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Summary

Credit risk is one of the most important types of risk that any financial institution must

face with. In the financial world, the essence of control relies on how well the model

mimes reality and on the precision of the computational methods used. In this thesis, we

consider the most common credit risk models: “CreditRisk+” of Credit Suisse Financial

Product, and the Gaussian and t-copula models. All of them belong to the Bernoulli

mixture models, used in literature for tractability reasons, and for their generical modeling

approach. We, therefore, focus on Bernoulli mixture models, without loss of generality.

We consider the case of homogeneous portfolios, i.e. exchangeable Bernoulli mixture

model. We aim to quantify the credit risk related to the obligors’ default. To satisfy

this target, we calculate the proper risk metrics as tail loss probability and conditional

loss for the Bernoulli mixture models. The problem relies on how to conduct and set the

simulation to calculate these risk indicators: the naïve Monte Carlo simulation in rare

event settings is problematic as the number of repetitions should increase enormously to

get reliable estimates of metrics. This work proposes to overcome the common pitfall of

the naïve approach, following the new efficient simulation proposed by Bas, oğlu, Hörmann,

and Sak. This innovative algorithm combines the importance sampling based on cross-

entropy, and inner replication using the geometric shortcut, and we apply it to all three

models described. An overview analysis is based on the computation of Value-at-Risk

(VaR) showing the improvements in the benchmark methods for the credit risk models.
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Chapter 1

Introduction to Credit Risk

simulation

Credit is an absolute must in the financial system, affects everyone and drives the global

economy. Credit allows individuals to finance their needs of acquiring a house, car, fur-

niture etc., assists companies to start or expand their business, and enables governments

to finance public interest projects. If managed well, it can build an economy, produce an

efficient allocation of capital and wealth and bring prosperity. The allocation of credit

is performed by financial intermediaries such as commercial and investment banks, sav-

ing and loan associations, insurance companies, mutual funds, pension funds and finance

companies. They are crucial to the healthy functioning of financial markets because of

their role in deciding who gets credit and at which price. Over the past three decades

intermediaries begin to offer increasingly sophisticated products and innovative financial

contracts. However, if their risk is not fully understood, they can lead to devastating

repercussion on the financial system. After the crisis of a German bank (Herstatt Bank),

in 1974 the central bank governors of the Group of Ten countries established the Basel

Committee on Banking Supervision (BCBS). Since the issuance of the first Concordat of

1975, the Committee, constituted by representatives of central banks and banking super-

visory bodies, dictated international standards which aim is to ensure banking regulation.
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Introduction to Credit Risk simulation

The agreements have occurred over time: Basel I in 1988 and Basel II in 2004. Then, after

the financial crisis of 2007, the importance of credit and credit management has increased

and even if financial intermediaries have always been regulated, their regulation has had

to change dramatically. In fact, based on the traumatic experience of the crisis, in 2010

the Committee published the first text of Basel III. This accord introduced stronger risk

management requirements for banks. To better understand what credit risk is we can give

a definition. Credit risk is the risk of financial loss due to the borrower’s bond issuer’s or

counterparties (the obligors) failure to honour their financial obligations. This can be due

to the inability or unwillingness of the counterparty, but this last case is less common with

respect to the first one. This inability is linked with the concept of default. Default can

be defined as a missed or delayed payment of a contractual obligation or legal receivership

of the obligor that will probably cause one or more missed or delayed future payments.

The sources of credit risk can be various (deposits, prepayment of goods or services, con-

tingent claims, bonds, derivatives etc.), but the focus of our analysis will be on loans.

A loan is a cash outflow provided from the lender to the borrower with the promise to

repay it back at a later scheduled date. Of course, the loan has a cost which is defined

as the interest rate paid by the borrower to the lender on the loan principal amount at

scheduled interest payment dates. The full term and conditions of the loan are defined in

the loan agreement. Going into more detail, loans can be of different types: secured or

unsecured. As the name says, a secure loan imply a lower credit risk for the lender than

an unsecured one. This is due to the fact that with a secured loan the borrower pledges

asset as collateral that can be, in case of necessity, repossessed and sold by the lender

to recover the sums owed. Classical examples of secured personal loans are mortgages or

car loan, which are respectively secure on the house or on the car. On the other hand

unsecured loans do not involve any type of collateral. Common examples include credit

cards, personal loans etc. .

For our analysis, we focus on models for credit portfolios discussing the typical credit

risk management issues that arise when we built a portfolio of non-traded credit products,

such as the commercial loans of a bank. The key in modeling is to catch the real depen-

dence structure of the default events. The impact on the portfolio credit loss distribution,
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Introduction to Credit Risk simulation

due to the presence of the event’s dependence, is reflected principally in the shape of the

right tail of the loss distribution. It is common wisdom, from the financial point of view,

to expect dependence between the default of different obligors. The randomly fluctuating

macroeconomic factors are responsible for the firm’s wealth, and since different firms are

affected by common factors, the correlation between their default is unavoidable. Do these

reasons open the discussion around which model captures reality with the best precision

of the computational method?

The development of the market for credit derivatives and the Basel III process has

generated a lot of interest in quantitative credit risk models, so credit risk modeling is

a very active subfield of quantitative finance and risk management. In this section we

provide a brief overview of the various model types that are used in credit risk, focusing

on static models. In fact, credit risk management models are used to determine the loss

distribution of a loan (or a bond) portfolio over a fixed time period (typically at least

one year) and to compute loss-distribution-based risk measures. Hence these models are

typically static, in the sense that they focus on the loss distribution for the fixed time

period rather than a stochastic process describing the evolution of risk in time. Credit risk

models can be divided into structural or firm-value models on the one hand and reduced-

form models on the other. In firm-value models, default occurs whenever a stochastic

variable, representing an asset value, falls below a threshold representing liabilities. For

these reasons, static structural models are often called threshold models. In reduced-form

models, the mechanism leading to default is left unspecified. The default time is modeled

as a non-negative random variable, whose distribution typically depends on economic

covariables. The most commonly used are the mixture models. In this model, defaults are

assumed to be conditionally independent given a set of common factors. The factors, as

underlined previously, are interpreted as macroeconomic variables and are also modelled

stochastically. The spread of mixture models is motivated by tractability reasons.

We are interested in calculating the tail loss probability and conditional excess for the

Bernoulli mixture model of portfolio credit risk. The principal target of this work is to

develop a simulation methodology to quantify credit risk, as risks related to the obligors’

default. The previous quantities constitute important metrics that allow having a realistic
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Introduction to Credit Risk simulation

measure of risk. Grouping all the previous elements mentioned before, we consider a

Bernoulli mixture model for a loan portfolio. A possible method for calculating these

risk measures is to use Monte Carlo simulation, but the problem of rare-event simulation

arises. Unless the number of simulations is very large, rare-event settings lead to an

estimate of metrics affected by high variability. The problem is that most repetitions

are not significant and less informative in the computation, resulting in the degradation

of the simulation. In this thesis, we implement the new method to estimate tail loss

probability and conditional excess, proposed by Basoglu et al. [2018], applied to Bernoulli

mixture models of credit risk. It is a combination of importance sampling and inner

replication for the simulation of the random variables that introduce the dependence across

obligors. The technique adopted belongs to the methods of variance reduction, useful to

improve the quality of estimates in Monte Carlo simulation framework. We implement

the importance sampling strategy based on the cross-entropy method, which increases

the probability of rare defaults. The remaining source of the variance is the simulation

of obligors’ default, for which Basoglu et al. [2018] employ inner replications using the

geometric shortcut method. For these purposes we use the MATLAB environment to

implement all the algorithms proposed, taking the advantage of the Financial toolbox and

the Statistic and Machine learning toolbox. This thesis is organized as follows: Chapter

2 gives an overview focused on Bernoulli mixture models and analyzes the three models

chosen for the simulation: CreditRisk+, Gaussian copula model, and t-copula model.

In Chapter 3 we explain Monte Carlo simulation and the variance reduction methods

adopted. Chapter 4 discusses the implementation details of the entire simulation, starting

from the setting of the parameter to the calculation of risk metrics. In the last Section

4.4 of the same chapter are presented and compared the main results. In Chapter 5 we

report the conclusion and future works.
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Chapter 2

Bernoulli mixture models

In a mixture model the default risk of an obligor is assumed to depend on a set of common

economic factors, such as macroeconomic variables, which are also modelled stochastically.

As anticipated before, given a realization of the factors, defaults of individuals are assumed

to be independent. Dependence between defaults stems from the dependence of individual

default probabilities on the set of common factors.

Definition 1 Given some D < J and a D-dimensional random vector Ψ = (Ψ1, ...,ΨD)′,

the random vector Y = (Y1, ..., YJ)′ follows a Bernoulli mixture model with factor vector

Ψ if there are functions pj : RD → [0,1], 1 ≤ j ≤ J , such that, conditional on Ψ, the

components of Y are independent Bernoulli random variables satisfying P (Yj = 1|Ψ =

ψ) = pj(ψ).

For y = (y1, ..., yJ)′ in {0,1}J we have that:

P (Y = y | Ψ = ψ) =
JÙ

j=1
pj(ψ)yj (1 − pj(ψ))1−yj (2.1)

and the uncoditional distribution of the default indicator vector Y is obtained by inte-

grating over the distribution of the factor Ψ. In particular, the default probability of

company j is given by:

pj = P (Yj = 1) = E(pj(Ψ)).
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Bernoulli mixture models

The two-stage hierarchical structure of a Bernoulli mixture model facilitates sampling

from the model: first we generate the economic factor realizations, then we generate the

pattern of defaults conditional on those realizations. The second step is easy because of

the conditional independence assumption, as reported in A. J. McNeil [2005].

2.1 Exchangeable Bernoulli Mixture model

An important simplification occurs if the function pj are all identical. In this case the

Bernoulli mixture model is termed exchangeable, since the random vector Y is exchange-

able. It is convenient to introduce the rv Q := p1(ψ) and to denote the distribution func-

tion of this mixing variable by G(q). Conditional on Q = q, the number of the defaults M

is the sum of the m independent Bernoulli variables with parameter q and it therefore has a

binomial distribution with parameters q andm, i.e. P (M = K | Q = q) =
!m

k

"
qk(1−q)m−k.

The unconditional distribution of M is obtained by integrating over q:

P (M = k) =
A
m

k

BÚ 1

0
qk(1 − q)m−k dG(q) (2.2)

In this case is easy to compute default probabilities and joint default probabilities taking

the advantage of exchangeability property. In the simple case we have:

π = E(Y1) = E(E(Y1|Q)) = E(Q) (2.3)

and more generally:

πk = P (Y1 = 1, ..., Yk = 1) = E(E(Y1 · · · Y k|Q)) = E(Qk) (2.4)

so that unconditional default probabilities of the first and higher order are seen to be

moments of the mixing distribution. Moreover, for i /= j cov(Yi, Yj)= π2 −π2 = Var(Q) ≥

0, which means that in an exchangiable Bernoulli mixture model the default correlation

ρY :

ρY := ρ(Yi, Yj) = π2 − π

π − π2 i /= j, (2.5)

where π and π2:

E(Yi) = E(Y 2
i ) = P (Yi = 1) = π ∀i, (2.6)

E(YiYj) = P (Yi = 1, Yj = 1) = π2 ∀i /= j, (2.7)
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2.2 – Poisson approximation

is always non-negative. Any value of ρY in [0,1] can be obtained by an appropriate choice

of the mixing distribution G. In particular, if ρY = Var(Q) = 0, the random variable Q

has a degenerate distribution with all mass concentrated on the point π and the default

indicators are independent. The case ρY = 1 corresponds to a model where π = π2 and

the distribution of Q is concentrated on the points 0 and 1.

2.2 Poisson approximation

Since default is typically a rare event, we can approximate Bernoulli indicator rvs1 for

default with Poisson rvs and to approximate Bernoulli mixture models with Poisson mix-

ture models. Assume that, given the factors Ψ, the default indicator variables satisfying

P (Yj = 1|Ψ = ψ) = pj(ψ). Moreover, assume that the distribution of Ψ is such that

the conditional default probabilities pj(ψ) tend to be very small. In this case the Yj vari-

ables can be approximated by conditionally independent Poisson variable Ỹj satisfying

Ỹj | Ψ = ψ ∼ Poi(pj(ψ)), since:

P (Ỹj = 0|Ψ = ψ) = exp (−pj(ψ)) ≈ 1 − pj(ψ), (2.8)

P (Ỹj = 1|Ψ = ψ) = pj(ψ) exp (−pj(ψ)) ≈ pj(ψ). (2.9)

In the following we report the formal definition of this model known as Poisson Mixture

model, as a parallelization of the general Bernoulli mixture model 2.1.

Definition 2 Given some D < J and a D-dimensional random vector Ψ = (Ψ1, ...,ΨD)′,

the random vector Ỹ = (Ỹ1, ..., ỸJ)′ follow a Poisson mixture model with factors Ψ if there

are functions λj : RD → (0,∞), 1 ≤ j ≤ J , such that, conditional on Ψ = ψ, the random

vector Ỹ is a vector of independent Poisson distributed rvs with rate parameter λj(ψ).

If Ỹ follows a Poisson model and if we define the indicators Yj = ✶{Ỹj≥1}, then Y follows a

Bernoulli mixture model and the mixing variables are related by pj(·) = 1 − exp (−λj(·)).

1From this point, we abbreviate the term random variable with rv.
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Bernoulli mixture models

2.3 Notation adopted

After the previous overview of the models that will be treated in our analysis, we focus

on the main actor of the simulation: the total loss of portfolio. To be consistent and

make easier the implementation of the simulation we decide to follow the same notation as

Basoglu et al. [2018], showing the main similarities of the previous notation of A. J. McNeil

[2005]. Suppose that there are J obligors in our portfolio and Yj denotes the Bernoulli

random variable for the jth obligors, that is equal to:

• 1 if the jth obligor default;

• 0 otherwise.

As in Definition 1, pj denotes the marginal probability that the jth obligor defaults, and

now we introduce cj , which quantifies the loss resulting from the default of the same

obligor. The total loss is given by:

L =
JØ

j=1
cjYj (2.10)

But our analysis aims to find the risk measures, discussed in the Introduction 1:

• Tail loss probability:

y = P (L > τ) = E[✶{L>τ}] (2.11)

• Conditional excess:

r = E[L|L > τ ] (2.12)

where τ stands for a fixed threshold value. Following 2.1 we set D-dimensional (D < J)

random vector:

Ψ = (Ψ1, ...,ΨD)′ (2.13)

that represent the vector of macroeconomic factors take into account. If we select a

suitable functions pj(Ψ) j = 1, ..., J , as the conditional default probabilities, the random

vector Y = (Y1, ..., YJ) follows a Bernoulli mixture model. Each component of the last

vector is an independent Bernoulli random variable, conditioned on Ψ. Changing the
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2.4 – CreditRisk+

notation in 2.1 and considering (ϵ1, ..., ϵj)′ in {0,1}J , as in Basoglu et al. [2018], our

Bernoulli mixture model is:

P (Y1 = ϵ1, ..., YJ = ϵJ | Ψ) =
JÙ

j=1
pj(Ψ)ϵj (1 − pj(Ψ))1−ϵj (2.14)

We restrict the analysis to three examples of the general model described before:

• Creditrisk+;

• Gaussian copula model;

• t-copula model.

The three model share the same hierarchical structure, leaving immutable the Bernoulli

setting, and differ from the model behind pj(Ψ).

2.4 CreditRisk+

The CreditRisk+ model is a credit portfolio risk model that was introduced by Credit

Suisse in 1997. It is designed to help financial institutions measure and manage their

credit risk exposure at both the portfolio and individual transaction levels. It is based on

the concept of default probability, which is the likelihood that a borrower will fail to repay

its debt obligations. The model uses a statistical approach to estimate the probability of

default for each borrower in a portfolio based on its financial and business characteristics.

These characteristics can include factors such as the borrower’s credit rating, industry,

geographic location, and financial performance [CreditSuisse [2023]]. The CreditRisk+

model has the structure of the Poisson mixture model as described in Section 2.2, but we

consider it in a Bernoulli fashion, to get in light the difference with other models. The

vector Ψ = (Ψ1, ...,ΨD)′ are independent Gamma random variable with:

• αd = σ−2
d as shape parameter for d = 1, ..., D

• βd = σ2
d as scale parameter for d = 1, ..., D.
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Bernoulli mixture models

In this case for a given Ψ vector the conditional default probability looks like:

pj(Ψ) = 1 − exp (−aj0 − aj1Ψ1 − ...− ajDΨ), j = 1, ..., J (2.15)

The coefficients aj0, ..., ajD are all positive and can be considered as weights of the macroe-

conomic factors. Notice that each coefficient depends on two indexes, one properly for

the obligor j and one for the stochastic factor d. Further consideration will be made in

Chapter 4 when we discuss how to set the a priori parameter of the simulation.

2.4.1 Exchangeable version of Creditrisk+

In this section, we propose the exchangeable version of CreditRisk+, showing its useful

property. Reusing the notation of section 2.1, we recast the random vector Y which

follows the Bernoulli mixture model. CreditRisk+ is exchangeable if the function pj are

all identical, thus the conditional default probabilities are independent of the obligors. In

our model, the dependence among probabilities and obligors is due to the weight of the

systematic factors ajd, for a certain obligor j and factor d. Assuming independence from

obligors, we rewrite the equation 2.15 as:

p(Ψ) = 1 − exp (−a0 − a1Ψ1 − ...− aDΨ), ∀j = 1, ..., J (2.16)

We can introduce the random variable Q := p(Ψ), which combines multiple random

variables, thus it is called a mixing variable. It has a distribution function G(p), where

Q = p. Conditional con Q = p the number of defaults M follows a Bernoulli process with

parameter p and a number of trials m.

P (M = k | Q = p) =
A
m

k

B
pk(1 − p)m−k (2.17)

We focus in particular on another version of this model. CreditRisk+ is an exchangeable

model also in the case when we consider:

• the unidimensional vector of factor Ψ;

• the shape and scale parameters of gamma distribution are α = β.
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2.4 – CreditRisk+

To this aim, we can write:

Ψ ∼ Gamma(α, β)

Q := 1 − e−kΨ, k > 0

For q ∈ (0,1):

P (Q ≤ q) = P (1 − e−kΨ ≤ q) = P (Ψ ≤ − ln (1 − q)
k

)

So we can relate the two densities:

gQ(q) = gΨ

3
− ln (1 − q)
k2(1 − q)

4
Using the form of gamma density function:

gQ(q) = βα

Γ(α)
1

k(1 − q)

3− ln (1 − q)
k

4α−1
exp

3
β ln (1 − q)

k

4
=
3
β

k

4α 1
Γ(α)(− ln (1 − q))α−1(1 − q)

β
k

−1
(2.18)

It is reasonable to use the approximation:

− ln (1 − q) ≈ q (2.19)

because in the credit risk model we are in rare-event settings and we choose consequentially

parameters in such a way that the mass of the distribution Q is concentrated on values of

q close to zero. Compare gQ, taking the approximation 2.19 , with Beta distribution:

B(q) = 1
β(a, b)q

a−1(1 − q)b−1, a, b > 0, 0 < q < 1,

where β(a, b) denote the beta function. So we can consider the following approximation

from 2.19 and 2.18:

gQ ∼ Beta

3
α,
β

k

4
α = β

Reaching this result we can follow the main result for beta mixing distribution proposed

by A. J. McNeil [2005], allowing us to conclude that the conditional default probabilities

are all identical.

For the sake of generality, as Basoglu et al. [2018] suggest, we conduct the analysis on

the general version of CreditRisk+. This is motivated by the fact the others models have

a general form. Considering a model with exchangeability property can lead to biased

results, strictly related only to a particular class of obligors.
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2.5 Gaussian copula model

The second model analyzed is the Gaussian copula model. Before discussing it we present

the unidimensional probit-normal mixing distribution. Recall that Q is the conditional

default probability. Given:

Ψ ∼ N(0,1), µ ∈ R σ > 0 (2.20)

the conditional default probability is:

Q = Φ(µ+ σΨ) (2.21)

where Φ is the standard normal distribution function. From this point, we derive the

multidimensional version of 2.21. we introduce the multivariate normal vector:

Z = (Z1, ..., ZJ)′ (2.22)

Zj ∼ N(0,1) j = 1, ..., J (2.23)

Each component of the vector is one of the J latent variables necessary to model depen-

dencies across obligors. Default of jth obligor occurs when:

Yj = 1{Zj>zj}, j = 1, ..., J

where:

zj = Φ−1(1 − pj) (2.24)

indicate a proper threshold value. Φ−1 denotes the inverse of the cumulative distribu-

tion function of the standard normal. This new model introduces the correlation among

obligors represented by:

Zj = bjϵj + aj1Ψ1 + ...+ ajDΨD, j = 1, ..., J (2.25)

where:

• ϵj is the idiosyncratic factor, specific for the jth obligor. It is an independent stan-

dard normal random variable.
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2.6 – t-copula model

• Ψ1, ...,ΨD are the systematic risk factors affecting all obligors. They are independent

standard normal random variables.

It looks like a multi factors model, as French [2023] style, if we think of our factors as

macroeconomic variables. Further consideration can be made on loadings factors bj and

aj1, ..., ajD. They are constant, non-negative, and given a priori such that they satisfy

the constraint:

b2
j + a2

j1 + ...+ a2
jD = 1 (2.26)

Collecting all elements of this model, the conditional default probabilities of the Gaussian

copula model, given the vector Ψ is:

Ψ = (Ψ1, ...,ΨD)′ (2.27)

pj(Ψ) = P (Yj = 1|Ψ) = Φ((ajΨ + Φ−1(pj))b−1
j ), j = 1, ..., J (2.28)

where aj = (aj1, ..., ajD). Notice that, also this model can be exchangeable if the con-

ditional default probabilities are all identical p(Ψ) ∀j = 1, ..., J , thus independent from

obligors j. The same result, seen in the exchangeable version of CreditRisk+ (Sec. 2.4.1),

here is still valid.

2.6 t-copula model

The last model is the t-copula model, which presents the same structure as the previous

model with the difference that latent variables follow multivariate t-distribution, rather

than normal as in 2.25. The new model correlates the obligors by defining:

Tj =
A
bjϵj +

D−1Ø
d=1

ajdΨd

B3ΨD

η

4− 1
2
, j = 1, ..., J. (2.29)

As in 2.25, the systematic factors Ψ1, ...,ΨD−1, the idiosyncratic factor ϵj and all factor

loadings aj1, ..., aj(D−1), bj , except for ajD, play the same role as in the Gaussian copula

model, except now:

• ΨD is a chi-square random variable with η degree of freedom that is independent of

Ψ1, ...,ΨD−1 and ϵj .
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Bernoulli mixture models

Default occurs if:

Yj = ✶{Tj>tj} (2.30)

where tj is a threshold value related to the marginal default probability of the obligor:

tj = F−1
η (1 − pj) (2.31)

where F−1
η is the inverse cumulative of t-distribution with η degree of freedom. Given the

vector Ψ , The conditional default probabilities is:

Ψ = (Ψ1, ...,ΨD)′ (2.32)

pj(Ψ) = P (Yj = 1|Ψ) = Φ

 ãjΨ̃ −
ñ

ΨD

η F−1
η (1 − pj)

bj

 , j = 1, ..., J, (2.33)

where ãj = (aj1, ..., aj(D−1)) and Ψ̃ = (Ψ1, ...,ΨD−1)′.

2.7 Structure of models

The 2.15, 2.28 and 2.33 represent the conditional default probabilities of the three Bernoulli

mixture models analyzed in this work. We notice that each of them constitutes the second

step of the hierarchical structure of the model, as shown in Flowchart 2.1, which must be

substituted in the general model 2.14. For simulation purposes, we illustrate this structure

shared by all models, to taste and anticipate how the simulation will be implemented, in

Figure 2.1.

The orientation of the arrows indicates the right path will be followed in future algo-

rithms proposed in Chapter 4.
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2.7 – Structure of models

Bernoulli model P (Y1 = ϵ1, ..., YJ = ϵJ | Ψ)

Conditial default probabilities: pj(Ψ)

Systematic factors: Ψ = (Ψ1, ...,ΨD)′

Figure 2.1: Structure of Bernoulli mixture model analyzed
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Chapter 3

Efficient simulation

In the previous chapter, we fully described the three models of interest, computing for

everyone the conditional default probability pj(Ψ), j = 1, ..., J , giving the realization of

systematic factor. This probability refers to jth obligor, but now we consider the portfolio

of all J obligors. For each model, the total loss of portfolio L (as 2.10) is the object of

interest, but it’s not informative in the performance assessment. Our goal is to obtain an

efficient simulation of the loss distribution, so we need to compute sensible metrics, based

on loss, to measure the quality of the simulation itself. The two risk metrics are:

• tail loss probability:

P (L > τ) (3.1)

• conditional excess:

E[L | L > τ ] (3.2)

each of them is the result of simulations. In plain English we want to test the performance

of simulations, basing the assessment on the product of itself. We cannot directly compute

the metrics 3.1 and 3.2. Therefore we are looking for the proper estimates of these

quantities. For the tail loss probability, we can simply take the empirical estimate from

the empirical loss distribution, given a fixed threshold τ :

ŷ = P (L > τ) (3.3)
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Efficient simulation

where the ŷ denotes the estimate. More attention regards the estimate of conditional

excess, which we denote r = E[L|L > τ ]. As reported in Glasserman and Li [2004], if we

assume ŷ > 0, and we call x̂ = E[L1{L>τ}], a proper estimator is:

r̂ = x̂

ŷ
. (3.4)

These are the general estimators for the risk metrics analyzed. We use the term general to

underline that we must adapt the formula based on the simulation we are using to compute

the simulated loss distribution. We study two simulation approaches: the Naive Monte

Carlo simulation (NV simulation) and the method which combines the variance reduction

techniques known as Cross-Entropy and Geometric Shortcut (CEGS simulation). In the

following, we present how they work and show how the estimators 3.3 and 3.4 change. All

the simulations share the raw structure as anticipated in flowchart 2.1.

3.1 Naive Monte Carlo simulation

The Monte Carlo method is a rather general name for any approach to risk measurement

that involves the simulation of an explicit parametric model for risk-factor changes. To

simulate the distribution of losses of our three Bernoulli mixture models, we need the

conditional default probabilities, but firstly, looking at the flowchart 2.1, we must generate

the random input vector of the systematic factors Ψ. For every model, we assume that

its probability density function is f((Ψ); u), where u is the set of the parameters of the

density function specific for the model analyzed. Thus we simulate from f((Ψ); u), the

realization of Ψ N times for all J obligors. If we collect all data, we end up with a N × J

dimensional matrix. For each obligor j = 1, ..., J and replication k = 1, ..., N of Ψk we

can calculate the pj(Ψk). We recall that the pj(·) is specific for each model. All these

quantities are used to generate the default indicator Yj :

Yj ∼ Bernoulli(pj(Ψ)) j = 1, ..., J (3.5)

Notice that if all data are stored in a matrix, pj(·) has the same N × J-dimension of the

matrix of factors Ψ and Yj are stored in a J-dimensional matrix. At last, we compute the
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3.1 – Naive Monte Carlo simulation

total loss L of the portfolio and the two risk metrics:

ŷNV = 1
N

NØ
k=1

✶{L(k)>τ} (3.6)

r̂NV = x̂NV

ŷNV
(3.7)

where:

x̂NV = E[L✶{L>τ}] =
A

NØ
k=1

Lk
✶{L(k)>τ}

B
, (3.8)

as reported in Basoglu et al. [2018]. N , the total number of replications, is set as large as

possible to have good estimates, within the obvious constraints of computation time. For

the sake of clarity, ŷNV , in 3.6, is the Naive counterpart of the tail loss probability estimate

3.3, and similarly r̂NV , in 3.7 ,the Naive counterpart of conditional excess estimate 3.4.

In the following, there is the pseudo-code of the Naive simulation Algorithm 1, proposed

by the authors.

Algorithm 1 Naive Monte Carlo simulation
1: for replication k = 1, ..., N . . . do
2: generate Ψd from f(. . . ,u), d=1,..., D independently
3: compute pj(Ψ), j = 1, ..., J
4: generate Yj ∼ Bernoulli(pj(Ψ)), j = 1, ..., J
5: compute L(k) =

qJ
j=1 cjYj

6: end for
7: return ŷNV as in 3.6 and r̂NV as in 3.7

In this algorithm, we have two sources of randomness: the generation of Ψ and

Yj , j = 1, ..., J . Basoglu et al. [2018] define the generation of the first outer simulation, to

underline its exogeneity in all algorithm, and the second inner simulation, to underline the

causality effect with the first. The variability of the outer simulation unavoidably affects

the inner simulation, wasting, principally the computation of the tail loss probability esti-

mates 1. There is a propagation effect: the variance of the outer simulation of Ψ amplifies

the variance of the inner simulation of Yj , therefore the loss distribution L perceives the

increase in the variance. Our problem related to the high variability belongs to a set of

1notice that the quality of the conditional excess estimate is a consequence of the quality of the tail
loss probability.
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Efficient simulation

general problems that arise, as in this case, in rare-event simulation. As anticipated in

Chapter 1, our interest is to obtain a good simulation in the tail of the entire loss distri-

bution. In the Naive Monte Carlo, most simulations are located, obviously, around the

mean of loss, so they are influential in the tail estimation. There exists variance-reduction

techniques that allow us to overcome such problems. As proposed by Basoglu et al. [2018],

to reduce the variability of outer simulation2, we employ importance sampling based on

Cross-Entropy (CE) method. The problem with inner simulation is a sort of endogenous

variance, due to the regeneration of a new set of random variables. Intuition suggests that

we can recycle the yet-simulated variables, and taking the advantage of results of Sak and

Hörmann [2012], we use the so-called Geometric Shortcut(GS) method.

3.2 CEGS simulation

In this section, we describe the new simulation method proposed by Basoglu et al. [2018]

that combines both Cross-Entropy (CE) and Geometric Shortcut (GS) methods, which

they call in abbreviated form the CEGS method. We present firstly the Geometric shortcut

method, responsible for the inner variance reduction, i.e the variance in the simulation

of Bernoulli variables Yj . Then we describe the Cross-entropy that helps us to reduce the

variance of the outer simulation, i.e in the simulation of the systematic factors Ψ. The

order in which they are proposed does not match the order they are implemented in the

simulation. If we look at the flowchart 2.1, since we start simulating the Ψ, we use first

the Cross-entropy, and when we simulate the Bernoulli process, we use the Geometric

Shortcut method.

3.2.1 Geometric shortcut

To give the idea behind this method, following Sak and Hörmann [2012], let’s consider

the easier case of default simulation: all the J obligors are independent, each of then

has a proper default probability pj , j = 1, ..., J and relative exposure to default cj , j =

2Main responsible parties for the problems in rare event simulation.
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3.2 – CEGS simulation

1, ..., J . To generate one realization of the loss L we simply simulate all default indicators

Y1, Y2, ..., YJ and calculate L =
qJ

j=1 cjYj ; to obtain an independent sample of L(i) of

size N we have to repeat that procedure N times. This is the simplistic case of what we

have already done in Section 3.1. Credit risk portfolios with many obligors are relevant in

practice which makes the naive approach for simulating L very slow. How can we speed up

the Naive Monte Carlo simulation for this particular case? As we simulate N independent

realization L(i) it is clear that we have to simulate a total of N × J default indicator Aij .

We precise that the index i = 1, ..., N is related to realization, and j refers to obligors. As

default probabilities are typically small, around 0.01 or less, the default indicator matrix

A is sparse3, we can speed up the simulation if we find a way to simulate the L(i) values by

considering only the non-zero values of Aij . Assume to fill it column-wise and observe that

each column Aj of the matrix is holding an independent sequence of default indicators

and is thus a Bernoulli sequence with parameters p = pj the default probability of the j-th

obligor. Thus the random index I1, where AI1j is equal to 14 for the first time, follows a

geometric distribution with parameter p = pj ; the index of the second default I2 = I1 +G,

where G is again a geometric random variate independent of I1 and so on. This geometric

shortcut idea allows one to jump over all zero entries directly to the next non-zero entry

in a column. When a default is generated in this manner for the jth obligor (column)

and the i-th independent repetition (row) we have to increment the vector of losses of

all repetitions using L(i) = L(i) + cj . Figure 3.1 presents how geometric shortcut works;

notice that the obligors are fixed in the columns and repetitions in the rows. We underline

that generating geometric random variates by repeated Bernoulli trials would not speed

up the Naive simulation algorithm. Thus we generate geometric random variate with an

inversion algorithm whose speed does not depend on p. We use:

G =
9 log (1 − U)

log (1 − p)

:
, (3.9)

where G denotes the geometric random variate and U a U(0,1) random variate.

3many zero elements
4Default occurred
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Efficient simulation

Figure 3.1: Geometric shortcut across obligors

We extend the previous example of independent obligors to the dependent case. In our

models, the obligors are correlated by the presence of a common set of risk factors, and also

by a copula model. We recall that a copula catches also the correlation undetectable by

the standard Pearson’s correlations. As seen in the Algorithm 1, conditional on realization

of Ψ, obligors default independently in our models. Let’s start looking at some relevant

structure properties of the Algorithm 1, enlighted by Sak and Hörmann [2012]. The

algorithm consists of an outer part with N independent generations of the vector Ψ (line

1-2), and an inner part where, depending on the values of Ψ, the default probabilities

are calculated and the defaults are simulated (line 4). An important question is, how

many times we should repeat the simulation of the default for a single fixed Ψ-vector?

We call this number Nin. In the Naive simulation one replication of Ψ is used one time to

simulate the obligor’s defaults. As Sak and Hörmann [2012] reported, it seems sensible to

increase Nin for credit risk simulations as increasing the number of the inner repetitions is

much cheaper than increasing the number of outer ones, especially if we consider the slow
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3.2 – CEGS simulation

functions that must be evaluated to calculate the pj(Ψ). This argument is even more valid

if we consider the geometric shortcut idea that allows us to simulate the inner repetitions

very fast. Sak and Hörmann [2012] decided to select Nin such that the computation time

compared to the naive algorithm with Nin = 1 is not much increased. It can be proved

that when N = 1 the computation time of the inner repetition of the naive algorithm is

O(m), compared when using the geometric shortcut is O(Nin + J +NinJp̄(Ψ)). Thus we

get the same complexity as for the Naive algorithm if we select:

Nin = min
3 1
p̄(Ψ) , J

4
, (3.10)

p̄(Ψ) = 1
J

JØ
j=1

pj(Ψ), (3.11)

where p̄(Ψ) denotes the average value of the default probabilities pj(Ψ) for the current

Ψ-vector. Noticing the Algorithm 3, in line 6 we pre-compute the optimal number of the

inner replication. In line 10-11 we perform the geometric shortcut, generating a geometric

random variable with the formula 3.9, instead of the Bernoulli ones.

3.2.2 Cross-entropy method

In our rare-event environment, we want to increase the conditional default probability

pj(Ψ). In literature, the common procedure is using importance sampling, and we briefly

report how it works. To increase the observed frequency of default in the simulation, an

easy way shared in most risk management papers, consider changing the scale parameter,

to have fat tails in the distribution with or without the changing of the shift parame-

ter. The basic idea of importance sampling is to use a different probability distribution,

called the importance distribution, to generate the samples instead of the original distri-

bution. Here we propose a variation on importance sampling based on the Cross-Entropy.

The Cross-Entropy method, abbreviated as CE, provides a simple, efficient, and general

method for solving complicated optimization problems. Its success relies also on estimat-

ing probabilities of rare events simulation. Here we discuss the main idea behind it, giving

some theoretical definitions and re-proposing what’s our aim.

Let Ψ = (Ψ1, ...,ΨN ) a multivariate random vector taking values in some space χ.
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Assume that f(·; u) be a family of probability density functions on χ, with respect to

some base measure ν. We consider u as vector of real-valued parameter. Thus for any

measurable function H we have:

EH(Ψ) =
Ú

χ
H(Ψ)f(Ψ; u)ν (dΨ) (3.12)

where for simplicity we take ν (dΨ) = dΨ. Let L be some real-valued function on χ.

Suppose we are interested in the probability that L(Ψ) is greater than or equal to some

real value τ , under f(·; u). This probability can be expressed as:

ℓ = Pu(L(Ψ) ≥ τ) = Eu✶{L(Ψ)≥τ}. (3.13)

If this probability is smaller than 10−3 we call (L(Ψ) ≥ τ) a rare event. This is our

environment: L corresponds to the simulated loss distribution and the related risk measure

is the event’s probability of observing a loss greater than a value threshold. Ψ corresponds

to our vector of systematic factors, i.e. Ψ = (Ψ1, ...,ΨD). We have already seen a

straightforward way to estimate ℓ with the Naive Monte Carlo simulation. Drawn a

random sample Ψ1, ...,ΨN from original probability density function f(·; u). Our estimate

is:
1
N

NØ
k=1

✶{L(Ψ(k))>τ} (3.14)

that corresponds to the Naive estimate ŷNV , shown in eq. 3.6. In this equation 3.14,

we underline that the loss distribution is a function of the distribution of systematic risk

factors. This estimator, for our risk metrics, is unbiased. However, a large simulation

effort is required in order to estimate ℓ.

An alternative approach is based on importance sampling (IS): take a random sample

Ψ1, ...,ΨN from an importance sampling density g(·), different from f(; u). Assume that

g(Ψ = ψ) = 0 ⇒ ✶{L(Ψ(k))>τ}f(Ψ = ψ,u) = 0. Using the new density g we can

represent ℓ as

ℓ =
Ú
✶{L(Ψ(k))>τ}

f(Ψ,u)
g(Ψ) g(Ψ) dΨ = Eg✶{L(Ψ)≥τ}

f(Ψ,u)
g(Ψ) , (3.15)

where the subscript g means that the expectation is taken with respect to g. An unbiased

estimator of ℓ is:

ℓ̂ = 1
N

NØ
i=1

✶{L(Ψ(i))>τ}W (Ψi) = 1
N

NØ
i=1

✶{L(Ψ(i))>τ}
f(Ψi; u)
g(Ψi)

, (3.16)
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3.2 – CEGS simulation

where ℓ̂ is called importance sampling (IS) or the likelihood ratio (LR) estimator and

W (Ψi) is called the likelihood ratio (LR). Notice that in the particular case where there

is no change of measure, i.e g = f , we have that W = 1, and the LR estimator reduces

to the Naive estimator 3.14. What is the best choice of g? Clearly, if we estimate ℓ using

the change of measure with density

g∗(Ψ) :=
✶{L(Ψ(i))>τ}f(Ψi; u)

ℓ
(3.17)

Substituting 3.17 in 3.16, we have:

✶{L(Ψ(i))>τ}
f(Ψi; u)
g∗(Ψi)

= ℓ (3.18)

for all i-th replications. In conclusion, we end up with the estimator 3.16, which has zero

variance, and we need to produce only N = 1 sample.

The drawback is that g∗ depends on the unknown parameter ℓ. It is often convenient

to choose g in the family of densities f(·; u). The idea now is to choose the parameter

vector, called the reference parameters, either importance parameter or tilting parameter

v such that the distance between two densities g∗ and f(·; v) is minimal. An innovative

and convenient measure of distance between two densities g and h is the Kullback-Leibler

distance, which is also called the Cross-Entropy between g and h.

Definition 3 the Kullback-Leibler distance is defined as:

D(g, h) = Eg

5
log g(Ψ)

h(Ψ)

6
=
Ú
g(ψ) log (g(ψ)) dψ −

Ú
g(ψ) log (h(ψ)) dψ. (3.19)

As de Boer et al. [2005] write, we note that D is not a “distance” in the formal sense, in

fact, it is not symmetric.

Minimizing the Cross-Entropy between g∗ and the new density f(·; v) is equivalent

to choosing v such that −
s
g∗(Ψ) log (f(Ψ; v)) dΨ is minimized, which is equivalent to

solving the problem:

max
v

Ú
g∗(Ψ) log (f(Ψ; v)) dΨ (3.20)

Replacing g∗ from eq.(3.17) in (3.20), we obtain:

max
v

Ú
✶{L(Ψ)>τ}f(Ψ; u)

ℓ
log (f(Ψ; v)) dΨ, (3.21)
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neglecting ℓ, it is equivalent to the maximization program:

max
v

Ú
✶{L(Ψ)>τ} log (f(Ψ; v))f(Ψ; u) dΨ. (3.22)

The last expression constitutes the main result of applying the Cross-Entropy (CE)

method to our general problem. For our context, the problem 3.22 is a stochastic opti-

mization problem as the indicator function is uncertain for a given vector Ψ. It depends

on the Bernoulli random variables Y1, ..., YJ . Recall that, in our simulation, u ∈ RD

represents the vector of the parameters of the original distribution, and the v ∈ RD are

the reference parameters that are looking for. We rewrite the problem 3.22 replacing the

indicator function with E[✶{L(Ψ)>τ}|Ψ] = P (L(Ψ) > τ |Ψ). We obtain the solution of

problem 3.22 estimating the objective function with Monte Carlo simulation:

max
v

qM
k=1 P (L(Ψ(k)) > τ |Ψ(k)) log (f(Ψ(k); v)) (3.23)

where M is the number of replication and Ψ(1), ...,Ψ(M) are independently generated from

f(.; u). Our aim, in the general view of the simulation, is to find the optimal reference

parameters v∗ in order to, better simulate the systematic factors Ψ from f(Ψ; v∗) and

thus the loss distribution L. We need to, further reformulate the maximization problem.

The reformulations that we will apply in the following are allowed to the distribution

properties of Ψ. Let’s have a look at the distribution of Ψ in the three model analyzed:

• CreditRisk+ : the components of vector Ψ follow Gamma(α, β) distribution;

• Gaussian copula model: the components of vector Ψ follow N(0,1) distribution;

• t-copula model : the first D− 1 components of Ψ follow N(0,1) distribution and the

D component follow χ2 distribution.

All of them belong to the exponential family. These considerations are relevant to give a

suitable way to recast the first term on the left of the optimization problem 3.23. Thanks

to the work of Glasserman and Li [2004] use the approximation:

P (L(Ψ(k)) > τ |Ψ) ≈ 1 − Φ

 τ −
qJ

j=1 cjpj(Ψ(k))ñqJ
j=1 c

2
j

#
pj(Ψ(k)) − pj(Ψ(k))2$

 (3.24)
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3.2 – CEGS simulation

The remaning part of the objective function of 3.23 to reformulate is: log (f(Ψ(k),v)).

The dimension of our problem is dependent on v ∈ RD, i.e we have to optimize with

respect to D variables.

In Basoglu et al. [2018], the authors, suggest combining identical D′-th elements of Ψ,

(Ψ1, ..,ΨD′) in a group, to reduce the dimension of the problem. Instead of D variables,

we have only one optimization variable θ for the first D′:

vd =
JØ

j=1
ajdcjθ, d = 1, ..., D′. (3.25)

This is justified by the fact that we want to find the maximum increasing direction of

loss function 3.26 considering only D′ components:1qJ
j=1 aj1cj , ...,

qJ
j=1 ajD′cJ

2′

∥
1qJ

j=1 aj1cj , ...,
qJ

j=1 ajD′cJ
2′

∥
. (3.26)

The optimization variable θ plays the same role as D′ variable and the remaining

vD′+1, ..., vD variables remain free from a further combination. They constitute the Impor-

tance sampling parameters, as well as the variable of the problem 3.23, whose dimension

now is reduced to D−D′ +1. We look now at how to construct the group of identical ele-

ments i.e. for each model, observing the structure of the conditional independent default

probability pj(Ψ)5. In our models, following Basoglu et al. [2018]:

• CreditRisk+: from 2.15, all element of Ψ come from the same Gamma distribution.

Therefore we choose D′ = D: one optimization variable θ is involved.

• Gauss copula model: from 2.28, all element of Ψ come form the same Standard

Normal distribution. Therefore we choose D′ = D: one optimization variable θ is

involved.

• t-copula model: from 2.33, the first D− 1 element of Ψ, i.e Ψ1, ...,ΨD−1, come from

the same Standard Normal distribution. Therefore we can set D′ = D − 1. Recall

that the last factor ΨD follows a Chi-squared distribution. We conclude by this,

5expecially on vector Ψ.
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that the problem considered with the t-copula model, will have two optimization

variables, θ and vD.

As anticipated in Chapter 2, in all models the single components, i.e. factors, of vector

Ψ, are independent of each other. Taking all this result, we can reformulate the problem

3.23 in such a way:

max
θ,vD′+1,...,vD

qM
k=1 P (L(Ψ(k)) > τ |Ψ(k))

èqD′

d=1 log
1
f
1
Ψ(k)

d ;
qJ

j=1 ajdcjθ
22

+
qD

d=D′+1 log
1
f
1
Ψ(k);vd

d

22é (3.27)

where we use the 3.24, in order to calculate the P (L(Ψ(k)) > τ |Ψ(k)). We can summa-

rize how the Cross-Entropy method and its parameters optimization works step by step,

showing a generic pseudo code in the Algorithm 2.

Algorithm 2 Cross Entropy method, for a grouping of first D′ elements of Ψ

1: generate Ψ(k)
d d=1,..., D

2: solve for θ, vD′+1, ..., vD using 3.27
3: compute vd, d = 1, ..., D′ using 3.25
4: return v1, ..., vD

Once exploited the geometric shortcut, and cross entropy method, we just have to

compute the estimations of tail loss probability and conditional excess, using importance

sampling. For the moment we focus on tail loss probability estimation because, as we will

see after, it is a building block of the second estimate. Following A. J. McNeil [2005],

if we have to estimate a quantity from a Bernoulli mixture model, using the importance

sampling technique we can use the general formula:

θ̂IS
n = 1

n

nØ
i=1

ρ(Ψ(k); u,v) ˆθn1
IS,1(Ψi) (3.28)

where the ˆθn1
IS,1 represents the naive estimator of the quantity using new parameters.

ρ(Ψ(k); u) is the likelihood ratio computed under the new importance sampling parame-

ters6. Let’s recast in our case of computation of tail loss probability, the general formula.

6the index k in the formula indicate the iteration in the simulation, and the number n, the total
number of iteration. As n increases, the better the final estimate obtain
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3.2 – CEGS simulation

The naive estimator part is the same as in 3.6 but with the difference that we take also

into account the geometric shortcut. At the moment we are limiting to changing the

number of replication from N to Nin. Therefore estimator is:

p̄
(k)
in = 1

Nin

NinØ
l=1

1{Ll
in>τ} (3.29)

The likelihood ratio, instead, looks like this:

ρ(Ψ(k); u,v) =
DÙ

d=1
f(Ψ(k)

d ;ud)
1
f(Ψ(k)

D ; vd

2−1
(3.30)

where ud refers to all the original parameters of factors distribution and vd to the new pa-

rameters obtained from the cross-entropy method. Combining 3.29 and 3.30 the estimator

of tail loss probability P (L > τ) using cross-entropy and geometric shortcut (CEGS) is:

ŷCEGS = 1
N

NØ
k=1

ρ(k)p̄
(k)
in (3.31)

At this point, we focus on the estimator of conditional excess for the CEGS method.

As in 3.4, we need the quantity x̂CEGS and ŷCEGS . The last is already computed in 3.31.

For the first we report the results by Sak and Hörmann [2012] and Glasserman [2005]. In

this case, all the computations involve the new importance sampling distribution of loss.

The geometric shortcut appears in the computation of the average of the inner replication

loss. Given the loss for a fixed outer replication k:

L(k,l)1{L(k,l)>τ } for l = 1, ..., N (k)
in (3.32)

where l is the index sum. The average of inner replication loss is:

L̄
(k)
in = 1

N
(k)
in

N
(k)
inØ

l=1
L(k,l)1{L(k,l)>τ }

 (3.33)

We point out that N (k)
in is the number of inner repetitions for the kth outer replication.

Therefore the conditional excess estimate r̂CEGS is:

r̂CEGS = x̂CEGS

ŷCEGS
=
qN

k=1 ρ
(k)L̄

(k)
inqN

k=1 ρ
(k)p̄

(k)
in

(3.34)
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3.2.3 How to implement CEGS simulation

We presented all the elements required to simulate with the CEGS method, anticipating

the final product of this method, i.e the estimates of the risk metrics. But, we left where

the cross entropy and the geometric shortcut have to locate in the steps of the entire

simulation. Before giving the full algorithm, as made in Algorithm 1, we describe all

passages required, thanks also to the flowchart in fig. 3.2. We treat this part in a generic

form, valid for all three models.

Determine D’

Generate M replication of Ψ

Optimize for CE parameters θ and vD′+1, ..., vD

Calculate IS parameter v1, ..., vD

Create empty list of Pin and Lin each of M components

Generate Ψ from the new f(.; v)

Calculate IS weight ρ for generated Ψ

Calculate default probabilities pj(Ψ) j = 1, ..., J

Calcuate Nin = min [1/p̄j(Ψ), J ]

Generate default using GS, as in 3.1

Calculate losses L1
in, ..., L

(Nin)
in

Calculate ρp̄in and ρL̄in

Add to list

Calculate loss probability ŷCEGS and conditional excess r̂CEGS estimates

N times

Figure 3.2: Flowchart of CEGS method
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3.2 – CEGS simulation

Firstly we have to determine how many factors, i.e components of vector Ψ, we can

combine in the group of the identical element, as introduced in section 3.2.2. We, therefore,

choose the right value of D′ according to the model. The cross-entropy method starts after

we have simulated the systematic factor for a fixed number M . We use this simulation

to build the objective function of problem 3.27. Recall that the importance sampling

parameters combined are represented in the problem by a single optimization variable θ

and the remaining parameter, are free optimization variables. To keep it clear, the third

block of the flowchart is further developed in Figure 3.3. At the 5th block of flowchart, we

Figure 3.3: Details of third block of flowchart of CEGS method

prepare the elements required to store the result of the incoming Monte Carlo simulation.

Once we obtained the importance sampling parameters v, we can simulate from the new

distribution f(.; v): this is the starting point of the simulation. We generate N samples

of systematic factor Ψ(k) 7 consequently the likelihood ratio ρ(Ψ; u,v) (3.30), and the

conditional probability for each obligor pj(Ψ). A preliminary phase to apply the geometric

shortcut method is computing the optimal number of inner replication (3.10). Then we

simulate the default for each obligor which is a geometric random variable instead of

Bernoulli, using (3.9). Recall also that the geometric shortcut method exploits the already

simulated Ψ. For each inner replication Nin, having simulated default across J obligors,

we compute the loss L(k)
in . Figure 3.4 gives a clear view of how the 10th and 11th blocks

are linked. Having collected all losses and conditional probability, we can compute the

quantities p̄in and L̄in, i.e the average of losses and the average of conditional default

probability. These two values are fundamental to compute the estimates of interest: the

7k denote the index of simulation, k = 1, ..., N .
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Figure 3.4: Detailed link of 10th an 11th block of flowchart of CEGS method

tail loss probability ŷCEGS and the conditional excess r̂CEGS . In the following, we report

the Algorithm 3 proposed by Basoglu et al. [2018], which computes the estimates of the

risk metrics using cross-entropy and geometric shortcut methods.
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3.2 – CEGS simulation

Algorithm 3 Tail loss probability and conditional excess with CEGS simulation
1: determine D’, then solve for v using algorithm 2
2: for replication k = 1, ..., N do
3: generate Ψd from f(. . . ,v), d=1,..., D independently
4: calculate ρ(k) as in 3.30
5: compute pj(Ψ), j = 1, ..., J
6: construct loss vector Lin of size Nin = min ([1/p̄j(Ψ)], J)
7: for obligors j = 1, ..., J do
8: inizialize λ to zero and cont to false
9: while cont = true do

10: generate the U(0,1) random variate U
11: set λ = λ+ ceil(log(1 − U)/log(1 − pj())
12: if (λ > Nin) then
13: cont=true
14: elseset Lλ

in = Lλ
in + cj

15: end if
16: end while
17: end for
18: compute p̄(k)

in = 1
Nin

qNin

l=1 1{Ll
in>τ}, as in 3.29

19: compute L̄(k)
in = 1

Nin

3qN
(k)
in

l=1 L(k,l)1{L(k,l)>τ }

4
, as in 3.33

20: end for
21: return ŷCEGS as in 3.31 and r̂CEGS as in 3.34
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Chapter 4

Models settings and

simulations implementation

In the previous chapters, we faced all the theoretical concepts needed to fully understand

how the simulations of tail loss probability and conditional excess work. Starting from

credit risk definitions, we gave an overview of the models, used in this work, to simulate

the default of obligors. In Chapter 3 are presented all elements required to address the

new method as opposed to the Naive one. Now in this Chapter, we explain how to

implement all the models and the simulations giving the related codes. We decide to use

MATLAB software (produced by MathWorks [2022]), with the support of the toolboxes:

Financial Toolbox, Optimization Toolbox, Statistics and Machine learning Toolbox and

Symbolic Math Toolbox. For reproducibility reasons, we take the same data used in the

Basoglu et al. [2018], in particular, the parameters of models come for others papers on the

Credit risk topic. They are considered the common test values for credit risk simulations.

The last two sections of the chapter report the code of the related method and the results.
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4.1 Parameters setting

4.1.1 CreditRisk+ parameters

For the CreditRisk+ model we use the same parameters as proposed in Glasserman and

Li [2004]. Recalling the model formula in 2.15 and the total portfolio loss 2.10 we consider

a portfolio of:

• J = 1000 obligors;

• each obligor has an exposure value cj = 0.004 + 0.00196j for j = 1, ..., J ;

• aj0, the weight of the first systematic factor is equal to 0.02;

• the remaining weights of factors are set to ajd = 0.002 for d = 1, ..., D = 10;

• assume σd = 9 for d = 1, ..., D.

Here we propose the MATLAB function that computes the conditional default probability

2.15 for a single obligor j and the code that set the parameter for this model.

1 function [p_plus ,psi] = creditriskplus (d,sigma ,a,a0)
2 % CREDITRISK +
3 alpha = sigma .^( -2);
4 beta = sigma .^2;
5 psi = random('Gamma ',alpha ,beta ,d ,1);
6 p_plus = 1- exp(-a0 -a*psi);
7 end

1 %% Data creditrisk+ [p_plus] = creditriskplus(d,sigma ,a,a0)
2 j= 1000;
3 d= 10;
4 c= 0.04 + 0.00196*[1: j]';
5 a0= 0.002;
6 a= 0.0002* ones(j,d);
7 sigma= 9;
8 p_criskplus = creditriskplus (d,sigma ,a,a0);

Notice that in the CreditRisk+ model, all parameters are deterministic, therefore they

are not a source of randomness, especially referring to the weight of systematic factors.

As we will see in the next models we will relax this assumption.
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4.1.2 Gaussian copula model parameters

Following Basoglu et al. [2018], the authors take data from Glasserman [2005] for the

Gaussian copula model. We consider a portfolio of:

• J=1000 obligors;

• d = 1, ..., D = 10, thus it is a 10-factor model;

• the marginal default probabilities are pj = 0.01(1 + sin (16πj/J)) for j = 1, ..., J .

Notice that pj ∈ [0, 2%];

• obligors have an exposure value cj = (⌈5j/J⌉)2 where ⌈.⌉ represent the ceiling func-

tion;

• the factor loadings aj are generated independently and uniformly form the interval

(0,1/
√

10) 1; as Basoglu et al. [2018] report, this choice aims to ensure that the

Condition 2.26 will be satisfied. The upper limit of the interval implies that, for

some of the obligors, the sum of the squares of elements of aj is close to 1: this

credit portfolio contains strongly correlated obligors. We obtain the bj coefficents

inverting the Condition 2.26.

The MATLAB function that computes the conditional default probability of the Gaussian

copula model 2.28 and the parameters of the portfolio are here proposed. In the code, we

use the same notation adopted in Chapter 2.
1 function [p_gausscop ,Zbig ,z] = gaussiancopulamodel (j,d,p,a,b)
2 % GAUSSIANCOPULAMODEL
3 % info a must be (j,d)
4 % info b must be (j ,1)
5 eps = randn(j ,1); % idiosincratic risk factor
6 psi = randn(d ,1); % systematic risk factor
7 z= icdf('Normal ',1-p ,0 ,1);
8 Zbig= b '.* eps + a* psi;
9 p_gausscop = cdf (" Normal", a*psi + icdf('Normal ',p ,0 ,1) .*(1./

b) ,0,1);

1as anticipated, opposed to CreditRisk+, the factor loadings in Gaussian copula model are not
fixed, but random.
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10 end

1 %% Data gaussian copula model [p_gausscop ,Zbig ,z] =
gaussiancopulamodel(j,d,p,a,b)

2 j= 1000;
3 d= 10; %10 factor model
4 p =0.01*(1+ sin (16* pi/j*[1:j]'));
5 c= (ceil (5/j*[1:j]')).^2;
6 a = random('Uniform ' ,0,1/ sqrt (10) ,j,d); %rows are obligors

and columns are systematic factor
7 b = sqrt(ones(j ,1) -sum(a.^2 ,2));
8 p_gausscop = gaussiancopulamodel (j,d,p,a,b);

4.1.3 t-copula model parameters

In the t-copula model, Basoglu et al. [2018] take the same data from Sak and Hörmann

[2012]. The model considers a portfolio of:

• J = 1200 obligors;

• D = 5 factors;

• the marginal default probabilities pj , for each obligor, are generated independently

and uniformly from the interval [0,0.02];

• the exposure level of each obligor is cj = (⌈20j/J⌉)2 for j = 1, ..., J , where ⌈·⌉

represent the ceiling function;

• the factor loadings values follow the example in Sak and Hörmann [2012]. Assume

to divide all obligors into 6 segments of size 200. For each segment, the factors follow

a uniform distribution U(0,max), according to the table in Fig. 4.1.

• Recalling that ΨD is a Chi-square random variable, we set η = 5, the number of

degree of freedom;

As usual they follow the MATLAB function of the conditional default probability 2.33

and the code that imports parameters data.
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Figure 4.1: Distribution used to generate the factor loadings of t-copula model

1 function [p_cond ,T,t] = tcopulamodel (j,d,p,c,b,a_t ,v)
2 eps = randn(j ,1);
3 psi_t = randn(d -1 ,1);
4 psi_D = random('Chisquare ',v);
5 T= (b.* eps + a_t*psi_t)*(( psi_D/v).^( -0.5)); % latent

variables
6 t = icdf('T',1-p,v); % threshold
7 p_cond = cdf('Normal ',(a_t*psi_t - sqrt(psi_D/v)*icdf('T',1-p

,v)).*(1./b) ,0,1);
8 end

1 %% Data t copula model [p_cond ,T,t] = tcopulamodel(j,d,p,c,b,
a_t ,v)

2 j=1200; % total obligors
3 d=5; % 5 factor model;
4 p= random('Uniform ' ,0,0.02,j ,1); % marginal default

probability
5 c= (20/j*[1:j]') .^2; % obligors exposure
6 a = [random (" Uniform " ,0 ,0.5 ,200 ,2) random (" Uniform

" ,0 ,0.1 ,200 ,1) zeros (200 ,2);
7 random (" Uniform " ,0 ,0.5 ,200 ,1) random (" Uniform

" ,0 ,0.1 ,200 ,1) random (" Uniform " ,0 ,0.5 ,200 ,1) zeros
(200 ,2);

8 random (" Uniform " ,0 ,0.4 ,200 ,1) zeros (200 ,1) random ("
Uniform " ,0 ,0.3 ,200 ,1) random (" Uniform " ,0 ,0.1 ,200 ,1)

zeros (200 ,1);
9 random (" Uniform " ,0 ,0.4 ,200 ,1) zeros (200 ,1) random ("

Uniform " ,0 ,0.1 ,200 ,1) random (" Uniform " ,0 ,0.3 ,200 ,1)
zeros (200 ,1);

10 random (" Uniform " ,0 ,0.5 ,200 ,1) zeros (200 ,2) random ("
Uniform " ,0 ,0.4 ,200 ,1) random (" Uniform " ,0 ,0.3 ,200 ,1)
;
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11 random (" Uniform " ,0 ,0.5 ,200 ,1) zeros (200 ,2) random ("
Uniform " ,0 ,0.3 ,200 ,1) random (" Uniform " ,0 ,0.4 ,200 ,1)
];

12 a_t = a(: ,1:d -1);
13 b = sqrt(ones(j ,1) -sum(a_t .^2 ,2));
14 v=5; %degree of freedom of Psi_D
15 p_tcop = tcopulamodel (j,d,p,c,b,a_t ,v);

4.2 Naive Monte Carlo (NV) implementation

We give in this section the code that implements the naive Monte Carlo simulation. We

set the number of replication N = 10000 valid for all models, but we change the threshold

values τ according to Basoglu et al. [2018]:

• CreditRisk+ : τ = [8, 13.8, 19.7];

• Gaussuan copula model: τ = [250, 950, 2000];

• t copula model: τ = [4500, 16500, 34000];

Using the previous code of Section 4.1 we can implement the following code comparing

with the Algorithm 1. We divide the code into sections for each model. Notice at the end

of the sections we compute the risk metrics: the variable yNV followed by the name of the

model is the estimate of tail loss probability and rNV is the estimate of conditional excess.

1 %% Naive simulation of tail loss probability and conditional
excess for CREDITRISK+

2 % remeber first run the section of data of model
3 N = 10000; %number of replication
4 k =0;
5 L = zeros(N ,1);
6 tau_crplus = [8 13.8 19.7];
7 for k=1:N
8 p_criskplus = creditriskplus (d,sigma ,a,a0);
9 Y = random (" Binomial ",1, p_criskplus );

10 L(k)= c'*Y;
11 end
12
13 yNV_crplus = 1/N* (sum(L>tau_crplus ,1))
14 rNV_crplus = (L '*(L> tau_crplus ))./( sum(L>tau_crplus ,1))
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15
16
17 %% Naive simulation of tail loss probability for GAUSSIAN

COPULA MODEL
18 % remeber first clear and close then run the section "Data

gaussian
19 % copula model" and finally the following section
20 N = 10000; %number of replication
21 k =0;
22 L = zeros(N ,1);
23 tau_gausscop = [250 950 2000];
24 for k=1:N
25 p_gausscop = gaussiancopulamodel (j,d,p,a,b);
26 Y = random (" Binomial ",1, p_gausscop );
27 L(k)= c'*Y;
28 end
29
30 yNV_gausscop = 1/N* (sum(L>tau_gausscop ,1))
31 rNV_gausscop = (L '*(L> tau_gausscop ))./( sum(L>tau_gausscop ,1))
32
33 %% Naive simulation of tail loss probability and conditional

excess for T COPULA MODEL
34 % remeber first clear and close then run the section "Data t

copula model"
35 % and finally the following section
36 N = 10000; %number of replication
37 k =0;
38 L = zeros(N ,1);
39 tau_tcop = [4500 16500 34000];
40 for k=1:N
41 p_tcop = tcopulamodel (j,d,p,c,b,a_t ,v);
42 Y = random (" Binomial ",1, p_tcop);
43 L(k)= c'*Y;
44 end
45
46 yNV_tcop = 1/N* (sum(L>tau_tcop ,1))
47 rNV_tcop = (L '*(L> tau_tcop ))./( sum(L>tau_tcop ,1))

4.3 CEGS implementation

In this Section are proposed the implementations of the cross-entropy geometric shortcut

method for the three models. For each model, we repropose the import of parameters
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because we cannot use the functions introduced before. This is motivated by the software

that we are using: MATLAB is more efficient with vectorized code, therefore the abuse

of for loops can surely destroy the simulation. The Algorithm 3 can not be implemented

with the same structure and has to be adapted to the coding environment. Most random

generations are obtained by a single line code without performing for loops.

4.3.1 CreditRisk+

We divide the code into three parts. In the first, we vectorize the parameters setting

discussed in Section 4.1. Then we perform the cross-entropy algorithm to compute the

importance sampling parameters v. In the third part, there is the simulation equipped

with the geometric shortcut technique. The main result that we have to reach in the

first codes section (up to line 22) is the computation of conditional default probability,

i.e p_criskplus_matrix. We start the code by setting the number of total replications

N and the replications useful to reach the optimal parameters in cross-entropy algorithm

M . A priori we need to decide what D′ is, depending on the model. We can take

the result discussed in Section 3.2.2. In the second section, we solve the optimization

problem 3.23 that we rewrite in minimized sense. In the case of the CreditRisk+ model,

the optimization is unconstrained and one single optimization variable is involved: at

first glance, can be used the simple solver fminunc. Nevertheless, we are neglecting that

the objective function 3.27 is highly nonlinear, therefore a sensible solution is to perform

optimization with genetic algorithm2. This choice allows us to overtake the problem with

a proper feasible initial starting point. The code also reported a nice plot in Figure 4.2,

using Symbolic Math Toolbox, of the objective function. It is useful to have a visual check

of convexity and consequently to observe directly where the minimum of the function is.

Obtaining the importance sampling parameter we can start with the simulation following

the conceptual step in the previous Flowchart 3.2. In this part, we take the advantage of

the geometric shortcut method using the inner replication Nin and simulating the default

event from geometric distribution. Notice that the 53th and 54th lines of the code are

2ga function in MATLAB
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responsible for the simulation. Finally, we compute the estimate of tail loss probability,

yCEGS_crplus in the code, and the estimate of conditional excess rCEGS_crplus.

1 %% CEGS implementation for CREDITRISK+
2 clc
3 clear
4 close
5 j= 1000;
6 d= 10;
7 c= 0.04 + 0.00196*[1: j]';
8 a0= 0.002;
9 a= 0.0002* ones(j,d);

10 sigma= 9;
11 M = 1000; % replication for optimization CE
12 N= 10000; % outer replication for simulation
13
14 alpha = sigma .^( -2);
15 beta = sigma .^2;
16 tau_crplus = [8 13.8 19.7];
17
18 % compute the psi_d^k matrix
19 % rng('default ')
20 psi= random('Gamma ',alpha ,beta ,d,M);
21
22 p_criskplus_matrix = 1- exp(-a0 -a*psi);
23
24 %% Cross entrpy CE method to compute v importance sampling

paramters
25 % compute first part of objective function
26 obj_part1 = 1-cdf (" Normal", ( tau_crplus (1) -c'*

p_criskplus_matrix )./ sqrt ((c '.^2) *( p_criskplus_matrix -
p_criskplus_matrix .^2)) ,0,1);

27
28 fun = @( theta) -obj_part1 *( log(gampdf(psi ,(( theta *(a'*c))

.^ -2) .* ones(d,M) ,(( theta *(a'*c)).^2) .* ones(d,M))) '*ones(d
,1))

29 fplot(fun ,[20 70]) % plot of objective function
30 nvars =1;
31 options = optimoptions ('ga','ConstraintTolerance ',1e -9);
32 [ opt_theta_ga ,fval ]= ga(fun ,nvars ,[] ,[] ,[] ,[] ,1 ,[] ,[] ,

options )
33 v= opt_theta_ga *(a'*c);
34
35 %% CEGS simulation
36 N= 10000;
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37 psi= random (" Gamma ",(v.^ -2) .* ones(d,N) ,(v.^2) .* ones(d,N),d,N)
;

38 f_u=gampdf(psi ,alpha ,beta);
39 f_v=gampdf(psi ,(v.^ -2) .* ones(d,N) ,(v.^2) .* ones(d,N));
40 rho= prod(f_u ./ f_v ,1);
41 p_criskplus_matrix = 1- exp(-a0 -a*psi); %it is a matrix where

the columns contain k=1...N replication infact #col is
=10000

42 N_in= round(min (1./( mean( p_criskplus_matrix ,1)),j*ones (1,N)))
;

43 L_in ={};
44 for i=1: length(N_in)
45 L_in(i ,:) ={ zeros (1, N_in(i))};
46 end
47 % test the loop
48 for k=1:N
49 for i =1:j
50 lambda =0;
51 cont=false;
52 while cont == false
53 U=random (" Uniform ",0,1);
54 lambda= lambda + ceil(log(1-U)./ log(1-

p_criskplus_matrix (i,k)));
55 if lambda >N_in(k)
56 cont=true;
57 else
58 if i<= length(L_in{k ,1})
59 L_in{k ,1}(i)= L_in{k ,1}(i)+c(i);
60 else
61 break
62 end
63 end
64 end
65 end
66 end
67
68 k=0;
69 for k=1:N
70 p_in(k)= 1/ N_in(k) * sum(L_in{k,1}> tau_crplus (1));
71 end
72 k=0;
73 for k=1:N
74 L_bar_in (k)= 1/ N_in(k) * (L_in{k ,1}*( L_in{k,1}> tau_crplus

(1)) ');
75 end
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76
77 rho(isnan(rho))=0;
78 yCEGS_crplus = 1/N*( rho*p_in ')
79 rCEGS_crplus = (rho*L_bar_in ')/( rho*p_in ')

Figure 4.2: Objective function of cross-entropy optimization problem for CreditRisk+
model

4.3.2 Gaussian copula model

Also for this model, we follow the same structure adopted in the code of the CreditRisk+

simulation. We fix to M = 10000 the number of replication required to have good es-

timates of the importance sampling parameters. We vectorize properly the simulation

rearranging the conditional probability of default 2.28 in a matrix form, that figure in

the code as p_gauss_matrix. Referring to the section 3.2.2, we set the value of D′,

noticing that also in this case one optimization variable is involved. This results in the

simplification of the following section. In the second section of the code we perform the
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optimization of importance sampling parameters, that instead of using the genetic algo-

rithm as in CrediRisk+, we can use the function fminsearch. Figure 4.3 illustrate the

objective function of the cross-entropy optimization problem. In the last section, we sim-

ulate the default of obligors that constitute our portfolio, in the same manner, done in

CreditRisk+. We put more attention to that we introduced in the row 46th the control

on the value of probability, in order to avoid numerical problems in the computation of

likelihood ratio.

1 %% CEGS implementatin for Gaussian copula model
2 clc
3 clear
4 close
5 j= 1000; % obligors
6 d= 10; % 10 factor model
7 p =0.01*(1+ sin (16* pi/j*[1:j]'));
8 c= ceil (5/j*[1:j]') .^2;
9 M =10000;

10
11 a = random('Uniform ' ,0,1/ sqrt (10) ,j,d); %rows are obligors

and columns are systematic factor
12 b = sqrt(ones(j ,1) -sum(a.^2 ,2));
13 psi = randn(d,M);
14 p_gauss_matrix = cdf (" Normal ",(a*psi + icdf (" Normal",p ,0 ,1) .*

ones(j,M)).*(b.^ -1) ,0,1);
15
16 sigma =1;
17 tau_gaus =[250 950 2000];
18
19 %% Cross entrpy CE method to compute v importance sampling

paramters
20 obj_part1 = 1- cdf (" Normal", ( tau_gaus (1) -c'* p_gauss_matrix )

./ sqrt ((c.^2) '*( p_gauss_matrix - p_gauss_matrix .^2)) ,0,1);
21 fun_gauss = @( theta) -obj_part1 *( log (1/( sigma*sqrt (2* pi))*exp

( -0.5*(1/ sigma *(psi -( theta *(a'*c).* ones(d,M)))).^2)) '*ones
(d ,1));

22
23 fplot( fun_gauss ) % plot of objective function
24 title('Objective function of cross - entropy optimization

problem for Gaussian copula model ')
25 xlabel('theta ')
26 ylabel('fun gauss ')
27 options = optimset ('TolX ',1e-8,'TolFun ',1e -8);
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28
29 theta_gauss_opt = fminsearch (fun_gauss ,0.01 , options )
30 v_gauss = theta_gauss_opt *(a'*c);
31
32 %% CEGS simulation
33 N= 10000;
34 psi= random (" Normal", v_gauss .* ones(d,N),ones(d,N),d,N);
35 f_u= normpdf (psi);
36 f_v= normpdf (psi , v_gauss .* ones(d,N),ones(d,N));
37 rho= prod(f_u ./ f_v ,1);
38 p_gauss_matrix = cdf (" Normal ",(a*psi + icdf (" Normal",p ,0 ,1) .*

ones(j,M)).*(b.^ -1) ,0,1);
39 N_in= round(min (1./( mean( p_gauss_matrix ,1)),j*ones (1,N)));
40 L_in ={};
41 for i=1: length(N_in)
42 L_in(i ,:) ={ zeros (1, N_in(i))};
43 end
44
45 % to avoid numerial problems
46 p_gauss_matrix ( p_gauss_matrix <1e -16) =2e -9;
47
48 for k=1:N
49 for i =1:j
50 lambda =0;
51 cont=false;
52 while cont == false
53 U=rand ();
54 lambda= lambda + round(log(1-U)./ log(1-

p_gauss_matrix (i,k)));
55 if lambda >N_in(k)
56 cont=true;
57 else
58 if i<= length(L_in{k ,1})
59 L_in{k ,1}(i)= L_in{k ,1}(i)+c(i);
60 else
61 break
62 end
63 end
64 end
65 end
66 end
67
68 k=0;
69 for k=1:N
70 p_in(k)= 1/ N_in(k) * sum(L_in{k,1}> tau_gaus (1));
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71 end
72 k=0;
73 for k=1:N
74 L_bar_in (k)= 1/ N_in(k) * (L_in{k ,1}*( L_in{k,1}> tau_gaus

(1)) ');
75 end
76
77 rho(isnan(rho))=0; %to avoid numerical problem
78 yCEGS_gauss = 1/N*( rho*p_in ')
79 rCEGS_gauss = (rho*L_bar_in ')/( rho*p_in ')

Figure 4.3: Objective function of cross-entropy optimization problem for Gaussian copula
model

4.3.3 t-copula model

In this last section, we present the remaining model: the t-copula model. Since the

implementation of the code follows the same steps as before, we can skip to the main focal

point. Recall that this model differs from the other since the D′ is equal to D−1, therefore

we can combine D − 1 identical factors into one optimization variable θ and also another
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Figure 4.4: Detail on convexity of objective function fro Gaussian copula model

variable vD constitutes the second optimization variable. At first glance, the problem

becomes more complicated however, we notice that the same variables have no interaction.

By exploiting this property, we can divide the problem into more easy subproblems,

improving performance. Instead of using a more complex solver as the genetic algorithm,

thanks to this decomposition we can use the function fminunc that uses by default the

quasi-newton algorithm. As usual, we set M = 1000 as the number of replications to

search the importance sampling parameters. Also, in this case, we recast the maximization

problem 3.27 into minimization one. Firstly, we report the full objective surface (Fig. 4.5)

in which we indicate the global minimum. Then, we apply the division into subproblems.

In Figures 4.6 and 4.7 are plotted respectively the cross-entropy objective function for

importance sampling parameters related to θ and the objective function of parameter

vD. In the last section, where the simulation equipped with geometric shortcut starts, we

adopted the same structure used in the Gaussian copula model implementation. To avoid

numerical problems, at 71-th and 102-th, we introduce a control function on the values of

new conditional default probabilities.
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1 %% CEGS implementatin for t-copula model
2 clc
3 clear
4 close
5
6 j=1200; % obligors
7 d=5; % 5 factor model;
8 p= random('Uniform ' ,0,0.02,j ,1);
9 c= ceil (20/j*[1:j]') .^2;

10 rng('default ')
11 a = [random (" Uniform " ,0 ,0.5 ,200 ,2) random (" Uniform

" ,0 ,0.1 ,200 ,1) zeros (200 ,2);
12 random (" Uniform " ,0 ,0.5 ,200 ,1) random (" Uniform

" ,0 ,0.1 ,200 ,1) random (" Uniform " ,0 ,0.5 ,200 ,1) zeros
(200 ,2);

13 random (" Uniform " ,0 ,0.4 ,200 ,1) zeros (200 ,1) random ("
Uniform " ,0 ,0.3 ,200 ,1) random (" Uniform " ,0 ,0.1 ,200 ,1)
zeros (200 ,1);

14 random (" Uniform " ,0 ,0.4 ,200 ,1) zeros (200 ,1) random ("
Uniform " ,0 ,0.1 ,200 ,1) random (" Uniform " ,0 ,0.3 ,200 ,1)
zeros (200 ,1);

15 random (" Uniform " ,0 ,0.5 ,200 ,1) zeros (200 ,2) random ("
Uniform " ,0 ,0.4 ,200 ,1) random (" Uniform " ,0 ,0.3 ,200 ,1);

16 random (" Uniform " ,0 ,0.5 ,200 ,1) zeros (200 ,2) random ("
Uniform " ,0 ,0.3 ,200 ,1) random (" Uniform " ,0 ,0.4 ,200 ,1) ];

17 a_t = a(: ,1:d -1);
18 b = sqrt(ones(j ,1) -sum(a_t .^2 ,2));
19 v=5;
20 M =10000;
21 tau_t =[4500 16500 34000];
22 psi_t = randn(d-1,M);
23 psi_D = random('Chisquare ',v,1,M);
24 psi = [psi_t;psi_D ]; % general matrix of psi
25 p_t_matrix = cdf('Normal ',(a_t*psi_t - sqrt(psi_D/v).* icdf('T

',1-p,v)).*(1./b) ,0,1);
26
27 %% Cross entrpy CE method to compute v importance sampling

paramters
28 % calculate the first part of objective function
29 obj_part1 = 1- cdf (" Normal", (tau_t (1) -c'* p_t_matrix )./ sqrt ((

c.^2) '*( p_t_matrix - p_t_matrix .^2)) ,0,1);
30
31 % optimization for theta
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32 fun_t= @( theta) -obj_part1 *( log( normpdf (psi_t ,theta *(a_t '*c)
.* ones(d-1,M) ,1)) '*ones(d -1 ,1));

33 [theta_t_opt , fval_fun_t ]= fminunc (fun_t ,0)
34 fplot(fun_t ,[0 0.0001])
35
36 % optimization for vD
37 fun_t= @(vD) -obj_part1 *( log( chi2pdf (psi_D ,vD*ones (1,M))) ');
38 [vD_opt , fval_fun_t ]= fminunc (fun_t ,0.0001)
39 fplot(fun_t ,[0 7])
40
41 %% plot of full objective function
42 fun = @( theta ,vD) -obj_part1 *( log( normpdf (psi_t ,theta *(a_t '*c

).* ones(d-1,M) ,1)) '*ones(d -1 ,1)) -obj_part1 *( log( chi2pdf (
psi_D ,vD*ones (1,M))) ');

43 fsurf(fun ,[0 0.0001 0 7])
44 xlabel('theta ')
45 ylabel('vD')
46 hold on
47 fsurf(theta_t_opt ,vD_opt ,fun(theta_t_opt ,vD_opt),'Marker ','o'

,'MarkerFaceColor ','r','MarkerSize ' ,15) % minimum value of
obj function

48 hold off
49
50 %% CEGS simulation
51 v= theta_t_opt *(a_t '*c);
52 vD_opt= round(vD_opt);
53 N= 10000;
54
55 psi_t= random (" Normal",v.* ones(d-1,N) ,1);
56 psi_D= random (" Chisquare ",vD_opt*ones (1,N));
57
58 % compute f_u and f_v
59 f_u =[ normpdf (psi_t); chi2pdf (psi_D ,5) ]; % 5 are the initial

degree of freedom
60 f_v =[ normpdf (psi_t ,v.* ones(d-1,N) ,1); chi2pdf (psi_D ,vD_opt)

];
61 rho= prod(f_u ./ f_v ,1);
62
63 p_t_matrix = cdf('Normal ',(a_t*psi_t - sqrt(psi_D/vD_opt).*

icdf('T',1-p,vD_opt)).*(1./b) ,0,1); %it is a matrix where
the columns contain k=1...N replication infact #col is
=10000

64
65 N_in= round(min (1./( mean(p_t_matrix ,1)),j*ones (1,N)));
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66 L_in ={}; % construct a loss vector of different size for each
inner replication

67 for i=1: length(N_in)
68 L_in(i ,:) ={ zeros (1, N_in(i))};
69 end
70
71 p_t_matrix (p_t_matrix <1e -16) =2e -9; % to avoid numerial

problems
72
73 for k=1:N
74 for i =1:j
75 lambda =0;
76 cont=false;
77 while cont == false
78 U=rand ();
79 lambda= lambda + ceil(log(1-U)./ log(1- p_t_matrix (

i,k)));
80 if lambda >N_in(k)
81 cont=true;
82 else
83 if i<= length(L_in{k ,1})
84 L_in{k ,1}(i)= L_in{k ,1}(i)+c(i);
85 else
86 break
87 end
88 end
89 end
90 end
91 end
92
93 k=0;
94 for k=1:N
95 p_in(k)= 1/ N_in(k) * sum(L_in{k,1}> tau_t (1));
96 end
97 k=0;
98 for k=1:N
99 L_bar_in (k)= 1/ N_in(k) * (L_in{k ,1}*( L_in{k,1}> tau_t (1))

');
100 end
101
102 rho(isnan(rho))=0; %to avoid numerical problems
103 yCEGS_tcop = 1/N*( rho*p_in ')
104 rCEGS_tcop = (rho*L_bar_in ')/( rho*p_in ')
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Figure 4.5: Objective function of cross-entropy optimization problem for t-copula model

Figure 4.6: t-copula model: objective function for theta optimization subproblem
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Figure 4.7: t-copula model: objective function for vD optimization subproblem

4.4 Experimental result

All implementations discussed end up with the two main risk metrics: tail loss probability

and conditional excess. All these metrics derive from the simulated loss distribution. We

recall that our models are set on different portfolios with different parameters as discussed

in Section 4.1 and as done in Basoglu et al. [2018]. This choice is taken in order to evaluate

the new method based on Cross entropy and Geometric shortcut on different portfolios

and models: it’s a kind of test of the robustness of the method. For readability reasons,

it is useful to remember that the CreditRisk+ model refers to the parameters described

in Section 4.1.1; for the Gaussian copula model notice the Section 4.1.2 and finally for

the t-copula model, the Section 4.1.3. We propose one first analysis that compares for

every single model, the Naive versus the Cross-entropy Geometric shortcut simulation.

This analysis is based on the computation of VaR (Value at Risk), a common risk metric

introduced by JP Morgan investment banking, and recognized as a valid risk metric in

the second pillar of Basel II. It is defined as the maximum dollar amount expected to
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be lost over a given time horizon, at a pre-defined confidence level. For our case, it

corresponds to the quantile of simulated loss distribution at 95% level of confidence. In

Figure 4.8 there are the simulated loss distributions for all three models, and we mark with

a vertical red line the value of VaR. Notice that the distributions have a long and thin tail,

which means that the naive Monte Carlo method, especially when dealing with a value

of probability near 0, does not apport significant information about the tail distribution.

This is a collateral effect of the rare-events simulation. The new method implemented in

this work helps us to increase the quality of the simulation in the tail of the distribution.

Figure 4.9 show the distributions of losses for the three models simulated with the cross-

entropy geometric shortcut method. From a qualitative point of view, it’s evident the

difference between the two distributions of the CreditRisk+ model. With the importance

sampling based on cross-entropy, the distribution assumes a completely different shape,

providing a relevant number of defaults. This justifies the fact that the distribution

mode is shifted to the left, near the VaR. For the Gaussian copula model, we can draw

the same conclusion, appreciating the improvements on the tail side simulation. Further

clarifications can be made on the t-copula model: although we reduced the variability in

the tail, the effect of importance sampling is less evident. By complexity of this model,

arise the difficulties in the performance. Despite this, the frequency observed in the tail

for CEGS simulation increased. To conduct a more strong quantitative analysis, VaR is

not the most recommended risk measure. We can only observe that the VaR in the CEGS

simulation is always greater than the Naive VaR, meaning that the method is working

properly and there is an increase in the probability of observing a higher loss. The main

problem is that it is strongly dependent on the obligor’s exposure. In our case, we used

VaR only to compare a given model across the two simulations, not across models. We aim

to get an overall evaluation characterized by model independence property, to quantify

the improvements of the new method discussed in this work.

The target risk metrics, tail loss probability, and conditional excess computed for every

model, end to themselves if we limit to get their value. We have to adopt a measure, strictly

related to this quantity, that compares the efficiency of Cross-entropy with Geometric

shortcut simulation versus the Naive one. As in Basoglu et al. [2018], we use the half
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length of the 95% confidence interval, to evaluate the goodness of estimates of tail loss

probability and conditional excess. The total sample size N = 10000 for each method,

help us to use, thanks to the central limit theorem, the common structure of confidence

interval. In Tables 4.1 and 4.2 we present the results.

Table 4.1 reports the results for the tail loss probabilities. For each threshold value

in the second column there are the estimates of the tail loss probabilities P (L > τ) with

Naive and CEGS simulations, and the related confidence intervals 3. For every model

increasing the value of the threshold, decrease obviously the tail loss probability, and

consequently gets worse its estimate. It is more evident looking at the half lengths of the

confidence interval of the Naive estimates: higher the threshold τ , longer the half length of

the confidence interval. Given a certain threshold value, if we compare the two estimates

of the risk measure they have the same order of magnitude, indicating a correct working

of the two types of simulation, however, there is a significant difference in the confidence

interval. The estimate obtained with CEGS simulation always has a shorter semi-length

of the confidence interval. The more evident case, for every model, appears with the

last threshold value. E.g. for the Gaussian copula model, with threshold τ = 2000, the

semi-confidence interval for the naive simulation is 22.33 approximately 20 times longer

than the one computed with CEGS simulation, equal to 1.00. Focusing only on the last

two columns we can notice that for the naive simulation, there is high variability in the

confidence intervals, for every model. The same variability is killed by the cross-entropy

method that limits the semi-lengths of confidence intervals. This analysis is still valid

for the second Table 4.2 that presents the estimates and the confidence intervals for the

conditional excess E[L|L > τ ]. The table presents the same structure as before, for easy

reading. Additional analysis can be made on the computational time required for the

simulations. In the Table 4.3 are given all times for all simulations run. It is done thanks

to the tic-toc MATLAB command. Notice, as expected, that changing the threshold

value does not affect the computational time. Instead, the complexity of the model and

the type of simulation significantly affect the time elapsed. E.g the t-copula model shows

3In the table the text confint stands for the confidence interval.
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Model Threshold τ NV CEGS NV CEGS

estimate estimate confint confint

CreditRisk+ 8.0 0.1068 0.1014 2.2 0.40

13.8 0.0512 0.02 7.3 0.66

19.7 0.0286 0.001 22.62 0.97

Gaussinan copula 250.0 0.0533 0.10 1.77 0.59

950.0 0.0015 0.0863 6.27 0.84

2000.0 0.0002 0.0009 22.33 1.00

t- copula 4,500.0 0.1027 0.108 1.87 0.56

16,500.0 0.0209 0.0487 6.10 0.79

34,000.0 0.0042 0.005 19.30 0.90

Table 4.1: Experimental results for tail loss probabilities P (L > τ), with estimates and
half lengths of confidence intervals at 95% level.

Model Threshold τ NV CEGS NV CEGS

estimate estimate confint confint

CreditRisk+ 8.0 17.820 8.8419 0.46 0.07

13.8 25.318 27.54 0.9 0.05

19.7 32.495 35.21 2.69 0.06

Gaussinan copula 250.0 428.1 508.45 1.21 0.33

950.0 1385.8 1370.3 2.00 0.21

2000.0 2477.0 2478.45 4.04 0.15

t- copula 4,500.0 12,190 9,500 1.29 0.33

16,500.0 27,608 24,218 2.04 0.21

34,000.0 45,601 40,365 3.99 0.14

Table 4.2: Experimental results for conditional excess E[L|L > τ ], with estimates and
half lengths of confidence intervals at 95% level.
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as the most complex model in computational time and estimates of risk measure as well.

The CEGS simulation should also improve the computational time with respect to the

naive simulation: it is out of our results. This is due to the choice of MATLAB software,

especially in the vectorization of the code. The main simulation part of each model,

cannot be properly vectorized and this reflects in slower simulations.

Model Threshold τ NV CEGS

CreditRisk+ 8.0 8.24 12

13.8 8.24 12

19.7 8.24 12

Gaussinan copula 250.0 11 13.4

950.0 11 13.4

2000.0 11 13.4

t- copula 4,500.0 12.3 15.7

16,500.0 12.3 15.7

34,000.0 12.3 15.7

Table 4.3: Computational times of the simulations for the three models
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(a) Naive simulation for CreditRisk+ model

(b) Naive simulation for Gaussian copula model

(c) Naive simulation for t-copula model

Figure 4.8: Distributions of losses and VaRs at 95% for the Naive Monte Carlo simulations
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(a) CEGS simulation for CreditRisk+ model

(b) CEGS simulation for Gaussian copula model

(c) CEGS simulation for t-copula model

Figure 4.9: Distributions of losses and VaRs at 95% for the CEGS Monte Carlo simulations
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Conclusions and future works

This work aimed to implement a new efficient method that improves the estimates of the

tail loss probabilities and conditional excess for a simulated portfolio’s loss distribution.

We use three different models with the related three portfolios of obligors. The new ap-

proach aspired to overcome the main difficulties of the Naive Monte Carlo simulation,

improving the quality of the estimate and reducing the computational time. According

to the results obtained in Section 4.4, we satisfied the target requirements in all models

analyzed: the Monte Carlo simulation equipped with the Cross-Entropy and the Geomet-

ric Shortcut methods always give better estimates of the risk measures. This is valid as

long as we use the literature parameters taken into account in the model-building phase.

The exposure of each obligor and the marginal default probability of default, if they are

changed, can give the opposite results, thus different conclusions. There aren’t improve-

ments in the computational time. The Naive Monte Carlo simulation, in our analysis,

is a bit faster than the CEGS simulation, and this is due to the limit of software in the

cycle iteration. From this point, potential future works can be developed. If we imple-

ment the simulation in python, we can deal easily with for loops, without vectorizing the

code. Furthermore, this work can be improved by implementing another variance reduc-

tion method: stratified sampling. The final product formalized by Basoglu et al. [2018] is

called stratified cross-entropy geometric shortcut simulation (STCEGS), which includes
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stratified sampling across obligors. This sampling regards principally the systematic fac-

tors Ψ, and consists in identifying equiprobable subset from the multivariate distribution

of systematic factors. In all models considered, we use the literature values of parameters,

thus defined a priori. A good challenge is to implement the same procedures discussed in

this work with parameters obtained from a previous statistical analysis. Given a dataset

of obligors and default, we can make inferences on parameters obtained from a multi-

variate regression. Nowadays many machine-learning techniques are used in credit risk

assessment, especially for the computation of scores on obligors. This evaluation can be

adapted to our model looking for more realistic exposures cj of obligors and reliable weight

of systematic factor ajd.
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