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Abstract

In this thesis we present a data-driven characterization of fringe social networks.
By the term fringe social networks we mean all those small emerging structures on
the Web that are not mainstream, such as Twitter or Facebook. These networks
generally promote themselves as a “free-speech” alternative to the mainstream,
but often serve as an incubator of misleading information, hateful and malicious
content, due to their lack of moderation. In particular, we will focus on the fringe
social network Parler and report some statistical analysis on a dataset of 183
million Parler posts between August 2018 and January 2021. The main goal is to
perform an analysis on the cascades of hashtags related to the first impeachment
of U.S. President Donald Trump. Our analysis shows how malicious and hateful
trends are pumped into the network by some bad actors or some other form of
manipulation. We claim that the hashtag cascade can be modeled using the Hawkes
process framework with the particular choice of exponential decay kernel. We prove
the goodness of our hypothesis by performing parameter estimation and present
some statistical tools to evaluate the goodness of fit. Finally, our analysis allows
to unveil the correlation of level of hate and misleading information to the level of
attention from these social communities.
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Chapter 1

Introduction

In recent years, Web communities have seen exponential growth in the number
of users joining them, making the Web a meeting place for thousands of people
to share experiences, cultures, and ideologies. By mainstream social networks we
mean the most widespread and popular social media platforms, such as Facebook
and Twitter. One of the immediate and biggest problems that the creators of these
online social networks faced was certainly finding an appropriate policy to effect
some moderation and control over the flow of information among users. Indeed, so-
cial network plazas have seen, since their inception, an increasing number of illicit
activities, such as the sharing of obscene content, misinformation, hate comments,
and organized content related to terrorism. To promote a healthier environment
and discourage violence, harassment and any other kind of social violence, major
social networks have adopted strict moderation policies. As an example, Twitter
uses a moderation system based on a combination of machine learning algorithms
and proactive moderation by users. Some of Twitter’s general safety guidelines
cover violent speech, child sexual exploitation, abuse/harassment, hateful conduct,
doxxing (i.e., the act of publicly providing sensitive and private information about
an individual), and deceptive identities. This oversight system is constantly up-
dated and trained on millions of tagged content and has recently been updated
to take into account thousands of behavioral factors to properly classify tweets
[Larson, 2018]. Examples might be whether an account has confirmed its e-mail
address or how often an account mentions users who do not follow it. If a tweet is
identified as unsafe, off-topic, or a troll, it will appear lower in conversations and
searches. Facebook (Meta), on the other hand, has recently adopted a slightly dif-
ferent policy, entrusting all decision-making power to a body called the Oversight
Board, a group of 20 members chosen from 27 countries and speaking 29 languages
who form a kind of “platform self-government” [Wong and Floridi, 2022] to ensure
a free and safe space for all users. The punishment for violating privacy guidelines
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is banning the account from the social network. This strict moderation and con-
trol over the flow of information is one of the main reasons why many users have
migrated to fringe social networks, where they can find an unsupervised environ-
ment. As example, in January 2021 Donald Trump, banned by Twitter, on which
he had 88 million followers, set up an account on Parler, the “Free Speech Social
Network” founded in 2018 by John Matze that billed itself as a platform where
any content can be posted. Then two million of people migrated to this social
network: users included mainly Donald Trump supporters, dissatisfied with the
last election round, and Qanon conspirators, but also politicians, Fox News hosts,
and YouTube program hosts. With the term of fringe social networks we mean all
those emerging structures on the Web that oppose the structure of mainstream
social networks. The number of users that these platforms attract is constantly
increasing, as they often find in these niches of the Web a place where the lack
of moderation allows the unchecked circulation of news, comments and ideologies.
This is why fringe social networks have recently been associated with the spread
of disinformation, hatred and radicalization. In addition, they have been linked to
some extremist political institutions that act as incubators of conspiracy theories
that can harm some democratic institutions. These risks highlighted the urgency
to understand how social influence can translate into real-life episodes of violence
and how these marginal online communities can be monitored to prevent such
episodes. The threat that these fringe social networks pose to the spread of misin-
formation and harmful content has been extensively analyzed in the literature. In
[Zannettou, 2019] the influence that these web niches can have on traditional social
networks is demonstrated by a detailed statistical analysis of the impact of fake
news. Indeed, it has been shown that fake news initially finds its way into fringe
networks and then manages to propagate into traditional social networks as well,
reaching a huge number of users. A detailed characterization of fake news is then
provided and then, using the Hawkes process framework, the influence of some
fringe networks (Gab, Reddit, 4chan) on traditional social networks (Twitter) is
presented. The dissemination of harmful content through fringe social networks
follows these main steps: 1) the content originates from bots operating on a fringe
social network; 2) it keeps gaining popularity among fringe users; 3) some of them
start sharing it across mainstream networks. As an example, [Azizpour et al., 2018]
reports that fake news websites dominated the discourse on Parler the week before
the Capitol attacks, with a Macedonian clickbait site called Resist the Mainstream
contributing the most. Such content would have been swiftly blocked on a main-
stream Social Network, instead, it propagated on Parler for weeks before eventually
reaching the general public. This process is so fast that the moderators’ work on
mainstream social networks often become pointless.
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1.1 Fringe networks vs mainstream networks
The main feature of fringe social networks is the almost total lack of a moderation
system which is also the reason why in the last years these niches of the online
community have attracted a growing and worrying number of users, especially
those who were banned or suspended from mainstream social network for violating
terms of service. In [Zannettou, 2019] an overview of some popular fringe networks
is presented to give a highlight on the main features and differences between fringe
and mainstream social network.

Probably one of the most clear example of fringe social network is 4chan, a
discussion forum based on images. Users can create and share a post that must
include an image, to which other users can reply with a text comment and an
optional image or a quote to a previous post in the thread. The main characteristic
of the 4chan community is the anonymity: having a registered account is not
required to create a post. Furthermore, those who publish a post can choose a
pseudonym that can be different for any post submitted to the community. 4chan
is divided in sub-communities called boards dedicated to specific topics defined
by 4chan. Of particular interest in recent bibliography is the so called Politically
Incorrect board (/pol/) which has been shown to exhibit a dangerous degree of
hate speech and racism [Hine et al., 2016].

Another main feature of 4chan is the ephemerality: threads are removed after
an often short time based on a system that bumps new threads whenever they
receive a new comment. If a thread is inactive and doesn’t receive new comments,
it is moved to the down page, and eventually it is removed permanently [Bernstein
et al., 2021].

Moderation on 4chan is extremely lax, for each board there are some users called
janitors that should handle the moderation process by removing harmful posts and
banning malicious users. However, they generally allow pretty much everything to
be posted.

Reddit is a very popular news aggregator and discussion website. Threads
consist in a URL and a title to which other users can respond. Posts can increase
popularity through a voting system that set a post score. In contrast with main-
stream social networks, on Reddit the friendship/follower relation is not relevant
to the structure of the platform on the user-based front.

Users are grouped in sub-communities called Subreddits which differ in topics
and the moderation system is monitored by Reddit’s administrators who have the
power to remove inappropriate contents.

Gab is a relatively new social network born in 2016 combining some existing
features of Twitter and Reddit. Posts, called ’gabs’, are submitted as text messages
with a limit on the characters in a community based on the friendship/follower
relation as on Twitter. A voting score is adopted as on Reddit. Users can repost,
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comment and use hashtags within their posts. Gab also allows the posting of
obscene and malicious contents as long as they are labeled as Not-Safe-For-Work
(NSFW). Moderation is very little as almost everything is allowed to be posted.
Some exceptions are illegal pornography, terrorism promoting posts and doxxing
other users’ information.

1.2 Parler
Among these communities, Parler has gained a relatively wide audience since it
was endorsed by several political figures in the period of the 2020 US Presidential
Election.
Parler was officially launched in 2018 by John Matze Jr. and Jared Thomson on
the promise of being a free-speech and unbiased alternative to mainstream social
networks such as Twitter and Facebook. The service remained relatively unknown
until it started attracting some public and political figures, especially Republican
personalities as well as a consistent part of users coming from other platform where
they received limitation, censorship or ban.

In the wake of the 2020 US President election Parler experienced a surge in the
number of new registered users as it became a hub for the then-President candidate
Donald Trump supporters, making Parler one of the most downloaded Apps on
the Apple App Store [Constine, 2021].

Parler was among the social media services that were used to coordinate the
riot at the US Capitol on January, 6 2021. Few days after, following the ban of
Donald Trump from Twitter for breaking the social guidelines in promoting social
violence, Parler experienced a last and massive wave of downloads. Following these
facts the application was officially taken down from Google and Apple services as
well as the Amazon Web Services. After a long lawsuit, Parler resumed services
on February 15, 2021, and a new version of the app with added content filters
was released on all download services after a statement from the company that US
singer and runner-up candidate for the 2024 Presidential Elections, Kanye West
had agreed to buy ownership of the platform.

1.2.1 Parler features
At the time that our dataset can cover (i.e. from the birth of Parler to its removal),
users on Parler are presented to a feed posts called ‘parleys’ published from followed
accounts that appear chronologically. Contents of posts can only be searched by
hashtags, and not by the text content within the post. Each post can be ‘voted’ or
‘echoed’ (i.e. retweeted) by the creator’s follower. A system of direct messaging is
also available allowing user to privately contact each other. At the time covered by
our dataset Parler guaranteed anonymity on its platform, user were not requested
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to provide personal information at the time of registration. Parler adopts a voting
mechanism based on up-voting and down-voting. Posts can only receive up-votes
and comments to posts can be up-voted and down-voted as well [Aliapoulios et al.,
2021].

1.2.2 Parler’s moderation

Moderation on Parler is very minimal, and even its founders have stated that fact-
checking is not contemplated. Parler’s guidelines disallow and discourage some
content like blackmailing, support for terrorism, false rumors and promoting drugs.

Despite some attempts by the founders to establish a collective of volunteers to
supervise the contents, as January 2021, Parler executives acknowledge that rules-
violating content had remained on the platform [Wikipedia, 2023]. The reason
was attributed to the moderator inefficiency in processing and supervising all the
malicious content that were created. Moreover, this period was marked by an
increase in violence exaltation on the platform following the results of the US
Presidential Elections, that led to the assault to the US Capitol on January, 6. As
lately shown [Rondeaux and Dalton, 2022], many of the rioters adopted Parler as
a place to coordinate the attack.

Figure 1.1: Overview of some features (at the time of writing) of a mainstream
social network (Twitter) compare to other known fringe social networks
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1.3 Review of related literature
The danger that these fringe social networks constitute for the spreading mis-
information and malicious content has been widely analyzed in the literature. In
[Zannettou, 2019] the influence that these niches of the Web can have on the main-
stream social network is shown by performing a detailed statistical analysis of the
impact of fake news. It is indeed showed that fake news originally find space in
the fringe networks and then manage to propagate also in the mainstream social
networks, reaching an enormous number of users. Here, a detailed characterization
of fake news is given and then using the framework of the Hawkes processes, the
influence of some fringe networks (i.e. Gab, Reddit, 4chan) on the mainstream
social networks (Twitter) is presented. The framework of the Hawkes processes
was first presented in [Hawkes, 1971] to model the so called ‘self-exciting process’.
Namely, these are system for which the arrival of some event triggers the likelihood
of having another event within a short time interval. Due to this self-excitement
character the framework of Hawkes processes has been successfully adopted for pre-
vision on earthquake aftershocks waves [Ogata, 1999], financial prevision [Azizpour
et al., 2018] and even to address the problem of latent network discovery in com-
putational neuroscience ([Linderman and Adams, 2015]). More recently Hawkes
processes have been adapted ([Morse, 2017]) to the modeling of social influence
and, in particular, in the contest of social media influence. Proof can be found
in [Rizoiu et al., 2017] where Hawkes processes are used to effectively model a
hashtag retweet cascade following a Twitter post.

In [Laub, 2014] a consistent theoretical background of statistical tools is pre-
sented to assess the goodness of the fitting of a time sequence to a Hawkes process.
[Zhou et al., 2013] give an interesting presentation of a numerical method for the
parameters’ estimation of a Hawkes process with some prior inference on the social
structure.

1.4 Main contribution and outline of the Thesis
In this Thesis we provide several contributions to the modeling and analysis of
the information ecosystem, focusing our attention on a dataset of the fringe social
network Parler that covers the period surrounding the first impeachment of US
President Donald Trump which eventually led to the Capitol Hill riot on January
2021 and the subsequent shutting down of Parler from all the mainstream download
platforms. In more details:

• In Chapter 2 we present a coherent review of the literature about the frame-
work of the Hawkes Processes. We start by the definition of standard point
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process, and then we show how this framework naturally extends the struc-
ture of the non-homogeneous Poisson processes. We also report a first simple
example of synthetic generated data from a Hawkes process.

• In Chapter 3 we address the problem of Hawkes parameters estimation, re-
viewing the existing literature on the construction of the likelihood function
and the algorithm for the optimization of the log-likelihood function. We also
provide some numerical experiments on synthetic generated data to corrobo-
rate our assumption such as statistical goodness of fit evaluation tools.

• In Chapter 4 we present a simple adaptation of the Hawkes model to the
Parler dataset to infer some analysis on the most popular hashtags trends
during the period of the first impeachment of Donald Trump. In particular,
we distinguish two groups of trend that we call safe trends and unsafe trends.
We show how the Hawkes framework is suitable to quantify whether some
trends are pumped into the network by some bad actors or other form of
manipulation. Finally, a sentiment analysis algorithm allows to unveil the
correlation of level of hate and misleading information to the level of attention
from these social communities.

1.5 Preliminaries and Notation
We present here some theoretical preliminaries and mathematical notation that
are adopted in this Thesis.

• For matrices and vector we adopt the bold notation A ∈ Rn×m, a ∈ Rn.

• (·)T is the transpose operator.

• 1(·) is the indicator function 1A(x) :=
 1 if x ∈ A

0 if x /∈ A
.

• Random variables are indicated with the uppercase notation X, Y , their re-
alization with the lowercase notation x, y.

• X ∼ Poisson(λ) indicates a Poisson random variable with rate λ.

• X ∼ Exp(λ) indicates an exponential random variable with rate λ.

• X ∼ Beta(α, β) indicates a beta distributed random variable with parameters
α and β.

• P(A) indicates the probability of event A.
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• E[X] is the expected value of the random variable X.

• A�B indicates the component-wise (Hadamard) product of two matrices.

• ‖A‖, (‖a‖) indicates the matrix (vector) norm.

• trace(A) is the trace of the matrix A i.e. the sum of its diagonal elements.

• 〈A,B〉 indicates the scalar product.

• Q-Q is an acronym to indicate the Quantile-Quantile (plot).

• Φ(x) is the standard normal cumulative distribution function.

• CDF indicates the cumulative distribution function of a random variable

16



Chapter 2

Hawkes Processes

2.1 Introduction
We will start by recalling some useful basic definition from standard probability
theory.
Definition 2.1.1. (Point process) Let (Ω,F,P) be some probability space. Let
(Ti)i∈N∗ be a sequence of non-negative random variables such that ∀i ∈ N∗, Ti <
Ti+1. We call (Ti)i∈N∗ a (simple) point process on R+

In particular, the variables Ti can represent the times of occurrence of some kind
of events (i.e. transactions, customers arrivals in a queue, posts on social networks,
etc.)
Definition 2.1.2. (Counting process) Let (Ti)i∈N∗ be a point process.
The process N(t) = ∑

i∈N∗ 1{Ti≤t} is called the counting process associated to
(Ti)i∈N∗ .

Namely, a counting process is a random function defined on time t ≥ 0 that
take integer values 0,1,2, . . . . Its value is the number of events of the point process
by time t. We observe that N(t) is piece-wise constant and has a jump of size 1 at
the event times Ti, i ∈ N. In the following we will make the identification Ti = ti
keeping in mind that the time ti is a realization of the random variable Ti.

We start our analysis by recalling an important class of counting process, the
inhomogeneous Poisson Process, which are of particular interest to the study of
Hawkes Processes.
Definition 2.1.3. (Homogeneous Poisson process) Let τ1, τ2, τ3, . . . be indepen-
dent and identically distributed exponential random variables with rate λ. Let
T0 = 0 and for each n ≥ 1 let

Tn = τ1 + τ2 + · · ·+ τn. (2.1.1)
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For each t > 0 define

N(t) := max{n ≥ 0 : Tn < t} = number of arrivals by time t. (2.1.2)

Then (N(t) : t ≥ 0) is a (homogeneous) Poisson process of rate λ.

Moreover, we have that (N(t) : t ≥ 0) is a (homogeneous) Poisson process if
and only if:

• N(0) = 0,

• N(t) has indipendent increments,

• N(t+ s)−N(s) ∼ Poisson(λt).

To express the last condition mathematically:

P(N(t)−N(0) = n) = e−λt
(λt)n
n! , (2.1.3)

which is the distribution of a Poisson random variable with rate λt.
One critical observation is that the Poisson process is memoryless. A point

process is memoryless if the distribution of future inter-arrival times depends only
on the current state and not on information in the past. This is the case of the
Poisson process since the inter-arrival times are exponentially distributed. First, we
compute the probability of observing an inter-arrival time τ longer than a certain
value t. Since

P(τ ≤ t) =
∫ t

0
λe−λxdx = 1− e−λt, t ≥ 0, (2.1.4)

we have that

P(τ > t) = e−λt, t ≥ 0. (2.1.5)

Suppose now we waited a time m during which no events have arrived, the prob-
ability that we have to wait a further t times to see an event is given by

P(τ > t+m|τ > m) = P(τ > t+m, τ > m)
P(τ > m) (2.1.6)

= P(τ > t+m)
P(τ > m) = e−λ(t+m)

e−λm
= e−λt = P(τ > t). (2.1.7)

So the probability of having to wait an additional t time after having waited m
time is the same as the probability of having to wait t time starting at time 0.
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The homogeneous Poisson process is often an unrealistic model. In fact, we
would like to take into account the fact that some events occur more frequently at
specific times rather than others. For this reason we would like to admit intensities
that vary with time.

Definition 2.1.4. (Inhomogeneous Poisson process) A process (N(t) : t ≥ 0) is
an inhomogeneous Poisson process if

• N(0) = 0

• N(t) has independent increments;

• it holds that:

P(N(t+ h) = n+m|N(t) = n) = λ(t)h+ o(h), if m = 1
P(N(t+ h) = n+m|N(t) = n) = o(h), if m > 1
P(N(t+ h) = n+m|N(t) = n) = 1− λ(t)h+ o(h), if m = 0,

(2.1.8)

with λ : R+ → R+ called the intensity function.

The above properties imply that N(t + h) − N(t) is a Poisson process with
parameter (or mean)

E[N(t+ h)−N(t)] =
∫ t+h

t
λ(s)ds, (2.1.9)

which implies
E[N(t)] =

∫ t

0
λ(s)ds. (2.1.10)

The model written as that is basically a Poisson process with rate that varies with
time.

2.2 Hawkes processes
The memoryless property of Poisson processes means that they are unable to
capture a dependence on history, or in other words, interaction between events.
For example, we may want to model a system for which the occurrence of an
event increases the probability of another arrival in the next short interval of time.
This is a good assumption if we aim to model the cascade of events on social
media. For this particular need we introduce the Hawkes process in which the
intensity function is only conditionally Poisson: that is, given the history of events
{Ht} = {t1, t2, . . . , tNt} up to time t, the conditional intensity at t, λ(t |Ht) is
Poisson.
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The conditional intensity function is defined as

λ(t |Ht) = lim
h→0

P{N(t+ h)−N(t) = 1|Ht}
h

, (2.2.1)

that is the probability of observing a single event in a small-time interval h given
the history of events. In the rest of the work we will use the compact notation
λ(t) := λ(t |Ht), always assuming an implicit history of events before time t.

Formally the following relations hold

P(N(t+ h) = n+m|N(t) = n|Ht) = λ(t)h+ o(h), if m = 1
P(N(t+ h) = n+m|N(t) = n|Ht) = o(h), if m > 1
P(N(t+ h) = n+m|N(t) = n|Ht) = 1− λ(t)h+ o(h), if m = 0.

(2.2.2)

In other words, the probability of observing an event during the infinitesimal in-
terval of time [t, t+ h] is linear with respect to h as h→ 0.

Definition 2.2.1. (Hawkes process). Consider a sequence of events {(ti, ui)}ni=1
consisting of a time ti and dimension ui (i.e. the i-th event occurred at time ti in
dimension ui), for ti ∈ R+ and ui ∈ U = {1,2, . . . , U}. This sequence is a Hawkes
process if the conditional intensity function has the parametrized form

λu(t ; Θ) = µu +
∑
i:ti<t

huui
(t− ti ; θuui

), (2.2.3)

where Θ = {µ, θ} is the set of model parameters and H = [hij], h∗∗ : R+ → R+

is the matrix of triggering kernels (also called excitation function or decay kernel)
which is different for any couple (u, ui).

We first observe that, if H = 0 we obtain U standard (homogeneous) Poisson
processes with constant rates µ. For this reason we can think of µ as the constant
baseline rates of event arrival in our process that are not influenced by any other
events in our system. In other words we can imagine that µ contains the rates of
arrival of some exogenous events whose arrivals are independent on previous events
in the process.

As in [Morse, 2017] we decompose the triggering kernel matrix H = [hij] into an
influence matrix (or adjacency matrix) A = [aij] and an exponential decay kernel
G(t) = [gij(t)], such that H = A�G and

huu′(t; a, ω) := auu′ g(t;ω), g(t;ω) = ωe−ωt (2.2.4)

The choice of an exponential kernel is to model the fact that as an event becomes
more distant in time, it has exponentially less effect on the probability of a new
event occurring with parameter ω that models the rapidity of this decay.
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On the other hand, the adjacency matrix coefficients auu′ model the intensities
of influence between different dimensions (including auu, the self-excitation of a
dimension on itself). Intuitively, large value of auu′ indicates that events in u′-th
dimension are more likely to trigger an event in the u-th dimension in the future.

In literature, other models have been considered, modifying the structure of the
decay kernel. One common choice is the power law function:

g(t; c, k, p) = k

(c+ (t− s))p . (2.2.5)

This kernel is typically used in geological models, like the Omori’s law [Ogata,
1999] to predict the rate of aftershocks in seismology. As seen in [Rizoiu et al., 2017]
this kernel is also suitable for predicting the size of a comment cascade following a
post on Twitter. In that case author chose to implement a marked Hawkes process,
for which every event is associated with a different kernel function, modulated in
relation to the importance (i.e. number of followers) of the user that commented
the post

gm(t;κ, β, c, θ) = κmβ(τ + c)−(1+θ). (2.2.6)

This approach allows for capturing heterogeneity in the data and provides a more
nuanced representation of the self-exciting point process. However, our discussion
will focus on the exponential kernel, which is more tractable especially when it
comes to estimation of parameters, as it reduces the complexity of the model and
allows for a more straightforward implementation. Finally, it’s important to note
that the choice of kernel ultimately depends on the characteristics of the data and
the goals of the analysis, and other kernels may be more appropriate in certain
scenarios.

We will now define, as in [Laub, 2014], an important tool that will come in help
in parameters estimation and goodness of fit testing.

Definition 2.2.2. (Compensator) For a counting process N(·), with conditional
intensity function λ(·) the non-decreasing function

Λ(t) =
∫ t

0
λ(s)ds, (2.2.7)

is called the compensator of the counting process.

In elementary probability theory it is well known that any inhomogeneous Pois-
son process may be rescaled into a homogeneous Poisson process with unit rate
([Taylor and Karlin, 1994]). More precisely, if {0 < t1, t2, . . . , tn < T} is a re-
alization from an inhomogeneous Poisson process with intensity λ(t), then the
transformed time sequence {Λ(t1),Λ(t2), . . . ,Λ(tn)} is a realization of a unit rate
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Poisson process. A more general result, known as general time-rescaling theorem
was obtained by [Brown et al., 2002] stating that any point process with an inte-
grable rate function may be rescaled into a Poisson process with rate one.

Theorem 2.2.3. (General time-rescaling theorem). Let 0 < t1, t2, . . . , tn < T be a
realization from a point process with conditional intensity λ(t) such that λ(t) > 0
∀t in (0, T ] and Λ(t) <∞ with probability one ∀t in (0, T ]. Then the transformed
sequence {Λ(t1),Λ(t2), . . . ,Λ(tn)} is a realization of a unit rate Poisson process.

Proof. Let τk = Λ(tk)− Λ(tk−1) for k = 1, . . . , n and set

τT =
∫ T

tn
λ(s)ds. (2.2.8)

It is now sufficient to show that {τk}nk=1 are independent and identically distributed
exponential random variables with rate one. Since the transformation is one-to-one
and τn+1 > τt if and only if tn+1 > T , the joint probability density of the τk’s is

f(τ1, τ2, . . . , τn ∩ τn+1 > τT ) = f(τ1, τ2, . . . , τn)P(τn+1 > τT |τ1, τ2, . . . , τn). (2.2.9)

We observe that the following two events are equivalent

{τn+1 > τT |τ1, τ2, . . . , τn} = {tn+1 > T |t1, t2, . . . , tn}. (2.2.10)

Hence,

P(τn+1 > τT |τ1, τ2, . . . , τn) = P(tn+1 > T |t1, t2, . . . , tn) (2.2.11)

= exp
{
−
∫ T

tn
λ(s)ds

}
= exp{−τT}. (2.2.12)

We now express the first term on the right-hand side of Equation(2.2.9) as

f(τ1, τ2, . . . , τn) = |J |f(t1, t2, . . . , tn ∩N(tn) = n) (2.2.13)

where J is the Jacobian of the transformation between {tj}nj=1 and {τk}nk=1. Since,
by definition, each τk is a function of tk, tk−1, J is a lower-triangular matrix and
so its determinant is simply the product of its diagonal elements

|J | =
∣∣∣∣∣
n∏
k=1

Jkk

∣∣∣∣∣. (2.2.14)

Since the mapping is one-to-one and λ(t) > 0, by the inverse differentiation theo-
rem, the diagonal elements of J are

Jkk = ∂tk
∂τk

= λ(tk)−1, (2.2.15)
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putting all together we have

f(τ1, τ2, . . . , τn) =
n∏
k=1

λ(tk)−1
n∏
k=1

λ(tk) exp
{
−
∫ tk

tk−1
λ(s)ds

}
(2.2.16)

=
n∏
k=1

exp{−[Λ(tk)− Λ(tk−1)]} (2.2.17)

=
n∏
k=1

exp{−τk}. (2.2.18)

Substituting Equations (2.2.18) and (2.2.12) in Equation (2.2.9) yields

f(τ1, τ2, . . . , τn ∩ τn+1 > τT ) = f(τ1, τ2, . . . , τn)P(τn+1 > τT |τ1, τ2, . . . , τn) =

(2.2.19)

=
(

n∏
k=1

exp{−τk}
)

exp{−τT}, (2.2.20)

which is indeed the joint probability densities of n i.i.d. exponential random vari-
ables with unitary rate. �

2.3 Simulation of a Hawkes Process
In this section we will show how to simulate a Hawkes process with exponential
decay kernel starting from known parameters Θ = (µ,A, ω). As we will show later,
simulation from known parameters is very useful to compare the results of fitting
methods to some “ground truth“.

We will generate some example of synthetic Hawkes sequence using the Python
library tick.hawkes available at [Bacry, accessed 2023-02-15].

From Python module ‘tick.hawkes’ we simulate a multivariate Hawkes process
over time interval [0,50] with U = 3 and an exponential decay kernel with fixed
parameter ω = 1. The adjacency matrix and the baseline intensities are engineered
as follows:

• only the first process u0 has a non-zero baseline intensity;

• u0 has influence on itself and on u1;

• u1 has influence on u2.
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To sum up our simulation data we have:

U = {u0, u1, u2} (2.3.1)
ω = 1 (2.3.2)
µ = [0.3, 0, 0] (2.3.3)

A =

0.1 0 0
0.2 0 0
0 0.4 0

 (2.3.4)

T = 50 (2.3.5)

The results of the simulation are shown in Figure 2.1 in which we can see the three
intensity functions of the streamlines in the process as well as the new events
occurred (the dots in the plot).

Figure 2.1: Simulation of a 3-dimensional Hawkes process, the figure shows the
three intensity functions as well as the event arrivals of the process. The process
u0 has influence on itself and u1, while u1 has influence on u2. All background rates
are set to zero except for u0.

The choice of the model parameters was made such that if we see an event on u1
or u2 we know for sure that it comes from a parent event on u0 or u1, respectively,
and not from an exogenous event.

We can well observe the self-excitement character of the process: the arrivals
of new events on u0 cause spikes in the intensity λ1(t), which leads to new events
on u2 that cause more spikes in λ2(t) that cause new events on u3, resulting in a
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burst of activity. We can also appreciate some clusters of events on process u0 due
to its self-excitement character.

Hawkes processes indeed happen to model very well how some actual systems
works. One main example is the behavior of users on social networks where the
occurrence of one event, such as a post or a comment, can trigger a cascade of
subsequent events.
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Chapter 3

Parameters estimation

3.1 Maximum likelihood derivation
The main challenge of modelling self-excitement processes is the parameters es-
timation starting from observed data. We will start our discussion from a mono-
dimensional point process over the timeline, and later we will provide the natural
extension at the multidimensional case. Let N(t) a point process on [0, T ] with
associated conditional intensity λ(t; Θ) and let {t1, t2, . . . , tn} be a realization of
the point process, i.e. the event times of the process in the interval [0, T ]. Then
the data likelihood as a function of the parameter set Θ is

L(Θ) =
(

n∏
i=1

λ(ti; Θ)
)

exp
{
−
∫ T

0
λ(s)ds

}
. (3.1.1)

Proof. Let Ht = {t1, t2, . . . , tn} be the history of events time up to time t. As
in [Daley and Vere-Jones, 2008] we introduce the notation f ∗(t) := f(t|Ht) to
indicate the conditional probability density function of the time of next time event
tn+1 given the history of previous event times.

We have that

f(t1, t2, . . . , tn) =
n∏
i=1

f(ti|t1, t2, . . . , ti−1) =
n∏
i=1

f ∗(ti) (3.1.2)

We now introduce an equivalent definition of the conditional intensity function,
first proposed by [Rasmussen, 2018],

λ(t) = f ∗(t)
1− F ∗(t) . (3.1.3)
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This is often referred to as the hazard function, and it basically corresponds to
the ratio between the probability that there is an event in dt and the probability
of no new events before time t. Mathematically, consider a small-time interval dt
around t, then

λ(t)dt = f ∗(t)dt
1− F ∗(t) (3.1.4)

= P(tn+1 ∈ [t, t+ dt]|Htn)
P(tn+1 /∈ (tn, t)|Htn) (3.1.5)

= P(tn+1 ∈ [t, t+ dt], tn+1 /∈ (tn, t)|Htn)
P(tn+1 /∈ (tn, t)|Htn) (3.1.6)

= P(tn+1 ∈ [t, t+ dt]|tn+1 /∈ (tn, t),Htn) (3.1.7)
= P(tn+1 ∈ [t, t+ dt]|Ht−) (3.1.8)
= E[N([t, t+ dt])|Ht− ], (3.1.9)

where Ht− is the history of all time events up to but not including time t. We
showed that the ratio is equivalent to the expectation of an increment of the
counting process N(t+ dt)−N(t), which by Equation (2.1.8) is essentially λ(t)dt.

We can now continue with the proof writing

λ(t) = f ∗(t)
1− F ∗(t) =

∂
∂t
F ∗(t)

1− F ∗(t) = − ∂

∂t
log(1− F ∗(t)). (3.1.10)

Integrating both side in (tn, t)∫ t

tn
λ(s)ds = −[log(1− F ∗(t))− log(1− F ∗(tn))]. (3.1.11)

Since tn+1 > tn we have F ∗(tn) = 0 and so∫ t

tn
λ(s)ds = − log(1− F ∗(t)), (3.1.12)

from which

F ∗(t) = 1− exp
(
−
∫ t

tn
λ(s)ds

)
. (3.1.13)

Combining this results in Equation (3.1) gives

f ∗(t) = λ(t)(1− F ∗(t)) = λ(t) exp
(
−
∫ t

tn
λ(s)ds

)
. (3.1.14)
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Plugging this last equation in Equation (3.1) we get the likelihood expression

L(Θ) =
n∏
i=1

f ∗(ti) =
n∏
i=1

λ(ti) exp
(
−
∫ ti

ti−1
λ(s)ds

)
(3.1.15)

=
(

n∏
i=1

λ(ti)
)

exp
(
−
∫ tn

0
λ(s)ds

)
.

�

3.2 Maximum likelihood estimation
The maximum likelihood estimate of the Hawkes process can be found maximizing
the likelihood function, as defined in Equation (3.1), with respect to θ over the
space parameter Θ. Then the maximum likelihood estimate is defined as follows

θ̂ = argmin
θ∈Θ

L(θ). (3.2.1)

It is a common practice to handle with the logarithm of the likelihood function,
the so called log-likelihood

L(θ) := logL(θ) = −
∫ T

0
λ(t)dt+

N(T )∑
i=1

log λ(ti). (3.2.2)

Since the logarithm is a monotonic function, maximizing the log-likelihood au-
tomatically implies maximizing the likelihood function. Furthermore, exploiting
the concavity of the function, it’s easier to minimize the negative log-likelihood,
resulting in the following problem

θ̂ = argmin
θ∈Θ

−L(θ) = argmin
θ∈Θ

∫ T

0
λ(t)dt−

N(T )∑
i=1

log λ(ti). (3.2.3)

3.3 Multidimensional Hawkes Processes
We now extend the above discussion to the case of multidimensional Hawkes
Processes as we are often interested in modelling the influence between different
streamlines of events. We first recall the formulation of the conditional intensity
function for the case of U Hawkes processes

λu(t) = µu +
∑
i:ti<t

auui
g(t− ti), (3.3.1)
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where we have explicitly written the decomposition introduced in Section 2.2
for the decay kernel. We collect the parameters into matrix-vector forms, µ = (µu)
for the baseline intensities, and A = (auu′) for the exciting coefficients. We borrow
the terminology from [Zhou et al., 2013], and we call A the infectivity matrix. As a
constraint we impose A ≥ 0 and µ ≥ 0 indicating that we require matrix objects
with non-negative entries.

Consider now a realization of a U dimensional Hawkes Process as a collection
of the form {(ti, ui)}ni=1 where the couple (ti, ui) indicates that time events ti
has occurred on dimension ui with ui ∈ {1,2, . . . , U}, i ∈ {1,2, . . . , n}. The log-
likelihood, as a function of the parameter set Θ = {A,µ} can be expressed as
follows

L(A,µ) =
n∑
i=1

log λui
(ti)−

U∑
u=1

∫ T

0
λu(s)ds (3.3.2)

=
n∑
i=1

log
[
µui

+
∑
tj<ti

auiuj
g(ti − tj)

]
+ (3.3.3)

−
U∑
u=1

∫ T

0

[
µu +

∑
i:ti<s

auui
g(s− ti)

]
ds (3.3.4)

=
n∑
i=1

log
[
µui

+
∑
tj<ti

auiuj
g(ti − tj)

]
+ (3.3.5)

− T
U∑
u=1

µu −
U∑
u=1

∫ T

0

∑
i:ti<s

auui
g(s− ti)ds. (3.3.6)

To proceed with the calculation we present the following observation:

Observation 3.3.1. Let {fi}ni=1 be a collection of function and {Fi}ni=1 such that
F ′i = fi, i = 1 . . . n. Let {ti}ni=1 be the collection of event times in the interval
[T0, T = Tn+1]. The following relation holds

∫ T

0

∑
ti<t

fi(T − ti)dt =
n∑
i=1
{Fi(t− ti)− Fi(0)}. (3.3.7)
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Proof. We split the integration interval in n sub-intervals∫ T

0

∑
ti<t

fi(t− ti)dt =
n∑
i=1

∫ ti+1

ti

i∑
j=1

fj(t− tj)dt

=
n∑
i=1

i∑
j=1

∫ ti+1

ti
fj(t− tj)dt

=
n∑
i=1

i∑
j=1
{Fj(ti+1 − tj)− Fj(ti − tj)}

=
n∑
j=1

n∑
i=j
{Fj(ti+1 − tj)− Fj(ti − tj)}

=
n∑
j=1
{Fj(tn+1 − tj)− Fj(0)},

(3.3.8)

where in the last step we recognized the sum of a telescoping series over the index
i. �

Using this result we can express the log-likelihood as follows

L(A,µ) =
n∑
i=1

log
[
µui

+
∑
tj<ti

auiuj
g(ti − tj)

]
+ (3.3.9)

− T
U∑
u=1

µu −
U∑
u=1

∫ T

0

∑
i:ti<s

auui
g(s− ti)ds (3.3.10)

=
n∑
i=1

log
[
µui

+
∑
tj<ti

auiuj
g(ti − tj)

]
+ (3.3.11)

− T
U∑
u=1

µu −
U∑
u=1

n∑
j=1

auuj
G(T − tj). (3.3.12)

Where G(t) =
∫ t

0 g(s)ds.

3.3.1 Sparsity and Low-Rank regularization
Since we are modelling social influence over a network of people we can infer some
a priori details about the structure of the infectivity matrix A. As in [Zhou et al.,
2013], we can narrow the space of matrices to the sparse and low-rank ones. These
assumptions are corroborated by the following observations:

• In the context of social networks, the number of connections that a user has
is typically much smaller than the total number of users in the network. This
mathematically translates into a sparse infectivity matrix.
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• The social structure is often organized in communities, meaning that the
average user tends to be more connected (i.e. influenced) by people that are
geographically and socially closer to him. This leads to a low-rank infectivity
matrix.

In order to incorporate this prior knowledge we modify the optimization prob-
lem by adding a regularization term as follows:

argmin
A≥0,µ≥0

− L(A,µ) + λ1 ‖A‖∗ + λ2 ‖A‖1 , (3.3.13)

where ‖A‖∗ is the nuclear norm of the matrix, and it’s defined as the sum of its
singular values, ‖A‖∗ := ∑rank(A)

i=1 σi. It has been shown ([Srebro, 2004]) that this
regularization can estimate low-rank matrices effectively.

For the sparse regularization, we use the `1 norm defined as ‖A‖1 := ∑
i,j |aij|.

The parameters λ1 and λ2 control the strength of the regularization terms.
We also define the following matrix scalar product

Definition 3.3.2. (Frobenius inner product) Given A, B ∈ Rn×m we can define
a scalar product over the matrices space, called Frobenius inner product, as

〈A,B〉F := trace
(
ATB

)
. (3.3.14)

Proof. To prove this we observe that

〈A,A〉F =
n∑
i=1

(ATA)ii =
n∑
i=1

m∑
j=1

AT
ijAji =

m∑
i=1

n∑
j=1

A2
ij ≥ 0, (3.3.15)

〈A,A〉F =
m∑
i=1

n∑
j=1

A2
ij = 0 ⇐⇒ Aij = 0 ∀i, j ⇐⇒ A = 0. (3.3.16)

Furthermore, since

trace
(
XT

)
= trace

(
X
)
, (3.3.17)

trace
(
X + Y

)
= trace

(
X
)

+ trace
(
Y
)
, (3.3.18)

trace
(
λX

)
= λ trace

(
X
)
, λ ∈ R, (3.3.19)

we have also

〈A,B〉F = trace
(
ATB

)
= trace

(
(ATB)T

)
= trace

(
BTA

)
= 〈B,A〉F (3.3.20)
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〈(λA + µB),C〉F = trace
(
(λA + µB)TC

)
= trace

(
(λA)TC

)
+ trace

(
(µB)TC

)
= λ trace

(
ATC

)
+ µ trace

(
BTC

)
= λ 〈A,C〉F + µ 〈B,C〉F . (3.3.21)

The above results prove that the Frobenius scalar product is indeed a scalar product
over the matrices space. �

This inner product naturally induces the following norm over matrices space

Definition 3.3.3. (Frobenius norm) Given a matrix A ∈ Rn1×n2 the Frobenius
norm of A is defined as follows

‖A‖ =
√
〈A,A〉F =

√
trace

(
ATA

)
(3.3.22)

3.3.2 Optimization with ADMM and EM method
Since the objective function in Equation (3.3.1) is non-differentiable, we have to
adopt some numerical method to solve the optimization problem. We choose to
apply the idea, as presented in [Zhou et al., 2013], of the Alternating Direction
Method of Multipliers (ADMM) that allows us to split the problem into several
easier sub-problems.

To derive the steps of ADMM method we consider the equivalent problem
obtained by adding two auxiliary variables Z1 = A, Z2 = A. The problem becomes

argmin
A≥0,µ≥0,Z1,Z2

− L(A,µ) + λ1 ‖Z1‖∗ + λ2 ‖Z2‖1 , (3.3.23)

s.t. A = Z1, A = Z2, (3.3.24)

which is equivalent to

argmin
A≥0,µ≥0,Z1,Z2

− L(A,µ) + λ1 ‖Z1‖∗ + λ2 ‖Z2‖1 + ρ

2(‖A− Z1‖2 + ‖A− Z2‖2)

s.t. A = Z1, A = Z2, (3.3.25)

where ρ > 0 is called penalty parameter. We can now construct the augmented
Lagrangian of the constrained problem as follows:

Lρ(A,µ,Z1,Z2,Y1,Y2) = −L(A,µ) + λ1 ‖Z1‖∗ + λ2 ‖Z2‖1

+ trace(YT
1 (A− Z1)) + trace(YT

2 (A− Z2))

+ ρ

2(‖A− Z1‖2 + ‖A− Z2‖2), (3.3.26)
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where Y1 and Y2 are the matrices of the dual variables associated with the con-
straints A = Z1 and A = Z2. It is often common to deal with the scaled form of
the ADMM obtained by introducing the following two matrices U1 := Y1/ρ and
U2 := Y2/ρ.

The ADMM algorithm is implemented with the following iterative steps:
for k ≥ 0:

Ak+1, µk+1 = argmin
A≥0,µ≥0

Lρ(A,µ,Zk
1,Zk

2,Uk
1,Uk

2) (3.3.27)

Zk+1
1 = argmin

Z1

Lρ(Ak+1,µk+1,Z1,Zk
2,Uk

1,Uk
2) (3.3.28)

Zk+1
2 = argmin

Z2

Lρ(Ak+1,µk+1,Zk
1,Z2,Uk

1,Uk
2) (3.3.29)

Uk+1
1 = Uk

1 + (Ak+1 − Zk+1
1 ) (3.3.30)

Uk+1
2 = Uk

2 + (Ak+1 − Zk+1
2 ). (3.3.31)

The great advantage of this method is that now we have to deal with different and
separate sub-problems that can be optimized one at a time. We will first focus on
the problems for Z1 and Z2 and then the one for A and µ

We note that, when solving for Z1 in Equation (3.3.28) the relevant terms in
Lρ reduce to

argmin
Z1

λ1 ‖Z1‖∗ + trace((Uk
1)T (Ak − Z1)) + ρ

2
∥∥∥Ak+1 − Z1

∥∥∥2
, (3.3.32)

which can be simplified in the following problem

argmin
Z1

λ1 ‖Z1‖∗ + ρ

2
∥∥∥Ak+1 − Z1 + Uk

1

∥∥∥2
. (3.3.33)

This can be proved by showing the equivalence between the two objective functions.
Using the parallelogram law:

λ1 ‖Z1‖∗ + ρ

2
∥∥∥Ak+1 − Z1 + Uk

1

∥∥∥2
= λ1 ‖Z1‖∗ + ρ

2
∥∥∥Ak+1 − Z1

∥∥∥2
+ ρ

2
∥∥∥Uk

1

∥∥∥2

+ ρ 〈Uk
1,Ak+1 − Z1〉F

= λ1 ‖Z1‖∗ + ρ

2
∥∥∥Ak+1 − Z1

∥∥∥2
+ ρ

2
∥∥∥Uk

1

∥∥∥2

+ ρ trace
(
(Uk

1)T(Ak+1 − Z1)
)
. (3.3.34)

Since the term ρ
2

∥∥∥Uk
1

∥∥∥2
is irrelevant to the minimization with respect to Z1 we

have proved our statement.
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We have now to deal with the following problem

Zk+1
1 = argmin

Z1

λ1 ‖Z1‖∗ + ρ

2
∥∥∥Ak+1 − Z1 + Uk

1

∥∥∥2
. (3.3.35)

It can be shown that there exists a closed form solution

Zk+1
1 = Sλ1/ρ(Ak+1 + Uk

1), (3.3.36)

where Sα(X) is called soft-thresholding operator defined as

Sα(X) := U diag((σi − α)+)VT (3.3.37)

for all matrix X with singular value decomposition X = Udiag(σi)VT and where
(σi − α)+ = max(σi − α, 0).

This is a consequence of the following theorem

Theorem 3.3.4. ∀τ ≥ 0, Y ∈ Rn1×n2 the soft-thresholding operator Sτ obeys:

Sτ (Y) = argmin
X
{τ ‖X‖∗ + 1

2 ‖X−Y‖2}. (3.3.38)

Proof. The objective function h0(X) := τ ‖X‖∗+ 1
2 ‖X−Y‖2 is strictly convex, so

we know that there exists a unique minimizer. We have to prove that this is equal
to Sτ (Y). To do this we recall the definition of subgradient of a convex function
f : Rn1×n2 → R. We say that Z is a subgradient of f at X0, and we denote it as
∂f(X0), if

f(X) ≥ f(X0) + 〈Z,X−X0〉, ∀X. (3.3.39)

Furthermore, we know that X̂ minimizes h0 if and only if 0 is a subgradient of h0
in X̂, i.e.

0 ∈ X̂−Y + τ∂
∥∥∥X̂∥∥∥

∗
(3.3.40)

where ∂
∥∥∥X̂∥∥∥

∗
is the set of subgradients of the nuclear norm. Let now X = UΣVT

be the singular value decomposition (SVD) of matrix X. It is known [Candes and
Recht, 2008] that

∂ ‖X‖∗ = {UVT + W : W ∈ Rn1×n2 , UTW = 0, WV = 0, ‖W‖2 ≤ 1}.

Set X̂ := Sτ (Y). We can decompose the SVD of Y as

Y = U0Σ0VT
0 + U1Σ1VT

1 , (3.3.41)
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where U0,V0 (respectively U1,V1) are the factors of the SVD associated with the
singular values greater that τ (respectively smaller or equal to τ).

With these definitions we have that

X̂ = Sτ (Y) = U0(Σ0 − τI)VT
0 , (3.3.42)

so that

Y − X̂ = U0Σ0VT
0 + U1Σ1VT

1 −U0(Σ0 − τI)VT
0

= τU0VT
0 + U1Σ1VT

1 = τ(U0VT
0 + W), (3.3.43)

where W := τ−1U1Σ1VT
1 . By construction, we have that UT

0 W = 0, WV0 = 0
and, since the diagonal elements of Σ1 have magnitudes bounded by τ , we also
have ‖W‖2 ≤ 1.

Thus, we have proven that Y − X̂ ∈ τ∂
∥∥∥X̂∥∥∥

∗
. �

Similarly, when solving for Z2 the problem can be simplified as follows:

argmin
Z2

λ2 ‖Z2‖1 + ρ

2
∥∥∥Ak+1 − Z2 + Uk

1

∥∥∥2
, (3.3.44)

which is a standard optimization problem with an `1 norm regularization. It can
be shown that also this problem has a closed form solution given by

(Zk+1
2 )ij =


(Ak+1 + Uk

1)ij − λ2
ρ
, (Ak+1 + Uk

1)ij ≥ λ2
ρ
,

(Ak+1 + Uk
1)ij + λ2

ρ
, (Ak+1 + Uk

1)ij ≤ λ2
ρ
,

0, |(Ak+1 + Uk
1)ij| < λ2

ρ

(3.3.45)

Proof. We compute the subgradient of the equivalent objective function h0(Z2) =
λ2
ρ
‖Z2‖1 + 1

2

∥∥∥Ak+1 − Z2 + Uk
1

∥∥∥2

∂h0(Z2) = −(Ak+1 − Z2 + Uk
1) + λ2

ρ
∂ ‖Z2‖1 (3.3.46)

We write component-wise the term ∂ ‖Z2‖1 as

∂

∂(Z2)hk
∑
i,j

|(Z2)ij| = sign((Z2)ij), (3.3.47)

where sign((Z2)ij) = (Z2)ij

|(Z2)ij | . So we have the following for the subgradient component-
wise

−(Ak+1 + Uk
1)ij + (Z2)ij + λ2

ρ
sign((Z2)ij). (3.3.48)
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We know that Zk+1
2 is a minimizer if and only if it satisfies

−(Ak+1 + Uk
1)ij + (Z2)ij + λ2

ρ
sign((Z2)ij) = 0. (3.3.49)

We distinguish three cases

• if (Z2)ij > 0

(Zk+1
2 )ij = (Ak+1 + Uk

1)ij −
λ2

ρ
, if (Ak+1 + Uk

1)ij >
λ2

ρ
(3.3.50)

• if (Z2)ij < 0

(Zk+1
2 )ij = (Ak+1 + Uk

1)ij + λ2

ρ
, if (Ak+1 + Uk

1)ij < −
λ2

ρ
(3.3.51)

• if (Z2)ij = 0

(Zk+1
2 )ij = 0, if |(Ak+1 + Uk

1)ij| ≤ −
λ2

ρ
. (3.3.52)

�

The last optimization problem to be addressed, is the one defined in (3.3.27).
This has the following equivalent form

Ak+1,µk+1 = argmin
A≥0,µ≥0

f(A,µ), (3.3.53)

where f(A,µ) = −L(A,µ) + ρ
2(
∥∥∥A− Zk

1 + Uk
1

∥∥∥2
+
∥∥∥A− Zk

2 + Uk
2

∥∥∥2
). We solve

this using a Majorization-Minimization algorithm which consists, given some cur-
rents estimates A(m) and µ(m) of A and µ, in a minimization of a function
Q(A,µ; A(m),µ(m)) which is an upper-bound for f(A,µ).

Q(A,µ; A(m),µ(m)) := −
n∑
i=1

(
pii log µui

pii
+

i−1∑
j=1

pij log
auiuj

g(ti − tj)
pij

)
+

−
(
T
∑
u

µu +
U∑
u=1

n∑
j=1

auuj
G(t− tj)

)
+

+ ρ

2(
∥∥∥A− Zk

1 + Uk
1

∥∥∥2
+
∥∥∥A− Zk

2 + Uk
2

∥∥∥2
), (3.3.54)
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where

pii = µui

µ
(m)
ui +∑i−1

j=1 a
(m)
uiujg(ti − tj)

, (3.3.55)

pij =
a(m)
uiuj

g(ti − tj)
µ

(m)
ui +∑i−1

j=1 a
(m)
uiujg(ti − tj)

. (3.3.56)

We can think as pij as the probability that the i-th event is influenced by a previous
event j in the event sequence and pii as the probability that the event i comes from
the baseline intensity.

To prove that Q is an upper bound for f , we can use Jensen’s inequality applied
to the random variable

X := µui
+

i−1∑
j=1

auiuj
g(ti − tj). (3.3.57)

We know that, given a convex function f ,

f
(
E[X]

)
≤ E

[
f(X)

]
. (3.3.58)

Choosing f(x) = log(x) we obtain

log
(
µui

+
i−1∑
j=1

auiuj
g(ti − tj)

)
≥ pii log µui

pii
+

i−1∑
j=1

pij log
auiuj

g(ti − tj)
pij

. (3.3.59)

Summing over i we have that

Q(A,µ; A(m),µ(m)) ≥ f(A(m),µ(m)) (3.3.60)

It is also immediate to observe that

Q(A(m),µ(m); A(m),µ(m)) = f(A(m),µ(m)). (3.3.61)

The two properties (3.3.60) and (3.3.61) imply that, if

(A(m+1),µ(m+1)) = argmin
A,µ

Q(A,µ; A(m),µ(m)) (3.3.62)

then

f(A(m),µ(m)) = Q(A(m),µ(m); A(m),µ(m))
≥ Q(A(m+1),µ(m+1); A(m),µ(m))
≥ f(A(m+1),µ(m+1)). (3.3.63)
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This ensures that f decreases monotonically. Solving for Q allows us now to sep-
arate independently the problems for A and µ. Furthermore, each of them has a
closed form solution [Zhou et al., 2013] given by

µ(m+1)
u =

∑
i:i≤n,ui=u pii

T
, (3.3.64)

a
(m+1)
uu′ =

−B +
√
B2 + 8ρC
4ρ , (3.3.65)

where B = ∑
j:uj=uG(T − tj) + ρ(−z1,uu′ + u1,uu′ − z2,uu′ + u2, uu

′) and C =∑n
i=1

∑
j<i,uj=u′ pij.

The full algorithm, named ADM4 in [Zhou et al., 2013], can be schematized as
follows:

Algorithm 1 ADM4 for estimating A and µ

1: Initialize A and µ randomly;
2: Set U1 = 0, U2 = 0;
3: while k = 1,2, . . . do
4: Update Ak+1 and µk+1 as in (3.3.64), (3.3.65).
5: Update Zk+1

1 as in (3.3.36)
6: Update Zk+1

2 as in (3.3.45)
7: Update Uk+1

1 = Uk
1 + (Ak+1 − Zk+1

1 )
8: Update Uk+1

2 = Uk
2 + (Ak+1 − Zk+1

2 )
9: end while

10: return A and µ

3.4 Estimating synthetic data
Algorithm 1 is implemented in the Python library ticks.hawkes. The method is
called HawkesADM4 and performs a parametric inference for the particular case of
Hawkes processes with exponential decay kernel. The parameter ω that modulates
the decay rate is treated as a global variable, and it must be passed to the function
as a parameter. Another parameter of the function is lasso_nuclear_ratio, a
float variable between 0 and 1 that represents the ratio between the `1 norm
penalty and the nuclear norm penalty. The default value is 0.5 which means equal
weight to both penalties. To check the performance of the algorithm we first apply
it to a synthetic sequence generated from known parameters. We scale A such that
its spectral radius (i.e. the maximum eigenvalue in absolute value) is lesser than
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one. This is a necessary and sufficient condition for the well-definition of the point
process. The designed parameters are summarized in the following

U = {u0, u1, u2, u3, u4, u5} (3.4.1)
ω = 3 (3.4.2)
µ = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3] (3.4.3)

A =



0.15 0.15 0.15 0 0 0
0.15 0.15 0.15 0 0 0
0.15 0.15 0.15 0.1 0.1 0.1

0 0 0.1 0.1 0.1 0.1
0 0 0.1 0.1 0.1 0.1
0 0 0.1 0.1 0.1 0.1


(3.4.4)

As discussed above, we choose to design an adjacency matrix that is sparse and
low-rank to better model the social infectivity.

We apply the ADM4 method for an increasing sequence of time events us-
ing both the `1 regularization and the nuclear norm regularization (i.e. we set
lasso_nuclear_ratio= 0.5), and we choose to evaluate the following metrics

• Given Â, the estimate of A, we evaluate

radjacency = max
ij

rij, (3.4.5)

where

rij =


|aij − âij|
|aij|

, for aij /= 0

|aij − âij|, for aij = 0
(3.4.6)

• Given µ̂, the estimate of µ we evaluate

rbaseline = max
i
|(µ)i − (µ̂)i|. (3.4.7)

Results are shown in Figure 3.1. As we can see the error decreases to as the
number of time events increases, and it can also be shown [Zhou et al., 2013] that
the method outperforms the algorithms where the original sparse and low-structure
is not take into account for the estimation of the parameters.

Figure 3.2 shows the estimate adjacency matrix and the values of the entries (i.e.
the kernel norms) plotted using the method plot_hawkes_kernel_norms imple-
mented in the library tick.plot. As we can see the algorithm can well reconstruct
the sparse and low-rank structure of the original matrix.
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Another interesting plot is the one generated using the method plot_hawkes_kernels
that shows both the true and the estimated exponential triggering kernels over
time. In Figure 3.3 we can see the result of the method for a 2-dimensional Hawkes
process with parameters set to

ω = 3 (3.4.8)
µ = [0.3, 0.3] (3.4.9)

A =
[
0.15 0.1

0 0.1

]
(3.4.10)

T = 100000 (3.4.11)

3.5 Goodness of fit
Finding some metric to assess the goodness of the assumption that a given time
sequence is indeed a realization of a Hawkes process is a main goal of this work.
In Chapter 2 we reported what will be the cardinal theorem of our analysis, called
General time-rescaling theorem (2.2.3) which basically states that any point pro-
cess with an integrable rate function may be rescaled into a Poisson process with
rate one. Therefore, if we can reach a closed form expression for the compensator
function, the goodness of our assumption can be evaluated by performing some
standard statistical tests for the Poisson and exponential distribution [Laub, 2014].
Namely, the transformed sequence should be a realization of a unitary Poisson pro-
cess which means that the inter-arrival transformed times sequence should be a
realization of an exponential random variable with unitary rate. We now present a
closed form expression for a mono-dimensional Hawkes process with an exponential
decay kernel function.

We have that

λ(t) = µ+
∑
j:tj<t

aωe−ω(t−tj) (3.5.1)

We can calculate the compensator function as

Λ(t) =
∫ t

0
λ(s)ds (3.5.2)
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Thus, ∫ t

0
λ(s)ds =

∫ t

0
{µ+

∑
j:tj<s

aωe−ω(s−tj)} ds

= µ t+
∫ t

0
{
∑
j:tj<s

aωe−ω(s−tj)} ds

= µ t+ a
n∑
j=1
{e−ω(t−tj) − 1},

(3.5.3)

where in the last step we used the result obtained in Observation 3.3.1.
So the compensator for a mono-dimensional Hawkes process has the closed

expression
Λ(t) = µ t+ a

n∑
j=1
{e−ω(t−tj) − 1}. (3.5.4)

Once the Expression 3.5.4 is given we can apply it to our time sequence to obtain
the transformed sequence

{t∗1, t∗2, . . . , t∗n} = {Λ(t1),Λ(t2), . . . ,Λ(tn)}, (3.5.5)

from which we can extract the inter-arrival transformed sequence

{τ1, τ2, τ3 . . . , τn} = {t∗1, t∗2 − t∗1, t∗3 − t∗2, . . . , t∗n − t∗n−1}. (3.5.6)

To assess the goodness of our assumption, statistical test should be performed to
ensure that τi i.i.d.∼ Exp(1).

3.5.1 Q-Q plot and approximated Kolmogorov-Smirnov test
To check whether the inter-arrival times actually come from an exponential dis-
tribution of unitary rate a first qualitative approach can be the construction of a
Q-Q plot of the interarrival times. In a Q-Q plot the sample quantiles are plotted
against the quantiles of the known theoretical distribution that we are assuming
to be the distribution of the observed data. If the points of the Q-Q lie on the
identity line y = x we can assess that the two compared distributions are similar.

To give a simple example, in Figure 3.4 we display the Q-Q plot obtained
from a simulated sequence of 104 Hawkes events with parameters (ω, a, µ) =
(3, 0.1, 0.3). To do this we used the method probplot available in the Python
library scipy.stats that takes as arguments the sequence of inter-arrival trans-
formed event times and the theoretical distribution that we assumed to be the one
of the data.

As we can see, most of the points lie on the identity line except for some last
quantile that fall below the bisector. This can be the result of some numerical
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error or a result of the fact that the tails of the sample distribution are lighter
than those of the theoretical one, meaning that extreme values are less frequent in
the data sample than in the theoretical distribution.

Another qualitative approach is given by [Daley and Vere-Jones, 2003] sug-
gesting an approximate Kolmogorv-Smirnnov-type based on the Brownian motion
approximation that is implemented as follows:

1. Give the sequence {t∗1, . . . , t∗N(t)}, plot the cumulative step function Y (x)
which has the points (xi, yi) = (t∗i /T, i/N(T ));

2. Plot the confidence lines y = x± Z1−α/2/
√
T , where Φ(Z1−α/2) = 1− α/2;

3. Accept the hypothesis that {t∗i } come from a unit rate Poisson process if the
plot of Y (x) stays within the confidence lines (with 100(1− α)% certainty).

To achieve even better performances, in [Laub, 2014] an alternative Brownian
motion approximation test is presented.

Starting from the Poisson process N(t) of rate T , define

M(t) := N(t)− tT√
T

, for t ∈ [0,1]. (3.5.7)

It is known that, as T → ∞ then (M(t), t ∈ [0,1]) converges (in the sense of
distribution) to the standard Brownian motion (B(t), t ∈ [0,1]). The proposed test
is based on the first arcsine law for Brownian motion. This states that the random
time M∗ = argmin

s∈[0,1]
B(s), is arcsine distributed (i.e. M∗ ∼ Beta(1/2,1/2)).

The modified algorithm can be eventually written as follows:

1. Give the sequence {t∗1, . . . , t∗N(t)}, transform it to {t∗1/T, . . . , t∗N(t)/T} which is
a Poisson process of rate T ;

2. Constructs the Brownian motion approximationM(t) as in (3.5.7), then finds
the maximizer M∗;

3. Accept the hypothesis that {t∗i } come from a unit rate Poisson process if
M∗ lies within the (α/2,1−α/2) quantiles of the Beta(1/2,1/2) distribution,
otherwise reject it.

The result of the application of the procedure given by [Daley and Vere-Jones,
2003] is shown in Figure 3.5. As we can see the empirical CDF of the data lies
within the confidence lines, so we can conclude that the process is indeed well
modeled by a Poisson process of unitary rate.

Furthermore, a test with the modified algorithm proposed by [Laub, 2014] was
conducted. Even for this case the test led to the acceptance of the unitary Poisson
process assumption.
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3.5.2 Independence test
To check the independence of the inter-arrival times we use a graphic Python
method called plot_acf available within the library statsmodels. This method
is based on the work of [Brockwell and Davis, 2016] and basically plots the au-
tocorrelation function of the data defined, for a generic sequence of event times
{Xt}, as

ρX(s) = Cov(Xt+s, Xt)
Cov(Xt, Xt)

= Cor(Xt+s, Xt), (3.5.8)

where Cov(Xr, Xh) = E[(Xr − E[Xr])(Xh − E[Xh])]. We applied this method to a
synthetic mono-dimensional sequence of 104 Hawkes event times with parameters
(ω, a, µ) = (3, 0.1, 0.3). The plot is shown in Figure 3.6

The shaded area represents the confidence region which is set with the default
value of α = 0.05. That means that anything that falls into this region represent
a value with no significant correlation with previous values. The dotted lines are
the values of the autocorrelation evaluated at a specific time lag (here we plotted
10 time lags). As we can see, except for the obvious peak at a zero time lag (which
means that every random variable has maximum autocorrelation with itself) all
the values beyond time lag equals to zero are negligible, and they all fall in the
confidence region.
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Figure 3.1: Maximum relative errors of the ADM4 method for the estimation of
the adjacency matrix and the baseline intensities
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Figure 3.2: Estimated kernel norms for the infectivity matrix

Figure 3.3: True and estimated kernel triggering function for a two-dimensional
Hawkes process
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Figure 3.4: Q-Q plot for a synthetic mono-dimensional Hawkes process of size 104

with parameters (ω, a, µ) = (3, 0.1, 0.3)
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Figure 3.5: Result of the test proposed by [Daley and Vere-Jones, 2003] for a syn-
thetic mono-dimensional Hawkes process of size 104 with parameters (ω, a, µ) =
(3, 0.1, 0.3)
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Figure 3.6: Autocorrelation of the transformed interarrival times for a syn-
thetic mono-dimensional Hawkes process of size 104 with parameters (ω, a, µ) =
(3, 0.1, 0.3)
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Chapter 4

Analysis of trends
surrounding Donald
Trump’s impeachment

4.1 Dataset analysis
For this work, we use the online public dataset given in [Aliapoulios et al., 2021].
This is a dataset of 183.063M Parler posts made by 4.08M users between August
2018 and January 2021, as well as metadata from 143.25M user profiles. Overall,
the data consists of newline-delimited JSON files (.ndjson), obtained by crawling
three main Parler API (Application Programming Interface). Some main features
given by the post/comment API are:

• id: Parler generated universally unique ID that is associated to the creator of
the post.

• createdAt: Timestamp of the post/comment in UTC (Coordinate Universal
Time)

• upvotes: Number of upvotes that a post/comment received.

• followers: Integer number of followers that the creator of the post/comment
has.

• following: Integer number of accounts followed by the post/comment creator.

• score: Number of upvotes minus the sum of the downvotes a post/comment
received.
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• hashtags: List of strings that corresponds to the hashtags used in a post/com-
ment.

• urls: List of dictionaries correspond to URLs and their respective id and
metadata used in a post/comment.

• verified: Boolean value that indicates whether the post creator has a verified
account.

A simple visualization of a single post/comment structure is given in Figure 4.1

Figure 4.1: Visualization of a single post/comment structure given by the Parler
API

4.1.1 Data preparation
Given the dataset, our main purpose is to extract information about the hashtags
cascades relative to specific hashtags. To do this we adopt the Python data analysis
tool pandas. We first proceed to thin out the dataset getting rid of some keys for
each post that are irrelevant for our case study.

The ‘hashtag’ key of a single post is a list of string objects. To extract a conve-
nient dataset we associate each hashtag with the corresponding post id and time of
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creation to eventually end up with a data frame in which we have all the hashtags
of the original dataset alongside with the id of the post and the creation time.

Figure 4.2 shows a simple visualization of the resulting data frame.

Figure 4.2: Visualization of the data frame used for the analysis

We first note that many of the hashtags in the data frame are associated to the
same post id and creation time. This is due to the fact that there is no limitation
on how many hashtags a user can include in his post or comment.

4.1.2 Data extraction
Since our aim is to model hashtags cascades with the framework of Hawkes Process
we proceed to extract the time events of some hashtags trends. We choose to study
two different groups of hashtags that can be distinguished in ‘Anti-Trump’ and
‘Pro-Trump’ following the analysis presented in [Rossetti and Zaman, 2022] that
was made on a Twitter dataset covering the same period of time as our Parler
dataset. The partisanship of the hashtags was inferred through a neural network-
based sentiment analysis. The selected trends for this study are shown in Table
4.1.

The selected trends are the ones that directly concern the two main figures of
the period covering the 2020 US Presidential Elections, namely the two candidates,
Donald Trump and Joe Biden (#trump, #trump2020, #biden, #biden2020). Other

53



et al.

Pro-Trump trends Anti-Trump trends
#maga #biden
#qanon #biden2020

#stopthesteal #blm
#trump #impeach

#trump2020 #impeachtrump

Table 4.1: Table of selected trends for this study

Pro-Trump selected trends are #stopthesteal, which is a hashtag and a slogan used
by Trump supporters who claimed that the election of Joe Biden was fraudulent
and that the result had to be overturned; #maga which is an acronym for ‘Make
America Great Again’, the slogan adopted by Donald Trump during its presiden-
tial campaign; #qanon stands for a fair-right conspiracy theory that alleges the
existence of a “cabal of Satanic, cannibalistic sexual abusers of children operating
a global child sex trafficking ring conspired against former U.S. President Donald
Trump during his term in office” [Wikipedia, 2021].

Anti-Trump selected trends include #blm, acronym of ‘Black Lives Matter’, a
movement with the aim of bring attention to racism and violence against Black
people communities; #impeach and #impeachtrump referred to the hashtag and
calls to action to relieve President Donald Trump from his position through the
impeachment process.

Having selected the trends we then proceed to sort the data frame chronolog-
ically and to filter it to keep only the selected trends. In this way we can easily
extract the time events of each hashtag cascade to be given to our model.

4.2 Modeling Parler with Hawkes processes
We choose to model our extracted streamlines of events as a U -dimensional Hawkes
Process with exponential decay kernels. We recall here the definition of the inten-
sity function associated to the model

λu(t) = µu +
∑
i:ti<t

auui
ωe−ω(t−ti), u = 1, . . . , U. (4.2.1)

A first interpretation of the parameters could be the following:

• µu represents the background intensity of process u meaning the rate at which
an event on streamline u occurs without being influenced by any other event
in the process. In the context of a social network analysis this rate can be
interpreted as the rate through which trend u is ‘pumped’ in the social network
by some external agent of information;
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• The adjacency matrix coefficient auui
models the intensity of influence be-

tween streamlines u and ui. In our analysis context this can intuitively be
interpreted as follows: larger values of coefficient auui

indicates that an event
(i.e. a hashtag appearance) on trend ui is more likely to trigger a subsequent
event (i.e. a consequent hashtag appearance) on trend u. Indeed, matrix A
would give us the underlying influence structure of our network of trends.

• Parameter ω, which is the exponent of the decay kernel, modulate how fast
the influence of an event decays over time. In a nutshell, ω is an indication of
the ‘network memory’ of recent events. In the social media context this can
be an indication of how long a trend remains influential on the network.

The decay parameter ω deserves particular attention in the development of our
analysis. As mentioned in Section 3.4 the algorithm implemented for the estimation
of the parameters treats the decay coefficient as a global parameter that should
be given to the method. Hence, to perform the estimation we should infer some a
priori knowledge on ω. As the event times gathered from the dataset are converted
in number of days we choose to put ω = 4 as a ‘network memory’ of 4 days appears
to be a reasonable assumption in the context of a social network dynamic.

4.3 Numerical results
4.3.1 Parameters estimation
Once the streamlines of the two different categories of trends are extracted, we
can apply the Algorithm 1 as described in Section 3.3.2 implemented in the tick
Python library for the estimation of µ and A. We first proceed with the esti-
mation of the parameters of the complete process. Namely, we apply the method
considering all the streamlines of trends of as a multidimensional Hawkes process.
The tick library method plot_hawkes_kernel_norms is then used to show the
resulting approximated adjacency matrix A of the complete process. Plot is shown
in Figure 4.3.

The kernels are displayed such that the plot shows norm of column influence’s
on row. Namely, higher value of entry aij indicates a high level of influence of
process j on process i. A legend to read the labels on the kernel plots is provided
in Table 4.2.

As we can see, diagonal values are in general higher than off-diagonal norms.
This means that, generally the trend express a most dominant self-excitement be-
havior rather than an influential one. Another interesting thing to note is that
Anti-Trump trends are very unlikely to influence Pro-Trump trends while, on the
contrary, an event on a Pro-Trump trend is very likely to influence an event on
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Figure 4.3: Estimated adjacency matrix A for the complete process

Trend Trend label
#trump2020 0

#maga 1
#trump 2

#stopthesteal 3
#qanon 4
#biden 5

#biden2020 6
#blm 7

#impeach 8
#impeachtrump 9

Table 4.2: Table of selected trends for this study

the Anti-Trump streamlines. Not surprisingly the greater influence flow is esti-
mated on the trend paths #stopthesteal→ #biden, #stopthesteal→ #biden2020,
#stopthesteal→ #impeach and #stopthesteal→ #impeachtrump. This is a con-
sequence of the fact that Parler became a huge plaza for Trump supporters after
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the outcome of the US Presidential Elections.
To further investigate the underlying influence structure of the network of trends

we proceed to analyze the two categories of trend separately, distinguishing the
Anti-Trump (AT) trends from the Pro-Trump (PT) trends treating them as sep-
arate and independent processes. We apply the estimation algorithm to find the
parameters (APT, µPT) and (AAT, µAT).

The output of the algorithm is shown in Figure 4.4 and the associated labels
for the trends are displayed in Table 4.3.

We can appreciate a strong self-excitement character for the two group of trends,
as the diagonal elements of the adjacency matrix have greater magnitude than off-
diagonal entries. In general, the magnitude of the influence is slightly greater for
the Pro-Trump trends than for the Anti-Trump ones. This indicates that Pro-
Trump events are not only more likely to self-excite themselves but also to trigger
other Pro-Trump events.

Figure 4.4: Estimated adjacency matrix APT for the Pro-Trump process (on the
left) and AAT for the Anti-Trump process (on the right)

Pro-Trump trends
Trend Trend label

#trump2020 0
#maga 1
#trump 2

#stopthesteal 3
#qanon 4

Anti-Trump Trends
Trend Trend label
#biden 0

#biden2020 1
#blm 2

#impeach 3
#impeachtrump 4

Table 4.3: Trend labels for the two separate processes
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In Table 4.4 and Figure 4.5 we display the estimated background rates for each
hashtag trend.

Pro-Trump trends
Trend µ

#trump2020 8.80× 10−2

#maga 2.25× 10−3

#trump 1.00× 10−6

#stopthesteal 7.12× 10−2

#qanon 5.40× 10−2

Anti-Trump Trends
Trend µ
#biden 6.41× 10−2

#biden2020 9.75× 10−3

#blm 1.19× 10−2

#impeach 1.57× 10−2

#impeachtrump 7.12× 10−3

Table 4.4: Estimated background rates µAT for the Anti-Trump process (on the
left) and µPT for the Anti-Trump process (on the right)

Figure 4.5: Word clouds representation of the hashtag trends for the Pro-Trump
(in red) and Anti-Trump (in blue), each hashtag is sized based on the estimated
background rate of the associated process

As we can see from the numerical results the background rates associated with
Pro-Trump trends express in general higher magnitudes except for the #trump
hashtag, that has a negligible value. In particular, Pro-Trump trends like #trump2020
and #stopthesteal reveal a higher rate than the Anti-Trump counterpart #biden2020
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and #impeachtrump. Following the mathematical interpretation provided in Sec-
tion 2.2, a higher level of the background rate means that there is a higher prob-
ability to observe an event that comes uninfluenced by any other event in the
process. In the context of the social network analysis the higher rate related to
the Pro-Trump trends could mean that this processes tend to express a higher risk
of being ‘pumped’ in the network perhaps by some sort of external and malicious
agents with the aim of disseminating targeted information in the network.

This can also be a consequence of the above-mentioned fact that Parler saw
a huge influx of Trump supporters in the late months of 2020, just before its
removal from the servers, that made use of the platform to spread their dissent
and to foment a violent rebellion towards the results of the Presidential Elections.

4.3.2 Goodness of fit
Once the model parameter A and µ are estimated we can proceed to perform the
statistical tests introduced in Section 3.5 to assess the goodness of our assumption
that the extracted hashtag cascades are indeed a realization of a Hawkes process.
We treat each streamlines of the analyzed trends as a mono dimensional Hawkes
process, and we use the estimated parameters A and µ to come up with a closed
form expression of the compensator function Λ(t). We then transform each stream-
line using the corresponding compensator to obtain the sequence of transformed
times needed to perform the tests.

Following the dissertation presented in Section 3.5.1 we display the Q-Q plots
of the two categories of trends in Figure 4.6 (Pro-Trump trends) and in Figure 4.7
(Anti-Trump) obtained by performing the time transformation on each streamline
of hashtag cascade.

As we can see, for most of the data, the tests give a quite good response as the
theoretical quantile (evaluated from a unitary rate exponential density function)
line up with the quantiles evaluated from the dataset.

Some exceptions are noteworthy: #trump and #stopthesteal cascade, concern-
ing the Pro-Trump trends and #blm cascade, regarding the Anti-Trump trends.
For these streamlines we can see how the theoretical and the sample quantiles fail
to line up over the identity line y = x. This is considerably noticeable for the
#trump hashtag.

These discrepancies are also recognizable in the result of the approximated
Kolmogorov-Smirnnov-type tests, shown in Figures 4.8 and 4.9. It is immediate to
note that the empirical CDFs of the above-mentioned trends fail to fall within the
95%-confidence lines, while for the other CDFs we can state (with a 95%-confidence
level) that they are indeed a realization of a unitary Poisson process.

This is indeed confirmed by the application of the modified algorithm proposed
by [Laub, 2014] which leads to the acceptance of the unitary rate Poisson process
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assumption for all the trends except for the aforementioned ones.

The last tests performed are the ones to check the independence of the interar-
rival transformed times. The autocorrelation functions are shown in Figures 4.10
and 4.11. Again we can see, most of the trends express autocorrelation values that
tend to fall into the confidence region as the time lag exceed the value 1 except
for #trump and #blm hashtags.

These test results imply that not all the trends are indeed well modeled by a
Hawkes process. A first explanation could be the found by looking at the history of
Parler. As already reported in Section 1.2, the users’ growth on the platform wasn’t
characterized by a constant increase, but instead it registered separated bursts of
new accounts registrations. These increase of the network population inevitably
led to a burst of activity and propagation of some particular centre-of-attention
trends like #trump, #blm (Black Lives Matter) and #stopthesteal that possibly
failed to be well captured by the model.

Further studies should be oriented to inspect some more suitable model to better
capture this behavior. Another limitation of the present model, that can be of
interest for future works, is that the entire model is based on a priori knowledge of
parameter ω that tunes the rapidity of the decay of the exponential kernel. Further
developments can be oriented to the construction of an extended algorithm that
also estimates ω as a model parameter.

Figure 4.6: Q-Q plots for the Pro-Trump trends
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Figure 4.7: Q-Q plots for the Anti-Trump trends

Figure 4.8: Approximated Kolmogorov-Smirnov type test for the Pro-Trump trends

4.4 Sentiment analysis
The last part of this work is dedicated to the analysis of the toxicity of the published
posts on Parler to unveil the correlation between the most high-profile trends and
their level of hate and maliciousness.

To conduct this analysis we use a Python library called Detoxify designed
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Figure 4.9: Approximated Kolmogorov-Smirnov type test for the Anti-Trump
trends

Figure 4.10: Autocorrelation functions for the Pro-Trump trends

by [Hanu and Unitary team, 2020] to easily predict if a comment contains toxic
and obscene language. This library offers a Machine Learning-based method to
evaluate a score (between zero and one) associated to the level of toxicity in a
given input text distinguishing different categories of toxicity such as ‘toxicity’,
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Figure 4.11: Autocorrelation functions for the Anti-Trump trends

‘severe toxicity’, ‘obscene’, ‘identity attack’, ‘insult’, ‘threat’ and ‘sexual explicit’.
The model was trained to recognize different languages (English, Italian, French,

Russian, Portuguese, Spanish and Turkish).
To proceed with the analysis of our dataset we read and extract a data frame

containing the ‘body’ entry of a sample of posts (see Figure 4.2) filtered using
some of the most high-profile trends in our dataset, namely “trump”, “maga”,
“biden” and “blm”. We first perform some simple text cleaning using Regular Ex-
pressions (Python library re) to make the extraction more efficient. For instance,
we transform all the comments to lowercase, we drop all the hashtag and mention
symbols (#, @) in front of words and replace all the occurrences of some phrases
(like “make america great again” and “black lives matter”) with the corresponding
acronym (“maga” and “blm”). We then evaluate a mean score for each category of
toxicity and for each selected trend. Due to computational cost of the algorithm
we work with a smaller sample of the dataset. Results are shown in the bar plots
in Figure 4.12. As we can see the resulting mean score for the Anti-Trump trend
is considerably bigger than the one associated to the Pro-Trump trends for all
the toxicity categories analyzed. This means that there is a high probability of
observing a comment that contains a toxic content associated to an Anti-Trump
trend. To give an example the comment in which the word ‘Biden’ appears, are
associated with a larger score in the toxicity field marked as ‘insult’. This confirms
the strong bias in the ideologies of Parler users towards a Republican mindset with
a peculiar inclination to denigrate different political leanings.
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Figure 4.12: Bar plots of the mean toxicity scores of the selected trends
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Conclusions

This work was mainly oriented to provide an analysis and characterization of the
Parler marginal social network in the time period surrounding Donald Trump’s
first impeachment. We first presented the mathematical framework of Hawkes
processes, which have been shown to model well the self-excitation character of
some real systems. As demonstrated in the literature, this self-excitation char-
acteristic is very suitable for modeling events on social networks. We presented
an adaptation of the model to infer some statistical analysis on a set of Parler’s
posts to show how the cascades of hashtags related to selected trends are indeed
well modeled by a Hawkes process. Hawkes’ framework allowed us to estimate the
mutual influence between trends and the rates through which they are “inflated”
in the network. The goodness of our hypothesis was evaluated using some basic
statistical tests provided in the literature reviewed. The results showed that the
population of Parler users was minimally affected by Anti-Trump trends, even
though their rate of appearance in the network is not much different from that of
Anti-Trump trends. This suggests a tendency for Parler users to partially ignore
this information. In contrast, pro-Trump trends appear to have a greater degree
of influence on the community and are also associated with slightly higher values
of background rates. This bias in the ideology of Parler users is also confirmed by
the sentiment analysis performed on the text comments of the published posts.
Comments aimed at the anti-Trump movement are those that receive a higher
level of toxicity, hatred, and harassing content.
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