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Abstract

Histological images are crucial for the diagnosis of many diseases. Cellular instance

number, density, shape, morphology are key elements in the evaluation of histological

images. Individual cellular instance segmentation is important for the extraction of

such features. The study of the semantic content makes it possible to understand the

interactions between cellular instances and the micro-environment. Deep learning

(DL)-based techniques represent the state of the art in the automatic segmentation

of individual cellular instances. This thesis work proposes the inversion of the

traditional paradigm through artificial intelligence (AI) techniques capable of

generating realistic histological images from a predefined ground truth, being able

to control the semantic content of the image. This thesis work is part of the

Image-to-Image (I2I) paired translation. The public CryoNuSeg dataset is used. It

includes 30 paired haematoxylin and eosin (H&E)-stained histological images. Each

image has three manual annotations. We propose an algorithm for merging the

annotations into a single ground truth, used to train DL networks. The generation

of histological images is performed via Generative Adversarial Networks (GANs).
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Introduction

Histology is the branch of biology that studies plant and animal tissues. In

medicine it plays an important role in pathological anatomy and the description of

pathological phenomena, which is also essential for pre- and post-operative analysis

in medical and surgical fields. Histopathology is a branch of pathological anatomy

that studies tissue changes at the microscopic level through specific techniques.

Tissue staining is one of the most widely used techniques. They are divided,

regardless of the mechanism of action of the staining agent, into histological staining

(also called histomorphological) and histochemical staining. Histological staining

is performed to make visible the different cell and tissue components (nucleus,

cytoplasm, stroma, etc.), which are basically transparent and almost invisible under

the microscope. Among histological stainings, the most common and basic one is

haematoxylin and eosin (H&E) staining. On the other hand, histochemical staining

is performed to identify the chemical nature and location of chemical constituents

(molecules or reactive groups) in a tissue.

Digital pathology (DP) refers to the acquisition, management, sharing, visuali-

sation, and interpretation of pathological information within a digital environment.
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Introduction

Whole-slide scanners are used to digitise histological slides. Digitisation does not

require significant manual intervention and leads to an optimisation and standard-

isation of data storage, visualisation and transmission processes. The spread of

DP is due to a significant increase in benefits for both pathologists and patients:

decreased waiting times, improved accuracy of diagnosis, faster treatment and

improved work efficiency of pathologists.

Tissue detection in WSI is a relevant application within digital pathology. The

analysis and evaluation of tissues, their shape, number of nuclei, density, and

morphology is crucial in the diagnosis of many diseases, including many types

of cancer. The decrease in the number of pathologists, the increase in cancer-

related diseases, and the presence of considerable inter-operator variability, greatly

influenced by a different level of experience among pathologists, inevitably lead to

an increased need for automated clinical decision support tools [1, 2, 3, 4]. Such

tools facilitate pathologists’ tasks such as instance nuclei detection.

Preceding the advent of deep learning (DL), approaches for detection were based

on: watershed segmentation; morphological operations such as erosion, dilation,

opening and closing; deformable models; thresholding and active contour techniques.

These ones are not generally feasible to be applied to a large number of images

due to variations in the morphology of the nuclei of different organs and tissues,

variations in tissue colour and variability in image characteristics due to differences

in the acquisition systems, protocols and environments used.

Machine learning (ML)-based approaches base their operation on the use of

features extracted directly from images. The performance of such models is highly

dependent on the images from the features extracted and selected for learning.
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Introduction

The automatic feature extraction from images, the possibility of learning

information from a large number of images and the high performance have led to

an important deployment of DL-based models in clinical and research settings.

Although manual operations, especially by experts in the field, represent the

gold standard, in recent years DL-based artificial intelligence tools have proven to

be an effective tool for the recognition of features that cannot normally be clearly

identified, either by an experienced pathologist. Particularly for those with minor

experience, automated ML/DL-based systems exhibit a large potential not only in

reducing working time, but also in enhancing diagnostic accuracy.

This thesis work aims to invert the traditional paradigm by generating realistic

histological images from a predefined ground truth, used to control the generated

images semantic content, through generative models.
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Chapter 1

Generative Adversarial

Networks in Digital

pathology

Within generative models, GANs are becoming increasingly popular, both in the

field of image processing and signal processing. GANs [5] are artificial intelligence

tools that base their operation on the competitive training between two neural

networks, a generator and a discriminator. This architecture enables the neural

network to learn to create new data that has the same distribution as those used

in the training phase. The G(z) generator maps random noise, z ∼ pz(z), from

the source domain into samples as similar as possible to the target domain data,

x ∼ pdata(x), and the discriminator D(x) aims to identify real data from generated

data. During training, while the discriminator attempts to maximise the distance
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Generative Adversarial Networks in Digital pathology

between the actual data distribution and the generated data distribution, the

generator tries to confound the discriminator by minimising this distance. GAN’s

ultimate goal is to reach equilibrium in a min-max problem:

min
G

max
D

L(D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1.1)

In the imaging field, GANs have various applications: video prediction, text-based

image generation, complex object generation, image detail enhancement, new

product development phase. They were first introduced by Radford [6]. State-of-

the-art GANs such as StyleGAN [7] and BigGAN [8] are capable of generating

high-resolution images. Self-Attention GANs [9], Spectral Normalisation GANs [10]

and BigGAN have generated high diversity images in datasets such as ImageNet

[11].

It is essential to analyse the state-of-the-art of GANs applied to histological

images. The study of the state of the art is conducted on PubMed, Google Scholar

and Picopolito.

Figure 1.1: On PubMed, the most possible general search ’generative adversarial
network* histolog* imag*’ yielded 55 articles in all. The histogram shows the number of
articles per year.
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Generative Adversarial Networks in Digital pathology

It can be deduced (Fig. 1.1) that GANs in the field of histological imaging

started to be discussed around 2018. The topic is recent. The number of articles

from 2018 to 2022 has remained stable. The articles include very different appli-

cations: detection, segmentation, data augmentation, normalisation of datasets.

For a certainly not large number of articles, the applications and objectives are

different. From these articles two reviews analyse the state of the art of GANs

in digital pathology and imaging processing of histological images following two

different classifications: according to the area of application [12] and according to

the input and output of GANs [13].

The applications are categorised into two areas: image processing and image

analysis. The latter is the most significant for the thesis aim. It includes image

generation and image detail enhancement. Furthermore, the GAN architectures

that find application in histological imaging can be divided into 3 classes: Z2I, I2I,

I2L. Z2I (Latent-to-Image) refers to GANs that take noise as input and give an

output image by passing through what is called latent space. I2I (Image-to-Image),

similarly, takes an image as input and outputs another image. The I2L (Image-to-

Label) takes images as input and outputs class labels. This thesis work fits within

the I2I category, in which the most widely used architectures are Pix2Pix [14] and

cycleGAN [15]. The Pix2Pix is a cGAN (conditional GAN) designed to work on

paired data. The cycleGAN, on the other hand, works on unpaired data.

This thesis work aims to extract semantic content knowledge from a distribution

of histological images used as target domain starting from a distribution of manual

annotations used as source domain. The goal is to control the semantic content by

modelling the latent space between a predefined ground truth and the histological
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Generative Adversarial Networks in Digital pathology

image. A direct correspondence between the target domain and the source domain

is required. Image generation can be controlled through class labels. The ground

truths used for training DL-based models present boundary information on individ-

ual cell instances and white areas of the corresponding histological images. The

remaining tissues represent the last class.

As Pix2Pix works on paired data it fits perfectly with the objective of this

thesis. The cycleGAN architecture is used for the implementation of a model that

is always able to work on paired data, despite the fact that cycleGAN was born to

work on unpaired data.
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1.1. PIX2PIX

1.1 Pix2Pix

Pix2Pix [14] is a conditional GAN in which the source domain data, x ∼ pdata(x),

supplied as input to the generator G(x), is supplied as input to the discriminator

together with the target domain data, y ∼ pdata(y) (Fig. 1.2). This structure

is perfectly suited to paired domains in which there is a strong correspondence

between the source and target domains.

Figure 1.2: Pix2Pix network structure.

Adversarial loss is defined as follows

LcGAN(G, D) = Ex,y[logD(x, y)] + Ex,G(x)[log(1 − D(x, G(x)))] (1.2)

The L1 distance between the target data and the generated data

LL1(G) = Ex,y[||y − G(x)||1] (1.3)

is implemented. Using λ to control the relevance, the final objective of Pix2Pix
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1.1. PIX2PIX

can be expressed as follows

min
G

max
D

LcGAN(G, D) + λLL1(G) (1.4)
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1.2. CYCLEGAN

1.2 CycleGAN

CycleGAN [15] is a particular GAN in which there are two generators, G and F ,

and two discriminators, DY and DX . The two data domains, X and Y , are both

source and target domains. The G(x) function maps the data from the X domain

to the data from the Y domain. The function F (y) maps the data from domain Y

into the data from domain X (Fig. 1.3). Adversarial loss is used for both mapping

Figure 1.3: CycleGAN structure.

functions

LGAN(G, DY , X, Y ) = Ey∼pdata(y)[logDY (y)]+Ex∼pdata(x)[log(1−DY (G(x)))] (1.5)

LGAN(F, DX , Y, X) = Ex∼pdata(x)[logDX(x)]+Ey∼pdata(y)[log(1−DX(F (y)))] (1.6)

An additional loss function is also included that takes into account the cycle process

whereby x −→ G(x) −→ F (G(x)) −→ x̃ and y −→ F (y) −→ G(F (y)) −→ ỹ. Cycle

consistency loss is defined as follows

Lcyc(G, F ) = Ex∼pdata(x)[||F (G(x)) − x||1] + Ey∼pdata(y)[||G(F (y)) − y||1] (1.7)
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1.2. CYCLEGAN

Given the complete loss function

L(G, F, DY , DX) = LGAN(G, DY , X, Y )+LGAN(F, DX , Y, X)+λLcyc(G, F ) (1.8)

where λ controls the relevance between the two objectives, the final objective is

min
G,F

max
DX ,DY

L(G, F, DX , DY ) (1.9)
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Chapter 2

Dataset

The dataset must consist of histological images. The analysis of these is crucial in

the diagnosis of many diseases, including almost all cancers. In fact, it leads to

important information about individual cell instances. The shape, type, morphology

of nuclei, number and density are some of the key information. Nuclei instance

segmentation is necessary for the extraction of these features.

The development of DL techniques aimed at nuclei instance segmentation

requires fully annotated datasets in order to train the model and evaluate its

performance. Biomedical experts consider manual labelling of histological images

to be the gold standard method for producing ground truth for nuclei instance

segmentation, although they are affected by intra-operator and inter-operator

variability.

Nuclei instance segmentation techniques can be distinguished according to the

annotations they can lead to:
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2.1. INCLUSION CRITERIA

• detection: identification of cellular instances in terms of coordinates

• semantic segmentation: segmentation that generates binary foreground masks

• instance segmentation: identification of individual cell instances boundary

coordinates

They can also be accompanied by the classification of cell instances.

2.1 Inclusion criteria

The search for the benchmark dataset involves the definition of inclusion criteria.

The inclusion criteria must meet the thesis intent. The generation of images

from ground truths and thus the reversal of the nuclei instance segmentation

process requires histological images accompanied by manual individual cell instances

annotations. These must be performed by at least three operators in order to start

from a ground truth minimally affected by inter-operator variability and which

presents a high correspondence with the paired histological images. Since the

thesis concerns the development of a DL-based model, a large number of images is

required.

In summary, the inclusion criteria are:

• histological images

• large number of images

• manual instance segmentation

• at least three annotations
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2.2. CRYONUSEG

The following table shows the results of the dataset search in literature. Publicly

datasets whose criteria information could be found are presented.

Dataset # Images Tile size [pixels] Magnification # Organs # Instances # Annotators # Annotations Annotation type Source

CoNSep [16] 41 1000x1000 40x 1 24319 2 1 instance + classification UHCW

CPM-17 [17] 32 500x500, 600x600 40x, 20x 4 7570 n/a 1 instance TCGA

CRCHisto [18] 100 500x500 20x 1 29756 1 1 detection + classification UHCW

CryoNuSeg [19] 30 512x512 40x 10 7596 2 3 semantic + instance TCGA

Janowczyk [20] 143 2000x2000 40x 1 12000 1 1 semantic n/a

MoNuSAC [21] 209 81x113, 1422x2162 40x 4 31411 n/a 1 instance + classification TCGA

MoNuSeg [22] 44 1000x1000 40x 9 31411 n/a 1 instance TCGA

Table 2.1: Publicly available datasets with manual nuclei instance segmentation. CoNSep
= Colorectal Nuclear Segmentation and Phenotypes; CPM: Computational Precision
Medicine; CRCHisto: Colorectaladeno Carcinomas; MoNuSAC = Multi-Organ Nuclei
Segmentation and Classification; MoNuSeg = Multi-Organ Nuclei Segmentation. For
the CryoNuSeg dataset # Instances refers to the number of instances that annotator 1
segmented in its first manual mark-up cycle.

According to the search results and inclusion criteria, the CryoNuSeg dataset

is selected.

2.2 CryoNuSeg

The development of a DL-based algorithm requires a high level of representativity.

TCGA holds over 30000 WSI from over 50 human organs. The CryoNuSeg dataset,

whose source is TCGA, includes WSIs from multiple centres, different sexes and

a variety of diseases. It includes 30 histological patches, extracted from the

most representative parts of the 30 WSIs of 10 human organs, 3 for each organ:

adrenal gland, larynx, lymph node, mediastinum, pancreas, pleura, skin, testis,

thymus, thyroid gland. The images are followed by three annotations made by two

annotators. The same annotator makes two annotations 6 months apart.
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2.2. CRYONUSEG

The Dataset owes its name to:

• Cryo: Cryosectioned frozen tissues before H&E-staining

• Nu: Nuclei

• Seg: Segmentation

Individual cell instances annotations are provided by means of label masks. They

are greyscale 16-bit images. A grey level is assigned to each cell instance. If the cell

instances overlap, a grey level equal to the sum of the grey levels of the individual

instances is assigned to the overlapping area.

To make the cell instances visible, they are converted in 8-bit format. If the

number of cell instances is greater than 255, it starts again from 1. An example of

images and their label masks is shown below (Fig. 2.1).
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2.2. CRYONUSEG

Tissue image Annotator 1 Annotator 2 Annotator 3

Figure 2.1: Human adrenal gland tissues and annotations.
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Chapter 3

Construction of Training Set

and Test Set

3.1 Data Pre-Processing

Histological images are affected by different types of variability, related to different

factors. The histopathology process involves steps that require manual intervention,

which together with device-related artefacts affect the final quality of the slide.

All phases can affect the final tissue appearance in the WSI, including surgical

removal, transport to the laboratory, fixation, staining, scanning and coverslipping.

In a study, substantial accuracy losses dependent on the quality of H&E-staining,

brightness and contrast are shown [23]. It was verified that DL-based algorithm

performance is not significantly affected by the tissue fixation/inclusion procedure

performed [19].
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3.1. DATA PRE-PROCESSING

In multicentre studies, there are additional sources of variability. In addition

to high-level characteristics, there are first-order characteristics such as brightness

and contrast. In histological images, these characteristics are highly dependent on

the system, protocol and acquisition environment. The use of different scanners

results in a heterogeneous dataset. Adversarial learning shows to be a very efficient

technique to learn scanner-independent features [24].

In order to observe how the generative models behave when faced with the

aforementioned sources of variability and to understand whether they are able to

handle them, the implemented pipeline does not include any staining-normalisation,

style transfer or domain adaptation processes.

There are essentially two forms of heterogeneity present in manual annotations:

intra-operator variability and inter-operator variability. It can be noticed that

inter-operator variability has a higher impact on DL-based algorithm performance

than intra-operator variability. [19]. The most important source of inter-operator

variability is the annotators’ experience. Differences in segmentation of the same

cell instance can be found between different annotations. It is possible for a

cell instance to be segmented by only one annotator. The differences between

annotations are manifold.

For the intent of the Thesis, the different annotations must be merged in order

to realise ground truths that are least affected by inter-operator variability and

match the histological images as closely as possible. It is necessary that there is the

highest correspondence between manual annotation and histological image. The

merging process takes place at the individual cell instance level. In this regard,

ground truths must present information at individual instance level. The following
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3.1. DATA PRE-PROCESSING

describes pre-processing methods aimed at creating semantic ground truths from

which realistic histological images can be generated.

3.1.1 Instance division

As they are provided within the CryoNuSeg Dataset, manual annotations must be

processed to obtain information on individual cell instances. The masks in gray

scale present a grey level for each instance. The crucial point is represented by

overlapping cell instances. A grey level equal to the sum of the grey levels of the

overlapping cell instances is assigned to the overlapping area. We refer to these

masks as label masks.

The cell instance splitting operation is implemented in the first step of the

pipeline in the file ’instance_division.py’. In it, the function ’counting_cells’ is

implemented, which works on a single label mask.

Given a label mask, all distinct objects are identified. An object is defined as

either a single cell instance or a collection of cell instances. One object is analysed

at a time. If the object has only one grey level, it coincides with a single cell

instance. If the object has several grey levels, it consists of several cell instances.

In this case, the division is performed on the assumption that the overlapping areas

have grey levels obtained by a linear combination of the grey levels of the individual

cell instances. The correct division is verified. The difference between the starting

object and the sum of the individual cell instances must be a black mask. A

negative result of the test corresponds to objects with adjacent cell instances. This

situation is not considered by the starting hypothesis. A further cell division then

takes place. Finally, the function returns the contour coordinates of the individual
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3.1. DATA PRE-PROCESSING

cell instances (Fig. 3.1). The division of the cell instances is realised for all label

masks of each annotator.

Instance division

Figure 3.1: Cell instance splitting operation is implemented on a single label object
that may consist of several instances.

3.1.2 STAPLE Algorithm

As soon as the coordinates of the individual cell instances are obtained, the different

annotations are compared in order to obtain a single ground truth. The comparison

and merging of the label masks are implemented in the second step of the pipeline

in the file ’label_fusion.py’, with the functions ’comparison’ and ’run_staple’

respectively. The functions are independent of the number of annotators.

Sets of instances of the different annotators are identified to be merged into
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3.1. DATA PRE-PROCESSING

a single ground-truth. The comparison of individual cell instances is carried out

between two operators at a time by fixing the reference annotator and changing

the comparison annotator. Given N annotators, the first annotator is compared

with N − 1 annotators and is then no longer considered; the second with N − 2

annotators and so on. N(N − 1)/2 comparisons are carried out. A reference

annotator instance is set, which is compared with all instances of the comparison

annotator. The contours of the instances are filled in. The reference instance is

regarded as true segmentation. The comparison instance is considered as predicted

segmentation. If recall or precision is greater than or equal to 0.7, the instances

are selected. The condition may be fulfilled between a reference instance and

multiple instances of the comparison annotator.

The following checks are then carried out:

• If several instances of the reference annotator satisfy the condition with the

same instances of the comparison annotators, they are placed in the same set

of instances.

• Reference instances selected in previous comparisons are not selected if the

condition was met with the same comparison instances.

As the corresponding sets of cellular instances between the different annotators

are obtained, the STAPLE (Simultaneous Truth and Performance Level Estimation)

algorithm is applied [25]. It is an algorithm that considers a set of segmentations

of an image and at the same time performs a probabilistic estimation of the true

segmentation and a performance measure of each segmentation against the true

segmentation in terms of sensitivity and specificity. The algorithm is divided

into two steps: expectation and maximisation. Given the segmentation decisions
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3.1. DATA PRE-PROCESSING

and a previous estimate of the performance level of each segmentation generator,

conditional probability density of the true hidden segmentation is obtained in the

first step. In the absence of information on the performance level of each segmenta-

tion generator or true segmentation, the article recommends initialising sensitivity

and specificity parameters to an identical value, the same for all evaluators. It is

recommended to start with values very close to 1. A value of 0.99999 is set. Based

on these parameters, the conditional probability density is estimated. The second

step consists of a maximisation problem for the conditional probability density

function. A convergence threshold of 0.01 and a maximum number of iterations

of 1000 are set. As an output, the algorithm provides an image in which each

pixel is assigned a covering weight between 0 and 1, representing the frequency

of that pixel in the true segmentation. Given the small number of pixels in the

cell instances, a threshold of 0.05 is set on the frequency to obtain cell instances

with realistic contours. The algorithm is implemented in the file ’staple.py’ and

used in the function ’run_staple’ at the level of the corresponding sets of instances

between the different annotators. As an output, the function provides the contours

of the created instances.
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3.1. DATA PRE-PROCESSING

Figure 3.2: The sets of cell instances segmented by different annotators are merged
together into a single instance, achieving the sensitivities and specificities shown in the
figure.

3.1.3 Instance cleaning

Then checks are performed on the generated cell instances. They are implemented

in the ’cleaning.py’ file. It is unlikely that several instances are completely or almost

completely overlapped. For each ground truth, objects consisting of overlapping

instances are considered. For each object, the instances are sorted according to

area in descending order and it is checked whether:

• given a reference instance and a comparison instance, the two instances are

completely or almost completely overlapping. If they have DSC ≥ 0.9, the

instance with the smaller area is deleted (Fig. 3.3).
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3.1. DATA PRE-PROCESSING

Before After

Figure 3.3: Instance boundaries before and after the first check.

• there are multiple overlapping instances of the same instance. Given a reference

instance as true segmentation, it is compared with the instances of smaller

area by calculating the recall. Considering the instances with recall ≥ 0.8 as a

single object, its DSC is calculated with the reference instance. If DSC ≥ 0.8,

cell division is preferred and the reference instance is deleted (Fig. 3.4).

Before After

Figure 3.4: Instance boundaries before and after the second check.
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3.2. WHITE DETECTION ALGORITHM

• given a reference instance as true segmentation and a comparison instance

as predicted segmentation, recall ≥ 0.8 occurs. In this case, the comparison

instance is deleted since it overlaps another instance by at least 80% of its

area.

Organ # Images Ann 1 Ann 2 Ann3 Final GT

Adrenal gland 3 338 344 392 321

Larynx 3 622 641 765 639

Lymph node 3 1204 1308 1353 1214

Mediastinum 3 1274 1349 1354 1255

Pancreas 3 470 548 623 486

Pleura 3 497 515 638 462

Skin 3 457 436 507 422

Testis 3 752 793 687 691

Thymus 3 1521 1646 1483 1470

Thyroid gland 3 461 464 449 428

Total 30 7596 8044 8251 7388

Table 3.1: Number of cell instances per organ, among different annotators and following
application of the algorithm to create a single ground truth.

3.2 White detection Algorithm

To give the semantic masks more information content by means of an additional

class label, the white zones of the histological images are added. White zones
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3.3. TRAINING SET AND TEST SET

correspond to portions of tissue on which H&E staining has not been fixed. The

detection of white areas is implemented in the file ’white_detection.py’. The

function ’illuminant_estimation’ identifies the triplet of whites corresponding to

the RGB channels of the histological images. The average of this triplet is used to

balance the whites. The balancing is implemented in the ’illuminant_correction’

function. The images are then thresholded in order to identify white areas. To

obtain white masks with smoother contours, small objects are removed and binary

closing is implemented with a three-pixel disc as a structural element (Fig. 3.5.

White zone binary mask White zone boundaries

Figure 3.5: White boundaries detection.

3.3 Training Set and Test Set

For the construction of Training Set and Test Set, the contours of the individual

cell instances are joined together with the white zones in a single ground truth.

Each of these represents a class label which is assigned a different grey level on an

8-bit scale: 255 to the contours of the instances, 127 to the white areas and 0 to the

background. In order to understand how the contour information of the individual
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3.3. TRAINING SET AND TEST SET

instances is captured by the generative models, two different ground truths are

created: one with 2-pixel thick contours and one with 3-pixel thick contours.

In addition, to increase the numerosity of the dataset, the images of size 512x512

pixels are divided into patches of 256x256 pixels with a 50% overlap. The number

of images increases from 30 to 270.

The Training Set consists of the images of 9 organs: adrenal gland, larynx,

lymph node, mediastinum, pancreas, pleura, skin, testis, thymus (243 images). The

Test Set consists of the images of the remaining organ: thyroid gland (27 images).

This makes the Test Set independent of the Training Set.

Image Ground truth

Figure 3.6: Histological image and relative ground truth.
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Chapter 4

Methods

4.1 Architectures

The following GAN architectures are used for image generation: Pix2Pix [14] and

cycleGAN [15]. All networks are built with PyTorch.

4.1.1 Pix2Pix

The Pix2Pix network consists of a U-Net [26], with 8 downsapmlings, as generator

and a PatchGAN classifier as discriminator described in the original Pix2Pix article

[14] with a number of convolutional layers set to 3. In both components, the

number of filters in the first and the last convolutional layer can be controlled via

the parameters ngf (number of generator filters) and ndg (number of discriminator

filters).
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Pix2Pix Generator U-Net
Conv2D Layer, 4x4, stride 2, pad 1, instance norm (In)

input channels x image height x image width =⇒ ngf x 128 x 128
Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2

ngf x 128 x 128 =⇒ 2ngf x 64 x 64
Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2

2ngf x 64 x 64 =⇒ 4ngf x 32 x 32
Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2

4ngf x 32 x 32 =⇒ 8ngf x 16 x 16
Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2

8ngf x 16 x 16 =⇒ 8ngf x 8 x 8
Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2

8ngf x 8 x 8 =⇒ 8ngf x 4 x 4
Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2

8ngf x 4 x 4 =⇒ 8ngf x 2 x 2
Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2

8ngf x 2 x 2 =⇒ 8ngf x 1 x 1
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

8ngf x 1 x 1 =⇒ 8ngf x 2 x 2
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

8ngf x 2 x 2 =⇒ 8ngf x 4 x 4
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

8ngf x 4 x 4 =⇒ 8ngf x 8 x 8
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

8ngf x 8 x 8 =⇒ 8ngf x 16 x 16
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

8ngf x 16 x 16 =⇒ 4ngf x 32 x 32
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

4ngf x 32 x 32 =⇒ 2ngf x 64 x 64
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

2ngf x 64 x 64 =⇒ ngf x 128 x 128
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

ngf x 128 x 128 =⇒ output channels x image height x image width
Tanh

Table 4.1: Generator U-Net Architecture details of Pix2Pix model.
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Pix2Pix Discriminator PatchGAN
Conv2D Layer, 4x4, stride 2, pad 1, leakyReLU 0.2

input channels x image height x image width =⇒ ndf x 128 x 128
Conv2D Layer, 4x4, stride 2, pad 1, instance norm (In), leakyReLU 0.2

ndf x 128 x 128 =⇒ 2ndf x 64 x 64
Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2

2ndf x 64 x 64 =⇒ 4ndf x 32 x 32
Conv2D Layer, 4x4, stride 1, pad 1, In, leakyReLU 0.2

4ndf x 32 x 32 =⇒ 8ndf x 31 x 31
Conv2D Layer, 4x4, stride 1, pad 1

8ndf x 31 x 31 =⇒ 1 x 30 x 30

Table 4.2: Discriminator PatchGAN Architecture details of Pix2Pix model.
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4.1.2 CycleGAN

The cycleGAN network has a Resnet, inspired by PathologyGAN [27], with 9

residual blocks at the bottleneck, as generator and a PatchGAN classifier, with

Resnet layers, as discriminator [14, 27], with a number of convolutional layers set to

3. In both components, the number of filters in the first and the last convolutional

layer can be controlled via the parameters ngf and ndg.

CycleGAN Generator Resnet

Resnet layer; Conv2D Layer, 3x3, stride 1, pad 1, instance norm (In), leakyReLU 0.2
input channels x image height x image width =⇒ ngf x 256 x 256

Resnet layer; Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2
ngf x 256 x 256 =⇒ 2ngf x 128 x 128

Resnet layer; Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2
2ngf x 128 x 128 =⇒ 4ngf x 64 x 64

Resnet layer; Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2
4ngf x 64 x 64 =⇒ 8ngf x 32 x 32

Bottleneck: 9 Resnet layers
ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

8ngf x 32 x 32 =⇒ 4ngf x 64 x 64
Resnet layer; ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

4ngf x 64 x 64 =⇒ 2ngf x 128 x 128
Resnet layer; ConvTranspose2D Layer, 4x4, stride 2, pad 1, In, leakyReLU

2ngf x 128 x 128 =⇒ ngf x 256 x 256
ConvTranspose2D Layer, 3x3, stride 1, pad 1

ngf x 256 x 256 =⇒ output channels x image height x image width
Tanh

Table 4.3: Generator Resnet Architecture details of cycleGAN model.
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CycleGAN Discriminator PatchGAN

Resnet layer; Conv2D Layer, 3x3, stride 1, pad 1, instance norm (In), leakyReLU 0.2
input channels x image height x image width =⇒ ndf x 256 x 256

Resnet layer; Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2
ndf x 256 x 256 =⇒ 2ndf x 128 x 128

Resnet layer; Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2
2ndf x 128 x 128 =⇒ 4ndf x 64 x 64

Resnet layer; Conv2D Layer, 4x4, stride 2, pad 1, In, leakyReLU 0.2
4ndf x 64 x 64 =⇒ 8ndf x 32 x 32
Conv2D Layer, 3x3, stride 1, pad 0

8ndf x 32 x 32 =⇒ 1 x 30 x 30
Sigmoid

Table 4.4: Discriminator PatchGAN Architecture details of CycleGAN model.
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4.2 Experiments

Taking the two architectures mentioned above as a reference, several models are

trained, fixing and modifying certain characteristics appropriately. In all trained

models, for both the generator and the discriminator, the Adam optimiser was

used with beta1 = 0.5 and β2 = 0.999 and a learning rate of 0.0001. All models are

trained for 200 epochs and are saved every 10 epochs in order to test them in the

inference phase.

The experiments are aimed at analysing the performance of the models as the

architecture, Pix2Pix or cycleGAN, the training dataset, 3 pixel or 2 pixel cell

instance boundaries, the number of generator and discriminator filters and the loss

function vary.

We first compare the two different architectures, using as a training dataset

the one in which the instance boundaries have a thickness of 3 pixels. For both

architectures, we used an LSGAN [28] and for the generator a number of filters equal

to 32 and for the discriminator a number of filters equal to 128. For Pix2Pix we

used as GAN loss the L1 distance (1.1) and λL1 = 100; for cycleGAN as consistency

loss (1.7) the L2 distance and λcyc = 5.

Furthermore, in order to have a consistent comparison between the two ar-

chitectures, Pix2Pix is trained not only as a network for generating histological

images, taking ground truth as source data and histological images as target data,

but also as a segmentation network, taking histological images as source data and

ground truth as target data.

The following experiment involves training the Pix2Pix architecture, with the
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same characteristics as the previous experiment, with the dataset in which the

cell instance boundaries are 2 pixels thick. This network is always trained in both

directions.

Finally, the last experiment involves training different Pix2Pix networks by

changing the number of generator and discriminator filters and the adversarial loss

function (Table 4.5).

Dataset Loss function # Generator filters # Discriminator filters

2 pixels

cell instance
boundaries

LSGAN [28]

9 9
24 24
32 32
9 40
24 96
32 128
64 16

Vanilla [14]

9 9
24 24
32 32
9 40
24 96
32 128
64 16

Table 4.5: The table shows the characteristics of the Pix2Pix models trained in the
last experiment, using the dataset in which instance boundary lines are 2 pixels thick.
Two loss functions are used: LSGAN (least-square GAN) which uses the mean-squared
error as loss function and vanilla which implements cross-entropy objective used in the
original GAN paper. For both, models with the same number of filters per generator and
discriminator are trained.
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4.3 Evaluation metrics

4.3.1 Evaluation metrics mask to image

Because of the possibility to have a comparison image to use for assessing generated

images quality, Image Quality Assessment (IQA) techniques can be divided into

No-Reference (NR), Full-Reference (FR) and Distribution-Based (DB). Since the

training uses paired data, NR assessment techniques are excluded.

Among the FR techniques, we will use Pearson Correlation Coefficient (PCC)

to assess the linear correlation between the generated and real images. Given the

real image X and the generated image Y

PCCX,Y = cov(X, Y )
σXσY

(4.1)

where cov is the covariance of X and Y, σX is the standard deviation of X and σY

is the standard deviation of Y. Peak Signal-to-Noise Ratio (PSNR) is used as a

distance measure between real and generated images.

PSNR = 20 · log10

A
MAXI√

MSE

B
(4.2)

where MSE is the mean squared error and, for 8-bit images MAXI = 255.

The aforementioned techniques are based on the pixel intensity of the images.

In recent years, IQA techniques have been introduced to measure quantities closely

related to the Human Vision System (HVS). These metrics emphasise the impor-

tance of HVS sensitivity to different visual signals, such as luminance, contrast,

frequency content and the interaction amongst different signal components. They
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include Structural Similarity Index Measure (SSIM) [29]. The great success of SSIM

is due to the fact that HVS adapts to the structural information of images. SSIM

measures three quantities that influence a person’s perception of the quality of an

image. The SSIM formula is based on three comparison measurements between the

real image X and the generated image Y: luminance (l), contrast (c) and structure

(s). The individual comparison functions are:

l(X, Y ) = 2µXµY + c1

µ2
X + µ2

Y + c1
(4.3)

c(X, Y ) = 2σXσY + c2

σ2
X + σ2

Y + c2
(4.4)

s(X, Y ) = σXY + c3

σXσY + c3
(4.5)

with µX the pixel sample mean of X, µY the pixel sample mean of Y,σ2
X the

variance of X, σ2
Y the variance of Y, σXY the covariance of X and Y, c1 = (k1L)2,

c2 = (k2L)2, c3 = c2/2, L the dynamic range of the pixel-values, k1 = 0.01 and

k2 = 0.03 by default. The final index is

SSIM(X, Y ) = l(X, Y )α · c(X, Y )β · s(X, Y )γ (4.6)

SSIM(X, Y ) = (2µXµY + c1)(2σXY + c2)
(µ2

X + µ2
Y + c1)(σ2

X + σ2
Y + c2)

(4.7)

In addition to structural information, the HVS also includes an image based

on its low-level features, such as edges and zero crossings. Feature Similarity Index

Measure (FSIM) [30] is used to evaluate these features. The previously mentioned

metrics perform measurements on the individual RGB channels of the coloured

images and then average out the different scores. FSIM provides a variation for
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coloured images, called FSIMc, which evaluates features based on the luminance

channel Y and the chrominance channels, Q and I, of an image.

The luminance channel is used to extract phase congruency (PC) and gradient

magnitude (GM) features for both the real and the generated image. PC is

evaluated, under the assumption that visually discernible features correspond to

points where Fourier waves at different frequencies have congruent phases. PC is

used as the primary feature. To take contrast into account, GM is used as the

secondary feature. Similarity maps are created for each of the two features. The

similarity maps of the two images are used to extract similarity scores. These are

integrated together with the similarity scores calculated through the chrominance

channels to obtain the FSIMc score.

A widely used DB technique was employed to evaluate the performance of

GANs: Fréchet Inception Distance (FID) [31, 32]. It quantifies the ability of GANs

to reproduce the characteristics of the real data distribution. The distance between

the real distribution and the distribution generated through Fréchet Distance is

measured, not in pixel space, but in a space of HVS-relevant features extracted

through a pre-trained ImageNet Inception Network. It is defined by article as

follows

dF ((µX , ΣX), (µY , ΣY ))2 = ∥µX − µY ∥2
2 + tr

1
ΣX + ΣY − 2 (ΣX · ΣY )

1
2
2

(4.8)

with µX , µY , ΣX , ΣY , means and covariance matrices of real and generated

distribution.
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4.3.2 Evaluation metrics image to mask

Ground truths have 3 classes: cell instances, white zones and background. To eval-

uate the segmentation generated by the GANs, we used Dice Similarity Coefficient

(DSC). Defining X as the actual segmentation and Y as the generated segmentation

DSC = 2|X ∩ Y |
|X| + |Y |

(4.9)
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Chapter 5

Results

The results of the different trained models are shown according to the generated

images that are histological images or segmentation masks.

5.1 Mask to image results

The loss values of the Pix2Pix network trained on the 3 pixels dataset (Fig. 5.1)

show controlled improvement during the training phase. Losses calculated on

the discriminator output rightly tend to zero values. Loss calculated between

the original image and the image is the one that best exhibits the performance

improvement during training. For cycleGAN (Fig. 5.2), the relativistic loss gradient

was implemented [33]. The latter leads to unit loss for real images and zero loss

for generated images. An improvement in performance can be seen through cycle

consistency loss. Since the latter reaches zero values in a few steps and remains

zero during training indicates that the cycleGAN network is training optimally in
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both directions of generation.

Pix2Pix

Figure 5.1: Loss values of generator and discriminator of Pix2Pix network during
training, accomplished on the 3 pixels dataset. G_GAN, G_L1, D_real, D_fake indicate
the generator loss, the loss between the original image and the generated image, the
discriminator loss for the real image, the discriminator loss for the generated image,
respectively.

CycleGAN

Figure 5.2: Loss values of generator and discriminator, aimed at creating histological
images, of the cycleGAN network during training, accomplished on the 3 pixels dataset.
G_GAN, G_cycle, D_real, D_fake indicate the generator loss, cycle consistency loss
between the real image and the generated image, discriminator loss for the real image,
discriminator loss for the generated image, respectively.
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The comparison between Pix2Pix and cycleGAN shows, in terms of PCC (Fig.

5.4), SSIM (Fig. 5.6) and FSIM (Fig. 5.7), comparable results. PSNR (Fig.

5.5) and FID (Fig. 5.8) prove to be the most informative metrics as both show

substantial differences between the two architectures. For Pix2Pix, as opposed to

cycleGAN, these metrics show less data dispersion, by epoch, and a more uniform

trend going to a plateau. This difference can be seen directly from the generated

images. Although visually both architectures succeed in exhibiting the semantic

content of the ground truths from which the histological images are generated,

cycleGAN generates images with obvious artifacts, in larger quantities than Pix2Pix.

The images contain unrealistic patterns, white areas and black areas, which the

network fails to define properly or at least realistically the white zones and the

instances from the ground truth (Fig. 5.3).
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Ground truth Real image Pix2Pix CycleGAN

Figure 5.3: Comparison between real images and Pix2Pix and cycleGAN generated
images at 200th epoch.
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Pix2Pix

CycleGAN

Figure 5.4: PCC measurements by epoch of Pix2Pix and cycleGAN networks trained
with the 3-pixels dataset.
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Pix2Pix

CycleGAN

Figure 5.5: PSNR measurements by epoch of Pix2Pix and cycleGAN networks trained
with the 3-pixels dataset.
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Pix2Pix

CycleGAN

Figure 5.6: SSIM measurements by epoch of Pix2Pix and cycleGAN networks trained
with the 3-pixels dataset.
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Pix2Pix

CycleGAN

Figure 5.7: FSIM measurements by epoch of Pix2Pix and cycleGAN networks trained
with the 3-pixels dataset.
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Pix2Pix CycleGAN

Figure 5.8: FID measurements by epoch of Pix2Pix and cycleGAN networks trained
with the 3-pixels dataset.

From the Training Set to the Test Set there is an increase in data dispersion by

epoch. Although the Test Set images represent the semantic content and present,

in terms of PCC, SSIM and FSIM, acceptable results, overfitting on the Training

Set is evident. For the Pix2Pix, it is clearly visible from the 50th epoch through

the FID (Fig. 5.8). Visually, the generated images express the semantic content

contained in the ground truths. Although Pix2Pix goes into overfitting, it can be

seen from the images and metrics (Table. 5.2), as far as the Test Set is concerned,

that the quality of the images generated by cycleGAN in the last epochs (Fig. 5.10)

is achieved by Pix2Pix in the first epochs (Fig. 5.9), presenting also fewer artifacts.
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Ground
truth

Real
image

20th
epoch

50th
epoch

100th
epoch

200th
epoch

Figure 5.9: Test Set Pix2Pix generated images among epochs.

Ground
truth

Real
image

20th
epoch

50th
epoch

100th
epoch

200th
epoch

Figure 5.10: Test Set cycleGAN generated images among epochs.
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Training Set

Dataset GAN Epoch PCC (%) PSNR SSIM (%) FSIM (%) FID

3 pixels
cell instance
boundaries

Pix2Pix

20 89.61 ± 5.8 21.08 ± 0.99 73.11 ± 5.2 82.03 ± 2.34 142.47
50 93.25 ± 4.34 23.19 ± 1.03 79.08 ± 4.63 85.48 ± 2.27 103.65
100 95.19 ± 3.03 25 ± 0.91 83.33 ± 3.53 88.11 ± 1.77 84.29
200 96.15 ± 2.48 26.08 ± 0.98 85.08 ± 3.23 89.44 ± 1.61 67.86

CycleGAN

20 82.6 ± 7.25 17.26 ± 1.51 61.06 ± 5.79 76.02 ± 3.23 343.02
50 90.16 ± 4.89 19.47 ± 1.95 70.73 ± 4.57 82.28 ± 2.78 334.84
100 92 ± 3.9 21.09 ± 1.49 77.65 ± 4.01 85.26 ± 2.63 328.72
200 95.13 ± 3.71 24.4 ± 1.65 84.69 ± 3.26 88.71 ± 1.96 310.71

Table 5.1: Except for FID which is calculated on the whole Training Set, metrics are
expressed as mean ± standard deviation. In the Training Set, by comparing the two
architectures, Pix2Pix and cycleGAN, it appears that in terms of PCC, SSIM and FSIM
the results are comparable. The PSNR values of cycleGAN at the 200th epoch are
reached by Pix2Pix at the 50th epoch. In addition, the FID indicates a better quality of
the images generated by the Pix2Pix.

Test Set
Dataset GAN Epoch PCC (%) PSNR SSIM (%) FSIM (%) FID

3 pixels
cell instance
boundaries

Pix2Pix

20 82.47 ± 10.66 17.03 ± 1.41 68.58 ± 6.28 78.48 ± 1.9 240.05
50 81.9 ± 10.17 17.11 ± 1.35 67.11 ± 6.64 78.08 ± 1.76 205.3
100 81.38 ± 10.52 17.22 ± 1.2 66.28 ± 5.98 77.08 ± 1.39 216.52
200 80.8 ± 10.98 17.17 ± 1.2 64.77 ± 6.33 76.61 ± 1.46 216.33

CycleGAN

20 78.77 ± 11.61 15.28 ± 1.68 62.45 ± 5.62 75.21 ± 2.81 381.13
50 79.96 ± 9.95 15.64 ± 1.52 63.55 ± 4.43 77.78 ± 2.24 416.26
100 81 ± 9.52 16.04 ± 1.21 63.99 ± 4.2 78.46 ± 1.56 408.41
200 82.31 ± 10.23 16.83 ± 1.24 67.3 ± 5.07 78.25 ± 1.88 391.49

Table 5.2: Apart from FID which is calculated on the whole Test Set, metrics are
expressed as mean ± standard deviation. In the Test Set, they exhibit a clear increase in
data dispersion. Pix2Pix shows overfitting. The results between the two architectures
are comparable, except for FID: Pix2Pix achieves much better values than cycleGAN.
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The same Pix2Pix network shows better results when it is trained with the

dataset in which cell instances boundaries are 2 pixels thick, both on the Training

Set (Table 5.3) and the Test Set (Table 5.4). PCC exhibits higher dispersion on

the Test Set. FID evidences better performance on the Test Set at the 50th epoch,

followed by deterioration at later epochs (Fig 5.11).

Pix2Pix 3 pixels Pix2Pix 2 pixels

Figure 5.11: FID measurements by epoch of Pix2Pix networks trained with the 3 pixels
and 2 pixels dataset.
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Training Set

GAN Dataset Epoch PCC (%) PSNR SSIM (%) FSIM (%) FID

Pix2Pix

3 pixels

20 89.61 ± 5.8 21.08 ± 0.99 73.11 ± 5.2 82.03 ± 2.34 142.47
50 93.25 ± 4.34 23.19 ± 1.03 79.08 ± 4.63 85.48 ± 2.27 103.65
100 95.19 ± 3.03 25 ± 0.91 83.33 ± 3.53 88.11 ± 1.77 84.29
200 96.15 ± 2.48 26.08 ± 0.98 85.08 ± 3.23 89.44 ± 1.61 67.86

2 pixels

20 88.72 ± 6.74 21.06 ± 0.99 72.25 ± 5.4 81.96 ± 2.49 140.65
50 93.65 ± 4.08 23.43 ± 1.08 80.21 ± 4.49 85.9 ± 2.32 93.17
100 95.32 ± 3.01 25.13 ± 0.92 83.55 ± 3.58 88.17 ± 1.93 84.66
200 96.27 ± 2.48 26.23 ± 0.95 85.51 ± 3.17 89.64 ± 1.69 68.46

Table 5.3: Except for FID which is calculated on the whole Training Set, metrics are
expressed as mean ± standard deviation. Training on the 2 pixels dataset shows slightly
better results in terms of PCC, PSNR, SSIM and FSIM. FID exhibits better performance
in the early epochs.

Test Set
GAN Dataset Epoch PCC (%) PSNR SSIM (%) FSIM (%) FID

Pix2Pix

3 pixels

20 82.47 ± 10.66 17.03 ± 1.41 68.58 ± 6.28 78.48 ± 1.9 240.05
50 81.9 ± 10.17 17.11 ± 1.35 67.11 ± 6.64 78.08 ± 1.76 205.3
100 81.38 ± 10.52 17.22 ± 1.2 66.28 ± 5.98 77.08 ± 1.39 216.52
200 80.8 ± 10.98 17.17 ± 1.2 64.77 ± 6.33 76.61 ± 1.46 216.33

2 pixels

20 81.36 ± 11.05 17.08 ± 1.37 67.79 ± 5.94 78.02 ± 1.91 235.17
50 81.38 ± 11.3 16.99 ± 1.5 67.42 ± 6.28 78.2 ± 1.8 182.25
100 81.1 ± 11.06 17.09 ± 1.28 65.81 ± 6.03 77.08 ± 1.6 208.21
200 80.81 ± 11.3 16.89 ± 1.36 64.77 ± 6.65 76.75 ± 1.5 211.29

Table 5.4: Apart from FID which is calculated on the whole Test Set, metrics are
expressed as mean ± standard deviation. Test Set performance is comparable between
the two datasets, except that FID shows better values on the 2 pixels dataset at the 50th
epoch.

Visually, the instances show higher definition, at the same epoch, in the images

generated through the 2 pixels dataset. The network succeeds in expressing the

semantic content, encapsulated by the ground truths, in both datasets. Where the

original image has areas where no cellular instances or white areas are present, the

network is not successful in expressing the semantic content of those areas in the

generated images (Fig. 5.12).
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Real image 3 pixels 2 pixels

Figure 5.12: Comparison between real images and Pix2Pix generated images, trained
on 2 pixels and 3 pixels datasets, at 50th epoch.

57



5.1. MASK TO IMAGE RESULTS

Pix2Pix networks trained with the 2 pixel dataset, with different loss functions

show comparable results on both Training Set (Table 5.5) and Test Set (Table 5.6).

For balanced models, that is, with the same number of filters per generator and

discriminator, better performance is noticed on the Training Set as the number of

filters increases. This improvement is not observed in the Test Set. Unbalanced

models exhibit better performance as the number of filters increases and for more

number of generator filters than the number of discriminator filters. The best

networks are those with a number of generator filters equal to 64 and a number of

discriminator filters equal to 16.

Training Set

Epoch Loss ngf ndf PCC (%) PSNR SSIM (%) FSIM (%) FID

50

LSGAN

9 9 86.57 ± 6.68 20.18 ± 0.89 69.58 ± 5.45 80.59 ± 2.18 127.26
24 24 91.91 ± 5.13 22.55 ± 1.02 77.37 ± 5.13 84.2 ± 2.32 92.04
32 32 93.4 ± 4.32 23.44 ± 1.07 79.95 ± 4.57 85.76 ± 2.35 89.12
9 40 86.62 ± 6.9 20.14 ± 0.89 70.05 ± 5.38 80.63 ± 2.45 153.05
24 96 91.65 ± 4.84 22.12 ± 0.92 75.97 ± 4.91 83.92 ± 2.32 106.61
32 128 93.65 ± 4.08 23.43 ± 1.08 80.21 ± 4.49 85.9 ± 2.32 93.17
64 16 95.86 ± 2.46 25.35 ± 1.02 85.3 ± 3.57 88.76 ± 2.13 63.84

Vanilla

9 9 85.4 ± 7.57 19.8 ± 0.85 67.8 ± 5.52 79.83 ± 2.45 129.01
24 24 91.43 ± 4.7 22.24 ± 0.94 75.96 ± 4.61 83.7 ± 2.19 95.16
32 32 93.4 ± 3.93 23.33 ± 1.02 79.59 ± 4.27 85.79 ± 2.13 92.07
9 40 83.86 ± 7.89 19.37 ± 0.79 65.61 ± 5.54 78.84 ± 2.32 145.02
24 96 90.76 ± 5.79 21.82 ± 0.98 74.88 ± 4.95 83.17 ± 2.42 105.88
32 128 92.48 ± 4.86 22.86 ± 0.97 77.69 ± 4.58 84.98 ± 2.12 87.37
64 16 95.92 ± 2.56 25.61 ± 1.01 85.7 ± 3.39 89.19 ± 2.04 64.20

Table 5.5: Training Set performance of Pix2Pix models trained on the 2 pixels dataset,
with different loss functions and different number of filters for the generator and the
discriminator. ngf and ndf mean the number of filters per generator and discriminator.
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Test Set
Epoch Loss ngf ndf PCC (%) PSNR SSIM (%) FSIM (%) FID

50

LSGAN

9 9 80.46 ± 12.29 17.2 ± 1.29 67.7 ± 6.68 78.03 ± 1.87 229.75
24 24 81.36 ± 11.49 17.46 ± 1.29 69.25 ± 6.84 78.28 ± 1.99 182.77
32 32 81.03 ± 11.9 17.27 ± 1.27 68.29 ± 6.33 78.21 ± 1.82 180.09
9 40 80.71 ± 11.2 16.66 ± 1.47 67.59 ± 6.03 77.76 ± 1.72 247.37
24 96 80.98 ± 11.42 16.93 ± 1.34 66.48 ± 6.62 77.87 ± 1.88 196.38
32 128 81.38 ± 11.3 16.99 ± 1.5 67.42 ± 6.28 78.2 ± 1.8 182.25
64 16 82.54 ± 10.83 17.51 ± 1.29 69.37 ± 6.7 78.91 ± 1.94 162.39

Vanilla

9 9 80.27 ± 10.34 16.12 ± 1.47 64.92 ± 5.61 76.48 ± 2.01 231.12
24 24 80.58 ± 11.05 17.02 ± 1.26 66.53 ± 6.23 77.25 ± 1.66 185.83
32 32 81.37 ± 10.72 16.82 ± 1.39 66.45 ± 5.56 77.3 ± 1.46 201.45
9 40 79.42 ± 12.51 16.22 ± 1.65 64.22 ± 6.74 76.04 ± 1.9 231.58
24 96 79.8 ± 11.17 16.46 ± 1.4 64.46 ± 5.61 76.01 ± 1.75 200.04
32 128 80.45 ± 11.13 16.59 ± 1.48 64.4 ± 5.18 76.49 ± 1.29 202.98
64 16 81.51 ± 11.54 17.37 ± 1.34 68.21 ± 6.48 78.13 ± 1.9 169.57

Table 5.6: Test Set performance of Pix2Pix models trained on 2 pixels dataset, with
different loss functions and different number of filters for generator and discriminator.
ngf and ndf mean the number of filters per generator and discriminator.
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From the loss values in the training phase, it can be seen that LSGAN (Fig.

5.13) and vanilla (Fig. 5.14) show similar trends. Overall, the vanilla Pix2Pix

and LSGAN Pix2Pix, with 64 generator filters and 16 discriminator filters, exhibit

comparable results, both on the Training Set (Table 5.7) and the Test Set (Table

5.8). LSGAN turns out to be slightly better.

LSGAN Pix2Pix

Figure 5.13: Loss values of generator and discriminator of LSGAN Pix2Pix network
during training, accomplished on the 2 pixels dataset. G_GAN, G_L1, D_real, D_fake
indicate the generator loss, the loss between the original image and the generated image,
the discriminator loss for the real image, the discriminator loss for the generated image,
respectively.

Vanilla Pix2Pix

Figure 5.14: Loss values of generator and discriminator of vanilla Pix2Pix network
during training, accomplished on the 2 pixels dataset. G_GAN, G_L1, D_real, D_fake
indicate the generator loss, the loss between the original image and the generated image,
the discriminator loss for the real image, the discriminator loss for the generated image,
respectively.
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Training Set

Loss Epoch PCC (%) PSNR SSIM (%) FSIM (%) FID

LSGAN

20 92.22 ± 4.67 22.5 ± 1 78.05 ± 4.95 84.14 ± 2.52 119.11
50 95.86 ± 2.46 25.35 ± 1.02 85.3 ± 3.57 88.76 ± 2.13 63.84
100 97.57 ± 1.57 27.8 ± 0.99 90.15 ± 2.36 92.21 ± 1.47 55.68
200 98.46 ± 1.06 30.2 ± 1.11 92.78 ± 1.77 94.38 ± 1.09 40.88

Vanilla

20 92.3 ± 4.73 22.47 ± 1.06 77.45 ± 4.92 84.58 ± 2.49 83.67
50 95.92 ± 2.56 25.6 ± 1.01 85.7 ± 3.39 89.19 ± 2.04 64.2
100 97.58 ± 1.58 28.04 ± 1 90.17 ± 2.3 92.41 ± 1.38 51.88
200 98.45 ± 1.08 30.19 ± 1.19 92.72 ± 1.86 94.39 ± 1.12 39.65

Table 5.7: Training Set performance of Pix2Pix models trained on the 2 pixels dataset,
with different loss functions and 64 filters for generator and 16 for discriminator.

Test Set
Loss Epoch PCC (%) PSNR SSIM (%) FSIM (%) FID

LSGAN

20 82.45 ± 11.44 17.67 ± 1.24 70.62 ± 7.24 78.69 ± 2.13 241.54
50 82.54 ± 10.83 17.52 ± 1.29 69.37 ± 6.7 78.91 ± 1.94 162.39
100 82.88 ± 10.17 17.51 ± 1.24 68.93 ± 6.67 78.79 ± 1.99 174.85
200 82.36 ± 10.6 17.64 ± 1.24 67.97 ± 6.76 78.32 ± 1.96 185.6

Vanilla

20 81.37 ± 11.59 17.15 ± 1.36 67.71 ± 6.54 78.51 ± 1.86 176.11
50 81.51 ± 11.54 17.37 ± 1.34 68.21 ± 6.48 78.13 ± 1.9 169.57
100 81.9 ± 10.97 17.4 ± 1.33 67.45 ± 6.06 77.95 ± 1.81 189.92
200 81.94 ± 11.08 17.35 ± 1.43 67.47 ± 6.26 78.05 ± 1.74 196.78

Table 5.8: Test Set performance of Pix2Pix models trained on the 2 pixels dataset, with
different loss functions and 64 filters for generator and 16 for discriminator.
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The LSGAN Pix2Pix, trained on 2 pixel dataset with 64 generator filters and 16

discriminator filters, is able to generate better images among all trained networks

(Fig. 5.16). It can be seen that the network achieves good semantic content and

image quality as early as the 50th epoch. Performance worsening in later epochs

is visually demonstrated by the network’s tendency to separate larger area cell

instances into smaller ones (Fig. 5.15). Furthermore in some Test Set images,

although the network succeeds in expressing the semantic content of the ground

truths, it is unable to account for the staining of the original histological images.

Test Set

Ground truth Real image 50th epoch 200th epoch

Figure 5.15: Comparison between Test Set real images and generated images, with
LSGAN Pix2Pix (64 generator filters and 16 discriminator filters), at 50th and 200th
epochs.
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Training Set

Ground truth Real image 50th epoch 200th epoch

Figure 5.16: Comparison between Training Set real images and generated images, with
LSGAN Pix2Pix (64 generator filters and 16 discriminator filters), at 50th and 200th
epochs.
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5.2 Image to mask results

Because cycleGAN operates two-way image generation, the same Pix2Pix models

were also trained in automatic mask generation. The same logical thread of the

experiments for histological image generation is followed.

Loss values of the Pix2Pix network trained on the 3 pixels dataset for mask

generation (Fig. 5.17), show predictable trends, comparable to the reverse gener-

ation direction. Because cycleGAN is trained simultaneously in both generation

directions, the trends are similar (Fig. 5.18) to the other generation direction.

Pix2Pix

Figure 5.17: Loss values of generator and discriminator of Pix2Pix network during
training, accomplished on the 3 pixels dataset. G_GAN, G_L1, D_real, D_fake indicate
the generator loss, the loss between the original mask and the generated mask, the
discriminator loss for the real mask, the discriminator loss for the generated mask,
respectively.

To compare the two architectures, Pix2Pix and cycleGAN, in automatic mask

generation, DSC is used as metric. The latter is evaluated with respect to the two

classes of interest: cell instance boundaries and white zones.

On the Training Set (Table 5.9), while cycleGAN is able to identify the contours

of instances better than Pix2Pix, the performance on identifying white zones is
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CycleGAN

Figure 5.18: Loss values of generator and discriminator, aimed at creating histological
images, of the cycleGAN network during training, accomplished on the 3 pixels dataset.
G_GAN, G_cycle, D_real, D_fake indicate the generator loss, cycle consistency loss
between the real mask and the generated mask, discriminator loss for the real mask,
discriminator loss for the generated mask, respectively.

worse than Pix2Pix. However, it is important to note that the performance drops

on the Test Set (Table 5.10), particularly in boundary detection. Furthermore,

the high dispersion in DSC whites values precludes a comparison between the two

architectures.

Training Set

Dataset GAN Epoch DSC boundaries (%) DSC whites (%)

3 pixels
cell instance
boundaries

Pix2Pix

20 74.35 ± 4.48 67.32 ± 20.41
50 85.17 ± 2.12 77.39 ± 16.85
100 91.92 ± 1.3 83.97 ± 12.68
200 95.31 ± 1.03 87.92 ± 9.67

CycleGAN

20 71.6 ± 4.41 43.34 ± 22.91
50 86.81 ± 1.72 52.24 ± 24.99
100 94.06 ± 1.19 67.77 ± 24.35
200 97.19 ± 0.71 78.05 ± 21.53

Table 5.9: Training Set performance of the two architectures, trained on the 3 pixels
dataset, in automatic mask generation.
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Test Set
Dataset GAN Epoch DSC boundaries (%) DSC whites (%)

3 pixels
cell instance
boundaries

Pix2Pix

20 56.33 ± 5.24 74.87 ± 22.6
50 56.48 ± 4.97 80.53 ± 18.1
100 58.46 ± 5.3 81.92 ± 17.62
200 58.74 ± 5.77 82.74 ± 16.97

CycleGAN

20 52.4 ± 6.16 54.28 ± 24.82
50 56.85 ± 6.33 45.47 ± 25.03
100 58.26 ± 6.99 53.79 ± 27.52
200 57.62 ± 8.02 55.3 ± 27.54

Table 5.10: Test Set performance of the two architectures, trained on the 3 pixels
dataset, in automatic mask generation.

The same Pix2Pix network is also trained in automatic mask generation by

taking as reference the dataset in which the cell instance boundaries are 2 pixels

thick. Decreasing the thickness of the instance contours lowers the probability

that the network can correctly identify the boundaries. This is demonstrated by a

decrease in performance from training on the 3 pixels dataset to training on the 3

pixels dataset (Tables 5.11, 5.12). Since we did not change the white areas between

the two datasets, the results are comparable.
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Training Set

GAN Dataset Epoch DSC boundaries (%) DSC whites (%)

Pix2Pix

3 pixels

20 74.35 ± 4.48 67.32 ± 20.41
50 85.17 ± 2.12 77.39 ± 16.85
100 91.92 ± 1.3 83.97 ± 12.68
200 95.31 ± 1.03 87.92 ± 9.67

2 pixels

20 60.94 ± 6.48 62.95 ± 24.53
50 74.14 ± 4.58 74.67 ± 21.94
100 85 ± 3.24 81.16 ± 19.97
200 90.53 ± 2.51 84.88 ± 18.96

Table 5.11: Training Set performance of the LSGAN Pix2Pix network trained on two
different datasets. The network has 128 generator filters and 32 discriminator filters.

Test Set
GAN Dataset Epoch DSC boundaries (%) DSC whites (%)

Pix2Pix

3 pixels

20 56.33 ± 5.24 74.87 ± 22.6
50 56.48 ± 4.97 80.53 ± 18.1
100 58.46 ± 5.3 81.92 ± 17.62
200 58.74 ± 5.77 82.74 ± 16.97

2 pixels

20 17.84 ± 9.46 74.93 ± 23.31
50 42.09 ± 5.69 78.91 ± 18.48
100 44.69 ± 5.14 81.42 ± 18.07
200 44.48 ± 5.43 82.16 ± 17.65

Table 5.12: Test Set performance of the LSGAN Pix2Pix network trained on two
different datasets. The network has 128 generator filters and 32 discriminator filters.
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In order to compare Pix2Pix networks trained on the 2 pixels dataset with

different loss functions and different numbers of filters per generator and discrimi-

nator, the 50th epoch is chosen as the reference. It is noted for balanced models,

same number of filters per generator and discriminator, that higher number of

filters results in increased performance in boundary detection. For the unbalanced

models, the performance improvement is driven by an increase in the number of

filters and a greater number of filters for the generator than the number of filters

for the discriminator, especially for the LSGAN Pix2Pix.

Training Set

Epoch Loss ngf ndf DSC boundaries (%) DSC whites (%)

50

LSGAN

9 9 0 ± 0 76.02 ± 21.41
24 24 64.33 ± 5.67 72.26 ± 22.75
32 32 71.54 ± 5.02 74.34 ± 22.32
9 40 0 ± 0 76.45 ± 21.01
24 96 63.25 ± 6.29 71.84 ± 23
32 128 74.14 ± 4.58 74.67 ± 21.94
64 16 85.65 ± 2.79 81.75 ± 19.96

Vanilla

9 9 13.99 ± 4.91 52.09 ± 24.41
24 24 60.76 ± 5.28 70.09 ± 22.71
32 32 65.15 ± 5.14 73.44 ± 21.93
9 40 38.78 ± 7.05 58.68 ± 25.03
24 96 63.62 ± 4.74 73.44 ± 21.45
32 128 66.9 ± 4.25 75.5 ± 20.94
64 16 80.45 ± 3.25 80.45 ± 20.13

Table 5.13: Training Set performance of Pix2Pix models trained on the 2 pixels dataset,
with different loss functions and different number of filters for the generator and the
discriminator. ngf and ndf mean the number of filters per generator and discriminator.
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White zone detection performance does not drop by moving from the Training

Set (Table 5.13) to the Test Set (Table 5.14), however, the data show high scatter.

This may be due to the number of pixels, belonging to the white areas, which

changes significantly from image to image. There is a noticeable drop in performance

on the Test Set with regard to contour identification. Overall, the best models turn

out to be the LSGAN Pix2Pix and vanilla Pix2Pix with 64 filters for the generator

and 64 filters for the discriminator.

Test Set
Epoch Loss ngf ndf DSC boundaries (%) DSC whites (%)

50

LSGAN

9 9 0 ± 0 82.2 ± 16.9
24 24 39.09 ± 5.77 77.94 ± 18.82
32 32 42 ± 4.86 80.05 ± 18.09
9 40 0 ± 0 81.56 ± 18.82
24 96 35.67 ± 6.7 78.3 ± 18.75
32 128 42.09 ± 5.69 78.91 ± 18.48
64 16 46.53 ± 5.48 82.02 ± 18.44

Vanilla

9 9 9.74 ± 4.63 67.64 ± 22.72
24 24 46.51 ± 5.18 79.24 ± 18.99
32 32 47.42 ± 5.19 80.22 ± 17.58
9 40 28.69 ± 7.68 73.85 ± 23.34
24 96 47.46 ± 5.09 79.7 ± 20.04
32 128 48.58 ± 5.8 80.59 ± 18.94
64 16 49.87 ± 6.18 82.28 ± 17.32

Table 5.14: Test Set performance of Pix2Pix models trained on the 2 pixels dataset,
with different loss functions and different number of filters for the generator and the
discriminator. ngf and ndf mean the number of filters per generator and discriminator.
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There are no evident differences in loss trends between LSGAN Pix2Pix and

vanilla Pix2Pix (Fig. 5.19, 5.20). LSGAN

LSGAN Pix2Pix

Figure 5.19: Loss values of generator and discriminator of LSGAN Pix2Pix network
during training, accomplished on the 2 pixels dataset. G_GAN, G_L1, D_real, D_fake
indicate the generator loss, the loss between the original image and the generated image,
the discriminator loss for the real image, the discriminator loss for the generated image,
respectively.

Vanilla Pix2Pix

Figure 5.20: Loss values of generator and discriminator of vanilla Pix2Pix network
during training, accomplished on the 2 pixels dataset. G_GAN, G_L1, D_real, D_fake
indicate the generator loss, the loss between the original image and the generated image,
the discriminator loss for the real image, the discriminator loss for the generated image,
respectively.

Regarding boundary identification, a comparison of the two Pix2Pix networks

with 64 generator and 16 discriminator filters and different loss functions shows that
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the vanilla Pix2Pix achieves marginally better results on the Test Set, although

there is a noticeable drop in performance compared to the Training Set. White zone

identification achieves comparable results between the two networks. In addition,

there is no noticeable decrease in white area identification performance, although

the data shows high dispersion in the Training Set as well.

Training Set

Loss Epoch DSC boundaries (%) DSC whites (%)

LSGAN

20 66.13 ± 4.83 71.06 ± 23.34
50 85.65 ± 2.79 81.75 ± 19.96
100 91.27 ± 2.02 86.52 ± 18.75
200 94.73 ± 1.56 90.09 ± 18.26

Vanilla

20 68.49 ± 4.14 71.46 ± 22.92
50 80.45 ± 3.25 80.45 ± 20.13
100 86.49 ± 2.76 85.64 ± 18.55
200 90.08 ± 2.54 89.18 ± 18.19

Table 5.15: Training Set performance of Pix2Pix models trained on the 2 pixels dataset,
with different loss functions, 64 filters for generator and 16 for discriminator.
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Test Set
Loss Epoch DSC boundaries (%) DSC whites (%)

LSGAN

20 43.97 ± 5.34 78.54 ± 20.85
50 46.53 ± 5.48 82.02 ± 18.44
100 48.24 ± 5.79 83.04 ± 17.88
200 48.79 ± 5.49 83.52 ± 17.34

Vanilla

20 49 ± 5.62 78.98 ± 19.46
50 49.87 ± 6.18 82.28 ± 17.32
100 49.45 ± 5.52 82.84 ± 17.97
200 50.21 ± 5.66 84.1 ± 16.92

Table 5.16: Test Set performance of Pix2Pix models trained on the 2 pixels dataset,
with different loss functions, 64 filters for generator and 16 for discriminator.
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Examples of automatic masks of the Test Set and Training Set are presented

below. As confirmed by the metrics, the network is able to segment white areas,

performing even on the Test Set (Fig. 5.21). On the other hand, it can be seen

that this does not happen for the cellular instance boundaries. When there are

multiple overlapping instances, the network does not achieve realistic segmentation.

Moreover, many times the circular crown closure that should characterize the cell

instance boundary is missed, especially on the Test Set but also in the Training Set

(Fig. 5.22). Moreover, the network is unable to detect cellular instances when they,

in the original image, do not present adequate contrast with their surroundings,

even on the Training Set.

Test Set

Real Image Real GT 50th epoch 200th epoch

Figure 5.21: Comparison between Test Set real masks and generated soft masks, with
LSGAN Pix2Pix (64 generator filters and 16 discriminator filters), at 50th and 200th
epochs.
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Training Set

Real image Real GT 50th epoch 200th epoch

Figure 5.22: Comparison between Training Set real masks and generated soft masks,
with LSGAN Pix2Pix (64 generator filters and 16 discriminator filters), at 50th and
200th epochs.

74



Chapter 6

Conclusions

In this thesis work, we proposed a new application of deep learning in digital pathol-

ogy. A comparison is presented between two GAN models, Pix2Pix and cycleGAN,

aimed at generating realistic histological images through predefined ground truths.

The aim is to control the semantic content of the generated images. The models

are trained on paired data. In order to achieve a better match between ground

truth and histological images, manual annotations of three different operators are

combined. With the aim of controlling the semantic content of the generated

histological images, information on the contours of the individual cell instances and

the white areas of the corresponding histological images are inserted. The quality

of the generated images is assessed by means of the following metrics: Pearson

Correlation Coefficient (PCC), Peak Signal-to-Noise Ratio (PSNR), Structural

Similarity Index Measure (SSIM), Feature Similarity Index Measure (FSIM) and

Fréchet Inception Distance (FID). In recent years, numerous efforts have been made

to create metrics that can objectively judge the image quality. The metrics used
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for model validation have led to satisfactory results. However, it would be useful

to submit the generated images to the assessment of experienced pathologists.

Although Pix2Pix leads to images with fewer artefacts and better results than

cycleGAN, both models are able to express the semantic content contained by

ground truth. With the same training parameters and characteristics Pix2Pix is

able to generate visually better images and achieve appreciable results in fewer

training epochs than cycleGAN. Both models underperform on the Test Set. This

is certainly due to the use of images from an organ that has never been seen

in the training phase and the presence of different forms of heterogeneity, chief

among them, the use of different scanners and acquisition protocols. Visually, an

appreciable correspondence is achieved between the real and generated images at

the level of the cell instances and at the level of the white zones. The models

are able to recreate the same number of instances, the same shape and boundary

morphology. The models are able to distinguish the cell instances, just by defining

their boundaries.

Even though the models succeed in achieving the desired semantic content,

they are not able to adequately reconstruct the background areas of the real images.

In order to improve the proposed model, this aspect suggests that, in the future,

the information content within the ground truth can be increased by means of

additional class labels for the detection of other tissue components, so as to better

control the semantic content and generate images that are as realistic as possible.

The models are many times unable to recreate the staining of the real image, also

due to the presence of different tissues from multiple sources within the dataset.

In order to allow the generative models to focus on other aspects, future work
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could be aimed at understanding if standardising the images from a staining point

of view, through the downstream use of stain normalisation algorithms or the

implementation within the proposed models of style transfer techniques, can lead

to better performance.

The images used for training are limited in size (256x256 pixels at 40x magnifi-

cation). There is nothing to prevent the proposed model from working on images

with higher resolution and a larger field of view. It should also be considered that

the performance by varying the overlap percentage of patches was not evaluated.

Future work could consider these analyses.

The use of the same models, previously trained for image generation, as

segmentation networks led to acceptable results for the detection of white areas

but not for the detection of individual cell boundaries.

Histological image synthesis through ground truths with specific characteristics

leads to several advantages. By checking semantic ground truths, there is the

possibility of inserting new images within datasets to increase the generalizability of

a ML/DL-based model or to evaluate the performance of such models. Furthermore,

the possibility of creating new images can be useful for educational purposes.

This thesis work seeks to offer insights and stimuli in order to continue creating

increasingly detailed and informative ground truths to control the semantic content

of histological images.
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Acronyms

AI artificial intelligence

DL Deep Learning

DSC Dice Similarity Coefficient

DP Digital Pathology

FID Fréchet Inception Distance

FSIM Feature Similarity Index Measure

GAN Generative Adversarial Network

GT Ground Truth

H&E Hematoxylin and Eosin

HVS Human Visual System

IQA Image Quality Assessment

I2I Image-to-Image

ML Machine Learning

M2I Mask-2-Image

PCC Pearson Correlation Coefficient
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Acronyms

SSIM Structural Similarity Index Measure

STAPLE Simultaneous Truth and Performance Level Estimation

TCGA The Cancer Genome Atlas

UHCW University Hospitals Coventry and Warwickshire

WSI Whole Slide Image

Z2I Latent-to-Image

79



Bibliography

[1] Hitoshi Tsuda et al. «Evaluation of the Interobserver Agreement in the Number

of Mitotic Figures Breast Carcinoma as Simulation of Quality Monitoring in

the Japan National Surgical Adjuvant Study of Breast Cancer (NSAS-BC)

Protocol». In: Japanese journal of cancer research 91.4 (2000), pp. 451–457

(cit. on p. 7).

[2] Josefin Persson, Ulrica Wilderäng, Thomas Jiborn, Peter N Wiklund, Jan-

Erik Damber, Jonas Hugosson, Gunnar Steineck, Eva Haglind, and Anders

Bjartell. «Interobserver variability in the pathological assessment of radical

prostatectomy specimens: findings of the Laparoscopic Prostatectomy Robot

Open (LAPPRO) study». In: Scandinavian journal of urology 48.2 (2014),

pp. 160–167 (cit. on p. 7).

[3] David M Metter, Terence J Colgan, Stanley T Leung, Charles F Timmons,

and Jason Y Park. «Trends in the US and Canadian pathologist workforces

from 2007 to 2017». In: JAMA network open 2.5 (2019), e194337–e194337

(cit. on p. 7).

80



BIBLIOGRAPHY

[4] Aldis H Petriceks and Darren Salmi. «Trends in pathology graduate medical

education programs and positions, 2001 to 2017». In: Academic pathology 5

(2018), p. 2374289518765457 (cit. on p. 7).

[5] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative

adversarial networks (2014)». In: arXiv preprint arXiv:1406.2661 1406 (2014)

(cit. on p. 9).

[6] Alec Radford, Luke Metz, and Soumith Chintala. «Unsupervised representa-

tion learning with deep convolutional generative adversarial networks». In:

arXiv preprint arXiv:1511.06434 (2015) (cit. on p. 10).

[7] Tero Karras, Samuli Laine, and Timo Aila. «A style-based generator architec-

ture for generative adversarial networks». In: Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. 2019, pp. 4401–4410

(cit. on p. 10).

[8] Andrew Brock, Jeff Donahue, and Karen Simonyan. «Large scale GAN training

for high fidelity natural image synthesis». In: arXiv preprint arXiv:1809.11096

(2018) (cit. on p. 10).

[9] H Zhang, I Goodfellow, D Metaxas, et al. «Odena. Self-attention generative

adversarial network». In: Proc. Int. Conf. Mach. Learn. 2019, pp. 7354–7363

(cit. on p. 10).

[10] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

«Spectral normalization for generative adversarial networks». In: arXiv preprint

arXiv:1802.05957 (2018) (cit. on p. 10).

81



BIBLIOGRAPHY

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. «Ima-

genet: A large-scale hierarchical image database». In: 2009 IEEE conference

on computer vision and pattern recognition. Ieee. 2009, pp. 248–255 (cit. on

p. 10).

[12] Laya Jose, Sidong Liu, Carlo Russo, Annemarie Nadort, and Antonio Di Ieva.

«Generative adversarial networks in digital pathology and histopathological

image processing: A review». In: Journal of Pathology Informatics 12.1 (2021),

p. 43 (cit. on p. 11).

[13] Maximilian E Tschuchnig, Gertie J Oostingh, and Michael Gadermayr. «Gen-

erative adversarial networks in digital pathology: a survey on trends and

future potential». In: Patterns 1.6 (2020), p. 100089 (cit. on p. 11).

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. «Image-to-

image translation with conditional adversarial networks». In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2017,

pp. 1125–1134 (cit. on pp. 11, 13, 33, 36, 39).

[15] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. «Unpaired

image-to-image translation using cycle-consistent adversarial networks». In:

Proceedings of the IEEE international conference on computer vision. 2017,

pp. 2223–2232 (cit. on pp. 11, 15, 33).

[16] Simon Graham, Quoc Dang Vu, Shan E Ahmed Raza, Ayesha Azam, Yee

Wah Tsang, Jin Tae Kwak, and Nasir Rajpoot. «Hover-net: Simultaneous

segmentation and classification of nuclei in multi-tissue histology images». In:

Medical Image Analysis 58 (2019), p. 101563 (cit. on p. 19).

82



BIBLIOGRAPHY

[17] Quoc Dang Vu et al. «Methods for segmentation and classification of digital

microscopy tissue images». In: Frontiers in bioengineering and biotechnology

(2019), p. 53 (cit. on p. 19).

[18] Korsuk Sirinukunwattana, Shan E Ahmed Raza, Yee-Wah Tsang, David RJ

Snead, Ian A Cree, and Nasir M Rajpoot. «Locality sensitive deep learning for

detection and classification of nuclei in routine colon cancer histology images».

In: IEEE transactions on medical imaging 35.5 (2016), pp. 1196–1206 (cit. on

p. 19).

[19] Amirreza Mahbod, Gerald Schaefer, Benjamin Bancher, Christine Löw, Georg

Dorffner, Rupert Ecker, and Isabella Ellinger. «CryoNuSeg: A dataset for nu-

clei instance segmentation of cryosectioned H&E-stained histological images».

In: Computers in biology and medicine 132 (2021), p. 104349 (cit. on pp. 19,

22, 23).

[20] Andrew Janowczyk and Anant Madabhushi. «Deep learning for digital pathol-

ogy image analysis: A comprehensive tutorial with selected use cases». In:

Journal of pathology informatics 7.1 (2016), p. 29 (cit. on p. 19).

[21] Ruchika Verma, Neeraj Kumar, Abhijeet Patil, Nikhil Cherian Kurian, Swapnil

Rane, and Amit Sethi. «Multi-organ nuclei segmentation and classification

challenge 2020». In: IEEE transactions on medical imaging 39.1380-1391

(2020), p. 8 (cit. on p. 19).

[22] Neeraj Kumar et al. «A multi-organ nucleus segmentation challenge». In:

IEEE transactions on medical imaging 39.5 (2019), pp. 1380–1391 (cit. on

p. 19).

83



BIBLIOGRAPHY

[23] Birgid Schömig-Markiefka et al. «Quality control stress test for deep learning-

based diagnostic model in digital pathology». In: Modern Pathology 34.12

(2021), pp. 2098–2108 (cit. on p. 22).

[24] Amjad Khan et al. «Impact of scanner variability on lymph node segmentation

in computational pathology». In: Journal of pathology informatics 13 (2022),

p. 100127 (cit. on p. 23).

[25] Simon K Warfield, Kelly H Zou, and William M Wells. «Simultaneous truth

and performance level estimation (STAPLE): an algorithm for the validation

of image segmentation». In: IEEE transactions on medical imaging 23.7

(2004), pp. 903–921 (cit. on p. 26).

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-net: Convolutional

networks for biomedical image segmentation». In: Medical Image Comput-

ing and Computer-Assisted Intervention–MICCAI 2015: 18th International

Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.

Springer. 2015, pp. 234–241 (cit. on p. 33).

[27] Adalberto Claudio Quiros, Roderick Murray-Smith, and Ke Yuan. «Patholo-

gyGAN: Learning deep representations of cancer tissue». In: arXiv preprint

arXiv:1907.02644 (2019) (cit. on p. 36).

[28] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and

Stephen Paul Smolley. «Least squares generative adversarial networks». In:

Proceedings of the IEEE international conference on computer vision. 2017,

pp. 2794–2802 (cit. on pp. 38, 39).

84



BIBLIOGRAPHY

[29] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. «Multiscale structural simi-

larity for image quality assessment». In: The Thrity-Seventh Asilomar Confer-

ence on Signals, Systems & Computers, 2003. Vol. 2. Ieee. 2003, pp. 1398–1402

(cit. on p. 41).

[30] Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. «FSIM: A feature

similarity index for image quality assessment». In: IEEE transactions on

Image Processing 20.8 (2011), pp. 2378–2386 (cit. on p. 41).

[31] DC Dowson and BV666017 Landau. «The Fréchet distance between multi-

variate normal distributions». In: Journal of multivariate analysis 12.3 (1982),

pp. 450–455 (cit. on p. 42).

[32] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,

and Sepp Hochreiter. «Gans trained by a two time-scale update rule converge

to a local nash equilibrium». In: Advances in neural information processing

systems 30 (2017) (cit. on p. 42).

[33] Deepak Baby and Sarah Verhulst. «Sergan: Speech enhancement using rela-

tivistic generative adversarial networks with gradient penalty». In: ICASSP

2019-2019 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE. 2019, pp. 106–110 (cit. on p. 44).

85


	Introduction
	Generative Adversarial Networks in Digital pathology
	Pix2Pix
	CycleGAN

	Dataset
	Inclusion criteria
	CryoNuSeg

	Construction of Training Set and Test Set
	Data Pre-Processing
	Instance division
	STAPLE Algorithm
	Instance cleaning

	White detection Algorithm
	Training Set and Test Set

	Methods
	Architectures
	Pix2Pix
	CycleGAN

	Experiments
	Evaluation metrics
	Evaluation metrics mask to image
	Evaluation metrics image to mask


	Results
	Mask to image results
	Image to mask results

	Conclusions
	Acronyms
	Bibliography

