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Abstract

Wearable devices are potential power instruments for facing major health-related
challenges such as the aging population, chronic diseases, and hospital service de-
livery. While wearables are nowadays widely used for monitoring physical activity
and active life, also through some physiological parameters, their use in the clini-
cal environment remains limited and challenging. Among the many reasons for the
limited use of wearable solutions in the clinical field is the lack of a complete and up-
dated regulatory framework, including specific guidelines to establish the accuracy
of wearables and the ownership of the cost burden. Not to mention the acceptabil-
ity of such devices among patients and healthcare providers in terms of comfort
and trust. The European Horizon 2020-funded SINTEC project (Soft Intelligence
Epidermal Communication Platform) aims to develop soft, sticky, and stretchable
devices for specific use in the clinical field, particularly for continuous blood pres-
sure monitoring (BP). Monitoring BP is essential for hypertension diagnosis and
monitoring both in a clinical and home environment, especially in a scenario where
deaths due to hypertension are increasing in high-income countries, according to
WHO (World Health Organization). Different methods have been developed for BP
monitoring including, invasive, noninvasive, intermittent, continuous, and cuffless
techniques but still, a noninvasive technique for continuous BP monitoring remains
a challenge. This thesis works aims to add major robustness to motion artifacts
(MA) to the algorithm developed for the SINTEC project, exploiting the electro-
cardiographic (ECG) and photoplethysmographic (PPG) signals to extrapolate BP
measurements through the Machine Learning (ML) linear regression technique. The
novelty proposed in this thesis work includes the acquisition of the accelerometer
signals, adding an extra filtering possibility through a Least Mean Square (LMS)
adaptive filter, and extra features cleaning through thresholding based on the ac-
celerometer signals. Specifically, a combination of both techniques has allowed for
an average of 25 % reduction of MAE (Mean Absolute Error) in highly corrupted
signals, allowing in some cases to obtain an acceptable low error according to the
AAMI/ISO/ESH guidelines from acquisitions that gave nonacceptable MAE. For
testing the validity of these techniques, signals have been acquired through SHIM-
MER (Sensing Health with Intelligence, Modularity, Mobility, and Experimental
Reusability) devices in healthy subjects in different conditions, such as sitting still



on a chair, standing up and down from the chair, doing small walking, and doing
small hand gestures. Furthermore, this thesis work aims to enhance the useability
of this new BP monitoring technique by proponing a GUI (Graphical User Inter-
face) for better determinate input parameters necessary for a good BP estimation,
to enhance the accessibility to this technology also to users without programming
background and allowing the transferability of the system for signals that will be
recorded with the intended SINTEC final devices. Finally, the GUI speeds up the
research process for the best ML coefficients needed in the algorithm. In conclu-
sion, this thesis work aims to contribute to the research for a wearable solution
for BP monitoring that is accurate, highly comfortable for the patient, easy to set
up, and use for both patients and physicians to be officially recognized in a clinical
environment.
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Acronims table

Table 1: Acronyms

Acronym Meaning
ABPM Ambulatory BP monitoring
APIs Application Programming Interfaces
APG acceleration photoplethysmogram
ARS Accelerometer reference signal
AV Atrio ventricular
BP Blood Pressure

BTLE low-energy Bluetooth
CVD Cardiovascular disease
DBP Diastolic blood pressure
DoF Degree of Freedom
ECG electrocardiogram

Fat-IBC Fat Intra Body Communication
GUI Graphical User Interface

HBPM Home BP monitoring
HR Heart Rate
HRV Heart rate variability
ICU Intensive Care Unit
IMU inertial measurement unit
IoT Internet of Things

IR-LEDs infrared light emitting diodes
LMS Least Mean Squares
MA Motion Artifact
ML Machine learning
MLR Multivariate Linear Regression
PCB Printed Circuit Board
PPG Photoplethysmography
PTT Pulse transmit time
PW Pulse wave
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Table 1 – Acronyms
Acronym Meaning

PWV Pulse Wave Velocity
SBP Systolic blood pressure
UML Unified Modeling Language
WHO World Health Organization
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Chapter 1

Introduction

This thesis work is based on improving the SINTEC medical device algorithm by
enlarging the testing database, proposing a reduction strategy for motion artifacts
(MA), and developing a graphical user interface (GUI). SINTEC – Soft Intelligence
epidermal communication platform is a Horizon 2020-funded project [1] that will
provide soft, sticky, and stretchable sensor patches for multiple usages, such as
active life and clinical monitoring [2]. This thesis focuses only on the clinical aspect,
which is the monitoring of systolic blood pressure (SBP), diastolic blood pressure
(DBP), and heart rate (HR) of the device wearer. This work has been carried
out at LINKS Foundation, which has been operating for about 20 years at national
and international levels and aims to promote, lead and enhance innovation processes
through research projects with strong innovative potential that can create an impact
on the productive and public sector, dealing with an international context [3].

1.1 Wearables in the clinical field

The increase in the aging population, chronic diseases, and hospitalization costs
are just a few of the many healthcare challenges for future decades. Wearable
healthcare solutions such as advanced sensors, new technology exploiting new com-
munication platforms, and the Internet of Things (IoT) are potential solutions for
facing these main challenges [4]. Nowadays wearables devices are largely used in
sports and physical activity monitoring, whereas their clinical use is still limited
and remains a challenge. However, it is a matter of fact that there has been a
growth in the availability of wearables-based analytic platforms with the potential
of enhancing the quality and accessibility of healthcare everywhere from hospital in-
tensive care units (ICUs) to in-home chronic disease management [5] [6]. The use of
wearables in hospitals could enhance patient monitoring, adding major comfort to
the patient himself and facilitating mobility between hospital wards. For example,
the use of multimodal sensors with tailored alarm systems in Intensive Care Units
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(ICUs) can ameliorate continuous patient monitoring. Wearables integrating ma-
chine learning and artificial intelligence systems are a powerful tool for enhancing
the development of predictive models and diagnostics [4]. On the market, there are
wearables proposed also for different health-related applications outside of hospitals
like cardiovascular and gastrointestinal monitoring, neurology, and mental health,
maternal, pre - and neonatal care, pulmonary health, and environmental exposures
[6]. The main challenges for the success of wearables in the clinical field include
the integration in a complex already existing system of care and the a priori target
disease definition [5]. Acceptance from both patients and physicians is essential,
which can be increased by a proper support service defining utilities and limita-
tions of wearable technologies and access to the application programming interfaces
(APIs) and raw data in machine-readable format [4], [6]. Other challenges include
defining the ownership of the wearables cost burden either on the healthcare struc-
ture or on the patient and eventual reimbursements. Nevertheless, is the regulatory
framework that must ensure prevention from sensor measurement inaccuracy, mis-
interpretation, data protection, encryption, and patient general security [6]. From
the technical point of view, the main challenges are sensor accuracy, battery life,
integration of data from different systems, sensor body placement, communication
protocols, signals quality, and robustness [4],[5],[6]. Accuracy is hampered by noises
such as electromagnetic interference of power line, poor quality of contact between
the electrode and the skin, baseline wanders caused by respiration, electrosurgical
instruments, movement of the patient’s body or, for example in ECG electrodes dry-
ing out [4],[5],[6]. SINTEC project faces these challenges with innovative technical
solutions like rigid-stretch PCB technology with stretchable substrate and liquid
alloy, smart patches for Fat-IBC, and low-energy Bluetooth (BTLE) communica-
tion. Explored sensors include optical sensors for photoplethysmography (PPG),
pressure sensors for tonometry, as well as electrodes for ECG and bioimpedance
acquisition [2].

1.2 Hypertension and BP monitoring methods

1.2.1 Hypertension

Ischemic heart disease and stroke are the top two causes of death, in terms of the
total number of lives lost, with a combined total of over 2.5 million fatalities in
2019 only in high-income countries. Even if high income is the only category of
income group in which there have been decreasing numbers of deaths from these
two cardiovascular diseases (CVDs), deaths from hypertensive heart disease are
rising. Reflecting a global trend, this disease has risen from the 18th leading cause
of death to the 9th according to WHO [7]. Hypertension is a health condition
characterized by high values of blood pressure in the arteries, due to the amount of
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blood pumped by the heart and the arteries’ resistance to the blood flow [8]. Hy-
pertension is the strongest or one of the strongest risk factors for almost all different
cardiovascular diseases acquired during life, cerebral stroke, and renal failure [9].
The main short and long-term consequences linked to high values of BP are stroke,
coronary heart disease, heart failure, and cardiovascular death. Whereas the main
long-term consequences are hypertensive cardiomyopathy, heart failure with pre-
served ejection fraction, atrial fibrillation, valvular heart disease, aortic syndromes,
peripheral arterial disease, chronic kidney disease, dementias, diabetes mellitus,
and erectile dysfunction [10]. In most hypertension cases, a precise, identifiable,
and curable cause does not exist, the high BP values are due to an alteration of the
complex regulatory pressure system [8]. Factors that increase the risk of developing
hypertension are:

• Family history of premature cardiovascular disease (men < 55 years; women
< 65 years)

• Age (men > 55 years; women > 65 years)

• Obesity (body mass index ≥ 30 kg/m2 ( weight
height2

))

• Diabetes

• Smoking

• Imbalance of sodium and potassium

• Alcohol

• Stress (both physical and mental)

• Sedentary lifestyle [8],[9].

The distinction between high normal blood pressure and hypertension is based
on arbitrary cut-off values [9], as shown in Fig 1.1. Treatments after a hyper-
tension diagnosis include lifestyle changes (balanced diet, physical activity, etc),
weight loss, and drug therapy depending on the specific case (ACE, Calcium an-
tagonists, diuretics, etc.) [8]. Hypertension is the level at which intervention to
lower blood pressure has documented preventive benefits, especially prevention of
the age-related increase in BP would substantially reduce the vascular consequences
usually attributed to aging [10],[11].
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Figure 1.1: BP cut-off values [10]

1.2.2 BP monitoring methods

Monitoring BP is important to detect and treat hypertension, it is also highly
recommended out-of-office monitoring such as ambulatory BP monitoring (ABPM)
and home monitoring (HBPM), for this reason, many invasive and noninvasive
techniques have been developed along with wearable solutions [12],[13].

Invasive continuous method

The clinical reference method is the direct measurement of BP via arterial cannula-
tion [12], due to the precise and continuous measurements. This technique exploits
an arterial catheter placed into an artery; the radial artery is the most common
sampling site, Fig 1.2. This technique is mostly used in acute and critical care
settings because it allows immediate recognition of alterations along with blood
sample collection. Arterial cannulation must be performed by a trained operator
to reduce risks of complication, classified as rare, like embolism, lesions of nerves,
vessels, and ischemia [12],[14].
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Figure 1.2: Arterial cannulation [15]

Noninvasive intermittent methods

The auscultatory method, a manually cuff-based method using a mercury sphygmo-
manometer and a stethoscope, is a noninvasive intermittent technique considered
the gold standard in absence of a direct BP measurement. The SBP and DBP val-
ues are estimated from the appearance and disappearance of the Korotkoff sound,
(pulsatile circulatory sound) [16]. In this technique, an inflatable cuff linked to
the mercury sphygmomanometer is placed in the right upper arm of the patient,
while the stethoscope is placed distantly. Air is inflated in the cuff until the cuff
is completely occluded and the pressure inside is over a referred maximal arterial
pressure, then the cuff is gradually deflated. During the deflation, it is noted the
pressure when the first Korotkoff sound has been listened to, which indicates SBP,
and the pressure when the last Korotkoff sound has been listened to indicates DBP,
[16], [17]. The method is shown in Fig 1.3. This technique has the main disadvan-
tage of providing intermittent values and needing a trained operator and a quiet
environment [12]. The accuracy of this technique relies on the hearing acuity of the
observer, the sensitivity of the stethoscope, and the amplitude and waveform mor-
phometry of the Korotkoff sounds, plus the determination of DBP is challenging
[16].
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Figure 1.3: Auscultatory method [18]

The oscillometric method is an automated and intermittent technique for BP
estimation exploiting an inflatable cuff as shown in Fig 1.4. The cuff can detect
oscillations caused by pressure waves and determine SBP and DBP through al-
gorithms comparing the maximum volume change rate. This method has shown
accuracy problems, such as an underestimation of DBP values and overestimation
in SBP [12],[16],[19].

Figure 1.4: Oscillometric method [20]
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Noninvasive continuous methods

The arterial applanation tonometry is a noninvasive continuous method for BP
measurements that exploits a precise pressure transducer, such as a tonometer. The
arterial pulse wave is measured in a superficial artery with a flat bone beneath. The
vertical displacement caused by the applying force of the tonometer is proportional
to arterial pressure [12],[21]. The issue of the need for an examiner to handle
the tonometer is solved by new-generation devices, such as T-Line system,Fig 1.5,
(Tensys Medical, San Diego, CA, USA), which allows automated measurements
[12].

Figure 1.5: Arterial applanation [22]

The volume clamp is a noninvasive continuous method for BP measurements
exploiting an inflatable finger cuff containing an infrared transmission plethysmo-
graph as shown in Fig 1.6. The sensor is sensible to arterial volume alteration and
the blood pressure can be derived from the pressure needed in the cuff to maintain
the artery diameter constant [12],[23].

Figure 1.6: Volume clamp [24]
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Wearables solutions

The above-mentioned techniques for BP estimation are cuff-based and face the com-
mon problem of inaccuracy due to wrong cuff size, sensibility to motion artifact,
and discomfort for patients as a cause of the painful cuff inflation [12],[25]. For
all these reasons, patents for wearable solutions for BP monitoring have increased
in the last decade [25]. Omron HeartGuide (Omron Corp., Kyoto, Japan),Fig 1.7,
is a wearable device for BP measurement, that has been validated in the labora-
tory environment according to the protocol from the American National Standards
Institute, Inc/Association for the Advancement of Medical Instrumentation/Inter-
national Organization for Standardization (ANSI/AAMI/ISO) 81060-2:2013 guide-
line [13],[26]. The device works like oscillometric devices thanks to the inflatable
extra-stiff band [25], BP and heart rate values are read manually one minute after
a button is pushed. It also allowed sleep monitoring and physical activity tracking
[26]. Even if the device has an inflatable element, patients find it more comfortable,
less intrusive, and less burdensome [13].

Figure 1.7: Omron HeartGuide [26]

Other wearable solutions recently evaluated are a finger-wearable monitor that
exploits a capacitive tactile sensor array pushed by a pump-driven pneumatic blad-
der, and soft pressure sensors using wrinkled thin films worn on the wrist. Promis-
ing are sensors exploiting Pulse Transit Time (PTT) and ECG, but also machine
learning techniques. The latter can overcome the challenge in BP estimation of
eliminating unwanted features and calculating BP from optimal data [11].
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1.3 Objective of work

This thesis work aims to perfect the algorithm that will be used by SINTEC final
intended device for monitoring BP during physical activity and clinical settings,
Fig 1.8. The final intended SINTEC device is a cuffless, noninvasive strain gauge
flexible and stretchable sensor for continuous BP monitoring, that will be applied
on the skin by a transparent patch. This thesis aims to perfect PPT and HR
feature extraction from PPG and ECG signals through motion artifact reduction,
enlarging the database for ML techniques, and developing a GUI for simplifying
ML coefficients extraction and evaluation for BP estimation.

Figure 1.8: SINTEC attended final device [2]
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Chapter 2

Physiological signals

SINTEC attended final device exploits ECG and PPG signals for extracting HR and
PTT that will be used as features for BP estimation through ML techniques. Fea-
tures reliability will be tested through the use of the accelerometer signals recorded
at the same time as ECG and PPG signals.

2.1 ECG

The electrocardiogram, ECG, is a noninvasive method for monitoring heart elec-
trical activity. The ECG is an extremely important tool for physicians to establish
if heart electrical activity manifests anomalies. The ECG is the recording of the
electrical current flow which crosses the heart during the cardiac cycle. ECG signal
reflects how action potentials of the entire cellular population are generated. Since
heart electrical activity is highly synchronized, electrical potential corresponding
at the different heart electrical phases is relatively high and can be recorded on the
skin surface [27]. ECG is a non-stationary signal [28] with a bandwidth that ranges
from 0.05 Hz to 125 Hz and an amplitude 5mV that is morphologically interpreted.

2.1.1 ECG recording techniques

ECG recordings are based on Willem Einthoven technique, based on an imaginary
equilateral triangle built around the heart,Fig 2.1. The Einthoven triangle vertices
are in the left arm, right arm, and left leg. On each triangle angle, a couple of
electrodes are located and linked to a device for voltage registration such as an
oscillometer or a chart recorder, this is a bipolar registration and each couple of
electrodes is called the lead. Each lead, indicated with a roman number, measures
the difference in electrical potential from the positive and negative electrodes. The
waveform direction depends on if the potential difference is positive or negative
[27]. The three leads indicated by Einthoven are:

18



Physiological signals

• Lead I: detection of potential difference between the left arm and right arm

• Lead II: detection of potential difference between the left leg and the right arm

• Lead III: detection of potential difference between the left leg and the left arm

Figure 2.1: Einthoven triangle [27]

The most common ECG electrodes are Ag/AgCl surface electrodes, characterized
by a low noise level and low electrode-skin interface impedance. Surface Ag/AgCl
electrodes are non-polarizable electrodes that charge to cross the electrode-electrolyte
interface [29].

2.1.2 ECG waveform

ECGs are recorded on a millimetric paper with a standard rate of 25mm/s and
an amplitude of 10 mm/mV. A physiological ECG waveform,Fig 2.2, shows three
main characteristics:

• The P wave indicates atrial depolarization, it is an upward deflection

• The QRS complex indicates ventricular depolarization, which is a succession
of downward and upward deflections

• The T wave indicates atrial repolarization, it is an upward deflection
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Figure 2.2: ECG waveform [30]

Heart pathophysiological state can be detected by analyzing intervals and seg-
ments of the ECG:

• P-Q (or P-Q) interval is a time estimation of the conduction through the AV
node. It is calculated as the time between the beginning of P wave and QRS
complex.

• Q-T interval is a time estimation of ventricles contraction, called systole. It is
calculated as the time between the beginning of QRS complex and the end of
T wave.

• T-Q segment is a time estimation ventricles relaxation, called diastole. It is
calculated as the time from the end of T wave and the beginning of QRS
complex.

• R-R interval is the time between the peaks of two consecutive QRS complexes,
that is the time from one heartbeat to the next. From this interval is it possible
to extract the HR feature:

HR =
60 seconds

RR interval
(2.1)

2.2 PPG

Photoplethysmography (PPG) is a non-invasive technology that uses a light source
and a photodetector at the surface of the skin to measure volume changes, more
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commonly PPG refers to the blood volume changes (pulse waves PWs) dues to the
cardiac cycle but this technology can be used also for recording air volume changes
during the respiration cycle [31]. PPGmain characteristic features are HR and pulse
oximetry, but it has shown potential for more valuable health-related information,
such as diagnosis of various cardiovascular diseases, thanks also to the study of
the first and second PPG waveform derivates [32]. Interest in PPG is increased
in recent years due to its advantages as a non-invasive, economic, and wearable
adaptable diagnostic tool. PPG signals can be recorded from different parts of the
body, such as the forehead, earlobe, torso, wrist, fingertip, and ankle, and they
are mostly morphologically interpreted, however different measurement sites have
different degrees of accuracy. Challenges in the use of PPG signals in wearable
solutions is high susceptibility to motion artifacts caused by body movements [32].

2.2.1 PPG recording technique

A light source and a photodetector are the two main elements in a PPG monitoring
device. Two configurations are possible for PPG sensor, the transmission mode,
and the reflectance mode, Fig 2.3. In the transmission mode, the light source and
the photodetector are divided by the tissue and the photodetector detects the light
components that have not been absorbed by the tissue. In the reflectance mode,
the light sensor and the photodetector are located side by side, on the same side
of the tissue and the photodetector measures the reflected light. From the light
intensity detection, it is possible to measure the blood volume changes [32]. The
mode selection depends on the measurements site, for example, the transmission
mode is preferred for fingertip and earlobe whereas the reflection mode is preferred
for wrists, forearm, ankle, forehead, and torso. Both modalities have advantages
and disadvantages which have to be analyzed depending on the final application.
Acquisition quality is linked to the pressure applied by the sensor to the tissue,
because too much pressure, especially in transmission mode, can cause a reduction
of venous oscillations [32]. PPG light sources are in general infrared light-emitting
diodes (IR-LEDs) or a green LED. IR-LEDs are generally used for monitoring blood
changes in parts like muscles, more deeply concentrated whereas the green LED is
used to measure the oxygen absorption in oxyhemoglobin and deoxyhemoglobin.
Among all the colors, the green LED is selected to its highly penetrative charac-
teristics.
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Figure 2.3: PPG sensors, on the right the transmission mode and on the left the
reflectance mode [33]

2.2.2 PPG waveform

PPG signal has two components, the pulsatile (AC) strictly linked to blood vol-
ume changes dues to the cardiac cycle, and the superimposed (DC) shaped by
respiration, sympathetic nervous system activity, and thermoregulation [32]. PPG
waveform, Fig 2.4, shows two phases. The rising edge of the signal is called the
anacrotic phase and it is linked to the heart systole whereas the falling edge is the
catacrotic phase, linked to the diastole. The presence of the dicrotic notch in the
falling edge reflects the presence of healthy arteries [34].

Figure 2.4: PPG waveform [34]

PPG main characteristics are:

• Systolic amplitude x, which shows the pulsatile changes of arterial blood in
the nearby of the measurement site

• Pulse width, which is calculated at the half height of the systolic peak, is
correlated with the systemic vascular resistance
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• Pulse area, the area below the PPG curve. The area ratio between the two
areas divided by the dicrotic notch is an indicator of peripheral resistance

• Peak-to-Peak, interval, Fig 2.5, which is the distance between two consecutive
systolic peaks, is highly correlated with the R-R interval

Figure 2.5: Pulse interval, Peak to peak interval [34]

• Pulse interval, which is the distance between the beginning and the end of
PPG waveform. It can be used to calculate heart rate variability (HRV)

More information can be determined by the second derivative wave of PPG signal,
the acceleration photoplethysmogram (APG). APG waveform is correlated with
the distensibility of the carotid artery, age, blood pressure, the estimated risk of
coronary heart disease, and the presence of atherosclerotic disorders [34]. APG
has also been described as a potential diagnostic tool for other disorders, varying
from a sensation of coldness and stress experienced by surgeons to exposure to lead,
pneumonia, intracerebral hemorrhage, and acute poisoning [34].

2.3 ECG and PPG for BP monitoring

As mentioned above, there is a high correlation between the R-R interval of ECG
and the peak-to-peak interval of PPG. The feature of interest for this thesis work
is the pulse transit time (PTT), defined as the propagation time of a PW going
from the heart to the peripheral arteries and is calculated as the time between the
R-peak of the ECG and a reference point on the PW measured using PPG [35],
Fig 2.6..
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Figure 2.6: PTT [36]

PTT is inversely related to pulse wave velocity, PWV, which can be considered
the gold standard for measuring arterial stiffness and can be an indicator for diag-
nosing cardiovascular diseases [35].PTT shows a strong relationship with BP and
can be used as a feature along with HR for BP estimation through Bramwell–Hills
and Moens–Kortweg’s equations [37], which lead to Eq. 2.2:

BP = aPTT + bHR + c (2.2)

Coefficients a, b, and c are subject-specific parameters and must be obtained
through a calibration procedure. SBP and DBP can be obtained as Eq.s 2.3:{

BP = asPTT + bsHR+ cs
BP = adPTT + bdHR+ cd

(2.3)

Whereas, bs, cs, ad, bd, cd are subject-specific coefficients for SBP and DBP
estimation [37].

2.4 Accelerometer

The accelerometer is an inertial measurement unit (IMU) that measures the proper
linear acceleration, that is the difference between the acceleration sensed along the
sensitive axis of the sensor and the gravity acceleration. An accelerometer can be
schematized as a second-order spring-mass-damper system, which can measure the
acceleration as the spring compression when a mass is moved to the point that
the spring can push (accelerate) the mass at the same speed as the casing or can
measure the frequency of the vibrating mass-proof element it’s caused because of
tension changing [38], [39]. An accelerometer can be classified by the transduction
mechanism employed to convert the proof-mass displacement due to acceleration.
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The main transduction systems are piezoresistive, capacitive, tunneling, optical
and piezoelectric. The selection must be made upon the different advantages and
disadvantages of each transduction mechanism [40], Fig 2.7.

Figure 2.7: Advantages and disadvantages of various transduction schemes [40]

In the human body, the utricle, and the saccule, the otolith organs, work as
a human linear accelerometer. Otolith organs are part of the vestibular system,
which is responsible for the ability to sense body movement and maintain balance,
they sense the direction and the speed of linear acceleration and the position (tilt)
of the head [41]. When a force, due to an example at the tilting of the head, leads
to a displacement of the otoliths relative to the connective tissue, the displacement
is sensed by the hair cell that bending polarizes the cell and induces excitation,
Fig. 2.8.
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Figure 2.8: Utricle ans saccule [42]

2.4.1 Use of accelerometer in health wearables applications

Accelerometers, along with the other IMU sensors gyroscope, and magnetome-
ters, are widely used for health wearable applications for motion detection. Ac-
celerometer signals are largely used in algorithms for balance disorders evaluation
or monitoring. From accelerometers and gyroscopes signals is it possible to extract
important features such as gait speed, and step and stride length. Accelerome-
ters can be used in balancing prostheses, detecting body orientation, and providing
information to the patient through mechanical actuators. Accelerometer use can
space from remote patient surveillance in ICUs to improving radiation oncology.
Accelerometers can be used for measuring the intensity of physical activity and
hereby energy expenditure in both sports or rehabilitation exercises [43]. In the
aim of this thesis work, accelerometer signals will be acquired simultaneously with
PPG and ECG to detect potential MA that could affect the wrong PTT and HR
features extraction and reduce the accuracy of BP estimation.
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Materials and methods

For the aim of this thesis work a 40 ECG, PPG, and accelerometer signals have
been added at the Shimmer database [44] . The new signals include the recording
of 6 subjects (4 females and 2 males), all aged between 23-25 years, for a more
detailed population description, please refer to APPENDIX D. Before proceeding
with the signals acquisition, each subject read and signed the informed consent with
the attached information note related to SINTEC project. For the full informed
consent, refer to APPENDIX A.

3.1 Devices, sensors, and software

The signals database has been created by using Shimmer devices. Shimmer is an
Irish company founded in 2008, a pioneer and leader in the development of wearable
wireless sensing solutions. Shimmer wireless sensor platform’s main characteristics
are the possibility to record and communicate data in real-time, low-power wireless
communication, and a large storage capacity [45],[46]. For the aim of this thesis
work, two Shimmer3 ECG Units, one Shimmer3 GSR+ Unit, a Consensys Base6,
and ConsesysPRO Software have been used. Omron HeartGuide,Fig. 1.7, has
been used simultaneously for BP monitoring, which values will be used to train the
algorithm.

3.1.1 ECG device and sensor

ECG signals have been recorded through Shimmer3 ECG- Unit device, Fig 3.1,
Shimmer Biophysical snap leads, Fig 3.2, and Covidien Ag/AgCl snap on electrodes,
Fig 3.3. Shimmer3 ECG-Unit is a lightweight device with compacted dimensions
(65 x 32 x 12 mm) with an EEPROM memory of 2048 bytes. The Shimmer3
ECG/EMG-Unit has a software configurable gain, data rate, and right-leg drive for
common-mode interference rejection, with an input differential dynamic range of
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approximately 800 mV and a bandwidth of 8.4 kHz. The device has 4 input channels
and a reference channel. Input protections include ESD and RF/EMI filtering,
current limiting, and defibrillation protection [47]. The integrates 10 DoF inertial
sensing via an accelerometer, gyroscope, magnetometer, and altimeter. Covidien
electrodes have an adhesive side with non-irritating gel and a latex-free foam to
prevent allergic reactions [48].

Figure 3.1: Shimmer3 ECG unit

Figure 3.2: Shimmer Biophysical snap leads
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Figure 3.3: Covidien Ag/AgCl electrodes

3.1.2 PPG device and sensor

PPG signals have been recorded through the Shimmer3 GSR+Unit device, Fig 3.4,
and Shimmer Pulse ear-clip, Fig 3.5. Shimmer3 GSR+Unit is suitable for measuring
the electrical characteristics or skin conductance and PPG signal. Shimmer3 GRS+
is a lightweight device, with compacted dimensions (65 x 32 x 12 mm) with an
EEPROM memory of 2032 bytes. The device has 3 input channels, two SSR inputs,
and an auxiliary analog/digital input that can be used for PPG recording through
a Shimmer Pulse ear clip. Input protections include RF/EMI filtering and current
limiting, and GSR inputs include defibrillation protection [49]. The ear lobe optical
pulse circuitry of the Shimmer Pulse ear clip includes an onboard amplifier and filter
circuit for initial conditioning of the signal [50].

Figure 3.4: Shimmer3 GSR+ Unit
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Figure 3.5: Shimmer ear clip

3.1.3 Accelerometer device and sensor

Accelerometer signals have been recorded by enabling the accelerometer in the ECG
Shimmer3-Unit. In particular, the accelerometer is part of MEMS InvensSense
ICM-20948, which combines a 3-axis gyroscope,3 -axis accelerometer, and compass
and it is particularly suited for tablets, wearable sensors, and IoT applications
[48],[51].

3.1.4 ConsensensysPRO software and Consensys Base6

ConsensysPro software, Fig 3.6, and Consensys Base6,Fig 3.7, or Shimmer dock,
have been designed to be used together to make easier the programming, configura-
tion, data recording, and data storage from different Shimmer devices at the same
time. The software keeps track of the setup parameters of the Shimmer configu-
ration, even after a firmware update, to enhance the useability for multiple trial
sessions.

Figure 3.6: ConsensysPRO software [52]
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Figure 3.7: Consensys Base6

3.2 Protocols

The signals acquisition protocol foresees 20 minutes recording where the patient is
relaxed and sat, and he/she is asked to perform some controlled movements during
the recording such as getting up and having a small walk, moving his/her hands
while holding the sensors. Acquisitions have been made at different hours of the
day. The procedure starts when the Shimmer dock is switched on with all the
necessary Shimmer devices correctly seen by ConsensysPro software.

3.2.1 Sensors placement

ECG is recorded with the I lead, LA-RA. After the patient skin is cleaned with
an alcohol swab, an electrode is placed on the right and another on the left of the
patient’s chest, and the reference electrode is placed on the right leg. The active
electrode on the right is inserted in the white pin of the Shimmer3 ECG-Unit, the
active electrode on the left is inserted in the black pin, and the reference electrode
in the green pin. PPG is recorded using the Shimmer ear clip on the patient’s
left finger. Due to the high light sensibility of PPG signals, the patient’s finger
with the ear clip is covered with a black strip. Tightening too much the black
strip around the clip could compromise signal quality. The ear clip is inserted in
the black pin of the Shimmer3 GSR+ device. Omron HeartGuide is located on
the patient’s right wrist. During the recording, the patient will hold the PPG and
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accelerometer device in the left hand and the ECG device in the right hand. The
final experimental set up is shown in Fig 3.8.

Figure 3.8: Sensor set up [44]

3.2.2 Software configuration

After linking the Shimmer dock to the PC and switching on all Shimmer devices it is
necessary to launch ConsensysPRO software. After clicking on ”Manage Devices”,
it is important to check that all three Shimmers appeared correctly on the graphic
and in the device list. After selecting all the devices, it is necessary to program
the firmware by clicking on the ”FIRMWARE” button. Firmware programming
is done by clicking on “SDLog” which allows for synchronization between multiple
Shimmers when logging into the SD card, Fig 3.9. Then it is necessary to configure
the session trial:
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Figure 3.9: Shimmers correctly selected, ready for firmware writing

• Choose a trial name: i.e. ProvaSubject1

• Select the sampling rate: 504.12Hz

• Choose Mode based on estimated logging duration: disabling Sync Devices
and selecting Undock/Dock

• For the ECG recording: select the intended Shimmer3 ECG Unit, in Sensor,
select only ECG. No algorithm was selected, Fig 3.10.

33



Materials and methods

Figure 3.10: ECG configuration

• For the PPG recording: select the GRS+ Unit, in Sensor select only PPG. No
algorithm was selected, Fig 3.11.

Figure 3.11: PPG configuration

• For the accelerometer recording: select the intended Shimmer3 ECG Unit, in
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Sensor selecting only Low-noise Accelerometer. No algorithm was selected,
Fig 3.12.

Figure 3.12: Acceleration configuration

3.2.3 Recording

Now, when the Shimmers devices will be undocked, the recording will start. Right
after, Omron upper button will be pushed, and it will start a one-minute BP
recording. When Omron finishes its measurement,Fig 3.13, the time and SBP, and
DBP values will be stored in an Excel spreadsheet. During the recording, it is
required at the patient, that is relaxed and sat, to have a small walk, or move
his/her hands on purpose one or two times, in random order and intensity, during
the recording. The recording is over when 20 minutes are passed, and the devices
are docked again on the base.

3.2.4 Import data

To import data, it is necessary to select all the devices in Manage devices and
click on ”IMPORT”. Then, select the correct trial between the available trials,
and through the double fleshes import the trial in “TRIALS FOR NEXT STAGE”,
then click on “NEXT”. After the import is done, click on “DONE”. Then, select
the folder where stored the files and save them in .mat format. Now signals are
ready to be analyzed.
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3.2.5 Unix conversion and .csv file

For BP estimation through ECG and PPG signals is it necessary to train the
algorithm with Omron measurement. The Excel spreadsheet with time in format
HH: MM, SBP, and DBP values in columns is saved in a .csv file after converting
the time in UNIX format, Fig 3.14. It is important when converting to UNIX, to
set up a local time area.

Figure 3.13: Omron measurement [53]

Figure 3.14: Unix time stamp amd SBP,DBP values

3.3 Algorithm overview

The algorithm was developed in Python, which is an interpreted, object-oriented,
high-level programming language with dynamic semantics [53]. The algorithm can
be divided into seven main sections:
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1. Signal preparing. In this section, ECG and PPG signals recorded through
ConsesysPRO are loaded. The first operation is the remotion of the possible
noise introduced by the undocking of the devices, for this reason, 20 seconds
of samples are removed. For the correct algorithm, work is necessary to align,
cut at the same length, and synchronized all of the tree signals.

2. Signal filtering. In this section, the ECG signal is filtered to remove the base-
line through the envelope function. The PPG signal is filtered with a seven-
order Butterworth filter and then also PPG baseline is removed through the
envelope function.

3. Peaks detection. In this section, the user must set up an ECG and PPG
threshold to detect signal peaks through the python function findpeaks.py.
The algorithm implements a control that excludes extra peaks that appear in
a 0.5 second window. The outputs of this section are an array containing only
zeros and peaks values and the relative time stamp array for both PPG and
ECG signals

4. Feature extraction. In this section HR and PTT features are extracted from
R and P peaks array. HR is calculated from the timestamps of the two fol-
lowing R peaks. PTT is calculated from the timestamps of an R peak and the
timestamp of the first S peaks that follows the R peak in time. After saving
HR and PTT in arrays with the relative timestamps, the features are cleaned
by removing HR and PTT values that are out of range mean+/- SD. The last
step of this section is the HR and PTT interpolation along the whole signal’s
timestamp.

5. Omron HeartGuide data preparing. During signal acquisition, Omron Heart-
Guide returns punctual values of SBP and DBP each minute. On the .csv file
is reported the Unix time stamp when the recording finishes, for this reason,
before using Omron data, it is necessary to subtract 60 seconds from the Unix
time stamp. After, it is necessary to interpolate Omron values along the whole
signal’s timestamp array.

6. Feature reduction. This section aims to reduce errors due to device synchro-
nization. To achieve that, the previous extracted features HR and PTT along
with SBP and DBP values extrapolated from the Omron are averaged with
10 seconds time intervals and then are resampled with a shorter time stamp
array.

7. Regression analysis. In this section, a Multivariate Linear Regression (MLR)
has been implemented and tested on dataset divisions without any time inter-
val.

The full algorithm flowchart is shown in, Fig 3.15.
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Figure 3.15: Algorithm flowchart
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MA reduction strategies

techniques and GUI design

SINTEC final device is intended to monitor BP both in a clinical environment
and in active life, including athletics performance evaluation [2]. For this reason,
this thesis work investigates possible techniques to enhance the robustness of the
proposed algorithm to motion artifacts, (MA). Breathing, and muscle contraction,
for example, can temper the quality of features extraction from ECG signals a cause
of the motion artifact introduced by the unstable contact of the electrodes on the
skin [54]. In PPG signals, even the slightest movement can distort PPG waveform
[55],[56]. The techniques for MA reduction introduced by this thesis work required
a three-axis accelerometer. To enhance the usability and transferability of the
proposed algorithm, a GUI has been developed which allows the combinations of
all the proposed techniques, saving data and faster the whole process of research.
A schema of the new introductions is shown in Fig 4.1
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Figure 4.1: Algorithm modifications
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4.1 Introduction of the accelerometer

The three-axis accelerometer signals have been used for introducing two techniques,
the first foresees the construction of an LMS adaptive filter, and the second analyzes
the accelerometer signals variations for discarding ECG and PPG features, R and
P peaks, which can be highly compromised by MA. The accelerometer calibration
has been checked by analyzing the norm of the three accelerometer signals recorded
along the three sensitive axes during a five-minute recording where the sensor was
placed on a desk.The following techniques are based on the norm of the acceleration
signal, computed as Eq. 4.1:

ACC =
√

acc2x + acc2y + acc2z (4.1)

Where accx, accy, accz are the Min/Max normalized values of the accelerometer
signals recorded respectively along axis x, y and z. The acceleration signals have
been used also for computing a singular values decomposition, SVD, where the
diagonal elements of matrix S contain information about the noise level. SVD is
computed as Eq. 4.2:

A = USV T (4.2)

Where A is containing Min/Max normalized values of the accelerometer signals,
S is the diagonal matrix containing the singular values which represent the impor-
tance of each mode of the signal, U and V matrices represent the corresponding
mode shapes. The adaptative filter strategy has been selected after analyzing the
power spectrum of normalized ECG, normalized PPG, and the norm of accelerom-
eter signals recorded during standing up from a chair. In Fig 4.2, it is possible to
see how the three signals contain most of their spectral information in the same
bandwidth, this makes it difficult to denoising the biological signals from MA by
traditional low pass, high pass, and bandpass filters.
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Figure 4.2: PSD analysis of normalized ECG, PPG and ACC signals recorded
during standing up from a chair in Subject 7 and Subject 8. The PSD has been
evaluated with a Welch periodogram with a 50 % overlap and a modified Hann
window that reduces variance by using a non-overlapping sum of squared Hann
windows.

4.1.1 Adaptive filter

To reduce MA in ECG and PPG signals, a Least Mean Squares (LMS) adaptive
filter has been proposed. LMS is widely used due to its simplicity, stability, and
robustness and its reduced computational cost compared to other adaptive filters,
which makes LMS also suitable for real-time applications [57],[58]. LMS adaptive
filter requires a desired signal, which is the target signal that the adaptive filter aims
to produce, an input signal, which is the signal that will be processed by the filter,
a specified filter length, which determines the number of coefficients in the filter, a
specified step size, which is a scalar number needed for the stability and convergence
of the filter and a specified number of iterations, which is the number of times the
filter updates. The outputs of LMS adaptive filter are a filtered signal, which is the
estimated desired signal obtained by filtering the input signal through the adaptive
filter, and an error signal, which is the difference between the desired signal and
the filtered signal. It is used to update the filter coefficients in each iteration. The
adaptive filter starts initializing the error signal and the output signal as arrays of
zeros, then a loop over the number of iterations specified starts. For each iteration,
the output signal is computed as the scalar product of the input signal and the
filter coefficients. Then, the error signal is computed as the difference between
the desired signal and the output signal, and the filter coefficients are updated
by combing the previous coefficients, the step size, the error signal computed just
before, and the input signal. The final filtered signal and the final error signal
are outputted when all n-iterations have been performed. The LMS adaptive filter
proposed in this thesis work uses the accelerometer signals as the target, and the
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noisy PPG and ECG signals as inputs, in this way it is possible to obtain the
denoised PPG and ECG signals as the output error signal, Figure 3. The filter
length can be selected in a range of experimentally selected values (7,20) and the
step size has been experimentally selected at 0.01. The number of iterations has
been set equal to the length of the input signal. The accelerometer signals used
as the signal target have been experimentally selected as the norm of Min/Max
normalized values of the accelerometer signals recorded respectively along axis x,
y, and z (1). Also, the input signals, noisy ECG or noisy PPG, are Min/Max
normalized before entering the adaptive filter. After the adaptive filtering, both
PPG and ECG are denormalized and they are ulteriorly filtered to remove the
baseline.

Figure 4.3: LMS Adaptive filter using the norm of the acceleration signals as the
target, the noisy ECG or PPG as inputs, the step size set at 0.01 and the number
of iterations equals to the length of the input signal

The LMS adaptive filter proposed in this thesis work uses the accelerometer
signals as the target, and the noisy PPG and ECG signals as inputs, in this way it
is possible to obtain the denoised PPG and ECG signals as the output error signal,
Fig 4.3. The filter length can be selected in a range of experimentally selected values
(7,20) and the step size has been experimentally selected at 0.01. The number of
iterations has been set equal to the length of the input signal. The accelerometer
signals used as the signal target have been experimentally selected as the norm
of Min/Max normalized values of the accelerometer signals recorded respectively
along axis x, y, and z Eq. 4.1. Also, the input signals, noisy ECG or noisy PPG,
are Min/Max normalized before entering the adaptive filter. After the adaptive
filtering, both PPG and ECG are denormalized and they are ulteriorly filtered to
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remove the baseline.

Figure 4.4: Min/Max normalized PPG signal of subject 7 before (blue) and after
(orange) been filtered with a LMS Adaptive filter. In green, it is shown the output
signal

In Fig 4.4 is shown a normalized PPG signal before and after being filtered with
the LMS adaptive filter. Is it possible to notice how during the MA the signal
amplitude decreases, while the amplitude of the LMS filtered signal is less affected,
and in general in the filtered signals peaks are more defined.
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Figure 4.5: Min/Max normalized ECG signal of subject 7 before (blue) and after
(orange) been filtered with a LMS Adaptive filter. In green, it is shown the output
signal

In Fig 4.5 is shown a normalized ECG signal of subject 7 before and after being
filtered with the LMS adaptive filter. In this case, is quite visible how the ECG is
generally less attenuated by the noise and peaks are more visible.

4.1.2 Peaks cleaning

The second proposed approach used accelerometer signals to reduce the impact of
MA in BP estimation by discarding R and P peaks which can be potential fake peaks
due to MA. This approach foresees scrolling the accelerometer signal of reference
with windows of various lengths, and if the reference acceleration signal is outside
a determined range, peaks detected in the same timestamp of the acceleration
value outside the range, are discarded. Two are the reference accelerometer signal
proposed, the first is the acceleration norm 4.1, while the second is the S component
of the SVD decomposition 4.2. If the reference signal is the acceleration norm, it
can be divided into windows of one minute, 30 seconds, or one window of the same
length as the reference signal itself. Due to its nature, if the reference signal is
composed of the diagonal element of S, the window is usually considered the same
length as S. On each window, the mean and the standard deviation of the reference
accelerometer signal (ARS) are computed in order to set the upper and lower limit
of the range. The default upper and lower limits of the range are computed as:
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{
Upper limit = mean(ARS) + 2× SD(ARS)
Lower limit = mean(ARSl)− 2× SD(ARS)

(4.3)

The width of the range can be changed by selecting another multiplicative co-
efficient (1.5,2, 3). The peaks cleaning process is based on the timestamp of the
elements of the reference acceleration signal outside of the determined range. The
process foresees the creation of a binary signal of the same length as the reference
acceleration signal where the value zero indicates that the reference acceleration
signal is inside the range and one if it is outside the range. The binary signal peaks
are smothered by filling the gaps between the peaks that are less distant than an ex-
perimental threshold set at ten times the sampling frequency. Through this binary
signal, the arrays containing the R and P peaks previously determined are cleaned.
Specifically, peaks that correspond to the time interval where the binary signal is
one are discarded for BP estimation. The peaks cleaning process is illustrated in
Fig 4.6.

Figure 4.6: Peaks cleaning process
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4.2 Graphical User Interface (GUI)

A graphical user interface (GUI) is a type of user interface that facilitates user
interaction with systems through graphical icons, visual indicators, buttons, and
widgets instead of a command-line interface. Before developing a GUI, is it im-
portant to analyze and specify the requirements needed to successfully implement
a service. A Service is generally implemented in five major phases, which are the
service definition, the service design, the service implementation, the service deliv-
ery, and the service decommission [59]. This thesis work focalizes only on the first
three phases.

4.2.1 Service Definition

The service definition phase is intended to identify users, requirements, targets,
goals, and the overall functionality of the GUI.

Purpose and goals

This GUI is intended to be used in the SINTEC project to increase the useability
of the proposed algorithm, to fast the research for the best results, and to enhance
the transferability of the whole BP evaluation process from the Shimmer devices
to SINTEC devices.

User requirements

This GUI is intended to be used by researchers, engineers, or doctors, who are not
supposed to possess programming skills but who are familiar with the steps needed
to evaluate BP through ECG and PPG signals. The major need is a tool that
allows an easy way to visually determined the best ECG and PPG thresholds for
peaks detection, for the final goal of obtaining the best BP estimation in terms of
MAE and standard deviation. It is in the interest of the researcher the possibility
to visualize the SBP and DBP predictions in contrast with the reference signal
extrapolated from the Omron device. Furthermore, researchers are interested in
strategies allowing the reduction of the effects of MA on the prediction of BP. At the
same time, since researchers could come from different backgrounds, is it important
to guide the user through the possible choices with default setups and limited
possible choices. The GUI should have the possibility to save the results obtained
and allow multiple consecutive sessions of signal analysis and BP estimation.

System functionality

The GUI should allow the uploading of previously recorded .mat files which are the
ECG, PPG, and accelerometer signals, and should allow also the uploading of a .csv
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file containing the Omron data. The output data of the service deployed by the GUI
should be a .csv file containing at least the HR feature, statistical parameters of the
analyzed session, and the coefficients for BP determined. The GUI should allow the
visualization of the ECG, PPG signals with relatives determined peaks, acceleration
signals, BP in terms of predicted and real. The GUI should give the possibility of
selecting the best filtering systems, to allow users to select the best thresholds for
peaks detection through visual inspection. The user should be allowed to decide if
utilize or not strategies for motion artifact cleaning.

Technical specifications The GUI is developed for working at least on a personal
computer with Windows 11 operating system installed and the python 3.3 version
installed. The personal computer should have at least enough data storage available
to store the previously recorded signals and the .csv file elaborated from the GUI.

4.2.2 Service Design

The service design phase is intended to determine the layout and visual appearance
of the GUI, and define GUI widgets, and interactions for deploying the require-
ments. Unified Modelling Language (UML) diagrams are a valid visual tool for
identify the requirements previously identified.

Synopsis diagram

Figure 4.7: Synopsis diagram
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The synopsis diagram, Fig 4.7, allows to visually analyze the event that triggers
the service intended to deploy, which is the signals acquisition. The diagram shows
that the main user in the process is the researcher, the inputs data needed are
the signals and the selected values of thresholds for the peaks detection, while the
output data are the ML coefficients extrapolated to reach the final goal which is
the SBP and DBP estimation with a non-invasive technique for BP monitoring.

Use case diagram

Figure 4.8: Use case diagram

The use case diagram, Fig 4.8, allows to visually capture the system require-
ments and the interactions between them and the actors. In particular, the diagram
shows that the possibility of signals visualization is a ¡include¿ relationship with
the GUI functionality of loading signals, which means that signals visualization is
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possible only after the user loads the signals. The functionality of visualizing only
determined parts of the signal is a ¡extend¿ relationship because it is not strictly
necessary for the general functioning of the GUI. The filtering options and the
thresholds definitions have also ¡extend¿ relationship because the general function-
ing of the GUI is assured by default values. The BP estimation has an ¡include¿
relationship with the Omron data loading because Omron data are necessary for the
ML technique for BP estimation, whereas the functionality of peaks cleaning has
a ¡extend¿ relationship because it is not strictly needed for the general functioning
of the GUI.

GUI blueprint and widgets selection

In Fig 4.9, is represented the initial blueprint for the GUI layout and design. Wid-
gets that have been selected for deploying the GUI requirements are:

Figure 4.9: GUI blueprint with widgets selection

Buttons

Buttons allow a specific functionality.

• 1: Button “UPLOAD”, for uploading ECG, PPG, accelerometer signals, and
Omron file

• 2: Button “SAVE”, for saving data

• 3: Button “CLEAR”, for clearing everything before starting a new session
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• 14: Button “PLOT”, for visualizing cut signals and signals with the options
selected with the menu 11, and entry boxes 12, 13.

• 24: Button “PREDICT”, for predicting BP with the previous selections

Labels

• 4: Texted information showing the .mat file names loaded

• 15: Texted information showing the .csv file name loaded

• 16: Statics data about the BP estimation

Entry Box

User input by keyboard.

• 5: Plot signal from a certain minute in a certain format

• 6: Plot signal to a certain minute in a certain format

• 12: ECG threshold

• 13: PPG threshold

Radio buttons

For selection options where at least one selection is needed.

• 7: For visualizing raw signals

• 8: For visualizing filtered signals

• 9: For visualizing the first filtering option

• 10: For visualizing the seconds filtering option

• 11: For visualizing R & S peaks

• 20: For selecting the threshold 1 for peaks cleaning

• 21: For selecting the threshold 2 for peaks cleaning

Menuboxes

For user selection in a restricted number of options.

• 11: For selecting the filter length of the adaptive filter

• 22: For selecting the window duration

• 23: For selecting the standard deviation
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Checkboxes

For user selection, when a selection is not strictly needed.

• 17: For visualizing the real SBP

• 18: For visualizing the real DBP

• 19: For enabling peaks cleaning

Plots

• 25: ECG signal visualization

• 26: PPG signal visualization

• 27: SBP visualization

• 28: DBP visualization
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Results

Signals have been processed with the ECG and PPG thresholds shown in Table 1
of Appendix B, the results of the new algorithm testing contribute to the enlarge-
ment of the already existing database of signals recorded with Shimmer devices
for the SINTEC project, resulting in a final database of 90 measurements recorded
across 12 subjects. The new acquisitions have been analyzed through the new GUI
deploying the strategies for MA removal. The tables in Appendix C show all the
strategies and parameters that have been used.

5.1 Algorithm test

The ANSI/AAMI/ISO 81060-2:2018 Universal Standard for the Validation of Blood
Pressure Measuring Devices is the reference standard for evaluating the accuracy
of this algorithm for continuous non-invasive BP monitoring [60]. The guideline
provides two criteria, Criterion1 refers to the accuracy and precision requirements
that the device must meet when compared to a reference measurement method,
whereas Criterion 2 refers to testing the device in a variety of conditions [61]. For
the aim of this thesis work, only Criterion 1 has been investigated. According to the
population number of this case study (90 measurements), is it possible to refer to
the guideline error tolerance for a general population with at least 85 measurements,
which states a maximum MAE tolerance of 10 mmHg and a maximum SD tolerance
of 8 mmHg [60]. However, it is necessary to specify that, the control device used
for this thesis work, the Omron Heart Guide device, has an accuracy of ± 3 mmHg,
which leads, according to the error propagation theory [62], to considering valid
measurements with: {

MAE < 7mmHg
SD < 8mmHg

(5.1)

The number of validated measurements for the already existing Shimmer mea-
surements and the new measurements according to 5.1 is shown in Table 5.1 :
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Table 5.1: Number of valid measurements according to ANSI/AAMI/ISO 81060-
2:2018 and error propagation theory in the already existing Shimmer database and
the new measurements

Valid already ex-
isting Shimmer
measurements

Valid new
Shimmer mea-
surements

% Total of valid
measurements

MAE, SD 5.1 according to
the error propagation the-
ory

50/50 33/40 92%

It is worth noticing that the average MAE from the new measurements is superior
to the average MAE from the already existing measurements, while there are no
apparent differences in terms of average SD, as shown in Table 5.2 .

Table 5.2: Average MAE and Average SD calculated on the 50 already existing
measurements and the 40 new measurements of the Shimmer database

Already existing
Shimmer measure-
ments

New Shimmer mea-
surements

Average MAE (mmHg) ± Aver-
age SD (mmHg)

1.76 ± 1.67 4.30 ± 1.79

There are some explanations, the first one refers to the signal quality that has
decreased after one year of non-use between the two acquisition sessions. During
signals acquisition in the second session, signal quality, especially for ECG signals
was lower, resulting in attenuated signals with R peaks generally being no higher
than 0.2 mV, instead of 1.25 mV as in the first session. This attenuation may
have increased errors in detecting the features necessary for BP estimation. The
second explanation refers to the voluntary movements introduced during signals
acquisition that introduce rapid variation in BP values that are not detectable
with one-minute Omron measurements. The interpolations of the same Omron
measurement over a minute when a MA was present, may have caused a major
difference in terms of MAE. In addition, an increase in MAE could be due to the
loss of accuracy of the Omron itself, caused by the deterioration of mechanical
parts due to its oscillometric nature. Overall, in terms of the ANSI/AAMI/ISO
81060-2:2018 guideline, the algorithm has shown acceptable accuracy.

54



Results

5.2 MA reduction strategies test

Between the 40 new database acquisitions processed with the original algorithm, 16
had returned values of MAE and SD that were not compliant with ANSI/AAMI/ISO
81060-2:2018 guideline and the error propagation theory 5.1. Thus, the MA reduc-
tion techniques deployed through the GUI have allowed reducing the number of
non-valid measurements from 16 to 7 and allowed a general average MAE improve-
ment of 25% considering all 40 measurements.

Table 5.3: MA removal techniques improvements

SBP MAE (%) DBP MAE (%) Mean value of
SBP and DBP
MAE (%)

Improvement (%) 21 21 25

As shown in 5.3, the new measurements have beneficiated a 21% reduction of
MAE in both SBP and DBP estimations. Considering for each measurement the
balance improvement, which is the mean value between the SBP MAE and DBP
MAE improvement, the measurements have beneficiated from a general balance
improvement of the 25%. Table 3 of Appendix C shows all the improvements for
each measurement. These results have been obtained by processing the signals first
with the GUI setup corresponding to the original algorithm and then investigating
the best combination of MA reduction technique and parameters to obtain an
error reduction in terms of MAE. Seven combinations have been analyzed, the first
three combinations are entirely based on MA removal through thresholding with
different time windows, a combination is the use of the adaptive filter, and the other
three techniques are a combination of adaptively filtered signals with MA removal
through thresholding with different time windows. For each combination, some
parameters can be settled specifically for that measurement. These parameters are
the accelerometer signal of reference used in thresholding, the adaptive filter length,
and the standard deviation used for determining the upper and lower limit in the
thresholding. The seven combinations are:

1. Default filter + thresholding with the length of a window corresponding to the
full signals length

2. Default filter + thresholding with a window length corresponding to one
minute

3. Default filter + thresholding with a window length corresponding to 30 seconds

4. Adaptive filter

55



Results

5. Adaptive filter + thresholding with a window length corresponding to the full
signals length

6. Adaptive filter + thresholding with a window length corresponding to one
minute

7. Adaptive filter + thresholding with a window length corresponding to 30 sec-
onds

Figure 5.1: MA removal techniques. The x-axis represents the number associated
with each of the analyzed strategies, while the y-axis represents the number of times
each strategy was found to be better in terms of MAE.

From Fig 5.1 is possible to notice that combinations 1 and 5 have given the
best results for almost half of the 40 measurements (In Fig 5.1, 41 measurements
have been considered because one measurement has the best results with two of the
possible combinations). Both combinations 1 and 5 use the peaks cleaning technique
with a window length corresponding to the full signal length. Also, combinations
7 and 4 have returned good results, both techniques foresee at least one adaptively
filtered signal but combination 7 uses also the peaks cleaning technique with a
window length of 30 seconds, while combination 5 does not use this technique.
It is possible to conclude that both the techniques proposed, the peaks cleaning
and the adaptive filter, have equally contributed to reducing the MA effects in
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Figure 5.2: The four pie charts represent the user-selectable parameters for finding
the best combination in terms of MAE. The parameters in question are the type of
threshold to use, the standard deviation to determine the upper and lower limits
for thresholding, the length of the filter, and which signal to filter with the LMS
filter.

terms of MAE for BP estimation. As mentioned above, each combination was
customized through the GUI functionalities with some params choices, for example,
in combinations that exploit the peaks cleaning technique, it is possible to select the
accelerometer signal of reference between Threshold 1 (ACC norm) and Threshold
2 (SVD decomposition) and the SD necessary for determining the upper and lower
limit. For combinations that exploit the adaptive filter, it is possible to select
which signal to filter (ECG, PPG, or both) and the filter length. From Fig 5.2 it is
possible to notice that Threshold 1 has returned the best results in almost all the
measurements. SD set to 1.5 and the filter length equal to 7 have been used more
often than the other parameters. In almost half of the measurements that have
used the adaptive filter, both ECG and PPG signals have been adaptively filtered.

5.3 ML coefficients analysis

Based on the previous study conducted using the Shimmer database, a statistical
analysis was performed on the regression coefficients of the new measurements to
investigate whether the values for the same subject remained relatively constant
over time. The statistical analysis was conducted on the measurement of the subject
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which the major number of measurements and using the mean value Eq. 5.2 and
the variance Eq. 5.3 as statistical tools. The mean value (µ) is defined as the
central tendency of a numerical distribution and is calculated as the average value
of the distribution [63], that in this study case is the average value of a regression
coefficient, estimated through:

µx =
1

N

N∑
i=1

xi (5.2)

The variance (σ2) is a measure of the dispersion of a numerical distribution from
its mean value and is defined as the quadratic deviation of the distribution from
the arithmetical mean [64]:

σ2
x =

1

N

N∑
i=1

(xi − µx)
2 (5.3)

The statistical analysis was conducted over a 24-year-old woman, subject 7,
which was the subject with the major number of measurements, and compared
with the statistical analysis previously conducted on subjects 1 and 3.

Table 5.4: Mean value of regression coefficients of subject 7

MEAN (µ) asd bsd ad bd
4.73 0.04 4.73 0.04

Table 5.5: Variance of regression coefficients of subject 7

VARIANCE (σ2) as bs ad bd
164.43 0.01 164.43 0.01

In Table 5.4 and Table 5.5 are illustrated the mean values and variances calcu-
lated from the coefficients of subject 7. As previously mentioned, the coefficients
refer to Eq. 2.3 from Section 2.3, as and ad refer to the PTT features whereas bs

and bd refer to the HR feature. As expected, coefficients related to PTT are af-
fected with a higher variability than the coefficients associated with the HR feature,
which is extremely low.

In Table 5.6 is illustrated how the variance of the regression coefficients related to
ante- meridiem (AM) and post-meridiem (PM) recordings. It is possible to notice
that the variability of as , ad coefficients from PM signal acquisitions is higher,
almost double respect the variance of as , ad coefficients in AM recording. BP
variability can be due to different factors, including the proximity to meals [65]
as in most PM acquisitions that have been acquired or immediately after lunch
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Table 5.6: Variance of regression coefficients related to AM and PM recording of
subject 7

Variance σ2

as bs ad bd
AM 114.87 0.014 114.87 0.014
PM 201.15 0.013 201.15 0.013

or just before dinner. Although a similar behavior can also be observed from the
measurements on subjects 1 and 3 [44], the coefficients appear to be substantially
different even in subjects with similar BMI. This could indicate that calibrating the
algorithm based on BMI may not be a viable approach. These results have been
evicted also in the previous study on the Shimmer databases as shown in the tables
of Appendix E.

5.4 GUI first release

The previous results have been obtained by analyzing signals with the first GUI
prototype, as shown in the following figures.

Figure 5.3: GUI first release homepage. Most of the functionalities are disabled
because no signals have been uploaded

The GUI homepage, Fig 5.3, appears with a zero signal for ECG and PPG
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canvases, and two blank canvases for SBP and DBP. Labels indicate that no sig-
nals have been uploaded and for this reason, radio buttons enabling the different
visualizations are disabled.

Figure 5.4: Uploading. Users can select which signals upload from their own files

When the button “UPLOAD” is pushed, a file dialog window opens and indicates
to the user which signals to upload. When a signal is uploaded, the label updates
and indicates which file has been uploaded. In Fig 5.4, it is shown the ECG
uploading label updated after and the file dialog indicates to the user to select a
PPG signal.
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Figure 5.5: The raw signals shown in the canvases are cut, aligned and synchronized
ECG and PPG signals

In Fig 5.5, it is shown the result of the uploading. The radio button selected by
default indicates that the raw signals are displayed. The label indicating the length
of the signals is updated as also the default values in the entry box allowing to see
parts of the signals. The radio button options allow the visualization of filtered
signals and peaks are enabled.
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Figure 5.6: The second window allows the users to visualize the two ARS, the ACC
norm and the S components of SVD

In Fig 5.6, it is shown the second window opened when button “VIEW ACC and
SVD” is pushed. In the first canvas is shown the first accelerometer reference signal,
the acceleration norm, whereas the second canvas shows the second accelerometer
reference signal, the S components of SVD decomposition. A navigation toolbox
simplifies signal visualization.
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Figure 5.7: The User can select which filtering option returns is most suitable for
his case

In Fig 1.7, it is shown how the entry boxes allow the visualization of the same
time-specified part of the signals, while the navigation bars allow the user to vi-
sualize some part of the respective canvas. It is also possible to notice that, when
the filtering option radio button is selected, the filtering options are enabled as the
menu allowing to select the adaptive filter length that most suits the signals.
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Figure 5.8: The User can manually insert the desired ECG and PPG thresholds

In Fig 5.8 is shown how the GUI allows the visualization of the R and P peaks
determined with the threshold specified in the entry boxes. To update the visu-
alization when the values of the thresholds change, it is necessary to click on the
button “PLOT”.

Figure 5.9: The User can manually insert the desired ECG and PPG thresholds
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In Fig 5.9, it is shown the results of SBP and DBP predictions in terms of MAE,
SD, and plot when the peaks cleaning functionality for MA removal is selected.
In particular, the checking of the “Enable peaks cleaning” checkbox enables the
selection of the Threshold radio buttons. In this case, Threshold 1 was selected
and the user has chosen a window length of one minute for MA removal and a
standard deviation set to 2.

Figure 5.10: The User can check the checkboxes for visualizing also the BP mea-
sured by the Omron and the HR

In Fig 5.10, it is shown the visualization of the reference SBP and DBP measured
with the Omron and HR on the same plot where the predicted SBP and DBP are
visualized when the checkboxes are checked.
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Figure 5.11: The User can save the produced data in a .csv file

In Fig 5.11 is shown the file dialog that is opened when the user clicked on
“SAVE” button and allows to save the values of predicted SBP, predicted DBP,
HR, MAE and SD of the estimation that has been made in a .csv file.

Figure 5.12: Example of CSV file

In Fig 5.12 is shown the .csv file that has just been saved.
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Figure 5.13: GUI ready for a new session after a ”CLEAR”

In Fig 5.13, it is shown how the GUI is back to the Homepage configuration
when the button “CLEAR” is pushed after a session.
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Chapter 6

Conclusion

This thesis work aimed to continue the study of a non-invasive continuous BP esti-
mation technique through features extracted from ECG and PPG signals, enlarging
the Shimmer database, and obtaining BP values through ML linear regression tech-
nique with an acceptable low error according to the AAMI/ISO/ESH guidelines.
These results have been obtained on signals corrupted with motion artifacts and
processed with MA removal techniques developed in this thesis work and deployed
through a user-friendly GUI specifically created for this type of investigation. The
novelties introduced in the algorithm by this thesis work foresee the introduction
of the accelerometer signal acquisition that has been used for building a technique
based on thresholding to eliminate possible corrupted HR and PTT features and
to build an LMS adaptive filter. The GUI has been used in the research of the best
setup for signal processing, accuracy testing, and coefficient extraction by enabling
the different techniques on the same signal analysis session and setting parame-
ters according to the specific case. These techniques for MA removal have been
proposed with the scope to be introduced in the future on the wearables SINTEC
sensors, which are intended to monitor BP everywhere at every time, during any
kind of activity [2].

6.1 Calibration issues and accuracy estimation

An aspect that still requires further investigation is the calibration issue. BMI has
been studied to verify if it is possible to calibrate the algorithm with the same co-
efficients for subjects with similar BMI. However, subjects with similar BMI have
shown very different coefficients, indicating that BMI may not be a sufficiently
discriminative characteristic to standardize calibration. Currently, calibration is
personalized for each subject, but the different variability in AM and PM acquisi-
tions suggests that calibration could be further personalized for the same subject
according to the time of day of the measurement. It is worth noticing also that
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the algorithm has been tested only for 20 minutes recordings in laboratory while
the subject was sitting or doing small movements, it will be interesting to study
deeper the calibration issue on SINTEC devices, which are intended for long time
measurements and in different outdoor and indoor situations. The question is if
the calibration will be still necessary for SINTEC measurements, which is uncom-
fortable and not feasible to investigate at the moment, with the actual Shimmer
devices. Research could be focused also on enhancing methods for evaluating the
accuracy of non-invasive continuous BP estimation techniques, overcoming the issue
of the non-continuous measurements from control devices [66].

6.2 Toward edge computing and real-time appli-
cation

A possible future improvement for wearable devices could be the deployment of
an edge computing paradigm. This paradigm refers to a decentralized architecture
where the IT services are at the “edge” of the network, much closer to the wearables
than cloud servers. This paradigm has the potential to power the wearables in
terms of processing real-time data and conducting in-depth analysis, extending the
battery life of wearables, reducing the latency, and improving the accuracy of data
processing. This kind of technology could also lead to the development of a GUI for
real-time data visualization, enabling a faster verification of signal quality before
an acquisition session, the correct electrodes location, and enabling faster signal
processing [67]. An edge computing architecture could also optimize data storage,
a critical aspect related to health data, that reach about 50 petabytes per year in a
hospital [68], plus the fact that patient health data information are kept within the
device and inference at the edge, the security and the vulnerability from attacks
and breaches is enhanced.
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This appendix contains the informed consent that has been signed by each subject
before proceeding with the recording of the physiological signals. The information
note relating to the SINTEC project is shown below the informed consent.

CONSENSO INFORMATO

Titolo della ricerca: Implementazione di un algoritmo per il monitoraggio della
pressione arteriosa in modo non invasivo partendo dai segnali elettrocardiografici
(ECG) e Fotopletismografici (PPG).
Sperimentatore: Dott.ssa Francesca Boschi Tesista magistrale del Politecnico di
Torino Tesi svolta presso LINKS Foundation Torino (TO), Italia
Io sottoscritto/a nato/a a il
indirizzo telefono
Dichiaro
Di partecipare volontariamente allo studio Implementazione di un algoritmo per il
monitoraggio della pressione arteriosa in modo non invasivo partendo dai segnali
elettrocardiografici (ECG) e Fotopletismografici (PPG) avente lo scopo di Testare
l’accuratezza dell’algoritmo per la stima della pressione sanguigna in modo non
invasivo nell’ambito del progetto europeo SINTEC.

• Di aver ricevuto dalla dott.ssa Francesca Boschi esaurienti spiegazioni in mer-
ito alla richiesta di partecipazione alla ricerca, in particolare sulle finalità e
procedure.

• Di aver avuto la possibilità di porre domande e di aver avuto risposte soddis-
facenti su tutta la sperimentazione.

• Di essere stato informato sui possibili rischi o disagi ragionevolmente prevedi-
bili.

• Di essere consapevole che la partecipazione è volontaria.

• Di essere stato assicurato:

– che potrò ritirarmi dalla sperimentazione già iniziata in qualsiasi momento
senza l’obbligo da parte mia di motivarne la decisione;
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– che i dati saranno utilizzati con le finalità indicate nello studio;

– che è mio diritto avere accesso alla documentazione che mi riguarda;

– che una copia del consenso informato e della documentazione di cui ho
preso visione rimarrà in mio possesso;

– che per ogni problema o per eventuali ulteriori informazioni potrò rivol-
germi a: Dott.ssa Francesca Boschi

Pertanto, confermo di aver avuto risposte esaurienti a tutti i miei
quesiti e, preso atto della situazione illustrata ACCONSENTO

LIBERAMENTE, SPONTANEAMENTE E IN PIENA COSCIENZA
ALLA SPERIMENTAZIONE PROPOSTAMI. Dichiaro inoltre di

essere a conoscenza della possibilità di revocare il presente consenso in
qualsiasi momento prima, durante e dopo l’avvio della sperimentazione.

Data registrazione Ora inizio Ora fine Firma del partecipante

Eventuali testimoni presenti (nome, cognome, firma):

Firma del partecipante: Firma dello sperimentatore:

OPPURE

NON ACCONSENTO

LIBERAMENTE, SPONTANEAMENTE E IN PIENA COSCIENZA ALLA
SPERIMENTAZIONE PROPOSTAMI.
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Data:

Eventuali testimoni presenti (nome, cognome, firma):

Firma del partecipante: Firma dello sperimentatore:

NOTA INFORMATIVA

Chi siamo e cosa è il Progetto SINTEC? Il progetto SINTEC- Soft in-
telligence epidermal communication platform è un progetto europeo nato a giugno
del 2019 che si propone di sviluppare una tecnologia innovativa in grado di mon-
itorare la salute di chi la indossa. SINTEC è supportato da un’ampia varietà di
organizzazioni con esperti in tutti i settori d’interesse come l’ingegneria, lo stu-
dio dei materiali, l’elettronica, la medicina, lo sport, l’economia e la divulgazione.
Gran parte delle attività vengono svolte utilizzando un approccio interdisciplinare.
Il progetto vuole rispondere alla necessità di sviluppare nuove tecnologie di inter-
connessione, non invasive e che non interferiscano con la vita del soggetto che le
indossa.

I dispositivi indossabili smart sono il passo successivo nell’evoluzione dei dis-
positivi indossabili di Internet of Things (IoT). Il primo obiettivo che il progetto
SINTEC si propone di raggiungere è dimostrare i vantaggi di questa nuova tecnolo-
gia nell’ambiente clinico. Per far ciò si sta sperimentando una tecnologia PCB con
substrato estensibile e lega liquida con l’integrazione di sistemi embedded complessi
all’interno del substrato al fine di applicarla in differenti situazioni complesse della
vita di tutti i giorni.

Il contributo di LINKS foundation è orientato all’analisi ed elaborazione dei
segnali fisiologici registrati, nello specifico del segnale elettrocardiografico (ECG) e
fotopletismografico (PPG). La prima parte del lavoro è focalizzata sulla valutazione
delle prestazioni di sensori e antenne tramite confronto con i dispositivi allo stato
dell’arte presenti nei laboratori. I sensori esplorati saranno elettrodi per segnali
elettrofisiologici (bioimpedenza) per ECG e sensori ottici (LED e fotodiodo) per
PPG. Il risultato di queste analisi ha orientato ed orienterà l’architettura del sis-
tema finale che è in continuo aggiornamento. Verranno inoltre integrati e testati
firmware e algoritmi per l’estrazione dei parametri fisiologici (es. Frequenza car-
diaca, Pressione sanguigna ecc.). I risultati ottenuti dalla validazione forniranno
feedback per l’ottimizzazione del dispositivo.

Ulteriori informazioni sul Progetto SINTEC sono disponibili qui: https://www.sintec-
project.eu/ Firmando il modulo di consenso ivi allegato, si accetta di partecipare
allo studio Implementazione di un algoritmo per il monitoraggio della pressione
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arteriosa in modo non invasivo partendo dai segnali elettrocardiografici (ECG) e
Fotopletismografici (PPG).

Qual è lo scopo della sperimentazione? Lo studio ha lo scopo di testare
l’accuratezza dell’algoritmo per la stima della pressione sanguigna in modo non in-
vasivo partendo dai segnali ECG e PPG registrati con dispositivi wearable (Shim-
mer3 ECG e GRS+).

Sono obbligato a partecipare? No. La decisione di partecipare alla sperimen-
tazione dipende solo da Lei. È completamente volontaria.

Come si svolgerà la sperimentazione? Ai volontari sarà richiesto di indossare
i dispositivi Shimmer e il dispositivo di riferimento Omron Heartguide. Dovranno
restare in posizione rilassata per 20 minuti durante i quali verranno registrati i
segnali ECG e PPG in maniera continuativa ed i valori di pressione sistolica e di-
astolica ogni minuto.

Quanto dura la sperimentazione? La Sua partecipazione alla sperimentazione
durerà fino alla fine della registrazione dei segnali, i volontari che lo desidereranno
potranno partecipare più volte alla registrazione.

Dovrò sostenere spese? No. La Sua partecipazione alla sperimentazione sarà
completamente gratuita.

Cosa dovrò fare se decido di partecipare alla sperimentazione? Le sarà
consegnata questa nota informativa, da leggere e conservare. Le sarà chiesto di
firmare il modulo di consenso, ivi allegato. Le sarà richiesto di dedicarci il tempo
necessario per la registrazione dei segnali.

Potrò cambiare idea dopo aver accettato di partecipare? S̀ı. Lei potrà de-
cidere di ritirare il consenso e interrompere la partecipazione alla sperimentazione,
in qualsiasi momento, anche a studio avviato, senza dover fornire giustificazioni.
Qualora decidesse di ritirare il consenso, Le chiediamo di inviare una comunicazione
al seguente recapito: francesca.boschi@studenti.polito.it e valeria.figini@linksfoundation.com

Come saranno usati i miei dati personali? I Suoi dati personali saranno resi
anonimi, nessuna informazione che La identifichi o La renda identificabile, diretta-
mente o indirettamente, o che possa fornire informazioni sulle Sue caratteristiche,
le Sue abitudini, il Suo stile di vita, le Sue relazioni personali, la Sua situazione eco-
nomica, verrà conservata. I segnali registrati verranno elaborati per la stima della
pressione sanguigna e i risultati ottenuti non potranno in alcun modo ricondurre a
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Lei.

I miei dati saranno sfruttati commercialmente? I Suoi dati non saranno in
alcun modo sfruttati commercialmente.

Con chi verranno condivisi i miei dati personali? I Suoi dati personali
saranno resi anonimi e solo i risultati da essi ottenuti saranno condivisi con il con-
sorzio SINTEC.

Chi devo contattare nel caso in cui abbia delle domande o reclami da sot-
toporre? Nel caso in cui avesse domande o reclami relativi alla sperimentazione,
può contattare: francesca.boschi@studenti.polito.it e valeria.figini@linksfoundation.com

Quali benefici potrò avere partecipando alla sperimentazione? Lei parteciperà
ad uno studio che punta ad avere un impatto rivoluzionario sulla vita dei pazienti
per le patologie cardiovascolari. Si spera che fornendo un mezzo di monitoraggio
conveniente e affidabile, aumenti il numero di persone che rilevano sistematicamente
la propria pressione sanguigna. In questo modo si potrebbe prevenire l’insorgenza
o la degenerazione di malattie cardiovascolari che sono ancora oggi la prima causa
di mortalità nel mondo.

Cosa accadrà ai risultati della sperimentazione? I risultati della sperimen-
tazione saranno resi anonimi, quindi Lei non sarà identificabile. I risultati anon-
imizzati saranno utilizzati ai fini del Progetto SINTEC, condivisi con il consorzio
SINTEC, in conferenze nazionali e internazionali, e pubblicati su riviste scientifiche.

Verranno effettuate riprese fotografiche o videografiche durante la mia
partecipazione alla sperimentazione? Durante la Sua partecipazione alla sper-
imentazione, non saranno scattate fotografie e non saranno effettuati filmati delle
sessioni di test.

Quali potrebbero essere i rischi? Il prelievo dei segnali avviene in modo non
invasivo ed indolore, si percepirà solo una pressione al polso su cui verrà posizion-
ato il dispositivo Omron HeartGuide (smartwatch con cuffia che restituisce i valori
pressori gonfiandosi e sgonfiandosi). I rischi relativi alla fase di prelievo sono quelli
legati all’eventuale mal posizionamento dei sensori con conseguente registrazione di
segnali non utilizzabili. In ogni caso il soggetto potrà scegliere in totale libertà di
sottoporsi nuovamente alla sperimentazione o meno.
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This appendix shows the table containing the peaks detection thresholds, both for
ECG and PPG signals, related to all measurements.

Table 1: ECG and PPG thresholds

THRESHOLDS (mV)
Measurement ECG PPG

51 0.1 30
52 0.4 30
53 0.2 30
54 0.2 30
55 1 30
56 0.1 15
57 0.11 30
58 0.2 10
59 1 30
60 0.4 30
61 1 30
62 0.1 30
63 0.4 30
64 0.5 20
65 0.2 30
66 0.2 30
67 0.4 100
68 0.1 20
69 1 30
70 0.6 30
71 0.4 30
72 0.5 30
73 0.5 10
74 0.1 30
75 0.2 30
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Table 1 – ECG and PPG thresholds
Measurement ECG PPG

76 0.2 30
77 0.5 80
78 0.1 30
79 0.15 30
80 0.2 50
81 0.1 20
82 0.1 10
83 0.1 5
86 0.1 10
87 0.5 10
88 0.4 1
89 0.2 5
90 0.2 20
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This appendix shows the MAEs and the SDs related to all measurements and indi-
cates which combination has been used to obtain the best results and the relative
parameters that have been used. It is also shown the percentage improvement in
terms of SBP and DBP MAE and the average percentage improvement for each
measurement. The following bullet list shows the number corresponding to each
used strategy along with its description.

1. Default filter+thresholding with a windows length corresponding to the full
signals length

2. Default filter+thresholding with a windows length corresponding to one minute

3. Default filter+thresholding with a windows length corresponding to 30 seconds

4. Adaptive filter

5. Adaptive filter+thresholding with a windows length corresponding to the full
signals length

6. Adaptive filter+thresholding with a windows length corresponding to one
minute

7. Adaptive filter+thresholding with a windows length corresponding to 30 sec-
onds

Table 2: MAEs and the SDs related to all measurements with the relative strategy

MAE: MEA (mmHg) ± SD (mmHg)
Measurement Strategy SBP DBP

51 1 3.62 ± 1.08 2.65 ± 1.14
52 5 1.44 ± 0.33 1.15 ± 1.01
53 7 6.62 ± 6.32 6.97 ± 2.75
54 6 4.98 ± 1.14 3.01 ± 0.45
55 5 1.39 ± 0.39 0.87 ± 0.26
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Table 2 – MAEs and the SDs related to all measurements with the relative strategy
Measurement Strategy SBP DBP

56 3 14.77 ± 0.79 7.61 ± 1.92
57 7 4.34 ± 0.60 2.65 ± 0.95
58 7 1.27 ± 0.49 1.18 ± 0.72
59 4 5.17 ± 3.28 3.39 ± 2.13
60 6 7 2.00 ± 3.06 4.31 ± 1.53
61 6 0.39 ± 0.42 0.51 ± 0.24
62 1 6.47 ± 2.22 6.65 ± 1.52
63 5 3.69 ± 1.06 2.66 ± 1.09
64 5 2.62 ± 0.60 1.50 ± 0.70
65 7 6.41 ± 6.44 7.08 ± 2.75
66 1 4.55 ± 1.64 3.22 ± 3.46
67 7 1.91 ± 2.39 2.71 ± 1.35
68 5 8.51 ± 3.80 5.06 ± 5.08
69 1 4.91 ± 1.15 2.78 ± 1.18
70 5 1.53 ± 1.14 1.97 ± 0.67
71 4 2.13 ± 1.25 1.92 ± 0.67
72 2 7.1 ± 9.33 3.84 ± 4.04
73 7 3.65 ± 1.42 3.71 ± 1.01
74 2 3.25 ± 1.55 1.65 ± 0.79
75 2 6.79 ± 2.16 3.88 ± 0.63
76 1 2.38 ± 1.16 1.37 ± 0.61
77 7 2.32 ± 2.24 4.89 ± 3.70
78 1 3.37 ± 1.58 3.41 ± 1.84
79 4 5.03 ± 0.88 2.20 ± 0.35
80 6 5.01 ± 1.53 2.75 ± 0.52
81 1 4.27 ± 1.47 4.12 ± 1.41
82 4 1.89 ± 1.02 5.72 ± 1.60
83 4 6.61 ± 1.30 2.04 ± 0.47
84 4 5.24 ± 0.49 5.93 ± 0.83
85 4 14.39 ± 2.64 3.38 ± 0.46
86 1 12.25 ± 3.38 8.22 ± 5.28
87 1 4.7 ± 1.51 4.94 ± 0.94
88 5 4.83 ± 0.61 4.43 ± 2.69
89 5 2.23 ± 0.87 10.86 ± 0.73
90 5 5.07 ± 4.51 7.80 ± 4.80
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Table 3: Parameters used for a strategy related to a measurement

Parameters
Measurement Strategy Filter length Th SD

51 1 - 1 1.5
52 5 7 1 2
53 7 7 1 1.5
54 6 20 1 3
55 5 20 1 1.5
56 3 - 1 3
57 7 7 1 2
58 7 20 1 1.5
59 4 7 - -
60 (6 and 7) 7 1 3
61 6 20 1 1.5
62 1 - (1 and2) 3
63 5 7 1 1.5
64 5 20 1 2
65 7 7 1 1.5
66 1 - 1 1.5
67 7 7 1 1.5
68 5 20 1 1.5
69 1 - 2 2
70 5 20 1 1.5
71 4 20 -
72 2 - 1 3
73 7 7 1 1.5
74 2 - 1 1.5
75 2 - 1 2
76 1 - 1 1.5
77 7 7 1 1.5
78 1 - 1 2
79 4 7 - -
80 6 7 1 1.5
81 1 - 1 1.5
82 4 7 - -
83 4 20 - -
84 4 20 - -
85 4 7 - -
86 1 - 1 2
87 1 - 1 2
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Table 3 – Parameters used for a strategy related to a measurement
Measurement Strategy Filter length Th SD

88 5 7 1 1.5
89 5 7 1 1.5
90 5 7 1 1.5

Table 4: Improvements in terms of MAE

Improvements
Measurement Strategy %SBP impr. %DBP impr. % avg impr.

51 1 2% 4% 3%
52 5 26% 20% 23%
53 7 35% 7% 21%
54 6 28% 36% 32%
55 5 58% 38% 48%
56 3 2% 4% 3%
57 7 25% 52% 39%
58 7 46% 20% 33%
59 4 41% 57% 49%
60 6 & 7 12% 18% 15%
61 6 83% 87% 85%
62 1 0% 5% 3%
63 5 16% 17% 17%
64 5 45% 74% 60%
65 7 48% 7% 28%
66 1 24% 30% 27%
67 7 36% 3% 20%
68 5 31% 36% 34%
69 1 5% -2% 2%
70 5 89% 77% 83%
71 4 27% -9% 9%
72 2 -1% 13% 6%
73 7 82% -106% -12%
74 2 23% 51% 37%
75 2 33% -21% 6%
76 1 40% 43% 42%
77 7 54% 68% 61%
78 1 9% 2% 6%
79 4 15% 14% 15%
80 6 31% 42% 37%
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Table 4 – Improvements in terms of MAE

Measurement Strategy %SBP impr. %DBP impr. % avg impr.
81 1 65% -24% 21%
82 4 54% -57% -2%
83 4 0% 48% 24%
84 4 6% 11% 9%
85 4 14% 6% 10%
86 1 13% 33% 23%
87 1 -19% 36% 9%
88 5 0% 46% 23%
89 5 70% 12% 41%
90 5 58% 35% 47%
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This appendix shows tables with the values of the regression coefficients related
to all subjects from whom more than two valid measurements were recorded and
tables showing the mean and variance values of the coefficients themselves.

Table 5: Regression coefficients subject 7

Measurement as bs ad bd
Subject 7
Female
24 y/o
BMI: 19.83

51 -8.37 0.12 -8.37 0.12

52 10.61 -0.03 10.61 -0.03
53 -2.59 -0.15 -2.59 -0.15
54 14.36 -0.02 14.36 -0.02
55 19.62 -0.03 19.62 -0.03
56 2.12 0.41 2.12 0.4
57 10.54 0.03 10.54 0.03
58 -4.74 -0.04 -4.74 -0.04
59 23.76 0.23 23.76 0.23
60 -6.61 -0.09 -6.61 -0.09
61 -6.61 -0.09 -6.61 -0.09
62 3.64 0.06 3.64 0.06
63 -29.36 0.10 -29.36 0.10
64 18.60 0.01 18.60 0.01
65 3.93 0.10 3.93 0.10
66 30.15 -0.22 30.15 -0.22
67 20.06 0.21 20.06 0.21
68 -2.59 -0.15 -2.59 -0.15
69 0.57 -0.12 0.57 -0.12
70 -8.37 0.12 -8.37 0.12
71 10.61 -0.03 10.61 -0.03
72 7.15 0.04 7.15 0.04
73 44.38 0.09 44.38 0.09
74 -0.41 0.14 -0.41 0.14
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Table 5 – Regression coefficients subject 7
Measurement as bs ad bd

75 -6.60 -0.09 -6.60 -0.09
76 -3.15 0.05 -3.15 0.05
77 6.86 0.01 6.86 0.01
78 27.06 0.31 27.06 0.31
79 19.50 0.18 19.50 0.18
80 -3.66 0.09 -3.66 0.09

Table 6: Mean value of regression coefficients of subject 7

MEAN (µ)
as bs ad bd
4.73 0.04 4.73 0.04

Table 7: Variance of regression coefficients of subject 7

VARIANCE (σ2)
as bs ad bd

164.43 0.01 164.43 0.01

Table 8: Regression coefficients subject 8

Measurement as bs ad bd

Subject 8 Female
24 y/o BMI: 21.8

81 -8.26 -0.33 -8.26 -0.33
82 11.34 0.3 11.34 0.3

Table 9: Mean value of regression coefficients of subject 8

MEAN (µ)
as bs ad bd
9.80 -0.02 9.80 -0.02

Table 10: Variance of regression coefficients of subject 8

VARIANCE (σ2)
as bs ad bd
4.74 0.20 4.74 0.20
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Table 11: Regression coefficients subject 9

Measurement as bs ad bd

Subject 9 Female
24 y/o BMI: 19.83

83 7.96 -0.19 7.96 -0.19
84 17.52 0.02 17.52 0.02

Table 12: Mean value of regression coefficients of subject 9

MEAN (µ)
as bs ad bd

12.74 -0.09 12.74 -0.09

Table 13: Variance of regression coefficients of subject 9

VARIANCE (σ2)
as bs ad bd
45.7 0.02 45.7 0.02

Table 14: Regression coefficients subject 10

Measurement as bs ad bd

Subject 10 Female
24 y/o BMI: 20.20

87 2.32 0.09 2.32 0.09

88 -20.51 0.68 -20.51 0.68

Table 15: Mean value of regression coefficients of subject 10

MEAN (µ)
as bs ad bd

-9.10 0.39 -9.10 0.39

Table 16: Variance of regression coefficients of subject 10

VARIANCE (σ2)
as bs ad bd

260.60 0.17 260.60 0.17
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This appendix shows the variance of the regression coefficients relative to AM and
PM acquisitions in subjects 1,3 and 7.

Table 17: Variance of regression coefficients related to AM/PM recordings on sub-
ject 1

VARIANCE (σ2)
as bs ad bd

AM 42.77 0.022 269.21 0.023
PM 358.01 0.065 437.15 0.080

Table 18: Variance of regression coefficients related to AM/PM recordings on sub-
ject 3

VARIANCE (σ2)
as bs ad bd

AM 224.70 0.070 505.29 0.100
PM 957.15 0.599 427.30 0.161

Table 19: Variance of regression coefficients related to AM/PM recordings on sub-
ject 7

VARIANCE (σ2)
as bs ad bd

AM 114.87 0.014 114.87 0.014
PM 201.15 0.013 201.15 0.013
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This appendix presents the Python code that was implemented for the GUI in this
thesis project.

import csv

import math

import numpy as np

import operator

import pandas as pd

import pathlib

import PIL.Image

import scipy

import scipy.io

import scipy.signal

from datetime import datetime

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg ,

NavigationToolbar2Tk

import matplotlib.pyplot as plt

from PIL import ImageTk , Image

from pyparsing import empty

from scipy.signal import butter , find_peaks , peak_widths

from sklearn import linear_model

from sklearn.decomposition import TruncatedSVD

from sklearn.ensemble import RandomForestRegressor

from sklearn.linear_model import Ridge

from sklearn.metrics import mean_absolute_error

from sklearn.svm import SVR

from statistics import *

import tkinter as tk

from tkinter import *

from tkinter import filedialog , messagebox

from GUIfunctions_ACC import *

#====================================#

FUNCTIONS

#====================================#

def minutes_to_samples(user_input ,fs):

try:

# Convert user input to minutes and seconds
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minutes , seconds = user_input.split(".")

minutes = int(minutes)

seconds = int(seconds)

# Check if seconds are no more than 60

if seconds > 59:

root = tk.Tk()

root.withdraw ()

messagebox.showerror("Error", "Seconds␣must␣be␣no␣more␣

than␣59")

else:

# Convert minutes and seconds to samples

sample = int(( minutes * 60 + seconds) * fs)

except:

root = tk.Tk()

root.withdraw ()

messagebox.showerror("Error", "Invalid␣input␣format.␣The␣

correct␣format␣is␣mm.ss")

return sample

def cut_signals(s1 ,s2 ,start ,end ,ts_1 ,ts_2):

s1_c=s1[start:end]

s2_c=s2[start:end]

t1=np.arange(0,len(s1_c))/504.12

t2=np.arange(0,len(s1_c))/504.12

ts_1=ts_1[start:end]

ts_2=ts_2[start:end]

return s1_c ,s2_c ,t1 ,t2 ,ts_1 ,ts_2

# 1-SIGNAL PREPARING

def signal_preparing(ecg ,tsecg ,ppg ,tsppg ,acc_x ,acc_y ,acc_z ,tsacc):

# Creation of numpy arrays

ecg_head=np.zeros(len(ecg))

ts_ecg=np.zeros(len(ecg))

ppg_head=np.zeros(len(ppg))

ts_ppg=np.zeros(len(ppg))

ts_acc=np.zeros(len(acc_x))

for i in range(len(ecg)):

ecg_head[i]=ecg[i]

ts_ecg[i]=tsecg[i]/1000

for i in range(len(ppg)):

ppg_head[i]=ppg[i]

ts_ppg[i]=tsppg[i]/1000

fs =504.12 # Sampling frequency (Hz)

rec_time_mins_ppg = ((len(ppg_head) -1)/fs)/60

t_ppg = np.arange(0,len(ppg_head))/fs
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rec_time_mins_ecg = ((len(ecg_head) -1)/fs)/60

t_ecg = np.arange(0,len(ecg_head))/fs

t_acc =(np.arange(0,len(acc_x))/fs)

# Cut of the first noisy samples (first 20 seconds)

cut_int=round (20/( t_ppg [-1]/len(t_ppg)))

ind=np.arange(0,cut_int)

ppg_head=np.delete(ppg_head ,ind)

ts_ppg=np.delete(ts_ppg ,ind)

t_ppg=np.delete(t_ppg ,ind)

cut_int=round (20/( t_ecg [-1]/len(t_ecg)))

ind=np.arange(0,cut_int)

ecg_head=np.delete(ecg_head ,ind)

ts_ecg=np.delete(ts_ecg ,ind)

t_ecg=np.delete(t_ecg ,ind)

cut_int=round (20/( t_acc [-1]/len(acc_x)))

ind=np.arange(0,cut_int)

acc_x_head=np.delete(acc_x ,ind)

acc_y_head=np.delete(acc_y ,ind)

acc_z_head=np.delete(acc_z ,ind)

ts_acc=np.delete(tsacc ,ind)/1000

t_acc=np.delete(t_acc ,ind)

# ECG PPG:Signal alignment

if ts_ecg [0]< ts_ppg [0]:

for i in range(len(ts_ecg)):

if ts_ecg[i]>ts_ppg [0]:

ind=np.arange(0,i-1)

ecg_head=np.delete(ecg_head ,ind)

ts_ecg=np.delete(ts_ecg ,ind)

t_ecg=np.delete(t_ecg ,ind)

break

else:

for i in range(len(ts_ppg)):

if ts_ppg[i]>ts_ecg [0]:

ind=np.arange(0,i-1)

ppg_head=np.delete(ppg_head ,ind)

ts_ppg=np.delete(ts_ppg ,ind)

t_ppg=np.delete(t_ppg ,ind)

break

# Acc:Signal alignment

if tsacc [0]<tsppg [0]:

for i in range(len(tsacc)):

if tsacc[i]>tsppg [0]:

ind=np.arange(0,i-1)

acc_x_head=np.delete(acc_x_head ,ind)
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acc_y_head=np.delete(acc_y_head ,ind)

acc_z_head=np.delete(acc_z_head ,ind)

ts_acc=np.delete(ts_acc ,ind)

t_acc=np.delete(t_acc ,ind)

break

else:

for i in range(len(ts_ppg)):

if ts_ppg[i]>ts_acc [0]:

ind=np.arange(0,i-1)

ppg_head=np.delete(ppg_head ,ind)

ts_ppg=np.delete(ts_ppg ,ind)

t_ppg=np.delete(t_ppg ,ind)

ecg_head=np.delete(ecg_head ,ind)

ts_ecg=np.delete(ts_ecg ,ind)

t_ecg=np.delete(t_ecg ,ind)

break

# Signals cut at the same length

if len(ts_ecg)>len(ts_ppg):

t=t_ppg

ind=np.arange(0,len(ts_ppg))

ecg_head=ecg_head[ind]

ts_ecg=ts_ecg[ind]

else:

t=t_ecg

ind=np.arange(0,len(ts_ecg))

ppg_head=ppg_head[ind]

ts_ppg=ts_ppg[ind]

acc_x_head=acc_x_head[ind]

acc_y_head=acc_y_head[ind]

acc_z_head=acc_z_head[ind]

ts_acc=ts_acc[ind]

t_acc=t_acc[ind]

# PPG ECG Signals synchronization

int_t=ts_ppg [0]- ts_ecg [0]

for i in range(len(ts_ecg)):

if abs(ts_ppg[i]-ts_ecg[i])>int_t:

ts_ppg[i]= ts_ecg[i]-int_t

return ( ecg_head , ppg_head , ts_ecg , ts_ppg ,acc_x_head ,

acc_y_head ,acc_z_head ,ts_acc)

# 2-SIGNAL FILTERING

def adaptive_filter(s,acc_x ,acc_y ,acc_z ,filter_len):
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#MIN MAX Normalization

ns=(s-min(s))/(max(s)-min(s))

acc_x =(acc_x -min(acc_x))/(max(acc_x)-min(acc_x))

acc_y =(acc_y -min(acc_y))/(max(acc_y)-min(acc_y))

acc_z =(acc_z -min(acc_z))/(max(acc_z)-min(acc_z))

#Acc norm

ACC=np.sqrt(acc_x **2+ acc_y **2+ acc_z **2)

#Filter parameters

#filter_len = 7

step_size = 0.01

# Initialize the filter coefficients to zero

b = np.zeros(filter_len)

# Set the number of iterations

n_iter = len(ns)

s_padded = np.pad(ns, (0, filter_len -1), ’constant ’)

y, error = lms_adaptive_filter(s_padded , ACC , b, step_size ,

n_iter ,filter_len)

s_filt=y*(max(s)-min(s))+min(s)

#s_filt=hl_envelopes_idx(s_filt)

return s_filt

def lms_adaptive_filter(x, d, b, step_size , n_iter ,filter_len):

"""

Implement the LMS adaptive filter using the input signal x,

desired signal d,

filter coefficients b, step size , and number of iterations.

"""

# Initialize the error signal and the output signal

error = np.zeros(n_iter)

y = np.zeros(n_iter)

# Loop through the number of iterations

for i in range(n_iter):

# Compute the output signal

y[i] = np.dot(b, x[i:i+filter_len ])

# Compute the error signal

error[i] = d[i] - y[i]

# Update the filter coefficients

b += 2 * step_size * error[i] * x[i:i+filter_len]
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return y, error

def hl_envelopes_idx(s, dmin=1, dmax=1, split=False):

# locals max

lmax = (np.diff(np.sign(np.diff(s))) < 0).nonzero ()[0] + 1

if split:

# s_mid is zero if s centered around x-axis or more

generally mean of signal

s_mid = np.mean(s)

# pre -sorting of local max based on relative position with

respect to s_mid

lmax = lmax[s[lmax]>s_mid]

# global min of dmin -chunks of locals min

lmax = lmax[[i+np.argmax(s[lmax[i:i+dmax ]]) for i in range(0,

len(lmax),dmax)]]

s_filt=np.zeros(len(s))

n=0

for i in range(len(s)):

if i==lmax[n]:

s_filt[i]=s[i]-s[lmax[n]]

if n<len(lmax) -1:

n=n+1

else:

s_filt[i]=s[i]-s[lmax[n]]

return s_filt

def LP_butter(s,fs):

fNy = fs/2 # Nyquist frequency (Hz)

ft = 50 # Cut off frequency (Hz) (experimental)

ws=0.1 # Passaband ripple (dB) (experimental)

wp=15 # Stopband attenuation (dB) (experimental)

fa=30 # Attenuation frequenzy (Hz) (experimental)

n,wn=scipy.signal.buttord(ft/fNy ,fa/fNy ,ws ,wp)

b,a=scipy.signal.butter(n+1,wn) # 7-orer low -

pass Butterworth filter

s2_1=scipy.signal.filtfilt(b,a,s)

s_filt = hl_envelopes_idx(s2_1)

return s_filt

# PEAKS DETECTION FUNCTION

91



Appendix F

def peaks_detection(s_filt ,ts ,th):

time=np.arange(0,len(s_filt))/504.12

pks=find_peaks(s_filt ,height=th)

ind_pks=pks [0]

ts_pks=np.zeros(len(ts))

vect_pks=np.zeros(len(ts))

vect_pks[ind_pks ]= s_filt[ind_pks]

ts_pks[ind_pks ]=ts[ind_pks]

# Local maximus deletion

int_t=round (0.5/( time [-1]/len(time)))

for i in range(len(vect_pks)):

if i>len(vect_pks)-int_t:

break

if vect_pks[i]>0:

for j in range(1,int_t):

if vect_pks[i+j]>0:

vect_pks[i+j]=0

ts_pks[i+j]=0

return vect_pks ,ts_pks

#Peaks cleaning

def peaks_cleaningNOwin(th_pc ,std_pc ,ecg_filt ,ppg_filt ,ACC ,S,th_ecg

,th_ppg ,ts_ecg ,ts_ppg ,fs):

vect_R , ts_R=peaks_detection(ecg_filt , ts_ecg , th_ecg)

vect_P , ts_P=peaks_detection(ppg_filt , ts_ppg , th_ppg)

necg=(ecg_filt -min(ecg_filt))/(max(ecg_filt)-min(ecg_filt))

nppg=(ppg_filt -min(ppg_filt))/(max(ppg_filt)-min(ppg_filt))

if th_pc == 1:

mdn=statistics.median(ACC)

dev=np.std(ACC)

Hs=mdn+std_pc*dev

Hi=mdn -std_pc*dev

elif th_pc ==2:

mdn=statistics.median(S)

dev=np.std(S)

Hs=mdn+std_pc*dev

Hi=mdn -std_pc*dev

Hs=Hs[0]

Hi=Hi[0]

#Binary Signal V

V=np.zeros(len(ACC))

for i in range(len(V)):
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if ACC[i]>Hs:

V[i]=1

elif ACC[i]<Hi:

V[i]=1

# Define the threshold distance

threshold_distance = fs*10

# Find the peaks in the binary signal

peaks , _ = find_peaks(V)

# Find the widths of the peaks

widths = peak_widths(V, peaks)[0]

# Find the gaps between peaks that are less than the threshold

distance

gaps = peaks[np.where(np.diff(peaks) < threshold_distance)[0] +

1]

# Fill the gaps by setting the values in those indices to 1

V[gaps] = 1

indexV= np.nonzero(V)[0]

#Peaks cleaning

clean_vect_P=np.zeros(len(vect_P))

clean_ts_P=np.zeros(len(vect_P))

clean_vect_R=np.zeros(len(vect_R))

clean_ts_R=np.zeros(len(vect_R))

for i in range(len(V)):

if V[i]==0:

clean_vect_P[i]= vect_P[i]

clean_ts_P[i]=ts_P[i]

clean_vect_R[i]= vect_R[i]

clean_ts_R[i]=ts_R[i]

else:

i=i+1

return clean_vect_R , clean_ts_R , clean_vect_P , clean_ts_P

def peaks_cleaning_win(std_pc ,win_pc ,ecg_filt ,ppg_filt ,ACC_nopad ,

th_ecg ,th_ppg ,ts_ecg ,ts_ppg ,fs):

vect_R , ts_R=peaks_detection(ecg_filt , ts_ecg , th_ecg)

vect_P , ts_P=peaks_detection(ppg_filt , ts_ppg , th_ppg)

#MAX MIN Normalization

necg=(ecg_filt -min(ecg_filt))/(max(ecg_filt)-min(ecg_filt))

nppg=(ppg_filt -min(ppg_filt))/(max(ppg_filt)-min(ppg_filt))

#Windowing

n_samples = int(len(necg))
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samples_per_minute = int(fs * win_pc)

# Number of one -minute segments

#n_segments = round(n_samples / samples_per_minute )

n_segments = math.ceil(n_samples / samples_per_minute )

segments = []

#ACC padding

n_samples_round=samples_per_minute*n_segments

last_value=ACC_nopad [-1]

pad_size =( n_samples_round)-len(ACC_nopad)

ACC = np.pad(ACC_nopad ,( 0,pad_size), ’constant ’,

constant_values =(0, last_value))

# Initialize an empty list to store the threshold values

thresholds = []

# Divide the signal into one -minute segments

for i in range(n_segments):

start = i * samples_per_minute

end = (i + 1) * samples_per_minute

segment = ACC[start:end]

# Threshold 1

mdn = statistics.median(segment)

dev = np.std(segment)

Hs = mdn + std_pc*dev

Hi = mdn - std_pc*dev

thresholds.append ((Hs, Hi))

# Separate the threshold list into two separate lists

hs = [t[0] for t in thresholds]

hi = [t[1] for t in thresholds]

# Define the threshold distance

threshold_distance = fs*10

# Initialize an empty list to store the binary signals

V = []

# Find the peaks in the binary signal for each segment

for i in range(n_segments):

segment = ACC[i*samples_per_minute :(i+1)*samples_per_minute

]

Hs , Hi = thresholds[i]
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v = np.zeros(len(segment))

for j in range(len(v)):

if segment[j] > Hs:

v[j] = 1

elif segment[j] < Hi:

v[j] = 1

peaks , _ = find_peaks(v)

# Find the gaps between peaks that are less than the

threshold distance

gaps = peaks[np.where(np.diff(peaks) < threshold_distance)

[0] + 1]

# Fill the gaps by setting the values in those indices to 1

v[gaps] = 1

V.append(v)

# concatenate all the binary signal in one signal

V = np.concatenate(V)

indexV = np.nonzero(V)[0]

#Resize V at the same lenght of original signals

V = np.resize(V, len(vect_R))

#Peaks cleaning

clean_vect_P=np.zeros(len(vect_P))

clean_ts_P=np.zeros(len(vect_P))

clean_vect_R=np.zeros(len(vect_R))

clean_ts_R=np.zeros(len(vect_R))

for i in range(len(V)):

if V[i]==0:

clean_vect_P[i]= vect_P[i]

clean_ts_P[i]=ts_P[i]

clean_vect_R[i]= vect_R[i]

clean_ts_R[i]=ts_R[i]

else:

i=i+1

return clean_vect_R , clean_ts_R , clean_vect_P , clean_ts_P

# BP ESTIME FUNCTION

def BP_estime(vect_R ,ts_R ,vect_P ,ts_P ,ecg_fil ,ppg_fil ,ts_ecg ,ts_ppg

,ts_omron ,sbp ,dbp):

n=0

T=0

found =0
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ptt=np.zeros(len(ppg_fil)) # PTT array

hr=np.zeros(len(ecg_fil)) # HR array

timetable=np.zeros(len(ecg_fil)) # Timestamp array

for i in range(len(vect_R)):

if i>=T:

if vect_R[i]>0:

found =0

for j in range(i+1,len(vect_R)):

if found ==1:

break

if vect_R[j]>0:

break

else:

if vect_P[j]>0:

ptt[n]=ts_P[j]-ts_R[i]

for k in range(i+1,len(vect_R)):

if vect_R[k]>0:

hr[n]=60/( ts_R[k]-ts_R[i])

timetable[n]=ts_R[i]

n=n+1

T=k

found =1

break

# Zero elements deletion and arrays cut at the same length

ind=np.array(np.where(ptt ==0))

ptt=np.delete(ptt ,ind)

ind=np.array(np.where(hr==0))

hr=np.delete(hr,ind)

ind=np.array(np.where(timetable ==0))

timetable=np.delete(timetable ,ind)

if len(ptt)>len(hr):

ind=np.arange(0,len(hr))

ptt=ptt[ind]

timetable=timetable[ind]

else:

ind=np.arange(0,len(ptt))

hr=hr[ind]

timetable=timetable[ind]

# Arrays cleaning

mean_PTT=np.mean(ptt)

dev_PTT=np.std(ptt)

mean_HR=np.mean(hr)

dev_HR=np.std(hr)

for i in range(len(timetable)):

if ptt[i]>mean_PTT+dev_PTT or ptt[i]<mean_PTT -dev_PTT or hr

[i]>mean_HR+dev_HR or hr[i]<mean_HR -dev_HR:
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ptt[i]=0

hr[i]=0

timetable[i]=0

ind=np.array(np.where(ptt ==0))

ptt=np.delete(ptt ,ind)

ind=np.array(np.where(hr==0))

hr=np.delete(hr,ind)

ind=np.array(np.where(timetable ==0))

timetable=np.delete(timetable ,ind)

’’’omronfile_path = filedialog.askopenfilename ()

omronfile=Path(omronfile_path)

filename=omronfile

with open(filename) as filecsv:

reader=csv.reader(filecsv ,delimiter =";")

ts_omron=np.array(list(map(float ,[( line [0]) for line in

reader ])))

with open(filename) as filecsv:

reader=csv.reader(filecsv ,delimiter =";")

sbp=np.array(list(map(float ,[( line [1]) for line in reader ])

))

with open(filename) as filecsv:

reader=csv.reader(filecsv ,delimiter =";")

dbp=np.array(list(map(float ,[( line [2]) for line in reader ])

)) ’’’

# Omron ’s time values correspond to the time in which the

device returns the

# pressure values

ts_omron=ts_omron -60*np.ones(len(ts_omron))

# Creation of the interpolating time array

n=np.array(np.where(ts_ecg == timetable [0]))

m=np.array(np.where(ts_ecg == timetable [-1]))

ind=np.arange(n,m)

t_fit=ts_ecg[ind]

# Interpolation of the Omron ’s data

SBP_fit=np.interp(t_fit ,ts_omron ,sbp)

DBP_fit=np.interp(t_fit ,ts_omron ,dbp)

# Interpolation of PTT and HR values

HR_fit=np.interp(t_fit ,timetable ,hr)

PTT_fit=np.interp(t_fit ,timetable ,ptt)
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#==================

# FEATURE REDUCTION

#==================

row1=feat_reduction(PTT_fit ,t_fit) # PTT

row2=feat_reduction(HR_fit ,t_fit) # HR

row3=feat_reduction(SBP_fit ,t_fit) # SBP

row4=feat_reduction(DBP_fit ,t_fit) # DBP

# Arrays resampling

row1=np.interp(timetable ,t_fit ,row1)

row2=np.interp(timetable ,t_fit ,row2)

row3=np.transpose(np.interp(timetable ,t_fit ,row3))

row4=np.transpose(np.interp(timetable ,t_fit ,row4))

sz_train=round (0.7* len(row1))

ind_train=np.arange(0,sz_train)

ind_test=np.arange(sz_train ,len(row1))

trainData_PTT=row1[ind_train]

testData_PTT = row1[ind_test]

trainData_HR=row2[ind_train]

testData_HR = row2[ind_test]

X_train=np.transpose(np.array([ trainData_PTT ,trainData_HR ]))

X_test=np.transpose(np.array([ testData_PTT ,testData_HR ]))

perc=round (0.2* len(ind_test))

hr=hr[ind_test]

hr=mean_replacement(hr, window_size =30)

# LINEAR REGRESSION

regr = linear_model.LinearRegression () # Parameters

definition

MLR_modelfit_SBP ,MLR_modelfit_DBP ,MLR_SBP_pred ,MLR_DBP_pred ,

MLR_mae_SBP ,MLR_mae_DBP ,MLR_dev_SBP ,MLR_dev_DBP=

regression_process(regr ,X_train ,X_test ,ind_train ,ind_test ,

row3 ,row4)

MLR_coeff_SBP=MLR_modelfit_SBP.coef_

MLR_coeff_DBP=MLR_modelfit_DBP.coef_

print(MLR_coeff_SBP)

print(MLR_coeff_DBP)

return hr ,MLR_SBP_pred ,MLR_DBP_pred ,row3 ,row4 ,ind_test ,

MLR_modelfit_DBP ,MLR_modelfit_SBP ,MLR_mae_SBP ,MLR_mae_DBP ,

MLR_dev_SBP ,MLR_dev_DBP

def mean_replacement(hr , window_size =30):

num_windows = (len(hr) + window_size - 1) // window_size

padded_hr = np.concatenate ((hr, np.full(num_windows *

window_size - len(hr), hr[-1])))

new_hr = np.zeros(num_windows * window_size)
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for i in range(num_windows):

start = i * window_size

end = (i + 1) * window_size

window = padded_hr[start:end]

mean = np.mean(window)

new_hr[start:end] = np.full(window_size , mean)

new_hr= np.resize(new_hr , len(hr))

return new_hr

# FEATURE REDUCTION FUNCTION

def feat_reduction(feat ,t_fitted):

row=np.zeros(len(t_fitted))

T=0

for i in range(len(t_fitted) -1):

if i>=T:

for j in range(i+1,len(t_fitted)):

# Time window of 10 seconds

if t_fitted[j]-t_fitted[i]>=10:

ind1=np.arange(i,j)

# Feature averaging

vect_feat=feat[ind1]

val_feat=np.mean(vect_feat)

row[ind1]= val_feat

T=j

break

# If the last window is smaller than 10 s, the last values are

averaged and fitted in a 10 s time window

for i in range(len(row)):

if row[i]==0:

ind1=np.arange(i,len(row))

# Feature averaging

val_feat=np.mean(feat[ind1])

row[ind1]= val_feat

break

return row

# REGRESSION PROCESS FUNCTION

def regression_process(model ,matr_train ,matr_test ,i_train ,i_test ,

sbp ,dbp):
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# SBP

modelfit_SBP = model.fit(matr_train ,sbp[i_train ]) # Model

training

sbp_pred=modelfit_SBP.predict(matr_test) # Model

testing

mae_sbp=mean_absolute_error(sbp[i_test], sbp_pred) #

SBP MEA (mmHg)

dev_sbp=np.std(sbp_pred)

# SBP dev std (mmHg)

err_sbp=abs(sbp_pred -sbp[i_test ])

n=np.array(np.where(err_sbp >5))

num_sbp=len(np.transpose(n))

# DBP

modelfit_DBP = model.fit(matr_train ,dbp[i_train ]) # Model

training

dbp_pred=modelfit_DBP.predict(matr_test) # Model

testing

mae_dbp=mean_absolute_error(dbp[i_test], dbp_pred) #

DBP MEA (mmHg)

dev_dbp=np.std(dbp_pred)

# SBP dev std (mmHg)

err_dbp=abs(dbp_pred -dbp[i_test ])

n=np.array(np.where(err_dbp >5))

num_dbp=len(np.transpose(n))

return modelfit_SBP ,modelfit_DBP ,sbp_pred ,dbp_pred ,mae_sbp ,

mae_dbp ,dev_sbp ,dev_dbp

#====================================#

# GUI MAIN

#====================================#

def main():

root=tk.Tk()

gui=MyGUI(root)

gui.root.mainloop ()

return None

#====================================#

# GUI CLASS

#====================================#

class MyGUI:

def __init__(self ,root):

self.root=root

self.root.title(’SINTEC␣Project ’)

self.root.geometry("1900 x1200")

self.root.state(’zoomed ’)
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logo=ImageTk.PhotoImage(PIL.Image.open("logo.png"))

logo_label=Label(image=logo)

logo_label.image=logo

logo_label.place(x=25,y=55)

#==============================#

# GUI attributes default values

#==============================#

#Empty signals

self.fs =504.12

self.s2=np.zeros (100000)

self.s1=np.zeros (100000)

self.t1=np.arange(0,len(self.s1))/self.fs

self.t2=np.arange(0,len(self.s2))/self.fs

self.ts_1=np.arange(0,len(self.s1))/self.fs

self.ts_2=np.arange(0,len(self.s2))/self.fs

self.s3=[]

self.s4=[]

#Raw signals before alignement/sinc /20 scut

self.ecg_head =[]

self.ppg_head =[]

self.ts_ecg =[]

self.ts_ppg =[]

self.acc_x =[]

self.acc_y =[]

self.acc_z =[]

self.ts_acc =[]

#Acceerometer signals

self.ACC =[]

self.S=[]

#Filtered signals

self.ecg_fil1 =[] #baseline

self.ecg_fil2 =[] #adaptive (7)+

baseline

self.ecg_fil2_ =[] #adaptive (20)+

baseline

self.ppg_fil1 =[] #baseline

self.ppg_fil2 =[] #adaptive (7)+

baseline

self.ppg_fil2_ =[] #adaptive (7)+

baseline

self.ecg_fil =[] #selected ECG

filtered option
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self.ppg_fil =[] #selected PPG

filtered option

#HR

self.hr=[] #heart rate

self.ts_omron =[] #omron

timestamp

self.sbp =[] #omron

interpolated SBP

self.dbp =[] #omron

interpolated DBP

self.s3_real =[] # omron test

set SBP

self.s4_real =[] # omron test

set DBP

#BP

self.SBP =[] #ML SBP

self.DBP =[] #ML SBP

self.MLR_coeff_SBP =[] #SBP

coefficients

self.MLR_coeff_DBP =[] #DBP

coefficients

self.MLR_mae_SBP =[] #MAE SBP

self.MLR_mae_DBP =[] #MAE DBP

self.MLR_dev_SBP =[] #STD SBP

self.MLR_dev_DBP =[] #STD DBP

self.vect_R =[] #Peaks R

self.ts_R =[] #timestamp

Peaks R

self.vect_P =[] #Peaks P

self.ts_P =[] #timestamp

Peaks P

self.indexR =[] #Index Peaks R

self.indexP =[] #Index Peaks P

#Default values for Entry Box options

self.sample_start =0 #Entry box

start

self.sample_end=len(self.s1) #Entry box end

self.th_ecg =1.25 #Entry box ECG

Threshold

self.th_ppg =30 #Entry box PPG

Threshold

#Default values for Radiobutton options

self.choice1 = IntVar ()

self.choice1.set (0) #Raw signals
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self.sel1=0

self.choice2 = IntVar ()

self.choice2.set (1) #ECG Baseline

filtering option

self.sel2=0

self.choice3 = IntVar ()

self.choice3.set (1) #PPG Baseline

filtering option

self.sel3=0

#self.choice_pc=IntVar ()

#self.choice_pc.set(2)

self.rb_var = tk.IntVar ()

self.rb_var.set (1) #Peaks cleaning

threshold

#Default values for label

self.initialLenght =0

#Default values for checkboxes

self.var1 = tk.IntVar () #Real SBP

self.var2 = tk.IntVar () #Real DBP

self.var3 = tk.IntVar () #HR

self.checkbox_var = tk.IntVar () #Peaks cleaning

#Menu

self.menu1_var=tk.StringVar () #Windowing

duration

self.menu2_var=tk.StringVar () #Standard

deviation

self.filter_length=tk.StringVar () #Filter lenght

#==============================#

# GUI widgets

#==============================#

#Upload labels

self.filename_label_ecg = tk.Label(root , text="Upload␣a␣ECG

␣signal",font=("Verdana", 8, "italic"),anchor=’w’,bg="#

D3D3D3", width=50, height =1)

self.filename_label_ecg.place(x=300,y=25)

self.filename_label_ppg = tk.Label(root , text="Upload␣a␣PPG

",font=("Verdana", 8, "italic"),anchor=’w’,bg="#D3D3D3"

, width =50, height =1)

self.filename_label_ppg.place(x=300,y=55)

self.filename_label_acc = tk.Label(root , text="Upload␣

accelerometer␣signals",font=("Verdana", 8, "italic"),

anchor=’w’,bg="#D3D3D3", width=50, height =1)

self.filename_label_acc.place(x=300,y=85)
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self.filename_label_omron = tk.Label(root , text="Upload␣.

csv␣file",font=("Verdana", 8, "italic"),anchor=’w’,bg="

#D3D3D3", width =50, height =1)

self.filename_label_omron.place(x=1250,y=25)

#Signals lenght label

self.fullLength_Label=Label(root ,text="Signals␣are␣...␣

minutes␣long",font=("Verdana", 10))

self.fullLength_Label.place(x=300,y=115)

#Start label + Entry box

Label(self.root ,text="Plot␣signals␣from␣minute",font=("

Verdana", 10)).place(x=300,y=145)

self.sample_start_entry=Entry(self.root ,width =5)

self.sample_start_entry.insert(0,"0.00")

self.sample_start_entry.place(x=470,y=145)

#End label + Entry box

Label(self.root ,text="to␣minute␣",font=("Verdana", 10)).

place(x=510,y=145)

self.sample_end_entry=Entry(self.root ,width =5)

self.sample_end_entry.insert(0,"...")

self.sample_end_entry.place(x=580,y=145)

#Threshold ECG label + Entry box

self.th_ecg_label=Label(self.root ,text="ECG␣threshold␣:",

font=("Verdana", 10))

self.th_ecg_label.place(x=730,y=150)

self.unit_ecg=Label(self.root ,text="mV",font=("Verdana",

10))

self.unit_ecg.place(x=865,y=150)

self.th_ecg_entry=Entry(self.root ,width =5)

self.th_ecg_entry.insert(0,"1.25")

self.th_ecg_entry.place(x=830,y=150)

#Threshold PPG label + Entry box

self.th_ppg_label=Label(self.root ,text="PPG␣threshold␣:",

font=("Verdana", 10))

self.th_ppg_label.place(x=915,y=150)

self.unit_ppg=Label(self.root ,text="mV",font=("Verdana",

10))

self.unit_ppg.place(x=1050,y=150)

self.th_ppg_entry=Entry(self.root ,width =5)

self.th_ppg_entry.insert(0,"30")

self.th_ppg_entry.place(x=1015,y=150)

#BP statistics label

self.mae1=Label(root ,text=’MAE␣SBP␣=␣...’,font=("Verdana",

10))
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self.mae1.place(x=1250,y=85)

self.mae2=Label(root ,text=’MAE␣DBP␣=␣...’,font=("Verdana",

10))

self.mae2.place(x=1250,y=115)

self.dev1=Label(root ,text=’STD␣SBP␣=␣...’,font=("Verdana",

10) )

self.dev1.place(x=1400,y=85)

self.dev2=Label(root ,text=’STD␣DBP␣=␣...’,font=("Verdana",

10))

self.dev2.place(x=1400,y=115)

#Radio Buttons

#Possibility to choose between raw , filtered , peaks

detection

self.rb0=tk.Radiobutton(self.root ,text=’Raw␣signals ’,font=(

"Verdana", 10),variable=self.choice1 ,value=0,command=

self.update_values ,state=tk.DISABLED)

#raw signals

self.rb0.place(x=680,y=20)

self.rb0_1=tk.Radiobutton(self.root ,text="Filtering␣options

␣:",font=("Verdana", 10),variable=self.choice1 ,value=1,

command=self.update_values) #filtered signals

self.rb0_1.place(x=680,y=45)

self.rb0_2=Radiobutton(self.root ,text="R␣&␣P␣peaks",font=("

Verdana", 10),variable=self.choice1 ,value=2,command=

self.update_values) #peaks

detection

self.rb0_2.place(x=680,y=125)

#ECG filtering options

#Possibility to choose between baseline or adaptive+

baseline filter

self.rb1_1=tk.Radiobutton(self.root ,text=’ECG␣Baseline␣

removal ’,font=("Verdana", 10),variable=self.choice2 ,

value=1,command=self.update_values ,state=tk.DISABLED)

self.rb1_1.place(x=730,y=75)

self.rb1_2=tk.Radiobutton(self.root ,text=’ECG␣Adaptive␣

filter ’,font=("Verdana", 10),variable=self.choice2 ,

value=2,command=self.update_values ,state=tk.DISABLED)

self.rb1_2.place(x=900,y=75)

#PPG filtering options

#Possibility to choose between baseline+LP or adaptive+

baseline filter

self.rb2_1=tk.Radiobutton(self.root ,text=’PPG␣Baseline␣

removal ’,font=("Verdana", 10),variable=self.choice3 ,

value=1,command=self.update_values ,state=tk.DISABLED)

self.rb2_1.place(x=730,y=100)
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self.rb2_2=tk.Radiobutton(self.root ,text=’PPG␣Adaptive␣

filter ’,font=("Verdana", 10),variable=self.choice3 ,

value=2,command=self.update_values ,state=tk.DISABLED)

self.rb2_2.place(x=900,y=100)

#Peaks cleaning

#Enabling Peaks cleaning

self.checkbox_pc = tk.Checkbutton(root , text="Enable␣Peaks␣

cleaning",font=("Verdana", 10), variable=self.

checkbox_var)

self.checkbox_pc.place(x=1650,y=25)

#Possibility to choose the threshold

self.rb_th1 = tk.Radiobutton(root , text="Th1",font=("

Verdana", 10), variable=self.rb_var , value =1)

self.rb_th1.place(x=1650,y=60)

self.rb_th2 = tk.Radiobutton(root , text="Th2",font=("

Verdana", 10), variable=self.rb_var , value =2)

self.rb_th2.place(x=1750,y=60)

#Menu Options for Peaks cleaning

# Windowing

self.menu1 = tk.OptionMenu(root , self.menu1_var , "full", "1

␣min", "0.5␣min")

self.min_values = {"full": 1, "1␣min": 60, "0.5␣min": 30}

self.menu1.config(font=("Verdana", 10))

self.menu1_var.set("full")

self.menu1.place(x=1650,y=90)

menu1 = tk.Menu(self.menu1 , tearoff=0, font=("Verdana", 10)

)

for option in self.min_values:

menu1.add_command(label=option , command=lambda value=

option: self.menu1_var.set(value))

self.menu1[’menu’] = menu1

#Standard deviation

self.menu2 = tk.OptionMenu(root ,self.menu2_var ,"1.5␣std", "

2␣std", "3␣std")

self.menu2.config(font=("Verdana", 10))

self.std_values = {"1.5␣std": 1.5, "2␣std": 2, "3␣std": 3}

self.menu2_var.set("2␣std")

self.menu2.place(x=1750,y=90)

menu = tk.Menu(self.menu2 , tearoff=0, font=("Verdana", 10))

for option in self.std_values:

menu.add_command(label=option , command=lambda value=

option: self.menu2_var.set(value))

self.menu2[’menu’] = menu

#Option menu adaptive filter

106



Appendix F

self.labelFilter=Label(root ,text="Select␣Adaptive␣\n␣filter

␣length:",font=("Verdana" ,10),justify= RIGHT ,state=

DISABLED)

self.labelFilter.place(x=1100,y=45)

self.filter_length_options = {"7": 7, "20": 20}

self.menu_box = tk.OptionMenu(root , self.filter_length , "7"

,"20")

self.filter_length.set("7")

self.menu_box.place(x=1155, y=80)

self.menu_box.config(font=("Verdana", 10))

menu3 = tk.Menu(self.menu_box , tearoff=0, font=("Verdana",

10))

for option in self.filter_length_options:

menu3.add_command(label=option , command=lambda value=

option: self.filter_length.set(value))

self.menu_box[’menu’] = menu3

self.checkbox_var.trace("w", self.checkbox_trace)

self.rb_var.trace("w", self.rb_trace)

#Checkboxes

cb1=Checkbutton(self.root ,text="Real␣SBP",font=("Verdana",

10),variable=self.var1 , onvalue=1,offvalue=0, command=

self.plot_graphs_bp).place(x=1250,y=145)

cb2=Checkbutton(self.root ,text="Real␣DBP",font=("Verdana",

10),variable=self.var2 , onvalue=1,offvalue=0, command=

self.plot_graphs_bp).place(x=1350,y=145)

cb3=Checkbutton(self.root ,text="HR",font=("Verdana", 10),

variable=self.var3 , onvalue=1,offvalue=0, command=self.

plot_graphs_bp).place(x=1450,y=145)

#Configuration state

self.rb0_1.config(state="disabled")

self.rb0_2.config(state="disabled")

self.rb_th1.config(state="disabled")

self.rb_th2.config(state="disabled")

self.th_ecg_label.config(state="disabled")

self.unit_ecg.config(state="disabled")

self.th_ppg_label.config(state="disabled")

self.unit_ppg.config(state="disabled")

self.th_ecg_entry.config(state="disabled")

self.th_ppg_entry.config(state="disabled")

self.menu1.config(state="disabled")

self.menu2.config(state="disabled")

self.menu_box.config(state="disabled")

#Upload Button

buttonUPLOAD=Button(self.root ,text="UPLOAD",font=("Verdana"

, 10,"bold"),bg=’#0 F4170’,fg=’#31 BBF5’,command=self.

upload).place(x=25,y=165)
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self.root.bind("<Return >", self.upload)

self.plot_graphs ()

pass

#Plot Button

buttonPLOT=Button(self.root ,text="␣PLOT␣",font=("Verdana",

10,"bold"),bg=’#0 F4170’,fg=’#31 BBF5’,command=self.

update_values).place(x=1155 ,y=165)

self.root.bind("<Return >", self.update_values)

self.plot_graphs ()

pass

#Save button

buttonSAVE=Button(self.root ,text="SAVE",font=("Verdana",

10,"bold"),bg=’#0 F4170’,fg=’#31 BBF5’,command=self.

save_data).place(x=100,y=165)

#Clear Button

buttonCLEAR=Button(self.root ,text="CLEAR",font=("Verdana",

10,"bold"),bg=’#0 F4170’,fg=’#31 BBF5’,command=self.

clear_graphs).place(x=155,y=165)

self.root.bind("<Return >", self.clear_graphs)

self.plot_graphs ()

self.plot_graphs_bp ()

pass

#Button ACC and SVD visualization

self.button = tk.Button(self.root , text="View␣ACC␣and␣SVD",

font=("Verdana", 10,"bold"),bg=’#0 F4170’,fg=’#31 BBF5’,

command=self.open_second_window)

self.button.place(x=1650,y=165)

#Evaluate Button

buttonEVALUATE=Button(self.root ,text="PREDICT",font=("

Verdana", 10,"bold"),bg=’#0 F4170’,fg=’#31 BBF5’,command=

self.evaluate).place(x=1800,y=165)

self.root.bind("<Return >", self.evaluate)

self.plot_graphs_bp ()

pass

#==============================#

# GUI methods

#==============================#

def checkbox_trace(self , *args):

if self.checkbox_var.get() == 1:

self.rb_th1.config(state="normal")

self.rb_th2.config(state="normal")

self.rb_trace ()

else:

self.rb_th1.config(state="disabled")
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self.rb_th2.config(state="disabled")

self.menu1.config(state="disabled")

self.menu2.config(state="disabled")

def rb_trace(self , *args):

if self.rb_var.get() == 1:

self.menu1.config(state="normal")

self.menu2.config(state="normal")

elif self.rb_var.get() == 2:

self.menu1.config(state="disabled")

self.menu2.config(state="normal")

def open_second_window(self):

self.second_window = tk.Toplevel(self.root)

self.second_window.title("Accelerometer␣signal")

self.fig5 = plt.figure(figsize =(12, 7), dpi =100)

#Plot ACC

self.ax1 = self.fig5.add_subplot (211)

self.ax2 = self.fig5.add_subplot (212)

self.ax1.set_xlabel(’time␣(min)’)

self.ax1.set_ylabel(’Amplitude␣(mV)’)

self.ax1.set_title(’ACC’)

self.ax1.plot((np.arange(0,len(self.ACC))/self.fs)/60,self.

ACC)

#Plot S

self.ax2.set_xlabel(’time␣(min)’)

self.ax2.set_ylabel(’Amplitude␣(mV)’)

self.ax2.set_title(’S’)

self.ax2.plot((np.arange(0,len(self.S))/self.fs)/60,self.S)

canvasbar = FigureCanvasTkAgg(self.fig5 , self.second_window

)

canvasbar.draw()

canvasbar.get_tk_widget ().pack(side=tk.LEFT , fill=tk.BOTH ,

expand=True)

toolbar5 = NavigationToolbar2Tk(canvasbar , self.

second_window).place(x=25,y=5)

def clear_graphs(self ,*arg):

#Empty signals

self.s2=np.zeros (1000)

self.s1=np.zeros (1000)

self.t1=np.arange(0,len(self.s1))/self.fs

self.t2=np.arange(0,len(self.s2))/self.fs
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self.s3=[]

self.s4=[]

self.s3_real =[]

self.s4_real =[]

#Raw signals before alignement/sinc /20 scut

self.ecg_head =[]

self.ppg_head =[]

self.ts_ecg =[]

self.ts_ppg =[]

self.acc_x =[]

self.acc_y =[]

self.acc_z =[]

self.ts_acc =[]

#ACC

self.ACC =[]

self.S=[]

#Filtered signals

self.ecg_fil1 =[]

self.ecg_fil2 =[]

self.ppg_fil1 =[]

self.ppg_fil2 =[]

self.ecg_fil =[]

self.ppg_fil =[]

#HR

self.hr=[] #heart rate

self.ts_omron =[] #omron

timestamp

self.sbp =[] #omron

interpolated SBP

self.dbp =[] #omron

interpolated DBP

self.s3_real =[] # omron test

set SBP

self.s4_real =[] # omron test

set DBP

#BP

self.SBP =[] #ML SBP

self.DBP =[] #ML SBP

self.MLR_coeff_SBP =[] #SBP

coefficients
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self.MLR_coeff_DBP =[] #DBP

coefficients

self.MLR_mae_SBP =[] #MAE SBP

self.MLR_mae_DBP =[] #MAE DBP

self.MLR_dev_SBP =[] #STD SBP

self.MLR_dev_DBP =[] #STD DBP

self.vect_R =[] #Peaks R

self.ts_R =[] #timestamp

Peaks R

self.vect_P =[] #Peaks P

self.ts_P =[] #timestamp

Peaks P

self.indexR =[] #Index Peaks R

self.indexP =[] #Index Peaks P

self.initialLenght =0

#Clearing labels

self.filename_label_ecg.config(text="Upload␣a␣ECG␣signal")

self.filename_label_ppg.config(text="Upload␣a␣PPG␣signal")

self.filename_label_acc.config(text="Upload␣a␣accelerometer

␣signal")

self.filename_label_omron.config(text="Upload␣a␣.csv␣file")

self.fullLength_Label.config(text="Signals␣are␣...␣minutes␣

long")

self.mae1.config(text="MAE␣SBP␣=␣...")

self.mae2.config(text="MAE␣DBP␣=␣...")

self.dev1.config(text="STD␣SBP␣=␣...")

self.dev2.config(text="STD␣SBP␣=␣...")

#Default Radio button selection

self.rb0.select ()

self.rb1_1.select ()

self.rb2_1.select ()

# Widgets default values

self.th_ecg_entry.delete(0, END)

self.th_ecg_entry.insert(0, "1.25")

self.th_ppg_entry.delete(0, END)

self.th_ppg_entry.insert(0, "30")

self.sample_start_entry.delete(0,END)

self.sample_start_entry.insert(0,"0.00")

self.sample_end_entry.delete(0,END)

self.sample_end_entry.insert(0,"...")

self.var1.set (0)

self.var2.set (0)

self.var3.set (0)

self.checkbox_var.set (0)

self.rb_var.set (1)

self.menu1_var.set("full")
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self.menu2_var.set("2␣std")

self.filter_length.set("7")

#Configuration state

self.rb0.config(state="disabled")

self.rb0_1.config(state="disabled")

self.rb0_2.config(state="disabled")

self.rb_th1.config(state="disabled")

self.rb_th2.config(state="disabled")

self.th_ecg_label.config(state="disabled")

self.unit_ecg.config(state="disabled")

self.th_ppg_label.config(state="disabled")

self.unit_ppg.config(state="disabled")

self.th_ecg_entry.config(state=’disabled ’)

self.th_ppg_entry.config(state=’disabled ’)

self.menu1.config(state="disabled")

self.menu2.config(state="disabled")

self.menu_box.config(state=’disabled ’)

self.rb1_1.config(state="disabled")

self.rb1_2.config(state="disabled")

self.rb2_1.config(state="disabled")

self.rb2_2.config(state="disabled")

self.menu_box.config(state="disabled")

self.labelFilter.config(state="disabled")

self.root.bind("<Return >", self.clear_graphs)

self.plot_graphs ()

self.plot_graphs_bp ()

pass

def upload(self ,*arg):

#ECG

file_path_ecg = filedialog.askopenfilename(title=’Select␣

the␣ECG␣signal ’)

p_ecg=Path(file_path_ecg)

filename_ecg=p_ecg.name

self.filename_label_ecg.config(text=filename_ecg)

ecg_mat=scipy.io.loadmat(filename_ecg)

ecg=ecg_mat[’Shimmer_6C0E_ECG_LA_RA_24BIT_CAL ’]

tsecg=ecg_mat[’Shimmer_6C0E_Timestamp_Unix_CAL ’]

#PPG

file_path_ppg = filedialog.askopenfilename(title=’Select␣

the␣PPG␣signal ’)

p_ppg=Path(file_path_ppg)
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filename_ppg=p_ppg.name

self.filename_label_ppg.config(text=filename_ppg)

ppg_mat=scipy.io.loadmat(filename_ppg)

ppg=ppg_mat[’Shimmer_9404_PPG_A13_CAL ’]

tsppg=ppg_mat[’Shimmer_9404_Timestamp_Unix_CAL ’]

#Accelerometer

file_path_acc = filedialog.askopenfilename(title=’Select␣

the␣accelerometer␣signal ’)

p_acc=Path(file_path_acc)

filename_acc=p_acc.name

self.filename_label_acc.config(text=filename_acc)

acc_mat=scipy.io.loadmat(filename_acc)

acc_x=acc_mat[’Shimmer_6D4F_Accel_LN_X_CAL ’]

acc_y=acc_mat[’Shimmer_6D4F_Accel_LN_Y_CAL ’]

acc_z=acc_mat[’Shimmer_6D4F_Accel_LN_Z_CAL ’]

tsacc=acc_mat[’Shimmer_6D4F_Timestamp_Unix_CAL ’]

#omron

omronfile_path = filedialog.askopenfilename(title=’Select␣

the␣coorect␣.csv␣file’)

omronfile=Path(omronfile_path)

filename=omronfile

filename_omron=filename.name

self.filename_label_omron.config(text=filename_omron)

with open(filename) as filecsv:

reader=csv.reader(filecsv ,delimiter=";")

ts_omron=np.array(list(map(float ,[( line [0]) for line in

reader ])))

with open(filename) as filecsv:

reader=csv.reader(filecsv ,delimiter=";")

sbp=np.array(list(map(float ,[( line [1]) for line in

reader ])))

with open(filename) as filecsv:

reader=csv.reader(filecsv ,delimiter=";")

dbp=np.array(list(map(float ,[( line [2]) for line in

reader ])))

#===================#

# SIGNAL PREPARING

#===================#

ecg_head , ppg_head , ts_ecg , ts_ppg ,acc_x_head ,acc_y_head ,

acc_z_head ,ts_acc =signal_preparing(ecg ,tsecg ,ppg ,tsppg

,acc_x ,acc_y ,acc_z ,tsacc)

#Raw signals

self.ecg_head=ecg_head

self.ppg_head=ppg_head

self.ts_ecg=ts_ecg
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self.ts_ppg=ts_ppg

self.acc_x=acc_x_head

self.acc_y=acc_y_head

self.acc_z=acc_z_head

self.ts_acc=ts_acc

#===================#

# SIGNAL FILTERING

#===================#

self.ecg_fil1=hl_envelopes_idx(self.ecg_head) #baseline

removal

ecgfil2=adaptive_filter(self.ecg_head ,self.acc_x ,self.acc_y

,self.acc_z ,7)#adaptive

self.ecg_fil2=hl_envelopes_idx(ecgfil2)

ecgfil2_=adaptive_filter(self.ecg_head ,self.acc_x ,self.

acc_y ,self.acc_z ,20)#adaptive

self.ecg_fil2_=hl_envelopes_idx(ecgfil2_)

self.ppg_fil1=LP_butter(self.ppg_head ,self.fs) #LP +

baseline

ppgfil2=adaptive_filter(self.ppg_head ,self.acc_x ,self.acc_y

,self.acc_z ,7)

self.ppg_fil2=hl_envelopes_idx(ppgfil2) #adaptive

ppgfil2_=adaptive_filter(self.ppg_head ,self.acc_x ,self.

acc_y ,self.acc_z ,20)

self.ppg_fil2_=hl_envelopes_idx(ppgfil2_) #adaptive

#===================#

# ACC

#===================#

#MIN MAX normalization

acc_x=( acc_x_head -min(acc_x_head))/(max(acc_x_head)-min(

acc_x_head))

acc_y=( acc_y_head -min(acc_y_head))/(max(acc_y_head)-min(

acc_y_head))

acc_z=( acc_z_head -min(acc_z_head))/(max(acc_z_head)-min(

acc_z_head))

#ACC norm

self.ACC=np.sqrt(acc_x **2+ acc_y **2+ acc_z **2)

#SVD

acc_matrix=np.asarray ([acc_x ,acc_y ,acc_z ])

acc_matrix=np.transpose(acc_matrix)
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svd = TruncatedSVD(n_components = 1)

self.S = svd.fit_transform(acc_matrix)

#===================#

# OMRON

#===================#

self.ts_omron=ts_omron

self.sbp=sbp

self.dbp=dbp

#Plot update (raw signals)

self.s1=ecg_head

self.s2=ppg_head

self.t1=np.arange(0,len(self.s1))/self.fs

self.t2=np.arange(0,len(self.s2))/self.fs

self.ts_1=ts_ecg

self.ts_2=ts_ppg

self.sample_end=len(self.s1)

duration_in_minutes , seconds = divmod(self.sample_end

/504.12 , 60)

self.initialLenght= "{:.0f}.{:02d}".format(

duration_in_minutes , int(seconds))

#Frame/entry box update

fullLenght = "Signals␣are␣" +str(self.initialLenght) + "␣

minutes␣long"

self.fullLength_Label.config(text=fullLenght)

self.sample_end_entry.delete(0, tk.END)

t=str(self.initialLenght)

self.sample_end_entry.insert(0,t)

#Radio button

self.sel1=0

self.rb0.config(state="normal")

self.rb0_1.config(state=’normal ’)

self.rb0_2.config(state=’normal ’)

self.root.bind("<Return >", self.upload)

self.update_values

self.plot_graphs ()

pass

def update_values(self ,*arg):

#Update entry box values

a=str(self.sample_start_entry.get())

b=str(self.sample_end_entry.get())

self.sample_start=minutes_to_samples(a,self.fs)

self.sample_end=minutes_to_samples(b,self.fs)

self.th_ecg=float(self.th_ecg_entry.get())

self.th_ppg=float(self.th_ppg_entry.get())
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#Update radio button selection

self.sel1=int(self.choice1.get())

self.sel2=int(self.choice2.get())

self.sel3=int(self.choice3.get())

if self.sel1 ==0: #Raw signal plot

self.s1=self.ecg_head

self.s2=self.ppg_head

self.ts_1=self.ts_ecg

self.ts_2=self.ts_ppg

self.t1=np.arange(0,len(self.s1))/self.fs

self.t2=np.arange(0,len(self.s2))/self.fs

self.rb1_1.config(state=tk.DISABLED)

self.rb1_2.config(state=tk.DISABLED)

#self.rb1_3.config(state=tk.DISABLED)

self.rb2_1.config(state=tk.DISABLED)

self.rb2_2.config(state=tk.DISABLED)

#self.rb2_3.config(state=tk.DISABLED)

self.menu_box.config(state=’disabled ’)

self.labelFilter.config(state=’disabled ’)

self.th_ecg_label.config(state="disabled")

self.unit_ecg.config(state="disabled")

self.th_ppg_label.config(state="disabled")

self.unit_ppg.config(state="disabled")

self.th_ecg_entry.config(state=’disabled ’)

self.th_ppg_entry.config(state=’disabled ’)

#Signals cut

self.s1,self.s2 ,self.t1 ,self.t2 ,self.ts_1 ,self.ts_2 =

cut_signals(self.s1,self.s2,self.sample_start ,self.

sample_end ,self.ts_1 ,self.ts_2)

elif self.sel1 ==1: #Filtered signals

self.rb1_1.config(state=tk.NORMAL)

self.rb1_2.config(state=tk.NORMAL)

#self.rb1_3.config(state=tk.NORMAL)

self.rb2_1.config(state=tk.NORMAL)

self.rb2_2.config(state=tk.NORMAL)

#self.rb2_3.config(state=tk.NORMAL)

self.menu_box.config(state=’normal ’)

self.labelFilter.config(state=’normal ’)

self.unit_ecg.config(state="disabled")

self.th_ppg_label.config(state="disabled")

self.unit_ppg.config(state="disabled")

116



Appendix F

self.th_ecg_entry.config(state=’disabled ’)

self.th_ppg_entry.config(state=’disabled ’)

#ECG filtering options:

if self.choice2.get()==1: #baseline

self.s1=self.ecg_fil1

self.ts_1=self.ts_ecg

self.t1=np.arange(0,len(self.s1))/self.fs

elif self.choice2.get()==2: #adaptive

if self.filter_length.get() == "7":

self.s1 = self.ecg_fil2

elif self.filter_length.get() == "20":

self.s1 = self.ecg_fil2_

self.ts_1=self.ts_ecg

self.t1=np.arange(0,len(self.s1))/self.fs

#PPG filtering options:

if self.choice3.get()==1: #baseline +LP

self.s2=self.ppg_fil1

self.ts_2=self.ts_ppg

self.t2=np.arange(0,len(self.s2))/self.fs

elif self.choice3.get() == 2: #adaptive

if self.filter_length.get() == "7":

self.s2 = self.ppg_fil2

elif self.filter_length.get() == "20":

self.s2 = self.ppg_fil2_

self.t2=np.arange(0,len(self.s2))/self.fs

#Signals cut

self.s1,self.s2,self.t1 ,self.t2 ,self.ts_1 ,self.ts_2 =

cut_signals(self.s1,self.s2,self.sample_start ,self.

sample_end ,self.ts_1 ,self.ts_2)

elif self.sel1 ==2: #R & S peaks detection

self.th_ecg_entry.config(state=’normal ’)

self.th_ppg_entry.config(state=’normal ’)
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self.th_ecg_label.config(state="normal")

self.unit_ecg.config(state="normal")

self.th_ppg_label.config(state="normal")

self.unit_ppg.config(state="normal")

if self.choice2.get()==1: #baseline

self.s1=self.ecg_fil1

elif self.choice2.get()==2: #adaptive

if self.filter_length.get() == "7":

self.s1 = self.ecg_fil2

elif self.filter_length.get() == "20":

self.s1 = self.ecg_fil2_

if self.choice3.get()==1: #baseline +LP

self.s2=self.ppg_fil1

elif self.choice3.get() == 2: #adaptive

if self.filter_length.get() == "7":

self.s2 = self.ppg_fil2

elif self.filter_length.get() == "20":

self.s2 = self.ppg_fil2_

self.ts_1=self.ts_ecg

self.ts_2=self.ts_ppg

self.t1=np.arange(0,len(self.s1))/self.fs

self.t2=np.arange(0,len(self.s2))/self.fs

#Signals cut

self.s1,self.s2 ,self.t1 ,self.t2 ,self.ts_1 ,self.ts_2 =

cut_signals(self.s1,self.s2,self.sample_start ,self.

sample_end ,self.ts_1 ,self.ts_2)

#Peaks detection

#ECG peaks

self.vect_R , self.ts_R=peaks_detection(self.s1 , self.

ts_1 , self.th_ecg)

self.indexR = np.nonzero(self.vect_R)[0]

# PPG peaks

self.vect_P , self.ts_P=peaks_detection(self.s2 , self.

ts_2 , self.th_ppg)

self.indexP = np.nonzero(self.vect_P)[0]

else :

tk.messagebox.showerror(title=’Error␣’, message=’Error␣

in␣signal␣processing ’)

self.root.bind("<Return >", self.update_values)

self.plot_graphs ()
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pass

def evaluate(self):

#Entry box update

self.th_ecg=float(self.th_ecg_entry.get())

self.th_ppg=float(self.th_ppg_entry.get())

#Selection of the correct filtered signals

if self.choice2.get()==1: #baseline

self.ecg_fil=self.ecg_fil1

elif self.choice2.get()==2: #adaptive

if self.filter_length.get() == "7":

self.ecg_fil = self.ecg_fil2

elif self.filter_length.get() == "20":

self.ecg_fil = self.ecg_fil2_

if self.choice3.get()==1: #baseline +LP

self.ppg_fil=self.ppg_fil1

elif self.choice3.get() == 2: #adaptive

if self.filter_length.get() == "7":

self.ppg_fil = self.ppg_fil2

elif self.filter_length.get() == "20":

self.ppg_fil = self.ppg_fil2_

#===================#

# PEAKS DETECTION

#===================#

if self.checkbox_var.get()==0:

self.vect_R , self.ts_R=peaks_detection(self.ecg_fil ,

self.ts_ecg , self.th_ecg)

self.vect_P , self.ts_P=peaks_detection(self.ppg_fil ,

self.ts_ppg , self.th_ppg)

elif self.checkbox_var.get()==1:

if self.rb_var.get()==1: #Th1

th_pc =1

if self.menu1_var.get()=="full":

if self.menu2_var.get() != "":

std_pc = self.std_values[self.menu2_var.get

()]

else:

std_pc = self.std_values[list(self.

std_values.keys())[1]]
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self.vect_R , self.ts_R , self.vect_P , self.ts_P

= peaks_cleaningNOwin(th_pc ,std_pc ,self.

ecg_fil ,self.ppg_fil ,self.ACC ,self.S,self.

th_ecg ,self.th_ppg ,self.ts_ecg ,self.ts_ppg ,

self.fs)

elif self.menu1_var.get()=="1␣min" or self.

menu1_var.get()=="0.5␣min" :

if self.menu1_var.get() != "":

win_pc = self.min_values[self.menu1_var.get

()]

else:

win_pc = self.min_values[list(self.

min_values.keys())[1]]

if self.menu2_var.get() != "":

std_pc = self.std_values[self.menu2_var.get

()]

else:

std_pc = self.std_values[list(self.

std_values.keys())[1]]

self.vect_R , self.ts_R , self.vect_P , self.ts_P

= peaks_cleaning_win(std_pc ,win_pc ,self.

ecg_fil ,self.ppg_fil ,self.ACC ,self.th_ecg ,

self.th_ppg ,self.ts_ecg ,self.ts_ppg ,self.fs

)

elif self.rb_var.get()==2: #Th2

th_pc =2

std_pc=self.std_values[self.menu2_var.get()]

self.vect_R , self.ts_R , self.vect_P , self.ts_P =

peaks_cleaningNOwin(th_pc ,std_pc ,self.ecg_fil ,

self.ppg_fil ,self.ACC ,self.S,self.th_ecg ,self.

th_ppg ,self.ts_ecg ,self.ts_ppg ,self.fs)

hr,MLR_SBP_pred ,MLR_DBP_pred ,row3 ,row4 ,ind_test ,

MLR_modelfit_DBP ,MLR_modelfit_SBP ,MLR_mae_SBP ,

MLR_mae_DBP ,MLR_dev_SBP ,MLR_dev_DBP=BP_estime(self.

vect_R , self.ts_R , self.vect_P , self.ts_P ,self.ecg_fil ,

self.ppg_fil ,self.ts_ecg ,self.ts_ppg ,self.ts_omron ,self

.sbp ,self.dbp)

self.hr=hr

self.SBP=MLR_SBP_pred

self.DBP=MLR_DBP_pred

self.MLR_coeff_SBP=MLR_modelfit_SBP.coef_

self.MLR_coeff_DBP=MLR_modelfit_DBP.coef_
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self.MLR_mae_SBP=MLR_mae_SBP

self.MLR_mae_DBP=MLR_mae_DBP

self.MLR_dev_SBP=MLR_dev_SBP

self.MLR_dev_DBP=MLR_dev_DBP

self.s3=MLR_SBP_pred

self.t3=np.arange(0,len(ind_test))

self.s3_real=row3[ind_test]

self.s4=MLR_DBP_pred

self.t4=np.arange(0,len(ind_test))

self.s4_real=row4[ind_test]

#BP statistics label

self.mae1.config(text="MAE␣SBP␣=␣" + str(round(self.

MLR_mae_SBP , 2)))

self.mae2.config(text="MAE␣DBP␣=␣" + str(round(self.

MLR_mae_DBP , 2)))

self.dev1.config(text="STD␣SBP␣=␣" + str(round(self.

MLR_dev_SBP , 2)))

self.dev2.config(text="STD␣DBP␣=␣" + str(round(self.

MLR_dev_DBP , 2)))

self.root.bind("<Return >", self.evaluate)

self.plot_graphs_bp ()

pass

def save_data(self ,*arg):

data_hr=np.asarray(self.hr)

data_SBP=self.SBP

data_DBP=self.DBP

data_coeff_SBP=self.MLR_coeff_SBP

data_coeff_DBP=self.MLR_coeff_DBP

data_mae1=np.asarray(self.MLR_mae_SBP)

data_mae1 = np.reshape(data_mae1 ,(1, 1))

data_mae2=np.asarray(self.MLR_mae_DBP)

data_mae2 = np.reshape(data_mae2 ,(1, 1))

data_dev1=np.asarray(self.MLR_dev_SBP)

data_dev1 = np.reshape(data_dev1 ,(1, 1))

data_dev2=np.asarray(self.MLR_dev_DBP)

data_dev2 = np.reshape(data_dev2 ,(1, 1))

data = [[ data_hr], [data_SBP], [data_DBP], [data_coeff_SBP

], [data_coeff_DBP ],[data_mae1 ],[data_dev1 ],[data_mae2

],[ data_dev2 ]]
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df=dict(hr=data_hr ,SBP=data_SBP ,DBP=data_DBP , coeffSBP=

data_coeff_SBP ,coeffDBP=data_coeff_DBP ,MAE_SBP=

data_mae1 ,STD_SBP=data_dev1 ,MAE_DBP=data_mae2 ,STD_DBP=

data_dev2 )

frame = pd.DataFrame.from_dict(df, orient=’index ’)

frame = frame.transpose ()

data = [(’All␣types (*.*)’, ’*.*’),("csv␣file (*. csv)","*.csv

")]

file = filedialog.asksaveasfilename(filetypes = data ,

defaultextension = data)

with open(file ,"w") as f:

f.write(str(frame))

def plot_graphs(self ,*arg):

#Figure Size

dx=12 #figure width

dy=3.8 #figure height

if self.sel1 ==0:

fig1=plt.figure(figsize =(dx ,dy),dpi =100)

plt.xlabel(’time␣(min)’)

plt.ylabel(’Amplitude␣(mV)’)

plt.title(’ECG’)

plt.plot(self.t1/60,self.s1)

fig2=plt.figure(figsize =(dx ,dy),dpi =100)

plt.xlabel(’time␣(min)’)

plt.ylabel(’Amplitude␣(mV)’)

plt.title(’PPG’)

plt.plot(self.t2/60,self.s2)

elif self.sel1 ==1:

fig1=plt.figure(figsize =(dx ,dy),dpi =100)

plt.xlabel(’time␣(min)’)

plt.ylabel(’Amplitude␣(mV)’)

plt.title(’ECG’)

plt.plot(self.t1/60,self.s1)

fig2=plt.figure(figsize =(dx ,dy),dpi =100)

plt.xlabel(’time␣(min)’)

plt.ylabel(’Amplitude␣(mV)’)

plt.title(’PPG’)

plt.plot(self.t2/60,self.s2)
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elif self.sel1 ==2:

fig1=plt.figure(figsize =(dx ,dy),dpi =100)

plt.xlabel(’time␣(min)’)

plt.ylabel(’Amplitude␣(mV)’)

plt.title(’ECG’)

plt.plot(self.t1/60,self.s1)

plt.plot((self.t1[self.indexR ])/60,self.s1[self.indexR

],’ro’)

fig2=plt.figure(figsize =(dx ,dy),dpi =100)

plt.xlabel(’time␣(min)’)

plt.ylabel(’Amplitude␣(mV)’)

plt.title(’PPG’)

plt.plot(self.t2/60,self.s2)

plt.plot((self.t2[self.indexP ])/60,self.s2[self.indexP

],’ro’)

else:

tk.messagebox.showerror(title=’Error␣’, message=’Error␣

in␣signal␣processing ’)

canvasbar=FigureCanvasTkAgg(fig1 ,self.root)

canvasbar.draw()

canvasbar.get_tk_widget ().place(x=25,y=200)

toolbar1 = NavigationToolbar2Tk(canvasbar , self.root).place

(x=25,y=200)

canvasbar=FigureCanvasTkAgg(fig2 ,self.root)

canvasbar.draw()

canvasbar.get_tk_widget ().place(x=25,y=600)

toolbar2 = NavigationToolbar2Tk(canvasbar , self.root).place

(x=25,y=600)

return None

pass

def plot_graphs_bp(self):

fig3 = plt.figure(figsize =(6.5 ,3.8),dpi =100)

ax1 = fig3.add_subplot (111)

ax1.set_xlabel(’samples ’)

ax1.set_ylabel(’SBP␣(mmHg)’, color=’black’)

ax1.set_title(’SBP’)

ax1.plot(self.s3 ,’r’,label="Predicted␣SBP")

if (self.var1.get()==1):

ax1.plot(self.s3_real ,label="Real␣SBP")

elif(self.var1.get()==0):

pass
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ax1.legend(loc=’upper␣left’)

ax1.set_ylim (60 ,200)

ax1.set_yticks ([120 ,130 ,140 ,160 ,180])

ax1.axhline (120, color =’#18 AD47’,linestyle ="--",linewidth=

0.5)

ax1.axhline (130, color =’#69 DB4E’,linestyle ="--",linewidth

= 0.5)

ax1.axhline (140, color =’#FFF829 ’,linestyle ="--",linewidth

= 0.5)

ax1.axhline (160, color =’#FF9C19 ’,linestyle ="--",linewidth

= 0.5)

ax1.axhline (180, color =’#FA2E15 ’,linestyle ="--",linewidth

= 0.5)

if self.var3.get()==1:

ax2 = ax1.twinx()

ax2.plot(self.hr , ’green’, label="HR")

ax2.set_ylim (60, 120)

ax2.set_yticks ([ 70, 80, 90, 100, 110])

ax2.set_ylabel(’HR␣(bpm)’, color=’green’)

ax2.legend(loc=’lower␣right’)

canvasbar=FigureCanvasTkAgg(fig3 ,self.root)

canvasbar.draw()

canvasbar.get_tk_widget ().place(x=1250 ,y=200)

fig4=plt.figure(figsize =(6.5 ,3.8),dpi =100)

ax1 = fig4.add_subplot (111)

ax1.set_xlabel(’samples ’)

ax1.set_ylabel(’DBP␣(mmHg)’, color=’black’)

ax1.set_title(’DBP’)

ax1.plot(self.s4 ,’r’,label="Predicted␣DBP")

if (self.var2.get()==1):

ax1.plot(self.s4_real ,label="Real␣DBP")

elif(self.var2.get()==0):

pass

ax1.legend(loc=’upper␣left’)

ax1.set_ylim (40 ,120)

ax1.set_yticks ([80 ,85 ,90 ,100 ,110])

plt.axhline (80, color =’#18 AD47’,linestyle ="--",linewidth=

0.5)

plt.axhline (85, color =’#69 DB4E’,linestyle ="--",linewidth=

0.5)

plt.axhline (90, color =’#FFF829 ’,linestyle ="--",linewidth=

0.5)
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plt.axhline (100, color =’#FF9C19 ’,linestyle ="--",linewidth

= 0.5)

plt.axhline (110, color =’#FA2E15 ’,linestyle ="--",linewidth

= 0.5)

if self.var3.get()==1:

ax2 = ax1.twinx()

ax2.plot(self.hr , ’green’, label="HR")

ax2.set_ylim (60, 120)

ax2.set_yticks( [ 70, 80, 90, 100, 110])

ax2.set_ylabel(’HR␣(bpm)’, color=’green’)

ax2.legend(loc=’lower␣right’)

canvasbar=FigureCanvasTkAgg(fig4 ,self.root)

canvasbar.draw()

canvasbar.get_tk_widget ().place(x=1250 ,y=600)

return None

pass

main()
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