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Abstract

Routing games model the behavior of a large number of strategic users travelling
in a transportation network. Each link of the network is endowed with a delay
function that describes the travel time as a function of the flow, and users aim
at selecting routes with minimum total travel time. An equilibrium of the game
is a flow assignment whereby no users have an incentive to deviate from their
chosen route. This thesis is focused on Bayesian routing games, in which delays
are stochastic functions that depend on a random variable representing the state of
the network. In particular, we investigate how a central planner who observes the
state of the world should provide information to the users in order to influence their
routing behavior, possibly steering it towards a system optimum. This problem is
called in the literature Information design.

It is known that revealing the true state of the network, and more in general
public signaling policies, are inefficient in minimizing the system cost. Moreover,
the signal space can be restricted to route recommendations such that users have
no incentive in deviating from the received recommendation, which is known as
obedience constraint. For these reasons, this thesis is focused on private signaling,
i.e., when users receive different route recommendations at the same time. The
fundamental assumption of this Bayesian model is that the prior distribution of
the state of the network and the signal policy are common knowledge to the users,
who make decisions based on their posterior belief on both the state of the network
and the information that other users after receiving the recommendation.

We analyse the properties of the problem, showing that it is convex if the
network has two parallel links and the delay functions are affine. This gives us
necessary and sufficient condition for optimality. We find sufficient conditions on
the support of the unknown parameters of the delay functions and on their mo-
ments under which the price of anarchy is minimized. Interestingly, we observe
that a large variance of the unknown parameters is beneficial for the system cost
under the optimal policy. Moreover, we study the structure of the optimal policy
when the price of anarchy is strictly larger than 1, that is when the obedience
constraints are not satisfied under the optimal policy that minimizes the objec-
tive function without considering the constraints. In particular, we show that it
is not possible under the optimal policy that all the users that receive different
recommendations are incentivized in deviating at the same time.
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Chapter 1

Introduction

1.1 Motivation
In a lot of fields, it has become important to model the behavior of systems of
transporting networks. There are different strategies for persuading strategic users
travelling in a network in order to influence them to take the best route for them
and for the system. All together, these models are called in the literature Rout-
ing games. Consider therefore a network in which each link has a function that
describes the travel time or the cost that a user is subject to when goes through
that link. These functions are expressed always as functions of the flow on the
link. In particular, these functions can depend also on some stochastic variables
that represent the state of the world, with specific probability distributions. The
problem that studies the behavior of transporting network endowed with these
stochastic delay or cost functions is called Bayesian Routing games.

Moreover, consider that on these transportation networks there is a central
planner that can be the system itself and it’s subject to the total travel time or
cost of the network. Its objective is then to minimize its penalty trying to influence
users to act in the most profitable way. Suppose that the central planner knows the
state of the world and suppose also that users are rational; it is so strictly necessary
to convince them of the convenience of a choice. The problem needs therefore to
respect some users’ obedience constraints. In order to do that, the central planner
provides information to persuade users in order to influence their behavoir and it
must take into consideration that users will independently evaluate if the received
suggestions are optimal for them. The objective is to find an equilibrium that is a
flow setting whereby that no users have an incentive to deviate from their chosen
route. The main assumption of this Bayesian model is that the prior distribution
of the stochastic variables and how the information is made are common knowledge
to the users, who make decisions based on their posterior belief on both the state
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Introduction

of the world and the information that other users after receiving the information.
The mathematical branch that studies this problem is called Information design
and it can be seen as a communication signals play (if there is not an informational
advantage) or also as a Bayesian persuasion problem (if there is an informational
advantage for the system).

Different combinations of the characteristics of the problem of Information de-
sign can be made and in this way different settings can be obtained. In some
configurations there may be single or multiple receivers, in the same way there
may be single or multiple senders (if there is only one it is usually identified with
the system). Moreover, multiple receivers can be treated as atomic or non-atomic
if they are respectively a discrete and finite set or a continuous and large set.
Looking at the environment it can be static or dynamic. Specially, the state of
the world is often discrete and more rarely continue. In the end signal from the
senders to the users can be private or public. Focusing on the case of a single
sender with informational advantage and multiple non-atomic receivers in a static
network with stochastic and continuous state of the world, it is well known that
public signaling, i.e. giving all the informations about the state of the world is
inefficient in optimizing the cost of the system. Moreover, between all the dif-
ferent informations that can be made, one of the most common is giving route
recommendations such that users have no incentive in deviating from the received
suggestions. In the end, the interesting case is private signal, i.e. when users
receive different recommendations at the same time.

Specifically, this work is focused on the study of the particular application of
Information design in traffic networks, that is when users of a network have to
choose between different routes that can possibly be congested and that can cause
various costs to themselves and to the system, but Information design can be ap-
plied in a lot of branches and cases. For example, its applications include financial
research as price discrimination, routing software problems, medical research and
testing.

1.2 Related literature
The problem of information design has been studied in a varied number of litera-
ture papers.

One of the first case studied is with a sender with an informational advantage
and a single user, the problem in this case takes the name of Bayesian persuasion
and is analyzed by Kamenica and Gentzkow in 2011 [11]. Recent works correspond
instead to information design problems with a sender always with informational
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1.2 – Related literature

advantage and there are many users of the network. References about this case
are the works of Bergemann and Morris of 2016 and 2019[3][4].

One importat aspect analysed in Information design is the problem of under-
stand how much information give to users.
Starting with the setting of full information the reference is Aumann (1987) [2]
that introduced the concept of correlated equilibria: a policy is communicated to
fully informed users and it is an equilibrium if users have no incentive to do not
follow the recommedations. Correlated equilibria are extended by Bergemann and
Morris in 2016 when there is an uncertainty state in the network, with the concept
of Bayes correlated equilibria, in this case there is a correlation between the signal
provided by the sender and the observation of the state.
A first result is in a paper of Das and Kamenica of 2016 [12] that continues Ka-
menica and Gentzkow [2011] [11] work on Bayesian persuasion by showing that
it there are multiple senders and a rich signal space they tends to increment the
number of informations revealed. Then an important results is the demonstra-
tion that revealing full information is suboptimal and this is done by Acemoglu et
al. in 2018 [1], Das and Kamenica in 2017 [8] and by Tavafoghi and Teneketzis
always in 2017 [14]. In particular Das and Kamenica [2017] [8] compare with sim-
plified examples with a discrete state of the world the optimal private policy with
full information, no information and public information. Instead, Tavafoghi and
Teneketzis [2017] [14] goes in the same direction of the work of this thesis but with
the assumption of a discrete state of the world. They investigate also a two-step
dynamic in which users can learn by their experience.

Another fondamental result that can be found in literature is the revelation
principle, that states that given an indirect information policy that gives some
information to users without directly recommand routes to them, there exists
always a direct information policy that induce the same flow and cost on the
network and satisfies the constraints. The main reference for this principle is
Bergemann and Morris [2016][3], but it is also presented in Zhu and Savla in 2021
[19].

Zhu and Savla [2021] [19] is one the most recent work about Information design.
The setting is very similar to the one in this thesis, but the are some differences:
the state of the network is discrete, there is a fraction of agents that does not
receive information and given the state, the policy is not deterministic and can
randomize among different points in the simplex. In this paper it appears the
definition of obedience to indicate private information policies where users receive
recommendations and they do not have incentive in deviating. If there is no
obedience, the equilibrium of the game is a Bayesian Nash equilibrium. If the
equilibrium is obedient, it is a Bayes correlated equilibrium.
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The situation that is generated when users are not obedient is investigate always
by Zhu and Savla [2021] [19], but then also by Wu et al. in 2017 and 2021 [17]
[18].

Another interesting paper about Information design is Wu and Amin [2019] [16].
All the results of Kamenica and Gentzkow are formalized and applied in Kamenica
and Gentzkow [2019] [10].
Dynamical setting are investigate by Tavafoghi and Teneketzis always in 2019 [15].
A more general approach is studied by Meigs in 2020 [13] where the dynamic in-
formation provision in routing games is analysed.

In conclusion, the only papers that present algorithmic approaches to Informa-
tion design are Dugmhi and Xu [2016] [9] and Zhu and Savla [2021][19].

1.3 Contributions

This thesis investigate Information design in the particular case of a single sender
with informational advantage and multiple non-atomic receivers in a static net-
work. One generalization about literature is that the stochastic state of the world
is assumed to be a continuous variable. The focus is on private signaling where
the informations are directly recommendations about the route to follow with a
common knowledge about the prior distribution of the state of the world.

First, the problem is investigated when a generic information policy is im-
plemented in the network and Bayes Wardrop equilbria are analysed, finding a
condition for the equilibrium. Therefore, a theorem is deduced from the revelation
principle and allows to simplify the problem. Consequently, the optimization prob-
lem of Information design is formalized and properties of the problem are studied
finding necessary and sufficient condition for optimality.

The problem is deepened in order to find sufficient conditions on the support
of the unknown parameters of the delay functions and a necessary and sufficient
condition on their moments under which the price of anarchy is minimized. A
variation of stochasticity is made in all the coefficients of the delay functions of
the network. Moreover, the structure of the optimal policy when the price of
anarchy is strictly larger than 1 is investigated, i.e. in the case when the obedience
constraints are not satisfied under the optimal policy that minimizes the objective
function of the unconstrained optimization problem.
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1.4 Organization
First of all, in chapter 2 a background about transportation networks is presented
and definitions about flows, cost functions and equilibria are given. In section 2.1
the network is assumed to be deterministic, both in a homogeneous case and in a
heterogeneous case, instead in section 2.2 the network is assumed to be stochastic.
In each situation definitions of system optimum, Wardrop equilibria and price of
anarchy are setted.

Then going through chapter 3, in section 3.1, the problem is at first analysed
when there is a general information policy and users optimize their choices only
through the prior distribution of the stochastic variables and expected values about
the information that other users have received, showing that it becomes a potential
game but with a suboptimal equilibrium. Revelation principle is presented and
the problem is reduced only to obedient policy. In section 3.2, the problem is
formalized when the information policy is chosen as the one that minimizes the
system cost and in order to satisfy also users obedience constraints. Properties of
the model are presented.

In chapter 4, the problem is therefore investigate with different settings of the
network.

• First with a binary network with affine costs with a generic prior in section
4.1, the optimization problem becomes convex and gives necessary and suf-
ficient conditions for optimality. Consequently, the optimum is found with
a condition on the support of the stochastic variables in order to have no
saturation and with a condition on moments of the random variables in order
to respect constraints and gaining the minimum price of anarchy, i.e. 1. An
important observation is done noting that a large variance of the stochastic
variables is beneficial for the problem under the optimal policy.

• In section 4.2, the problem is studied with the assumption of deterministic
linear coefficients of the cost functions, and always with a condition on the
support of the stochastic variable in order to have no saturation, it is exam-
ined what happens when the price of anarchy is greater that 1. It is shown
that is not possible to violate both the constraints, i.e is not possible under
the optimal policy that all the users that receive different informations are
incentivized in deviating from all of them, consequently the problem is solved
when there is one violation finding a new optimum.

• In the end in section 4.3, the problem is analysed with a binary network with
affine costs and a uniform prior distribution. In this setting, is it demonstrated
that the constraints are never violated and the price of anarchy is always 1.
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In conclusion, in chapter 5, future researches are presented involving efforts
to generalize the obtained results. Interesting directions could be considering a
fraction of population that do not receive informations or going deeper in the
analysis of the suboptimal situations of the implementation of the optimal policy
without considering the obedience constraints.
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Chapter 2

Background on
transportation networks and
traffic assignment

2.1 Deterministic transportation networks
Homogeneous deterministic transportation networks

Consider a directed multigraphs G = (V , ε, θ, κ) that is defined by a set of nodes
V , a set of links ε that connect the nodes and two functions:

• θ : V → ε that indicates for each link the starting node,

• κ : V → ε that indicates for each link the arrival node.

Observation 1. For ease of notation, we describe the game for directed multi-
graphs with only one origin node o and one destination node d. However, the
arguments can be easily generalized for arbitrary multigraphs.

In this contest a path is a set of links p = (e1, ..., en) where θ(e1) = o and
κ(en) = d. The set of all this path is referred as Γ(o,d).

Suppose that on each link there is a deterministic delay function τe : R+ → R+
with the particular assumption that τe (0) = 0 and that it is strictly increasing,
continuously differentiable and convex. The sum of all the delay functions on the
network is called the total travel time of the network or simplier the cost of the
network.
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Background on transportation networks and traffic assignment

Definition 1. Transportation network is a pair of a directed multigraph G =
(V , ε, θ, κ) and a family of delay functions τe : R+ → R+∀e ∈ ε.

On a multigraph a link-node incidence matrix B ∈ RV×ε, i.e. a matrix whose
element ij is equal to 1 if θ (i) = j or it is equal to -1 if κ (i) = j and it’s 0
otherwise, is associated with this graph and it allows to define the flow on the
graph. Also it is possible to define on the graph the link-path incidence matrix A
∈ [0,1]ε×Γ(o,d) , i.e. a matrix whose element ep is equal to 1 if link e is along path p
or it is equal to 0 otherwise.

On that graph consider that is defined an exogenous network flow v ∈ RV that
gives the unitary mass (without loss of generality) incoming and outgoing from
each node. In our contest it is simply the difference between the mass incoming
in the origin node and outcoming in the destination node: δ(0) − δ(d). A flow f is
a vector in Rε

+ such that it satisfies the flow balance equation Bf = v.

Then in the contest of deterministic transportation networks it is possible to
define a flow optimization problem that is:

min
f≥0,Bf=v

∑
e∈ε

feτe (fe) (2.1)

whose optimal solution is the system optimum (SO) that is the flow f ∗ that
minimize the total travel time for the system given an exogenous network flow.

Consider that on the network there are users that act like a non-atomic popu-
lation, i.e. their number is large and they are considered as a continous set. Users
on the network are strategic, and aim at minizing their travel time without con-
sidering the cost for the whole system. This type of behaviour is captured by the
notion of Wardrop equilibrium.

A Wardrop equilibrium (WE) on a determinisitic transportation network is
a flow f 0 = Az where z ∈ RΓ(o,d) : z ≥ 0, 1′z = v such that no one has incentive in
deviating from their route. This means that users follow path p ∈ Γ(o,d) if:

∑
e∈ε

Aepτe
(
f 0
e

)
≤
∑
e∈ε

Aeqτe
(
f 0
e

)
∀q ∈ Γ(o,d) (2.2)

that is: a user chooses a path if the delay on it is lower than the one on every
other path.
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2.1 – Deterministic transportation networks

It can be be demonstrated that this optimization problem is a potential game,
i.e. it exists a function Φ : Rε

+ → R such that for each flows f 0
i and f 0

j

⇒
∑
e∈ε

f 0
ieτe

(
f 0
ie

)
−
∑
e∈ε

f 0
jeτe

(
f 0
je

)
= ∂Φ(f 0

i )
∂f 0

i

−
∂Φ(f 0

j )
∂f 0

j

.

In homogeneous transportation networks the existence of a Wardrop equilibrium
is always guaranteed and they are the minimum of the potential function. More-
over, if the delays function are strictly increasing then wardrop equilibrium is also
unique.

The inefficiency of Wardrop equilibrium compared to the system optimum can
be measured in this deterministic case by the price of anarchy (PoA), which is
the ratio between the total travel time at the equilibrium and the optimal total
travel time, i.e.

PoA =
∑
e∈ε f

0
e τe (f 0

e )
minf≥0,Bf=v

∑
e∈ε feτe (fe)

. (2.3)

[7]

Heterogeneous deterministic transportation networks

Suppose now that on the same graph there are different populations p ∈ P
of users. The objective is always to minimize the cost of the network for the
system and for users. The difference is that each population has its own delay
function, always strictly increasing, continuously differentiable and convex, and so
it is necessary to define an aggregate network flow on the network, i.e.:

fagg =
∑
p∈P

fp

Definition 2. Heterogeneous deterministic transportation network is a triplet of a
directed multigraph G = (V , ε, θ, κ) a family of delay functions τe : R+ → R+∀e ∈ ε
and a set of populations P to which users belong.

In this setting the system optimum (SO) is the flow f ∗ that minimize the total
travel time for the system given an exogenous network flow and delay functions
that differ for each population:

min
f≥0,Bf=v

∑
e∈ε

τ pe (fe)∀p ∈ P (2.4)

At the same time the Wardrop equilibrium (WE) is the flow f 0 for which users
follow path p ∈ Γ(o,d) if:∑

e∈ε
Aepτ

p
e

(
f 0
e

)
≤
∑
e∈ε

Aeqτ
p
e

(
f 0
e

)
∀q ∈ Γ(o,d),∀p ∈ P (2.5)
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Background on transportation networks and traffic assignment

In general the existence and uniqueness of equilibria in heterogeneous network
dynamics is not trivial.
In the special case in which every population has same origin and destination and
delay functions differ only for a costant, then it can be proved that the game is
still potential. If the game is still potential then Wardrop equilibria always existe
also if they are not unique in general.
It is then defined that in this situation Wardrop equilibria can be essentially unique
that means that can exists different Wardrop equilibra, but they induce on the
network the same aggregate network flows. [6]

Several strategies can be used to improve the inefficency of the user equilibrium
and reduce the inefficiencies due to the selfish user behaviour. Among these,
we mention tolls and information design. In particular, information design is
useful when the users have some kind of uncertainty on the network state. In the
remainder of this thesis, we shall consider stochastic transportation network games
and study information design in this setting.

2.2 Stochastic transportation networks
Consider now that the network depends on the realization of a stochastic con-
tinuous variable, that is the state of the world ω, that lives in the probability
space (Ω,A,P) where Ω is the sample space, A is the set of events and P is the
probability function.

Definition 3. Transportation network is a triplet of a directed multigraph G =
(V , ε, θ, κ) probability space (Ω,A,P) and a family of delay functions τe : Ω×R+ →
R+∀e ∈ ε.

In this contest different situations may arise.
The first case is if there is no information about the state of the world.

The system optimum (SO), is the flow f ∗ that minimize the total travel time for
the system given an exogenous network flow with respect to the expected value of
the delay functions, i.e.:

min
f≥0,Bf=v

∫
Ω

∑
e∈ε

feτe (ω, fe) dP (ω) (2.6)

At the same time the Wardrop equilibrium (WE) is the flow f 0 for which users
follow path p ∈ Γ(o,d) if:∫

Ω

∑
e∈ε

Aepτe
(
ω, f 0

e

)
dP (ω) ≤

∫
Ω

∑
e∈ε

Aeqτe
(
ω, f 0

e

)
dP (ω) ∀q ∈ Γ(o,d) (2.7)
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2.2 – Stochastic transportation networks

where the optimization occurs on the expected value of the delay functions.

On the contrary, in the second case there can be a full information about the
state of the world.
Then the system optimum (SO) is the flow f ∗ that minimize the total travel time
for the system given an exogenous network flow with complete knowledge about
the realization of the stochastic variable ω, i.e.:

min
f≥0,Bf=v

∫
Ω

∑
e∈ε

fe (ω) τe (ω, fe (ω)) dP (ω) (2.8)

Instead, the Wardrop equilibrium (WE) is the flow f 0 for which users follow path
p ∈ Γ(o,d) if:∫

Ω

∑
e∈ε

Aepτe
(
ω, f 0

e (ω)
)
dP (ω) ≤

∫
Ω

∑
e∈ε

Aeqτe
(
ω, f 0

e (ω)
)
dP (ω) ∀q ∈ Γ(o,d) (2.9)

where the optimization occurs for each value of ω.

Consequently, also in this stochastic case it is possible to define the price of
anarchy:

• the price of anarchy when users have no knowledge about the state of the
world is :

PoA0 =
∫
Ω
∑
e∈ε f

0
e τe (ω, f 0

e )
minf≥0,Bf=v

∫
Ω
∑
e∈ε fe (ω) τe (ω, fe (ω)) dP (ω) (2.10)

• the price of anarchy when users have full knowledge about the state of the
world is :

PoA1 =
∫

Ω
∑
e∈ε f

0
e (ω) τe (ω, f 0

e (ω))
minf≥0,Bf=v

∫
Ω
∑
e∈ε fe (ω) τe (ω, fe (ω)) dP (ω) (2.11)
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Chapter 3

Information design problem

3.1 Model formulation

Figure 3.1. Representation of a graph with source and destination nodes
with n links and generic delays.

In the general problem of Information design on a stochastic transportation
network an omniscient planner, that can be identified as the system, observes the
realization of the state of world of the network and sends signals to the users
in order to minimize the total travel time of the system. Define the simplex
SR = {x ∈ Rn

+ : ∑n
i=1 xi = 1}, as the set of all possible suggestions that the planner

can send. We assume that these suggestions coincide with the recommendations
of using a certain route R = i, where R is the set of possible routes.

Observation 2. We present results about graphs with only parallel links from the
origin node and the destination node, but they can be generalized to generic graphs.
With this assumption paths coincide with links.

17



Information design problem

Definition 4. Information policy is a map π : Ω → SR that goes from the
distribution of the state of the world to the simplex of all possible recommendations.

Once the signal has been received, users behave like different populations who,
on the basis of the indication received, calculate the posterior distribution dPi on
the random variable ω and on the suggestion R = i using Bayes theorem. Since
users are strategic they can deviate from the recommendation. Knowing of the
posterior distribution of the random variable and the expected values regarding
what the other users have received, users choose their actions in order to reach the
Wardrop equilibrium.

From a game theory perspective, both the system and the users search for a
combination of actions that is convenient for everyone and that no one has interests
to change: this is called reaching the Nash equilibrium.

Let yij be the fraction of users that after receiving signal of following path i
choose to follow path j, such that yij ≥ 0 for every i, j and ∑j yij = 1 for every i.
Then, for every i, j such that πi(ω) > 0 for at least a ω and yij > 0, the condition
for the equilibrium is:

E [τj | R = i] ≤ E [τk | R = i]∀k (3.1)

that is:
E [τj | R = i] =

∫
Ω τj (ω,∑r∈R yriπr (ω)) dPi (ω)∫

Ω πi (ω) dP (ω) (3.2)

that contains the posterior distribution calculated with Bayes theorem:

dPi (ω) := πi (ω) dP (ω)∫
Ω πi (ω) dP (ω) (3.3)

Observe that y depends on the policy π via the posterior dPi(ω). Plugging 3.2
into 3.1, we get the equilibrium condition:∫

Ω
τj

(
ω,
∑
r∈R

yriπr (ω)
)
πi (ω) dP (ω) ≤

∫
Ω
τk

(
ω,
∑
r∈R

yrkπr (ω)
)
πi (ω) dP (ω)∀i, j, k

(3.4)
What it turns out is a Wardrop equilibrium in the form of a matrix where yij is
the fraction of users who, after receiving the signal to follow path i, goes on path
j. This matrix is therefore stochastic by rows.

Definition 5. In a stochastic transportation network, given an information policy
π a Bayes Wardrop equilibrium is a flow fπ : Ω → Rε

+ such that it exists a

18



3.1 – Model formulation

stochastic matrix y : Ω→ RR×R for which:

fj (ω) =
∑

i∈Γ(o,d)

yij (π) πi (ω)∀ω ∈ Ω (3.5)

and it holds true 3.4.

If this equilibrium exists and it’s unique it is called fπj .

The following result gives a characterization of this Bayes Wardrop equilibrium.

Proposition 1. Given a policy π (ω), fπj (ω) is a Bayes Wardrop equilibrium if
and only y (π) is a solution of the following optimization problem:

min
y:yij>0

Φ (y)

s.t.
∑
j

yij = 1 ∀i

where
Φ (y) =

∑
j∈Γ(o,d)

∫
Ω

∫ ∑
r∈R yrjπr(ω)

0
τj (ω, s) dsdP (ω) (3.6)

is the potential function.

Proof. Notice that Φ(y) is convex in y because it is the combination of convex
functions ⇒ necessary and sufficients conditions for optimality can be found, it
follows that y is a minimum of the potential. The partial derivative of this potential
function is:

∂Φ (y)
∂yij

=
∫

Ω
τj

(
ω,
∑
r∈R

yrjπr (ω)
)
πidP (ω)

=
∫

Ω
τj

(
ω,
∑
r∈R

yrjπr (ω)
)
dPi (ω)

∫
Ω
πi (ω) dP (ω)

= E [τj | R = i]
∫

Ω
πi (ω) dP (ω)

Then, if yij > 0, ∂Φ(y)
∂yik
− ∂Φ(y)

∂yij
≥ 0 ∀k, which implies E[τj|R = i] ≤ E[τk|R = i],

which is the definition of Wardrop equilibrium. Since yij > 0, this shows that the
solution of the optimization problem is the Wardrop equilibrium y∗(π).

Observation 3. Note in particular, that it is a weighted potential game, i.e. the
derivative of the potential function are the weighted delays of the users.
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Information design problem

Let y(π) be the Wardrop equilibrium given a policy π. The cost of a pol-
icy π is the expected total travel time at the equilibrium with the flow fj =∑
i∈Γ(o,d)

yijπi (ω), i.e.

C(π) =
∫

Ω

∑
j∈Γ(o,d)

τj(ω, fj (ω))fj (ω) dP(ω). (3.7)

The system then wants to solve the problem:

π∗ ∈ arg min
π
C(π). (3.8)

Problem 1. Given a stochastic transportation network, the strategy of Information
design consists in finding the optimal information policy π∗ such that∫

Ω

∑
j∈Γ(o,d)

τj
(
ω, fπ

∗

j (ω)
)
fπ
∗

j (ω) dP (ω) ≤
∫

Ω

∑
j∈Γ(o,d)

τj
(
ω, fπj (ω)

)
fπj (ω) dP (ω)∀π

(3.9)

Theorem 1. If π∗ is an optimal solution of problem 1 ⇒ constraints 3.4 are
satisfied.

This theorem is also known as revelation principle. [3]
It states that problem 1 can be much simplified because given a policy π, there
always exists a policy π̄ such that C(π) = C(π̄) and yijπ) = δ

(i)
j . In other words,

this means that each user of the network has no interest in deviating from the
recommendations it gets. This is also known as obedience constraints.

Observation 4. The problem of Information design can be restricted only to policy
that satisfy the constraints.

To sum up, narrowing the analysis only to obedient policy, the outline of the
process is the following:

• the a priori dP of ω is known;

• central planner minimizes Eω∼dPτ (ω, f ∗ (dPi));

• central planner chooses a signal π;

• users observe signal π and deduce dPi;
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3.2 – Model properties

• users generates a flow f 0 (dPi) that minimize Eω∼dPiτ (ω, f 0);

• cost is measured.

Therefore it is possible to write the constrained optimization problem, from a
mathematical perspective, with the objective to find the information policy in order
to minimize the expected value of the total travel time for the system and in order
to respect the obedience constraints for users of the network. The mathematical
formulation of the problem of Information design on a network with n parallel
links and stochastic delay functions is in the end:

Problem 2.
min

π:Ω→Sn

∫
Ω

[
n∑
i=1

(τi (ω, πi (ω))) πi (ω)
]
dP (ω)

subj. to
∫

Ω
πi (ω) [τi (ω, πi (ω))] dP (ω) ≤

∫
Ω
πi (ω) [τj (ω, πj (ω))] dP (ω)∀i, j

3.2 Model properties

The general problem 2 of Information design on a network with n parallel links
and stochastic delay functions has two important properties:

Property 1. Since delay functions τ are convex then the objective function is
convex.

Property 2. The optimum of the unconstrained optimization problem can be found
for each ω, and so it’s indipendent from the probability distribution of the stochastic
variable.

These properties are shown for networks with parallel links but the results can
be generalized to arbitrary graphs.

Observation 5. Constraint functions of the optimization problem are in general
not convex , then the resulting optimization problem is neither convex or concave
and has also large dimensions. It becomes convex only on a network with two
parallel links and affine delay functions.

Observation 6. These properties greatly simplify the problem in case the con-
straints are not violated, because in this case then the optimum can be found by
solving a convex optimization problem ω by ω.
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Chapter 4

Information design with two
parallel links and affine
delay functions

In the next sections we find the optimal solutions of the optimization problem 2 on
a network with two parallel links and with affine delay functions in different set-
tings, because in this case the problem becomes convex and, as said in observation
6, optimum can be found ω per ω. First, considering a generic prior distribution
of the stochastic variables, then, going through the case with deterministic linear
coefficients and in the end, analysing the case with uniform prior disrtibution of
the stochastic variables.

4.1 Analysis with generic prior

The optimization problem is reformulated in the case in which there is a network
represented by a graph G = (V,E) with only two nodes V = {o, d} and only
two links E = {e1, e2} from the origin to the destination. As anticipated, in this
specific case delay functions on links are choosen as affine functions of flows on the
network and depends on two stochastic random vectors a, b that have a probabily
distribution that is generic, also joint, on a space Ω.

τ1 (a1, b1, f1) = b1 + a1f1

τ2 (a2, b2, f2) = b2 + a2f2

With this setting the policy function of the signal that the system sends to
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Information design with two parallel links and affine delay functions

Figure 4.1. Representation of a graph with source and destination nodes with
two links and affine delay functions.

users in order to reach an optimality for the network is:

π1 (a, b) = P (R = 1 | a, b)
π2 (a, b) = P (R = 2 | a, b)

and it is such that π1 (a, b) + π2 (a, b) = 1.

Then the optimization problem of information design 2 on a network with 2
links, affine stochastic delay functions and generic prior distribution becomes:

min
π1(a,b)

∫
Ω

[
a2 + b2 + (−2a2 + b1 − b2) π1 (a, b) + (a1 + a2) π1 (a, b)2

]
dP (a, b)

s.t.
∫

Ω

[
(−a2 + b1 − b2) π1 (a, b) + (a1 + a2) π1 (a, b)2

]
dP (a, b) ≤ 0∫

Ω

[
a2 + (b2 − b1) + (−a1 − 2a2 + b1 − b2) π1 (b) + (a1 + a2)π1 (a, b)2

]
dP (a, b) ≤ 0

(4.1)
Everything is expressed in terms of π1 (a, b) because π1 (a, b) + π2 (a, b) = 1, then
π2 (a, b) = 1− π1 (a, b).

Recall that this problem has an objective function that is convex as discussed
in the previous section. Moreover, the two inequality integral constraints that now
are also both convex, hence the problem can be defined as a convex optimization
problem. This observation gives us the guarantee that the necessary conditions
for optimality are also sufficient.
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4.1 – Analysis with generic prior

Lemma 2. The solution of the unconstrained optimzation problem 4.1 is:

π1 (a, b) =
[

2a2 − b1 + b2

2 (a1 + a2)

]1

0
(4.2)

π2 (a, b) =
[

2a1 + b1 − b2

2 (a1 + a2)

]1

0
(4.3)

Proof. Note that notions about the Lagrangian method and duality are needed, it
is possible to find details in the appendix A.
The solution of the uncostrained optimization problem can be found easily using
the lagrangian function:

L (π1 (a, b)) = a2 + b2 + (−2a2 + b1 − b2) π1 (a, b) + (a1 + a2) π2
1 (a, b) (4.4)

Fixing a particular value of a, b it is it possible to find the optimal value of the
lagrangian function deriving it and putting its derivative equal to zero:

∂L (π1 (a, b))
∂π1 (a, b) = 0 ⇐⇒ b1 − b2 − 2a2 + 2 (a1 + a2) π1 (a, b) = 0

This is true if and only if:

π1 (a, b) = 2a2 − b1 + b2

2 (a1 + a2) . (4.5)

Observe that π(a, b) is a feasible policy only for a, b such that 0 ≤ π(a, b) ≤ 1.
Since L (π1 (a, b)) is convex in π, if the stationary point is greater than 1, then
π = 1. If instead the stationary point is below 0, then π = 0.

Note that all depends on the difference between the b variables.

We call π (a, b) the solution of the optimization problem defined in Lemma
2, in contrast with π∗ (a, b) that is the solution of the constrained optimization
problem 4.1. Observe that if π (a, b) satisfies the obedience constraints in 4.1, then
π∗ (a, b) = π (a, b).

Moreover, we can define a Price of Anarchy in this setting, which is the ratio
between the system cost with optimal policy π∗ (a, b) and the optimal system cost
that can be achieved if a central planner can dictate the user choices, i.e., the
system cost with policy π (a, b).
Definition 6.

PoA =
∫

Ω [a2 + b2 + (−2a2 + b1 − b2) π1 (a, b) + (a1 + a2) π1
2 (a, b)] dP (a, b)∫

Ω [a2 + b2 + (−2a2 + b1 − b2) π∗1 (a, b) + (a1 + a2)π∗21 (a, b)] dP (a, b) .

(4.6)
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Information design with two parallel links and affine delay functions

The next result provides sufficient conditions for optimality, i.e., π∗ (a, b) =
π (a, b) and PoA=1. The idea is to find sufficient conditions under which π satisfies
the obedience constraints. To better formalize the result, let us define the notion
of support of a random variable.
Given a random variable X in Rn, its support is the set of values that the random
variable can take, i.e.,

supp{X} = {x ∈ Rn : P(B(x, ε)) > 0∀ε > 0},

where B(x, ε) is the open ball centered in x with radius ε.

Theorem 3. Consider problem 4.1. Assume that:max(supp{b1 − b2}) ≤ 2 min(supp{a2})
min(supp{b1 − b2}) ≥ −2 max(supp{a1})

(4.7)

holds. Then, the optimum is π∗ (a, b) = π (a, b) and PoA is equal to 1 if and only
if: 

E
[

2a2(b1−b2)−(b1−b2)2

(a1+a2)

]
≤ 0

E
[
−2a1(b1−b2)−(b1−b2)2

(a1+a2)

]
≤ 0 (4.8)

Proof. The idea of the proof is that under conditions 4.7 and 4.8, π does not
saturate and does not violate the obedience constraints. Plugging π1 (a, b) into the
first constraint of 4.1, it is violated when:∫

Ω

[
(−a2 + b1 − b2) [(2a2 − (b1 − b2))α] + (a1 + a2) [(2a2 − (b1 − b2))α]2

]
dP (a, b) > 0

which leads to:
E
[

2a2 (b1 − b2)− (b1 − b2)2

(a1 + a2)

]
> 0 (4.9)

Likewise the second constraint of 4.1 is violated when:∫
Ω
a2 − (b1 − b2) + (−a1 − 2a2 + b1 − b2) [(2a2 − (b1 − b2))α]

+ (a1 + a2) [(2a2 − (b1 − b2))α]2dP (a, b) > 0

which leads to:
E
[
−2a1 (b1 − b2)− (b1 − b2)2

(a1 + a2)

]
> 0 (4.10)

26



4.2 – Analysis with deterministic linear coefficients

Observation 7. Observe that if E [b1 − b2] = 0 and a, b are independent, then the
two constraints are always satisfied and optimality is thus achieved. Instead, this
is in general not true if a, b are correlated.

In the next sections, we shall apply Theorem 3 to some special cases. Moreover,
we shall consider what happens when optimality is not achieved.

4.2 Analysis with deterministic linear coefficients
The above optimization problem is reformulated in the particular case in which
there is a network represented by a graph G = (V,E) with only two nodes V =
{o, d} and only two links E = {e1, e2} from the origin to the destination. As
anticipated, affine delay functions on links are still choosen as affine functions of
flows on the network with the stochastic continuous vector b that has a probabily
distribution that is generic, on a space Ω, but with the vector of linear coefficients
a instead chosen deterministic and, without loss of generality, also positive:

τ1 (b1, f1) = b1 + a1f1

τ2 (b2, f2) = b2 + a2f2

Then the optimization problem of information design 4.1 on a network with
2 links, affine stochastic delay functions with deterministic linear coefficients and
generic prior distribution becomes:

min
π1(b)

∫
Ω

[
a2 + b2 + (−2a2 + b1 − b2) π1 (b) + (a1 + a2)π1 (b)2

]
dP (b)

s.t.
∫

Ω

[
(−a2 + b1 − b2) π1 (b) + (a1 + a2)π1 (b)2

]
dP (b) ≤ 0∫

Ω

[
a2 + (b2 − b1) + (−a1 − 2a2 + b1 − b2) π1 (b) + (a1 + a2) π1 (b)2

]
dP (b) ≤ 0

(4.11)

Theorem 4. Consider problem 4.11. Assume that:

supp{b1 − b2} ⊆ [−2a1, 2a2] (4.12)

holds. Then, the optimum is π∗1 (b) = π1 (b) and PoA is equal to 1 if and only if:E [b1 − b2] ≤ E[(b1−b2)2]
2a2

E [b1 − b2] ≥ −E[(b1−b2)2]
2a1

(4.13)
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Information design with two parallel links and affine delay functions

Proof. The theorem follows directly from theorem 3, considering that since a is
deterministic it can be taken out from the expected value in 4.13.

Observation 8. Is is interesting to establish a parallelism with the price of anarchy
in the deterministic setting, i.e., if b1 − b2 can take only 1 value. If b1 − b2 > 0,
then 4.13 and 4.12 state that optimality is achieved if b1 − b2 = 2a2. That means
π1 = 0, i.e. everyone is on link two. If instead b1 − b2 < 0, then 4.13 and 4.12
state that optimality is achieved if b1−b2 = 2a1. That means π1 = 1, i.e. everyone
is on link one. The conditions on moments is also satisfied if b1− b2 = 0. Putting
all together, Theorem 4 states that optimality can be reached in the deterministic
setting if the two links have equal free-flow delay or if the difference of the two
free-flow delays is so large that all users travel on the same link.
Theorem 4 states that uncertainty is beneficial for the system, i.e. it is possible to
achieve optimality, hence PoA=1, even if E [b1 − b2] /= 0. In particular the larger
is the variance E

[
(b1 − b2)2

]
− E [b1 − b2]2, the larger | E [b1 − b2] | can be.

Theorem 5. Consider problem 4.11 on a network with two parallel links and
stochastic affine delay functions with deterministic linear coefficients. Then:

1. if the following condition on moments holds:

−
E
[
(b1 − b2)2

]
2a1

≤ E [b1 − b2] ≤
E
[
(b1 − b2)2

]
2a2

and the condition on the support holds:

supp{b1 − b2} ⊆ [−2a1, 2a2]

then, none of the constraints is active, PoA=1 and the solution of the optimal
optimization problem is π∗ (b) = π (b);

2. if the following condition on moments holds:

E [b1 − b2] >
E
[
(b1 − b2)2

]
2a2

and the condition on the support holds:

supp(ω1 − ω2) ⊆
[
−2a1 − a2 +

√
k, a2 +

√
k
]
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4.2 – Analysis with deterministic linear coefficients

where k = a2
2 − 2a2E [b1 − b2] + E

[
(b1 − b2)2

]
,

then, first constraint is active and second one is not,

PoA = 1 + 1
2

[
a2 −

√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]]2

2a1a2 + 2 (a1 + a2)E [b2] + 2a2E [b1 − b2]− 1
2E
[
(b1 − b2)2

]
and the solution of the optimal optimization problem is

π∗1 (b) =

√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a2 − (b1 − b2)]

2 (a1 + a2) ;

3. if the following condition on moments holds:

E [b1 − b2] < −
E
[
(b1 − b2)2

]
2a1

and the condition on the support holds:

supp(ω1 − ω2) ⊆
[
−a1 −

√
k, a1 + 2a2 −

√
k
]

(4.14)

where k = a2
1 + 2a1E [b1 − b2] + E

[
(b1 − b2)2

]
,

then, second constraint is active and first one is not,

PoA = 1 + 1
2

[
a1 −

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]]2

2a1a2 + 2 (a1 + a2)E [b2] + 2a2E [b1 − b2]− 1
2E
[
(b1 − b2)2

]
and the solution of the optimal optimization problem is

π∗1 (b) =

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a1 + 2a2 − (b1 − b2)]

2 (a1 + a2) .

Proof. Optimal solution

Case 1 follows directly from theorem 4.

In the second and third case notions about the Lagrangian method and duality
are needed again, see A for details.
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Information design with two parallel links and affine delay functions

In case 2, when the first constraint is violated and the second one is satisfied,
i.e.

E [b1 − b2] >
E
[
(b1 − b2)2

]
2a2

(4.15)

it is necessary to include this constraint in the lagrangian function as well with a
lagragian multiplier λ and then it is necessary to find its optimum again as follows:

L (π1 (b) , λ) = a2 + b2 + (−2a2 + b1 − b2) π1 (b) + (a1 + a2) π1 (b)2

+λ
[
(−a2 + b1 − b2) π1 (b) + (a1 + a2) π1 (b)2

]
∂L (π1 (b) , λ)

∂π1 (b) = 0 ⇐⇒ (1 + λ) b1−(1 + λ) b2−(2 + λ) a2+2 (1 + λ) (a1 + a2) π1 (b) = 0

π1 (b, λ) =
[

(1 + λ) a2 + a2 − (1 + λ) (b1 − b2)
2 (1 + λ) (a1 + a2)

]1

0
(4.16)

Again to better manipulate this solution the change of variable α := 2 (a1 + a2) is
made and the policy therefore becomes:

π1 (b, λ) =
[
α

(
a2

(1 + λ) + a2 − (b1 − b2)
)]1

0

Let assume that 4.16 does not saturate in [0,1]2.

In order to find the value for the lagrangian multiplier λ it is necessary to solve
the dual problem or equivalently solve the first constraint as an equality. This is
due to the fact that if the first constraint is violated then this means that it is
active and so it is satisfied at equality. It also follows from this that if the first
constraint is active then its lagrangian multiplier needs to be strictly different from
zero due to the complementary slackness condition. Then the optimal value of the
lagrangian multiplier is λ∗ > 0 such that:∫

Ω
(−a2 + b1 − b2)π1 (b1, b2, λ) + απ1 (b1, b2, λ)2dP (b) = 0

With the policy just found above:
∫

Ω
(−a2 + (b1 − b2))α

(
a2

(1 + λ) + a2 − (b1 − b2)
)

+

(a1 + a2)
α( a2

(1 + λ) + a2 − (b1 − b2)
)2
 dP (b) = 0
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4.2 – Analysis with deterministic linear coefficients

By some computations the result is:

(1 + λ∗)2 = a2
2

a2
2 − 2a2E [b1 − b2] + E

[
(b1 − b2)2

]
Note that it is possible to demonstrate that λ is well defined because the denomi-
nator is greater than a2

2 − 2a2E [b1 − b2] + E [b1 − b2]2 = (a2
2 − E [b1 − b2])2 that is

greater than 0. The policy then becomes:

π1 (b) =

√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a2 − (b1 − b2)]

2 (a1 + a2) (4.17)

taking just the positive sqaured root because of the constraint λ∗ > 0. Considering

then the boundaries on the policy π (b) ∈ [0,1]2 it follows that:

π1 (b) =


√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a2 − (b1 − b2)]

2 (a1 + a2)


1

0

π2 (b) =

 [2a1 + a2 + (b1 − b2)]−
√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]
2 (a1 + a2)


1

0

The conditions for having no saturation of the policy are:

π1 (b) ≥ 0 ⇐⇒ max(supp{b1 − b2}) ≤ a2 +
√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]
π1 (b) ≤ 1 ⇐⇒ min(supp{b1 − b2}) ≥ −2a1 − a2 +

√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]

Then this new policy does not saturate exactly in the support:

supp(ω1 − ω2) ⊆
[
−2a1 − a2 +

√
k, a2 +

√
k
]

(4.18)

where k = a2
2 − 2a2E [b1 − b2] + E

[
(b1 − b2)2

]
.

Now it is sure that the first constraint is satisfied by construction. Now we have
to make sure that the second constraint is also satisfied. The second constraint is
satisfied if:∫

Ω

[
a2 + (b2 − b1) + (−a1 − 2a2 + b1 − b2)π1 (b) + (a1 + a2) π1 (b)2

]
dP (b) ≤ 0
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Information design with two parallel links and affine delay functions

with the policy just found including the first constraint:

π1 (b) =

√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a2 − (b1 − b2)]

2 (a1 + a2)

By computation:

E [b1 − b2] ≥ a2 −
√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]
that is:

E
[
(b1 − b2)2

]
− E [b1 − b2]2 ≥ 0

the first member of this inequality is the variance of b1− b2 that is always positive
independently from the distribution of b1 − b2 and so the second constraint is still
always respected.

Therefore it is possibile to conclude that since π (b) satisfies both the first and
the second constraint of 4.11 and it is a minimum of the Lagrangian function and
since the problem is convex, then it is the optimal solution when the condition on
the support 4.18 holds.

Going through the case 3, when the second constraint is violated and the first
one is satisfied, i.e.

E [b1 − b2] <
−E

[
(b1 − b2)2

]
2a1

(4.19)

it is necessary to include that constraint in the lagrangian function as well with a
lagragian multiplier λ and then it is necessary to find its optimum again as follows:

L (π1 (b) , λ) = a2 + b2 + (−2a2 + b1 − b2) π1 (b) + (−a1 + a2) π1 (b)2

+λ
[
a2 + (b2 − b1) + (−a1 − 2a2 + b1 − b2) π1 (b) + (a1 + a2)π1 (b)2

]
∂L (π1 (b) , λ)

∂π1 (b) = 0 ⇐⇒

(1 + λ) b1 − (1 + λ) b2 + λa1 − 2 (1 + λ) a2 + 2 (1 + λ) (a1 + a2) π1 (b) = 0

π1 (b, λ) =
[
λa1 + 2 (1 + λ) a2 − (1 + λ) (b1 − b2)

2 (1 + λ) (a1 + a2)

]1

0
. (4.20)

Again to better manipulate this solution the changes of variable α := 2 (a1 + a2)
is made and the policy therefore becomes:

π1 (b, λ) =
[
α

(
λa1

(1 + λ) + 2a2 − (b1 − b2)
)]1

0
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4.2 – Analysis with deterministic linear coefficients

Let assume that 4.20 does not saturate in [0,1]2.

In order to find the value for the lagrangian mutliplier λ it is necessary to solve
the dual problem or equivalently solve the second constraint as a equality. This is
due to the fact that if the second constraint is violated then this means that it is
active and so it is satisfied at equality. It also follows from this that if the second
constraint is active then its lagrangian multiplier needs to be strictly different from
zero due to the complementary slackness condition. Then the optimal value of the
lagrangian multiplier is λ∗ > 0 such that:∫

Ω
a2 − x+ (a1 − 2a2 + (b1 − b2))π1 (b1, b2, λ) + (a1 + a2) π1 (b1, b2, λ)2dP (b) = 0

With the policy just found above:∫
Ω
a2 − (b1 − b2) + (a1 − 2a2 + (b1 − b2))α

(
λa1

(1 + λ) + 2a2 − b1, b2

)
+

(a1 + a2)
[
(α
(

λa1

(1 + λ) + 2a2 − (b1 − b2)
)]2

dP (b) = 0

By some computations the result is:

(1 + λ∗)2 = a2
1

a2
1 + 2a1E [b1 − b2] + E

[
(b1 − b2)2

] (4.21)

Note that it is possible to demonstrate that λ is well defined because the denomi-
nator is greater than a2

2 − 2a2E [b1 − b2] + E [b1 − b2]2 = (a2
2 − E [b1 − b2])2 that is

greater than 0. The policy becomes:

π1 (b) =

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a1 + 2a2 − (b1 − b2)]

2 (a1 + a2) (4.22)

taking just the positive sqaured root because of the constraint λ∗ > 0. Considering

then the boundaries on the policy π (b, λ) ∈ [0,1]2 it follows that:

π1 (b) =


√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a1 + 2a2 − (b1 − b2)]

2 (a1 + a2)


1

0

π2 (b) =

 [a1 + (b1 − b2)]−
√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
2 (a1 + a2)


1

0
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The condition for having no saturation of the policy are:

π1 (b) ≥ 0 ⇐⇒ max(supp{ω1 − ω2}) ≤ a1 + 2a2 −
√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
π1 (b) ≤ 1 ⇐⇒ min(supp{ω1 − ω2}) ≥ −a1 −

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]

Then this new policy does not saturate exactly in the support:

supp(ω1 − ω2) ⊆
[
−a1 −

√
k, a1 + 2a2 −

√
k
]

(4.23)

where k = a2
1 + 2a1E [b1 − b2] + E

[
(b1 − b2)2

]
.

Now it is sure that the second constraint is satisfied by construction. Now we
have to make sure that the first constraint is also satisfied. The first constraint is
satisfied if: ∫

Ω

[
(−a2 + b1 − b2) π1 (b) + (a1 + a2)π1 (b)2

]
dP (b) ≤ 0

with the policy just found including the second constraint:

π1 (b) =

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a1 + 2a2 − (b1 − b2)]

2 (a1 + a2)

By computation:

E [b1 − b2] ≤ a1 +
√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
that is:

E
[
(b1 − b2)2

]
− E [b1 − b2]2 ≥ 0

the first member of this inequality is the variance of b1− b2 that is always positive
independently from the distribution of b1 − b2 and so the first constraint is still
always respected.

Therefore it is possibile to conclude that since π (b) satisfies both the first and
the second constraint of 4.11 and it is a minimum of the Lagrangian function and
since the problem is convex, then it is the optimal solution when the condition on
the support 4.23 holds.

Value of the price of anarchy
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4.2 – Analysis with deterministic linear coefficients

The system cost is the value of the objective function calculated with an optimal
value, i.e.:∫

Ω

[
a2 + b2 + (−2a2 + b1 − b2)π∗1 (b) + (a1 + a2) π∗1 (b)2

]
dP (b)

• using the social optimum, i.e,:

π∗1 (b) = 2a2 − (b1 − b2)
2 (a1 + a2)

the delay becomes:

C∗SO = α{2a1a2 + 2 (a1 + a2)E [b2] + 2a2E [b1 − b2]− 1
2E

[
(b1 − b2)2

]
}

• instead if the first constraint is violated, with the derived policy, i.e.:

π1 (b) =

√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a2 − (b1 − b2)]

2 (a1 + a2)

the cost becomes:
C∗UO1 = α{2a1a2 + 2a2

2 + 2 (a1 + a2)E [b2]

− a2

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ a2E [b1 − b2]}

• in the end if the second constraint is violated, with the derived policy, i.e.:

π1 (b) =
−
√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ [a1 + 2a2 − (b1 − b2)]

2 (a1 + a2)

the cost becomes:
C∗UO2 = α{2a1a2 + 2a2

1 + 2 (a1 + a2)E [b2]

− a1

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ a2E [b1 − b2]}

In conclusion, the price of anarchy in case of first or second constraints violation
are:

PoA1 = CUO1

CSO

=
2a1a2 + 2a2

2 + 2 (a1 + a2)E [b2]− a2

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ a2E [b1 − b2]

2a1a2 + 2 (a1 + a2)E [b2] + 2a2E [b1 − b2]− 1
2E
[
(b1 − b2)2

]
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Information design with two parallel links and affine delay functions

⇒ PoA1 = 1 + 1
2

[
a2 −

√
a2

2 − 2a2E [b1 − b2] + E
[
(b1 − b2)2

]]2

2a1a2 + 2 (a1 + a2)E [b2] + 2a2E [b1 − b2]− 1
2E
[
(b1 − b2)2

]
(4.24)

and:
PoA2 = CUO2

CSO

=
2a1a2 + 2a2

1 + 2 (a1 + a2)E [b2]− a1

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]
+ a2E [b1 − b2]

2a1a2 + 2 (a1 + a2)E [b2] + 2a2E [b1 − b2]− 1
2E
[
(b1 − b2)2

]

⇒ PoA1 = 1 + 1
2

[
a1 −

√
a2

1 + 2a1E [b1 − b2] + E
[
(b1 − b2)2

]]2

2a1a2 + 2 (a1 + a2)E [b2] + 2a2E [b1 − b2]− 1
2E
[
(b1 − b2)2

]
(4.25)

Observation 9. In conclusion, observe that in the binary network with affine
delay functions and generic prior (with deterministic linear coefficients) it’s not
possibile to violate both the constraints together if the condition on the support 4.12
holds.

4.3 Analysis with uniform prior
So far, all our theoretical results rely on an assumption on the support of random
vectors a, b that guarantees that under the optimal policy there exists a non-zero
flow on both the roads. This assumptions indeed allow to state sufficient and
necessary conditions in terms of moments of the random variables that character-
ize whether the obedience constraints are active or inactive. In the next section
we shall consider a case-study that allows explicit computation even relaxing the
assumption on the support.

In this section we consider the same setting of Section 4.2, with the additional
assumption that the prior of b is uniform in [0,1]2, i.e. we assume

dP (b1, b2) =
1 if b1, b2 ∈ [0,1]2

0 otherwise.
(4.26)

About a, we only assume that those coefficients are non-negative.
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4.3 – Analysis with uniform prior

The optimization problem of information design 2 on a network with 2 links
and affine stochastic delay functions and uniform prior becomes:

min
π1(b)

∫
[0,1]2

[
a2 + b2 + (−2a2 + b1 − b2) π1 (b) + (a1 + a2)π1 (b)2

]
db

s.t.
∫

[0,1]2

[
(−a2 + b1 − b2) π1 (b) + (a1 + a2)π1 (b)2

]
db ≤ 0∫

[0,1]2

[
a2 + (b2 − b1) + (−a1 − 2a2 + b1 − b2) π1 (b) + (a1 + a2) π1 (b)2

]
db ≤ 0
(4.27)

Theorem 6. Consider a network with two parallel links and stochastic affine de-
lay functions and uniform prior distribution as in 4.26 with deterministic linear
coefficients. Then, PoA=1 for every a ∈ R2

+ and

π∗1 (b) =
[

2a2 − b1 + b2

2 (a1 + a2)

]1

0
. (4.28)

Proof. To better manipulate this solution and be able to use it more easily in
subsequent calculations, a change of variable is made. Consider the two random
variables b1 and b2 together and give the name of x to their difference, i.e. x :=
b1 − b2. Also consider their sum that is the variable y := b1 + b2. Moreover call
α := 1

2(a1+a2) . This change of variable produces a jacobian that has determinant
equal to 1

2 .

Observation 10. The change of variable means that the integration no longer
takes place on the horizontal and vertical axes of the graphic formed by the values
of b1 and b2 between 0 and 1, but instead integrates on the diagonal lines x = b1−b2.
If x > 0 the integration line is located in the upper triangle of the graphic and grows
until it reaches a saturation zone in which π1 (b) is zero, i.e. b1 >> b2 therefore it is
not convenient for a user to choose route 1. Vice versa if x > 0 the integration line
is located in the lower half of the graphic and descends until it reaches a saturation
zone in which π1 (b) is equal to 1, in fact b1 << b2 therefore it is always convenient
for a user to choose route 1.

Consider now a general form of the policy, solution of the optimization problem,
and apply the change of variable shown above:

π1 (b) = β − α (b1 − b2)⇒ π1 (x) = β − αx
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Information design with two parallel links and affine delay functions

Figure 4.2. Representation of the space of the variables b1 and b2.

with the property that β = kα that comes from the structure of the policy found
before. This general policy saturates between 0 and 1 and so it happens that the
optimal solution in b1 and b2 is:

π1 (b) =


0 b1 − b2 ≥ β

α

β − α (b1 − b2) β−1
α

< b1 − b2 <
β
α

0 b1 − b2 ≤ β−1
α

(4.29)

therefore in the new variable x it is:

π1 (x) =


0 x ≥ β

α

β − αx β−1
α

< x < β
α

0 x ≤ β−1
α

(4.30)

We can split the integration in three areas as shown in figure 4.2 , the first one
is the upper triangle T1 where π1 saturates at 1, the lower triangle T2 where π1
saturates at 0 and the central area R where it has the explicit form π1 (x) = β−αx.
These three parts are divided by the two straight lines b1−b2 = β

α
and b1−b2 = β−1

α
.

We assume a1 ≤ a2 without loss of generality.

For every function f(x), the integral can be written as:∫
T1
f(x)dxdy +

∫
R
f(x)dxdy +

∫
T2
f(x)dxdy.
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4.3 – Analysis with uniform prior

It can be shown that the integration on the upper triangle T1 of a function that
depends on b1 − b2 using the change of variable x := b1 − b2 and y := b1 + b2 is:∫

T1
f (b1 − b2) db1db2 = 1

2

∫ β−1
α

−1

∫ x+2

−x
f(x)dydx

Also it can be shown that the integration on the upper triangle T2 of a function
that depends on b1 − b2 using the change of variable x := b1 − b2 and y := b1 + b2
is: ∫

T2
f (b1 − b2) db1db2 = 1

2

∫ 1

β
α

∫ −x+2

x
f(x)dydx

Consequently, it can be shown that the integration on the central area R of a
function that depends on b1 − b2 using the change of variable x := b1 − b2 and
y := b1 + b2 is symmetric and so it is possibile to integrate only on the first half
and then multiply everything by two:∫
R
f (b1 − b2) db1db2 =

∫ 1−β
α

0

∫ +y

−y
f(x)dxdy+

∫ β
α

1−β
α

∫ +y

β−1
α

f(x)dxdy+
∫ 1

β
α

∫ β
α

β−1
α

f(x)dxdy

In the end the integral of a function f(x) is:∫
[0,1]2

f (b1 − b2) db1db2 =1
2

∫ β−1
α

−1

∫ x+2

−x
f(x)dydx+ 1

2

∫ 1

β
α

∫ x+2

x
f(x)dydx+

∫ 1−β
α

0

∫ +y

−y
f(x)dxdy +

∫ β
α

1−β
α

∫ +y

β−1
α

f(x)dxdy +
∫ 1

β
α

∫ β
α

β−1
α

f(x)dxdy

The first constraint is the integral of the following function:

g (b1 − b2) = (−a2 + b1 − b2)π1 (b) + (a1 + a2) π1 (b)2

and the second constraint is the integral of the following function:

h (b1 − b2) = (a2 − b1 + b2) + (−a1 − 2a2 + +b1 − b2) π1 (b) + (a1 + a2) π1 (b)2

considering the generic policy 4.30 found above and its constraint of saturation
between 0 and 1, i.e.: Then, the first constraint function g(x), divided in the three
areas of the graphic is:

gR (x) = (−a2 + x) [β − αx] + 1
2α [β − αx]2

= −a2β + β22α + a2αx−
1
2αx

2

gT1 (x) = a1 + x

gT2 (x) = 0
39
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Right away, the second constraint function h(x), divided in the three areas of the
graphic is:

hR (x) = (a2 − x) + (−a1 − 2a2 + x) [β − αx] + 1
2α [β − αx]2

= a2 − (a1 + 2a2) β + β22α + (a1 + 2a2)αx− 1
2αx

2

hT1 (x) = 0
hT2 (x) = a2 − x

Three different cases need to be studied:

1. when there’s both the upper and the lower saturation, that is when β−1
α

> −1
and β

α
< 1;

2. when there’s only the upper saturation, that is when β−1
α

> −1 and β
α
≥ 1;

3. when there’s no saturation, that is when β−1
α
≤ −1 and β

α
≥ 1;

In the first case of both upper and lower saturation it turns out that the first
constraint is violated when:

1
2

∫ β−1
α

−1

∫ x+2

−x
a1 + xdydx+∫ 1−β

α

0

∫ +y

−y
−a2β + β2

2α + a2αx−
1
2αx

2dxdy+
∫ β

α

1−β
α

∫ +y

β−1
α

−a2β + β2

2α + a2αx−
1
2αx

2dxdy+
∫ 1

β
α

∫ β
α

β−1
α

−a2β + β2

2α + a2αx−
1
2αx

2dxdy+

1
2

∫ 1

β
α

∫ −x+2

x
0dydx > 0,

using the property for which β = kα the inequality becomes:
1
6 (−1 + α + αk)2 [−2 + α (−1 + 2k + 3a1)] +
1
12 (αk − 1)2

[
α2k (5k − 12a2) + 2αk − 1

]
−

1
24 (2αk − 1)

[
8α3k2 (k − 2a2)− 4α2k (k − 4a2) + α (8a2 − 14k) + 5

]
−

1
6α (k − 1) [3α (k − a2)− 1] > 0.
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4.3 – Analysis with uniform prior

With the policy unconstrained 4.28 k = 2a2 and so the condition for having both
upper and lower saturations is a1 <

1
2 and a2 <

1
2 . Moreover, using this relationship

the first constraint is violated when:

2a4
1 − 2a4

2 − 4a3
1 + 2a3

2 + 4a3
1a2 + 3a2

1 − 6a2
1a2 − a1 − a2 + 3a1a2 > 0. (4.31)

It is possible to show that 4.31 is never verified, i.e. the constraint is satisfied as
illustrated in figure 4.3.

Figure 4.3. Plot of 4.31 in the domain [0,1]2.

Always in the case of both upper and lower saturations, the second constraint
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Information design with two parallel links and affine delay functions

is violated when:

1
2

∫ β−1
α

−1

∫ x+2

−x
0dydx+∫ 1−β

α

0

∫ +y

−y
a2 − (a1 + 2a2) β + β2

2α + (a1 + 2a2)αx− 1
2αx

2dxdy+
∫ β

α

1−β
α

∫ +y

β−1
α

a2 − (a1 + 2a2) β + β2

2α + (a1 + 2a2)αx− 1
2αx

2dxdy+
∫ 1

β
α

∫ β
α

β−1
α

a2 − (a1 + 2a2) β + β2

2α + (a1 + 2a2)αx− 1
2αx

2dxdy+

1
2

∫ 1

β
α

∫ −x+2

x
a2 − xdydx > 0,

using the property for which β = kα the inequality becomes:

1
12 (αk − 1)2 {α2k [5k − 12 (a1 + 2a2)] + 2α (k + 6a2)− 1}+
1
12 (2αk − 1) {α3

[
−4k3 + 4k2 (a1 + 2a2)

]
+ α2

[
k2 − 4k (a1 + 2a2)

]
+ α [6k − 8a1 − 4a2]− 3}−

1
6α (k − 1) [3α (k + a1)− 2] +
1
6α

3 (k − 1)2 [2k − 3a2 + 1] > 0.

With the unconstrained policy 4.28 k = 2a2 and so the condition for having both
upper and lower saturations is a1 <

1
2 and a2 <

1
2 . Moreover, using this relationship

the second constraint is violated when:

−2a4
1 + 2a4

2 + 2a3
1 − 4a3

2 + 4a1a
3
2 + 3a2

2 − 6a1a
2
2 − a1 − a2 + 3a1a2 > 0. (4.32)

It is possible to show that 4.32 is never verified, i.e. the constraint is satisfied as
illustrated in figure 4.4.

In the second case of only upper saturation it turns out that the first constraint
is violated when:

1
2

∫ β−1
α

−1

∫ x+2

−x
a1 + xdydx+∫ 1−β

α

0

∫ +y

−y
−a2β + β2

2α + a2αx−
1
2αx

2dxdy+∫ 1

1−β
α

∫ +y

β−1
α

−a2β + β2

2α + a2αx−
1
2αx

2dxdy > 0
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4.3 – Analysis with uniform prior

Figure 4.4. Plot of 4.32 in the domain [0,1]2.

usign the property for which β = kα the inequality becomes:

1
6 (−1 + α + αk)2 [−2 + α (−1 + 2k + 3a1)] +
1
12 (αk − 1)2

[
α2k (5k − 12a2) + 2αk − 1

]
−

1
24 (αk + α− 1) {α3

[
13k3 − k2 (28a2 + 5) + k (16a2 − 1)− 4a2 + 1

]
+

α2
[
−3k2 + k (20a2 − 2)− 4a2 + 1

]
+ α [−15k + 8a2 + 1] + 5} > 0

Again with the unconstrained policy 4.28 k = 2a2 and so the condition for having
only upper saturation is that a1 <

1
2 and a2 ≥ 1

2 . Moreover using this relationship
the first constraint is violated when:

4a4
1 − 8a3

1 + 8a3
1a2 + 6a2

1 − 12a2
1a2 − 2a1 − a2 + 6a1a2 −

1
4 > 0 (4.33)

This inequality is solved analitically and it is possibile to prove that it is equivalent
to the following relationship:

a2 <
−4a4

1 + 8a3
1 − 6a2

1 + 2a1 + 1
4

(2a1 − 1)3 (4.34)
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but since a1 <
1
2 than the second member of the inequality is always negative and

because a2 ≥ 1
2 then also in this case the first constraint is never violated.

In the second case of only upper saturation it turns out that the second con-
straint is violated when:∫ 1−β

α

0

∫ +y

−y
a2 − (a1 + 2a2) β + β2

2α + (a1 + 2a2)αx− 1
2αx

2dxdy+∫ 1

1−β
α

∫ +y

β−1
α

a2 − (a1 + 2a2) β + β2

2α + (a1 + 2a2)αx− 1
2αx

2dxdy > 0

usign the property for which β = kα the inequality becomes:

1
12 (αk − 1)2 {α2k [5k − 12 (a1 + 2a2)] + 2α (k + 6a2)− 1}−
1
24 (αk + α− 1) {α3

[
−3k3 + k2 (8a1 + 24a2 + 17) + k (20 (a1 + 2a2) + 5) + 16 (a1 + 2a2) + 1

]
+

α2
[
k2 + k (8a1 − 100a2 − 13)− 20a1 − 52a2 − 6

]
+ α [3k − 16a1 + 156a2 − 2]− 5} > 0

Again with the policy unconstrained 4.28 k = 2a2 and so the condition for having
only upper saturation is that a1 <

1
2 and a2 ≥ 1

2 . Moreover using this relationship
the second constraint is violated when:

−4a4
1 + 4a3

1 − a1 −
1
4 > 0 (4.35)

This inequality is solved analitically and it possibile to prove that since a1 <
1
2

then the inequality is always negative and also in this case the second constraint
is never violated.

In case of no saturation it turns out that the first constraint is violated when:∫ 1

0

∫ +y

−y
−a2β + β2

2α + a2αx−
1
2αx

2dxdy > 0

usign the property for which β = kα the inequality becomes:(
k2 − 2a2k −

1
6

)
α > 0

With the policy unconstrained 4.28 k = 2a2 and so the condition for having only
upper saturation is that a1 ≥ 1

2 and a2 ≥ 1
2 . Moreover, using this relationship the

first constraint is violated when:

−1
6

2 (a1 + a2) > 0 (4.36)
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4.3 – Analysis with uniform prior

This inequality is clearly always negative than also in this case the first constraint
is never violated.

In case of no saturation it turns out that the second constraint is violated when:∫ 1

0

∫ +y

−y
a2 − (a1 + 2a2) β + β2

2α + (a1 + 2a2)αx− 1
2αx

2dxdy > 0

usign the property for which β = kα the inequality becomes:[
k2 − 2 (a1 + 2a2) k − 1

6

]
α + 2a2α > 0

With the policy unconstrained 4.28 k = 2a2 and so the condition for having only
upper saturation is that a1 ≥ 1

2 and a2 ≥ 1
2 . Moreover, using this relationship the

first constraint is violated when:

−1
6

2 (a1 + a2) > 0 (4.37)

This inequality is clearly always negative than also in this case the second con-
straint is never violated.

In conclusion in the third case, when there is no saturation the condition of
constraints satisfaction is always true and so this is the case of theorem 3, that
says that with these assumptions the optimum is the system optimum π∗ (b) and
the price of anarchy is always 1.

Observation 11. To sum up when the model is a network with two parallel links
and affine delay functions and prior of the stochastic variable b with uniform distri-
bution then it has been shown that it is possibile to find the unconstrained optimum
for each value of b1 and b2 and it coincide with the social optimum π∗(b).Then it
has been proved that even if the policy saturates above and below, or it has only
upper saturation or in the end it has no saturations then constraints are never
violated. This means that in this particular case users optima always coincide with
social optimum and the price of anarchy is always 1.
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Chapter 5

Conclusions

This thesis analyses Information design in Bayesian routing games. The problem
investigates how a central planner that knows the stochastic state of the network
should provide information to the users in order to influence their routing be-
havior, possibly leading it towards a system optimum and respecting obedience
constraints. The results are focused on private signaling, with a common knowl-
edge on the prior distribution of the state of the network and on the information
policy.

We show that the problem is convex if the network is with two parallel links and
the delay functions are affine. We find sufficient conditions on the support of the
state of the world parameters of the delay functions and necessary and sufficient
conditions on their moments under which the price of anarchy is minimized. We
observe that a large variance of the state of the world is beneficial for the system
cost under the optimal policy. We study the structure of the optimal policy when
the price of anarchy is strictly larger than 1, that is when the obedience constraints
are not satisfied under the optimal policy that minimizes the objective function
without considering the constraints. Moreover, we show that it is not possible
under the optimal policy that all the users that receive different recommendations
are incentivized in deviating at the same time.

5.1 Future Researches
Future researches related to the work carried out in this thesis are naturally efforts
to generalize the results obtained and attempts to expand as much as possible the
problems that can be studied and solved.

In particular it would be interesting to go into details of the non convex opti-
mization problem, i.e. the problem in which costraints functions are not convex
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while instead the objective function can still be convex (since it is convex with the
weak hypotesis of convex cost functions). This setting should contain:

• finding the uncostrained optimum solving for each value of the random vari-
ables the convex objective function;

• searching for conditions in which constraints are not violated and so for which
the price of anarchy is still equal to 1.

An other direction could be studying what happens when there is a fraction of
users of the network that do no receive suggestions from the planner. The behavior
of this fraction of population would be to observe the paths taken from users that
have received suggestions and choose their own actions just following the principle
of the Wardrop equilibrium.

Note then that there is the following ranking between these different settings
of an Information design problem, from the best to the worst one:

1. flow imposed by the system according to its optimal policy without allowing
users to choose;

2. optimal flow both for the system and also for users because it takes into
account the constraints;

3. flow proposed by the system according to its optimal policy without consid-
ering constraints, but then leaving users who do not obey to look for their
own Wardrop optimum.

If the optimum satisfies constraints, then all this situations are equivalent, in
general they are not. Connecting with this, an important research shoud be in-
vestigating the behavior of users in the third case, when a policy is implemented
regardless of the constraints of optimality for users. As already seen, there are
two scenarios: if the constraints are respected by this policy then it is already
the optimal, if instead the constraints are violated users are looking for Wardrop
equilibrium. The goal could be to understand how suboptimal this third situation
is with respect to the first and the second one.

Moreover, in order to generalize and validate the obtained results more cases
should be analysed:

• with different probability distributions of the prior and with other specific
cost functions,

• with different settings of the network or with dynamical environment,
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• with multiple senders.

As the problem becomes more general and complex, it may be useful to conduct
numerical analysis of the model.
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Appendix A

Appendix

A.1 Lagrangian method and duality
[5] The standard form of an optimization problem is:

p∗ = min
x∈Rn

f (x) (A.1)

subj. to gi (x) ≤ 0 ∀i = 1, ..., p (A.2)
and hi (x) = 0 ∀i = 1, ..., q (A.3)

where f is the objective function and g and h are respectively the inequality and
equality constraints.

Observation 12. Note that an optimization problem is defined as convex if the
objective and the inequality constraints are convex functions and the equality con-
straints are affine functions. Convex optimization are a small set of optimization
problems, but of enormous importance and have the fundamental property for which
each local optimum is always also a global optimum for them.

A lagrangian function is defined as:

L (x, λ, µ) = f (x) +
p∑
i=1

λigi (x) +
q∑
i=1

µihi (x) (A.4)

where λ and µ are variable called lagrangian mulpliers and are used to add a
penalty term proportional to constraints to the objective function.

The objective now is to otpimize the lagrangian function in order to find the
optimum of the primal optimization problem. First, it is possible to take the lower
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extreme of the lagrangian function with respect to variable x and the resulting
function is called lagrange dual function:

g (λ, µ) = inf
x∈Rn

L (x, λ, µ) (A.5)

It follows that g (λ, µ) is always lower or equal than p∗. Second, it is necessary
to find the best possible of this lower extreme and this is done calculating the
following dual problem:

d∗ = max
λ≥0,µ

g (λ, µ) (A.6)

Now there are two possible situations:
• it is always true that d∗ ≤ p∗ ⇒ weak duality holds;

• instead if the primal problem is convex and other constraints qualification
properties subists, then d∗ = p∗ ⇒ strong duality holds.

An example of properties that guarantee strong duality is Slater’s condition:
in a convex problem if the first k ≤ p function of the inequality constraints are

affine and there exists a pont x such that:
gi (x) ≤ 0 ∀i = 1 : k
gi (x) < 0 ∀i = k + 1 : p
hi (x) = 0 ∀i = 1 : q

then the optimum of the primal problem concides with the optimum of the dual
problem.

To sum up the dual property is:
Lemma 7. The primal problem can be rewritten as: p∗ = minx∈Rn maxλ≥0,µ L (x, λ, µ),
the dual problem can be written as: d∗ = maxλ≥0,µ minx∈Rn L (x, λ, µ),
then, if weak duality holds: minx∈Rn maxλ≥0,µ L ≥ maxλ≥0,µ minx∈Rn L
instead, if strong duality holds: minx∈Rn maxλ≥0,µ L = maxλ≥0,µ minx∈Rn L.

From this theory follows the Karush-Kuhn-Tucker conditions that charac-
terize optimality for a generic primal problem:

∇f (x) = 0
h (x) = 0

λ ≥ 0
λifi (x) = 0 ∀i = i : m
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A.1 – Lagrangian method and duality

where the last condition is called complementary slackness condition.
This condition implies that if an inequality constraint is strictly lower than zero
this means that the optimum point is in the intern of the boundary and that this
constraint is not a problem for the optimization and can be not included in the
lagrangian function. To do that then the lagrangian mutliplier asscociated to it it’s
set uqual to zero. This kind of constraint are called inactive. On the contrary, if
the optimum satisfies an inequality constraint on the boundary, i.e. the inequality
constraint is solved as an equality and must be included in the lagragian function
with a lagrangian mutliplier strinctly bigger than zero. This kind of constraint is
called active.
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