
POLITECNICO DI TORINO

Master Course
in Mathematical Engineering

Master Thesis

Independent and Sequential Ensemble Methods
for Anomaly Detection

Supervisor Candidate
Prof. Gianluca MASTRANTONIO Maria Sebastiana DI BLASI
Company tutor
Ing. Francesco SARACCO

Accademic Year 2022-2023

To my family,
anchor of my life!

Summary

Anomaly detection problems are particularly important in various real-word contest such
as fraud detection, finance, intrusion detection and cyber-security. Several methods that
are presented for outlier detection work well in peculiar fields but fail if they do not meet
some characteristics. We develop algorithms that can be applied in a several areas and
can help in solving many real problems.

In this work we focus on ensemble methods for anomaly detection in static dataset
to show that combining different base learners we achieve better performances than most
of the base algorithms. Before analyzing the different combinations, i.e. the ensemble
strategies, we present some base algorithms being the basic components of such meth-
ods. We present and analyze different ways to combine the different base learners such
as the score averaging method, the maximum score combination, the averaging ranking
approach and majority voting. The ensemble methods are classified in independent and
sequential. In the independent ensemble methods, the base learners, that are assumed to
be independent of each other, are applied to the entire dataset and the obtained scores are
combined using one of the methods mentioned above. In the sequential ensemble meth-
ods the base learners are applied sequentially and every other data in the base learner is
having some dependency on previous data. We report and discuss the results obtained
from the implemented ensemble methods and we compare them with those obtained using
basic anomaly detection algorithms. The best performances are obtained by combining
different algorithms. Some of the base learners used are present in the Python libraries,
others have been implemented by us.

2

Contents

List of Tables 5

List of Figures 9

1 Introduction 11

2 Anomalies 13

3 Anomaly Detection 16
3.1 Distance Based Anomaly Detection Approaches 16

3.1.1 Distance Based-Outlier Algorithm 17
3.1.2 Local Correlation Integral (LOCI) Algorithm 19
3.1.3 Resolution-Based Outlier Detection Algorithm 20
3.1.4 Nearest Neighbor Algorithm . 20

3.2 Density Based Anomaly Detection Approaches 21
3.2.1 Local Outlier Factor (LOF) Algorithm 22
3.2.2 Connectivity-based Outlier Factor (COF) Algorithm 23
3.2.3 INFLuential measure of Outlierness by symmetric relationship (IN-

FLO) Algorithm . 25
3.3 Rank Based Anomaly Detection Approaches 27

3.3.1 Rank Based Detection Algorithm 28
3.3.2 Rank with Averaged Distance Algorithm 28

4 Ensemble Methods for Anomaly Detection 30
4.1 Independent Ensemble Methods for Anomaly

Detection . 30
4.2 Sequential Ensemble Methods for Anomaly Detection 33

4.2.1 Sequential ensemble method with two algorithms 35
4.2.2 Sub-sampling and Sequential Method 36

3

5 Experiments 38
5.1 Metrics for Measurement . 40
5.2 Results anomaly detection algorithms: KDD CUP 99 dataset 42
5.3 Results independent ensemble methods: KDD CUP 99 dataset 43
5.4 Results sequential ensemble methods: KDD CUP 99 dataset 50
5.5 Results anomaly detection algorithms: Simargl-2022 dataset 53
5.6 Results independent ensemble methods: Simargl-2022 dataset 54
5.7 Results sequential ensemble methods: Simargl-2022 dataset 58
5.8 Results anomaly detection algorithms: IoT Network Intrusion dataset . . . 63
5.9 Results independent ensemble methods: IoT Network Intrusion dataset . . 65
5.10 Results sequential ensemble methods: IoT Network Intrusion dataset . . . 67

6 Conclusion 73

A Features dataset 75

4

List of Tables

5.1 KDD CUP 99: mean and variance for each feature. 39
5.2 Simargl2022: mean and variance for each feature. 40
5.3 IoT Network Intrusion Dataset: mean and variance for each feature. . 41
5.4 KDD CUP 99 dataset - LOF algorithm: precision and recall for positive

and negative class, false positive rate and confusion matrix. k = 25. 43
5.5 KDD CUP 99 dataset - COF algorithm: precision and recall for positive

and negative class, false positive rate and confusion matrix. k = 20. 43
5.6 KDD CUP 99 dataset - KNN algorithm: precision and recall for positive

and negative class, false positive rate and confusion matrix. k = 25. 43
5.7 KDD CUP 99 dataset - RBDA algorithm: precision and recall for positive

and negative class, false positive rate and confusion matrix. k = 25. 43
5.8 KDD CUP 99 dataset - RADA algorithm: precision and recall for positive

and negative class, false positive rate and confusion matrix. k = 10. 44
5.9 KDD CUP 99 dataset - LOCI algorithm: precision and recall for positive

and negative class, false positive rate and confusion matrix. k = 5. 44
5.10 KDD CUP 99 dataset - independent ensemble method by combining LOF

and RADA algorithms with the score averaging: precision and recall for
positive and negative class, false positive rate and confusion matrix. 45

5.11 KDD CUP 99 - Independent LOF-RADA: mean and variance for
each feature for each class (inliers and outliers). 45

5.12 KDD CUP 99 dataset - Independent LOF-RADA: mean and stan-
dard deviation of false positives. 47

5.13 KDD CUP 99 dataset - independent ensemble method by combining COF
and RBDA algorithms with the maximum score: precision and recall for
positive and negative class, false positive rate and confusion matrix. 49

5.14 KDD CUP 99 dataset - independent ensemble method by combining LOF
and RBDA algorithms with the average score: precision and recall for pos-
itive and negative class, false positive rate and confusion matrix. 49

5

5.15 KDD CUP 99 dataset - independent ensemble method by combining LOF,
KNN and RADA algorithms with the maximum score: precision and recall
for positive and negative class, false positive rate and confusion matrix. . . 49

5.16 KDD CUP 99 dataset - sequential-1 ensemble method: the first algorithm
RADA and the second algorithm COF. β = 0.3. Precision and recall for
positive and negative class, false positive rate and confusion matrix. 51

5.17 KDD CUP 99 dataset- Sequential RADA-COF: mean and deviation
standard for each feature for each class (inliers and outliers). 51

5.18 KDD CUP 99 dataset- Sequential COF-RADA : mean and standard
deviation of false positives. 52

5.19 KDD CUP 99 dataset - sequential-2 ensemble method: the first algorithm
KNN and the second algorithm COF. β = 0.3, γ = 0.4 and T = 5. Precision
and recall for positive and negative class, false positive rate and confusion
matrix. 52

5.20 KDD CUP 99 dataset - sequential-2 ensemble method: the first algorithm
RADA and the second algorithm LOF. β = 0.3, γ = 0.4 and T = 5.
Precision and recall for positive and negative class, false positive rate and
confusion matrix. 54

5.21 KDD CUP 99 dataset - sequential-1 ensemble method: the first algorithm
RADA and the second algorithm KNN. β = 0.3. Precision and recall for
positive and negative class, false positive rate and confusion matrix. 54

5.22 Simargl2022 dataset - LOF algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 5. 55

5.23 Simargl2022 dataset - COF algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 20. 55

5.24 Simargl2022 dataset - KNN algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 10. 55

5.25 Simargl2022 dataset - RBDA algorithm: precision and recall for positive
and negative class, false positive rate and confusion matrix. k = 20. 55

5.26 Simargl2022 dataset - RADA algorithm: precision and recall for positive
and negative class, false positive rate and confusion matrix. k = 15. 56

5.27 Simargl2022 dataset - LOCI algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 5. 56

5.28 Simargl2022 dataset - independent ensemble method by combining LOF
and RADA algorithms with the score averaging: precision and recall for
positive and negative class, false positive rate and confusion matrix. 56

6

5.29 Simargl2022 - Independent LOF-RBDA: mean and variance for each
feature for each class (inliers and outliers). 57

5.30 Simargl2022 dataset - Independent LOF-RBDA: mean and standard
deviation of false positives. 59

5.31 Simargl2022 dataset - independent ensemble method by combining RBDA
and RADA algorithms with the majority vote: precision and recall for
positive and negative class, false positive rate and confusion matrix. 59

5.32 Simargl2022 dataset - independent ensemble method by combining LOCI,
RBDA and RADA algorithms with the majority vote: precision and recall
for positive and negative class, false positive rate and confusion matrix. . . 60

5.33 Simargl2022 dataset - sequential-1 ensemble method: the first algorithm
LOF and the second algorithm KNN. β = 0.3. Precision and recall for
positive and negative class, false positive rate and confusion matrix. 61

5.34 Simargl2022 dataset - Sequential LOF-KNN: mean and standard
deviation for each feature for each class (inliers and outliers). 61

5.35 Simargl2022 dataset- Sequential LOF-KNN: mean and standard de-
viation of false positives. 62

5.36 Simargl2022 dataset - sequential-2 ensemble method: the first algorithm
KNN and the second algorithm LOF. β = 0.3, γ = 0.4 and T = 5. Precision
and recall for positive and negative class, false positive rate and confusion
matrix. 63

5.37 Simargl2022 dataset - sequential-1 ensemble method: the first algorithm
RBDA and the second algorithm LOF. β = 0.3. Precision and recall for
positive and negative class, false positive rate and confusion matrix. 64

5.38 IoT Network Intrusion dataset - LOF algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 20. 64

5.39 IoT Network Intrusion dataset - COF algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 25. 64

5.40 IoT Network Intrusion dataset - KNN algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 25. 64

5.41 IoT Network Intrusion dataset - RBDA algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 10. 65

5.42 IoT Network Intrusion dataset - RADA algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 25. 65

5.43 IoT Network Intrusion dataset - LOCI algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 25. 65

7

5.44 IoT Network Intrusion dataset - independent ensemble method by combin-
ing LOF and RADA algorithms with the maximum score: precision and
recall for positive and negative class, false positive rate and confusion matrix. 66

5.45 IoT Network Intrusion dataset - independent ensemble method by com-
bining KNN and RADA algorithms with the majority vote: precision and
recall for positive and negative class, false positive rate and confusion matrix. 66

5.46 IoT Network Intrusion dataset - independent ensemble method by combin-
ing LOF and COF algorithms with the majority vote: precision and recall
for positive and negative class, false positive rate and confusion matrix. . . 66

5.47 IoT Network Intrusion dataset - sequential-2 ensemble method: the first
algorithm LOF and the second algorithm COF. β = 0.3, γ = 0.4 and
T = 5. Precision and recall for positive and negative class, false positive
rate and confusion matrix. 68

5.48 IoT Network Intrusion dataset - sequential-1 ensemble method: the first
algorithm RBDA and the second algorithm COF. β = 0.3, γ = 0.4 and
T = 5. Precision and recall for positive and negative class, false positive
rate and confusion matrix. 68

5.49 IoT Network Intrusion dataset- Sequential RBDA-COF : mean and
standard deviation of for each feature for each class (inliers and outliers). . 69

5.50 IoT Network Intrusion dataset- Sequential RBDA-COF : mean and
standard deviation of false positives. 71

A.1 Name, description and type of features of KDD CUP 99 dataset used in
the experiments. 75

A.2 Name, description and type of features of KDD CUP 99 dataset used in
the experiments. 76

A.3 Name, description and type of deleted features of KDD CUP 99 dataset. . 76
A.4 Name, description and type of features of Simargl2022 dataset used in the

experiments. 77
A.5 Name, description and type of deleted features of Simargl2022 dataset. . . 77
A.6 Name, description and type of features of IoT Network Intrusion dataset

used in the experiments. 78
A.7 Name, description and type of features of IoT Network Intrusion dataset

used in the experiments. 79
A.8 Name, description and type of deleted features of IoT Network Intrusion

dataset. 80

8

List of Figures

2.1 Outliers in a static dataset: Data point A, B, C and D are anomalies
with respect to the rest of the observations in this two dimensional dataset. 14

3.1 DB-Outlier Algorithm . 18
3.2 Exact LOCI Algorithm . 20
3.3 K-NN Algorithm . 21
3.4 Reachability distance: dreach(p1, o) and dreach(p2, o) with k=3 23
3.5 LOF Algorithm . 24
3.6 For k=4, the SBN-path of p ∈ D is {p, q1, q2, q3} and SBT is < e1, e2, e3 > . 25
3.7 COF Algorithm . 26
3.8 INFLO Algorithm . 27
3.9 RBDA Algorithm . 29
4.1 Independent Ensemble Method for Anomaly Detection. 31
4.2 Single-layer sequential ensemble methods 34
4.3 Two-layer sequential ensemble methods 35
4.4 Sequential-1 Algorithms: sequential ensemble method with two

algorithms . 36
4.5 Sub-sampling and sequential algorithm 37
5.1 KDD CUP 99 dataset: histogram hot feature and histogram num_file_creations

feature. 46
5.2 KDD CUP 99 dataset - Independent LOF-RADA: histograms of

hot and num_file_creations features (inliers in blue, outliers in orange). . . 46
5.3 KDD CUP 99 dataset - Independent LOF-RADA: histograms of

Count and srv_count features (inliers in blue, false positives in orange and
outliers in green). 48

5.4 KDD CUP 99 dataset- Sequential COF-RADA : histograms of Count,
diff_srv_rate and srv_doff_host_rate features (inliers in blue, false posi-
tives in orange and outliers in green). 53

9

5.5 Simargl2022 dataset: histogram L4_SRC_PORT feature and histogram
TCP_FLAGS feature. 57

5.6 Simargl2022 dataset - Independent LOF-RBDA: histograms of L4_SRC_PORT
and TCP_FLAGS features (inliers in blue, outliers in orange). 58

5.7 Simargl2022 dataset- Sequential LOF-RBDA : histograms of FIRST_SWITCHED,
LAST_SWITCHED and TOTAL_FLOWS_EXP features (inliers in blue,
false positives in orange and outliers in green). 60

5.8 Simargl2022 dataset- Sequential LOF-KNN: histograms of FIRST_SWITCHED,
LAST_SWITCHED and TOTAL_FLOWS_EXP features (inliers in blue,
false positives in orange and outliers in green). 63

5.9 IoT Network Intrusion dataset: histogram Pkt_Len_Mean feature and
histogram Pkt_Size_Avg feature. 70

5.10 IoT Network Intrusion dataset - Sequential RBDA-COF: histograms
of Pkt_Len_Mean and Pkt_Size_Avg features (inliers in blue, outliers in
orange). 70

5.11 IoT Network Intrusion dataset- Sequential RBDA-COF: histograms
of Src_Port, Dst_Port, Fwd_Header_Len and Bwd_Header_Len features
(inliers in blue, false positives in orange and outliers in green). 72

10

Chapter 1

Introduction

The aim of outlier detection techniques is to find the objects of the dataset that are
meaningfully diverse from other observations because they are from different distributions.

Anomaly detection problems emerge in multiple applications such as security, finan-
cial fraud, medical failure, cyber-security and intrusion detection and they are studied
more and more by more researchers being very important in many fields. The outliers are
considered abnormal respect to other observations in the dataset because they are char-
acterized by patterns that haven’t a well-defined normal behavior. Since the “normal”
behavior of observations is not static but changes over time it is really hard to identify it
in the real-world applications.

Many researchers have formulated many anomaly detection methods based on statis-
tics, machine learning and theory techniques. However, each algorithm detect a single
kind of anomaly because is developed for specific class of problem, but in real applications
are present different types of anomalies in the dataset and the goal is to be able to identify
as many anomalies as possible and therefore also of different types.

Ensemble methods were developed to achieve better performances and more robust
solutions because they combine different algorithms. The diversity is really important for
the choice of algorithms because it permit to correct the error of the previous algorithm. In
this work we will present different algorithms and approaches used for anomaly detection.

In particular, in the first chapter we report the most commonly used definitions to
identify an anomaly. In the second chapter we describe some base learners that are very
important in anomaly detection and that, in general, can be characterized as distance-
based, density-based and rank-based. In the third chapter we expose in detail the inde-
pendent and sequential ensemble methods and the various combinations that can be used
to build these methods. In the last chapter we expose and define the metrics often used
in outliers detection and also in our experiments to compare the different methods and

11

Introduction

choose the best one. We report a small description of the datasets used for our experi-
ments, finally we show and compare the obtained results with the base learners and with
ensemble methods, both independent and sequential.

Thus, the goal of this work is to show that ensemble methods allow detecting anomalies
of a dataset with higher accuracy than basic learners.

12

Chapter 2

Anomalies

Anomalies or outliers are substantial variations from the norm, i.e observations that have
a different pattern than the normal one. Many definitions of anomaly have been presented
in the literature and the most commonly used are the following:

• “An outlier is an observation that deviates so much from other observations as to
arouse suspicions that is was generated by a different mechanism” (9).

• “Anomalies are patterns in data that do not conform to a well defined notion of
normal behavior” (5).

• “An outlier is an observation that lies outside the overall pattern of a distribution”
(17).

• “An outlier in a set of data is an observation or a point that is considerably dissimilar
or inconsistent with the remainder of the data” (20).

To describe the normal behavior of the data it is necessary that the observations satisfy
some assumptions. The first is the stationarity, i.e., the data must be generated by an
underlying process that doesn’t change significantly over time. Anomaly detection models
are built using predictions from past data, therefore the stationary condition is verified if
the statistics that characterized a system in the past continue to characterize the system
in the future.

There are many outlier problems in real-world applications, but we focus on “Point
outliers” for static dataset, i.e., we want to detect individual observations that are distinct
with respect to the rest of dataset. For example, in Figure (2.1), data points A, B, C and
D are indicated as anomalies since they are not in any cluster and they are far away

13

Anomalies

Figure 2.1. Outliers in a static dataset: Data point A, B, C and D are anomalies
with respect to the rest of the observations in this two dimensional dataset.

from the majority of the observations. So, using the “neighborhood” approach, they are
considered different from the rest of dataset.

Point outliers in the static dataset are usually characterized by abnormal attributes
with respect to the rest of dataset. More formally, let D a given dataset and p an obser-
vation such that p ∈ D, we want to find the set O(p) ∀p, i.e the set of outlierness of p,
and Othreshold, i.e the set of thresholds, such that if O(p) ≥ Othreshold, then p is an outlier,
otherwise it is considered inlier.

Unlike supervised data mining techniques, outlier detection is typically an unsupervised
learning problem because the behaviors or patterns of outliers are unknown. Unsupervised
algorithms aim at partitioning the dataset in two classes: the expected data points and
the anomalous ones. The anomalies are rare events, and therefore most observations in the
dataset exhibit “normal behavior”. In the next chapter are presented the main principal
algorithms used for anomaly detection. When an anomaly detection approach is used,
three rates have to be considered:

• Correct Detection: detected anomalies correspond to the true anomalies in the
dataset.

• False Positives: some anomalies in the dataset are classified as normal but actually
they are abnormal.

• False Negatives: some normal observations are classified as outliers but actually they

14

Anomalies

are inliers.

In real life it is impossible to be able to detect 100% of the anomalies, i.e. to obtain
an anomaly detection algorithm characterized by a “Correct Detection rate” equal to 1.
In fact, the goal is to be able to identify the largest number of observations, inliers and
outliers, correctly.

In the last chapter, the presented rates representing the three characteristics will be
discussed in more detail.

15

Chapter 3

Anomaly Detection

This section present the main traditional approaches to anomaly detection that we apply
in ensemble models. They can be classified as distance-based, density-based and rank-
based. In the distance-based methods the points are considered more anomalous the more
they are far from others. In the density-based methods the points that are considered
more anomalous are those with relatively low density. In the rank-based methods, an
anomalous point can be defined as a point whose closest neighbors do not have that point
as one of their closest neighbors.

3.1 Distance Based Anomaly Detection Approaches

In this section we analyze anomaly detection approaches based on distance measures. To
simplify the discussion we assume that the observations belong to continuous space but
the methods also applies to discrete and categorical attributes with a suitable distance
metric. In continuous space a data point is “different” from others if its distance to other
observations is large. Distance-based algorithms differ from the choice of the type of
distance. We present some of the most common distances.

• Distance to All Points

Let D be a dataset, we compute the distance for each point p ∈ D against all points
in D. The sum of distances from all points can be used as the anomalousness metric,
i.e.,

α(p) =
Ø
q∈D

d(p, q).

The most anomalous point is farthest from all points in the dataset.

16

Anomaly Detection

• Distance to Nearest Neighbor

Let D a dataset, we calculate for each point p ∈ D the distance to the nearest point
in the dataset. This distance can be used as the anomalousness metric, i.e.,

α(p) = min
q∈D,q /=p

d(p, q).

The most anomalous point is the one farthest from its nearest neighbor.

• Average Distance to K Nearest Neighbors

Let D a dataset and N = |D| the number of points in the dataset. Let K < N a
parameter that identifies the number of nearest neighbors that are considered. For
each point we compute the average distance to the K nearest neighbors that can be
used as anomalousness metric, i.e.,

α(p) =
KØ

j=1

d(p, Near(p, j))
K

,

where Near(p, j) indicates the j-th nearest neighbor of point p ∈ D. The most
anomalous point is the one with the greatest average distance. Instead of the average
distances can be used the sum of distance as indicator of the anomalousness.

• Median Distance to K Nearest Neighbors

In the average distance is used the arithmetic average but it is not very robust. For
example if one or more points are added, the outcome can change drastically. A way
to solve this problem is used the median that is a more robust measure because it is
less sensitive to noise in the data although it requires more calculations.

We present some of the most common distance-based algorithms used in anomaly detec-
tion: “Distanced Based Outlier”, “Local Correlation Integral”, “Resolution-Based Outlier”
and “Nearest Neighbor”.

3.1.1 Distance Based-Outlier Algorithm

This algorithm uses the definition of distance based (DB) outliers, DB-outliers, given by
Knorr and Ng in(12), that it is the following: “an object p in a dataset D is a DB(π, R)-
outlier if at least a fraction πD (where 0 ≤ π ≤ 1) of the objects in D are at a distance
greater than r from p”. The parameter r and π are set by user. The set Np(r) contains
the neighbors of p which are located at a distance less than or equal to r, i.e.,

Np(r) = {q : q ∈ D and d(p, q) ≤ r}.

17

Anomaly Detection

Algorithm DB-outlier
Require: π, r, D
Ensure: List of outliers

1: O = ∅
2: for p ∈ D do
3: Np(r) = NULL
4: for q ∈ D
5: if dist(p, q) ≤ r then
6: Insert q in Np(r)
7: end if
8: end for
9: if |Np(r)| ≤ (1 − π)|D| then
10: Insert p into O
11: end if
12: end for

Figure 3.1. DB-Outlier Algorithm

Np(r) is called sampling neighborhood of p. The point p is considered outlier if

|Np(r)| =≤ (1 − π)|D|,

where |D| is the cardinality of the dataset, i.e., the number of points in the dataset and
|Np(r)| is the number of points in Np(r). In the Figure (3.1) is presented the pseudo-code
of the DB-outlier algorithm.

This algorithm is not efficient because to determine all anomalous observations is time
consuming. A more efficient alternative is the Index-Based Algorithm. Let N be the
number of objects in a dataset D and we consider Np(r) defined as above, i.e., the set
of objects in D with distance r from p. Let π be the minimum fraction of objects in D

that must be outside the r-neighbourhood of an outlier. Let K the maximum number
of objects within the r-neighbourhood of an outlier i.e., K = N(1 − π). Therefore, the
problem of finding all DB(π, r)-outliers can be solved by counting the number of points
within a distance r from the point p. A soon as (K + 1) neighbours are found in the
r-neighbourhood, the search stops, and p is declared a non-outlier, otherwise p is an
outlier.

An other variation of DB-outlier algorithm is Nested-Loop Algorithm. This method
find all neighbours of object p within distance r using a nested loop approach, i.e.: for
each object p ∈ D, it is sequentially computed the distance between p and an object q ∈ D

until K neighbours with distance r have been found. If K neighbours within distance r

from p have been found then p is not outlier, otherwise p is an outlier. Another approach
is Cell-Based Algorithm where the whole space is partitioned into small multi-dimensional

18

Anomaly Detection

cells. Each object p ∈ D is associated to a specific cell. In order to decided if an object
p is an outlier or an inlier it considers only the objects in the same cell of p or in p’s
neighbour cells. By using some specific choices of cell sizes related to parameter r this
approach can be more efficient. For example, with a dataset D with dimensionality d a
good choice is to partition the whole space into cells of length l = r

2
√

d
.

3.1.2 Local Correlation Integral (LOCI) Algorithm

Local Correlation Integral is a multi-point approach. We define a new set Np(αr), called
counting neighborhood of p. It is the set of points with distance αr from p, where the
parameter 0 < α < 1 is predetermined. We indicate with n(p, αr) the number of points
in Np(αr) and with n̂(p, r, α) the average of n(q, αr), ∀q ∈ Np(r), i.e.,

n̂(p, r, α) = 1
|Np(r)|

Ø
q∈Np(r)

n(q, αr),

Given r and α, the Multi-granularity Deviation Factor (MDEF) at point p ∈ D is defined
in the following way:

MDEF (p, r, α) = 1 − n(p, αr)
n̂(p, r, α) .

MDEF can be on both positive and negative. If MDEF is negative, then p is not anoma-
lous, whereas a high positive value indicates that p is more likely to be an outlier because p

has relatively few near-neighbors, when it is compared to other points in the same region.
Local Correlation Integral Algorithm to determine the outlierness of the point p proceeds
in the following way:

• The value of rmax is set to ≈ α−1max
p,q∈D

δ(p, q), while rmin is chosen so that in the
meaningful neighborhood there are approximately 20 points. δ(p, q) is the distance
from p to q and r ∈ [rmin, rmax].

• MDEF (p, r, α) is computed ∀r ∈ [rmin, rmax].

• The deviation standard of MDEF (p, r, α) is computed:

σMDEF (p, r, α) = σn̂(p, r, α)
n̂(p, r, α) ,

where σn̂(p, r, α) is the deviation standard of n(q, αr).

• An observation p is considered outlier if ∀r ∈ [rmin, rmax] its MDEF is large, more
formally if MDEF (p, r, α) > kσ × σMDEF (p, r, α), then p is indicated to be an
outlier.

In the Figure (3.2) is presented the pseudo-code of Local Correlation Integral Algorithm
with α = 1

2 and kσ = 3.

19

Anomaly Detection

Algorithm Exact LOCI algorithm
1: for each p ∈ D do
2: Find Np(rmax);
3: Compute δ(p, pm−NN) and δ(p, αpm−NN) for 1 ≤ m ≤ N , where pm−NN

denotes the mth nearest neighbor of p;
4: Sort the list of these δs in ascending order of magnitude;
5: For each r, in the sorted list, calculate n(p, αr) and n̂(p, αr);
6: Compute MDEF(p, α) and σMDEF(p, α, r);
7: if MDEF(p, α, r) > 3σMDEF(p, α, r), then flag p as a potential outlier.
8: end for

Figure 3.2. Exact LOCI Algorithm

3.1.3 Resolution-Based Outlier Detection Algorithm

An another method to measure the outlierness of an observation p ∈ D is the Resolution-
Based Outlier Detection that use different resolutions and then aggregate the results. All
observations are isolated points, i.e. are outliers, when the resolution is highest, while all
observation belong to one cluster when the resolution is the lowest and thus all points are
inliers. The maximum resolution is obtained by considering r1 < min

i /=j,pi,pj∈D
d(pi, pj), so

Np(r1) contains only one point p, ∀p ∈ D. The smallest resolution is obtained by consider-
ing r∗ = max

p,q∈D
d(p, q), so all observation in D belong to one cluster. In the Resolution-Based

Outlier Detection we consider p, q ∈ D and r > 0, q is a close neighbor of p if d(p, q) ≤ r.
If q is a close neighbor of p then it is a point of cluster. We proceed in this way for all
points of the cluster until all close neighbors of observations in a cluster are contained in
the cluster. Considering r1 and r∗ we can define the intermediate resolutions choosing
r2 < r3 < < rR = r∗. If we define the equal spacing as ∆R = (r+ − r1)/R then
ri = ri − 1 + ∆R and the resolution-based outlier factor (ROF) is given by:

ROF (p) =
RØ

i=1

cluster − size(p, ri − 1) − 1
cluster − size(p, ri)

,

where cluster − size(p, ri) is the number of points in the cluster that contains p. The
most anomalous point is that with the smallest ROF.

3.1.4 Nearest Neighbor Algorithm

In the previous approach the number of points within a fixed radius r were used to
determine the outlierness of observations. In the Nearest Neighbor Algorithm is used an
alternative that is the following: a point can be considered outlier if its neighbors are far
away.

20

Anomaly Detection

Algorithm k-NN outlier
Require: k, n, D
Ensure: O has n of outliers

1: O = ∅
2: for p ∈ D do
3: Np = NULL
4: for q ∈ D
5: if |Np| < k then
6: Add q in Np

7: else
8: if max{dist(p, s)|s ∈ Np} > dist(p, q) then
9: Add q in Np and remove the first s in Np such that

dist(p, s) > dist(p, q)
10: end if
11: end if
12: end for
13: NN(p, k) = max{dist(p, s)|s ∈ Np}
14: end for
15: for p ∈ D do
16: if |O| < k then
17: Add p in D
18: else
19: if min{NN(s, k)|s ∈ O} < NN(p, k) then
20: Add p in O and remove the first s in O if NN(s, k) < NN(p, k)
21: end if
22: end if
23: end for
24: return O

Figure 3.3. K-NN Algorithm

The outlierness of point p can be calculated using the distance of its neighbors. Let
NN(p, k) be the k-th nearest neighbor of p and we compute the distance from p to the
k-th nearest neighbor, i.e., d(p, NN(p, k)) = dk(p). If dk(p) is large then p is considered
anomalous. The points with the highest values of dk(p) are indicated as outliers. In the
Figure (3.3) is presented the pseudo-code of K-Nearest Neighbor Algorithm.

3.2 Density Based Anomaly Detection Approaches

In the density based algorithms the idea is to look at the “local” density of a observation
with respect to the density of its neighbors. The neighborhood is built by considering
k nearest neighbors, where k is an integer number. In the density based approaches
if the density at a point is smaller than the density of its neighbors, then the point is

21

Anomaly Detection

anomaly. The main difference with the distance-based algorithms is in the definition of
the local behavior and in the related density. The local density of a point p is defined
as the reciprocal of the average distance among the k nearest points to p and the outlier
score of p varies inversely with the local density at p. In this way we can compute the
outlier score of each point and sort the scores in decreasing order. The points such that
the anomaly scores are greater than a pre-defined threshold are considered outliers. The
density based anomaly detection approaches assume a symmetric distance function, i.e.,
dist(x, y) = dist(y, x) ∀x, y ∈ D. Let Nk(x) be the set of k nearest neighbors of a
observation x ∈ D, we consider the k-distance dk(x) defined as in the Nearest Neighbor
Algorithm, then we have that Nk(x) is defined as:

Nk(x) = {y ∈ D \ {x} | dist(x, y) ≤ dk(x)}.

The reverse nearest neighborhood of a point x ∈ D, Rk(x), is the set of points y ∈ D such
that x is among the k nearest neighbors of y and it is defined as:

Rk(x) = {y ∈ D | x ∈ Nk(y).}

Rk(x) can be empty because x can not be in any of the k nearest neighbors sets of its
k nearest neighbors. We present some of the most common distance-based algorithms
used in anomaly detection:“Local Outlier Factor Algorithm”, “Connectivity-Based Outlier
Factor Algorithm” and “INFluential Measure of Outlierness by Symmetric Relationship”.

3.2.1 Local Outlier Factor (LOF) Algorithm

Local outlier factor (LOF) measures the degree of anomaly of a point x using its local
neighbors. For each point x ∈ D is computed its LOF and x is an outlier if the value of
its LOF is large. To calculate the LOF score it is possible proceed as follow:

• Find the distance dk(p), i.e., the distance between p and its k-th nearest neighbors.
The most used distance is the Euclidean distance, but any measure can be considered.
Calculate Nk(x), i.e.,the k nearest neighborhood set of each point x ∈ D.

• Compute the local reachability density of each point x ∈ D that is defined as:

lrdk(x) =
5q

y∈Nk(x) reach − distk(x, y)
|Nk(x)|

6−1
,

where reach − distk(x, y) is the reachability distance of a point y from x and it is
given by reach − distk(x, y) = max{dk(y), d(x, y)}.

22

Anomaly Detection

Figure 3.4. Reachability distance: dreach(p1, o) and dreach(p2, o) with k=3

• Compute the LOF score for each point x ∈ D:

LOFk(x) =
q

y∈Nk(x)
lrdk(y)
lrdk(x)

|Nk(x)| .

• The points are sorted in decreasing order of LOF. If the LOF values are large then
the corresponding objects are outliers. In particular, if LOF score of a point is > 1
then the point is potentially an outlier, while if the LOF score is ≤ 1 then the point
is an inlier.

In the Figure (3.5) is presented the pseudo-code of Local Outlier Factor Algorithm.

3.2.2 Connectivity-based Outlier Factor (COF) Algorithm

To solve one of the deficiencies found in the LOF, i.e., to detect outliers when in the dataset
there are clusters of different shapes, it was proposed the Connectivity-based Outlier Factor
(COF) that use a new method to compute the density that is the “connectivity”, i.e., how
an object connects to its neighbors, and use relative isolation to indicate whether an point
is deviating from others. Given k, to compute the COF score for each point x ∈ D, we
can proceed as follows:

• Define the distance between two non empty, disjoint set A e B as

set − dist(A, B) = min{dist(x, y) | x ∈ A, y ∈ B}.

• Let Nk(x) be the set of k nearest neighbors of x and define the set-based path (SBN)
of length k as the path starting from x1 :< x1, x2, ..., xk > such that xi+1 is the

23

Anomaly Detection

Algorithm LOF (Local Outlier Factor Computation)
Require: k, D
Ensure: Lk - LOF score for each object in D

1: Lk = ∅
2: for p ∈ D do
3: Nk(p) = NULL
4: for q ∈ D
5: if |Nk(p)| < k then
6: Add q in Nk(p)
7: else
8: Let s∗ ∈ Nk(p) be such that dist(p, s∗) ≥ dist(p, s) for all s ∈ Nk(p);
9: if dist(p, s∗) > dist(p, q) then
10: Replace s∗ ∈ Nk(p) by q
11: end if
12: end if
13: end for
14: dk(p) = max{dist(p, s)|s ∈ Nk(p)}
15: end for
16: for p ∈ D do
17: for q ∈ D do
18: dreach(p, q) = max{dk(p), d(p, q)}
19: end for
20: end for
21: for p ∈ D do
22: lk(p) = |Nk(p)|q

q∈Nk(p)
dreach(p,q)

23: end for
24: for p ∈ D do

25: Lk(p) = [
q

o∈Nk(p)
lk(o)
lk(p)

|Nk(p)|]
26: end for
27: return Lk

Figure 3.5. LOF Algorithm

nearest neighbor of set {x1, x2, ..., xi} in the set {xi+1, ..., xk} for 1 ≤ i ≤ k − 1. The
SBN-path is generated starting from a single point x and in each iteration the nearest
neighbor point is added to SBN(x). The SBN is an ordered list of all neighbors of
x.

• The set-based trail (SBT) is an ordered collection of k − 1 edges with respect to a
SBN-path p =< x1, x2, ..., xk >. It is defined as a sequence < e1, e2, .., ek−1 > such
that the i-th edge ei connects a point o ∈ {x1, .., xi} to xi+1 and it is of the minimum
distance. |ei| = set − dist(x1, .., xi, xi+1, .., xk) is called the cost description of edge
ei. In the Figure 3.6 is illustrated a SBT and a SBN. The SBN and the SBT define

24

Anomaly Detection

Figure 3.6. For k=4, the SBN-path of p ∈ D is {p, q1, q2, q3} and SBT is < e1, e2, e3 > .

the connectivity.

• Compute the average-chaining distance (A) from x to Nk(x) which is the weighted
sum of the lengths of the edges, i.e.,

ANk(x)(x) =
k−1Ø
i=1

wi × ei,

where wi is the weight for edge ei and it is proportional to the order in which is
added to SBT set. In particular, the weight wi is given by:

wi = 2(k − i)
k(k − 1) .

• Compute the connectivity-based outlier factor (COF) for each point x ∈ D as:

COFk(x) =
|Nk(x)| · ANk(x)(x)q

y∈Nk(x) ANk(y)(y) .

Larger values of COFk(x) indicates that x is more anomalous. In the Figure (3.7) is
presented the pseudo-code of Connectivity-based Outlier Factor Algorithm.

3.2.3 INFLuential measure of Outlierness by symmetric rela-
tionship (INFLO) Algorithm

When in the dataset there are more than one cluster and different clusters have different
densities, the LOF fails to detect anomalies, so another approach has been proposed to
solve this limitation of LOF. This method is called INFLuential measure of Outlierness by
symmetric relationship and it uses the k nearest neighbors and reverse nearest neighbors
of an point x ∈ D to obtain a measure of outlierness. Given k, INFLO score is computed
by means the following steps:

25

Anomaly Detection

Algorithm COF
Require: k, D
Ensure: COFk - COF score for each object in D

1: COFk = ∅
2: for p ∈ D do
3: Nk(p) = NULL; SBN(P) = {P}; SBTDist(p) = ∅; ANk

(p) = 0
4: for q ∈ D
5: if |Nk(p)| < k then
6: Add q in Nk(p)
7: else
8: Let s∗ ∈ Nk(p) be such that dist(p, s∗) ≥ dist(p, s) for all s ∈ Nk(p);
9: if dist(p, s∗) > dist(p, q) then
10: Replace s∗ ∈ Nk(p) by q
11: end if
12: end if
13: end for
14: i = 1; NN(p) = Nk(p)
15: while |NN(p)| > 0 do
16: dist(ei) = mini{dist(s, t)|s ∈ SBN(p), t ∈ NN(p)}
17: Move corresponding t from NN(p) to SBN(p)
18: i + +
19: Add dist(ei) to SBTDist(p)
20: end while
21: for i = 1 to k do
22: ANk

(p) = ANk
(p) + dist(ei)∗2(k+1−i)

(k+1)∗k

23: end for
24: end for
25: for p ∈ D do
26: COFk(p) = |Nk(p)|∗ANk

(p)q
o∈Nk(p)

ANk
(o)

27: end for
28: return COFk

Figure 3.7. COF Algorithm

• Compute Nk(x) and Rk(x) ∀x ∈ D.

• Compute the local density for each point as the inverse of the k-distance, i.e.:

den(x) = [dk(x)]−1.

• The k-influential space for x, denoted as ISk(x), is defined as ISk(x) = Nk(x)∪Rk(x).

• The INFLO score is computed as:

INFLOk(x) =
q

y∈ISk(x) den(y)
|ISk(x)| · [den(x)]−1.

26

Anomaly Detection

Algorithm INFLO
Require: k, D
Ensure: INFLOk - INFLO score for each object in D

1: INFLO = ∅
2: for p ∈ D do
3: Nk(p) = ∅; RNk(p) = ∅;
4: for q ∈ D, q /= p do
5: if |Nk(p)| < k then
6: Add q in Nk(p)
7: else
8: Let s∗ ∈ Nk(p) be such that dist(p, s∗) ≥ dist(p, s) for all s ∈ Nk(p);
9: if dist(p, s∗) > dist(p, q) then
10: Replace s∗ ∈ Nk(p) by q
11: end if
12: end if
13: end for
14: dk(p) = max{dist(p, s)|s ∈ Nk(p)}
15: for q ∈ Nk(p) do
16: Add p in RNk(q)
17: end for
18: end for
19: for p ∈ D do
20: ISk(p) = Nk(p) ∪ RNk(p)

21: INFLOk(p) =
dk(p)∗

q
o∈ISk(p)

1
dk(o)

|ISk(p)|
22: end for
23: return INFLOk

Figure 3.8. INFLO Algorithm

Therefore, INFLO expands Nk(x) to ISk for each point x ∈ D and compares x’ density
with the average density of points in ISk, so INFLO improve its capacity to identify the
anomalies by using the reverse neighborhood. In the Figure (3.8) is presented the pseudo-
code of INFLuential measure of Outlierness by symmetric relationship Algorithm.

3.3 Rank Based Anomaly Detection Approaches

Rank Based Anomaly Detection is an another approach to identify anomalies based on
mutual closeness of data point and its neighbors using rank instead of distance. Given
k we consider p ∈ D and q ∈ Nk(p). The point q is close to p because it belong to
k-neighborhood of p. If p and q are close to each other, then p is not outlier with respect
to q and q is not outlier with respect to p. If q is a neighbor of p but p is not a neighbor
of q, then p is an outlier with respect to q. If p is an outlier with respect to most

27

Anomaly Detection

of its neighbors, then p should be declared to be an outlier. We present some of the
most common rank-based algorithms used in anomaly detection: “Rank Based Detection
Algorithm” and “Rank with Averaged Distance Algorithm”.

3.3.1 Rank Based Detection Algorithm

When in the dataset there are clusters with different densities, Rank Based Detection
Algorithm (RBDA) identifies, unlike the density based algorithms, the points at cluster
boundary in a correct way. RBDA can be described by means of the following steps:

• For each point x ∈ D is calculated Nk(x).

• For each pair of points (x, y) ∈ D, it is calculated rx(y), i.e. the rank of y respect to
x, as follow:

rx(y) = |{z : d(x, z) < d(x, y)}|.

rx(y) measures how y is close to x; if there are fewer points between x and y, then
y is close to x, i.e. rx(y) is very small.

• For each point x ∈ D is calculated the RBDA score as follow:

RBDAk(x) =
q

y∈Nk(x) ry(x)
|Nk(x)| .

Therefore, RBDA score that measures the outlierness of an object, is defined as the
average rank with respect to its k-nearest neighbors.

In the Figure (3.9) is presented the pseudo-code of Rank Based Detection Algorithm.

3.3.2 Rank with Averaged Distance Algorithm

Rank with Averaged Distance Algorithm (RADA), for each point x ∈ D, adjusts the RBDA
score by the averaged distance from its k nearest neighbors. Therefore, the RADA score
is defined as:

RADAk(x) = RBDAk(x) ×
q

y∈Nk(x) d(x, y)
|Nk(x)| .

28

Anomaly Detection

Algorithm Rank-Based Detection Algorithm
Require: k, D
Ensure: RBDAk - RBDA score for each object in D

1: RBDA = ∅
2: for p ∈ D do
3: N(p) = ∅; Nk(p) = ∅;
4: for q ∈ D do
5: if q /= p then
6: Add q to N(p)
7: end if
8: end for
9: Sort N(p) by dist(p, q) in ascending order
10: dk(p) = kth of N(p)
11: tmp = 0; index = 0; rank = 0;
12: for q ∈ N(p) do
13: if dist(p, q) ≤ dk(p) then
14: Add q in Nk(p)
15: end if
16: index + +
17: if dist(p, q) ≤ tmp then
18: rank = index;
19: end if
20: rp(q) = rank; tmp = dist(p, q);
21: end for
22: end for
23: for p ∈ D do
24: sumrank = 0;
25: for q ∈ Nk(p) do
26: sumranks+ = rq(p)
27: end for
28: RBDAk(p) = sumranks

|Nk(p)|
29: end for
30: return RBDAk

Figure 3.9. RBDA Algorithm

29

Chapter 4

Ensemble Methods for
Anomaly Detection

In the previous chapter we have presented different anomaly detection algorithms. A
way to improve the performance of these algorithms, and successfully address the high
false positive rates of individual algorithms is use the ensemble methods that combine the
results of multiple algorithms often provide the best results. Ensemble methods can be
categorized by component independence. The categorisation by component independence
divides ensemble methods into two groups: the independent ensemble and sequential en-
semble. In the independent ensemble the base learners are executed independently of each
other, and their outputs are combined after all of the base learners have been applied in
order to obtain a more robust model. In the sequential ensemble, the base learners are
applied sequentially, meaning that the future algorithm will be dependent on previous
algorithm.

4.1 Independent Ensemble Methods for Anomaly
Detection

In the ensemble methods, the final decision is jointly decided by multiple base components.
In the independent ensemble methods, each algorithm returns an anomaly score for each
point in D. The observations that receive higher score are considered more anomalous.
The range and distributions of scores may be substantially different for different algo-
rithms, thus is necessary, before combining scores, the normalization of individual scores.
Normalization assigns a normalized score of 0 to the least anomalous observation and a
normalized score of 1 to the most anomalous observation. Let αi(p) be the normalization

30

Ensemble Methods for Anomaly Detection

Figure 4.1. Independent Ensemble Method for Anomaly Detection.

anomaly score of p ∈ D with respect to algorithm i. There are various combinations
that can be used to combine all the outputs obtained from components. The Figure(4.1)
presents an scheme of the independent ensemble approach. In particular there are T

base components, each of which could be a different algorithm, or the same algorithm
with different parameter settings. Let gi be a data transform function applied to a given
dataset D. It return an output that will be the input of the i-th algorithm. Each base
component outputs a vector Resi indicates the results made from component i. In this
vector there are the anomaly scores of the points. A combination function f is applied to
Resi, i = 1, ..., T to make the final decision Resfinal.

A important step in building ensemble methods is to combine the base learners. There
are many combination approaches that can be used to combine the results of multiple
algorithms and we present some of the most common. These combination methods differ
in the way to seek a consensus among algorithms. Furthermore they can be categorized,
with respect to the type of combination used to obtain the final result, into two groups:
Score Based Combination Methods and Rank Based Combination Methods.

Score Based Combination Methods

• The score averaging method: combines normalized anomaly scores for each
object. Let αi(x) be the normalization anomaly score of the point x ∈ D with
respect to algorithm i, then the averaged normalized score of x over all T individual
algorithms is given by:

α(x) = 1
T

TØ
i=1

αi(x).

The point with the highest value of α is most anomalous and it is ranked as first.

31

Ensemble Methods for Anomaly Detection

• The maximum score combination method: selects, for each point, the maxi-
mum score from the T individual algorithms and it is defined as follow:

α(x) = max
i=1,..,T

αi(x).

Rank Based Combination Methods

• The minimum ranking method: selects, for each point, the minimum rank as
final output, instead of using the score output. The anomalous rank of a point
x ∈ D, assigned by algorithm i, is given by:

ri(x) = |D| − {y | αi(y) < αi(y)} ,

where |D| is the number of points in D. More small is the rank and more anomalous
is the point. The minimum rank method is defined as follow:

rank(x) = min
i≤i≤T

ri(x).

Therefore, if the point x is considered the most anomalous by at least one algorithm,
then this method consider it the most anomalous point.

• The averaging ranking method: considers the mean value of ranking over all T
individual algorithms and it is given by:

rank
′(x) = 1

T

TØ
i=1

ri(x).

More is small the rank
′(x), more the point x is considered anomalous.

Majority Voting Rule Methods

Another approach is majority voting and it is one of the most popular and intuitive
combination methods. In the dataset the number of outliers should be very small, so we
consider the ranked top τ% as the true outliers for each individual algorithm. Therefore
the decision of each object x from the i-th component is:

Hi(x) =

1, if ri(x) ≤ τ% × |D|

0, otherwise.

The final vote for each point x is given by:

V (x) =
TØ

i=1
Hi(x).

32

Ensemble Methods for Anomaly Detection

The final decision to establish if x is an outlier is:

H(x) =

1, V (x) > T
2

0, otherwise.

However, the ensemble’s individual base algorithms often do not have equal performance.
Hence, considering them with equal weights might be inappropriate. A more suitable
solution is to use different weights for the performances of the individual algorithms using
the weighted majority voting technique.

Weighted Majority Voting Methods

The weighted majority voting assumes that some base learners in the ensemble method
are more skilful than others, and their results are given more priority when computing
the final ensemble prediction. The majority voting assumes that all the base learners are
equally important and their results are treated equally when calculating the final ensemble
result. Instead, the weighted majority voting assigns more weight to the algorithms that
agree more with the majority. The based idea is that if a base learner find the same set
of outliers as the majority, it have a higher weight than the one that often disagrees with
the majority. We consider a weight wi for each base algorithm i given by:

wi =
q

x∈D I(Hi(x), H(x))q
x∈D H(x) ,

where Hi(x) is the decision of i-th algorithm, while H(x) is the decision reached by the
majority of the base learners and they are defined as in the majority voting. Instead, the
function I is defined as follow:

I(x, y) =

1, if x = y

0, otherwise.

Thus, the base learners that agree more often with the majority will have higher weight
than the others.

4.2 Sequential Ensemble Methods for Anomaly De-
tection

Sequential Ensemble Methods for anomaly detection is an other approach to building an
ensemble method. In the independent ensemble approach an important assumption is

33

Ensemble Methods for Anomaly Detection

Figure 4.2. Single-layer sequential ensemble methods

that the base learners have to be independent of each other and it might be unrealistic.
Introducing randomness into ensemble methods decreases the dependence between com-
ponents, however there is inherent dependence between the base algorithms because they
are perturbation of the same general idea. Sequential approach overcomes this problem
because considers the dependence between the components but is very importance to use
different algorithms that work in sequence. The diversity of the base learners is funda-
mental because the next component tries to resolve the error produced by the previous
algorithm. But, if they are similar then they will make a similar mistake. Thus, the
diversity improve the performances of the ensemble methods. The sequential ensemble
methods can be categorized into two classes: single-layer sequential and multi-layer se-
quential.

Single-layer Sequential Ensemble Methods
In the single-layer sequential ensemble methods the first algorithm is applied to the

entire dataset and the output of this is the input of the next algorithm and it proceeds
in this way for all the algorithms in sequence. In the Figure (4.2) is shown the single-
layer sequential approach using multiple base algorithms. Let T be the number of base
algorithms that are used. At each step, the algorithm ALGi is applied and it generates
an intermediate result Resi. To generate the input Di for the next algorithm ALGi+1 a
transformation function can be applied to Resi.
Multi-layer Sequential Ensemble Methods

In the single-layer sequential approach the first algorithm is applied to the entire
dataset D, and then the results are refined in later steps sequentially. Instead, in the
multi-layer methods, intermediate results are generated from a previous ensemble model,
and then another algorithm combines these results to obtain the final decision. In the
Figure (4.3) is shown the multi-layer sequential approach, in particular there are two-
layer structure. The first layer is equal to independent ensemble approach described in
the previous section. There are T independent base algorithms, denoted with ALG1i for
i = 1, ..., T , that are applied on the same dataset D. Let f be a consensus function, it can
be applied to generate the first-layer decision combining the results from multiple base
algorithms, thus the first-layer can generate diverse ensembles. Then, a data transforma-

34

Ensemble Methods for Anomaly Detection

Figure 4.3. Two-layer sequential ensemble methods

tion function g is applied to the result obtained from f and the output generated from g

can be, for example, a new data sample D
′ . In the second layer the algorithm ALG2 is

applied to D
′ and it generates the final decision Resfinal.

4.2.1 Sequential ensemble method with two algorithms

In this sequential ensemble method two algorithms are combined in sequence. The idea is
that similar algorithms tend to make similar errors, so applying in sequence two substan-
tially different algorithms, the second algorithm can “correct” the errors of the previous
one and thus provide better results.

The method consists of executing the first algorithm in the original dataset D to extract
a subset of D that will be used in the second algorithm . In particular, in the first phase
we consider an anomaly detection algorithm that is applied to the entire dataset D which
returns the ranks of all observations, calculated using anomaly scores. The subset Dβ is
constructed by considering the β fraction of D that the first algorithm considers more
abnormal. Finally, the second algorithm calculates the anomaly scores of all objects in D

with reference to Dβ. This method is described in the Figure (4.4).

35

Ensemble Methods for Anomaly Detection

Algorithm Sequential-1 Algorithm
Data: Dataset D

Result: a vector of scores H associated with each of the objects in D

Score vector HA is obtained by applying algorithm A on D;

Rank vector RA = {rA|∀x ∈ D}; objects are sorted in decreasing order of HA.

Dβ = {x|rA(x) < β · |D|}; i.e. retrieve the top ranked data.

for all x ∈ D do
H(x) =calculate the anomaly score of x by applying algorithm B on dataset {x} ∪ Dβ

end

return H

Figure 4.4. Sequential-1 Algorithms: sequential ensemble method
with two algorithms

4.2.2 Sub-sampling and Sequential Method

An approach to introduce randomness into ensemble methods is the sub-sampling. Fur-
thermore, it was demonstrated that the anomaly detection methods perform better when
applied to a sub-sample of the entire dataset. The sub-sampling approaches select a ran-
dom sample from the dataset D and compute the outlier score for each point in D with
respect to the data in the selected sample. This process is repeated multiple times in a way
that for each point is computed the average score outlier. For example, an sub-sampling
approach can be consider the Dβ dataset that is the dataset obtained by retaining the
most anomalous fraction β of D with respect to an anomaly algorithm, i.e., those that
suspected to contain most or all anomalies. Then is considered a percentage γ from Dβ

and it is compute the outlier score for each point x ∈ D using another algorithm with
respect to the sub-sample. This process is repeated, for example, T times, and then is
calculated the average scores that are used in the final anomaly step. In the Figure (4.5)
is described the pseudo-code of this method.

We select the top ranked β · |D| points as those suspected to contain anomalies. Thus,
β is a essential parameter and it is important to understand how to choose a suitable
value for β. Let ALGi be the i-th anomaly detection algorithm and let αi(x) the real
valued score for each point x ∈ D generated from ALGi. Therefore, the rank of the point
x is given by:

ri(x) = |D| − | {y | αi(y) < αi(x)} |.

36

Ensemble Methods for Anomaly Detection

Algorithm Sequential-2 Algorithm
Data: Dataset D

Result: a vector of scores H associated with each of the objects in D

Score vector HA is obtained by applying algorithm A on D;

Rank vector RA = {rA|∀x ∈ D}; objects are sorted in decreasing order of HA.

Dβ = {x|rA(x) < β · |D|}; i.e. retrieve the top ranked data.

for all x ∈ D do
for i = {1, ..., T} do

Dγ =randomly pick γ · |Dβ | objects from Dβ ;
Hi(x) =apply algorithm B on dataset {x} ∪ Dγ ; i.e. obtain the score of x
from the ith iteration;

end
end

for ∀x ∈ D do
H(x) = 1

T

qT
i=1 Hi(x);

end

return H

Figure 4.5. Sub-sampling and sequential algorithm

Indicating with β the fraction that we want to consider, we expect that an accurate
algorithm ALGi satisfy the following inequality:

Pr(ri(x) > |D| · β | x ∈ O) < f(β),

where O is the set of outliers, |D| is the number of point in the dataset D and f is a
function of β. The number of outliers should be decreasing as β increasing because most
outliers should be ranked in the topped percentage.

37

Chapter 5

Experiments

The goal of our work is to show how the implemented ensemble methods, both inde-
pendent and sequential, return better performances in anomaly detection than the basic
components with which they are built. In particular, for our experiments we used three
datasets KDD CUP 99, Simargl2022 and IoT Network Intrusion Dataset.

• KDD CUP 99: is a benchmark dataset widely used in intrusion detection. It
consists of 42 continuous and discrete attributes. For our experiments we used 38
features. The remaining 4 features were deleted from the dataset. In the appendix
of this paper are present Tables A.1, A.2 and A.3. Tables A.1 and A.2 contain the
name, description and type of the features effectively used in the experiments, while
Table A.3 contains the deleted features. The observations of the dataset are labeled
with the specific attribute “label”, which assumes value “Normal” if the observation
is an inlier, otherwise, if the observation is an outlier, it has the value corresponding
to the attack on the network. Network attacks can be of various types.

For the continuous features of the dataset, the mean and standard deviation were
calculated to understand their distribution. The obtained values are shown in the
Table 5.1.

• Simargl2022: is a dataset where observations come from a real-world academic
network. Real traffic was collected and, after performing a series of attacks, the
dataset was assembled. It consists of 44 network features. Also in this case, the
features deleted were 4. As in the previous dataset, the appendix shows Tables A.4
and A.5 containing the features used in the experiments and the eliminated features,
respectively. In this case the anomalies in the dataset all belong to a single attack.
Dataset observations are labeled with the “attack” feature, which assumes value
“None” for inliers, while “PortScan” for outliers.

38

Experiments

Mean Std
duration 47.979302 707.746472
src_bytes 302.610296 988218.101050
dst_bytes 868.532425 33040.001252
hot 0.034519 0.782103
num_compromised 0.010212 1.798326
num_root 0.011352 2.012718
num_file_creations 0.001083 0.096416
num_access_files 0.001008 0.036482
Count 332.285690 213.147412
srv_count 292.906557 246.322917
serror_rate 17.668666 38.071696
srv_serror_rate 17.660881 38.101658
rerror_rate 5.743341 23.162347
srv_rerror_rate 5.771894 23.214698
diff_srv_rate 79.154734 38.818949
srv_doff_host_rate 2.098239 8.220549
dst_host_count 2.899680 14.239747
dst_host_srv_count 232.470778 64.745380
dst_host_same_srv_rate 188.665670 106.040447
dsr_host_same_srv_rate 75.377970 41.078098
dst_host_diff_srv_rate 3.090573 10.925911
dst_host_same_src_port_rate 60.193476 48.130925
dst_host_srv_diff_host_rate 0.668350 4.213287
dst_host_serror_rate 17.675396 38.059310
dst_host_srv_serror_rate 17.644262 38.091945
dst_host_rerror_rate 5.811761 23.058951
dst_host_srv_rerror_rate 5.741167 23.014032

Table 5.1. KDD CUP 99: mean and variance for each feature.

As with the previous dataset, we calculated the mean and standard deviation for all
continuous features. The obtained values are shown in the Table 5.2.

• IoT Network Intrusion Dataset: is a dataset containing data about network
attacks. The dataset consists of 86 features, but the features used in the experiments
are 68. As in previous cases, the appendix shows Tables A.6, A.7 and A.8. The first
two tables contain the features used in the experiments, while the third table contains
the eliminated features. Dataset observations are labeled with the “Label” feature,
which assumes value “Normal” for inliers, while “Anomaly” for outliers.

Also in this case we calculated the mean and standard deviation for all continuous
features. The obtained results are shown in the Table 5.3.

We have analyzed histograms of features of dataset, however only some of them, useful
for discussing the obtained results in experiments, are reported in the following sections.
For each dataset we considered 1150 observations, divided as follows: 1000 inliers and 150

39

Experiments

Mean Std
L4_SRC_PORT 4.179941e+04 1.996662e+04
L4_DST_PORT 4.739815e+03 1.391079e+04
FIRST_SWITCHED 1.647522e+09 1.469765e+04
FLOW_DURATION_MILLISECONDS 6.444856e+03 2.221613e+04
LAST_SWITCHED 1.647522e+09 1.469747e+04
PROTOCOL 1.041372e+01 5.985748e+00
TCP_FLAGS 1.105820e+01 1.718039e+01
TCP_WIN_MAX_IN 1.323570e+04 2.534137e+04
TCP_WIN_MAX_OUT 1.155426e+04 2.400037e+04
TCP_WIN_MIN_IN 1.319567e+04 2.533628e+04
TCP_WIN_MIN_OUT 1.151889e+04 2.399165e+04
TCP_WIN_MSS_IN 3.312921e+02 6.113026e+02
TCP_WIN_SCALE_IN 1.453568e+00 3.010768e+00
TCP_WIN_SCALE_OUT 1.388693e+00 3.081813e+00
SRC_TOS 7.624096e+00 3.198905e+01
DST_TOS 8.930120e+00 3.495344e+01
TOTAL_FLOWS_EXP 3.575022e+08 9.717543e+05
MIN_IP_PKT_LEN 0.000000e+00 0.000000e+00
MAX_IP_PKT_LEN 0.000000e+00 0.000000e+00
TOTAL_PKTS_EXP 0.000000e+00 0.000000e+00
TOTAL_BYTES_EXP 0.000000e+00 0.000000e+00
IN_BYTES 2.417737e+03 2.559013e+04
IN_PKTS 1.632104e+01 2.815912e+02
OUT_BYTES 5.019650e+04 1.284571e+06
OUT_PKTS 4.144903e+01 9.047939e+02

Table 5.2. Simargl2022: mean and variance for each feature.

outliers. Therefore, contamination of anomalies is 13,04%.
The base learners used in the experiments and described in the chapter 3 are 6, specif-

ically :

• two density-based learners (LOF, COF)

• two distance-based learners (KNN, LOCI)

• two rank-based learners (RBDA, RADA).

For each algorithm, the number of k neighbors (which can assume one of the following
values: 5, 10, 15, 20, 25) has been chosen to obtain the best performance. The datasets
were divided as follows: 70% training set, 30% testing set.

5.1 Metrics for Measurement
To evaluate the performance of the algorithms, the most common metrics used are preci-
sion, recall and Rank-Power.

40

Experiments

Mean Std Mean Std
Src_Port 35012.5309 24721.3771 Bwd_IAT_Max 486.9912 2752.7515
Dst_Port 16391.4648 17554.5528 Bwd_IAT_Min 429.1097 2178.4459
Flow_Duration 635.7967 3497.7353 Fwd_Header_Len 22.4988 41.5412
Tot_Fwd_Pkts 1.6759 4.3112 Bwd_Header_Len 33.7346 40.2906
Tot_Bwd_Pkts 1.4688 1.2197 Fwd_Pkts/s 50336.8692 164455.6835
TotLen_Fwd_Pkts 571.0499 1162.1394 Bwd_Pkts/s 27834.4737 78501.6543
TotLen_Bwd_Pkts 929.8016 1732.1344 Pkt_Len_Min 511.9242 654.0406
Fwd_Pkt_Len_Max 392.6978 619.6956 Pkt_Len_Max 700.4750 696.8593
Fwd_Pkt_Len_Min 348.3090 588.2846 Pkt_Len_Mean 634.0147 652.3351
Fwd_Pkt_Len_Mean 373.7538 596.6703 Pkt_Len_Std 102.6116 243.2846
Fwd_Pkt_Len_Std 28.1773 227.8352 Pkt_Len_Var 69716.4849 243.2846
Bwd_Pkt_Len_Max 681.7994 695.0233 Down/Up_Ratio 0.3642 0.4990
Bwd_Pkt_Len_Min 588.9856 683.0051 Pkt_Size_Avg 915.7478 948.7259
Bwd_Pkt_Len_Mean 637.4560 669.5989 Fwd_Seg_Size_Avg 373.7538 596.6703
Bwd_Pkt_Len_Std 63.0282 227.8352 Bwd_Seg_Size_Avg 637.4560 669.5989
Flow_Pkts/s 78171.3429 220072.3732 Subflow_Fwd_Pkts 1.6759 4.3112
Flow_IAT_Mean 483.7470 1893.3819 Subflow_Fwd_Byts 571.0499 1162.1394
Flow_IAT_Std 63.1740 1160.0533 Subflow_Bwd_Pkts 1.4688 1.2197
Flow_IAT_Max 566.1531 2867.1355 Subflow_Bwd_Byts 929.8016 1732.1344
Flow_IAT_Min 443.3637 1719.8049 Init_Bwd_Win_Byts 5884.3802 11532.1337
Flow_IAT_Tot 102.2180 2216.9550 Fwd_Act_Data_Pkts 1.5102 4.3339
Fwd_IAT_Mean 52.5464 1212.3582 Active_Mean 3.7666 68.0844
Fwd_IAT_Std 27.7055 959.3051 Active_Std 0.3535 20.7294
Fwd_IAT_Max 85.0741 1936.1797 Active_Max 4.2512 88.9602
Fwd_IAT_Min 34.6997 1000.6796 Active_Min 3.4641 64.1298
Bwd_IAT_Tot 517.0968 3148.1876 Idle_Mean 502.7995 2113.5437
Bwd_IAT_Mean 447.2275 2243.0970 Idle_Std 52.4348 1153.5234
Bwd_IAT_Std 28.8076 808.9099

Table 5.3. IoT Network Intrusion Dataset: mean and variance for each feature.

Let D be a dataset with n observations and it contains dt true outliers. Given a
anomaly detection algorithm, we suppose that it identifies m > 0 outliers in D but the
number of true anomalies among m instances is mt(≤ m). The precision is defined as
follow:

Pr = mt

m
.

This metric measures the number of true outliers with respect to the number of outliers
identified by the algorithm. The recall is defined as follow:

Re = |mt|
|dt|

.

The recall measures the accuracy of the algorithm and if it is equal 1.0 then all true
outliers are discovered by algorithm.

Precision and recall are not sufficient to capture completely the efficiency of an algo-
rithm, in particular when comparing algorithms that find different numbers of outliers.
One algorithm may indicate an anomaly as the most suspicious while another algorithm
may indicate it as the lest suspicious, but the values of precision and recall remain the
same. Therefore, an algorithm will be considered more efficient if the true outliers occupy

41

Experiments

top position and the inliers are among the least suspicious instances. This idea is captured
by Rank-Power metric that is defined as:

RP = mt(mt + 1)
2

qmt
i=1 Ri

,

where Ri is the rank of i-th true outlier in the sorted list of most suspicious objects. The
value of Rank-Power is 1 when all n true outliers are in top n position. For a fixed value
of m, larger values of all three metrics imply better performance.

Another metric that we mainly use is Area Under Curve (AUC). The AUC is the area
under the ROC curve and it is used to reduce the ROC curve to a single number. The
Receiver Operating Characteristic (ROC) curve is the plot of true positive rate (TPR)
against false positive rate (FPR). Let O and I be the anomaly class (outliers) and the
normal class (inliers), respectively. Let Ô and Î be the predicted outliers and predicted
inliers, respectively. Then, the true positive rate and the false positive rate are defined as:

TPR = |Ô
u

O|
|O|

and FPR = |Ô
u

I|
|I|

The AUC, i.e. the area under such curve, will also always be between 0 and 1, where
1 is the best evaluation that an algorithm can achieve, meaning it sorted all the outliers
prior to all the inliers.

To compare the various methods implemented, we have used precision and recall for
the positive class, corresponding to the inliers, and for the negative class, corresponding
to the outliers. Furthermore, we reported the false positive rate and confusion matrix for
each method.

5.2 Results anomaly detection algorithms: KDD CUP
99 dataset

For the first dataset, the obtained values with the base learners are shown in the Tables
5.4, 5.5, 5.6, 5.7, 5.8 and 5.9. We set k = 25, k = 20, k = 25, k = 25, k = 10 and k = 5
for the LOF, COF, KNN, RBDA, RADA and LOCI, respectively. We observe that, for
KDD CUP 99 dataset, the base algorithm RBDA achieves the best performance among
all the individual base learners.

42

Experiments

LOF
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 283 28 0.9099 0.9218 0.2941 0.2631 0.7368
NC 24 10

Table 5.4. KDD CUP 99 dataset - LOF algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 25.

COF
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 273 25 0.9161 0.8892 0.2741 0.3421 0.6578
NC 34 13

Table 5.5. KDD CUP 99 dataset - COF algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 20.

KNN
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 287 28 0.9111 0.9348 0.3333 0.2631 0.7368
NC 20 10

Table 5.6. KDD CUP 99 dataset - KNN algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 25.

RBDA
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 291 9 0.97 0.9478 0.6444 0.7631 0.2368
NC 16 29

Table 5.7. KDD CUP 99 dataset - RBDA algorithm: precision and recall for positive
and negative class, false positive rate and confusion matrix. k = 25.

5.3 Results independent ensemble methods: KDD
CUP 99 dataset

To build the independent ensemble methods we used three different combinations: the
maximum score method, the score averaging method and the majority vote. We have
considered all the possible combinations that can be obtained with the six base learners

43

Experiments

RADA
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 272 28 0.9066 0.8859 0.2222 0.2631 0.7368
NC 35 10

Table 5.8. KDD CUP 99 dataset - RADA algorithm: precision and recall for positive
and negative class, false positive rate and confusion matrix. k = 10.

LOCI
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 300 30 0.9090 0.9771 0.5333 0.2105 0.7894
NC 7 8

Table 5.9. KDD CUP 99 dataset - LOCI algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 5.

used. However, we only report and explore some examples.
We now analyze the results obtained with the independent ensemble methods for the

first dataset. In the first example (5.10) we can see that the performance of the indepen-
dent ensemble method is better than that obtained with the base learners with which it
is built. In particular we can notice that by combining, with the score averaging method,
LOF algorithm and RADA algorithm we have a precision, both of positive and of nega-
tive class, greater than that obtained with the single algorithms, by going from 0.9099 to
0.9381 and from 0.2941 a 0.5, respectively, compared with LOF algorithm and by going
from 0.9066 to 0.9381 and from 0.2222 a 0.5, respectively, compared with RADA algo-
rithm. The recall, for both classes, also improves, going from 0.9218 to 0.9381 for positive
class and from 0.2631 to 0.5 for negative class, compared with LOF algorithm and going
from 0.8859 to 0.9381 for positive class and from 0.2631 to 0.5 for negative class, compared
with RADA algorithm. The false positive rate is equal to 0.5 and therefore decreases both
with respect to the LOF algorithm and with respect to the RADA algorithm, whose value
is, for both, 0.7368. Therefore, the independent ensemble method constructed by com-
bining LOF and RADA algorithms, with the score averaging method, allows to better
classify inliers and outliers than individual anomaly detection algorithms.

For a more in-depth analysis we analyzed the features both for the observations classi-
fied, by the LOF-RADA independent ensemble method, as inliers and for those classified
as outliers. Then, we computed the mean and standard deviation for both inliers and
outliers. The values obtained, for each feature and for each class, are shown in the Table

44

Experiments

ENSEMBLE: LOF-RADA - COMBINATION: AVERAGE
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 288 19 0.9381 0.9381 0.5 0.5 0.5
NC 19 19

Table 5.10. KDD CUP 99 dataset - independent ensemble method by combining LOF
and RADA algorithms with the score averaging: precision and recall for positive and
negative class, false positive rate and confusion matrix.

Mean_Inliers Std_Inliers Mean_Outliers Std_Outliers
duration 75.983713 573.539084 188.052632 1153.908656
src_bytes 477.576547 771.139198 1769.973684 8801.678594
dst_bytes 2008.302932 4331.415558 11297.921053 45310.014972
hot 0.000000 0.000000 0.052632 0.324443
num_compromised 0.000000 0.000000 0.026316 0.162221
num_root 0.003257 0.057073 0.000000 0.000000
num_file_creations 0.000000 0.000000 0.026316 0.162221
num_access_files 0.000000 0.000000 0.052632 0.226294
Count 39.394137 122.888617 166.236842 209.258205
srv_count 42.280130 122.645857 129.026316 215.699677
serror_rate 0.107492 1.148248 7.894737 27.327631
srv_serror_rate 0.055375 0.450340 7.894737 27.327631
rerror_rate 4.967427 21.606226 15.789474 36.953702
srv_rerror_rate 4.902280 21.590898 15.789474 36.953702
diff_srv_rate 99.934853 1.141460 72.342105 38.642699
srv_doff_host_rate 0.130293 2.282921 15.052632 31.037856
dst_host_count 12.146580 26.725083 8.421053 27.364044
dst_host_srv_count 154.192182 102.147971 227.315789 61.962982
dst_host_same_srv_rate 215.885993 72.527187 115.605263 114.199574
dsr_host_same_srv_rate 88.459283 25.575995 50.815789 46.121376
dst_host_diff_srv_rate 2.804560 12.611370 10.131579 23.715853
dst_host_same_src_port_rate 15.162866 30.187641 42.121579 47.643479
dst_host_srv_diff_host_rate 2.042345 3.467142 0.263158 1.155111
dst_host_serror_rate 0.104235 0.648438 7.921053 27.320304
dst_host_srv_serror_rate 0.074919 0.349027 7.921053 27.320304
dst_host_rerror_rate 4.840391 20.707201 15.894737 36.913185
dst_host_srv_rerror_rate 4.814332 20.566679 15.894737 36.913185

Table 5.11. KDD CUP 99 - Independent LOF-RADA: mean and variance for each
feature for each class (inliers and outliers).

5.11. We can see that for some features, such as “diff_srv_rate”, the values obtained
are different, while for other features, such as “dst_host_count”, the values are very sim-
ilar and therefore it is more complicated to distinguish them. Furthermore, we noticed
that, in the first dataset, the features with the most interesting behavior are “hot” and
“num_file_creations” whose histograms are reported in the Figure 5.1.

In both histograms we note that the value 0 is the most frequent but, there is also
another value that stands out from the rest. For this reason we wondered how the in-
dependent ensemble method LOF-RADA, built by combining the results with the score

45

Experiments

Figure 5.1. KDD CUP 99 dataset: histogram hot feature and histogram
num_file_creations feature.

Figure 5.2. KDD CUP 99 dataset - Independent LOF-RADA: histograms of hot
and num_file_creations features (inliers in blue, outliers in orange).

averaging, identified the observations of the two peaks, and in particular of the second
one. Therefore, we plotted the histograms of the two features for the anomalies and for the
inliers identified by this method and we noticed that the value 0, i.e. the most frequent, is

46

Experiments

Mean Std
duration 0.0 0.0
src_bytes 1032.0 0.0
dst_bytes 0.0 0.0
hot 0.0 0.0
num_compromised 0.0 0.0
num_root 0.0 0.0
num_file_creations 0.0 0.0
num_access_files 0.0 0.0
Count 511.0 0.0
srv_count 511.0 0.0
serror_rate 0.0 0.0
srv_serror_rate 0.0 0.0
rerror_rate 0.0 0.0
srv_rerror_rate 0.0 0.0
diff_srv_rate 100.0 0.0
srv_doff_host_rate 0.0 0.0
dst_host_count 0.0 0.0
dst_host_srv_count 255.0 0.0
dst_host_same_srv_rate 255.0 0.0
dsr_host_same_srv_rate 100.0 0.0
dst_host_diff_srv_rate 0.0 0.0
dst_host_same_src_port_rate 100.0 0.0
dst_host_srv_diff_host_rate 0.0 0.0
dst_host_serror_rate 0.0 0.0
dst_host_srv_serror_rate 0.0 0.0
dst_host_rerror_rate 0.0 0.0
dst_host_srv_rerror_rate 0.0 0.0

Table 5.12. KDD CUP 99 dataset - Independent LOF-RADA: mean and stan-
dard deviation of false positives.

present in both classes for both the “hot” feature and the “num_file_creations” and that
this independent ensemble method identifies as outliers the observations having as value
of features the one corresponding to the second peak.

This can be seen in the histograms of the two features in Figure 5.2. The histograms in
blue represent the distributions of inliers, while those in orange represent the distributions
of outliers. To understand the limits of this method we tried to understand why it failed
to identify some anomalies. First we noticed that all the anomalies not identified by
the method have the same values of features. Indeed, in the Table 5.12, containing the
mean and the standard deviation of the false positives, we can see that the standard
deviation for all the features is 0. Analyzing the features individually, we noticed that
the 19 observations, identified as inliers by the method but which are actually anomalies,
have “Count=511” and “srv_count=511” and they are the only observations that assume
this value for these features, as shown in the histograms in the Figure 5.3.

47

Experiments

Figure 5.3. KDD CUP 99 dataset - Independent LOF-RADA: his-
tograms of Count and srv_count features (inliers in blue, false positives in
orange and outliers in green).

For all the other features we have been seen that the assumed value are the most
frequent and they are present in both classes. The only feature that could highlight that
these observations are outliers was “src_bytes”. In fact, the inliers identified by the method
assume the value 1032 only in correspondence with these false positives, while among the
anomalies it is a value present several times. This situation makes us understand that the
method has difficulty in identifying the anomalies that assume the most frequent value
in most of the features. Furthermore, since these 19 observations are all the same, the
method probably fails to identify them correctly because it considers these objects quite
frequent.

In the second example (5.13) we have combined COF and RBDA with the maximum
score method. We obtain a precision, both of positive and of negative class, greater than
that obtained with the COF. Furthermore, compared with the COF algorithm, we note
that the precision improves going from 0.9161 to 0.9675 and going from 0.2741 to 0.7567
for positive and negative class, respectively. The recall, for both classes, improves, going
from 0.8892 to 0.9706 for positive class and from 0.3421 to 0.7368 for negative class, while
the false positive rate decreases significantly by going from 0.6578 to 0.2631. Furthermore,
for the first dataset, we have better performance with independent ensemble method built
by combining, with the maximum score, COF and RBDA than with the COF algorithm.
Instead, we note that compared to the RBDA algorithm the precision of positive class

and the recall of negative class decrease slightly by going from 0.97 to 0.9675 and from
0.7631 to 0.7368 respectively, while the precision of negative class and the recall of positive

48

Experiments

ENSEMBLE: COF-RBDA - COMBINATION: MAXIMIZATION
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 298 10 0.9675 0.9706 0.7567 0.7368 0.2631
NC 9 28

Table 5.13. KDD CUP 99 dataset - independent ensemble method by combining COF
and RBDA algorithms with the maximum score: precision and recall for positive and
negative class, false positive rate and confusion matrix.

ENSEMBLE: LOF-RBDA - COMBINATION: AVERAGE
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 297 10 0.9674 0.9674 0.7368 0.7368 0.2631
NC 10 28

Table 5.14. KDD CUP 99 dataset - independent ensemble method by combining LOF
and RBDA algorithms with the average score: precision and recall for positive and
negative class, false positive rate and confusion matrix.

ENSEMBLE: LOF-KNN-RADA - COMBINATION: MAXIMIZATION
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 288 19 0.9381 0.9381 0.5 0.5 0.5
NC 19 19

Table 5.15. KDD CUP 99 dataset - independent ensemble method by combining LOF,
KNN and RADA algorithms with the maximum score: precision and recall for positive
and negative class, false positive rate and confusion matrix.

class increase by going from 0.6444 to 0.7567 and from 0.9478 to 0.9706 respectively. The
false positive rate increases by going from 0.2368 to 0.2631. Moreover, looking also at
the confusion matrix we can see that the algorithm RBDA correctly classifies 291 inliers
and 29 outliers, while the independent ensemble method correctly classifies 298 inliers
and 28 outliers, therefore we lose an outlier but we earn 7 inliers. Then, compared to the
RBDA algorithm, we can conclude that there is an improvement but it’s not as obvious
as what we get with COF algorithm. All these analyses leads us to conclude that, for
the first dataset, we were able to build independent ensemble methods that identify more
accurately inliers and outliers. The same considerations can be made for the other two
examples of independent ensemble methods reported in Tables 5.14 and 5.15 and obtained
by combining LOF and RBDA with average score technique and by combining LOF, KNN

49

Experiments

and RADA with maximum score technique, respectively.

5.4 Results sequential ensemble methods: KDD CUP
99 dataset

The sequential ensemble methods implemented are single-layer type, in particular they
are the “sequential-1 algorithm” (4.4) and the “sequential-2 algorithm ” (4.5) described
in chapter 4. For both methods, β, i.e. the fraction of the original dataset D that
the first algorithm of the sequence regards more abnormal, was set to 0.3. Therefore,
Dβ = 0.3 · |D| is the dataset used in the second step of method to calculate the anomaly
score of all observations. In the sequential-2 algorithm is considered a percentage γ = 0.4
from Dβ to obtain a sub-sample of Dβ which is used, by the second algorithm of the
sequence, to calculate the anomaly scores of all observations of the entire dataset. This
process is repeated T = 5 times.

In the first example of sequential ensemble method (5.16) we implemented the sequential-
1 algorithm, using as the first algorithm RADA and as the second algorithm COF. We can
notice that the precision improves and it is 0.9640 and 0.6923 for positive and negative
class, respectively. Instead, in the RADA algorithm the precision is 0.9066 for positive
class and 0.2222 for negative class. In COF algorithm the precision is 0.9161 and 0.2741
for positive and negative class, respectively. The recall in this sequential ensemble method
is 0.9609 for positive class and 0.7105 for negative class. Also in this case the recall is
better than that obtained with the single algorithms. In fact, in the RADA we have 0.8859
and 0.2631 for positive and negative class, respectively. In the COF we have 0.8892 and
0.3421 for positive and negative class, respectively. The false positive rate decreases by
going from 0.6578, for COF algorithm, and 0.7368, for the RADA algorithm to 0.2894.
Then, the ensemble sequential method obtained by combining RADA, as first algorithm,
and COF, as second algorithm, returns a better performance.

As for the previous case, also for the RADA-COF sequential ensemble method we
report, in the Table 5.17, the mean and the standard deviation for all features and for
both classes (inliers and outliers). Subsequently, we analyzed anomalous observations that
were not correctly identified, i.e. false positives. Also for these observations we calculated
the mean and standard deviation for all the features whose values are shown in the Table
5.18.

We noticed that 3 features “Count”, “diff_srv_rate” and “srv_doff_host_rate”, char-
acterized by different behavior, could help to correctly classify these observations.

For these features, as we can see from the histograms shown in the Figure 5.4, the
inliers assume certain values only in correspondence with these false positives, while all

50

Experiments

SEQUENTIAL ENSEMBLE: RADA-COF - METHODS 1
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 295 11 0.9640 0.9609 0.6923 0.7105 0.2894
NC 12 27

Table 5.16. KDD CUP 99 dataset - sequential-1 ensemble method: the first algorithm
RADA and the second algorithm COF. β = 0.3. Precision and recall for positive and
negative class, false positive rate and confusion matrix.

Mean_Inliers Std_Inliers Mean_Outliers Std_Outliers
duration 99.467320 701.314406 0.923077 3.615643
src_bytes 574.163399 3181.042309 979.000000 581.386636
dst_bytes 2155.990196 4768.174613 9900.948718 44606.657607
hot 0.006536 0.114332 0.000000 0.000000
num_compromised 0.003268 0.057166 0.000000 0.000000
num_root 0.003268 0.057166 0.000000 0.000000
num_file_creations 0.000000 0.000000 0.0256641 0.160128
num_access_files 0.000000 0.000000 0.051282 0.223456
Count 15.029412 46.288856 354.153846 238.064182
srv_count 13.23026 36.509353 354.717949 237.223629
serror_rate 1.088235 9.925066 0.000000 0.000000
srv_serror_rate 1.035948 9.873728 0.000000 0.000000
rerror_rate 6.944444 25.328533 0.000000 0.000000
srv_rerror_rate 6.879085 25.320537 0.000000 0.000000
diff_srv_rate 97.209150 15.186989 94.435897 16.844169
srv_doff_host_rate 0.800654 6.051376 9.410256 28.578348
dst_host_count 11.532680 25.808257 13.333333 33.820994
dst_host_srv_count 152.676471 102.159839 237.333333 47.198536
dst_host_same_srv_rate 202.839869 85.813725 220.538462 74.696173
dsr_host_same_srv_rate 83.813725 31.107976 88.230769 28.544021
dst_host_diff_srv_rate 3.545752 14.238698 4.128205 15.766686
dst_host_same_src_port_rate 11.274510 24.426064 71.948718 45.340785
dst_host_srv_diff_host_rate 2.071895 3.480352 0.076923 0.269953
dst_host_serror_rate 1.088235 9.879706 0.000000 0.000000
dst_host_srv_serror_rate 1.058824 9.867473 0.000000 0.000000
dst_host_rerror_rate 6.830065 24.571286 0.000000 0.000000
dst_host_srv_rerror_rate 6.803922 24.454725 0.000000 0.000000

Table 5.17. KDD CUP 99 dataset- Sequential RADA-COF: mean and deviation
standard for each feature for each class (inliers and outliers).

the other inliers assume different and much more frequent values.
However, the presence of only these 3 features was not sufficient for the algorithm

to classify them correctly. We can apply the same considerations to the other cases
of sequential ensemble methods reported in the Tables 5.19, 5.20 and 5.21 obtained by
combining as the first algorithm KNN and as the second algorithm COF, by combining
as the first algorithm RADA and as the second algorithm LOF and by combining as the
first algorithm RADA and as the second algorithm KNN, respectively.

Therefore, we showed that, for the first dataset, KDD CUP 99, we can to build both

51

Experiments

Mean Std
duration 0.000000 0.000000
src_bytes 5005.454545 16429.490779
dst_bytes 755.818182 2506.765319
hot 0.181818 0.603023
num_compromised 0.090909 0.301511
num_root 0.000000 0.000000
num_file_creations 0.000000 0.000000
num_access_files 0.000000 0.000000
Count 182.363636 135.786798
srv_count 52.545455 142.568134
serror_rate 27.272727 46.709937
srv_serror_rate 27.272727 46.709937
rerror_rate 54.545455 52.223297
srv_rerror_rate 54.545455 52.223297
diff_srv_rate 32.181818 43.675664
srv_doff_host_rate 4.454545 2.910795
dst_host_count 0.000000 0.000000
dst_host_srv_count 255.000000 0.000000
dst_host_same_srv_rate 54.181818 99.455335
dsr_host_same_srv_rate 21.181818 39.043100
dst_host_diff_srv_rate 13.909091 28.686075
dst_host_same_src_port_rate 18.181818 40.451992
dst_host_srv_diff_host_rate 0.000000 0.000000
dst_host_serror_rate 27.363636 46.652487
dst_host_srv_serror_rate 27.363636 46.652487
dst_host_rerror_rate 54.909091 51.817863
dst_host_srv_rerror_rate 54.909091 51.817863

Table 5.18. KDD CUP 99 dataset- Sequential COF-RADA : mean and
standard deviation of false positives.

SEQUENTIAL ENSEMBLE: KNN-COF - METHODS 2
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 299 18 0.9432 0.9739 0.7142 0.5263 0.4736
NC 8 20

Table 5.19. KDD CUP 99 dataset - sequential-2 ensemble method: the first algorithm
KNN and the second algorithm COF. β = 0.3, γ = 0.4 and T = 5. Precision and recall
for positive and negative class, false positive rate and confusion matrix.

sequential and independent ensemble methods, which classify more accurately inliers and
outliers than individual anomaly detection algorithms.

52

Experiments

Figure 5.4. KDD CUP 99 dataset- Sequential COF-RADA : histograms
of Count, diff_srv_rate and srv_doff_host_rate features (inliers in blue, false
positives in orange and outliers in green).

5.5 Results anomaly detection algorithms: Simargl-
2022 dataset

For the second dataset Simargl2022, the values obtained with the base learners are shown
in the Tables 5.22, 5.23, 5.24, 5.25, 5.26 and 5.27. We set k = 5, k = 20, k = 10, k = 20,
k = 15 and k = 5 for the LOF, COF, KNN, RBDA, RADA and LOCI, respectively.
We observed that, for Simargl2022 dataset, the base algorithm RBDA achieves the best
performance among all the individual base learners.

53

Experiments

SEQUENTIAL ENSEMBLE: RADA-LOF - METHODS 2
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 302 29 0.9123 0.9837 0.6428 0.2368 0.7631
NC 5 9

Table 5.20. KDD CUP 99 dataset - sequential-2 ensemble method: the first algorithm
RADA and the second algorithm LOF. β = 0.3, γ = 0.4 and T = 5. Precision and recall
for positive and negative class, false positive rate and confusion matrix.

SEQUENTIAL ENSEMBLE: RADA-KNN - METHODS 1
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 303 29 0.9126 0.9869 0.6923 0.2368 0.7631
NC 4 9

Table 5.21. KDD CUP 99 dataset - sequential-1 ensemble method: the first algorithm
RADA and the second algorithm KNN. β = 0.3. Precision and recall for positive and
negative class, false positive rate and confusion matrix.

5.6 Results independent ensemble methods: Simargl-
2022 dataset

Also for the second dataset, Simargl2022, we used to assemble the base learners and to
build the independent ensemble methods the maximum score method, the score averaging
method and the majority vote. We have considered all the possible combinations that can
be obtained with the six basic methods used, but we show only just some of these.

In the first example of independent ensemble methods (5.28) we combined, with the
score averaging method, LOF algorithm and RBDA algorithm. We can see that the
performance of independent ensemble method (LOF, RBDA) is better than those obtained
using one of anomaly detection algorithm with which it was built. In particular, we obtain
a precision, both of positive and of negative class, greater than that obtained with the
single algorithms, by going from 0.9046 to 0.9739 and from 0.2195 a 0.7894, respectively,
compared with the LOF algorithm, and by going from 0.9733 to 0.9739 and from 0.6666
a 0.7894, respectively, compared with the RBDA algorithm. The recall also improves,
going from 0.8957 to 0.9739 for positive class and from 0.2368 to 0.7894 for negative class,
compared with the LOF algorithm, and going from 0.9511 to 0.9739 for positive class,
while the recall of negative class is the same, compared with the RBDA algorithm.

The false positive rate is equal to 0.2105 and therefore decreases with respect to the
LOF algorithm, whose value is 0.7631, while with respect to the RBDA algorithm, the

54

Experiments

LOF
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 275 29 0.9046 0.8957 0.2195 0.2368 0.7631
NC 32 9

Table 5.22. Simargl2022 dataset - LOF algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 5.

COF
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 268 35 0.8844 0.8729 0.0714 0.0789 0.9210
NC 39 3

Table 5.23. Simargl2022 dataset - COF algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 20.

KNN
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 259 37 0.875 0.8436 0.0204 0.0263 0.9736
NC 48 1

Table 5.24. Simargl2022 dataset - KNN algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 10.

RBDA
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 292 8 0.9733 0.9511 0.6666 0.7894 0.2105
NC 15 30

Table 5.25. Simargl2022 dataset - RBDA algorithm: precision and recall for positive
and negative class, false positive rate and confusion matrix. k = 20.

value is the same. Therefore, the independent ensemble method constructed by combining
LOF and RBDA, with the score averaging method, allows to classify better inliers and
outliers than individual anomaly detection algorithms. As for the experiments conducted
on the first dataset, we analyzed the features both for the observations classified, by the
LOF-RBDA independent ensemble method, as inliers and for those classified as outliers.
Then, we computed the mean and standard deviation for both inliers and outliers. The

55

Experiments

RADA
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 289 11 0.9633 0.9413 0.6 0.7105 0.2894
NC 18 27

Table 5.26. Simargl2022 dataset - RADA algorithm: precision and recall for positive
and negative class, false positive rate and confusion matrix. k = 15.

LOCI
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 296 35 0.8942 0.9641 0.2142 0 0.9210
NC 11 3

Table 5.27. Simargl2022 dataset - LOCI algorithm: precision and recall for positive and
negative class, false positive rate and confusion matrix. k = 5.

ENSEMBLE: LOF-RBDA - COMBINATION: AVERAGE
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 299 8 0.9739 0.9739 0.7894 0.7894 0.2105
NC 8 30

Table 5.28. Simargl2022 dataset - independent ensemble method by combining LOF and
RADA algorithms with the score averaging: precision and recall for positive and negative
class, false positive rate and confusion matrix.

values obtained, for each feature and for each class, are shown in the Table 5.29. We can
see that for some features, such as “LAST_SWITCHED”, the values obtained are different
between the two classes, while for other features, such as “TCP_WIN_MAX_OUT” and
“DST_TOS”, anomalies take on a single value.

Also, we noticed that the second dataset, Simargl2022, has, for the “L4_SRC_PORT”
feature and for the “TCP_FLAGS” feature, the histograms report in the Figure 5.5 and
compared to the other features they had a slightly more particular behavior. For this
reason we wondered how some values, quite but not too frequent, were classified by the
independent ensemble method LOF-RBDA. We observed that most of these values are
present in both classes. In particular, the values assumed by observations identified as
outliers are also values assumed by observations identified as inliers. It is possible to see
this in the histograms of the two features mentioned above in the Figure 5.6. We tried to
analyze why the method identified 8 observations as inliers but in reality they were outliers.

56

Experiments

Mean_Inliers Std_Inliers Mean_Outliers Std_Outliers
L4_SRC_PORT 4.197895e+04 199229.389003 3.355911e+04 2.534211e+04
L4_DST_PORT 5.579156+03 15301.459584 2.044211e+03 8.210999e+03
FIRST_SWITCHED 1.647521e+09 11730.525810 1.647535e+09 3.926299e+04
FLOW_DURATION_MILLISECONDS 6.130423e+03 22122.924448 1.932447e+03 6.138978e+03
LAST_SWITCHED 1.647521e+09 11729.879216 1.647521e+09 3.926215e+04
PROTOCOL 1.070358e+01 5.844395 6.000000e+00 4.876862e+00
TCP_FLAGS 1.056352e+01 11.654267 3.736842e+00 5.976007e+00
TCP_WIN_MAX_IN 1.352266e+04 25653.809977 5.928421e+02 5.123640e+02
TCP_WIN_MAX_OUT 1.126744e+04 23694.658596 0.000000e+00 0.000000e+00
TCP_WIN_MIN_IN 1.351426e+04 25640.297191 5.928421e+02 5.123640e+02
TCP_WIN_MIN_OUT 1.124597e+04 23698.374503 0.000000e+00 0.000000e+00
TCP_WIN_MSS_IN 3.042215e+02 593.762350 5.763158e+02 7.232189e+02
TCP_WIN_SCALE_IN 1.394137e+00 2.993080 0.000000e+00 0.000000e+00
TCP_WIN_SCALE_OUT 1.267101e+00 2.932853 0.000000e+00 0.000000e+00
SRC_TOS 1.012378e+01 39.765624 3.578947e+00 1.111277e+01
DST_TOS 1.035831e+01 39.055708 0.000000e+00 0.000000e+00
TOTAL_FLOWS_EXP 3.575057e+08 631650.500723 3.578255e+08 3.109215e+06
MIN_IP_PKT_LEN 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
MAX_IP_PKT_LEN 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
TOTAL_PKTS_EXP 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
TOTAL_BYTES_EXP 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
IN_BYTES 2.065290e+03 12833.252559 1.597895e+02 5.900347e+02
IN_PKTS 1.247557e+01 121.777770 1.578947e+00 1.535729e+00
OUT_BYTES 2.286218e+04 352124.743829 1.333158e+02 7.672970e+02
OUT_PKTS 1.944625e+01 241.261458 2.894737e+01 1.313298e+00

Table 5.29. Simargl2022 - Independent LOF-RBDA: mean and variance for each
feature for each class (inliers and outliers).

Figure 5.5. Simargl2022 dataset: histogram L4_SRC_PORT feature and
histogram TCP_FLAGS feature.

To do this, we first calculated the mean and standard deviation of these false positives,
report in the Table 5.30. Then, we analyzed the individual features using histogram plots.
Also in this case we noticed that most of the features assumed, in correspondence with
these observations, values present in both classes. The only features that could help
classify these observations correctly were “FIRST_SWITCHED”, “LAST_SWITCHED”

57

Experiments

Figure 5.6. Simargl2022 dataset - Independent LOF-RBDA: histograms of
L4_SRC_PORT and TCP_FLAGS features (inliers in blue, outliers in orange).

and “TOTAL_FLOWS_EXP”. In fact, as we can see from the histograms shown in
the Figure 5.7, the inliers assume specific values only in correspondence with these false
positives. This could help to understand that the behavior of these observations differed
from that of the inliers.

In the Table 5.31 we reported the results obtained by combining RBDA and RADA
with majority vote technique, while in the Table 5.32 we reported the results obtained
by combining three anomaly detection algorithms (LOCI, RBDA and RADA) using the
majority vote technique.

5.7 Results sequential ensemble methods: Simargl-
2022 dataset

The sequential ensemble methods implemented for dataset Simargl2022 are single-layer
type and they are “sequential-1 algorithm” (4.4) and the “sequential-2 algorithm ” (4.5).

58

Experiments

Mean Std
L4_SRC_PORT 2.494238e+04 15394.768081
L4_DST_PORT 1.961250e+02 207.097932
FIRST_SWITCHED 1.647593e+09 154.381196
FLOW_DURATION_MILLISECONDS 2.303750e+03 6198.288652
LAST_SWITCHED 1.647593e+09 150.118049
PROTOCOL 4.750000e+00 2.314550
TCP_FLAGS 6.750000e+00 7.704359
TCP_WIN_MAX_IN 7.680000e+02 474.019891
TCP_WIN_MAX_OUT 0.000000e+00 0.000000e+00
TCP_WIN_MIN_IN 7.680000e+02 474.019891
TCP_WIN_MIN_OUT 0.000000e+00 0.000000e+00
TCP_WIN_MSS_IN 5.475000e+02 755.621787
TCP_WIN_SCALE_IN 0.000000e+00 0.000000e+00
TCP_WIN_SCALE_OUT 0.000000e+00 0.000000e+00
SRC_TOS 0.000000e+00 0.000000e+00
DST_TOS 0.000000e+00 0.000000e+00
TOTAL_FLOWS_EXP 3.613570e+08 16063.315367
MIN_IP_PKT_LEN 0.000000e+00 0.000000e+00
MAX_IP_PKT_LEN 0.000000e+00 0.000000e+00
TOTAL_PKTS_EXP 0.000000e+00 0.000000e+00
TOTAL_BYTES_EXP 0.000000e+00 0.000000e+00
IN_BYTES 5.550000e+01 26.484497
IN_PKTS 1.500000e+00 1.069045
OUT_BYTES 0.000000e+00 0.000000e+00
OUT_PKTS 0.000000e+00 0.000000e+00

Table 5.30. Simargl2022 dataset - Independent LOF-RBDA: mean and
standard deviation of false positives.

ENSEMBLE: RBDA-RADA - COMBINATION: MAJORITY VOTE
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 307 11 0.9654 1.0 1.0 0.7105 0.2894
NC 0 27

Table 5.31. Simargl2022 dataset - independent ensemble method by combining RBDA
and RADA algorithms with the majority vote: precision and recall for positive and
negative class, false positive rate and confusion matrix.

For both methods, β, i.e. the fraction of observations of the original dataset D more
abnormal for the first algorithm, is always set to 0.3. In the sequential-2 algorithm is
considered a percentage γ = 0.4 from Dβ to obtain a sub-sample of Dβ that is used in
the second step of method to calculate the anomaly scores of all observation of the entire
dataset. This process is repeated T = 5 times.

59

Experiments

Figure 5.7. Simargl2022 dataset- Sequential LOF-RBDA : histograms of
FIRST_SWITCHED, LAST_SWITCHED and TOTAL_FLOWS_EXP features (inliers
in blue, false positives in orange and outliers in green).

ENSEMBLE: LOCI-RBDA-RADA - COMBINATION: MAJORITY VOTE
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 303 11 0.9649 0.9869 0.8709 0.7105 0.2894
NC 4 27

Table 5.32. Simargl2022 dataset - independent ensemble method by combining LOCI,
RBDA and RADA algorithms with the majority vote: precision and recall for positive
and negative class, false positive rate and confusion matrix.

In the first example of sequential ensemble method (5.33) we implemented the sequen-
tial algorithm 1, using as first algorithm LOF and as second algorithm KNN. We can
notice that the precision improves and it is 0.9356 and 0.5294 for positive and negative
class, respectively. Instead, in LOF algorithm the precision is 0.9046 for positive class and
0.2195 for negative class. In KNN algorithm precision is 0.875, for positive class, and

60

Experiments

SEQUENTIAL ENSEMBLE: LOF- KNN - METHODS 1
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 291 20 0.9356 0.9478 0.5294 0.4736 0.5263
NC 16 18

Table 5.33. Simargl2022 dataset - sequential-1 ensemble method: the first algorithm
LOF and the second algorithm KNN. β = 0.3. Precision and recall for positive and
negative class, false positive rate and confusion matrix.

Mean_Inliers Std_Inliers Mean_Outliers Std_Outliers
L4_SRC_PORT 4.274014e+04 199220.298399 2.560588e+04 2.187475e+04
L4_DST_PORT 5.130260e+03 14394.273057 5.734412e+03 1.768464e+03
FIRST_SWITCHED 1.647518e+09 2501.109800 1.647560e+09 3.938919e+04
FLOW_DURATION_MILLISECONDS 4.701572e+03 1895.212090 1.450835e+04 3.369667e+04
LAST_SWITCHED 1.647518e+09 2501.915248 1.647560e+09 3.937483e+04
PROTOCOL 1.072990e+01 5.820795 5.205882e+00 4.409215e+00
TCP_FLAGS 1.013505e+01 11.529531 6.852941e+00 9.407065e+00
TCP_WIN_MAX_IN 1.265403e+04 25037.416316 7.017059e+03 1.886366e+04
TCP_WIN_MAX_OUT 1.099647e+04 23572.682546 1.153029e+03 5.119098e+03
TCP_WIN_MIN_IN 1.264575e+04 25023.454624 7.016941e+03 1.886370e+04
TCP_WIN_MIN_OUT 1.097529e+04 23576.117917 1.152853e+03 5.119066e+03
TCP_WIN_MSS_IN 3.144437e+02 601.036263 5.148235e+02 7.075595e+02
TCP_WIN_SCALE_IN 1.286174e+00 2.908015 8.235294e-01 2.328618e+00
TCP_WIN_SCALE_OUT 1.199357e+00 2.867864 4.705882e-01 1.910661e+00
SRC_TOS 4.360129e+00 23.563207 5.552941e+01 8.484004e+01
DST_TOS 8.385852+00 34.402630 1.682353e+01 5.540620e+01
TOTAL_FLOWS_EXP 3.572828e+08 490373.853693 3.599019e+08 2.452287e+06
MIN_IP_PKT_LEN 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
MAX_IP_PKT_LEN 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
TOTAL_PKTS_EXP 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
TOTAL_BYTES_EXP 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
IN_BYTES 1.262711e+03 8813.591634 7.276853e+03 2.771190e+04
IN_PKTS 5.016077e+00 11.565092 6.852941e+01 3.641898e+02
OUT_BYTES 2.675174e+03 18224.711919 1.821111e+05 1.057000e+06
OUT_PKTS 5.241158e+00 16.632160 1.279706e+02 7.235525e+02

Table 5.34. Simargl2022 dataset - Sequential LOF-KNN: mean and standard
deviation for each feature for each class (inliers and outliers).

0.0204 for negative class, respectively. The recall in this sequential ensemble method is
0.9478 for positive class and 0.4736 for negative class. Also in this case the recall is better
than that obtained with the single algorithms. In fact, we have in LOF 0.8957 and 0.2368
and we have in KNN 0.8436 and 0.0263 for the positive and the negative class, respec-
tively. The false positive rate decreases by going from 0.7631, for LOF algorithm, and
0.9736, for the KNN algorithm, to 0.5263 for the sequential ensemble method. Therefore,
the ensemble sequential algorithm, obtained by combining LOF, as first algorithm, and
KNN, as second algorithm, returns a better performance.

As for the previous case, also for the LOF-KNN sequential ensemble method we report,
in the Table 5.34, the mean and the standard deviation for all features and for both classes

61

Experiments

Mean Std
L4_SRC_PORT 3.721415e+04 28874.559311
L4_DST_PORT 1.958500e+02 209.165831
FIRST_SWITCHED 1.647510e+09 4251.535345
FLOW_DURATION_MILLISECONDS 9.015000e+02 2944.806660
LAST_SWITCHED 1.647510e+09 4250.861478
PROTOCOL 4.800000e+00 3.750088
TCP_FLAGS 4.000000e+00 6.223893
TCP_WIN_MAX_IN 6.144000e+02 514.687683
TCP_WIN_MAX_OUT 0.000000e+00 0.000000e+00
TCP_WIN_MIN_IN 6.144000e+02 514.687683
TCP_WIN_MIN_OUT 0.000000e+00 0.000000e+00
TCP_WIN_MSS_IN 5.840000e+02 733.832047
TCP_WIN_SCALE_IN 0.000000e+00 0.000000e+00
TCP_WIN_SCALE_OUT 0.000000e+00 0.000000e+00
SRC_TOS 0.000000e+00 0.000000e+00
DST_TOS 0.000000e+00 0.000000e+00
TOTAL_FLOWS_EXP 3.556613e+08 784101.699549
MIN_IP_PKT_LEN 0.000000e+00 0.000000e+00
MAX_IP_PKT_LEN 0.000000e+00 0.000000e+00
TOTAL_PKTS_EXP 0.000000e+00 0.000000e+00
TOTAL_BYTES_EXP 0.000000e+00 0.000000e+00
IN_BYTES 5.325000e+01 18.367233
IN_PKTS 1.350000e+00 0.587143
OUT_BYTES 2.045000+01 91.455180
OUT_PKTS 5.000000e-02 0.223607

Table 5.35. Simargl2022 dataset- Sequential LOF-KNN: mean and stan-
dard deviation of false positives.

(inliers and outliers). Subsequently, we analyzed anomalous observations that were not
correctly identified, i.e. false positives. Also for these observations we calculated the mean
and standard deviation for all the features whose values are shown in the Table 5.35.

We noticed that three features, “FIRST_SWITCHED”, “LAST_SWITCHED” and
“TOTAL_FLOWS_EXP”, could help to correctly classify these observations. For these
features, as we can see from the histograms shown in the Figure 5.8, the inliers assume
certain values only in correspondence with these false positives, while all the other inliers
assume different and much more frequent values. However, the presence of only these 3
features was not sufficient for the algorithm to classify them correctly.

We can apply the same considerations to the other cases of sequential ensemble methods
reported in the Tables 5.36 and 5.37 obtained by combining as the first algorithm KNN
and as the second algorithm LOF and by combining as the first algorithm RBDA and as
the second algorithm LOF, respectively.

62

Experiments

Figure 5.8. Simargl2022 dataset- Sequential LOF-KNN: histograms of
FIRST_SWITCHED, LAST_SWITCHED and TOTAL_FLOWS_EXP features (inliers
in blue, false positives in orange and outliers in green).

SEQUENTIAL ENSEMBLE: KNN-LOF - METHODS 2
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 301 23 0.9290 0.9804 0.7142 0.3947 0.6052
NC 6 15

Table 5.36. Simargl2022 dataset - sequential-2 ensemble method: the first algorithm
KNN and the second algorithm LOF. β = 0.3, γ = 0.4 and T = 5. Precision and recall
for positive and negative class, false positive rate and confusion matrix.

5.8 Results anomaly detection algorithms: IoT Net-
work Intrusion dataset

For the third dataset, IoT Network Intrusion, the values obtained with the base learners
are shown in the Tables 5.38, 5.39, 5.40, 5.41, 5.42 and 5.43.

63

Experiments

SEQUENTIAL ENSEMBLE: RBDA-LOF - METHODS 1
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 307 12 0.9623 1.0 1.0 0.6842 0.3115
NC 0 26

Table 5.37. Simargl2022 dataset - sequential-1 ensemble method: the first algorithm
RBDA and the second algorithm LOF. β = 0.3. Precision and recall for positive and
negative class, false positive rate and confusion matrix.

LOF
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 277 30 0.9022 0.9022 0.2105 0.2105 0.7894
NC 30 8

Table 5.38. IoT Network Intrusion dataset - LOF algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 20.

COF
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 272 26 0.9127 0.8859 0.2553 0.3157 0.6842
NC 35 12

Table 5.39. IoT Network Intrusion dataset - COF algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 25.

KNN
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 287 28 0.9111 0.9348 0.3333 0.2631 0.7368
NC 20 10

Table 5.40. IoT Network Intrusion dataset - KNN algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 25.

We set k = 20, k = 25, k = 25, k = 10, k = 25 and k = 25 for the LOF, COF, KNN,
RBDA, RADA and LOCI, respectively. We observed that, for IoT Network Intrusion
dataset, the base algorithm KNN achieves the best performance among all the individual
base algorithms.

64

Experiments

RBDA
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 270 36 0.8823 0.8794 0.0512 0.0526 0.9473
NC 37 2

Table 5.41. IoT Network Intrusion dataset - RBDA algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 10.

RADA
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 275 25 0.9166 0.8957 0.2888 0.3421 0.6578
NC 32 13

Table 5.42. IoT Network Intrusion dataset - RADA algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 25.

LOCI
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 305 35 0.8970 0.9934 0.6 0.0789 0.9210
NC 2 3

Table 5.43. IoT Network Intrusion dataset - LOCI algorithm: precision and recall for
positive and negative class, false positive rate and confusion matrix. k = 25.

5.9 Results independent ensemble methods: IoT Net-
work Intrusion dataset

Also for the third dataset, IoT Network Intrusion, we used the maximum score method,
the score averaging method and the majority vote to assemble the base learners and to
build the independent ensemble methods. We have considered all possible combinations
that can be obtained with the 6 basic methods used, but we show only just some of these.

For this dataset it is less evident the improvement of the performances obtained with
the methods of independent ensemble compared with the single algorithms of anomaly
detection. For example, in the case (5.44), we combined, with the maximum score method,
LOF and RADA algorithms. We obtain a precision of 0.9120 and 0.2894 for positive and
negative class, respectively. In the LOF algorithm, the precision, for both classes, is lower
(0.9022 for positive class and 0.2105 for negative class), while in the RADA algorithm we

65

Experiments

ENSEMBLE: LOF-RADA - COMBINATION: MAXIMIZATION
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 280 27 0.9120 0.9120 0.2894 0.2894 0.7105
NC 27 11

Table 5.44. IoT Network Intrusion dataset - independent ensemble method by combining
LOF and RADA algorithms with the maximum score: precision and recall for positive
and negative class, false positive rate and confusion matrix.

ENSEMBLE: KNN-RADA - COMBINATION: MAJORITY VOTE
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 293 30 0.9071 0.9543 0.3636 0.2105 0.7894
NC 14 8

Table 5.45. IoT Network Intrusion dataset - independent ensemble method by combining
KNN and RADA algorithms with the majority vote: precision and recall for positive and
negative class, false positive rate and confusion matrix.

ENSEMBLE: LOF-COF - COMBINATION: MAJORITY VOTE
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 294 31 0.9046 0.9576 0.35 0.1842 0.8157
NC 13 7

Table 5.46. IoT Network Intrusion dataset - independent ensemble method by combining
LOF and COF algorithms with the majority vote: precision and recall for positive and
negative class, false positive rate and confusion matrix.

get very similar values (0.9166 and 0.2888 for positive and negative class, respectively).
The recall, in the independent ensemble method, is 0.9120 and 0.2894 for positive and
negative class, respectively. Also in this case the recall values are higher than those
obtained with the LOF algorithm (0.9022 and 0.2105 for positive and negative class), while
in RADA algorithm the recall is greater for negative class (0.3421), but is lower for positive
class (0.8957). The false positive rate is equal to 0.7105 and therefore decreases compared
with the LOF algorithm, whose value is 0.7894, while increases compared with the RADA
algorithm, whose value is 0.6578. Since in this case the improvement is not so evident we
also analyze the confusion matrix. We note that the algorithm RADA correctly classifies
275 inliers and 13 outliers, while the method of independent ensemble correctly classifies
280 inliers and 11 outliers, then we lose 2 outlier but we earn 5 inliers. Therefore, compared

66

Experiments

with the RADA algorithm, we can conclude that there is a small improvement, but it is
not so obvious unlike those obtained with previous datasets. The same considerations can
be made for the other two examples of independent ensemble methods reported in Tables
5.45 and 5.46 and obtained by combining KNN and RADA with majority vote technique
and by combining LOF and COF with majority vote technique, respectively.

5.10 Results sequential ensemble methods: IoT Net-
work Intrusion dataset

The sequential ensemble methods implemented for IoT Network Intrusion dataset are
always single-layer type and, like the previous cases, they are “sequential-1 algorithm”
(4.4) and the “sequential-2 algorithm ” (4.5). For both methods, β, i.e. the fraction of
observations of the original dataset D more abnormal for the first algorithm, is always
set to 0.3. In the sequential-2 algorithm is considered a percentage γ = 0.4 from Dβ to
obtain a sub-sample of Dβ, used in the second step of method to calculate the anomaly
scores of all observation of the entire dataset. This process is repeated T = 5 times.

In the first case of sequential ensemble method (5.47) we implemented the sequential
algorithm 2, using as first algorithm LOF and as second algorithm COF. We can notice
that precision improves and it is 0.9266 and 0.3555 for positive and negative class, respec-
tively. Instead, in LOF algorithm the precision is 0.9022 for positive class and 0.2105 for
negative class. In COF algorithm precision is 0.9127 and 0.2553 for positive and negative
class, respectively. The recall in this sequential ensemble method is 0.9055 for positive
class and 0.4210 for negative class. Also in this case the recall is better than that ob-
tained with the single algorithms, in fact we have in LOF 0.9022 and 0.2105 and in COF
0.8859 and 0.3157 for positive and negative class, respectively. The false positive rate
decreases by going from 0.7894, for LOF algorithm, and 0.6842, for the COF algorithm,
to 0.5789. Therefore, the ensemble sequential method, obtained by combining LOF and
COF, returns better performance.

In the second case (5.48) we implemented the sequential algorithm 1, using as first
algorithm RBDA and as second algorithm COF. The precision improves and it is 0.9395
and 0.4255 for positive and negative class, respectively. Instead, in RBDA algorithm the
precision is 0.8823 for positive class and 0.0512 for negative class. In COF algorithm the
precision is 0.9127 and 0.2553 for positive and negative class, respectively. The recall of
ensemble method is 0.9120 for positive class and 0.5263 for negative class. Also in this
case the recall is better than that obtained with the single algorithms, in fact we have in
RBDA 0.8794 and 0.0526 and in COF 0.8859 and 0.3157 for positive and negative class,
respectively.

67

Experiments

SEQUENTIAL ENSEMBLE: LOF-COF - METHODS 2
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 278 22 0.9266 0.9055 0.3555 0.4210 0.5789
NC 29 16

Table 5.47. IoT Network Intrusion dataset - sequential-2 ensemble method: the first
algorithm LOF and the second algorithm COF. β = 0.3, γ = 0.4 and T = 5. Precision
and recall for positive and negative class, false positive rate and confusion matrix.

SEQUENTIAL ENSEMBLE: RBDA-COF - METHODS 1
Confusion Matrix Precision PC Recall PC Precision NC Recall NC FPR

PC NC
PC 280 18 0.9395 0.9120 0.4255 0.5263 0.4736
NC 27 20

Table 5.48. IoT Network Intrusion dataset - sequential-1 ensemble method: the first
algorithm RBDA and the second algorithm COF. β = 0.3, γ = 0.4 and T = 5. Precision
and recall for positive and negative class, false positive rate and confusion matrix.

The false positive rate decreases by going from 0.9473, for RBDA algorithm, and
0.6842, for the COF algorithm, to 0.4736. Then, with the ensemble sequential method,
obtained by combining RBDA and COF, we have better performance than those of the
base learners with which it is built.

As for the experiments conducted on previous datasets, we analyzed the features both
for the observations classified, by the RBDA-COF sequential ensemble method, as inliers
and for those classified as outliers. Then, we computed the mean and standard deviation
for both inliers and outliers. The values obtained, for each feature and for each class, are
shown in the Table 5.49.
We can see that for some features, as “Bwd_Pkt_Len_Max” and “Subflow_Fwd_Byts”,

the values obtained for the two classes are different, while for other features, such as
“Down/Up_Ratio” and “Fwd_Header_Len”, the values are very similar. Also, we noticed
that the third dataset, IoT Network Intrusion, has, for the “Pkt_Len_Mean” feature and
for the “Pkt_Size_Avg” feature, the histograms report in the Figure 5.9 and compared
to the other features they had a slightly more particular behavior. For this reason we
wondered how values were classified by the sequential ensemble method RBDA-COF. We
observed that the most frequent value for both features, i.e. 0, is present in both classes,
while other values more frequent are present only in the inlier class.

Furthermore, as we can see from the histograms in the Figure 5.10, outliers are mainly
concentrated between 0 and 50, for “Pkt_Len_Mean” feature, and between 0 and 100, for

68

Experiments

Mean_Inliers Std_Inliers Mean_Outliers Std_Outliers
Src_Port 13138.4161 13899.1922 41819.0000 19225.3668
Dst_Port 44950.6812 13919.6625 14324.4893 15347.1981
Flow_Duration 320.0402 146.0371 331.6382 302.7305
Tot_Fwd_Pkts 1.2449 1.2487 1.7234 1.6511
Tot_Bwd_Pkts 1.6442 1.0021 1.1702 0.3798
TotLen_Fwd_Pkts 1332.3557 1483.4522 63.6808 135.1633
TotLen_Bwd_Pkts 1225.0335 992.7757 33.5531 97.8018
Fwd_Pkt_Len_Max 810.9530 682.8264 54.0638 132.2028
Fwd_Pkt_Len_Min 512.6845 657.0177 54.0638 132.2028
Fwd_Pkt_Len_Mean 690.0061 618.2730 54.0638 132.2028
Fwd_Pkt_Len_Std 186.8079 354.0427 0.0000 0.0000
Bwd_Pkt_Len_Max 1048.0704 600.2487 33.1276 97.7277
Bwd_Pkt_Len_Min 965.5033 641.0247 32.1489 97.8530
Bwd_Pkt_Len_Mean 1005.9745 601.8574 32.1489 97.7617
Bwd_Pkt_Len_Std 54.3013 214.3828 0.6920 3.3475
Flow_Pkts/s 11290.0568 6113.4917 27282.8664 59978.5615
Flow_IAT_Mean 195.2819 117.7501 264.0930 316.6240
Flow_IAT_Std 41.7556 60.8529 18.6176 45.1608
Flow_IAT_Max 232.5604 123.3404 285.0638 311.7255
Flow_IAT_Min 165.8053 128.3912 252.8297 322.4592
Flow_IAT_Tot 87.3959 128.3338 70.8936 128.7559
Fwd_IAT_Mean 62.1381 92.6493 36.1697 59.0200
Fwd_IAT_Std 7.8903 23.2014 18.9092 55.2197
Fwd_IAT_Max 68.8288 99.8002 50.1914 93.8761
Fwd_IAT_Min 56.5503 89.1534 22.9148 34.3497
Bwd_IAT_Tot 124.6711 188.8637 100.7659 322.9169
Bwd_IAT_Mean 85.6669 144.5583 100.7659 322.9169
Bwd_IAT_Std 16.6363 47.1440 0.0000 0.0000
Bwd_IAT_Max 101.9026 161.0703 100.7659 322.9169
Bwd_IAT_Min 74.7953 140.6629 100.7659 322.9169
Fwd_Header_Len 39.4765 40.0672 42.7234 44.7610
Bwd_Header_Len 52.1744 32.2836 29.7872 15.3522
Fwd_Pkts/s 4430.5068 4097.2335 16922.3049 40656.5121
Bwd_Pkts/s 6859.5500 6007.9881 10360.5614 21228.5889
Pkt_Len_Min 587.2483 670.9253 32.1489 97.8530
Pkt_Len_Max 1059.7181 594.7591 55.4680 131.7949
Pkt_Len_Mean 926.9939 557.6641 39.0709 99.6490
Pkt_Len_Std 235.9366 319.2657 12.6733 52.0268
Pkt_Len_Var 157254.6922 225698.0416 2809.8156 13066.0836
Down/Up_Ratio 0.2818 0.5135 0.4680 0.5457
Pkt_Size_Avg 1282.3194 787.0066 57.2529 149.2503
Fwd_Seg_Size_Avg 690.0061 618.2730 54.0638 132.2028
Bwd_Seg_Size_Avg 1005.9745 601.8574 32.6382 97.7617
Subflow_Fwd_Pkts 1.2449 1.2487 1.7234 1.6511
Subflow_Fwd_Byts 1332.3557 1483.4522 63.6808 135.1633
Subflow_Bwd_Pkts 1.6442 1.0021 1.1702 0.3798
Subflow_Bwd_Byts 1225.0335 992.7757 33.5531 97.8018
Init_Bwd_Win_Byts 10607.8590 13886.3328 18373.5744 15261.9905
Fwd_Act_Data_Pkts 1.2248 1.2498 0.6808 1.3847
Active_Mean 0.0000 0.0000 0.0000 0.0000
Active_Std 0.0000 0.0000 0.0000 0.0000
Active_Max 0.0000 0.0000 0.0000 0.0000
Active_Min 0.0000 0.0000 0.0000 0.0000
Idle_Mean 195.2819 117.7501 246.3483 318.5221
Idle_Std 41.7556 60.8529 18.6176 45.1608

Table 5.49. IoT Network Intrusion dataset- Sequential RBDA-COF : mean and
standard deviation of for each feature for each class (inliers and outliers).

69

Experiments

Figure 5.9. IoT Network Intrusion dataset: histogram Pkt_Len_Mean feature and
histogram Pkt_Size_Avg feature.

Figure 5.10. IoT Network Intrusion dataset - Sequential RBDA-
COF: histograms of Pkt_Len_Mean and Pkt_Size_Avg features (inliers in
blue, outliers in orange).

“Pkt_Size_Avg” feature. We tried to analyze why the method identified 18 observations

70

Experiments

Mean Std Mean Std
Src_Port 32579.3333 25846.9464 Bwd_IAT_Max 36.6111 49.9259
Dst_Port 23576.7222 20723.1789 Bwd_IAT_Min 35.7222 49.0927
Flow_Duration 116.2777 41.5023 Fwd_Header_Len 16.6666 18.5218
Tot_Fwd_Pkts 0.6666 0.5940 Bwd_Header_Len 41.5555 24.8151
Tot_Bwd_Pkts 1.4444 0.6156 Fwd_Pkts/s 6009.3453 5694.0766
TotLen_Fwd_Pkts 871.3333 826.2097 Bwd_Pkts/s 14170.7434 7680.7853
TotLen_Bwd_Pkts 1969.6666 694.5346 Pkt_Len_Min 1265.2222 389.3626
Fwd_Pkt_Len_Max 794.2222 691.8322 Pkt_Len_Max 1421.5555 26.9928
Fwd_Pkt_Len_Min 794.2222 691.8322 Pkt_Len_Mean 1375.7314 112.2899
Fwd_Pkt_Len_Mean 794.2222 691.8322 Pkt_Len_Std 84.4234 205.0702
Fwd_Pkt_Len_Std 0.0000 0.0000 Pkt_Len_Var 46844.7962 125197.6511
Bwd_Pkt_Len_Max 1421.5555 26.9928 Down/Up_Ratio 0.5555 0.5113
Bwd_Pkt_Len_Min 1346.1111 329.4588 Pkt_Size_Avg 2041.0370 205.8302
Bwd_Pkt_Len_Mean 1396.4074 117.8954 Fwd_Seg_Size_Avg 794.2222 691.8322
Bwd_Pkt_Len_Std 43.5578 184.8003 Bwd_Seg_Size_Avg 1396.4074 117.8954
Flow_Pkts/s 20180.0888 6419.6223 Subflow_Fwd_Pkts 0.6666 0.5940
Flow_IAT_Mean 107.8055 40.9343 Subflow_Fwd_Byts 871.3333 826.2097
Flow_IAT_Std 0.6678 2.6620 Subflow_Bwd_Pkts 1.4444 0.6156
Flow_IAT_Max 108.2777 40.6314 Subflow_Bwd_Byts 1969.6666 694.5346
Flow_IAT_Min 107.3333 41.3208 Init_Bwd_Win_Byts 809.0555 861.0681
Flow_IAT_Tot 4.0000 16.9705 Fwd_Act_Data_Pkts 0.6666 0.5940
Fwd_IAT_Mean 4.0000 16.9705 Active_Mean 0.0000 0.0000
Fwd_IAT_Std 0.0000 0.0000 Active_Std 0.0000 0.0000
Fwd_IAT_Max 4.0000 16.9705 Active_Max 0.0000 0.0000
Fwd_IAT_Min 4.0000 16.9705 Active_Min 0.0000 0.0000
Bwd_IAT_Tot 40.6111 56.7088 Idle_Mean 107.8055 40.9343
Bwd_IAT_Mean 36.1666 49.4751 Idle_Std 0.6678 2.6620
Bwd_IAT_Std 0.6285 2.6666

Table 5.50. IoT Network Intrusion dataset- Sequential RBDA-COF : mean and
standard deviation of false positives.

as inliers but in reality they were outliers. To do this, we first calculated the mean and
standard deviation of these false positives, report in the Table 5.50.

Then, we analyzed the individual features using histogram plots. Also in this case
we noticed that most of the features assumed, in correspondence with these observa-
tions, values present in both classes. The only features that could help classify some
of these observations correctly were “Src_Port”, “Dst_Port”, “Fwd_Header_Len” and
“Bwd_Header_Len”. In fact, as we can see from the histograms shown in the Figure 5.11,
the some inliers assume specific values only in correspondence with these false positives,
while other outliers assume the same value. This could help understand that the behavior
of these observations differed from that of the inliers.

71

Experiments

Figure 5.11. IoT Network Intrusion dataset- Sequential RBDA-COF: his-
tograms of Src_Port, Dst_Port, Fwd_Header_Len and Bwd_Header_Len features (in-
liers in blue, false positives in orange and outliers in green).

72

Chapter 6

Conclusion

Anomaly detection problems are really important in many areas and increasingly studied.
The anomalies are characterized by different patterns then the rest of the observations
of the dataset and tendentially, the techniques of anomaly detection identify quite well
a specific type of anomaly, but real datasets are often characterized by different types of
anomalies. Therefore, such algorithms often fail because they are not able to correctly
identify a large number of outliers. The anomaly detection algorithms described in this
work, as we have seen, are classified in rank-based, distance-based and density-based. The
algorithms belonging to the first group that we analyzed are RBDA and RADA, those be-
longing to the second group are KNN and LOCI, while those belonging to the third group
are LOF and COF. To overcome the problem of the presence of different types of anoma-
lies we considered the ensemble methods. These methods are constructed using multiple
algorithms. In particular, different algorithms return an anomaly score for each observa-
tion and the results are then combined with various techniques obtaining a final decision
for each observation that is taken jointly by all the considered algorithms. The ensemble
methods that we have analyzed and implemented are categorized into independent and
sequential. In independent methods, algorithms are supposed to be independent of each
other even if this assumption is not entirely realistic. Then, each algorithm, applied to the
entire dataset, returns a vector with anomaly scores of observations. Subsequently, using
a combination technique, such as mean or maximum of anomaly scores and majority vote,
these vectors are combined to obtain a vector containing the final anomaly score for each
observation. In sequential methods there is instead a dependence between the different
learning sequences and therefore between the various components. This dependence de-
creases with increasing randomness even if it does not disappear completely because the
basic algorithms are perturbations of the same general idea. Randomness is due to the
choice of random sub samples used as datasets on which algorithms are applied in the

73

Conclusion

various iterations. Sequential methods, as we have seen, can be single-layer or multi-layer.
In single-layer, the output of the first algorithm, applied to the entire dataset, is the input
of the next algorithm and the sequence proceeds in this way. In multi-layer methods, pre-
vious ensemble methods generate intermediate results that are then combined by another
algorithm to obtain the final decision. A key characteristic of ensemble methods is that
the algorithms used must be very different from each other because different algorithms
will make different errors, therefore combining them, they tend to correct the errors of
others. In the fifth chapter, in which the experiments carried out are reported, the two
key points of this work are highlighted. In fact, for all three datasets that we used in
the experiments, we demonstrated that it is possible to build ensemble methods, both
sequential single-layer and independent, which return better performances than the base
anomaly detection learners with which they are implemented, i.e. they more accurately
identify both anomalies and inliers. The other key point we showed is that the best en-
semble methods are those obtained using algorithms belonging to different classes, as we
expected. Moreover, experiments have shown that the best ensemble methods are sequen-
tial. In fact, in the second layer of these methods we didn’t use the entire dataset, but a
sub sample composed of 30% of the observations that the first algorithm of the sequence
considered more abnormal.

Therefore, using a new dataset formed by the most abnormal observations decreases
the dependency between the components and helps the next algorithm to better detect
anomalies, i.e. to obtain better performances. Therefore, we have shown that ensemble
methods detect anomalies better than individual anomaly detection algorithms. However,
we have noticed that some anomalous observations are not correctly identified. This
happens because such ensemble methods fail to identify anomalies when most features
assume values present in both classes or characteristic of inliers. In this case the few
features with a different patterns are not enough to correctly identify the anomalies.

74

Appendix A

Features dataset

Features KDD CUP 99 dataset
feature name description type

duration length (number of seconds) of connection C
protocol_type type of the protocol D
src_bytes number of data bytes from source to destination C
dst_bytes umber of data bytes from destination to source C
land 1 if connection is from/to the same host/port; 0 otherwise D
wrong_fragment number of "wrong" fragments D
urgent number of urgent packets C
hot number of "hot" indicators C
num_failed_logins number of failed login attempts C
logged_in 1 if successfully logged in; 0 otherwise D
num_compromised number of "compromised" conditions C
root_shell 1 if root shell is obtained; 0 otherwise D
su_attempted 1 if "su root" command attempted; 0 otherwise D
num_root number of "root" access C
num_file_creations number of file creation operations C
num_shells number of shell prompts C
num_access_files number of operations on access control files C
is_guest_login 1 if the login is a "guest" login; 0 otherwise D
count number of connections to the same host as the current con-

nection in the past two seconds
C

Table A.1. Name, description and type of features of KDD CUP 99 dataset
used in the experiments.

75

Features dataset

Features KDD CUP 99 dataset
feature name description type

srv_count number of connections to same service as current connection
in past two seconds

C

serror_rate % of connections that have "SYN" errors C
srv_serror_rate % of connections that have ‘SYN’ errors C
rerror_rate % of connections that have R̈EJ" errors C
srv_rerror_rate % of connections that have R̈EJ" errors C
same_srv_rate % of connections to the same service C
diff_srv_rate % of connections to different services C
srv_diff_host_rate % of connections to different hosts C
dst_host_count count of connections having same dst host C
dst_host_srv_count count of connections having same dst host and using same

service
C

dst_host_same_srv_rate % of connections having same dst port and using same ser-
vice

C

dst_host_diff_srv_rate % of different services on current host C
dst_host_same_src_port_rate % of connections to current host having same src port C
dst_host_srv_diff_host_rate % of connections to same service coming from diff. hosts C
dst_host_serror_rate % of connections to current host that have an S0 error C
dst_host_srv_serror_rate % of connections to current host and specified service that

have an S0 error
C

dst_host_rerror_rate % of connections to current host that have an RST error C
dst_host_srv_rerror_rate % of connections to the current host and specified service

that have an RST error
C

label normal or name of attack D

Table A.2. Name, description and type of features of KDD CUP 99 dataset
used in the experiments.

Deleted features of KDD CUP 99 dataset
feature name description type

service network service on the destination D
flag normal or error status of connection D
num_outbound_cmds number of outbound commands in an ftp session C
is_hot_login 1 if the login belongs to the "hot" list; 0 otherwise D

Table A.3. Name, description and type of deleted features of KDD CUP 99 dataset.

76

Features dataset

Features Simargl2022 dataset
feature name description type

FLOW_ID Unique ID C
L4_SRC_PORT Source Port C
L4_DST_PORT Destination Port C
FIRST_SWITCHED Time of appearance of the first flow C
FLOW_DURATION_MILLISECONDS Duration of flow expressed in milliseconds C
LAST_SWITCHED Time of the last packet C
PROTOCOL Protocol flag C
TCP_FLAGS Number of TCP flags C
TCP_WIN_MAX_IN Maximum incoming TCP window size C
TCP_WIN_MAX_OUT Maximum outgoing TCP window size C
TCP_WIN_MIN_IN Minimum incoming TCP window size C
TCP_WIN_MIN_OUT Minimum outgoing TCP window size C
TCP_WIN_MSS_IN Incoming TCP segment size C
TCP_WIN_SCALE_IN Incoming TCP scale size C
TCP_WIN_SCALE_OUT Outgoing TCP scale size C
SRC_TOS Sets the service type byte on entry to the in-

coming interface
C

DST_TOS Sets the service type byte on outgoing on the
incoming interface

C

TOTAL_FLOWS_EXP Total number of exported flows C
MIN_IP_PKT_LEN The smallest length of the observed packet C
MAX_IP_PKT_LEN The largest length of the observed packet C
TOTAL_PKTS_EXP Total number of exported packet C
TOTAL_BYTES_EXP Total number of exported bytes C
IN_BYTES Number of incoming bytes C
IN_PKTS Number of incoming packets C
OUT_BYTES Outgoing bytes C
OUT_PKTS Outgoing packets C
ALERT None if is inlier, PortScanning if is outlier D

Table A.4. Name, description and type of features of Simargl2022 dataset
used in the experiments.

Deleted features of Simargl2022 dataset
feature name description type

PROTOCOL_MAP Name of protocol D
IPV4_SRC_ADDR Source IP V4 adress D
IPV4_DST_ADDR Destination IP V4 address D
ANALYSIS_TIMESTAMP Timestamp C

Table A.5. Name, description and type of deleted features of Simargl2022 dataset.

77

Features dataset

Features of IoT Network Intrusion dataset
feature name description type feature name description type

Src_Port Source Port Num-
ber

C Dst_Port Destination Port
Number

C

Flow_Duration Duration of the
flow in Microsec-
ond

C Tot_Fwd_Pkts Tot packets in the
fwd direction

C

Tot_Bwd_Pkts Tot packets in the
bwd direction

C TotLen_Fwd_Pkts Tot-size of packet
in fwd direction

C

TotLen_Bwd_Pkts Tot-size of packet
in bwd direction

C Fwd_Pkt_Len_Max Max-size of packet
in fwd direction

C

Fwd_Pkt_Len_Min Min-size of packet
in fwd direction

C Fwd_Pkt_Len_Mean Mean size of
packet in fwd
direction

C

Fwd_Pkt_Len_Std Std-size of packet
in fwd direction

C Bwd_Pkt_Len_Max Max-size of packet
in bwd direction

C

Bwd_Pkt_Len_Min Min-size of packet
in backward direc-
tion

C Bwd_Pkt_Len_Mean Mean-size of
packet in bwd
direction

C

Bwd_Pkt_Len_Std Std-size of packet
in bwd direction

C Flow_Pkts/s # of flow packets
per second

C

Flow_IAT_Mean Mean-time btw.
two packets sent
in the flow

C Flow_IAT_Std Std-time btw. two
packets sent in the
flow

Flow_IAT_Max Max-time btw.
two packets sent
in the flow

C Flow_IAT_Min Min-time btw. two
packets sent in the
flow

C

Fwd_IAT_Tot Tot-time btw. two
packets sent in the
fwd direction

C Fwd_IAT_Mean Mean-time btw.
two packets sent in
the fwd direction

C

Fwd_IAT_Std Std-time btw. two
packets sent in the
fwd direction

C Fwd_IAT_Max Max-time btw.
two packets sent
in the fwd direc-
tion

C

Fwd_IAT_Min Min-time btw. two
packets sent in the
fwd direction

C Bwd_IAT_Tot Tot-time btw. two
packets sent in the
bwd direction

C

Bwd_IAT_Mean Mean-time btw.
two packets sent in
the bwd direction

C Bwd_IAT_Std Std-time btw. two
packets sent in the
bwd direction

C

Bwd_IAT_Max Max-time btw.
two packets sent
in the bwd direc-
tion

C Bwd_IAT_Min Min-time btw. two
packets sent in the
bwd direction

C

Fwd_PSH_Flags # of times the
PSH flag was set
in packets travel-
ling in the fwd di-
rection

D Fwd_Header_Len Tot bytes used for
headers in the fwd
direction

C

Bwd_Header_Len Tot bytes used for
headers in the bwd
direction

C Fwd_Pkts/s # of fwd packets
per second

C

Table A.6. Name, description and type of features of IoT Network Intrusion
dataset used in the experiments. 78

Features dataset

Features of IoT Network Intrusion dataset
feature name description type feature name description type

Bwd_Pkts/s # of bwd packets
per second

C Pkt_Len_Min Min lgth of a
packet

C

Pkt_Len_Max Max lgth of a
packet

C Pkt_Len_Mean Mean lgth of a
packet

C

Pkt_Len_Std Std lgth of a
packet

C Pkt_Len_Var Variance lgth of a
packet

C

FIN_Flag_Cnt # of packets with
FIN

D SYN_Flag_Cnt # of packets with
SYN

D

RST_Flag_Cnt # of packets with
RST

D PSH_Flag_Cnt # of packets with
PUSH

D

ACK_Flag_Cnt # of packets with
ACK

D URG_Flag_Cnt # of packets with
URG

D

ECE_Flag_Cnt # of packets with
ECE

D Down/Up_Ratio Down/up-load
ratio

C

Pkt_Size_Avg Avg size of packet C Fwd_Seg_Size_Avg Avg size observed
in the fwd direc-
tion

C

Bwd_Seg_Size_Avg Avg # of bytes
bulk rate in the
bwd direction

C Subflow_Fwd_Pkts The avg # of
packets in a sub
flow in the fwd
direction

C

Subflow_Fwd_Byts The avg # of
bytes in a sub
flow in the fwd
direction

C Subflow_Bwd_Pkts The avg # of
packets in a sub
flow in the bwd
direction

C

Subflow_Bwd_Byts The avg # of
bytes in a sub
flow in the bwd
direction

C Init_Fwd_Win_Byts The tot # of
bytes sent in ini-
tial window in
the fwd direction

C

Init_Bwd_Win_Byts The tot # of
bytes sent in ini-
tial window in
the bwd direction

C Fwd_Act_Data_Pkts Count of pack-
ets with at least
1 byte of TCP
data payload in
the fwd direction

C

Fwd_Seg_Size_Min Min segment size
observed in the
fwd direction

C Active_Mean Mean time a flow
was active before
becoming idle

C

Active_Std Std time a flow
was active before
becoming idle

C Active_Max Max time a flow
was active before
becoming idle

C

Active_Min Min time a flow
was active before
becoming idle

C Idle_Mean Mean time a flow
was idle before
becoming active

C

Idle_Std Std time a flow
was idle before
becoming active

C Idle_Max Max time a flow
was idle before
becoming active

C

Idle_Min Min time a flow
was idle before
becoming active

C Label Anomaly or Nor-
mal

D

Table A.7. Name, description and type of features of IoT Network Intrusion
dataset used in the experiments.

79

Features dataset

Deleted features of IoT Network Intrusion dataset
feature name description type feature name description type

Protocol Internet Protocol
used

D Timestamp Timestamp of
the packet

D

Flow_Byts/s Number of flow
bytes per second

C Bwd_PSH_Flags Number of times
the PSH flag was
set in packets
travelling in the
backward direc-
tion (0 for UDP)

D

Fwd_URG_Flags Number of times
the URG flag was
set in packets
travelling in the
forward direction
(0 for UDP)

D Bwd_URG_Flags Number of times
the URG flag
was set in pack-
ets travelling in
the backward
direction (0 for
UDP)

D

CWE_Flag_Count Number of pack-
ets with CWE

D Fwd_Byts/b_Avg Average number
of bytes bulk rate
in the forward di-
rection

C

Fwd_Pkts/b_Avg Average number
of packets bulk
rate in the for-
ward direction

C Fwd_Blk_Rate_Avg Average number
of bulk rate in
the forward di-
rection

C

Bwd_Byts/b_Avg Total size of
packet in forward
direction

C Bwd_Pkts/b_Avg Average number
of bytes bulk rate
in the backward
direction

C

Bwd_Blk_Rate_Avg Average number
of packets bulk
rate in the back-
ward direction

C Flow_ID Flow Identifier C

Src_IP Source IP Ad-
dress

C Dst_IP Destination IP
Address

C

Sub_Cat Sub-category of
attack or Normal

D Cat Category of at-
tack or Normal

D

Table A.8. Name, description and type of deleted features of IoT Network Intrusion dataset.

80

Bibliography

[1] Charu C Aggarwal. Outlier ensembles: position paper. ACM SIGKDD Explorations
Newsletter, 14(2):49–58, 2013.

[2] Preeti Aggarwal and Sudhir Kumar Sharma. Analysis of kdd dataset attributes-class
wise for intrusion detection. Procedia Computer Science, 57:842–851, 2015.

[3] Stephen D Bay, Dennis Kibler, Michael J Pazzani, and Padhraic Smyth. The uci
kdd archive of large data sets for data mining research and experimentation. ACM
SIGKDD explorations newsletter, 2(2):81–85, 2000.

[4] Silvia Cateni, Valentina Colla, and Marco Vannucci. A fuzzy system for combining
different outliers detection methods. In Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications, AIA, volume 2009, pages 87–
93, 2009.

[5] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A sur-
vey. ACM Comput. Surv., 41, 07 2009. doi:10.1145/1541880.1541882.

[6] Alvin Chiang, Esther David, Yuh-Jye Lee, Guy Leshem, and Yi-Ren Yeh. A study
on anomaly detection ensembles. Journal of Applied Logic, 21:1–13, 2017.

[7] Anjum Farah. Cross Dataset Evaluation for IoT Network Intrusion Detection. PhD
thesis, The University of Wisconsin-Milwaukee, 2020.

[8] Yasir Hamid, Veeran Ranganathan Balasaraswathi, Ludovic Journaux, and Muthuku-
marasamy Sugumaran. Benchmark datasets for network intrusion detection: A re-
view. Int. J. Netw. Secur., 20(4):645–654, 2018.

[9] Douglas M. Hawkins. Identification of outliers / D.M. Hawkins. Chapman and Hall
London ; New York, 1980.

[10] Huaming Huang. Rank based anomaly detection algorithms. PhD thesis, Syracuse
University, 2013.

81

https://doi.org/10.1145/1541880.1541882

BIBLIOGRAPHY

[11] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. Survey
of intrusion detection systems: techniques, datasets and challenges. Cybersecurity,
2(1):1–22, 2019.

[12] Edwin M Knox and Raymond T Ng. Algorithms for mining distance based outliers
in large datasets. In Proceedings of the international conference on very large data
bases, pages 392–403. Citeseer, 1998.

[13] Tomáš Krutý. Ensembles for anomaly detection [online], 2018 [cit. 2022-10-05]. SU-
PERVISOR : Lubomír Popelínský. URL: https://is.muni.cz/th/jy4vf/.

[14] Chilukuri K. Mohan Mehrotra, Kishan G. and HuaMing Huang. Anomaly Detec-
tion Principles and Algorithms.(1st ed.2017). Terrorism, Security, and Computation.
Cham : Springer International Publishing : Imprint: Springer, 2017.

[15] Ibomoiye Domor Mienye and Yanxia Sun. A survey of ensemble learning: Concepts,
algorithms, applications, and prospects. IEEE Access, 10:99129–99149, 2022. doi:
10.1109/ACCESS.2022.3207287.

[16] Maria-Elena Mihailescu, Darius Mihai, Mihai Carabas, Mikołaj Komisarek, Marek
Pawlicki, Witold Hołubowicz, and Rafał Kozik. The proposition and evaluation of
the roedunet-simargl2021 network intrusion detection dataset. Sensors, 21(13), 2021.
URL: https://www.mdpi.com/1424-8220/21/13/4319, doi:10.3390/s21134319.

[17] D.S. Moore and G.P. McCabe. Introduction to the Practice of Statistics. Introduction
to the Practice of Statistics. W.H. Freeman, 1999. URL: https://books.google.
it/books?id=-_DEQgAACAAJ.

[18] Keith Noto, Carla Brodley, and Donna Slonim. Frac: a feature-modeling approach
for semi-supervised and unsupervised anomaly detection. Data mining and knowledge
discovery, 25:109–133, 2012.

[19] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B Gibbons, and Christos Faloutsos.
Loci: Fast outlier detection using the local correlation integral. In Proceedings 19th
international conference on data engineering (Cat. No. 03CH37405), pages 315–326.
IEEE, 2003.

[20] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for
mining outliers from large data sets. In Weidong Chen, Jeffrey F. Naughton, and
Philip A. Bernstein, editors, Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, pages
427–438. ACM, 2000. doi:10.1145/342009.335437.

82

https://is.muni.cz/th/jy4vf/
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://www.mdpi.com/1424-8220/21/13/4319
https://doi.org/10.3390/s21134319
https://books.google.it/books?id=-_DEQgAACAAJ
https://books.google.it/books?id=-_DEQgAACAAJ
https://doi.org/10.1145/342009.335437

BIBLIOGRAPHY

[21] Ralf C Staudemeyer and Christian W Omlin. Extracting salient features for network
intrusion detection using machine learning methods. South African computer journal,
52(1):82–96, 2014.

[22] Salvatore Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip Chan. Cost-
based modeling and evaluation for data mining with application to fraud and intrusion
detection: Results from the jam project. 09 1999.

[23] Salvatore J Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K Chan.
Cost-based modeling for fraud and intrusion detection: Results from the jam project.
In Proceedings DARPA Information Survivability Conference and Exposition. DIS-
CEX’00, volume 2, pages 130–144. IEEE, 2000.

[24] Pei Sun. Outlier detection in high dimensional, spatial and sequential data sets.
Citeseer, 2006.

[25] Imtiaz Ullah and Qusay H Mahmoud. A scheme for generating a dataset for anoma-
lous activity detection in iot networks. In Advances in Artificial Intelligence: 33rd
Canadian Conference on Artificial Intelligence, Canadian AI 2020, Ottawa, ON,
Canada, May 13–15, 2020, Proceedings 33, pages 508–520. Springer, 2020.

[26] M.Sri Vidya and G. R. Sakthidharan. Accurate anomaly detection using various
machine learning methods for iot devices in indoor environment. In 2021 Fifth In-
ternational Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)
(I-SMAC), pages 308–316, 2021. doi:10.1109/I-SMAC52330.2021.9640962.

[27] Yasmen Wahba, Ehab ElSalamouny, and Ghada ElTaweel. Improving the perfor-
mance of multi-class intrusion detection systems using feature reduction. arXiv
preprint arXiv:1507.06692, 2015.

[28] Zhiruo Zhao. Ensemble methods for anomaly detection. PhD thesis, Syracuse Uni-
versity, 2017.

[29] Tommaso Zoppi, Andrea Ceccarelli, and Andrea Bondavalli. On algorithms selection
for unsupervised anomaly detection. In 2018 IEEE 23rd Pacific Rim International
Symposium on Dependable Computing (PRDC), pages 279–288, 2018. doi:10.1109/
PRDC.2018.00050.

83

https://doi.org/10.1109/I-SMAC52330.2021.9640962
https://doi.org/10.1109/PRDC.2018.00050
https://doi.org/10.1109/PRDC.2018.00050

Acknowledgements

Before proceeding with the discussion, I would like to dedicate a few lines to all those who
have supported me during my university career and thesis writing.

First of all, I would like to thank my supervisor Gianluca Mastrantonio for his valuable
advice, that were fundamental for the writing of this work, and for his availability. I thank
my Tutor Francesco Saracco for his precious help in conducting the research, which is the
subject of my thesis, at the Data Reply company.

I am infinitely grateful to my parents, who have always motivated me to give my best.
Thank you for the support you gave me, especially in times of discouragement, thank
you for allowing me to undertake this path. Special thanks to my sister Chiara, my half,
my greatest point of reference, and to my brother Dario, for always taking care of me. I
thank Matteo, for having believed in me, always transmitting me an immense strength,
helping me and enduring my mood swings. I thank all my large family for being by my
side at all times. I thank my aunt Giovanna, hinge of my family, and my aunt Ninetta,
an example of patience and kindness. Thanks to the little men and the princesses of my
life, Tommaso, Gioele, Adele, Davide and Elsa who with your spontaneity have always
snatched a smile from my lips. Thanks to my best friend Paola for supporting me and
listening when I needed it. Thanks to my roommates Federica and Marta and my dear
friend Sara because they have been my second family in these years away from home.
Thanks to my colleagues, especially Gioana, with whom I spent days and nights studying,
but also leisure moments. Finally, a heartfelt thanks to my grandparents, who today
cannot be here with me, but I am sure they are watching me from up there.

84

	List of Tables
	List of Figures
	Introduction
	Anomalies
	Anomaly Detection
	Distance Based Anomaly Detection Approaches
	Distance Based-Outlier Algorithm
	Local Correlation Integral (LOCI) Algorithm
	Resolution-Based Outlier Detection Algorithm
	Nearest Neighbor Algorithm

	Density Based Anomaly Detection Approaches
	Local Outlier Factor (LOF) Algorithm
	Connectivity-based Outlier Factor (COF) Algorithm
	INFLuential measure of Outlierness by symmetric relationship (INFLO) Algorithm

	Rank Based Anomaly Detection Approaches
	Rank Based Detection Algorithm
	Rank with Averaged Distance Algorithm

	Ensemble Methods for Anomaly Detection
	Independent Ensemble Methods for Anomaly Detection
	Sequential Ensemble Methods for Anomaly Detection
	Sequential ensemble method with two algorithms
	Sub-sampling and Sequential Method

	Experiments
	Metrics for Measurement
	Results anomaly detection algorithms: KDD CUP 99 dataset
	Results independent ensemble methods: KDD CUP 99 dataset
	Results sequential ensemble methods: KDD CUP 99 dataset
	Results anomaly detection algorithms: Simargl-2022 dataset
	Results independent ensemble methods: Simargl-2022 dataset
	Results sequential ensemble methods: Simargl-2022 dataset
	Results anomaly detection algorithms: IoT Network Intrusion dataset
	Results independent ensemble methods: IoT Network Intrusion dataset
	Results sequential ensemble methods: IoT Network Intrusion dataset

	Conclusion
	Features dataset

