn, OpenCV.

• Analyze, implement, and evaluate a deep learning system for recognizing facial
expressions from video frames using Keras.

2



Chapter 2

Background Theory

In this chapter, the theory within the relevant fields of the thesis are covered.
It delves into the theoretical aspects of Emotions, Facial Action Unit, Machine
Learning and Deep Learning. In addition, metrics and tools used in the thesis are
described.

2.1 Theory Of Emotions

The theory of emotions [2] [4] has been the subject of study for several centuries. It
proposes a categorical classification system, where emotions are classified as discrete
entities, independent of each other and easily distinguishable. Emotions have been
defined as complex psychological states that are linked to both subjective feelings
and physiological changes. Researchers have identified a variety of emotions that
are common to all humans, such as happiness, sadness, fear, and anger. Emotions
play a significant role in human cognition, behavior, and decision-making. With
the development of technology, the study of emotions has expanded into the field
of affective computing, which involves developing machines and algorithms that
can recognize, interpret, and respond to human emotions.

2.1.1 Affective Computing

Affective computing is a field of computer science that deals with the development
of systems and devices that can recognize, interpret, process, and simulate human
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emotions. The goal of affective computing is to create machines that can interact
with humans in more natural and intuitive ways by understanding and responding
appropriately to human emotions [5]. This involves using passive sensors, such as
microphones and video cameras, to capture a person’s physical state or behavior,
including speech, tone of voice, facial expressions, body posture, and gestures.
These data are then analyzed and processed to extract emotional information.
There are several major challenges in affective computing. One of the main
challenges is the ambiguity and variability of human emotions. Emotions are
complex and multi-dimensional, and can be influenced by a wide range of factors,
such as culture, gender, personality, and context [6]. Another challenge is the lack
of reliable and objective measures for assessing emotions. Emotions are typically
self-reported or observed through external cues, such as facial expressions, vocal
tone, and physiological signals, which can be subjective and prone to error. In
addition, there is a need for interdisciplinary collaboration and integration of
knowledge from different domains, such as psychology, neuroscience, computer
science, and engineering, to advance the field of affective computing [7]. Despite
the challenges that come with recognizing and interpreting human emotions, the
development of affective computing has the potential to revolutionize the way we
interact with technology and improve the quality of our lives.

2.1.2 Arousal and Valence

In the 2000s, a dimensional approach to emotions was proposed [1], which facilitates
their identification and characterization. The circumflex model of emotions, in fig.
2.1, argues that actual states can be traced to two main neurophysiological axes.
One axis explains the valence of the emotion (pleasantness-unpleasantness) while
the other refers to the corresponding level of arousal/physiological activation.
In general, positive values of arousal indicate a high level of physiological activation,
such as a high heart rate, increased sweating, rapid breathing. Conversely, negative
values of arousal indicate a low level of physiological activation. Regarding valence,
positive values indicate a feeling of pleasure, happiness, or gratification, while
negative values indicate a feeling of unpleasantness, sadness, or frustration. However,
it is important to consider that values of arousal and valence can vary considerably
depending on the individual and the situation. Both variables can take values in the

4



Background Theory

range [-1,1] and each emotion can be explained as the linear combination between
the two dimensions. Similarly, emotions such as excitement or fear are associated
with high arousal, while emotions such as boredom or relaxation are associated
with low arousal. This model allows for a more comprehensive explanation (than
a categorical model) of data from neuroimaging studies and comorbidity among
different affective and psychological disorders[8].

Figure 2.1: The Circumflex Model of Emotion[9]

2.2 Facial Emotion Recognition

Facial emotion recognition is a process that involves the detection of human emo-
tions from facial expressions. In human communication, facial emotions are crucial
because they help us to understand the intentions of others and infer their emotional
state. In recent years, facial emotion recognition has become an increasingly active
field in affective computing due to its potential in various applications. However, the
task of accurate and robust facial emotion recognition by computer models is still
a challenging one due to the heterogeneity of human faces, different face position,
and different light conditions. Fig. 2.2 and Fig. 2.3 show two instances where
individuals display comparable emotions, but respectively, the lighting conditions
and facial angles differ. In addition, among different populations of the world, there
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are differences in the way emotions are manifested and facial mimics making this
task even more complex [6].
While in previous years images constituted the most widely used datasets to train
models on this task, the use of videos is gaining more attention, as it allows for the
prediction of dynamic facial emotion expressions, leveraging the temporal continuity
in the transition between emotional states. The integration of CNNs and LSTM has
been proposed to address the temporal aspect of emotion recognition in videos [10].

Figure 2.2: Example of a subject expressing a similar emotion under two different
lighting conditions. Images taken from the Aff-Wild2 dataset [11].

Figure 2.3: Example of a subject expressing a similar emotion with two different
face position. Images taken from the MuSe-Stress sub-challenge dataset [12].
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2.2.1 Preprocessing and Features

Preprocessing is a key step for all FER models. Considering the challenges pre-
sented in the previous section, preprocessing is used to reduce all changes in the
image that are not due to the change in the subject’s emotional state. When images
of a face changing expressions are provided, there are many other features that can
vary such as pose and lighting. The predictive model must be able to focus only
on changes in emotional state while neglecting all others.
The most common pipeline for preprocessing consists of the following steps: face
detection, resizing and normalization. Face detection consists of detecting the face
of the subject in the image so that it can be extracted by removing all unnecessary
features in the image. After that, image resizing is performed to make all frames
equal and fit the input shape of the model. Finally, a normalization of the image is
performed to reduce the differences in illumination.
Especially for machine learning models, the next step is feature extraction. It
involves selecting the highlight features of the image or video, such as lines, contours,
textures that can help distinguish and classify the subject’s emotionality. The most
common features extracted for this task are shown below [13].

Histogram of Oriented Gradients
The Histogram of Oriented Gradients (HOG) works by analyzing the distribution
of gradient directions in an image. First, the image is divided into small cells, and
for each cell, a histogram of gradient orientations is computed. The orientations
are calculated by taking the gradient of the image in the x and y directions. The
histograms are then normalized, and neighboring cells are combined into blocks.
The resulting feature vectors are used to represent the image as shown in fig. 2.4.
The HOG algorithm is particularly effective at capturing local image features
because when a variation in intensity is detected in the image, the amplitude of
the gradient changes.
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Figure 2.4: Example of HOG calculated with Py-feat

Local Binary Pattern
Local Binary Pattern (LBP) is a texture descriptor that encodes the local texture
pattern of an image. LBP was first introduced by [14] and has since become a
popular feature extraction technique in computer vision and image analysis. The
method involves dividing an image into small cells and comparing the intensity
of the center pixel to its neighbors in a circular pattern. A binary code is then
generated based on whether the intensity of the neighbors is greater or less than
the center pixel. This binary code is used to describe the texture of the cell, and
the process is repeated for each patch in the image. The resulting LBP histogram
represents the distribution of different texture patterns in the image. An example
of the output obtained on an image of a face is presented in fig. 2.5. LBP is
computationally efficient and can be applied to both grayscale and color images and
is also robust to monotonic grayscale changes caused by, for example, illumination.
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Figure 2.5: Example of LBP code generation [15]

Face Landmarks
Another feature often used in this area is face landmarks because they allow to find
the location of the major points of interest on the subject’s face. Face landmarks
are specific points on a face that can be used to identify and track facial features.
They are typically represented as 2D or 3D coordinates that correspond to key
facial features, such as the eyes, nose, mouth, and eyebrows. The accuracy of
landmark detection is critical for the success of many computer vision applications,
as even small errors in landmark detection can significantly impact downstream
tasks. The illustration in fig. 2.6 displays an instance of a facial mesh that has
been computed using Mediapipe, which includes 478 three-dimensional landmarks.

Figure 2.6: Example of face mesh calculated with MediaPipe
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CNN Feature Extraction
Although traditional feature extraction methods have been successful, recent ad-
vances in CNNs have shown significant progress in learning features automatically.
Compared to traditional methods where features are manually defined, CNN has the
ability to extract undefined features from a training database. CNN achieves high
performance by extracting shift-invariant local features from input images through
the concept of the local receptive field, shared weight, and spatial subsampling [16].

2.2.2 Facial Action Unit

Facial Action Units (FAUs) are the fundamental building blocks of facial expressions
[17]. Each FAU represents a specific movement or deformation of facial muscles,
and their combinations generate a wide range of emotional expressions. In the
1970s, Paul Ekman and Wallace Friesen developed the Facial Action Coding System
(FACS) to identify and describe the different FAUs. The system is widely used in
emotion recognition research and has been adopted in the development of automatic
systems for facial expression analysis.
There are 27 FAUs in total, including both observable movements (e.g., raising
eyebrows, wrinkling nose) and subtle muscle contractions (e.g., lip corner puller).
Each FAU is represented by a code, which indicates the specific muscles involved
in the facial expression. Table 2.1 outlines the codes and corresponding facial
movements of the action units in the MuSe-Stress sub-challenge dataset [12]. For
example, AU12 represents the contraction of the zygomatic major muscle, which
raises the corners of the mouth and creates a smile. Fig. 2.7 is an example of
comprehensive FACS coding of a facial expression.
By detecting and measuring the intensity of specific FAUs, it is possible to identify
and classify emotional states. Automatic systems for facial expression analysis use
machine learning algorithms to recognize and classify FAUs in real-time.
Although FAUs provide a standardized way to describe facial expressions, they do
not capture the full range of human emotional experience. Emotions are complex
and dynamic, and facial expressions are only one aspect of emotional communication.
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Figure 2.7: An illustration is provided to demonstrate a thorough FACS coding
of a facial expression. The coding involves assigning numerical values to action
units, which correspond to individual facial muscles, and using letters (A-E) to
denote the level of activation.[18]

AU Name AU Name
01 Inner brow raiser 14 Dimpler
02 Outer brow raiser 15 Lip corner depressor
04 Brow lowerer 17 Chin raiser
05 Upper lid raiser 20 Lip stretcher
06 Cheek raiser 23 Lip tightener
07 Lid tightener 24 Lip pressor
09 Nose wrinkler 25 Lips part
10 Upper lip raiser 26 Jaw drop
11 Nasolabial deepener 28 Lip suck
12 Lip corner puller 43 Eyes closed

Table 2.1: Facial Action Coding System. The number assigns a code to the
specific facial movement.

2.3 Machine Learning

Machine Learning is a subset of Artificial Intelligence that involves the use of
algorithms and statistical models to enable computer systems to learn and improve
their performance on a specific task without being explicitly programmed [19]. In
other words, the computer is trained on a dataset and uses that information to
make predictions or decisions about new data it encounters. The main goal of
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machine learning is to create models that can accurately predict or classify new
data based on patterns and relationships discovered in the training data. There
are several types of machine learning, including supervised learning, unsupervised
learning, and reinforcement learning, each with its own approach and applications.
Machine learning is used in a variety of fields, including natural language processing,
computer vision, and data analysis.

2.3.1 General Machine Learning Terms

Epoch
An epoch refers to a complete pass through a training dataset during the learning
process of a model. During an epoch, the model processes the entire dataset, and
the weights of the model are adjusted to minimize the error between the predicted
output and the target one. The number of epochs is a hyperparameter that is set
before training and determines how many times the model will cycle through the
entire dataset.

Learning rate
The learning rate is a hyperparameter that determines how much the model should
adjust the weights and biases of the input features in each iteration of the training
process. A high learning rate may cause the optimization algorithm to overshoot the
minimum of the cost function, leading to unstable training and poor performance.
On the other hand, a low learning rate may result in slow convergence and longer
training times. Therefore, selecting an appropriate learning rate is a crucial step in
training models.

Activation function
In artificial neural networks, an activation function is a mathematical function
applied to the output of a neuron or a group of neurons. It determines whether
the neuron should be activated or not, based on the weighted sum of its input
values. The activation function adds non-linearity to the neural network and is
essential in the process of training the network. There are various types of activa-
tion functions, including sigmoid, tanh, ReLU, and softmax, each with its unique
characteristics and suitability for different types of task. The choice of activation
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function can affect the performance of the neural network in terms of its accu-
racy, speed of convergence, and ability to handle non-linear relationships in the data.

Loss function
A loss function is a mathematical function that measures the difference between the
predicted values of a model and the actual target values. It represents the discrep-
ancy between the predicted output and the true output, and its goal is to minimize
this difference during the training process. In other words, the loss function is a
way to quantify the error of the model, and the optimization algorithm tries to
minimize it by adjusting the model’s parameters. The choice of the loss function
depends on the specific task and the type of data being used. For example, the
mean squared error (MSE) loss function is commonly used for regression problems.
The design of an appropriate loss function is crucial for the success of a machine
learning model, as it affects the model’s ability to accurately predict outcomes.

Overfitting
Overfitting is a common issue that can occur when training machine learning
models. It refers to the phenomenon where the model becomes too complex and
starts to fit the training data too closely, leading to poor performance on new,
unseen data. This can be caused by various factors, such as using an overly complex
model, having insufficient training data, or training for too long.
To mitigate overfitting, various techniques can be used, such as regularization, early
stopping, and data augmentation. Regularization involves adding a penalty term
to the loss function to discourage large weights and reduce model complexity. Early
stopping involves monitoring the validation loss and stopping the training when
the performance starts to deteriorate. Data augmentation involves generating new
synthetic training samples by applying transformations such as rotation, scaling,
and flipping.

Variance and Bias
In machine learning, the concepts of variance and bias are critical for evaluating
the performance of a predictive model. Variance refers to the model’s ability to fit
to the training data, while bias refers to the model’s ability to generalize to new
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data. Models with high variance are overly complex and have a high degree of
flexibility, leading to overfitting to the training data. In contrast, models with high
bias are too simplistic and unable to capture the underlying patterns in the data,
resulting in underfitting.
To evaluate the performance of a model, it is essential to assess both its variance
and bias. Techniques, such as cross-validation, can help to identify whether a model
is overfitting or underfitting and find the optimal balance between variance and bias.

Hyper-parameters
Hyperparameters refer to the parameters that are set prior to the training of a
model and cannot be learned during the training process itself. These parameters
include settings such as learning rate, hidden layers, and batch size. Choosing
appropriate hyperparameters is a critical step in building effective machine learning
models. The optimal values for these parameters can vary based on the dataset,
the complexity of the model, and the computational resources available. As a
result, tuning hyperparameters is often an iterative process that involves running
experiments and evaluating performance on a validation set. Hyperparameter
tuning can be a time-consuming and computationally expensive task, but it is
necessary for achieving optimal model performance. Techniques such as grid search,
random search, and Bayesian optimization can be used to efficiently search the
hyperparameter space and find the best values for a given model.

Grid search
Grid search is a common technique used to identify the optimal hyperparameters for
a given model. This method involves systematically testing different combinations
of hyperparameters to determine which combination results in the best model
performance. The hyperparameters to be tuned are selected a priori and a grid of
possible values for each hyperparameter is defined. The grid search algorithm then
performs an exhaustive search through the grid, evaluating the performance of the
model for each combination of hyperparameters. The combination that yields the
best performance, as determined by a chosen evaluation metric, is then selected as
the optimal set of hyperparameters for the model. Grid search is a computationally
expensive, but it is often necessary to ensure that the model is performing at its best.
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Cross-validation
Cross-validation and train/test split are techniques commonly used to evaluate
the performance of a model on unseen data. Cross-validation involves dividing the
dataset into k-folds, where each fold is used as a validation set while the remaining
k-1 folds are used for training. This process is repeated k times, with each fold being
used once as the validation set. The performance of the model is then averaged
across all k-folds. On the other hand, train/test split involves randomly dividing
the dataset into a training set and a test set. This approach is straightforward and
enables the model to become less reliant on the selected split, resulting in more
accurate performance. Both cross-validation and train/test split are important
techniques to ensure that the model is not overfitting to the training data and can
generalize well to new, unseen data.

2.3.2 Supervised Learning

Supervised learning is a type of machine learning where the algorithm learns to
map input data to output data based on labeled examples provided during the
training phase. In other words, the algorithm is presented with a set of inputs
and their corresponding correct outputs, and it learns to make predictions on new
inputs based on this labeled data.
During the training phase, the algorithm adjusts its parameters to minimize the
difference between its predicted output and the true output. This process is also
known as optimization, and the algorithm uses a loss function to measure how well
it is performing.
Once the model is trained, it can be used to make predictions on new, unseen
data. The accuracy of the model is evaluated on a separate set of data, called the
validation set, to ensure that it is not overfitting to the training data.

2.3.3 Support Vector Machine

Support Vector Machine (SVM) is a popular machine learning algorithm used
for classification and regression analysis. The basic idea behind SVM is to find a
hyperplane in a high-dimensional space that can best separate different classes or
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predict a continuous output.
In the case of classification, SVM finds the hyperplane that maximizes the margin
between different classes. The margin is the distance between the hyperplane and
the closest data points of each class. The hyperplane is chosen so that the margin
is maximized, which means it is the most robust and generalizable classifier. SVM
can handle both linearly separable and non-linearly separable data by using a
kernel function to map the original features into a higher-dimensional space, where
it is possible to find a hyperplane that can separate the classes [20].
In the case of regression, SVM is used to predict a continuous output. The goal is
to find a function that can fit the data with minimum error. The regression version
of SVM is called Support Vector Regression (SVR). SVR uses the same principle
as SVM, but instead of finding a hyperplane that maximizes the margin, it finds
a hyperplane that minimizes the deviation between the predicted output and the
actual output. SVR can also use kernel functions to handle non-linear data. In fig.
2.8, a graphical representation of the research for hyperplanes that maximize the
margin is shown.
In summary, SVM is a versatile machine learning algorithm that can be used for
both classification and regression tasks. Its ability to handle non-linear data and
find the most robust hyperplane or function makes it a popular choice in various
fields.

Figure 2.8: SVM hyperplane separation[21]
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2.3.4 Multi-layer Perceptron

A multi-layer perceptron (MLP) is a type of neural network that consists of multiple
layers of interconnected nodes or neurons. The MLP is called a feedforward network
because the input is fed forward through the network to produce an output. The
first layer of the MLP is the input layer, followed by one or more hidden layers, and
an output layer. Each neuron in a hidden layer receives inputs from the neurons
in the previous layer and produces an output based on its weights and activation
function. The output of the final layer is the output of the network. The weights
and biases of the network are learned through the training process, which involves
adjusting the weights to minimize the error between the predicted output and the
actual output [22]. Fig. 2.9 shows an example of MLP architecture.
In the case of a MLP regressor, the output of the network is a continuous value,
rather than a discrete class label as in the case of a classifier. The MLP regressor
is trained on a set of input-output pairs, and the goal is to learn a function that
maps the inputs to the corresponding outputs. During training, the weights of
the network are adjusted to minimize the error between the predicted output and
the true output. The choice of loss function and activation function can affect the
performance of the MLP regressor, and hyperparameter tuning is often necessary
to achieve optimal performance.

Figure 2.9: MLP basic architecture[22]
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2.4 Deep Learning

Deep learning is a subset of machine learning that involves the use of artificial
neural networks with multiple layers to learn and make predictions from complex
data. Deep learning algorithms are designed to automatically learn hierarchical
representations of the input data by using layers of interconnected nodes, also called
neurons. Each layer in the network performs a set of mathematical operations on
the data, transforming it into a higher-level representation that can be used by the
next layer. The more layers the network has, the deeper it is considered, hence
the term "deep learning". One of the key advantages of deep learning is its ability
to learn features directly from raw data, eliminating the need for manual feature
extraction. This makes deep learning particularly well-suited for applications such
as image recognition, natural language processing, and speech recognition, where
the input data is complex and high-dimensional. However, deep learning algorithms
require a large amount of data to be trained and can be computationally intensive,
making them more challenging to implement than traditional machine learning
algorithms.
A CNN is a type of deep neural network commonly used in image and video
recognition. CNNs are designed to automatically extract features from input
images through multiple layers of convolutional, pooling, and fully connected
layers.

2.4.1 General Deep Learning Terms

In addition to the terms already presented for machine learning, an overview is
given on the fundamental aspects of deep learning.

Convolutional Layers
The convolutional layer is a fundamental component of CNNs used in deep learning.
It performs a mathematical operation called convolution on the input data, which
involves applying a set of filters or kernels to extract features from the input data.
A mathematical example is provided in fig. 2.10. The output of the convolutional
layer is then passed on to other layers for further processing. The filters are learned
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during training using backpropagation and are optimized to extract relevant fea-
tures from the input data.

Figure 2.10: Convolution layer example[23]

Pooling Layers
A pooling layer is a type of layer used to reduce the spatial dimensions of the
input feature maps. The pooling layer operates on each feature map independently
and replaces a local neighborhood of the map with a summary statistic, such as
the maximum value or average value within that neighborhood. A mathematical
example of max pooling layer is provided in fig. 2.11. The main purpose of pooling
is to help reduce the spatial resolution of the feature maps, making them more
computationally efficient to process in later layers of the network. Pooling can also
help to extract important features and reduce the effect of small translations or
distortions in the input data.

Figure 2.11: Max pooling layer example[23]
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Fully Connected Layers
Fully connected layers, also known as dense layers, are a type of neural network
layer where each neuron is connected to every neuron in the previous layer. In a
fully connected layer, the output of each neuron is a weighted sum of the inputs,
followed by an activation function. These layers are typically placed at the end of a
neural network architecture, where they take the output of the preceding layers and
produce a final output or prediction. The number of neurons in a fully connected
layer is typically a hyperparameter that needs to be tuned during the training
process.

Dropout Layer
A dropout layer is a type of regularization technique used in neural networks to
prevent overfitting [24]. During training, a certain percentage of randomly selected
neurons in the layer are ignored or "dropped out," meaning their outputs are
set to zero. A visual example of the change in neural network after inserting a
dropout layer is presented in fig. 2.12. This helps prevent the network from relying
too heavily on any one neuron or feature and forces it to learn more robust and
generalizable representations. Dropout layers are typically inserted between fully
connected layers in a neural network and the dropout rate is a hyperparameter
that can be tuned to achieve optimal performance.

Figure 2.12: Dropout layer example[23]
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Transfer Learning
Transfer learning is technique that involves reusing pre-trained models on a new
task that is related to the original task. It is a highly effective and widely used
approach in deep learning, especially for computer vision tasks. In transfer learning,
the pre-trained model is fine-tuned on a new dataset, allowing for faster convergence
and better performance than training a model from scratch. This is particularly
useful when the new dataset is small or when computational resources are limited.
The popularity of transfer learning has led to the development of many pre-trained
models, such as VGG, ResNet, and MobileNet, which can be used as a starting
point for transfer learning tasks.

2.5 Deep Learning Neural Networks

In this section, an overview of the most commonly used deep learning neural
networks is presented. The architectures of these networks are described along
with their specific applications and advantages. The aim is to provide a compre-
hensive understanding of the current state-of-the-art model in deep learning, their
applications, and their potential for future research.

2.5.1 ResNet

Residual Network (ResNet) is a type of deep neural network architecture that was
introduced in 2015 by researchers at Microsoft Research [25]. The key innovation of
ResNet was the use of residual connections, which allows the network to be deeper
without suffering from the vanishing gradient problem. In a traditional neural
network, each layer is trained to fit the input to its corresponding output. However,
in a ResNet, each layer is instead trained to fit the residual, or the difference
between the input and its corresponding output. This residual block architecture
helps to prevent the degradation problem that occurs when adding more layers
to a neural network, and enables the construction of very deep neural networks
with improved performance. Different models of ResNet can be found, each with a
different number of layers. The first models, ResNet-18 and ResNet-34, have 18
and 34 layers, respectively. Then there are ResNet-50, in fig. 2.13, ResNet-101 and
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ResNet-152, which have 50, 101 and 152 layers.

Figure 2.13: ResNet 50 architecture[26]

2.5.2 VGG

Visual Geometry Group (VGG) is a deep convolutional neural network architecture
developed by researchers at the University of Oxford in 2014 [27]. The network is
named after the group’s initials and the number of layers it contains (VGG-16 and
VGG-19, for example, have 16 and 19 layers, respectively). The VGG architecture
achieved impressive performance on image classification tasks and is known for its
simplicity and uniformity of design, with the same filter size of 3x3 and max pooling
of 2x2 used throughout the entire network. VGG has since become a benchmark
for evaluating the performance of new convolutional neural network architectures.
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2.5.3 MobileNet

MobileNet is a convolutional neural network architecture designed for mobile and
embedded devices with limited computing resources [28]. It uses depthwise separable
convolutions, which factorize the standard convolution operation into a depthwise
convolution and a pointwise convolution. This reduces the number of computations
required for each convolution operation and allows MobileNet to achieve a good
trade-off between accuracy and efficiency. MobileNet has several versions with
different levels of complexity, ranging from MobileNetV1 to MobileNetV3, and has
been widely used in applications on mobile and embedded devices.

2.5.4 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN)
architecture that has gained popularity in recent years due to its ability to handle
long-term dependencies [29]. LSTM is designed to overcome the vanishing gradient
problem faced by traditional RNNs by introducing a memory cell and three gating
mechanisms: input gate, forget gate, and output gate. These gates control the flow
of information into and out of the memory cell, allowing the network to selectively
remember or forget information over time.

2.6 Multimodal Emotion Recognition

Multimodal emotion recognition is a challenging task that aims to recognize and
interpret human emotions using multiple modalities such as facial expressions,
voice, and physiological signals. To achieve accurate recognition, several techniques
for fusing the modalities have been proposed. One such technique is early fusion,
which combines the feature vectors of all modalities into a single vector, allowing
for a single classifier to be trained. Another technique is late fusion, where each
modality is processed separately, and the decisions are combined at a later stage
[30]. Late fusion can be done using several approaches, including decision-level
fusion, feature-level fusion, and score-level fusion. In decision-level fusion, the
decisions of each modality are combined using a voting scheme or other aggregation
methods. In feature-level fusion, the features of each modality are combined before
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classification. Finally, in score-level fusion, the scores of each modality are combined
to make a final decision.
Multimodal emotion recognition has several advantages over unimodal approaches.
By combining multiple modalities such as audio, video, and physiological signals, a
more complete picture of a person’s emotional state can be obtained, leading to
more accurate recognition. Additionally, multimodal approaches are more robust to
noise and variability in the input data, as different modalities may capture different
aspects of the emotional state.
However, there are also some disadvantages to using multimodal approaches. First,
integrating multiple modalities requires careful design and implementation of feature
extraction, feature fusion, and classification algorithms, which can be challenging
and time-consuming. Second, multimodal systems require more complex hardware
and software, which can be more expensive and difficult to deploy in real-world
scenarios, and more invasive data collection methods.
While each fusion technique has its strengths and weaknesses, selecting the appropri-
ate technique depends on the characteristics of the modalities and the requirements
of the application.

2.7 Metrics

This section presents metrics that are often used to evaluate the quality of regression
models in valence/arousal recognition.

2.7.1 Concordance Correlation Coefficient

The Concordance Correlation Coefficient (CCC) is a statistical measure used to
evaluate the agreement between two quantitative variables. It is a modification
of the Pearson correlation coefficient that takes into account both the precision
and accuracy of the measurements. The CCC ranges from -1 to 1, where a value of
1 indicates perfect agreement, 0 indicates no agreement, and -1 indicates perfect
disagreement. The CCC is widely used in various fields to assess the reliability of
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measurements and to compare different measurement methods.

CCC = 2 ∗ σ12
(µ1 − µ2)2 + σ12 + σ22 (2.1)

Where σ1 and σ2 represent the standard deviations of the variables, µ1 and µ2
denote their means, and σ12 stands for their covariance.

2.7.2 Root Mean Squared Error

Root mean squared error (RMSE) is a commonly used metric to measure the
difference between predicted and actual values in regression analysis. It is calculated
as the square root of the average squared difference between the predicted values
and the actual values. The RMSE provides a measure of how well the model fits
the data, with lower values indicating a better fit. It is particularly useful when
there are outliers in the data that can have a large effect on the accuracy of the
model.

RMSE =
öõõô( 1

n
)

nØ
i=1

(yi − xi)2 (2.2)

2.7.3 Mean Absolute Error

Mean absolute error (MAE) is a common metric used to evaluate the performance
of a model in regression tasks. It measures the average magnitude of the errors
between predicted and actual values, without considering their direction. It is
calculated by taking the absolute difference between the predicted and actual values,
and then averaging these differences across all samples. The MAE is a measure of
the model’s accuracy, with lower values indicating better performance.

MAE = ( 1
n

)
nØ

i=1
|yi − xi| (2.3)

2.7.4 Sign Agreement Metric

In the study presented in [31], the authors introduce another metric for assessing
the effectiveness of a system’s ability to predict valence and arousal, which is known
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as SAGR. SAGR is defined as:

SAGR = ( 1
n

)
nØ

i=1
δ (sign (yi) , sign (xi)) (2.4)

Where δ is the Kronecker delta function, defined as:

δ (a, b) =

 1 , a = b

0 , a /= b
(2.5)

2.7.5 Coefficient of determination

The coefficient of determination, denoted as R2, is a statistical metric used to
measure the proportion of variability in the dependent variable that is explained
by the independent variable(s) in a regression model. It is a value between 0 and 1,
where 0 indicates that the model explain no variability in the dependent variable
and 1 indicates that the model explains all the variability. R2 is calculated by
taking the ratio of the sum of squares of the regression (SSR) to the total sum of
squares (SST), where SSR represents the sum of squared differences between the
predicted and actual values, and SST represents the sum of squared differences
between the actual values and the mean of the dependent variable. An R2 value
closer to 1 indicates a better fit of the model to the data, while a value closer to 0
indicates a poor fit.

SSres =
nØ

i=1
(yi − xi)2SStot =

nØ
i=1

(yi − yâ)2 (2.6)

R2 = 1 − SSres

SStot

(2.7)
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2.8 Tools

This section provides an overview of the tools and libraries used in this thesis.

2.8.1 Scikit-Learn

Scikit-learn is a popular open-source machine learning library for the Python
programming language. It provides a wide range of supervised and unsupervised
learning algorithms, as well as tools for data preprocessing, model selection and
evaluation, and data visualization. Scikit-learn is built on top of other scientific
computing packages such as NumPy, SciPy, and matplotlib, making it easy to
integrate into existing Python data analysis workflows.

2.8.2 Keras

Keras is an open-source software library for building and training deep neural
networks. It provides a user-friendly interface for designing, training, and evaluating
neural network models, and supports various types of neural network architec-
tures such as convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and more. Keras is written in Python and supports both CPU and GPU
computations.

2.8.3 Py-feat

Py-feat is a Python library for feature extraction and preprocessing in machine
learning and signal processing applications. It provides a set of functions and tools
to extract a variety of features from audio, image, and time-series data. The library
aims to be fast, efficient, and user-friendly, and is designed to work seamlessly with
other popular Python libraries such as scikit-learn, TensorFlow, and Keras.

2.8.4 Mediapipe

MediaPipe is a cross-platform framework developed by Google that provides tools
and building blocks for building multimedia pipelines. It offers a wide range of
pre-built components that can be easily integrated to build complex pipelines for
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tasks such as object detection, pose estimation, face detection and recognition,
facial landmarks detection, and more.
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Chapter 3

Related works on
preprocessing and neural
networks

In this chapter, a review of the existing research in the field of FAUs detection
is presented, followed by a discussion on the state-of-the-art approaches for FER
and the challenges faced in the field. Additionally, a section is dedicated to the
presentation of the state-of-the-art approaches within the field of multimodal
emotion recognition.

3.1 Methods In Facial Action Unit Detection

This section provides a description of methods related to preprocessing, feature
extraction, and classification in the field of FAUs detection.

3.1.1 Preprocessing

The primary purpose of facial image preprocessing is to improve the quality of
images and enhance their features for further processing. Therefore, the first steps
in image preprocessing, for both FAUs detection and emotion recognition tasks,
are aimed at achieving this objective. Face detection, which is crucial for further
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analysis, has been implemented using various algorithms that have demonstrated
good performance.
In the cited works, different algorithms and techniques are employed for face
detection. The Haar Cascades and Viola-Jones algorithms are used in [32] and [33],
respectively, to detect facial features in images. [34] compares the two algorithms
and finds that HOGs is slightly more accurate in detecting faces, particularly in
images with multiple faces. On the other hand, [35] highlights the challenges in
facial recognition due to variations in illumination conditions, which can ultimately
affect the recognition process. An experiment shows an improvement in face
recognition by enhancing the intensity in regions that are inadequately illuminated
and decreasing it in densely illuminated regions while retaining the intensity in
fairly illuminated portions. [36] and [37], which were used within the project for
feature extraction, rely on face detection using fast neural networks.

3.1.2 Feature Extraction

In FER and FAUs detection, features extraction, that accurately represent the class
of the image, is essential. Following image preprocessing, the extracted features
must be appropriately represented before being input into a machine learning
classifier. In Section 2.2.1, various types of features were discussed, including CNNs,
which are currently one of the most popular approaches. However, comparing
the feature extraction performance between different CNNs is challenging, as it is
done automatically as a result of the CNN layers. Classical approaches, such as
Local Binary Pattern, Histogram of Oriented Gradients, and facial landmarks have
demonstrated good performance as noted in [38].

3.1.3 Classification

In [38], SVM is used for multi-class classification using one-against-one strategy.
The classes in the SVM correspond to the five levels of intensity of a specific AU
plus a class for the absence of AU, resulting in a total of six classes. Using multiple
kernels instead of a single one can improve classifier performance, with a common
approach being to use a convex linear combination of basis kernels. In this work,
Gaussian and interaction kernels are integrated into the multiple kernel framework,
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with different data sources associated with each kernel.
In [39], a solution with a more complicated architecture was proposed that led
to slightly better results. A DRML network has been constructed, with a newly
proposed region layer, for multi-label AU detection. A region layer captures local
appearance changes for different facial regions. Such regional information has
shown to provide unique cues to recognize AUs and holistic expressions. For the
recognition of certain AUs, this approach has proven particularly effective.

3.2 Methods In Facial Emotion Recognition

This section provides a description of methods related to FER.

3.2.1 Feature Extraction

With regards to image preprocessing and subsequent face detection, identical models
are employed for both FAUs detection and FER. In terms of feature extraction, the
features outlined in section 2.2.1 are once again utilized, however, a combination of
traditional methods and deep neural networks has progressively been employed.

3.2.2 Models

This article [40] proposed one of the best approaches that exploits traditional
techniques for recognizing facial expressions by combining Gabor and Local Binary
Pattern (LBP) features. The Gabor filter is used to extract facial features, and
LBP is used to encode the texture of the face. The proposed method first involves
several steps to preprocess and extract facial features from raw expression images;
the images are normalized to reduce any variations in lighting, pose, and other
factors. Next, two types of features, Gabor and LBP, are extracted from the
preprocessed images. Dimensionality reduction is then performed using PCA to
reduce the number of features and minimize redundancy. The resulting feature
vectors from Gabor and LBP are then fused together and optimized to improve the
overall performance of the model. Finally, a SVM classifier is trained on the fused
feature vector to recognize facial expressions. The experimental results show that
the proposed method outperforms other state-of-the-art methods of those years on
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the CK+ dataset. In fig. 3.1 the flowchart of proposed model.

Figure 3.1: Flowchart of proposed model[40]

In [41] is reported for the first time this type of DL architecture for facial expression
recognition in videos. The model is based on a frame attention mechanism that
automatically learns which frames are important for accurately recognizing facial
expressions over time. The model leverages both spatial and temporal information
by processing frames through a convolutional neural network (CNN) and a recurrent
neural network (RNN), respectively.
Lastly, [42] proposed a different approach with a single network that performs
facial landmark detection and estimates both categorical and continuous emotions.
The proposed method takes advantage of the facial points detected by a face-
alignment network used for facial points detection, which are relevant for the
emotion recognition task. Additionally, a set of steps are introduced to further
enhance the performance of the model. These steps include a joint prediction of
categorical and continuous emotions to increase the model’s robustness to outliers in
the dataset, an spatial attention mechanism that focuses on relevant regions of the
face for affect estimation, a student-teacher training framework called knowledge
distillation that smooths labels learned by the network, and a customized loss
function designed to optimize CCC metric. Fig. 3.2 shows an overview of the
architecture of their proposal.
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Figure 3.2: Flowchart of proposed model[40]

3.2.3 Emotion Recognition From Near-Infrared Videos

To overcome the problem of brightness, in [43] the authors developed a novel
approach to dynamic facial expression recognition using NIR video sequences. NIR
imaging combined with LBP features offer an illumination-invariant description
of face video sequences. Specifically, a dataset of NIR videos, containing facial
expressions of six basic emotions, is used: happiness, sadness, surprise, anger,
disgust, and fear. A component-based facial features are introduced to combine
geometric and appearance information, providing an effective representation of
facial expressions. Overall, the paper demonstrates that NIR videos can be a
promising source of information for FER in situations where ambient light may
interfere with facial expression detection because SVM demonstrate robust results,
offering a baseline for future research on NIR-based facial expression recognition..
Fig. 3.3 shows that NIR images are more robust to changing brightness and allow
the network to focus on key aspects of the face.
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Figure 3.3: VIS (top) and NIR (bottom) images in different light conditions[43]

3.3 Methods In Multimodal Emotion Recogni-
tion

In the realm of multimodal analysis of emotions, there remain numerous unresolved
issues, as described in section 2.6, but the potential is considerable. Although de-
tecting emotion is a common objective, there are variations in the approaches taken
and the subtasks investigated, such as whether emotions should be classified in a
continuous dimensional format or with the use of discrete categories. Additionally,
there is significant variation in the number of emotional categories to classify and
the dataset size, making it difficult to compare results.
This section provides a description of all different multimodal approches.

Facial Expression and Textual feature
In the field of text-based emotion recognition, the focus is on the emotions that
prompt individuals to use certain words at specific times. Humans possess a certain
degree of ability to comprehend emotions from text, which motivates the develop-
ment of computers that can do the same. Nonetheless, textual interpretation is a
complicated task for both humans and computers, given the absence of contextual
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information, the presence of sarcasm, and the relationship between the author and
reader. In a 2020 study, [44] explored the possibility of combining facial emotion
recognition with text to classify the facial images of characters in a Korean TV
series into seven emotions: anger, disgust, fear, happiness, neutral, sadness, and
surprise. A multimodal deep learning model was created, using facial images and
text descriptions of the situation as input values. The findings of the experiment
revealed an increase in F1-score for 5 of 7 emotions when utilizing text descriptions
of the characters and facial expressions, as opposed to a unimodal approach that
only used facial expressions.

Facial Expression and EEG
In [45], a multimodal approach to emotion recognition was proposed for developing
an HRI (human-robot interaction) system with low disharmony. The authors
conducted a multimodal experiment that combined facial expressions and EEG.
EEG data were obtained using an electrode cap in a laboratory setting, while facial
expressions were captured using a camera with elicitation provided by a video. The
data were then self-labeled by the subjects and passed through separate classifiers
for facial and EEG. The Monte Carlo method was employed to combine the facial
expressions and EEG results for the multimodal experiment. The model was able to
classify four emotions with 83.33 % accuracy, which was an improvement compared
to the unimodal approaches.

Facial Expression and EDA, Heart Rate, Respiration
In 2017, [46] proposed a multimodal approach combining facial expressions with
several physiological signals to improve the recognition rate of emotion compared
to a unimodal approach solely using facial expressions. The study used data
including facial expressions, EDA, heart rate, and respiration. Facial features were
extracted using AFFDEX, a facial expression analysis toolkit, while a total of
130 features were extracted from physiological signals, including time, minima,
maxima, frequency, statistical, and spectral features. Late fusion was used to fuse
the features, where a simple concatenation between the vectors was applied. The
results showed an increase in recognition of both valence and arousal compared to
a unimodal approach using facial expressions.
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Related works on preprocessing and neural networks

Facial Expression, Acoustic feature and Bio-signal
In [47] a model is proposed that utilizes LSTM networks with a self-attention
mechanism to capture complex temporal dependencies within the feature sequences,
including bio-signal features such as Electrocardiogram (ECG), Respiration (RESP),
and heart rate (BPM). The architecture of the model comprises three modules:
the LSTM networks with self-attention module for acoustic and visual features,
the LSTM module for bio-signal features, and the late fusion module. Firstly,
are fed the eGeMAPS feature and the VGGface feature separately to the LSTM
network with self-attention module to obtain predictions from both audio and
visual modalities. Then, the bio-signal features are concatenated and send to the
LSTM module to obtain the predictions of the bio-signal modality. Finally, the
predictions from all modalities are concatenated and sent to the late fusion module
for regression.
The self-attention mechanism is used to transform input sequences into high-level
representations, capturing relationships across the sequences. In addition, the
visual feature and acoustic sequence are sent to the self-attention module to capture
contextual information. The outputs of the self-attention modules are then sent to
the LSTM to model complex temporal dependencies within the sequence.

Figure 3.4: Overview of architecture used by[47]
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Facial Expression, Acoustic and Textual features
The authors of [48] have developed ViPER (Video-based Perceiver for Emotion
Recognition), a multimodal architecture designed to recognize emotions from
videos. ViPER employs an attention-based and modality-agnostic late fusion strat-
egy, which receives both the visual component, consisting of images corresponding
to video frames, and the acoustic component, which is the audio recording associ-
ated with the video. The visual component is utilized to extract various features,
including transformer-based visual embeddings, Facial Action Units (FAUs), and
frame captions. A new modality is introduced through frame captioning, which
involves providing a textual description of the video frames. This description is
then encoded using a state-of-the-art contextualized embedding model.
The original and augmented data are used to generate latent features that in-
clude visual features such as Vision Transformer and FAUs, augmented textual
features, and acoustic features such as x-vector representations of the audio wave-
forms. These features are combined using a late fusion network, which relies on a
modality-agnostic approach, making the network adaptable to various modality
combinations.
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Chapter 4

Dataset, Experiment and
result

4.1 Dataset

A difficult problem in computer vision is the application of affective computing
in real-world scenarios. The current availability of annotated facial expression
databases for naturalistic settings is limited and primarily focused on discrete
emotions that can be classified into seven basic categories, including happiness,
sadness, anger, disgust, fear, surprise, and neutral. In contrast, the continuous
dimensional model that considers valence and arousal has very few annotated facial
databases. In the following, the most widely used databases in FER and the one
chosen to train our models are presented.

4.1.1 Existing Dataset

Overview on the most common dataset used to train and evaluate FER models.

CK+
CK+ (Cohn-Kanade+) is a facial expression database widely used in computer
vision and affective computing research. It consists of over 5000 images of 123
subjects displaying six basic facial expressions (anger, disgust, fear, happiness,
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sadness, and surprise) and a neutral expression [49]. Each expression is shown in a
sequence of increasing intensity levels, allowing researchers to study the temporal
dynamics of facial expressions. The database also provides manual annotations of
facial landmarks and action units, which enable the development and evaluation of
algorithms for facial expression recognition, facial landmark detection, and facial
action unit detection. This dataset does not have the continuous annotations (e.g.,
valence and arousal).

KDEF
KDEF (Karolinska Directed Emotional Faces) is a database of facial expressions
that contains images of 70 individuals (35 women and 35 men) expressing six basic
emotions: happiness, anger, fear, disgusted, surprised, and sad [50]. The images
are taken under controlled conditions with standardized lighting and background.
Each individual displays the six emotions at three different intensity levels, making
a total of 1260 images. This dataset does not have the continuous annotations
(e.g., valence and arousal).

RaFD
The Radboud Faces Database (RaFD) is a facial expression database that was
developed at Radboud University Nijmegen, Netherlands [51]. It consists of 67
participants displaying eight different facial expressions: neutral, happiness, sadness,
anger, fear, disgust, surprise, and contempt. Each participant’s expressions are
captured through a high-quality video camera. The database includes both frontal
and 3/4th view of the face with naturalistic and uncontrolled lighting conditions.
This dataset does not have the continuous annotations (e.g., valence and arousal).

Aff-Wild2
AFF-Wild2 is a widely used facial expression dataset that was created to advance
research in automatic affective computing. It contains around 540 videos with
spontaneous facial expressions, captured in real-world scenarios, and over 200,000
frames [11]. The dataset features diverse individuals from different cultures and
ages expressing various emotions, including happiness, sadness, anger, surprise,
fear, and disgust. AFF-Wild2 also includes some of the most challenging situations,
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such as low-quality videos, occlusion, and temporal misalignment. To ensure its
reliability, the dataset has been annotated by multiple experts, and it provides
detailed annotations, including arousal and valence values for each facial expression.

Oulu-Casia Nir Vis
Oulu-Casia NIR-VIS dataset is a facial expression database that includes both
near-infrared (NIR) and visible light (VIS) image modalities [52]. This dataset
is designed to address the limitations of previous databases by providing a high-
quality, diverse set of facial expressions under different illumination conditions,
head poses, and subjects. The Oulu-Casia NIR-VIS database contains a total of
4800 images of 80 subjects, each of whom displays six facial expressions: anger,
disgust, fear, happiness, sadness, and surprise. The images are captured using both
NIR and VIS cameras, with varying illumination conditions and head poses. The
Oulu-Casia NIR-VIS dataset has been widely used in research on facial expression
recognition, cross-modal learning, and face anti-spoofing. This dataset does not
have the continuous annotations (e.g., valence and arousal).

4.2 Muse Challenge Dataset

In this section, the MuSe-Stress sub-challenge dataset is presented as the selected
dataset for the development of the model. This dataset was chosen due to its
emphasis on the continuous analysis of emotions through arousal and valence
measurements [12]. In addition, this dataset offers a diverse set of features that can
be utilized in future studies to compare the effectiveness of our model with that
of a multimodal approach. This dataset was utilized to train a model that could
extract FAUs from the raw images and use them as input features for a second
model. This approach was only feasible due to the availability of FAU features in
the dataset, which are not commonly found combined with labels of arousal and
valence. Unlike other datasets that utilize images from the Internet with assigned
arousal and valence values, this dataset offers real-life videos and images of subjects
in a more authentic stress-inducing environment.
The regression task utilizes the Ulm-Trier Social Stress Test dataset (Ulm-TSST),
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which features individuals in a stress-inducing scenario following the Trier Social
Stress Test (TSST)[53]. In addition to audio, video, and textual features, the Ulm-
TSST dataset includes four biological signals (EDA, ECG, RESP, and BPM) and
FAUs. In this protocol, 69 participants give a five-minute free speech presentation
in a simulated job interview setting, supervised by two interviewers who do not
interact with them. The data has been annotated by three raters for valence and
arousal, with valence annotated using the Rater Aligned Annotation Weighting
(RAAW) method to fuse the ratings of the three raters[12].
In this project, it was decided not to totally follow the dictates of the challenge
and no multimodal models were developed. This decision was made because our
model should not need sensors placed on the patient. In this way, our model can
be more accessible and easier to use. Fig. 4.1 and fig. 4.2 display, respectively, the
environment and an extracted face of MuSe-Stress sub-challenge dataset [12].

Figure 4.1: Environment of the video Figure 4.2: Extracted face

4.3 Machine Learning Model Architecture

In this section, the preprocessing steps taken to prepare the MuSe dataset and
the various models trained on this data are presented. The final part presents the
performance obtained from the various machine learning models tested with the
different preprocessing steps.
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4.3.1 Preprocessing

In order to extract relevant features from facial images, preprocessing was performed
on each frame of the video data. Specifically, two popular techniques in computer
vision were utilized: HOGs and facial landmarks detection. For the HOG features,
the pipeline described by Py-feat was followed to extract HOG descriptors from
each frame of the video data. The pipeline includes the following steps:

• extraction of the bounding box containing the subject’s face to reduce the
image information to be processed;

• calculation of 2-D landmarks to identify the cardinal points of the face;

• face alignment in order to reduce differences due to different pose angles of
the subject;

• extraction of the convex hull containing the realigned subject’s face;

• calculation of hogs as described in section 2.2.1.

These HOG descriptors capture the distribution of edge orientations in each image.
Since feature hogs were too heavy to process for simple machine learning models, a
PCA was performed to reduce the number of features and obtain a vector containing
1195 elements.
In addition to HOG features, also facial landmarks were computed detection to
extract information about specific points on each face. The MediaPipe library
was used to detect and extract the locations of 478 3-D facial landmarks on each
convex hull of frame of the video data. These landmarks can provide information
about facial expression, gaze direction, and other important cues that are relevant
to emotional analysis. Fig. 4.3 and fig. 4.4 show the effect of preprocessing and
feature extraction steps. Together, these preprocessing techniques allowed us to
extract rich and informative features from each frame of the video data, which were
then used as input to our emotion recognition models. Our models were trained
with a vector (2629 elements) containing the x, y, and z coordinates of the 478 face
landmarks (1434 elements) concatenated with the features obtained in output to
the PCA performed on the hogs (1195 elements).
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Figure 4.3: Raw face and face after extraction and realignment

Figure 4.4: Hogs and 3D face landmarks extracted

4.3.2 FAUs Detection

An alternative solution was initially tried in which FAUs were extracted from
video recordings of participants using FACS. To apply FACS, annotated frames
of MuSe Dataset were employed; the intensities of 20 AUs between values 0 and
1 were provided for each frame. The AUs intensity were used as labels to train
AU detection models. Machine learning models (e.g. SVM, MLP) were trained to
automatically recognize them from video frames and also proved to be very reliable.
The idea was to use the outputs of these models as features for another ML models
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designed to recognize the emotional states of the participants. These models were
trained to predict both arousal and valence based on the facial expressions of the
participants. It was assumed that the FAUs would be a suitable indicator for
recognizing arousal and valence. Through the concatenation of two models, it was
expected to achieve good level of accuracy in predicting the emotional states of the
participants. Unfortunately, as will be described in the results section 4.3.4, the
ML models for arousal and valence recognition from AU performed very poorly.
For this reason, this idea was abandoned and a different preprocessing was carried
out. Fig. 4.5 displays schematic pipeline of proposed model for arousal and valence
regression using FAUs.

Figure 4.5: Pipeline for arousal and valence regression using FAUs

44



Dataset, Experiment and result

4.3.3 Shallow Learning

After the preprocessing step, two ML algorithms, Support Vector Machines (SVM)
and Multilayer Perceptron (MLP), were trained to predict the valence and arousal
of the participants. Before training the models, a grid search was performed to
find the optimal hyperparameters for each algorithm. The grid search consisted of
testing multiple combinations of hyperparameters, such as the loss function and
penalty parameter for SVM, and the number of hidden layers, neurons and learning
rate for MLP. Regarding the SVR models, a comprehensive grid search was not
conducted as the obtained performance was consistently inferior to that of the
MLP model. The optimal model, whose results will be presented, was obtained
using the following hyperparameters:

• C (penalty parameter) = 10;

• Loss function = squared epsilon insensitive;

• Epsilon (epsilon-tube within which no penalty is associated in the training
loss function) = 0.0

Regarding the MLP models, a more comprehensive grid search was performed,
considering the good performance achieved. The optimal model was obtained using
the following hyperparameters:

• Activation function = ReLU;

• Hidden Layer sizes = (3000, 5000, 3000, 1500, 500, 50);

• Learning Rate init = 0.0001

The performance of the models was evaluated using 3 cross-validation. The grid
search and cross-validation were performed on a subset of the dataset, and the
best hyperparameters were selected based on the highest accuracy and R2 score.
The selected hyperparameters were then used to train the models on the entire
dataset, and the performance was evaluated on a separate test set. Fig. 4.6 displays
schematic pipeline of proposed model. The results are shown in the section 4.3.4.
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Figure 4.6: Pipeline for arousal and valence regression using ML techniques

4.3.4 Results

In this section all performance obtained for models described in the previous section
are reported.

Performance for best SVR model:
Table 4.1 shows that the best SVR model achieved decent performance, with a CCC
of 0.71 for Arousal and 0.77 for Valence on the training set. However, there was a
slight drop in performance on the test set, resulting in a CCC of 0.68 for Arousal and
0.74 for Valence. The SAGR values remained roughly constant between the training
and test sets, indicating that the drop of the other metrics was primarily due to
an inaccurate estimation of the intensity of Arousal and Valence, but not their sign.

NETWORK TASK CCC SAGR RMSE
Training Test Training Test Training Test

SVR Arousal 0.707 0.680 0.793 0.784 0.227 0.237
Valence 0.774 0.742 0.799 0.785 0.125 0.133

Table 4.1: Evaluation of best SVR model for Arousal and Valence regression
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Grid search for MLP:
Tables 4.2 and 4.3 present the R2 values obtained for the various hyperparameter
combinations tested during the grid search. The results indicate that the best
scores were obtained with lower learning rates, with ReLU activation function and
models with a greater number of hidden layers. The highest R2 value obtained was
0.73, achieved by the best-performing model.

Activation Function Hidden Layers Learning Rate R2

ReLU 3000,4000,6000,4000,2000,1000,100 0.1 -5.46
ReLU 3000,4000,6000,4000,2000,1000,100 0.01 -0.46
ReLU 3000,4000,6000,4000,2000,1000,100 0.001 0.61
ReLU 3000,4000,6000,4000,2000,1000,100 0.0001 0.72
ReLU 3000,5000,3000,1500,500,50 0.1 -0.00
ReLU 3000,5000,3000,1500,500,50 0.01 0.60
ReLU 3000,5000,3000,1500,500,50 0.001 0.63
ReLU 3000,5000,3000,1500,500,50 0.0001 0.73
ReLU 1000,500,50 0.1 -0.0
ReLU 1000,500,50 0.01 0.59
ReLU 1000,500,50 0.001 0.65
ReLU 1000,500,50 0.0001 0.69
ReLU 500 0.1 0.21
ReLU 500 0.01 0.55
ReLU 500 0.001 0.62
ReLU 500 0.0001 0.64
ReLU 2000,1000,500,50 0.1 -0.01
ReLU 2000,1000,500,50 0.01 0.53
ReLU 2000,1000,500,50 0.001 0.64
ReLU 2000,1000,500,50 0.0001 0.69

Table 4.2: Grid search to find the optimal combination of hidden layers and
learning rate
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Activation Function Hidden Layers Learning Rate R2

Tanh 3000,5000,3000,1500,500,50 0.001 -0.01
Tanh 3000,5000,3000,1500,500,50 0.0001 0.61
Tanh 3000,5000,3000,1500,500,50 0.00001 0.63
Tanh 2000,1000,500,50 0.001 0.64
Tanh 2000,1000,500,50 0.0001 0.61
Tanh 2000,1000,500,50 0.00001 0.60

Table 4.3: Second grid search to try another activation function with the best
combinations of the previous grid search

Performance for best MLP model:
Table 4.4 displays the metrics values obtained for the best MLP model found
through the previous grid search. High values for CCC are achieved on the training
set, with 0.98 for Arousal and 0.99 for Valence. However, a significant drop is
observed on the test set, resulting in a CCC of 0.82 for Arousal and 0.87 for Valence.
Similarly, other metrics exhibit a similar trend.

TASK CCC SAGR RMSE
Training Test Training Test Training Test

Arousal 0.983 0.821 0.975 0.839 0.061 0.188
Valence 0.988 0.872 0.973 0.857 0.031 0.098

Table 4.4: Evaluation of best MLP model for Arousal and Valence regression

Performance for best MLP trained for FAUs detection:
Table 4.5 displays the R2, MSE, and MAE values obtained by the best MLP model
for recognizing FAUs from preprocessed images. This model achieves excellent
performance on both the training and test sets, particularly with a MAE of 0.017
on the training set and 0.024 on the test set.
Hyperparameters of MLP:

• Activation function : Logistic;

• Hidden layers: 2000,1000,500,50;

• Learning rate init: 0.001
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R2 MSE MAE
Training Test Training Test Training Test
0.939 0.873 0.001 0.003 0.017 0.024

Table 4.5: Evaluation of best MLP model for FAUs detection

Performance of MLP model for Arousal and Valence regression trained
with the outputs of best model for FAUs detection:
Table 4.6 displays the metric values obtained for the models trained using the
FAUs extracted by the best model for FAUs detection. Both models exhibit similar
performance, slightly favoring the second model, with a CCC of 0.75 for Arousal
and 0.77 for Valence for both training and test. Neither model shows a drop in
metrics between the training and test sets.
Model 1 hyperparameters:

• Activation function : ReLU;

• Hidden layers: 2000,1000,500,50;

• Learning rate init: 0.001

Model 2 hyperparameters:

• Activation function : ReLU;

• Hidden layers: 2000,1000,500,50;

• Learning rate init: 0.0001

NETWORKS TASK CCC SAGR RMSE
Training Test Training Test Training Test

Model 1 Arousal 0.711 0.713 0.793 0.795 0.226 0.225
Valence 0.751 0.749 0.780 0.776 0.130 0.130

Model 2 Arousal 0.745 0.746 0.805 0.801 0.216 0.217
Valence 0.767 0.766 0.787 0.783 0.126 0.127

Table 4.6: Evaluation of best MLP model for Arousal and Valence regression
trained with FAUs
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4.3.5 Evaluation Of Results

In this section, is presented an analysis of the results obtained from various ML
models with different preprocessing approaches. Upon comparison of the models, it
is evident that the MLP outperforms in every metric when compared to the SVR.
The MLP, when trained with the specific preprocessing techniques for the task at
hand, emerged as the best model in all simulations. However, the only advantage of
the SVR over the MLP is its smaller drop between training and test performance,
despite remaining inferior overall.
For the MLP model, a first grid search was conducted to determine the best
combinations of the number of hidden layers, number of neurons, and learning
rate while maintaining the activation function fixed. The R2 values showed a
general increase in performance for smaller learning rates and for combinations
with more hidden layers. However, the grids with better R2 values required greater
computation time to be trained. Subsequently, another grid search was performed
to test different activation functions on the combinations of layers and neurons that
had produced better results in the previous grid search. Lower learning rates were
also tested, as they generally led to improved performance. However, no better
combinations were found, and therefore, the hyperparameters obtained in the first
grid search were considered optimal.
The performance of the best MLP model exhibited a significant impairment on the
test set, although it remained relatively satisfactory.
Furthermore, the best model trained for FAUs recognition demonstrated a negligible
error on both the training and test sets. However, the high performance of the FAUs
recognition model did not translate to improved performance on the cascade-trained
MLP model. Consequently, this solution was abandoned. Nevertheless, the MLP
model did not exhibit a performance impairment between the training and test
sets in this scenario.

4.4 Deep Learning Model Architecture

In this section, the preprocessing steps taken to prepare the MuSe dataset and the
various deep learning models trained on this data are presented. The final part
presents the performance obtained from the different architectures.
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4.4.1 Preprocessing

No significant preprocessing of the data was conducted for the deep learning models.
The DL models were primarily trained to enable a valid comparison and evaluation
of the performance against that of the ML models. Thus, a simple preprocessing
step was undertaken, which involved resizing the subject’s face to 224x224 pixels
and normalizing the image using the preprocessing functions provided by Keras for
the specific neural networks.

4.4.2 Neural Networks

Training deep learning models from scratch can be a challenging and time-consuming
task. In transfer learning, the pre-trained models, such as ResNet50, ResNet152,
VGG19, and MobileNet, are employed as a starting point for training on a target
dataset with similar characteristics. The pre-trained models used in this study
are all deep convolutional neural networks provided by the Keras library with
different architectures and varying numbers of layers. The process of fine-tuning
involves modifying the pre-trained models’ weights and adjusting them to fit the
new target dataset. On the model output, layers with randomly initialised weights
were added to fit the model to our desired output. To achieve this, an initial average
pooling layer was incorporated to reduce the dimensionality and extract relevant
information from the network output. This was followed by two dense layers, which
were interspersed with a dropout layer to obtain a regression of arousal and valence.
Such adaptations were necessary to tailor the models to our specific needs. Fig.
4.7 shows the pipeline followed to train the different DL models. Section 4.4.3
shows the performance obtained by all models trained to have a benchmark for
ML model.
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Figure 4.7: Pipeline for arousal and valence regression using DL techniques

4.4.3 Results

In table 4.7 all the performance results are reported, obtained for models described
in the previous section. ResNet50 and ResNet152 achieved very similar performance
with a CCC of 0.98 for arousal on the training set and 0.84 on the test set, while
for valence, the CCC was 0.97 and 0.87 respectively for the training and test sets.

NETWORKS TASK CCC SAGR RMSE
Training Test Training Test Training Test

ResNet50 Arousal 0.978 0.840 0.952 0.854 0.068 0.180
Valence 0.967 0.869 0.913 0.859 0.053 0.103

MobileNetV2 Arousal 0.918 0.786 0.900 0.834 0.125 0.202
Valence 0.898 0.808 0.853 0.824 0.088 0.119

VGG19 Arousal 0.769 0.736 0.835 0.814 0.194 0.210
Valence 0.789 0.756 0.820 0.805 0.120 0.128

ResNet152 Arousal 0.981 0.843 0.961 0.855 0.063 0.177
Valence 0.968 0.871 0.916 0.862 0.052 0.102

Table 4.7: Evaluation of DL models for Arousal and Valence regression
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4.4.4 Evaluation Of Results

Regarding the deep learning models that were trained, it is evident that the ResNets
exhibit superior performance at the expenses of larger architectural complexity.
Although there is a marginal discrepancy in the results of the two tested ResNet
models, it should be noted that the ResNet152, with its more elaborate structure,
is slower in both training and prediction phases. All other networks achieve inferior
performance with respect to ResNet. It is possible to observe that the best deep
networks exhibit better performance than the best MLP model on both the training
and test sets. Nevertheless, the difference remains quite limited, confirming the
validity of the proposed ML solution and suggesting that both solutions can be
used.
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Chapter 5

Discussion and Future
Works

5.1 Discussion

In the last decade, the field of emotion recognition from video has been increasingly
explored and applied in various fields. This area is vast and presents several
types of applications, which is why there are still many solutions that need to
be explored. Recently, numerous studies have focused on multimodal emotion
recognition, but this leads to a lower applicability of the system. Although using
multiple recognition modalities together improves accuracy as demonstrated in the
literature, it requires more complicated sensor systems. For these reasons, this
thesis focuses on analyzing a subject’s emotional state based solely on the frames
of a video.
The first major problem encountered was choosing the dataset to train the model.
There are FER datasets available online, but each has limitations, especially those
that include arousal and valence recognition, which are limited. The chosen dataset,
Muse stress sub-challenge, has numerous features and arousal and valence labels.
However, most frames have arousal and valence values that are very similar and close
to zero. This dataset composition could lead to poor generalization capabilities of
the system, making it unusable for situations where the subject may present arousal
and valence values closer to the extremes of the range -1 and 1. Unfortunately,
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these tests could not be confirmed as the dataset has few subjects with extreme
values, not sufficient to allow for a robust analysis of the results.
Another major problem faced was choosing the features and model. After analyzing
the features and shallow learning models that have been most used in the literature,
we proceeded to analyze the best possible combinations with 3-fold cross-validation,
trying to train the models using the features individually and collectively. This
analysis was time-consuming because the combinations to try were numerous,
and some of them did not yield the expected results. Shallow learning models
were chosen for analysis as they are simpler, maintain greater explainability, and
require less computational time in many cases. Regarding the choice of features,
it has been demonstrated that the combination of 3D face landmarks and HOGs
is the best choice for training a shallow model. This is likely due to the fact that
this combination of features provides the model with simplified yet informative
information to evaluate the subject’s emotional state. However, extracting these
features for each frame to be analyzed carries a computational cost that should
not be underestimated if a real-time system is desired.
The model obtained with the best hyperparameter combination, despite a drop in
the test set, still yields good results in all metrics analyzed (CCC, SAGR, RMSE).
Although there is a certain degree of overfitting, the model performs well enough
to be usable. Unfortunately, comparing it with other models trained on the same
dataset is challenging and not very informative since they are all multimodal and
far more complex than the model proposed in this thesis.
Finally, state-of-the-art deep models were trained to be used as benchmarks for our
best shallow model obtained. The performance obtained from these models showed
that shallow learning models slightly underperform. It can be inferred that shallow
models can be used as effectively as deep models, given that they are preceded by
suitable preprocessing, achieving similar performances with theoretically lighter
structures.

5.2 Future Works

The area of emotional recognition has been expanding, with numerous studies in
recent years, however, there remains a need for additional efforts in this field. In
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the following recommendations are provided for advancing the research conducted
in this thesis or for enhancing it.
Regarding the research presented in this thesis, it is recommended to develop a
model that considers the temporal relationship between frames to provide a more
comprehensive analysis. Possible models that could be implemented include LSTM
or frame attention networks. Alternatively, a simpler solution could be to calculate
a moving average of the outputs generated over consecutive frames, taking into
account the gradual changes in emotional state between frames.
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