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Summary

Cancer is a leading cause of global death, with skin cancer being a particularly
deadly subtype. Malignant melanoma, an aggressive form of skin cancer, has been
increasing worldwide. Early detection through screenings is crucial for improving
survival rates. Dermoscopy, a non-invasive diagnostic method using a specialized
instrument called a dermatoscope, has been widely adopted by dermatologists due
to its ease of use and versatility, for evaluating suspicious skin lesions and avoiding
unnecessary biopsies of stable lesions. Artificial intelligence (AI) is increasingly
being used in biomedical research and clinical practice for automating diagnoses
and assisting physicians. The accuracy of skin disease diagnosis is often linked to
the experience of the dermatologist, making AI a useful tool for supplementary
opinions and screening benign lesions. With the rise of mobile devices and digital
healthcare, smartphone-based cameras and dermatoscopes are improving access
to care and aiding treatment and screening. Teledermatology, a subspecialty of
telemedicine that uses digital images for remote dermatological consultations, is
becoming a convenient way for patients to receive direct physician evaluations
through photograph submissions. However, image quality can be poor due to
lighting, blurriness, and focus issues, hindering accurate diagnoses. Improving
image quality is crucial, as high-resolution images are critical to precise diagnoses.
To address this issue, software applications that incorporate automated computer
vision and image processing tools, along with patient education on proper image
capture and transmission techniques, can help restore and enhance the quality
of images. The present study aims to propose a Generative Adversarial Network
(GAN)-based methodology for the reconstruction of high-resolution skin lesion
images from low-quality counterparts. This is achieved by selecting and processing
images from the open public ISIC dataset through image processing techniques
to eliminate artifacts and prepare the data for input into the GAN model. Data
augmentation was also applied to increase the size of the dataset. Subsequently,
the final paired dataset of low-resolution and high-resolution image pairs was
generated through the application of degradation and enhancement techniques, and
the Real-ESRGAN architecture was employed in the training phase. The resulting
model was then used to generate super-resolution output images from available
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Summary

test sets, which were evaluated through the use of Image Quality Assessment
(IQA) metrics (e.g., SSIM, FSIM, and NIQE) in addition to visual assessment.
The dissimilarity between restoring the original, unaltered image (GT) and its
low-resolution (LR) counterpart obtained through the degradation pipeline was
analyzed to comprehend the potential efficacy of the degradation and restoration
processes developed. Finally, to further validate the restoration performance of
the trained GAN model, both the ground truth images and the synthetic restored
images from the ISIC test set were input into a deep network for skin lesion
classification, permitting a comparison between the original-quality images and the
reconstructed, super-resolution images with regards to their ability to accurately
classify skin lesions. In conclusion, the proposed approach demonstrates potential
in the reconstitution of high-resolution images of skin lesions from low-quality ones,
serving as a favorable starting point for further research and optimization.
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Chapter 1

Introduction

1.1 Anatomy and Physiology of the Skin
The integumentary system, also known as integument, is the body’s outermost
layer and consists of the skin and its associated appendages, such as hair and
nails. The main function of the integumentary system is to provide a physical
barrier that protects the body from external threats such as bacteria, infection, and
physical injury. It also helps regulate body temperature and enables the perception
of touch, pressure, and pain through receptors in the skin. Other functions of
the integumentary system include protecting the body from harmful ultraviolet
(UV) radiation from the sun and producing vitamin D when exposed to UV light.
Overall, the integumentary system plays a crucial role in maintaining the health
and well-being of the human body [1].

1.1.1 Structure
The integumentary system is made up of two main components: the skin and the
accessory structures, which include nails, hair, and glands.

• Skin: the skin is the second largest organ in the human body and the largest
component of the integumentary system. It has a surface area of about 1.5-2.0
m2 in the average adult human, and its thickness varies across different parts
of the body. The skin is made up of two layers: the superficial epidermis and
the deeper dermis [1, 3]:

– Epidermis: the epidermis is the most superficial layer of the skin. It
provides a waterproof, protective layer that serves as the first line of
defense from the surrounding external environment. It is made up of
four types of stratified squamous epithelial cells: keratinocytes which
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Figure 1.1: Cross-section of skin layers [2].

synthesize keratin, pigment-producing cells called melanocytes, Merkel
cells involved in detecting sensation, and Langerhans cells which are
phagocytic immunitary cells. The epidermis further divides into the
following five layers, from superficial to deep:

∗ Stratum corneum
∗ Stratum lucidum
∗ Stratum granulosum
∗ Stratum spinosum
∗ Stratum basale

The basal layer of the epidermis contains stem cells that regenerate
the epidermis as it grows towards the corneum. The epidermis receives
nourishment from the dermis underneath it, as it has no blood supply of
its own.

– Dermis: the dermis, which is immmediately deep to the epidermis,
consists of connective tissues that protects the body from stress and strain
while supporting the epidermis. The dermis separates into:

∗ the superficial papillary layer: it has highly vascularized, loose
connective tissue which provide mechanical support for the more
superficial epidermis and supplying through capillaries.

∗ the deeper reticular layer: it has an interwoven meshwork of dense
connective tissue that is responsible for the toughness and elasticity
of the skin.

2
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Blood and lymphatic vessels along with nerve fibers, sweat glands and
hair follicles are embedded within the connective tissue of the dermis [1,
3].

• Hypodermis: the hypodermis, also known as the subcutaneous tissue, is a
layer beneath the skin that is primarily composed of adipose tissue. It serves
several functions, including stabilizing the integumentary system, acting as an
energy reserve through fat storage, and participating in thermoregulation by
helping to reduce heat loss.

• Skin appendages: the integumentary system also includes several accessory
structures, such as hair, which provides mechanical protection for the skin and
helps regulate body temperature, and nails, which protect the fingers and toes.
The integument also contains exocrine glands, such as sudoriferous glands,
which produce sweat, and sebaceous glands, which produce oils that help keep
the skin and hair moisturized. These accessory structures and glands play
important roles in maintaining the health and function of the integumentary
system [3].

1.1.2 Function
The integumentary system plays a crucial role in maintaining the body’s homeostasis.
It is composed of the skin, hair, nails, and glands and performs a variety of functions
that are essential for the proper functioning of the body [1].

• Barrier: one of the primary functions of the integumentary system is to act
as a barrier. The skin serves as the first line of defense against infections,
temperature changes, and other threats to homeostasis. It is highly effective
at preventing the direct entry of pathogens, protecting the body from UV
rays through the secretion of melanin, and safeguarding against chemical
and mechanical assaults. The skin also plays a crucial role in the wound
healing process, which occurs when the body experiences trauma that causes
significant damage, such as severe cuts or moderate burns [1, 4].

• Thermoregulatory: another important function of the integumentary system
is thermoregulation. The skin being characterized by its extensive surface
area, boasts a copious vasculature, enabling it to maintain and regulate
thermal equilibrium through the alternate processes of vasoconstriction and
vasodilation. When the body’s temperature rises, blood vessels dilate to
increase blood flow and maximize heat dissipation. In addition to this process,
the evaporation of sweat secreted by the skin helps to cool the body.

• Sensation: the skin is also an important organ of sensation, as it is innervated
by various sensory nerve endings that allow it to detect touch, pressure, heat,
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cold, pain, and tactile sensitivity. It is often referred to as the body’s largest
sense organ.

• Storage and metabolic: the subcutaneous adipose tissue serves as a storage
depot for water, fat, glucose, and vitamin D, which can be easily accessed
when needed [1].

• Endocrine: the skin also performs an important endocrine function through
the synthesis of vitamin D3.

• Secretive: the skin is a sophisticated secretory organ that performs various
functions, such as keratinopoiesis and pigmentogenesis, which are carried out
by melanocytes located in the basal layer and responsible for the production
of keratin and melanin, respectively.

• Pression homeostasis: the highly vascularized network of the integument
helps to maintain blood pressure at an appropriate level for the body’s
metabolic demands.

• Immunitary: the skin immune system (SIS) is composed of a variety of cell
populations, including mast cells, dendritic cells, macrophages, lymphocytes,
and keratinocytes, which are able to release a variety of mediators that can
have biological effects on the skin and stimulate the entire immune system [1,
4].

1.2 Skin Cancer
Cancer represents a major cause of mortality worldwide, and skin cancer is among
the malignancies with a higher occurrence rate of new diagnoses, as shown in
Figure 1.2. Skin cancers are a type of malignancy that arise from the uncontrolled
proliferation of skin cells. These tumours can invade and spread to other parts of
the body, and there are three main types of skin cancers: melanoma, basal cell skin
cancer (BCC), and squamous cell skin cancer (SCC), with the latter two being the
most prevalent forms of skin cancer. It is important to recognize the early signs
of skin cancer and to seek medical treatment as soon as possible to improve the
chances of successful treatment [6].

1.2.1 Generalities
Skin cancer most commonly affects elderly people, even though it can afflict younger
individuals as well as children on occasion. Fair-skinned persons, such as those
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Figure 1.2: Estimated age-standardized incidence and mortality rates (World) in
2020, World, both sexes, all ages [5]

classified as Fitzpatrick 1 skin phototypes I, II, and III, are more susceptible to
developing skin cancer than individuals with darker skin tones, who are still at
risk. Additionally, individuals who have a family history of skin cancer or have
previously had skin cancer are at an elevated risk of developing the condition [6].
Several risk factors can increase an individual’s chances of developing skin cancer,
including:

• Exposure to ultraviolet (UV) radiation and certain chemicals

• Ageing

• Smoking

• Drug-induced immune suppression

• Longstanding wounds

• Genetic conditions (e.g., Albinism)

Skin tumours are generally diagnosed clinically by a dermatologist, who will exam-
ine any enlarging, crusting, or bleeding lesions. A full skin examination is typically

1The Fitzpatrick skin phototype describes a way to classify the skin by its reaction to exposure
to sunlight
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performed first, and dermoscopy may be used as a preliminary diagnostic exam to
detect cancers in the early stages or exclude benign lesions. In cases where a skin
tumour is suspected, a partial biopsy may be taken to confirm the diagnosis. If
melanoma is suspected, the patient may undergo a complete excision to establish
a secure diagnosis through histopathological analysis, as partial biopsy can be
misleading in some cases of melanocytic tumours [6].

1.2.2 Non-Melanoma Skin Cancer (NMSC) and other Skin
Lesions

All types of skin tumours except for melanoma are referred to as non-melanoma
skin cancer (NMSC). The following list highlights some of the most frequently
occurring NMSC as well as other typical skin lesions that will also be encompassed
within the dataset analyzed in this study:

• Actinic Keratosis and Intraepithelial Carcinoma (AKIEC):

– Actinic Keratosis (AK): also called solar keratoses (SK), are precan-
cerous dry scaly patches of sun-damaged skin. They are the result of
abnormal skin cell development due to DNA damage caused by ageing,
poor immune function and recent sun exposure [7]. They usually appear
as multiple keratosis rather than solitary on sites repeatedly exposed to
the sun, especially the backs of the hands and the face. Treatment from a
dermatologist is very important as if left untreated, they may turn into a
type of skin cancer called squamous cell carcinoma (SSC).

– Cutaneous Squamous Cell Carcinoma (cSCC): also known as in-
traepidermal carcinoma (IEC), is one of the skin cancer common form. It
presents as one or more irregular scaly plaques with often an orange-red
or either brown colour. Ultraviolet radiation (UV) total exposure is the
greatest risk factor as it damages the skin cell nucleic acids (DNA) and
suppresses the immune response, preventing recovery from damage [8].

• Basal Cell Carcinoma (BCC): is by far the most common cancer in humans
whose causes are multifactorials [9]. These may be triggered by exposure to
ultraviolet radiation or spontaneous and inherited gene defects. BCC is a
locally invasive and slowly growing nodule which presents as pink or pigmented
and sometimes with spontaneous bleeding or ulceration. Fortunately they are
very rarely a threat to life.
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Figure 1.3: Examples of Actinic Keratosis and Intraepithelial Carcinoma
(AKIEC).

Figure 1.4: Examples of Basal Cell Carcinoma (BCC).

• Dermatofibroma (DF): also known as fibrous histiocytomas, they are com-
mon benign nodules caused by a proliferation of fibroblasts. Dermatofibromas
can be found anywhere on the body, but most frequently arise on the legs and
arms. They require no treatment and can remain unchanged for years and
possibly resolve spontaneously [10].

• Melanocytic Nevi (NV): A melanocytic naevus or mole, is a common
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Figure 1.5: Examples of Dermatofibroma (DF).

benign skin lesion due to a local proliferation of melanocytes. They can be
present at birth (a congenital melanocytic naevus) or appear later (an acquired
naevus) [11].

Figure 1.6: Examples of Melanocytic Nevi (NV).

• Seborrheic Keratoses (SK): is a non-cancerous skin tumour that appear
as round warty plaques whose color ranges from light tan to black. They
usually found on the chest and back, as well as on the head as people age.
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They may be confused with malignant melanoma or warts. The cause of seb-
orrheic keratoses is still unknown although they do not lead to skin cancer [12].

Figure 1.7: Examples of Seborrheic Keratoses (SK).

• Vascular Lesion (VASC): vascular naevi may be proliferative haemangiomas,
which usually resolve, or vascular malformations including capillary, venous
and lymphangatic types.

Figure 1.8: Examples of Vascular Lesion (VASC).
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1.2.3 Melanoma
Melanoma is a type of skin cancer that is characterized by the uncontrolled
proliferation of melanocytic stem cells that have undergone genetic transformation.
Melanocytes are pigment cells that are located in the basal layer of the epidermis
and produce a protein called melanin to protect skin cells from ultraviolet radiation
[13].

Figure 1.9: Examples of Melanoma (ML).

While melanoma is relatively uncommon in children, it is more frequently diagnosed
in adults, with the average age of diagnosis having decreased in recent decades. The
incidence of melanoma has been increasing globally, with a particular prevalence
observed in the Caucasian population, as well as numerous Western societies [14].
This trend has affected both males and females, as depicted in Figure 1.10. In Italy,
data from the Italian Association of Cancer Registries [15] estimate that there are
approximately 7300 new cases of melanoma each year among men and 6700 cases
among women, with the incidence having doubled in the past decade, as shown in
Figure 1.11.
Melanoma is believed to be a multi-factorial disease that results from the interaction
between genetic susceptibility and environmental exposure. The primary risk factors
for developing melanoma include:

• UV rays exposure

• Number of melanocytic naevi or atypical naevi

• A strong family history

• Genetic susceptibility
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Figure 1.10: Estimated age-standardized incidence and mortality rates (World)
in 2020, melanoma of skin, both sexes, all ages [5].

Figure 1.11: Age-standardized rate (World) per 100 000, incidence and mortality,
males and females, Melanoma of skin, Italy [5].
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• Previous Basal Cell Carcinoma (BCC) or Squamous Cell Carcinoma (SCC)

• Previous invasive melanoma

Non-cancerous growth of melanocytes results in moles and freckles, while cancerous
growth of melanocytes typically begins as melanoma in the epidermis in what is
known as the horizontal growth phase. In contrast, nodular melanoma has a vertical
growth phase that is more dangerous. Once the melanoma cells have reached the
dermis, they may spread to other tissues through the lymphatic system or via the
bloodstream to other organs, such as the lungs or brain. This is referred to as
metastatic disease or secondary spread. Although melanoma is most commonly
found on the skin, it can also rarely appear on mucous membranes, such as the lips
or genitals. The first sign of melanoma is often an unusual freckle or mole. During
the horizontal phase of growth, a melanoma is typically flat, while it becomes
thickened and raised as the vertical phase develops. Early signs in a nevus that
may suggest a malignant change include discoloration, itching or ulceration, and
bleeding [13].
The primary signs of melanoma can be remembered using the mnemonic ABCDEFG,
which is an acronym designed to help patients and clinicians identify features in a
skin lesion that may suggest an early or in situ melanoma. The acronym and its
corresponding explanations are listed in Table 1.1.

Superficial Melanoma Nodular Melanoma
A: asymmetry of shape E: elevated
B: border irregularity F: firm to touch
C: color variation G: growing
D: diameter
E: evolving (enlarging, changing)

Table 1.1: ABCFDEG signs explanation.

While the ABCDEFG criteria have been shown to be effective in identifying
potential melanomas, they are not always reliable in identifying all melanomas,
particularly less common subtypes such as desmoplastic melanoma and melanoma
in children [16]. Dermoscopy, a technique used by trained specialists, is more
helpful in identifying malignant lesions than visual examination alone, but a skin
biopsy is often required to confirm the diagnosis and determine the severity of the
melanoma. Melanomas are classified based on their appearance and behavior, with
those that start as flat patches and have a horizontal growth phase including:

• Superficial spreading melanoma
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• Lentigo maligna melanoma and lentiginous melanoma (in sun-damaged sites)

• Acral lentiginous melanoma (on soles of feet, palms of hands or nails)

These forms of melanoma tend to grow slowly, but may progress to a vertical
growth phase at any time, including:

• Nodular melanoma

• Spitzoid melanoma

• Mucosal melanoma

• Neurotropic and desmoplastic melanoma

• Spindle cell melanoma

• Ocular melanoma

Treatment for melanoma depends on various factors, such as the stage of the tumor,
the severity of the condition, and the presence of other pathologies [17]. The
most common intervention is surgical excision, which involves removing both the
malignant and healthy tissue around the tumor. In severe cases, such as metastasis,
chemotherapy combined with radiation therapy may be used to slow the spread of
the tumor. Early diagnosis is crucial for successful treatment.

1.3 Dermoscopy
Dermoscopy, also known as dermatoscopy or epiluminescence microscopy, is a non-
invasive diagnostic technique that has been widely adopted by dermatologists for
the evaluation of suspicious skin lesions. This technique allows for the identification
of lesions and differentiation between suspicious melanocytic lesions, dysplastic
lesions, and melanomas, as well as the diagnosis of keratinocyte skin cancers such
as basal cell carcinoma and squamous cell carcinoma. Furthermore, in recent years,
dermoscopy has been utilized to diagnose a variety of dermatological conditions
and disorders involving the skin’s appendages, including hair and nails [18].

1.3.1 Dermatoscope and Technique
Dermoscopy is a practical and straightforward technique that allows for the visual-
ization of subtle structural features within the reticular dermis and the recording of
images for future comparison [18]. It requires minimal additional resources beyond
the dermoscope itself, which consists of:
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Figure 1.12: Employment of a dermatoscope (e.g., Heine Delta 20T [19]) to acquire
high-resolution visual representations of skin lesions. (right). Digital dermoscopic
image, which has been acquired through the utilization of a dermatoscope (left).

• a set of achromatic high quality lenses for 10 to 100-times magnification or
even higher

• an inbuilt illuminating system

• a source of power supply (e.g. battery-powered)

When using non-polarized light 2 sources such as the sun or lamps, light is absorbed,
refracted, and reflected as it hits the surface of the skin, which can create polarization
and glare that reduces the visibility of underlying structures. To mitigate this issue,
dermoscopy can be performed using three main techniques:

• Non-polarised contact dermoscopy: it uses a glass plate as a medium
with a smaller refractive index to skin to minimise glare. A linkage fluid
(water, oil or ECG gel which is the most commonly used nowadays) is always
placed at the interface between the epidermis and the device’s glass plate. It
is commonly used to view superficial layers. In some situations a cling film
or adhesive tape can be placed over the lesional skin to avoid inter-patient
infections [20].

• Polarised dermoscopy: it uses polarised lenses dotate of crossed-polarizers
which filter out scattered light and hence allows only light in a single plane to

2Non-polarised light: electromagnetic wave that vibrates in a single plane. It differs from
Polarised light which vibrates in a single plane instead.
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pass through it without requiring skin contact or fluid immersion (Polarised
non-contact dermoscopy). It can be used to view deeper layers. However, many
workers still use polarized light dermatoscopes in contact method (Polarised
contact dermoscopy) with fluid systems, as it increases the penetration of light
and facilitate imaging of deeper structures [20].

(a) Non-polarised optics . (b) Polatised optics .

Figure 1.13: Differences between non-polarised and polarised optics principles
[21].

Polarised and Non-polarised methods are not mutually exclusive as they provide
complementary information as shown in Figure 1.14. Moreover, when used together
it is more likely to increases diagnostic accuracy and clinician confidence. As

(a) Milia like cysts on non-polarised (left)
and polarised dermoscopy (right) .

(b) Blue white veil under non-polatised (left)
and polarized dermoscopy (right) .

Figure 1.14: Differences between non-polarised and polarised dermoscopic images
[22].

technology has evolved, dermatoscopes have progressed from simple hand-held
devices to image-capture devices with built-in digital cameras and even USB
video-dermatoscopes with high-resolution cameras for real-time visualization on
a computer screen. Additionally, some dermatoscopes can be attached to smart-
phones for easier image capture and documentation, and some even have analytical
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capabilities such as digital image analysis and incorporated artificial intelligence
systems to provide automated diagnostic aid.

1.3.2 Criteria and Evaluation Models
Color and pattern structure are both important factors to consider when interpreting
a potentially pigmented lesion using dermoscopy. The color of a lesion is determined
by the location of melanin within the different layers of the skin, while the structure
is influenced by the spatial distribution and concentration of melanin, such as
whether it is present in isolation or in clusters. There are several analysis models
that can be used to determine whether a lesion is benign or potentially suspect
for melanoma, including semi-quantitative models like the ABCD rules, the rule
of three points, and the rule of seven points, as well as qualitative diagnostic
models like Menzies’ method and pattern analysis. These models can be used in
conjunction with other diagnostic techniques to help determine the most likely
diagnosis [23].

• ABCD method: morphological characteristics are taken into consideration
and for each one of these a value is assigned as explained in table 1.2. Finally,

Characteristics ABCD Method
Condition Score

Symmetry: lesion is divided with 2
perpendicular axes

asymmetry in both axes 2.6
asymmetry in one axes 1.3
total symmetry 0

Border each abrubt border 0.1
Color: red, black, dark brown
light brown, gray-bluish, white each color found 0.5

Structure: dot, clustered globules,
pigmented net, amorphous area each structure found 0.5

Table 1.2: ABCD method: score assignment rules.

the Total Dermoscopic Score (TDS) is calculated as sum of each individual
score and a dermoscopic result is assigned as shown in table 1.3.

• Rule of seven points: semi-quantitative model for diagnosing melanoma
using dermoscopy. It involves the assessment of seven dermoscopic character-
istics, with each characteristic being divided into major and minor categories.
If the total score of the characteristics is equal to or greater than three, the
lesion is diagnosed as a melanoma, otherwise it is considered to be benign [23].
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Total Dermoscopic Score Diagnostic Result
score < 4.75 Benign

4.75 <= score <= 5.45 Suspicious lesion
score > 5.75 Melanoma

Table 1.3: ABCD method: diagnostic result.

• Menzies’ method: qualitative diagnostic model that involves the assessment
of eleven dermoscopic characteristics that are divided into negative and positive
categories. Negative characteristics, such as symmetry or a single color
lesion, define the lesion as benign, while positive characteristics, such as an
asymmetrical lesion, suggest the possibility of melanoma. The presence of a
positive feature in conjunction with the absence of negative characteristics is
sufficient for a diagnosis of cutaneous melanoma using this method [23].

• Rule of three points: a semi-quantitative model designed specifically for
novice dermoscopists to help them improve their skills and avoid misdiagnosing
melanoma. It involves the assessment of three criteria:

– asymmetry of color and structure in one or two perpendicular axes
– atypical network (pigmented network with irregular holes and thick lines)
– blue–white structures

If two or three of these criteria are present, the lesion is considered suspicious
and must be excised.

• Pattern analysis: a method for diagnosing melanoma using dermoscopy
that involves the initial analysis of the general global pattern of the pigmented
lesion, followed by the assessment of local features. This method is preferred
by many expert dermoscopists [23].

1.4 Computer Vision
Computer vision is an interdisciplinary scientific field that involves the development
of systems that can understand and interpret digital images or videos in order
to perform tasks that the human visual system is capable of. This includes
acquiring, processing, analyzing, and understanding digital images to extract
high-dimensional data from the real world, resulting in numerical or symbolic
information, such as decisions. Subfields of computer vision include object detection,
object recognition, image classification, image segmentation, image restoration, and
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etc. Image processing, which encompasses various techniques and algorithms for
manipulating digital images for tasks such as pattern recognition, feature extraction,
and image enhancement, can be considered a subfield of computer vision. It has
been widely applied in commercial and industrial fields, medical applications, and
scientific research and continues to be a growing area of study [24].

1.4.1 Digital Image
A digital image is a two-dimensional representation of a visual scene, typically
consisting of a finite set of pixels arranged in rows and columns [25]. Each pixel,
or picture element, is the smallest unit of an image and is characterized by its
coordinate position within the image matrix, with the x-axis increasing from left
to right and the y-axis increasing from top to bottom. The main components of a
digital image include:

• Size: it refers to the number of pixels in the image, commonly in terms of
height and width.

• Intensity: it is the brightness of each pixel.

• Color space: it determines how colors are represented in the image and can
be expressed using various color models such as grayscale, RGB, or CMYK.

• Channel: they are attributes of the color space and can vary in number
depending on the color model used. For example, grayscale images have a
single channel, while RGB images have three color channels: red, green, and
blue.

The dynamic range of an image, which describes the range of intensity values
that can be represented, is determined by the number of bits used to represent
the intensity of each pixel and can be expressed mathematically by 2N−1 where
N represents the number of bits. A standard digital photo uses an 8-bit range,
which allows for 256 possible intensity values ranging from 0 (black) to 255 (white).
Grayscale images use a single 8-bit intensity range, while RGB images use 8-bit
intensity ranges for each of their three color channels.

1.5 Artificial Intelligence (AI)
Artificial intelligence (AI) is the umbrella term for techniques that enable machines,
such as computers, robots, and autonomous vehicles, to perform tasks that are
characteristic of human cognitive abilities, such as learning and problem-solving.
AI is used in a wide range of applications, including search engines (e.g., Google),
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Figure 1.15: Image representing the number eight seen by Human Vision (left)
respect to Computer Vision (right) [26].

recommendation systems (used by YouTube, Amazon, and Netflix), speech recogni-
tion (e.g., Siri and Alexa), self-driving cars (e.g., Tesla), and many others. With
the increasing availability of data, storage capacity, and computational power,
AI has become increasingly prevalent in various fields, including industry and
academia, and has even outperformed human beings in certain highly mathematical
and statistical problems. AI encompasses a range of methods, including genetic
algorithms, fuzzy models, and machine learning [27].

Figure 1.16: Relationship between Artificial Intelligence (AI), Machine Learning
(ML) and Deep Learning (DL) [28].
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1.5.1 Machine Learning and Deep Learning
Machine learning (ML) is a subset of artificial intelligence (AI) that refers to
the ability of intelligent systems to learn and extract meaningful patterns and
relationships from problem-specific training data, which consists of examples and
observations. The ultimate goal of ML is to automate the process of solving
associated tasks and make reliable and repeatable decisions. ML models have
been effective in tasks involving high-dimensional data, such as classification,
regression, and clustering, to create analytical models that generate predictions,
rules, recommendations, or similar outcomes. As a result, ML algorithms have
been applied in a variety of areas, including fraud detection, credit scoring, speech
and image recognition, and natural language processing (NLP). In recent decades,
the field of ML has seen significant advances with the evolution of artificial neural
networks (ANNs) towards deeper neural network architectures with improved
learning capabilities, known as deep learning (DL). In contrast, simple ANNs
(e.g., feedforward neural networks, shallow autoencoders) and other ML algorithms
(e.g., support vector machines, decision trees) can be classified as shallow machine
learning [27]. The hierarchical relationship between AI, ML, and DL is illustrated
in Figure 1.16. DL neural networks are based on a computational model inspired by
the functioning of the biological brain. Like biological neurons in the brain, a large
number of interconnected nodes, called artificial neurons, form multiple hidden
layers, organized in deeply nested network architectures as shown in Figure 1.17.
This allows DL neural networks to use advanced operations (e.g., convolutions) or

Figure 1.17: Deep Neural Network architecture with multiple layers [29].

multiple activations in one neuron, rather than using a simple activation function.
These characteristics enable DL neural networks to be fed raw input data and
automatically discover a representation needed for the corresponding learning task.
The learned features can then be used to infer the nature of an unseen input. In
contrast, shallow ML heavily relies on carefully defined features, and therefore its
performance is dependent on a successful feature extraction process, as shown in
Figure 1.18. This process can be time-consuming, labor-intensive, and inflexible,
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as it often requires a lot of domain expertise and application-specific engineering.
DL neural networks overcome this limitation of handcrafted feature engineering
by having the capability of automated feature learning, which allows them to
extract discriminative feature representations with minimal human effort [27]. DL
is particularly effective in dealing with large, noisy, and unstructured data, and
is therefore useful in domains with large and high-dimensional data. This is why
DL neural networks tend to outperform shallow ML models and traditional data
analysis approaches for most applications involving text, image, video, speech, and
audio data. However, for low-dimensional data inputs, especially in cases of limited
training data availability, shallow ML can still produce superior results, which may
even be more interpretable than those generated by DL neural networks. Based on

Figure 1.18: Difference between Machine Learning and Deep Learning [28].

the characteristics of the problem and the available data, machine learning (ML)
and deep learning (DL) techniques can be classified into three major categories:

• Supervised learning: this technique requires a training dataset that includes
input examples and labeled output or target values. The input-output pairs in
the training set are used to calibrate the parameters of the ML model. Once
the model has been trained, it can be used to predict the target variable given
new or unseen input data points. Supervised learning can be further divided
into regression problems, where a numeric value is predicted (e.g., number of
users), and classification problems, where the prediction result is a categorical
class [27].

• Unsupervised learning: in this case, the system is expected to detect
patterns within the dataset without the need for labels. Therefore, the train-
ing data consists only of input variables and the goal is to find structural
information of interest, such as groups of elements that share common proper-
ties (known as clustering) or data representations that are projected from a
high-dimensional space into a lower one (known as dimensionality reduction).
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• Reinforcement learning: instead of providing input-output pairs, the
network is given the current state of the system, the ultimate goal, and a list
of allowable actions and environmental constraints for the outcomes. The goal
is achieved through trial and error, using a reward system to maximize the
reward.

1.5.2 AI Applications in Dermatology
Suspicious skin lesions can be challenging to accurately evaluate and identify, partic-
ularly due to the variable appearance of melanoma, which can lead to misdiagnosis
or unnecessary surgical excision. In recent years, the use of artificial intelligence
(AI) in the field of dermatology has been growing, driven by the availability of
more data and images of skin lesions and technological advancements. While AI is
not expected to replace medical experts in the near future, it can offer a second
opinion and be used to screen out benign lesions, such as symmetrical melanocytic
nevi. In the future, as databases continue to expand with more patients and images
with lesion-specific labels, more complex algorithms will be developed, leading to
improved accuracy in the detection of potentially malignant skin lesions.
In the past, the adoption of sophisticated specialized systems for image acqui-
sition and storage has been slow due to cost and inconvenience, preventing the
latest generation of dermatoscopes from being accessible to all patients worldwide.
However, with the rise of the mobile revolution and digitalization in healthcare,
smartphone-based digital cameras and dermatoscopes are entering the professional
market, increasing accessibility to healthcare in patient treatment and screening.
During the COVID-19 pandemic, the use of digital imaging in Teledermatology 3

applications has steadily increased. The possibility of direct teleconsultation for
concerning lesions between patients and dermatologists has the potential to improve
accessibility to care. However, patient-acquired images often have low quality due
to poor lighting conditions, blurriness, and out-of-focus effects. Improving and
enhancing the quality of such poor images is important as high-quality, detailed
images are essential for accurate diagnosis of skin lesions [30].

1.6 Convolutional Neural Network (CNN)
Convolutional neural networks (CNNs) are a type of deep neural network that is
particularly popular for tasks related to computer vision and speech recognition.
One of the main advantages of CNNs is that they can automatically detect significant

3Teledermatology: sub-field of Telemedicine. It refers to various aspects of dermatology
delivered using modern information and communications technology (ICT)
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features without any human supervision. CNNs are inspired by the structure and
function of the human visual cortex, consisting of alternating layers of simple
and complex cells. While there have been several proposed changes to the CNN
architecture in recent years with the aim of improving image classification accuracy
or reducing computation costs, the most popular base architecture consists of
several modules, each made up of a group of convolutional and pooling layers,
stacked on top of each other. These representations are then fed into one or more
fully connected layers, and the final fully connected layer outputs the class label
[28]. For example, in object recognition tasks using images, the first few layers of
the CNN are responsible for extracting basic features from the input images, such
as edges and curves. These basic features are then gradually aggregated into more
complex abstract features in the final layers, resembling the objects of interest.
The generated features are then used for prediction purposes, allowing the CNN to
recognize objects of interest in new images or differentiate between different image
classes.

1.6.1 Network Architecture
The CNN architecture consists of various types of layers, each with its own unique
characteristics and functions:

• Convolutional Layer: is considered a crucial component of CNN models.
This layer is composed of convolutional filters, also known as kernels, which
are responsible for learning to extract important features from the input image.
These kernels are convolved with the input image to produce the output
feature map.

• Pooling Layer: it takes the large-size feature map generated by previous
convolutional operations and reduces its size while preserving the majority of
relevant information.

• Activation Function: also referred to as the transfer function, plays a crucial
role in mapping the input to the output by defining how the weighted sum of
the input, along with its bias (if present), is transformed into an output by the
nodes in a layer of the network. Non-linear activation layers are typically used
after all layers with weights (such as FC layers and convolutional layers) in
the CNN architecture. The non-linear behavior of the activation layers allows
the model to learn more complex relationships between the input and output.

• Fully Connected (FC) Layer: is composed of neurons that are connected
to all neurons in the previous layer, following the conventional structure of a
multi-layer perceptron (MLP).
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• Loss Function: is used in the output layer to calculate the predicted error
that occurs during the training phase. This error represents the difference
between the actual output and the predicted output of the model. The loss
function is then optimized during the learning process of the CNN to improve
the performance of the model.

Figure 1.19: Basic architecture and general functioning of a Convolutional Neural
Network (CNN) [28].

1.6.2 Backpropagation
One key component of CNNs is the ability to train them using backpropagation, a
method for efficiently computing the gradients of the loss function with respect to
the model parameters. Backpropagation involves forward propagating the input
through the network to generate an output, and then propagating the error back
through the network to update the model parameters. This is done through the
use of the chain rule, which allows the gradients to be computed recursively from
the output layer down to the input layer. Overall, backpropagation is a crucial
component of CNNs, allowing them to be trained effectively on large datasets and
achieving state-of-the-art performance on a variety of tasks [28].
As an example, consider the task of image classification using a CNN. The input
to the network is an image, and the output is a probability distribution over a
set of classes. The goal of training is to adjust the model parameters such that
the output of the network is as close as possible to the true label of the image.
During training, a batch of images is fed through the network, and the output is
compared to the true labels using a loss function such as cross-entropy loss. The
gradient of the loss with respect to the model parameters is then computed using
backpropagation and the parameters are updated using an optimization algorithm
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such as Stochastic Gradient Descent (SDG) or Adam. This process is repeated for
multiple epochs until the model converges.

1.6.3 Hyperparameters

The learning process for convolutional neural networks (CNNs) involves the selection
of an appropriate learning algorithm, also known as an optimizer, and the use of
various enhancements to improve the output of the model. Loss functions, which
aim to minimize the error between the predicted and actual output, are central
to all supervised learning algorithms. Gradient-based learning algorithms are
commonly used in CNNs, and involve repeatedly updating the network parameters
through each training epoch in order to minimize the training error. This process
is performed through back-propagation, in which the gradient at each neuron is
propagated back to all neurons in the preceding layer. There are several variations
of gradient-based learning algorithms, including batch gradient descent, stochastic
gradient descent, and mini-batch gradient descent. In addition to these algorithms,
various enhancement techniques can be used to further improve the training process,
such as momentum, Adagrad. It is important to carefully select the learning rate,
which determines the step size of the parameter updates, in order to avoid negatively
impacting the learning process [28]. However, gradient-based learning algorithms
can be susceptible to getting stuck in local minima rather than finding the global
minimum solution, particularly if the solution space is not convex. To address this
issue, techniques such as simulated annealing and early stopping can be employed.

1.6.4 Regularization

Overfitting is a common issue in convolutional neural network (CNN) models, where
the model performs exceptionally well on training data but poorly on unseen test
data. Underfitting occurs when the model does not learn enough from the training
data, while a just-fitted model performs well on both training and testing data.
There are several techniques that can be used to address overfitting, such as dropout,
which involves randomly dropping neurons during training, and drop-weights, which
involves randomly dropping connections between neurons. Batch normalization
can also help to reduce the risk of overfitting, as it helps to ensure the performance
of output activations and reduce the internal covariate shift of activation layers.
Other advantages of batch normalization include preventing the vanishing gradient
problem, improving weight initialization, reducing the time required for network
convergence, and decreasing the dependence on hyperparameters during training
[28].
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Figure 1.20: Graphic representation of a well-balanced model respect to Overfit-
ting and Underfitting phenomena [28].

1.6.5 Improvements
Based on experiments with various deep learning (DL) applications, several ap-
proaches may be effective in improving the performance of convolutional neural
networks (CNNs). One such approach involves expanding the dataset through
techniques such as data augmentation, or using the transfer learning, which is a
technique that enables models to be trained on large-scale image datasets and
then specialized for specific tasks using problem-specific datasets. Additionally,
increasing the duration of training may also contribute to enhanced performance.
Another approach that may be beneficial is increasing the depth or width of the
CNN model, as well as implementing regularization techniques and fine-tuning
hyperparameters [28].

1.7 Generative Adversarial Network (GAN)
Generative adversarial networks (GANs) are a type of machine learning algorithm
that has the potential to revolutionize domains where new content or product
configurations are constantly being created, such as art, music, and fashion design,
or where content is transformed from one representation to another, such as text
to image for product descriptions. However, GANs also pose significant risks with
societal implications if they are abused for malicious purposes. In particular, the
generation of ’deepfake’ content, such as abusive speeches and misleading news to
manipulate public opinion or distort financial markets, is a concern [31].

1.7.1 Network Architecture
Generative adversarial networks (GANs) are a class of generative models that
aim to learn the probability distribution of a dataset such that the model can
generate new, randomly varied samples from the distribution. GANs consist of two
sub-networks: a Generator and a Discriminator. The Generator network, denoted
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as G, captures the distribution of an input random noise vector z and generates
new examples G(z) that closely resemble samples from the target domain. On the
other hand, the Discriminator network, denoted as D, attempts to differentiate
between real samples from the target domain and artificially generated samples
produced by the Generator. These two networks are trained simultaneously through
an objective function based on a min-max game optimization problem, in which
the Generator tries to minimize the loss function while the Discriminator tries to
maximize it. The parameters of the networks are updated through backpropagation
until the Discriminator is unable to distinguish between real and fake samples. The
ultimate goal of the Generator is to produce realistic-looking samples, while the
Discriminator strives to become increasingly proficient at detecting fake samples
[31]. The objective function of a GAN can be expressed as:

min
G

max
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[1 − log D(G(z))]

where Ex is the expected value over all real data samples, D(x) is the probability
estimate of the Discriminator that the sample x is real, G(z) is the output of the
Generator for a given random noise vector z as input, D(G(z)) is the Discriminator’s
probability estimate that the fake generated sample is real, and Ez is the expected
value over all random inputs to the Generator.

Figure 1.21: Basic architecture and general functioning of a Generative Adversarial
Network (GAN) [31].

1.8 Super-Resolution Image Reconstruction
The applications of super-resolution techniques have been broad and encompass
several areas such as video processing, satellite imaging, and medical imaging. The
recording of digital images often results in a loss of spatial resolution due to a range
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of factors, including optical distortions, motion blur, sensor or transmission noise,
and insufficient sensor density. As a result, the recorded images frequently exhibit
blurring, noise, and aliasing effects. Super-resolution image reconstruction, also
referred to as resolution enhancement, is a subset of techniques and algorithms used
in computer vision and image processing for the purpose of restoring HR images
from LR images. In the field of medical imaging, obtaining high-quality images is
crucial for enabling physicians to make accurate diagnoses, as high-resolution (HR)
images provide more features and details than low-resolution (LR) images. In recent
years, there has been a marked increase in interest in SR methods, particularly in
the domains of computed tomography (CT) and magnetic resonance imaging (MRI).
The ability to acquire multiple images while still facing limitations in resolution
quality has motivated the exploration of SR techniques as a means of improving
diagnostic accuracy by enhancing image resolution. As such, SR has become a
crucial tool in the field of medical imaging, with a growing interest in its application
to various imaging modalities.
Super-resolution image reconstruction comprises both image upsampling and image
restoration. The objective of image upsampling is to increase the size of an image
while preserving as much information as possible, while the aim of image restoration
is to recover a degraded image, such as a blurred or noisy image, without changing
its size. In this way, super-resolution image reconstruction can effectively address
the limitations of the imaging system and enhance the performance of various
digital image processing applications [32].

1.8.1 Classic Interpolation Methods

Image interpolation refers to the process of resizing a digital image and is commonly
used in computer vision applications. Traditional interpolation methods, such
as nearest-neighbor, bilinear, and bicubic interpolation, are easy to understand
and implement, and are therefore still commonly used in super-resolution-based
approaches [33]. However, these interpolation-based upsampling methods only
improve image resolution based on the existing information in the image and do
not introduce any new information. As a result, they may introduce side effects,
such as noise amplification and blurring, into the super-resolution model.

Nearest Neighbor Interpolation

Nearest-neighbor interpolation is a simple interpolation algorithm that selects the
value of the nearest pixel for each position to be interpolated without considering
any other pixels within the grid. This method is often used in real-time applications
due to its fast execution, but it generally produces low-quality results.
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Figure 1.22: Nearest-neighbor interpolation on the square [0,4] × [0,4] consisting
of 25 unit squares patched together. Colour indicates function value. The black
dots are the locations of the prescribed data being interpolated [34].

Bilinear Interpolation

Bilinear interpolation is a two-step process that involves performing linear inter-
polation in one direction of the image and then again in the other direction. The
resulting approximation is independent of the order in which the interpolation is
performed. While each step is linear, the overall process results in a quadratic
interpolation considering the closest 2x2 neighborhood of known pixel values sur-
rounding the unknown pixel’s computed location. Bilinear interpolation produces
better results than nearest-neighbor interpolation while maintaining relatively fast
speed [33].

Figure 1.23: Bilinear interpolation on the same dataset as above [34].
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Bicubic Interpolation

Bicubic interpolation performs cubic interpolation on each of the two dimensions
of the image. It is preferred over bilinear or nearest-neighbor interpolation when
speed is not a primary concern. Bicubic interpolation takes into account a 4x4 grid
of pixels (16 pixels in total) and produces smoother results with fewer interpolation
artifacts, but it is slower than bilinear interpolation. The bicubic interpolation
with anti-aliasing is currently the most widely used method for constructing super-
resolution datasets (i.e., degrading HR images to corresponding LR images) and is
also commonly used in pre-upsampling super-resolution frameworks [33].

Figure 1.24: Bicubic interpolation on the same dataset as above [34].

1.8.2 AI State-of-the-Art Generative Methods

In recent years, the rapid development of deep learning techniques has led to the
active exploration of deep learning-based super-resolution (SR) models, which
have achieved state-of-the-art performance on various SR benchmarks. A wide
range of deep learning methods have been applied to SR tasks, ranging from early
convolutional neural network (CNN)-based methods (e.g., SRCNN) to more recent
SR approaches using generative adversarial networks (GANs) (e.g., SRGAN). In
general, the family of SR algorithms that use deep learning techniques differ from
one another in terms of network architectures, loss functions, learning principles,
and strategies. These differences can significantly impact the performance and
efficiency of the SR model.
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SRCNN

SRCNN is a deep convolutional neural network (CNN) developed for the task
of single image super-resolution (SR). The SRCNN model is designed to take a
low-resolution input image and produce a higher-resolution output image through
the use of convolutional neural network (CNN) layers. It consists of three main
components: a feature extraction layer, a non-linear mapping layer, and a recon-
struction layer. The feature extraction layer uses convolutional filters to extract
high-level features from the input image, while the non-linear mapping layer uses a
non-linear activation function to map the extracted features to a higher-dimensional
space. The reconstruction layer then uses deconvolutional filters to upsample the
mapped features and produce the final high-resolution output image. SRCNN has
been shown to produce high-quality SR results on a variety of datasets and has
been used in numerous applications, such as medical imaging, surveillance, and
remote sensing. It has also inspired the development of several other CNN-based
SR models [35].

Figure 1.25: SRCNN architecture [35].

SRGAN

Following the success of SRCNN, researchers began to explore other approaches
to SR that leveraged the power of deep learning. One such approach was the use
of generative adversarial networks (GANs) for SR, which consist of a generator
network and a discriminator network, which are trained in an adversarial manner.
In the SRGAN model, the generator network is trained to generate high-resolution
images from low-resolution input images, while the discriminator network is trained
to distinguish between real high-resolution images and synthetic high-resolution
images generated by the generator. SRGAN has been shown to produce high-quality
SR results and has been used in a variety of applications [36].
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Figure 1.26: SRGAN architecture [36].

DCGAN

DCGANs utilize deep convolutional neural networks (CNNs) for both the gen-
erator and discriminator models. This represents a departure from the original
GAN architecture, which utilized multi-layer perceptrons (MLPs). The use of
CNNs, which are known to be effective for image processing tasks, allowed for the
development of complex and high-quality generators through the enforcement of
certain constraints. Three key features of the DCGAN architecture are the use
of transposed convolutions in the generator, which allow for a successive increase
in representation at each layer as the model maps from a low-dimensional latent
vector to a high-dimensional image, the use of batch normalization in both the
generator and discriminator, and the use of ReLU activation in the generator and
LeakyReLU activation in the discriminator. Additionally, the DCGAN architecture
utilizes the Adam optimizer rather than the traditional stochastic gradient descent
with momentum. These modifications enabled stable training of the DCGAN model
[31].

ProGAN

ProGAN is based on the idea of progressively increasing the resolution of the
generated images during training, allowing the generator network to learn the
high-frequency details of the image distribution. This results in the generation of
high-resolution synthetic images. ProGAN has been used for tasks such as image
generation and style transfer, and has inspired the development of other models
such as StyleGAN and BigGAN [31].
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Figure 1.27: DCGAN architecture [31].

Figure 1.28: ProGAN architecture [31].

Diffusion Models

Diffusion models, also referred to as diffusion probabilistic models, are a type of
latent variable model that uses Markov chains and variational inference to learn
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the latent structure of a dataset. They do this by modeling the way in which data
points move or ’diffuse’ through the latent space. In computer vision, diffusion
models are often used for tasks such as image denoising, inpainting, super-resolution,
and image generation. For example, a diffusion model could be trained to denoise
images that have been blurred with Gaussian noise by learning to reverse the
diffusion process. Alternatively, an image generation model could start with a
random noise image and, after being trained on natural images, be able to generate
new natural images by reversing the diffusion process. These models have a wide
range of applications, and can be useful for improving the performance of various
machine learning tasks [37].

Figure 1.29: Stable Diffusion architecture [37].
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Chapter 2

Materials and Methods

2.1 Dataset

In this study, several skin datasets were employed to train and evaluate Generative
Adversarial Networks (GANs) models. The ISIC Archive dataset, which contains
a substantial number of images partitioned into 7 classes, was predominantly
employed during the training stage. On the other hand, diverse datasets were
employed as Test Sets during the evaluation phase. These datasets were chosen
as they present dissimilar textures, content, and characteristics in their images,
providing a means of validating the model’s performance when the input data
differs from what was observed during the training phase.

Dataset # of images Usage
ISIC Archive 30604 Training and Validation Set
ISIC Test 9897 Test Set
CC ISIC Test 9897 Test Set
Atlas 2013 Test Set
Novara GQ 60 Test Set
Novara BQ 90 Test Set
Nurugo 222 Test Set
PH2 200 Test Set

Table 2.1: A comprehensive list of all the datasets that were utilized, including
information on the number of samples present in each dataset and the specific
usage of each dataset within the study.
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2.1.1 ISIC
The International Skin Imaging Collaboration (ISIC) is a partnership between
academic centers and companies from around the world that aims to reduce
melanoma-related deaths and unnecessary biopsies by improving the accuracy and
efficiency of melanoma early detection. To support these efforts, ISIC maintains
the ISIC Archive, an open source platform that contains approximately 70000
publicly available images of skin lesions along with metadata describing additional
attributes on an image level. These images were used to train GAN models in this
study to reconstruct high-resolution skin lesion images from low-quality ones. The
ISIC Archive is an important resource for researchers and clinicians working on
skin lesion diagnosis and classification, as it provides a large and diverse dataset
of images that can be used to develop and validate machine learning models and
other diagnostic tools.[38].
The dataset utilized in the training stage of this study consists of approximately
30000 dermoscopic skin images, divided into 7 categories or labels:

1. Actinic Keratosis and Intraepithelial Carcinoma (AKIEC): 1066
images

2. Basal Cell Carcinoma (BCC): 3252 images

3. Dermatofibroma (DF): 246 images

4. Keratosis Like (KL) 2333 images

5. Malignant Melanoma (ML): 5375 images

6. Melanocytic Nevi (NV): 18079 images

7. Vascular Lesions (VASC): 253 images

Following the implementation of a thorough processing pipeline that resulted in
the production of a final Training Set, along with a corresponding Validation Set, a
Test Set was created using the images that were discarded from the ISIC Archive.
The images in the Test Set were not used at any point during the model’s training
or validation, providing a robust means of assessing the generalizability of the
model.

2.1.2 Color Constancy ISIC
The Color Constancy (CC) ISIC dataset consists of images identical to those in
the ISIC Archive, but they undergo processing by the DermoCC-GAN algorithm
[39]. This approach addresses the challenge of variation in the light source during
image acquisition by formulating the color constancy task as an image-to-image
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translation problem. As a result, the DermoCC-GAN algorithm is capable of
generating a normalized color version of the images, thereby enhancing the accuracy
of dermatological diagnoses.

2.1.3 Atlas
The Atlas dataset consists of over 2000 clinical and dermoscopy color images,
along with structured metadata specifically designed for training and evaluating
computer-aided diagnosis (CAD) systems. This dataset is useful for training and
evaluating CAD systems due to the inclusion of both images and corresponding
metadata [40].

2.1.4 Novara
The dataset in question is comprised of images obtained by the dermatologists at the
Dermatology Section of Azienda Ospedaliera Universitaria Maggiore della Carità
in Novara. These images were captured using the HEINE Delta 20T dermatoscope.
The images are 24-bit RGB color images with a resolution of 2272x1704 pixels. The
dataset is splitted into 2 different version, respectively called ’Novara Good Quality
(GQ)’ and ’Novara Bad Quality (BQ)’ based on their quality images. The Novara
GQ dataset, which comprises of images that have been meticulously selected for
their exceptional resolution, is considered to be among the most superior datasets
available.

2.1.5 Nurugo
This dataset was obtained using the Nurugo Derma, a smartphone lens that allows
for the analysis of skin features through a 38x magnification lens. However, this
tool has several limitations, including glare effect artifacts due to skin reflection
and shadow effects in the corners of the images. In this study, these limitations
were considered when using the dataset.

2.1.6 PH2
The dermoscopic images within the PH2 dataset were acquired at the Dermatology
Service of Hospital Pedro Hispano, located in Matosinhos, Portugal, using the
Tuebinger Mole Analyzer system with a magnification of 20x [41]. These images
are 8-bit RGB color images with a resolution of 768x560 pixels. The database
consists of 200 dermoscopic images of melanocytic lesions, including:

• Common Nevi: 80 images
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• Atypical nevi: 80 images

• Melanomas: 40 images

2.2 Preprocessing: Data Preparation
2.2.1 Data Analysis
Dataset analysis is one of major aspect to contribute in a good results of neural
network. Digital medical images commonly have complex nature due to different
dimension resolutions, acquisition conditions and irregular lesion borders. Specif-
ically, dermoscopic images of the ISIC Archive present various size resolutions
(ranging from 600x450 to 6661x4499), photographic angles and lightening condi-
tions. Moreover, most of the images may also be affected from artifacts such as
black frame, hair strands, ruler measures and air bubbles, as shown in Figure 2.1.
As first step of pre-processing pipeline, images from ISIC Archive were visually
observed and only those heavily compromised due to artifacts or extremely poor
quality (e.g., out-of-motion, blurry effects) were discarded. However the main goal
is to maintain the variability of the dataset as high as possible in order to increase
the network generalization capabilities in real-world scenario, hence, including
images with acceptable artifacts. Images that were discarded in this phase have
been used as Validation Set. As second step, only images with resolution size equal
or greater than a specific threshold (set to 1024x1024) were kept. In fact, some
neural networks architecture requires as input images of specific size. Images that
were discarded in this second phase have been included into the Test Set to validate
the proposed GAN models’ performance. Data analysis leads to almost half the
total amount of initial images from 33000 to about 18000 samples.

2.2.2 Image Processing
The application of image processing techniques using the Python libraries openCV
and skimage was necessary in order to prepare the images for use as inputs for
GAN models. This involved a multi-step process involving multiple conditional
loops.

Dark Corner Artifact Removal

The first step involved checking for the presence of Dark Corner artifacts. To do
this, a border frame of the image with a selected thickness (20 pixels) was analyzed.
If the mean intensity of the border frame was found to be below a predetermined
threshold, it was considered to be near-black, indicating the presence of the black
frame artifact. In this case, the objective was to delimit the useful skin areas by
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Figure 2.1: Examples of dermoscopy images affected from artifacts such as hair
strands, ruler measures, air bubbles, and etc.

identifying their edges and reducing the dark frame areas. The following pipeline
was applied: an image was loaded and read, and subsequently transformed from
the RGB color space to grayscale. Otsu thresholding was applied to create a binary
mask, representing the region of interest (ROI), by identifying the optimal threshold
value that maximizes the variance between two classes of pixels. To refine the
mask and remove any noise or small irrelevant regions, morphological operations
were applied, specifically opening and closing. The contours of the mask were then
calculated, and among them, the largest contour was selected. The bounding box
of the selected contour was computed to acquire the coordinates of the ROI, which
were then utilized to crop the original RGB image around the region of interest.
These steps were crucial in identifying and extracting the ROI from the image,
which was then used for further analysis.

Rectangular to Square Image Splitting

The second step involves checking the dimensions of the image. If the image is
already squared (i.e., the height and width are equal) or even better, 1024x1024, it
is saved without any further processing, except for a resize operation if necessary.
If the image has a rectangular shape of a larger size resolution, it must be resized
to the desired dimensions. In this case, the difference between the height and
width is compared to a threshold (set to 1000). If the difference is larger than this
threshold, the image is split into three sub-images and saved, as shown in Figure
2.3. Otherwise, a simple resize operation is performed on the complete image.
At the end of this second pipeline process, all images will have a dimension of
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Figure 2.2: Dark Corner Artifact Removal: pipeline process.

1024x1024.

2.2.3 Data Augmentation
Deep neural networks often require a large amount of data to achieve good per-
formance. Data augmentation is a technique that can be used to increase the
number of available images during training by applying randomized alterations
to the data, thereby increasing the variability of the dataset. This can help to
reduce overfitting in deep learning models and improve performance on benchmark
datasets by making the model more robust through the use of a larger amount
of data during training. For this study, data augmentation was applied using
the Python library Albumentations [42], which provides fast and flexible image
augmentations by implementing a wide range of image transform operations for
various computer vision tasks. Classic augmentation techniques such as affine trans-
formations were carefully chosen and tested with appropriate parameters in order
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Figure 2.3: Rectangular to Square Image Splitting: pipeline process.

to preserve the characteristics of the skin lesions. In addition to these commonly
used transforms, other operations such as grid distortion and elastic transform were
lightly applied, as medical imaging often deals with non-rigid structures that may
exhibit shape variations. Each transform in Albumentations has a parameter that
sets the probability of applying that augmentation transform to the given image
within the augmentation pipeline. The following data augmentation techniques
were used:

• Flipping: due to the nature of dermoscopic images, flipping augmentation is
particularly suitable. It was applied to one or both axes (vertical or horizontal).
The flipping probability was set to 1, indicating that all images were subjected
to flipping operations. Given the three possible flipping operations, namely
vertical flip, horizontal flip, and a combination of both and the no flipping
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transformation, each operation was assigned a probability of 25%. This ensured
that each image had an equal chance of being flipped in any of the three ways
or not flipped at all.

• Scaling and shearing: images of the same skin lesion are often taken multiple
times with different zoom ratios and angles.
To simulate similar conditions, a scaling operation was applied, randomly
zooming in within the interval [0.01% − 0.05%], while keeping the original
aspect ratio. Additionally, a shearing operation was applied, slightly stretching
the image within an interval range of [-5,5] degrees. The probability of both
operations occurring was set to 30%. The probability of both operation to
occur was set the 30%.

• Brightness, Contrast and Gamma: these ensure that the trained network
is robust to different intensity differences, as images of the same skin lesion are
often taken multiple times under different lighting conditions. Brightness and
contrast were randomly applied together using a brightness limit of 0.1 and a
contrast limit of 0.2, which are amount parameters that control the intensity
of the operation transform. The Gamma transform was applied using a range
of [60,140]. The probability of both transforms was set to 33%.

• Grid Distortion and Elastic Transform: these are spatial augmentations
commonly applied to biomedical images [43]. They are similar to stretching
algorithms, but more complex and with more freedom.
Both geometric transforms were set to occur with a probability of 40%.

Furthermore, each of the four main transformations provided additional options that
enabled the omission of the transformation altogether. This added an extra degree
of heterogeneity and randomness to the dataset, providing the model with a wider
range of variation in the training data, which in turn increases its generalizability
and robustness. It is important to avoid augmentations that are unlikely to occur
in real-world dermoscopic images. Moreover, every single augmentation transform
was carefully tested to optimize the range of parameters values. This is crucial in
order to preserve the original anatomical content of the images.

2.2.4 Paired Dataset Generation
The task of Super Resolution Image Reconstruction necessitates a dataset com-
prising pairs of low-resolution (LR) and high-resolution (HR) images. In the
present study, custom degradation and enhancement procedures were employed
to transform existing images, including augmented ones, into LR and HR images,
respectively.
Real-world images are commonly subject to unknown and complex degradation
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Figure 2.4: Data Augmentation: pipeline process.

processes, such as noise and compression artifacts. Consequently, models trained
on datasets generated using manual degradation methods may not exhibit desirable
performance in real-world scenarios. Blind super-resolution approaches aim to
restore LR images degraded by unknown and complex processes while most classical
SR methods assume a bicubic downsampling kernel and usually fail in real images.

Degradation

Existing methods can be broadly classified into explicit and implicit modeling
based on the underlying degradation process [44]. Explicit models employ classical
techniques such as blurring, noise addiction, downscaling, and JPEG compression,
while implicit models utilize data distribution learning with Generative Adversarial
Networks (GANs) to learn the degradation model. However, these methods are
limited to the degradations observed in the training dataset and may not generalize
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effectively to out-of-distribution images. In this study, the pipeline implemented
in the Real-ESRGAN [44] was replicated with some customization: firsly a classic
explicit method was elaborated, involving the following process:

• Blur: blur degradation was implemented as a convolution with a linear blur
filter (kernel). Both isotropic and anisotropic Gaussian filters were used, as
well as a Generalized Normal filter (Advanced) with randomly selected kernel
parameters. In addition, a 2D sinc filter was also included to create ringing or
overshoot artifacts. Since three different types of Blur filters were used, each
was set to occur with a probability of 33.3% to ensures that the images were
subjected to a diverse range of blur effects.

• Noise: two commonly-used noise types were used: additive Gaussian noise
and Poisson noise. Additive Gaussian noise was used, which has a probability
density function equal to that of the Gaussian distribution. The noise intensity
is controlled by the standard deviation (i.e., sigma value) of the Gaussian
distribution. When each channel of RGB images has independent sampled
noise, the synthetic noise is color noise. To also synthesize gray noise, the
same sampled noise was applied to all three channels. Poisson noise, also
referred to as ISO in Albumentations, follows the Poisson distribution. It is
usually used to approximately model the sensor noise caused by statistical
quantum fluctuations, that is, variation in the number of photons sensed at a
given exposure level. Poisson noise has an intensity proportional to the image
intensity, and the noises at different pixels are independent. In this case, the
three types of noise were set to be applied with a probability of 33.3% each.

• Downscale: it is an operation for synthesizing low-resolution images which
decreases image quality by downscaling and upscaling back. There are sev-
eral algorithms such as nearest-neighbor interpolation, area resize, bilinear
interpolation, and bicubic interpolation. In order to include more diverse
and complex downscaling effects, a random interpolation was performed from
the above four choices, with random scale factor interval, each one with a
probability of 25%.

• JPEG Compression: compression is a commonly used technique of lossy
compression for digital images. Unpleasing block artifacts are usually in-
troduced by the JPEG compression. The quality of compressed images is
determined by a quality factor q ∈ [0,100], where a lower q indicates a higher
compression ratio and worse quality. The probability of compression to occur
was set to 80%

A classic degradation pipeline typically involves convolving the image with a blur
kernel k, simulating the effect of blur that may occur due to camera shake or
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other factors. Next, a downscaling operation with a scale factor (d) is performed,
decreasing the quality of the image and simulating the effect of low-resolution. The
result of this process is the low-resolution image, which is further degraded by the
addition of noise (n). Finally, the image is compressed using the JPEG algorithm,
as this is a widely used method for image compression and commonly encountered
in real-world images, resulting in the output image, y. However, to synthesize
more practical degradations and mimic the real degradation generation process,
the classical degradation model can be repeated one or two more times (m), as
shown in the equation 2.1, with the addition of a random downscale and different
parameters randomization. This approach increases the diversity of the degraded
images, making the model more robust to real-world scenarios [44]. The number
of repetitions is also based on the computational resources that are available, to
reach a good balance between simplicity and effectiveness, and to ensure that the
model is not overfitting on the training data.

y(x) = [((x ⊛ k)d + n)JP EG]m (2.1)

Enhancement

On the other hand, high-resolution images were obtained through the use of a
sharpening algorithm, which enhanced the sharpness and visual definition of texture
edge contours. This was followed by the application of a light Gaussian smoothing
filter to prevent the introduction of visible artifacts.
Eventually, the following generated paired image dataset is subsequently prepared
for input into GAN models:

Paired Dataset # Images
Training Set Low Resolution High Resolution 36618
Validation Set Low Resolution High Resolution 3039

Table 2.2: LR-HR paired image dataset generated to train the model.

2.3 Network Architecture: Real-ESRGAN
The Real-ESRGAN [44] is an adapted version of the Enhanced Super-Resolution
GAN (ESRGAN) model [45], which itself was an improved version of the SRGAN
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Figure 2.5: Degradation: pipeline process.

model. The goal of the Real-ESRGAN is to restore a greater number of real-world
images and achieve better visual performance compared to previous works, making
it more practical for use in real-world applications. To achieve this, the Real-
ESRGAN model has improved upon certain aspects of the original SRGAN and
ESRGAN network architecture, including:

• Generator: the generator of the Real-ESRGAN model has been modified
in order to improve the quality of the recovered images compared to the
SRGAN model. These modifications include replacing the original basic block
with a Residual-in-Residual Dense Block (RRDB), which combines multi-level
residual network and dense connections. This results in a higher capacity and
easier training. Batch Normalization (BN) layers were removed, as they have
been found to introduce artifacts. Removing BN layers also helps to improve
generalization ability and reduce computational complexity and memory usage.
In addition, residual scaling and smaller initialization were used to facilitate
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Figure 2.6: Enhancement: pipeline process

the training of a very deep network, as the residual architecture is easier
to train when the initial parameter variance is smaller. The Real-ESRGAN
maintains the same generator architecture as the ESRGAN.

• Discriminator: the discriminator of the Real-ESRGAN model has been
modified in order to address a larger degradation space compared to the
ESRGAN model. The original design of the discriminator, a VGG-style
discriminator, has been improved to a U-Net design with skip connections.
The U-Net structure provides detailed per-pixel feedback to the generator,
which can improve local details, but also introduces unnatural textures and
increases training instability. To address these issues, spectral normalization
(SN) regularization is used to improve restored textures and stabilize the
training dynamics. Using the U-Net discriminator with SN increases the
discriminator’s capability and stabilizes the training dynamics.
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Figure 2.7: Real-ESRGAN scheme

• Perceptual Loss: in order to improve the effectiveness of the loss function, a
modified perceptual loss was developed for the Real-ESRGAN model. This loss
function uses the VGG features before activation, rather than after activation
as in the SRGAN model. This modification has been found to produce
sharper edges and more visually pleasing results, as it has been demonstrated
empirically. Consequently, the total loss for the generator can be expressed as
follows:

LRealESRGAN = γLpercep + λLGAN + ηL1 (2.2)
where Lpercep represents the Perceptual Loss and γ serves as the hyperparameter
that regulates the weight of this loss. The adversarial loss function, LGAN , is
expressed as follows:

LGAN = log D(y) + 1 − log D(G(x)) (2.3)

LGAN is controlled by the hyper-parameter λ. Finally, L1 is the L1 normaliza-
tion term which aims to produce outputs as close as possible to the target,
with the hyper-parameter η regulating its weight.

L1 = ||y − G(x)||1 (2.4)

2.4 Training
Instead of training the Real-ESRGAN network from scratch, the transfer learning
strategy has been applied to reduce the overall training time and costs [28]. The
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(a) Real-ESRGAN Generator

(b) Real-ESRGAN Discriminator

Figure 2.8: Real-ESRGAN architecture.

concept of transfer learning allows models that are trained from scratch on general
large-scale image datasets, in this study the ImageNet dataset [46], to be specialized
for specific tasks by using a considerably smaller dataset that is problem-specific.
In order to evaluate the performance of the network under different conditions, it
was trained three times using varied configurations. Each training session involved
the alteration of only one of the three main components of a deep neural network:
the training data, the hyperparameters and the architecture. Specifically:

• Version 0: in the first training session, the model was subjected to training
utilizing the initial paired dataset, that had been generated using a simplified
pipeline of data augmentation and degradation processes. Specifically, the
augmentation process excluded the distortion transformation, while the degra-
dation pipeline only comprised downscaling and noise addition operations.
Moreover, degradation was applied only once using a downscaling with a fixed
scale factor of 4 and certain augmentation parameters were either fixed or ad-
justed within a restricted range. This version serves as a baseline for evaluating
any future modifications made to the training dataset and hyper-parameters.

• Version 1: for the second training session, a new paired dataset was generated
through a more complex augmentation and degradation pipeline, as detailed
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in Chapters 2.2.3 and 2.2.4. For instance, the degradation process was applied
twice, using a downscaling operation with a randomly selected scale factor in
the interval [4,8]. Additionally, all feasible parameters were randomly adjusted
within a wider yet acceptable range in the augmentation and degradation
processes. The architecture and hyperparameters were maintained consistent
with those utilized in the Version 0, in order to evaluate the impact of expanding
the diversity, thus increasing the heterogeneity, of the training set.

• Version 2: in the third training session, the dataset utilized was consistent
with that employed in the Version 1. However, modifications were made to the
hyperparameters, such as the optimizer configurations. An examination was
conducted to determine the appropriate number of iterations (epochs) and
scaling criterion through experimentation with various learning rate schedules.
The Adam optimization algorithm was replaced with AdamW, and additional
optimization algorithms such as Stochastic Gradient Descent (SGD) were
experimented. Additionally, modifications were made to the loss configurations
and the hyperparameters that regulate their weights. Several experiments
were performed in which different loss configurations were implemented. In
particular, the ’vanilla’ LGAN Loss was substituted with the ’WGAN’ Loss and
the ’LS’ Loss, and the L1GAN Loss was replaced by the ’MSE (L2)’ Loss and
the ’Charbonnier’ Loss. It is worth noting that the Lperceptual Loss remained
unchanged across all experiments.

Throughout all training sessions, the architecture configurations were kept the
same, consisting of a generator formed by 23 Residual-in-Residual Dense Blocks
(RRDBs) and a U-Net serving as the discriminator. The most optimal training
session out of the three listed was conducted for approximately 100000 iterations,
employing a batch size of 1 and utilizing the Adam optimization algorithm with
an initial learning rate of 10−3, β1 = 0.9 and β2 = 0.999. Additionally, a learning
rate scheduler was implemented, which decreased the learning rate by a factor of
0.5 after every 25000 iterations, while retaining the original loss configurations
used in the Real-ESRGAN original implementation. All the experiments have been
conducted on a NVIDIA RTX 3090 GPU (24GB VRAM).
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Figure 2.9: Summarization scheme of the proposed Real-ESRGAN based approach
main steps: (a): analyzing, processing, augmenting and generating LR-HR pair
dataset. (b): employing the Real-ESRGAN to generate SR images. (c): validation
and evaluation through Testing on several datasets, IQA metrics and skin lesion
classification.
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Results

3.1 Evaluation Methods

3.1.1 GANs Metrics
As the utilization of generative adversarial networks (GANs) in various real-world
applications has increased with the advancement of GAN architectures, various
qualitative and quantitative metrics have been proposed for evaluating GAN
performance [47]. However, a universally accepted benchmark metric for evaluating
the comprehensive performance of a GAN architecture has not yet been established.
Despite this, certain essential and desirable characteristics have been identified for
GAN evaluation metrics, which enable the measurement of GAN performance and
facilitate comparison. These characteristics include: the preference for models to
generate samples that are markedly distinguishable from real ones, sensitivity to
overfitting, clearly defined boundary values, responsiveness to image distortions and
transformations, consistency with human perceptual judgments and evaluations of
models, and low sample and computational complexity. Some of the most utilized
metrics for measuring performance of GANs are:

• Inception Score (IS): measures the quality of generated images by evaluating
their diversity and their perceived realism. It is based on the idea that a model
that generates high-quality images will also produce a diverse range of images.
The IS is calculated using the Inception v3 model, which is a pre-trained
image classification model. The generated images are fed into the Inception v3
model, and the model’s output is used to estimate the entropy of the generated
images. The IS is then calculated as the average KL divergence between the
predicted and true class distributions, where the true class distribution is
approximated by sampling a large number of images from the training set.
One advantage of the IS is that it is relatively easy to implement and compute.
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It also provides a single scalar score that can be used to compare different
GAN models. However, the IS has several limitations. First, it relies on the
Inception v3 model, which may not always be the most appropriate choice for
evaluating GAN models. Second, the IS does not take into account the overall
quality of the generated images, only their diversity and perceived realism.
Finally, the IS is sensitive to the size of the generated image dataset, which
can make it difficult to compare GAN models trained on different datasets
[47].

• Frechet Inception Distance (FID): is a metric that measures the distance
between the distributions of real and generated images. It is based on the idea
that if the distributions of real and generated images are similar, then the
generated images are of high quality. The FID is calculated by first extracting
the activations of the Inception v3 model for both the real and generated
images. The activations are then used to estimate the means and covariances
of the real and generated image distributions. The FID is then calculated
as the square root of the sum of the squared differences between the means
and the Frobenius norm of the difference between the covariances. A lower
FID value indicates a smaller distance between the two distributions. FID is
known for its strong discriminative capabilities, robustness, and computational
efficiency. However, it is based on the assumption that the features of the
data follow a Gaussian distribution, which is not always the case [47].

3.1.2 Image Quality Assessment (IQA)
As the use of digital imaging and communication technologies continues to expand
and become more diverse, it becomes increasingly important to accurately assess the
quality of images. The goal of image quality assessment (IQA) is to develop metrics
that can automatically predict the visual quality of an image based on its perceived
attributes by human viewers. This process can be divided into subjective methods,
which rely on human perception, and objective methods, which use computational
models to predict image quality. Subjective methods more closely align with human
perception, but can be inconvenient, time-consuming, and expensive. Therefore,
objective methods are currently the most widely used approach to IQA. However,
there can be significant discrepancies between the results of subjective and objective
methods due to the difficulties in accurately capturing human visual perception
with objective methods [48].
Image quality can be impaired by various distortions during image acquisition
and processing, such as noise, blur, ringing, and compression artifacts. A valuable
quality metric should closely align with the subjective perception of quality by a
human observer. Quality metrics can also be used to track unperceived errors as
they propagate through an image processing pipeline and can be used to compare
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the performance of different image processing algorithms. If a reference image
without distortion is available, it can be used to directly compare the target and
reference images by using Full-Reference (FR) metrics. For example, when assessing
the quality of compressed images, an uncompressed version of the same image can
be used as a reference. If a reference image is not available, No-Reference (NR)
image quality metrics can be used instead. These metrics calculate quality scores
based on expected image statistics. The computation of the following metrics was
performed utilizing functions implemented within Matlab.

Full Reference (FR) Metrics

Full-reference algorithms compare the input image against a pristine reference
image with no distortion [49].

• Peak Signal-to-Noise Ratio (PSNR): it is a widely utilized metric for
evaluating the reconstruction quality of lossy image transformation techniques
(e.g., image compression), by comparing the quality of a generated image to a
reference image. PSNR is computed using the maximum possible pixel value
and the Mean Squared Error (MSE) between the images. Given a reference
image, denoted as GT, and a reconstructed image, denoted as SR, the MSE
and PSNR (in dB) between GT and SR are defined as follows:

MSE(x, y) = 1
mn

mØ
i=1

nØ
j=1

(xij − yij)2 (3.1)

PSNR(x, y) = 10 ∗ log10
{max[max(x), max(y)]}2

MSE
(3.2)

In general cases using 8-bit image, the maximum pixel value is equal to 255
and PSNR typical values range from 20 to 40, with higher values indicating a
higher quality image. However, PSNR only takes into account the difference
in pixel values at the same positions, rather than considering human visual
perception, which can result in inadequate representation of the quality of
super-resolved images in real-world scenarios where human perception is of
greater importance. Despite this limitation, PSNR remains the most widely
used evaluation criterion for super-resolution models due to its ability to
facilitate comparisons with previous work and the lack of entirely accurate
perceptual metrics.

• Structural Similarity Index Measure (SSIM): is a method of quantifying
the similarity between two images by attempting to model the perceived change
in the structural information of the image, and has been widely used in image
processing and computer vision due to its ability to provide a more accurate
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representation of the perceived quality of images compared to other commonly
used metrics such as peak signal-to-noise ratio (PSNR). This approach is based
on the idea that the human visual system (HVS) is highly adept at extracting
structural information from the visual field, and thus SSIM is proposed as a
method of measuring the structural similarity between images by taking into
account three relatively independent comparisons: luminance, contrast, and
structure. SSIM can be expressed through these three terms as:

SSIM(x, y) =
è
(l(x, y))α (c(x, y))β (s(x, y))γ

é
(3.3)

Here, l is the luminance (used to compare the brightness between two images),
c is the contrast (used to differ the ranges between the brightest and darkest
region of two images) and s is the structure (used to compare the local
luminance pattern between two images to find the similarity and dissimilarity
of the images) and α, β and γ are the positive constants. Again luminance,
contrast and structure of an image can be expressed separately as:

l(x, y) = 2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) = 2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) = σxy + C3

σxσy + C3

If α = β = γ = 1, then the index is simplified as the following form:

SSIM(x, y) = (2µxµy + C1) + (2σxσy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(3.4)

where x and y are the two images being compared, µx and µy are the means
of the images, σ2

x and σ2
y are the variances of the images, and σx∗y is the

covariance between the images. C1 = (k1 ·L)2 and C2 = (k2 ·L)2 are constants
for avoiding instability, with k1 ≪ 1 and k2 ≪ 1 being small constants, and L
is the maximum possible pixel value. The SSIM value varies between -1 and
1, where a value of 1 shows perfect similarity.
In addition, due to the possible unevenly distribution of image statistical
features or distortions, assessing image quality locally may be more reliable
than applying it globally. Thus mean structural similarity (MSSIM) can be
used for assessing SSIM locally. Specifically, it splits the images into multiple
windows, assesses the SSIM of each window, and finally averages them as the
final MSSIM.

• Multiscale Structural Similarity Index Measure (MS-SSIM): is a
multiscale version of SSIM that allows for more flexibility in incorporating
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image resolution and viewing conditions than a single scale approach. MS-
SSIM ranges between 0 (low similarity) and 1 (high similarity). It is an
advanced version of SSIM which evaluates various structural similarity images
at different image scale.

• Feature Similarity Index Measure (FSIM): is a technique for evaluating
the similarity between two images based on their Phase Congruency (PC)
and Gradient Magnitude (GM). PC is a method of detecting image features
that is resistant to changes in lighting and contrast, and can also identify
additional features by analyzing the image in the frequency domain. GM,
on the other hand, involves calculating image gradients using convolution
masks. The gradient magnitude of an image can be defined as the square
root of the sum of the squares of the horizontal and vertical gradients of the
image. The phase congruency of f1 and f2 can be represented by PC1 and
PC2, respectively, and the gradient magnitude maps extracted from the two
images can be denoted by G1 and G2. The FSIM can be calculated based on
PC1, PC2, G1, and G2. First, the similarity between the two images can be
calculated using their phase congruency maps as follows:

Spc = 2PC1 · PC2

PC2
1 + PC2

2 + T1
(3.5)

where T1 is a positive constant that increases the stability of Spc. Similarly,
the similarity between the two images can be calculated using their gradient
magnitude maps as follows:

Sg = 2G1 · G2 + T2

G2
1 + G2

2 + T2
(3.6)

Where T2 is a positive constant that depends on the dynamic range of gradient
magnitude values. Finally, the overall similarity between the two images,
SSIM, can be calculated by combining §pc and Sg as follows:

FSIM = (Spc)α · (Sg)β (3.7)

where α and β are parameters used to adjust the relative importance of PC
and GM features, usually set to 1 for convenience. The resulting value of
SSIM ranges from 0 to 1, with higher values indicating greater similarity
between the images. While FSIM may be more effective at capturing human
visual perception than other image quality assessment methods such as PSNR
and SSIM, these latter methods are still more commonly used due to their
historical prevalence.
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Non Reference (NR) Metrics

In many situations, it is not possible to access the original or reference version
of an image, making it difficult to use full reference methods for estimating the
quality of a processed image. In these cases, efficient NR-IQA algorithms, also
known as blind or no-reference image quality assessment (B/NR-IQA) algorithms,
are designed to evaluate the quality of an image in an objective and reproducible
way, even when a reference image is not available [48]. The BRISQUE and NIQE
algorithms are both able to efficiently calculate the quality score of an image once
the model has been trained. In contrast, the PIQE is less computationally efficient,
but it has the added advantage of providing local measures of quality in addition
to a global quality score. Overall, No-Reference quality metrics tend to outperform
Full-Reference metrics in terms of their agreement with subjective human quality
scores. This means that no-reference metrics are able to more accurately predict
how humans perceive the quality of an image. As a result, no-reference metrics are
widely used in a variety of applications for objectively and reproducibly evaluating
the quality of images [50].

• Natural Image Quality Evaluator (NIQE): is based on models trained
upon a database of pristine images to compute a quality score and it is used
to measure the quality of images with arbitrary distortion. NIQE is opinion-
unaware, and does not use subjective quality scores [48].
It utilizes natural scene statistics (NSS) as predictable statistical features in
their training process. NSS features, which are based on normalized luminance
coefficients in the spatial domain and modeled as a multidimensional Gaussian
distribution, are used to identify distortions in the image. To determine the
NIQE score of images, Matlab niqe function was utilized, to extract natural
scene statistics (NSS) features from statistically significant blocks in the
distorted image. The function then fits a multivariate Gaussian distribution to
these features and calculates the image quality score as the distance between
this distribution and the distribution fitted to a reference image.

• Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE):
is designed to evaluate the perceived quality of images that have undergone
some kind of spatial processing or distortion. In order to accomplish this, a
BRISQUE model is trained on a database of images with known distortions.
As a result, BRISQUE is limited in its ability to evaluate the quality of images
with different types of distortions. BRISQUE, unlike NIQE, is opinion-aware,
meaning that subjective quality scores are provided alongside the training
images. This allows the model to be trained on data that reflects human
perceptions of image quality [50]. In terms of its training process, BRISQUE
shares some similarities with the NIQE. However, it differs in how it utilizes
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natural scene statistics (NSS) features to compute a quality score. Specifically,
BRISQUE extracts NSS features from the distorted image and uses Support
Vector Regression (SVR) to predict a quality score.

• Perception based Image Quality Evaluator (PIQE): is also an opinion-
unaware and unsupervised algorithm, which means it does not require a
trained model. PIQE is able to measure the quality of images with arbitrary
distortion and has been shown to perform similarly to the Natural Image
Quality Evaluator (NIQE) in many cases. To compute a quality score, PIQE
estimates block-wise distortion and measures the local variance of perceptibly
distorted blocks [51]. This approach allows PIQE to provide a detailed analysis
of the quality of an image at a local level, in addition to a global quality score.

3.1.3 Texture Analysis
Color and texture are the two main types of characteristics used by dermatologists
to differentiate between skin melanocytic patterns. Dermoscopic structures, such
as reticular patterns and streaks, can be described using texture features, as these
markers represent the spatial intensities in an image and allow for the identification
of different shapes. Texture analysis methods can be divided into several categories:
statistical, structural, model-based, and signal processing-based. Both texture and
color are widely recognized as important factors in image analysis, and numerous
approaches for texture analysis have been successful in image processing [52]. To
conduct color texture analysis, skin images were converted to the YCbCr color space,
extracting textural information from the luminance plane and chrominance features,
which allows for a clear separation between texture and color features. In this study,
texture analysis was performed on the Novara GQ Test Set using the Pyradiomics
[53] library in Python. To do so, region of interest (ROI) segmentations, around
the lesion, were manually created using the ImageJ software, and all available
features were measured. Finally, only a few features that were considered most
important for the study’s application were selected.

Neighbouring Gray Tone Difference Matrix Features (NGTDM)

The Neighbouring Gray Tone Difference Matrix (NGTDM) is a matrix that quanti-
fies the difference between a particular gray value and the average gray value of its
neighbors within a certain distance δ [53]. Some extracted features are:

• Coarseness: a measure of the average difference between the central pixel
and its neighbors, and it is an indicator of the spatial rate of change. A higher
value of Coarseness corresponds to a lower spatial change rate and a locally
more uniform texture
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• Contrast: is a measure of the intensity change in the image and is also
dependent on the overall gray level dynamic range. An image with a high
contrast has a large range of gray levels and large changes between pixels and
their neighbors.

• Complexity: reflects the number of primitive components in an image, with
a higher value indicating a non-uniform image with many rapid changes in
gray level intensity.

• Strength: is a measure of the primitives in an image, with a higher value
indicating that the primitives are easily defined and visible, i.e. an image with
slow intensity changes but large coarse differences in gray level intensities.

3.1.4 Task-based Evaluation
Another effective way to assess the quality of image reconstruction in super-
resolution (SR) models is to evaluate the performance of other vision tasks using
the original and reconstructed high-resolution (HR) images as input. This involves
feeding the images into a trained model and comparing the impact on prediction
performance. The vision tasks used for evaluation may include object recognition,
image classification, and image segmentation, among others. This approach takes
into account the fact that SR models can often improve the performance of other
vision tasks [33].

Skin Lesion Classification

In order to evaluate the performance of the Real-ESRGAN, a deep learning network
was implemented for the purpose of classifying skin lesions. The previous Test
Set created from ISIC Archive Dataset was utilized as the initial dataset for the
classification task. This dataset contained 7 classes, but was imbalanced, with
insufficient instances of the VASC and DK classes in comparison to the remaining
5 classes. As a result, these two classes were removed. Data augmentation was
then applied, in order to balance the number of images per label for the training
phase. Finally, the dataset was partitioned into training, validation, and test sets
in an 75%, 10%, 15% proportion, respectively: The ResNet50 architecture [30, 28],
was selected for this task, involving a transfer learning approach by utilizing a
pre-trained model on the large ImageNet [46] dataset and adapting it to a new
task using a custom dataset. This approach saved time and improved performance
in comparison to training a model from scratch. The deep learning network was
trained using an input size of 512x512x3 pixels, to preserve as much information
as possible, given the medical nature of the content. The batch size was set to 64
and a learning rate of 10−3 was initially used, which was decreased by a factor
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ISIC Test Set
Label Training Set Validation Set Test Set Total
AKIEC 921 103 181 1025
BCC 937 105 185 1227
KL 971 108 191 1270
ML 961 107 189 1257
NV 946 106 186 1238
Total 4,736 529 932 6,198

Table 3.1: The ISIC Test Set was further divided into new Training, Validation,
and Test sets to be used in the classification tasks.

of 0.1 every 90 epochs using a scheduler. The Adam optimizer and Focal Loss
were chosen as the optimization and loss function due to their efficiency and low
computational cost, respectively. The training process was completed over a total
of 360 epochs.
To evaluate the performance of the classifier, the following metrics were utilized:
accuracy, precision, recall, and F1-score. These metrics provide a comprehensive
understanding of the model’s performance, including its ability to correctly identify
positive cases (recall) and avoid false positives (precision). The F1-score is a
harmonic mean of precision and recall, providing a balance between the two. These
metrics were calculated using the following equations:

Accuracy = TP + TN

TP + TN + FP + FN
(3.8)

Precision = TP

TP + FP
(3.9)

Recall = TP

TP + FN
(3.10)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
= 2 ∗ TP

2 ∗ TP + FP + FN
(3.11)

The term True Positive (TP) refers to a situation where the model’s prediction of
the positive class is in accordance with the actual condition. As an illustration,
in the context of a medical diagnostic model, a True Positive result would signify
that the model has accurately identified the presence of a disease in a patient who
indeed has the disease. Conversely, True Negative (TN) refers to the scenario
where the model’s prediction of the negative class aligns with the actual condition.
In the previously mentioned medical diagnostic example, a True Negative result
would indicate that the model has correctly determined the absence of the disease
in a healthy patient. False Positive (FP) refers to a situation where the model’s
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prediction of the positive class is inconsistent with the actual condition. In the
medical diagnostic example, a False Positive result would signify that the model
has erroneously diagnosed the presence of the disease in a healthy patient. False
Negative (FN) refers to a scenario where the model’s prediction of the negative
class contradicts the actual condition. In the medical diagnostic context, a False
Negative result would imply that the model has failed to detect the presence of the
disease in a patient who indeed has the disease.

3.2 Results Analysis
3.2.1 Epoch Choosing Criteria
During the training phase of each model, the images within the validation set were
repeatedly processed and restored to their super-resolution version utilizing the
current model weights, at an interval of 5000 iterations, with the exception of
the training Version 1, during which the model was saved every 2000 iterations.
The model weights and corresponding super-resolution images were preserved at
each evaluation point for further analysis. Upon the completion of the training
session, the performance of each model was evaluated using the image quality
metrics outlined in Chapter 3.1.2 of the study. To determine the optimal iteration
from which to select the corresponding model weights for eventual inference, a
specific focus was placed on the No-Reference metric known as NIQE, due to
its effectiveness and the fact that it does not require the availability of a High
Resolution reference image. In instances of uncertainty resulting from equivalent
or similar NIQE metrics, the Full-Reference metrics scores of SSIM and FSIM were
also taken into consideration, choosing the model weights belonging to the iteration
with the higher score of SSIM and FSIM. Therefore, an hierarchical evaluation
algorithm approach was implemented to enable the identification of the model
iteration that demonstrated the highest level of image quality performance for the
given task. Typically, the latter iterations of the training process exhibited the
best metric scores, as the model’s proficiency at the given tasks generally improves
with increased training.
As previously mentioned in section 2.4, three different models were evaluated in order
to identify the most effective dataset Preprocessing techniques and hyperparameter
configurations for the Real-ESRGAN architecture to use in the task of reconstructing
high-resolution skin lesion images from low-quality ones. In the case of training
Version 0, the weights model belonging to the final iteration was chosen as the
best, as a thorough examination of the training log information revealed that the
PSNR and SSIM metrics were superior to those of previous iterations. As depicted
in Figure 3.1, the model iteration 33000 was selected as the optimal model in the
training Version 1 based on its superior performance in terms of the primary metric,
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(a) NIQE

(b) PSNR (c) SSIM, FSIM, MS-SSIM

Figure 3.1: Epoch choosing criteria in the Training Version 1.

NIQE, and secondary metrics, SSIM and FSIM. Despite the fact that the PSNR
value for this model was not the highest among the candidates, it was not given as
much weight in the selection process due to its lower reliability as an IQA metric.
However, it was still calculated as it holds historical and literature significance as
an IQA metric.
As illustrated in Figure 3.2, the model iteration 125000 was determined as the
optimal model in training Version 2 utilizing the same criteria as in the previous
training version. However, upon examination of the figure, it can be observed
that the model’s performance begins to converge around iteration 700000. This
suggests that it may have been a more efficient strategy to terminate the training
process prior to this point, as a model within that range of iterations would likely
have performed comparably to the ultimately selected model, thus avoiding further
resource and time expenditure. Ultimately, the three best models based on the
training Versions 0, 1, and 2 were selected for use in restoring all images of the
available Test Sets.
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(a) NIQE

(b) PSNR (c) SSIM, FSIM, MS-SSIM

Figure 3.2: Epoch choosing criteria in the Training Version 2.

3.2.2 IQA Metrics on Test Sets
Once the images of all available test sets were restored, two versions of each Test
Set were obtained: the ground truth version, which contains the original images,
and the super-resolution version, which contains the restored images obtained by
restoring the ground truth image using the trained GAN model. This process was
repeated for each of the three model obtained respectively from Training version 0,
1 and 2.
Subsequently, Image Quality Assessment metrics of all test sets were measured in
order to obtain the metric scores for each image within each individual Test Set.
The resulting values were then analyzed using statistics such as the mean score,
standard deviation, and 5% - 95% percentile values. Moreover, these values were
also graphically represented using histograms, as shown in Figure 3.3 for the FR
metrics, and Figure 3.4 corncerning the NR metrics, to facilitate comparison and
analysis. Other than comparing all the test sets results per model version, a direct
comparison between ISIC and Color-Constancy ISIC Test Set was done to assess
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what influence can bring, color standardization of skin images, in terms of quality
and how this can affect the restoration task.

(a) PSNR (b) SSIM

(c) FSIM (d) MS-SSIM

Figure 3.3: Image Quality Assessment Full-Reference (IQA-FR) metrics on
available Test Sets.

The results of the Full-Reference metrics indicate that utilizing a more diverse
dataset and a more sophisticated degradation pipeline improves the performance
of the GAN in restoring images from their low-resolution counterparts. Thus, it
can be inferred that the model generated using the settings of Training Version 1
is generally superior. However, the results obtained from the No-Reference metrics
are somewhat divergent and inconsistent both within each metric and between
them. Nonetheless, it can be stated that the cases where restored Test Set images
(SR) exhibit averagely superior performance in terms of NR IQA metrics when
compared to the original images (GT), are greater than the ones with opposite
situation (e.g., both the ISIC Test Sets and Atlas when referring to NIQE, or the
Atlas and PH2 when referring to BRISQUE).
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(a) NIQE

(b) PIQE (c) BRISQUE

Figure 3.4: Image Quality Assessment No-Reference (IQA-NR) metrics on avail-
able Test Sets.

In terms of the comparison between the ISIC original and the color-standardized
Test Set (CC ISIC), the Full-Reference metrics reveal a similar performance in the
image restoration process for both datasets, with the exception of SSIM which shows
lower performance for the Color-Constancy normalized dataset. On the other hand,
the No-Reference metrics suggest an overall slightly better quality of restoration for
both NIQE and BRISQUE, but a worse performance for the PIQE metric. Drawing
from the obtained outcomes, it can be asserted that Real-ESRGAN demonstrates
effectiveness in both situations. Therefore, it can be concluded that the color
normalization technique does not negatively impact the task of reconstructing
images. Rather, the color standardization and restoration operations executed by
DermoCC-GAN and Real-ESRGAN, respectively, can be combined to produce
higher quality images.
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3.2.3 Visual Assessments on Test Sets

To accurately assess the performance of each model on the available test sets, image
quality assessment (IQA) metrics were supported by direct visual assessments as
a means of quantitatively determining the efficacy of each model respect to the
original ground thruth images and eventually choosing the proper model among the
three. Therefore, model gained from training version 0, 1 and 2 were confronted.

(a) ISIC (b) Color Constancy (CC) ISIC

Figure 3.5: Visual Direct Assessment to evaluate the impact of Super-Resolution
Image Restoration on normal and color-normalized images.

It is apparent through visual observation that all three models perform relatively
well. Nonetheless, Model Version 1 exhibit superior performance compared to
Version 0 and 2, as it is able to restore images from a more complex degradation
space and produce images that are sharper. It is noteworthy that Model Version
1’s outputs are generally smoother and clearer than the original ground truth (GT),
resulting in an improvement in image quality by mitigating artifacts caused by
noise, blur, and compression. Nevertheless, an overall analysis indicates that the
restored images exhibit occasional deficiencies in certain color and texture details
compared to the original ground truth in specific image regions, which could result
in a loss of diagnostic information and potentially lead to inaccurate results in
subsequent processes.
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(a) Novara Good Quality (GQ) (b) Novara Bad Quality (BQ)

Figure 3.6: Visual Direct Assessment grid plot comparison on Good and Bad
quality Novara datasets.

(a) Atlas (b) PH2

Figure 3.7: Visual Direct Assessment grid plot comparison on Atlas, PH2 and
Nurugo Test Sets.
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3.2.4 Comparison: LR, GT, SR
As a further step in the analysis, four images from the Novara Good Quality Test
Test Set were selected to be displayed in a grid format, as shown in Figure 3.8, for
direct visual evaluation of the differences among:

• Low Resolution images (LR): images that were degraded using the same
degradation pipeline involved in the Training Set

• Ground Thruth images (GT): the original images that were downloaded
and left untouched.

• Super Resolution images got from inferencing GT images (SR from
GT): high-quality images obtained by applying the trained GAN model to
restore the GT image.

• Super Resolution images got from inferencing LR images (SR from
LR): high-quality images obtained by applying the trained GAN model to
restore the LR image.

Furthermore, a comprehensive analysis utilizing IQA metrics was conducted on the
entire Novara GQ Test Set to complement the visual assessment provided by the
grid plots. The aim of this analysis was to gain a general understanding of:

• the effectiveness of the degradation process outlined in Chapter 2.2.4, used to
generate the paired dataset, by comparing the original images (GT) and their
degraded counterparts (LR).

• the dissimilarity between restoring the original, undistorted image (SR from
GT) and restoring its low resolution counterpart (SR from LR). In this case,
the original GT images were also involved as pristine images to understand the
effectiveness of the restoration process and the extent to which the restored
SR images preserve significant features while maintaining similarity to the
original GT images.

The results of the comparison, both in terms of visual appearance and through the
utilization of IQA metrics, reveal that the LR images demonstrate a reduction in
image quality, providing evidence that the employed degradation pipeline effectively
covers a broad range of real-world degradation scenarios. Additionally, the SR
images restored from the original, undistorted images (GT) exhibit a higher quality,
with greater texture and feature complexity, both visually and in terms of metrics,
compared to the SR images restored from the low resolution (LR) images. This
indicates that utilizing a high-quality starting image is likely to result in a more
robust and detailed restored image, and that the performance of the model is still
limited by the quality constraints of the dataset. Lastly, the SR images reconstructed
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Figure 3.8: Grid plot of four images from Novara GQ dataset, showing the
difference among normal and low degradated images as well as their respective
restored copies.

(a) SSIM, MS-SSIM, FSIM (b) NIQE

Figure 3.9: Image Quality Assessment, both Full and No Reference metrics, on
Novara Good Quality (GQ) Test Set to compare the difference between inferring
starting from a degradated low-resolution image and a normal one (LR-SR vs.
GT-SR).
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from both the ground truth and low-resolution images exhibit improved quality
compared to their starting quality counterparts, as determined through both metric-
based and visual inspection assessments, indicating that the trained model performs
adequately in the restoration task for which it was implemented.

3.2.5 Texture Analysis
The Novara GQ Test Set was also utilized to compute a variety of color and texture
features with the aim of gaining a more complete understanding of the results
obtained from the IQA metrics and visual assessment. This analysis focused on the
area surrounding the lesion to evaluate the impact of the restoration process on
the characteristics of the images related to the lesion, which is essential in ensuring
an accurate diagnostic result. The analysis of the restored image samples in

Figure 3.10: Grid plot of an image from Novara GQ dataset, showing the 3
channels belonging to the YCbCr color space: it shows both color (Y) and texture
(Cb and Cr) features among the four type of processed images.

comparison to their starting input samples, as depicted in Figure 3.10, reveals
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Figure 3.11: Some NGTDM features calculated from Novara GQ dataset.

that the restored images exhibit greater clarity and smoothness. Specifically, the
Luminance (Y channel) exhibits an improvement in terms of smoothness, resulting
in a more defined and less noisy output image. This is particularly evident when
examining the Chrominance (Cb, Cr channels), which demonstrate a clearer yet
valuable and significant texture information. It is important to note that while
the restored images exhibit an overall improvement in clarity and smoothness, the
Texture Analysis visualization reveals that there may be a loss of some color and
texture features in certain areas. This could potentially be problematic in diagnostic
tasks, particularly if it involves important regions of the image such as the lesion
area, as this loss of information may lead to inaccurate or incomplete diagnoses.
Thus, it is crucial to consider the trade-off between image quality and preservation
of diagnostic information when utilizing super-resolution techniques in medical
imaging. Furthermore, the degradation process can be evaluated by comparing the
LR output with the GT one, and it is apparent that the Low Resolution output is
of sufficient low quality to be considered as a suitable starting point to emulate
real-world scenario degradations.
In support of the visual assessment, the extracted NGTDM features, graphed
in Figure 3.11, suggest that the coarseness of an image is primarily affected in
the GT-SR (ground truth and super-resolution) couple, with the restored image
displaying a greater degree of uniformity. Additionally, low-resolution (LR) images
exhibit lower coarseness and thus, a greater degree of uniformity. When evaluating
the complexity of an image, it is primarily affected in the LR-SR couple, with the
SR image displaying a higher degree of complexity, characterized by rapid texture
changes. Conversely, the degradation process results in a reduction of complexity
features. Contrast is one of the most affected features in both degradation and
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restoration processes. SR images tend to exhibit greater contrast when compared
to their respective LR versions. Conversely, if the starting image is the GT, the
contrast tends to be lower, indicating that starting from a less degraded image leads
to a more smooth and clear result. Finally, the strength of an image is relatively
consistent in the case of the LR-SR couple, but tends to increase when restoration
is performed on GT images. This suggests that starting with a higher quality image
leads to a result with more distinct primitives and better-defined features.

3.2.6 Skin Lesion Classification
A classification network was employed to evaluate the image restoration performance
of Real-ESRGAN on the ISIC Test Set. The ISIC Test Set was selected for
classification as it includes label classification data, allowing for a supervised
multiclassification approach. Additionally, this Test Set does not include any
images that were used in training the Real-ESRGAN. The network was trained and
tested twice, using identical parameters, except for the input images, which were
either the restored (SR) images or the original (GT) images. The performance of
the ResNet50 through the epochs, on the training and validation sets, are illustrated
in Figure 3.12.
The results depicted in Figure 3.12 demonstrate that the network does not exhibit
significant improvement during the training epochs. However, the overall metrics
on the test set are presented in Table 3.2, which indicate that the network trained
on the ISIC SR images achieved slightly higher average metrics score on the Test
Set when compared to the network trained on the ISIC GT images. Further

Accuracy Precision Recall F1-Score
Ground Truth (GT) ISIC 62.98 61.50 62.63 60.78
Super Resolution (SR) ISIC 65.34 66.08 65.33 64.28

Table 3.2: Overall classification metrics of the ResNet50 in identifying skin lesions
on the Test set. It include metrics such as accuracy, precision, recall, and F1-score,
which provide a comprehensive understanding of the model’s performance.

experiments are necessary to establish the validity of these results. This may involve
utilizing a larger and more robust dataset, as well as evaluating other architectures,
such as EfficientNet-B4. These architectures, as illustrated in Figure 3.13, have
demonstrated superior performance while retaining similar size complexity. Such
evaluations would provide a more comprehensive and valid understanding of the
true impact of the restoration process on the classification of skin lesions.

72



Results

(a) Accuracy (b) F1

(c) Precision (d) Recall

Figure 3.12: Classification performance of the ResNet50 in identifying skin lesions
on the Validation set, evaluated over the course of the training epochs.

Figure 3.13: Graph depicting the accuracy performance of multiple state-of-the-
art architectures as a function of the increasing size of the model [54].

73



Chapter 4

Conclusion

4.1 Further Work
Further work is necessary to more thoroughly assess the quality and realism of
synthetic images, specifically in the context of medical imaging. This includes
evaluating the performance of the implemented model by comparing it to state-of-
the-art architectures and examining its ability to adapt and generalize to images
from various medical domains. These studies will furnish valuable insights regarding
the strengths and limitations of the model and will provide guidance for forthcoming
development.

Mean Opinion Score (MOS)

Mean Opinion Score (MOS) testing is a widely used subjective image quality
assessment method that involves human raters assigning perceptual quality scores
to images. These scores are usually on a scale from 1 (low quality) to 5 (high
quality). In the MOS testing procedure, participants are asked to select the images
they perceive as realistic from a collection containing both real and generated
images. The final MOS is calculated as the arithmetic mean of the ratings provided
by the human raters. Despite its widespread use, MOS testing has several inherent
defects, such as non-linear perception of scales, biases and variance in rating criteria,
and differences in subjective views between different raters. However, when the
number of evaluators and evaluations is sufficient, MOS can still be a reliable image
quality assessment method.

Human Turing Test

To subjectively evaluate the realism of synthetic images, qualitative Turing experi-
ments can be conducted. In these experiments, certified dermatologists may be
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asked to choose images relevant to a given skin condition from a set containing
both real ground truth images and restored images. This approach can provide
additional information about the accuracy and realism of the restored images,
particularly when it comes to their relevance to specific skin conditions.

Applications to other Medical Domains

It may be interesting to conduct an experiment in which the implemented and
fine-tuned dermoscopic Real-ESRGAN model is applied to images from other
medical domains, such as MRI and CT scans, retinal images, and microscopy
images. These images may present unique characteristics that could impact the
model’s performance:

• Color space: images from different medical domains may use different color
spaces, which can impact the way they are restored from the Super Resolution
GAN. For example, dermoscopic images and retinal images are typically
colored, while MRI and CT scans are grayscale, thus may be more challenging
to process, since the GAN model has been trained on colored images.

• Image resolution: The resolution of images from different medical domains
can vary significantly. Higher resolution images typically contain more detailed
information, but may also be more challenging to process due to their larger
size.

• Image modality and content: the content of images from different medical
domains can vary significantly due to their different imaging modalities,
which use different physical principles to generate images, thus affecting the
appearance and characteristics of the images. For example, dermoscopic
images contain detailed information about skin structures, while MRI and CT
scans show internal organs and tissues. Microscopy images may show very
small structures at high magnification.

Conducting this experiment could provide valuable insights into the adaptability
and generalizability of the model to different types of medical images.

Comparison with State-of-the-Art Architectures

Evaluating the fined-tuned dermoscopic Real-ESRGAN against similar state-of-
art architectures can be a highly interesting task for several reasons. Firstly, it
allows researchers and developers to benchmark the performance of their custom
GAN against established architectures and gain insights into its strengths and
weaknesses. This can help identify potential areas for improvement and guide
future development efforts. Secondly, comparing a custom GAN to state-of-art
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architectures can provide valuable insights into the broader landscape of GAN
research and development. It can help identify trends and patterns in the field,
and highlight areas where further research and development are needed. Finally,
evaluating a custom GAN against similar state-of-art architectures can also help to
establish its credibility and demonstrate its effectiveness to a wider audience. By
demonstrating that the custom GAN performs competitively or even outperforms
established architectures, researchers and developers can build confidence in their
approach and encourage others to consider using it in their own work.

4.2 Conclusions
This study introduces a Generative Adversarial Network (GAN)-based approach
for reconstructing high-resolution skin lesion images from low-quality ones. The
proposed approach employs image processing techniques and data augmentation,
followed by a customized degradation pipeline to prepare the paired dataset. The
Real-ESRGAN architecture is then utilized to train the model.
The performance of the resulting model is evaluated using multiple Image Quality
Assessment (IQA) metrics such as FSIM and NIQE, employing a diverse range
of test sets consisting of dermoscopic images that possess different characteristics
from the dataset used for training. Furthermore, the synthetic restored images
are compared with ground truth images from the ISIC Test Set in terms of their
efficacy for skin lesion classification using a deep network.
The findings of this study suggest that the proposed GAN-based approach shows
promise for reconstructing high-resolution skin lesion images from low-quality ones
and further research in this area may be beneficial.
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