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Summary

Estimating the state of charge (SOC) of lithium-ion batteries (LIB) is a critical task
that has also become highly desirable as electrified vehicles become more widely
used. It is necessary to improve the accuracy of the battery SOC estimation, to
develop more efficient, reliable and affordable electrified vehicles. Due to the non-
linear behavior of these batteries, an accurate estimation of SOC is still challenging.
For this reason, thanks to the greater availability of battery data and advances in
artificial intelligence (AI), traditional theory-based methods are often replaced by
data-driven approaches. In particular, recurrent neural networks (RNN) should be
a promising method to be exploited since they can capture dependencies in time
and predict SOC without a battery model. Therefore, this thesis project shows how
a particular type of RNN, called long short term memory (LSTM), can accurately
predict SOC values in real time and forecast future values of the battery SOC
within different time horizons.
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Chapter 1

Introduction

World Health Organization (WHO) studies show that more than 99% of people are
living in areas where air pollution is above the WHO limits and more than 4 million
deaths are due to air pollution each year. Pollutants of major public health concern
came from household combustion devices, motor vehicles, industrial facilities and
forest fires. This is the reason why a lot of countries are reducing petrol and diesel
powered vehicles. The climate change and the energy transition of the globe for
the fulfillment of net-zero target are nowadays nevralgic and challenging topics in
our society. For this reason, governments push for new research development and
changes in everyday activities.
Since electric vehicles are responsible for the 1/4 of the global CO2 emission,
transport electrification is becoming crucial to perform the green deal requirements.
Transports are at the first step of their journey towards electrification and all the
e-mobility panorama is quite immature. Nevertheless, the scenario evolves fast
trying to accomplish user and energy needs.

Currently, lithium-ion batteries (LIBs) are the most commonly utilized in the
industry, particularly in the electric vehicle sector, and have gained significant
popularity in recent years. The main advantage of LIBs is their efficiency: for the
same volume and mass, they can deliver a greater amount of energy compared
to conventional batteries, such as lead-acid batteries. Moreover, they have longer
life (number of cycles) and lower self-discharge rate, compared with traditional
cells. This is the reason why nowadays LIB batteries are the key technologies in
the European energy transition, not only for the electric mobility but also as BESS
(Battery Energy Stationary Storage) to stabilize the grid power by fluctuations
enabling the inclusion of renewable sources in the energy taxonomy.
The battery market will grow exponentially in the next decades. The amount of
end of life (EOL) batteries is estimated about 3,5 million tons in the year 2030.
This represents both a major issue, since the used batteries have to be managed but
also a business opportunity, since waste batteries are valuable wastes, that contains
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Introduction

precious raw materials that can be restored or used in second-life applications.
To reduce the environmental impact of used batteries, a European Regulation
Proposal will be adopted. Digital battery passports (DBPs) can enable greater
sustainability and circularity in battery value chain. DBP for electric vehicles will
be regulated by Article 65 of EU regulation. The goal of this initiative is to update
the EU’s regulatory framework for batteries, targeting three closely connected
issues:

• the absence of favorable framework conditions encouraging investment in
sustainable battery production capacity;

• the inadequate performance of recycling markets;

• the social and environmental hazards not currently addressed by EU environ-
mental regulations.

Accurate state of charge (SOC) estimation comes into play especially when address-
ing the second bullet point: estimating the battery’s state of charge is a critical
issue for making the right decisions at all stages of the battery’s life. Moreover, it
helps minimizing the costs related to battery oversizing, as the battery pack is still
one of the most expensive and crucial vehicle components. SOC good estimation
also helps to improve vehicle performance, safety, and passenger comfort: it reflects
the battery performance because it prevents the overcharging and overdischarging,
improving its lifespan and saving energy. Unfortunately SOC cannot be directly
measured, but must be estimated.

The remainder of this work is organized as follows: next paragraphs contain an
introduction to electric vehicle batteries, the battery management system and the
related European regulation. In Chapter 2 there is an overview of most common
battery SOC estimation methods. Chapter 3 describes the setting of the experiment
and the used approach to estimate SOC. Chapter 4 shows the achieved results and,
in Chapter 5 there are some conclusions and future perspectives.

1.1 Electric vehicle battery
Between 2010 and 2018, battery demand grew by 30% annually and reached a
volume of 180 GWh in 2018. According to the base case scenario in Figure 1.1,
the market is expected to continue expanding at an annual rate of approximately
25%, and it is estimated to reach a volume of 2,600 GWh by 2030. By that year,
passenger cars are expected to account for the largest portion (60%) of global
battery demand, followed by the commercial vehicle segment at 23%.

An electric vehicle battery (EVB, also known as a traction battery) is a recharge-
able battery used to power the electric motors of a battery electric vehicle (BEV)
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Figure 1.1: Global battery demand expected in next years, partitioned by
application.

or hybrid electric vehicle (HEV). Lithium-Nickel-Manganese-Cobalt-Oxide (LiN-
iMnCoO2), abbreviated as NMC, is now widely used as a cathode powder in the
development of batteries for power tools, e-bikes, and electric powertrains. It offers
high overall performance, excellent specific energy, and the lowest self-heating rate
compared to other mainstream cathode powders, making it the preferred choice for
automotive batteries. This helps to increase the range of electric vehicles and reduce
their overall weight. The disadvantage of NMC is the lower safety compared to
LFP1 technologies that have lower energy density and are more suitable for energy
stationary storage. Lithium-ion batteries also have some limitations, including
their high cost and the need for careful management to avoid overcharging or
overheating, which can lead to safety issues.

The designs of battery packs for electric vehicles (EVs) are very complex and
differ significantly depending on the manufacturer and the intended use. Neverthe-
less, they all include a mixture of various fundamental mechanical and electrical

1Lithium ferrophosphate is a type of lithium-ion battery composed of lithium iron phosphate
LiFePO4 as the cathode material, and a graphitic carbon electrode as the anode.
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components that carry out the necessary functions of the pack. As represented in
Figure 1.2, a battery pack is a series of individual modules and protection systems
that are organized in a shape that can be easily installed in a vehicle. Each module
is composed of cells that are connected in series or in parallel. The basic unit of
the electric vehicle battery is the cell, which converts the chemical energy into
electrical one. They come in many shapes and forms but the three most common
ones are prismatic, pouch and cylindrical.

Figure 1.2: Different components of electric vehicle battery.

The production of battery cells primarily involves chemical processes, while mod-
ule and pack production typically involves mechanical assembly processes. Once
produced, the battery cells are then arranged in modules to form serviceable units.
The cells are connected in series and in parallel, into battery packs, which are the
complete enclosure that deliver power to the electric vehicle, to achieve the desired
voltage and energy capacity. For example, an EV battery requires 400-800 volts
and one single battery cell typically features 3-4 volts.

Some of the main measures for electric vehicle batteries include:

• voltage: this is the measure of the electrical potential difference between the
positive and negative terminals of the battery. Higher voltage batteries can
provide more power to the motor.

• Current: refers to the flow of electrical charge (in the form of electrons) through
a circuit, which is generated by a battery. It is a measure of the rate at which
electric charge is moving through the circuit.

• Internal resistance: The opposition to current flow within an element or
battery, i.e. the sum of electron and ion resistance as a contribution to the
total effective resistance including inductive-capacitive properties.

• Impedance: refers to the opposition of a battery to the flow of an alternating
current (AC) or direct current (DC). It is a measure of the resistance of the
battery to the flow of current and is often used as an indicator of the battery’s
health and performance. Higher impedance can result in a lower battery
capacity and reduced performance, as it can lead to voltage drops and reduced
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current flow. Battery impedance can be affected by a variety of factors such
as the age of the battery, the temperature, and the rate of discharge.

• Temperature: EV batteries can be sensitive to extreme temperatures: high
temperatures can accelerate battery degradation and reduce the battery’s
capacity, while low temperatures can reduce the battery’s ability to provide
power. so effective temperature management is important to maintain optimal
performance and extend battery life.

• Capacity: this refers to the amount of energy a battery can store and release
before needing to be recharged. The higher the capacity, the longer is the
operational range of the EV: the capacity of a battery depends on various
factors, including its chemistry, size, temperature, and discharge rate. As
batteries age and are cycled (charged and discharged), their capacity may
degrade over time.

• Power density: This measures the amount of power that can be delivered
per unit of battery weight or volume. A high power density is important for
providing quick acceleration and maintaining high speeds.

• Charge time: is the amount of time it takes to charge the battery from empty
to full. Fast charging systems can recharge an EV battery in a matter of
minutes.

• Cycle life: is the number of charges and discharges a battery can have before
it loses significant capacity. EV batteries with longer cycle life can last for
numerous years without demanding to be replaced.

These measures are important for ensuring that EV batteries provide reliable
and efficient performance while also meeting safety and environmental standards.

1.2 Battery Management System
The battery management system (BMS) is an electronic control unit responsible
for communicating information between the vehicle energy management system
(EMS) and the battery, ensuring safe operation by interrupting the battery current
in the event of a safety concern. It continuously monitors and protects the battery
during operation, in order to avoid any electrical or thermal abuse.

The BMS is make up of different sections monitoring each module of the battery
pack, which includes cell balancing circuits, and a BMS Master that processes the
data sent by the various sensors, and controls cells and modules to coordinate
the measurements, and executes the balancing algorithm. The BMS is respon-
sible for linking the battery to the traction system and transmitting important
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battery-related information. In the event of any safety issues, the BMS is required
to halt the flow of current through the battery. Furthermore, the BMS contains,
also, all the algorithms and control policies necessary to guarantee the safety and
performance of the battery, including algorithms for estimating battery states, such
as state of charge (SOC) to determine the remaining capacity of the battery, state
of health (SOH) to estimate the capacity fade from the beginning of battery’s life,
and state of power (SOP) for a power capability estimation.
So, the BMS performs the current sensing, measures the total voltage and the
impedance, controls power switches for battery protection and isolation. Those
information are then used by advanced estimation algorithms to accurately deter-
mine SOC, SOH and SOP. The algorithms are generally stored in an external unit
that is the energy management system.

1.3 EU Regulation
On December 10, 2020, a proposal for a regulation on batteries and waste batteries
was presented by the European Commission. The primary goal of the proposal is
to enhance battery development and production, which are crucial components
for Europe’s transition to clean energy. A strong increase in the electrification
of passenger cars is expected to take place between 2020 and 2030 and this will
help reducing greenhouse gas (GHG) emissions and noxious emissions from road
transport.

The goal of the proposal is to achieve the following objectives:

• enhancing the internal market’s effectiveness, which includes products, pro-
cesses, waste batteries, and recycling, by ensuring a level playing field through
a common set of rules;

• encouraging a circular economy;

• minimizing environmental and social impacts at all stages of the battery’s life
cycle.

Given the strategic significance of batteries and the need to prevent discrimina-
tion, trade barriers, and market distortions among all stakeholders, there is a need
to establish regulations on sustainability criteria, safety, performance, recycling, and
second-life applications of batteries, as well as providing information to consumers
and economic operators. To achieve this, a unified regulatory framework is essential
for managing the entire life cycle of batteries marketed in the European Union.

According to the Regulation, the BMS is responsible for controlling and over-
seeing the electrical and thermal functions of the battery, as well as storing and
managing data related to the battery’s state of health and expected lifetime, so
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that those aspects may be determined at any time by end user or any other third
party acting on his behalf, by communicating with the vehicle or appliance in which
the battery is incorporated. The battery management system of stationary energy
storage systems (which are batteries without attached external devices to store
energy) and electric vehicle batteries equipped with a BMS must include real-time
data on parameters that determine the state of health, safety, and expected lifetime
of batteries. Those parameters are listed in Annex VII of the Regulation:

• Parameters for determining SOH of the batteries

– remaining capacity;
– overall capacity attenuation2;
– residual power capacity and power attenuation3;
– residual charge/discharge efficiency4;
– actual cooling demand5;
– evolution of spontaneous discharge rates;
– ohmic resistance and/or electrochemical impedance.

• Parameters for determining expected battery life:

– dates of manufacture and commissioning of the battery;
– energy efficiency;
– capacity yield.

At any time, the legal or natural person who has legally purchased the battery
or any third party acting on their behalf shall be provided with read-only access to
the data from the BMS, in order to:

• assess the remaining value and potential for continued use of the battery;

2The decrease, as a function of time and use, of the charge that a battery is capable of
delivering at nominal voltage, with respect to the original nominal capacity declared by the
manufacturer.

3The decrease, over time and usage, in the amount of energy a battery is capable of delivering
at rated voltage.

4The ratio between the net energy delivered by a battery during the discharge test and the
total energy required to restore the initial state of charge by means of a normal charge.

5Amount of cooling required to maintain the temperature of the battery within a safe and
optimal range during charging and discharging. When a battery is charged or discharged, it
generates heat due to the flow of current through its internal components.
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• facilitating the preparation for reuse6, reuse, the preparation for repurposing7,
repurposing or remanufacturing of the battery;

• allow independent aggregators or market participants to access and use the
battery’s energy storage capacity for various purposes, such as providing grid
services or participating in energy markets.

Manufacturers are required to provide real-time data on the state of health, state
of charge, power set point, and capacity of electric vehicle batteries that include
a battery management system. Furthermore, by January 1, 2024, the battery
management system must be designed to be compatible with smart charging
systems, including by having vehicle-to-grid, vehicle-to-load, vehicle-to-vehicle,
vehicle-to-power bank and vehicle-to-building charging functions.

The supervisor committee is the Committee on the Environment, Public Health
and Food Safety (ENVI). ENVI members held an exchange of views with the
Commission on the proposed regulation on 15 June 2021, and adopted a report
on 10 February 2022, elevating the level of intention of the Commission proposal.
On 10 March 2022, Parliament’s plenary adopted the report and interinstitutional
negotiations started with a first trilogue on 20 April 2022. Sustainability require-
ments will be introduced gradually from 2024, while,on the other hand, liability on
extended producer responsibility will start applying in mid-2025. The regulation
provides a broad regulatory framework, meaning that some technical details will
require additional legislation (such as delegated and implementing acts) to be fully
operational. The agreement reached is provisional and still needs to be formally ap-
proved by both the Council and Parliament. On January 18, 2023, ambassadors of
the Member States to the EU endorsed the agreement. The ENVI Committee vote
took place on 24 January, with an approval of the text adopted in interinstitutional
negotiations at first reading.

1.4 Battery Passport
The journey of a battery begins with the extraction of raw materials and continues
through to its use as stationary energy storage or as a recycling source. The
production process of a rechargeable battery, from mining the raw materials to
use in an electric vehicle, involves numerous social and environmental risks. These

6Means the complete or partial direct re-use of the battery for the original purpose the battery
was designed for.

7It refers to the process of reusing in parts or complete batteries that are no longer suitable
for their original intended purpose, but can still be used for other applications such as stationary
energy storage or as backup power sources.
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include concerns around mineral extraction such as child labor, unsafe working
conditions, and the violation of indigenous rights. Additionally, the production
processes involved in making batteries have significant impacts on sustainability,
including contributing to CO2 emissions, consuming significant amounts of water,
causing biodiversity loss, and pollution. All of these factors can impact the overall
sustainability of the end product, making it crucial to consider the entire life cycle
of batteries and their impacts on both people and the environment.

The battery passport (BP) is an electronic record of a battery that provides
details about its environmental, social, and governance (ESG) aspects, as well as its
life-cycle requirements. A sustainable battery is one that is produced in a manner
that minimizes its negative impact on the environment, while also being socially
responsible and economically viable. This includes considering the entire life cycle
of the battery, from the extraction of raw materials to end-of-life recycling or
disposal, and ensuring that its production and use do not contribute to significant
carbon emissions, pollution, or other harmful impacts on people or the environment.
A sustainable battery also takes into account the social and economic impacts
of its production, such as labor conditions and economic viability. Additionally,
a sustainable battery may prioritize the use of recycled or sustainably sourced
materials and the implementation of circular economy principles to reduce waste
and improve resource efficiency. Overall, a sustainable battery seeks to balance
environmental, social, and economic concerns to provide a responsible and viable
energy storage solution for a low-carbon future. The battery passport is essentially
a digital copy of the physical battery and is made possible through the digital BP
platform. This platform provides a secure way of sharing information and data on
batteries on a global scale.

By 1 January 2026, every industrial battery and electric-vehicle battery will
have its unique identifier, that the economic operator placing the battery on the
market shall attribute to it, which will contain all the information about the basic
characteristics of each battery type and model, that will be stored in the data
sources of the system established according to Article 64 of the Legislation and shall
be accessible online to ensure availability over time; that information should also be
made available by means of QR codes printed or engraved on all batteries. Article
64 sets up the electronic exchange system for battery information: the system
will contain all information about internal production and supervised verification,
which all be sortable and searchable, respecting open standards for third party use.
The battery passport shall be linked to the information contained in the system,
and shall be accessed online through electronic systems.

The battery passport will enable access to information regarding the performance
and durability parameters outlined in Article 10(1) at the time of the battery’s
initial placement on the market, as well as during any subsequent changes in its
status. The Article contains information about requirements on the electrochemical
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performance and durability parameters for rechargeable industrial batteries, electric
vehicle batteries and light means of transport batteries8: starting from 12 months
after the Regulation enters into force, all industrial batteries must be accompanied
by technical documentation that includes the values for electrochemical performance
and durability parameters, as specified in Part A of Annex IV:

• Nominal capacity (in Ah) and capacity attenuation (in %);

• Power (in W) and power attenuation (in %);

• Internal resistance (in Ω) and increase in internal resistance (in %);

• Charge/discharge efficiency and relative attenuation (in %);

• Indication of the expected life of the batteries under the conditions for which
they were designed.

The technical documentation mentioned in the previous statement must also
provide an explanation of the technical specifications, standards, and conditions
that were utilized to measure, calculate, or estimate the values for the electrochem-
ical performance and durability parameters. This explanation must include, at
minimum, the components outlined in Part B of Annex IV:

• Discharge rate and charge rate applied;

• Ratio of maximum permitted battery power (W) to battery energy (Wh);

• Depth of discharge measured during the cycle life test;

• State-of-charge power capacity of 80% and 20%;

• Any calculations performed with the measured parameters, if any.

The anticipated widespread adoption of batteries in areas such as transportation
and energy storage has the potential to reduce carbon emissions, but to fully
realize this potential, it is crucial that the entire life cycle of these batteries has a
low carbon footprint9. Therefore, the technical documentation accompanying all

8refers to vehicles that have an electric motor with a maximum power output of 750 watts,
designed to carry passengers while in motion, and can be powered entirely by the electric motor
or a combination of electric and human power.

9It is the sum of greenhouse gas (GHG) emissions and GHG removals in a product system,
expressed as carbon dioxide (CO2) equivalents and based on a Product Environmental Footprint
(PEF) study using the single impact category of climate change.
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industrial batteries that are placed on the market in the European Union should
also include a declaration of their carbon footprint.
By 1 January 2026, all these information shall be available via the publicly available
part of the electronic exchange system (Article 64) and shall be available to
consumers prior to purchase.

According to Article 9 and Annex III, starting from 1st January 2026, portable
batteries of general use can only be introduced to the market if they meet the
electrochemical performance and durability requirements. The Commission is
authorized to adopt delegated acts to update the minimum values and introduce ad-
ditional electrochemical performance and durability parameters based on technical
and scientific advancements. The minimum values for electrochemical performance
and durability listed in the regulation must not result in a decrease in the level of
performance and durability for electric vehicle batteries.

In addition to the parameters already specified, the battery passport must
also provide access to information regarding the state of health of the battery, as
outlined in Article 14. This information must be available when the battery is
first placed on the market, as well as when it undergoes any changes in its status.
At the end of the first life, used batteries are considered waste (except for reuse),
and repurposing is considered a waste treatment operation. When batteries are
repurposed or given a second life, they are considered as new products and must
meet all product requirements when they are introduced to the market. If the
change in the battery’s status is due to repurposing or remanufacturing activities,
the responsibility for maintaining the battery record in the battery passport must
be transferred to the economic operator who is responsible for introducing the
repurposed battery into the market or putting it into service. The record for
repurposed or remanufactured batteries must be linked to the record of the original
battery: if a battery undergoes repurposing or remanufacturing, a new label must
be affixed to reflect its updated status. As per Article 59, independent operators
that carry out repurposing or remanufacturing operations must be granted equal
and adequate access to all relevant information pertaining to the handling and
testing of electric vehicle batteries, components of such batteries, appliances, or
vehicles, including safety aspects.

Operators are responsible for ensuring that the examination, performance test-
ing, packing, and shipment of batteries and their components are conducted with
adequate quality control and safety instructions. Moreover, in case of repurposed
or remanufactured batteries, they must ensure that the battery complies with the
requirements specified in the Regulation.
Upon request, the battery holder must demonstrate the following in order to docu-
ment that a waste battery, which has undergone repurposing or remanufacturing,
is no longer considered waste:

• provide evidence of a state of health evaluation or testing confirming that the
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battery can perform as required for its intended use after the repurposing or
remanufacturing process. This evidence must be made available to end-users
and third parties acting on their behalf;

• document further use of the battery after repurposing or remanufacturing
through an invoice or a contract for the sale or transfer of ownership of the
battery;

• provide evidence of appropriate protection against damage during trans-
portation, loading, and unloading. This includes sufficient packaging and
appropriate stacking of the load.
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Chapter 2

State of art about State of
Charge

State of charge (SOC) refers to the amount of electrical energy stored in a battery,
expressed as a percentage of the battery’s total capacity. It is the equivalent of
a fuel gauge used in traditional gasoline vehicles: it is a value from “Empty” (0
%) to “Full” (100 %) that indicates the percentage of useful energy left inside the
battery. A good estimation of battery states is crucial to reduce over-design costs
and increase the overall vehicle efficiency and performance: for example if a battery
cell is subjected to over-charging or over-discharging it may has the potential to
cause irreversible harm and decrease its overall lifespan. Also accurate battery
state estimates allow battery pack to be used aggressively within design limits,
so pack does not need to be over-engineered allowing smaller battery packs and
smaller costs.
Thus, SOC is an important parameter to monitor in battery-powered devices and
systems, for several reasons:

• Battery life: SOC is a critical parameter to monitor for maximizing the life of
a battery. Operating a battery at a high SOC or a low SOC for prolonged
periods can reduce its lifespan. For example, lithium-ion batteries tend to
have a longer lifespan if they are not charged to 100% or discharged to 0%
too often.

• Performance: The SOC of a battery can affect its performance. As the SOC
decreases, the voltage of the battery also decreases, which can lead to a drop
in performance. In some applications, such as electric vehicles, maintaining a
certain SOC is crucial for optimal performance.

• Safety: Overcharging or over-discharging a battery can cause damage or
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even lead to a fire or explosion. Monitoring the SOC can help prevent such
situations by alerting the user to the need to charge or discharge the battery.

• User experience: In devices like smartphones, tablets, and laptops, the SOC is
often displayed to the user. Knowing the SOC can help users plan their usage
and ensure that their device has enough charge to last the required amount of
time.

Overall, monitoring the SOC of a battery is crucial for optimizing its lifespan,
performance, and safety, as well as ensuring a good user experience As a result,
significant design effort is placed on the battery management system software
design to perform a SOC and state of health estimation accurately.

Unfortunately no sensor is available to measure SOC so it has to be estimated.
With greater availability of battery data and advancements in computing power,
methods that rely on data, including machine learning (ML), are gaining popularity
for making estimations of state of charge and state of health, but the task still
remains challenging due to battery’s non-linear behaviour. The estimation is done
thanks to a great variety of methods which trade on measurable signals such as
the battery terminal voltage, current, and temperature.

The main requirements for SOC estimation of electric vehicle batteries are high
accuracy to achieve maximum efficiency and safety, robustness because the battery’s
internal states change as the vehicle’s states change, and because there always
exist sensor measurement errors. Finally the SOC estimate must be reasonably
smooth so that it does not indicate that the battery is charging while it is actually
discharging.

2.1 SOC algorithms
Key methods for lithium-ion EV battery state of charge estimation can be catego-
rized under five groups:

• conventional methods such as ampere-hour counting (further details in Section
2.1.1) and open circuit voltage (explained in Section 2.1.2), that use the
physical properties of the battery, which includes voltage, discharge current,
resistance and impedance;

• adaptive filter algorithm such as Kalman Filter presented in Section 2.1.3;

• ML algorithms like artificial neural network (ANN) (explained in Section 2.1.4)
and support vector machine (SVM) that require a large amount of training
data and heavy computation;

• non-linear observer that is designed to handle with the highly nonlinear system;
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• others and hybrid algorithm method which combines two or three SOC algo-
rithms to estimate SOC.

2.1.1 Coulomb counting
The Coulomb counting method is one of the easiest to implement: it is based on
the integration of battery current with respect to time while the battery is charging
or discharging. The mathematical expression is the following:

SOC(k) = SOC(0) − T

Cn

Ú k

0
(ηI(t) − Sd)

where SOC(k) is the battery’s SOC at time k, SOC(0) is the initial value of SOC,
I(t) is the current at time t, T is the sampling period, Cn is the battery’s nominal
capacity, Sd is the self-discharging rate and η is the coulombic efficiency, defined
as the ratio of energy delivered by a battery during discharge compared to the
amount of energy it accepted during charging. It is expressed as a percentage and
is a measure of how efficiently a battery is able to convert electrical energy into
chemical energy during charging and vice versa during discharging.

The biggest advantage of the CC method is its low power computation cost,
but the main disadvantage is that it cannot remain accurate for a long time: this
is due to the difficulties in determining the initial value of SOC, which causes a
cumulative error effect. Moreover, current and temperature measurement errors
and noise, may also result in cumulative effects: for example degradation of the
battery results in a loss of battery capacity, which causes an estimation error; also
self discharge (the consumption of charge inside the battery) cannot be observed by
current measurement. In order to improve the accuracy of the method, the initial
capacity and SOC value of the battery, and the current sensor drift, caused by
integration, need to be corrected and adjusted regularly by complete discharging of
the cell and periodic capacity calibration to obtain maximum capacity, because
there are no mechanisms of feedback compensation in this method. Unfortunately
those frequent adjustment require a lot of time and can shorten the battery lifespan.

2.1.2 Open circuit voltage
The OCV of a battery cell is defined as the potential difference between the positive
and negative electrodes, when the battery is at equilibrium, thus it is subjected to
no load. The OCV method approximates the relationship between SOC and OCV
and this is possible because SOC in a lithium-ion battery is related to embedding
quantity in the active material. The method uses a table look-up technique to
estimate the SOC from voltage measurements. The relationship between SOC and
OCV can differ from different batteries, because it depends on both the capacity
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and the internal electrode material of the battery. Some traditional batteries have
an approximate linear relationship, but for example, lithium-ion batteries does not
have that linear relationship between SOC and OCV. Moreover, this relationship
can be affected by external factors such as the environmental temperature and
cycle life of the battery, thus it is unstable and changes continuously.

Unfortunately the amount of time needed to reach the steady equilibrium
condition of the battery depends on SOC, temperature and so on, and it can take
hours. Thus, this method is only applicable when the vehicles are stationary and
parked, rather than being operated while in driving mode. This method is relatively
simple to implement because it has a very low power computation and a relatively
high accuracy and these are the reasons why it is generally used as a calibration
auxiliary technology.

2.1.3 Kalman filter
The adaptive filter algorithm is designed to reduce the noise influence on the
battery model in order to improve accuracy and robustness of SOC estimation.
This method can be identified by three main blocks:

• a battery model to properly estimate a predetermined SOC as an input of the
model;

• a battery voltage model to calculate the battery voltage as an output of the
model;

• an appropriate algorithm to evaluate the gain to update the SOC by comparing
the measured voltage and model voltage.

The Kalman filter is a well-designed method, which filters parameters from
uncertain, inaccurate observations: its self-correcting nature helps to tolerate a
high variation of current and this is the main reason why KF has gained immense
popularity in battery state estimation in recent years, regardless of its high compu-
tational cost. KF’s mathematical equations provide a recursive solution through a
linear optimal filtering for estimation of state space variables: the first equation
predicts the current state xt from the earlier state xt−1; the second one predicts a
measurement and updates the current state measurement to converge to the real
value. xt+1 = Atxt + Btut + ωt

yt = Ctxt + Dtut + νt

(2.1)

In the above Equation 2.1, x is the system state, u is the control input, y is the
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measurement input, ν is the sensor measurement noise, ω is the process noise, and
A,B,C and D are the covariance matrices that describe the dynamics of the system.
The process noise and measurement noise are assumed to be independent of each
other and to be zero Gaussian, while the state-space form equations consider a
discrete-time version of the cell dynamics. Unfortunately KF cannot be used to
prediction state of a non-linear system (it necessitates of predetermined SOC) and
it requires highly complex mathematical calculations.

2.1.4 Artificial neural networks
A biological neuron is composed of a cell body which contains the nucleus and
most of cell’s components, a lot of branching extensions called dendrites and a
longer one called axon. Each biological neuron receives short electrical impulses
called signals from other neurons via synapses which are located at the tip of each
branch. When a neuron receives a sufficient number of signals it fires its own: this
means that biological neurons are organized as a very complex network, and recent
studies show that they are distributed in consecutive layers.
One of the simplest artificial neural network is called perceptron and was invented
in 1957 by Frank Rosenblatt. Each neuron is a threshold logic unit (TLU) that has
as numbers as input. Each input connection is associated with its own weight: as
represented in Figure 2.1, the TLU performs a computation by multiplying each of
its inputs by a weight, and then adding these weighted inputs together. After this,
a step function is applied to the sum, which produces an output. Summarizing a

Figure 2.1: Representation of a single layer perceptron.
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perceptron is composed of a single layer of TLUs, each one connected to all the
inputs. A layer in which each neuron is connected to every neuron in the preceding
layer, that is, to its input neurons, is referred to as a fully connected layer or a
dense layer. All the input neurons form the input layer; moreover, an extra bias
neuron is typically added to these, representing an extra bias feature x0 = 1, which
just outputs 1 all the time. By adjusting not only the weights but also the biases of
the network, the model can better adapt to the data, enabling it to more effectively
meet the needs of the dataset. The following equation can summarize the output
of a perceptron:

Y = ϕ
1
XT W + b

2
(2.2)

where ϕ is an activation function, X is the matrix of inputs, W is the associated
weight matrix and b is the vector of input biases. If the model has an input layer,
multiple hidden layers and an output layer, it is called Multi-layer perceptron. It
works similarly to the perceptron: first of all the inputs are multiplied by their
weights, then are added up to pass to a step function. The output of each neuron’s
step function is multiplied by its corresponding weight, and the resulting values are
added together. This sum is then fed into another step function to generate the
final output of the network. When neurons are combined to form a deep neuron
layer and more layers are stacked up into a model then this model is known as deep
neural network (DNN).

ANN are trained with an algorithm called backpropagation: it computes gradient
of a loss function with regards to every single model parameter and then weights
and biases are updated in order to minimize a function loss. The detailed steps of
the algorithm are the following:

• input data is grouped into mini-batches;

• forward pass: each mini-batch is passed into the input layer and then to the
first hidden layer. The output of all neurons is computed and then passed to
the next layer, and this step is repeated until the last layer is reached;

• backward pass: a loss function is computed to measure the network’s error,
and also how much each output connection contributed to the error, thanks
to the chain rule, and this step is repeated until the input layer is reached;

• in order to improve the connection wieghts and biases of the network, the
algorithm performs a Gradient descent: it measures the local gradient of the
loss function with regards to the parameter vector, and it goes in the direction
of descending gradient.
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A single forward and backward pass of all the training instances passed through
the network is called epoch and is denoted by ϵ. A DNN requires lots of epochs to
get good prediction results.

To speed up the process the step function used in perceptron is replaced by a
different activation function ϕ. Some popular activation functions are:

• logistic1 function: σ (z) = 1
1+e−z

• hyperbolic tangent1 function: tanh(z) = 2σ (2z) − 1

• rectified linear unit2 function: ReLU(z) = max(0, x)

• softmax2 function: σ(z)i = eziqK

i=0 ezi
for i = 1,2, . . . , K

• SeLu2 function:f (z) =

λz if z ≥ 0
λα (exp (z) − 1) if z < 0

with α ≈ 1.6733 and

λ ≈ 1.0507.

where z is the vector of inputs and K is the number of output classes. In ANN, when
applied to regression problems, it is common to avoid using activation functions to
prevent output values from being restricted within a certain range determined by
the activation function.

To evaluate the performance of the system in regression tasks, the mean squared
error (MSE) is usually chosen as the loss function. This is because it provides an
estimate of the average error in the system’s predictions, with a greater emphasis
on larger errors. The mean absolute error (MAE) is the arithmetic mean of the
absolute deviations between the predicted values and actual observations in the
test sample, where each deviation is given equal weight. Thus, it is used to reduce
the effect of outliers. The root mean squared error (RMSE) is a scoring rule that
measures the magnitude of the error between predicted and actual observations,
by taking the square root of the average of the squared differences between the
predicted and actual values: since the errors are squared before they are averaged,
the RMSE as the MSE, gives a relatively high weight to large errors. Therefore,
RMSE should be more useful when large errors are particularly undesirable. When
it comes to interpreting the results, MAE is considered to be more straightforward.
On the other hand, RMSE not only measures the average error but also considers
the magnitude of the error through the squared differences between prediction
and observation, which can be harder to interpret. Moreover, RMSE does not
necessarily increase with the variance of the errors, but increases with the variance

1For single-label/multi-label binary classification.
2footnoteFor multi-class single label classification.
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of the frequency distribution of error magnitudes. Another aspect to take into
account is that as the size of the test sample increases, the difference between
RMSE and MAE tends to become greater. This can create issues when comparing
RMSE results calculated on differently sized test samples, which is a common
occurrence in real-world modeling. However, a benefit of using RMSE over MAE is
that it eliminates the need for absolute values, which can be problematic in certain
mathematical calculations. To combine the effects of MAE and MSE, the Huber
loss can be used: it gives quadratic weights for small values of errors and linear
weights for larger values.
The mathematical expressions for the above errors measures are given below:

MAE = 1
N

NØ
k=0

|SOCk − SOC∗
k |

MSE = 1
N

NØ
k=0

(SOCk − SOC∗
k)2

RMSE =

öõõô 1
N

NØ
k=0

(SOCk − SOC∗
k)2

Lδ =
I

1
2(SOCk − SOC∗

k)2 if |(SOCk − SOC∗
k)| < δ

δ((SOCk − SOC∗
k) − 1

2δ) otherwise

where N is the length of the sequence, δ is a threshold and SOCk and SOC∗
k are

the estimated and true values of the battery’s state of charge.
Recurrent Neural Networks (RNNs) are a type of artificial neural networks

designed to process sequential data such as time-series data or natural language
processing. Unlike traditional feedforward neural networks, RNNs have a feedback
loop that allows information to persist across time steps, making them particularly
effective for analyzing time-dependent data.
The basic building block of an RNN is a cell, which takes an input vector and a
hidden state vector from the previous time step as inputs, and produces an output
vector and a new hidden state vector as outputs. The new hidden state vector is
then fed back into the cell at the next time step.
RNNs have been successfully applied to a wide range of applications, including
speech recognition, machine translation, text generation, image captioning, and
music generation, among others. They continue to be an active area of research,
with ongoing efforts to improve their performance and scalability.

Long short term memory (LSTM) is a type of RNN which introduces an interme-
diate type of storage via the memory cell: simple recurrent neural networks possess
two types of memory. The first type is long-term memory, which is encoded in the
weights that change gradually during training and reflects the general knowledge
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Figure 2.2: Comparison between recurrent and non recurrent neural network.

about the data. The second type is short-term memory, which is facilitated by the
activation functions that pass information from one node to the next nodes and
has a transient nature. A memory cell is a complex building block constructed
from simpler nodes following a particular pattern of connections. It includes multi-
plicative nodes and comprises an internal state represented by Hk, along with three
gates that control the flow of information into and out of the cell. In particular
those gates determine whether (1) a given input should impact the internal state
(the input gate), (2) the internal state should be flushed to 0 (the forget gate),
and (3) the internal state of a given neuron should be allowed to impact the cell’s
output (the output gate). In this way, LSTM will learn to skip irrelevant temporary
observations, and to reset the latent state whenever needed.

• input gate Ik = µ (WXIXk + WHIHk−1 + bI) which controls which value of
the input should be used to modify the memory. The sigmoid function µ
determines which values to allow through 0 or 1;

• memory cell Ck = FkCk−1+IkC̃k where C̃k = tanh (WXCXC + WHCHk−1 + bC)
is the input node whose tanh function gives weights to the values which are
passed, deciding their level of importance ranging from -1 to 1; this means
that the memory cell input gate governs how much of new information we take
into account, and the forget gate addresses how much of the old cell internal
state Ck−1 we retain;
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• forget gate Fk = µ (WXF Xk + WHF Hk−1 + bF ) that regulates the details to
be discarded from the block using the sigmoid function µ;

• output gate Ok = µ (WXOXk + WHO
Hk−1 + bO) that is the result of the input

and the memory cell gate. Again here, the sigmoid function can be zero-valued,
so it can inhibit the flow of information to the next computational node;

• hidden state of the cell Hk = Ok tanh Ck that computes the output of the cell
as it will be seen by other layers. The tanh function assigns weights to the
input values, determining their degree of significance ranging from -1 to 1. If
the output gate is close to 1, the memory cell’s internal state can influence the
subsequent layers without any hindrance. On the other hand, if the output
gate has a value close to 0, the current memory is prevented from affecting
other layers of the network at the current time step.

Each gate has its set of network weights denoted by W and a bias b is added at
each matrix multiplication to increase the flexibility of the network to the data. X
denotes the vector of inputs to the network, Xk = [V (k), I(k), T (k)] which are the
battery voltage, current, and temperature, measured at time step k.

Figure 2.3: Data flow of information through the hidden state of an LSTM model.

The detailed process is showed in Figure 2.3: data fed into the LSTM gates
are the input Xk and the hidden state of the previous time step Hk−1; then the
forget gate controls how much of the information coming from previous memory
cell internal state Ck−1 the model should retrieve; the input gate controls how much
of the inputs (input state Xk and previous hidden state) the model should consider
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and then those inputs are combined with the output of the forget gate; finally the
outputs (the current memory cell internal state Ck and the current hidden state
Hk are computed and passed to the next memory cell.

Neural networks are highly adaptable, but this adaptability can also be a
disadvantage. There are several hyperparameters to fine-tune, including the number
of layers, the number of neurons per layer, the type of activation function, and the
weight initialization logic. Despite active research in hyperparameter tuning, it is
still helpful to have a rough idea of reasonable values for each hyperparameter to
build a quick prototype and limit the search space. Fortunately, some tools are
available to aid in this task.
In many cases, beginning with a single hidden layer can yield satisfactory results.
In fact, it has been demonstrated that a multilayer perceptron (MLP) with just
one hidden layer can effectively model even the most complex functions, provided
that there are enough neurons present. Conversely, deep neural networks exhibit
much higher parameter efficiency compared to shallow networks: with exponentially
fewer neurons, they can model complex functions and achieve significantly better
performance with the same amount of training data. The lower hidden layers of a
deep network model low-level structures, while intermediate hidden layers combine
these low-level structures to model intermediate-level structures. The highest
hidden layers and the output layer combine these intermediate structures to model
high-level structures. This hierarchical architecture not only helps deep neural
networks converge faster to an optimal solution, but also improves their ability
to generalize to new datasets. To summarize, for many problems, starting with
just one or two hidden layers will suffice. For more complex problems, gradually
increasing the number of hidden layers until overfitting the training set occurs, is a
viable approach.
For what concerns the number of neurons, in the input and output layers it is
determined by the type of input and output of the problem. In the past, it was
common practice to arrange the hidden layers in a pyramid shape with progressively
fewer neurons at each layer. The earlier idea that merging many low-level features
into fewer high-level features was effective has lost popularity. It seems that using
the same number of neurons in all hidden layers performs just as well, if not better,
in most cases. This approach also has the added benefit of reducing the number of
hyperparameters that need to be tuned since there is only one hyperparameter for
all layers. Like with the number of layers, the number of neurons can gradually be
increased until the network begins to overfit, or a simpler approach is to choose a
model with more layers and neurons than necessary and then use early stopping3

3Is a callback (an argument of the fit method that let the user specify a list of objects that
Tensorflow will call before and after the training phase, epoch and batch processing) that interrupt
the training phase if no pregress is measured on the validation set, on a specified number of
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to prevent overfitting.
The learning rate is a critical parameter in online learning systems as it determines
how quickly the system adapts to new data. When the learning rate is set up too
high, the system may quickly adapt to new data but forget old data. On the other
hand, if the learning rate is too low, the system may have more inertia and learn
slowly, but it will also be less sensitive to noise or non representative data points.
To find the optimal learning rate, a common approach is to start with a large
value and gradually reduce it until the training algorithm stabilizes. Typically, the
optimal learning rate is about half of the maximum learning rate, and dividing the
initial learning rate by three at each step is a good heuristic for finding it. Another
common technique is to use a non-constant learning rate: the algorithm starts with
a large learning rate and then reduces it, according to some rules, until it stops
making fast progresses. There are many different approaches to reduce learning
rate in training phase, and are called learning schedules. The most used are the
following:

• power scheduling ν(t) = ν0/(1 + t/s)c: the learning rate drops at each step.
After s steps it is down to ν0/2, then after s more steps it is ν0/3, and so on,
thus this learning schedule reduces learning rate quickly at the beginning and
then more and more slowly. The power c, steps s and the initial learning rate
ν0 are hyperparameters to be tuned;

• exponential scheduling ν(t) = ν0f
(t/s): the learning rate drops by a specified

factor f every number of s steps. It is similar to power scheduling, but the
dropping is faster;

• piece-wise constant scheduling: it starts by setting a constant learning rate
for a fixed number of epochs and then it is dropped to a lower constant rate
for a fixed number of epochs, and so on;

• performance scheduling: it measures the validation error every n steps and
when the error stops dropping, the learning rate is reduced by a user specified
factor.

As mentioned at the beginning of Section 2.1, training a NN require a large
amount of training data. The main problems that can arise during the training
phase are the two following:

• vanishing gradients problem: the backpropagation algorithm operates by
moving from the output layer to the input layer, while carrying the error
gradient along the way. The gradient decreases continuously as the algorithm

epochs.
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proceeds through the lower layers. So the lower layer connection weights are
left unchanged by gradient descent and training never converges (gradients
can also become bigger and bigger and this usually happens in RNNs and is
known as exploding gradients problem);

• training can be very slow because of large amount of input data and also for
the high number of parameters whose estimation can easily lead to overfitting;

• overfitting: NNs usually have a large number of parameters, which can range
from tens of thousands to millions. This contributes to give them a lot of
flexibility, and enables them to fit diverse and complex datasets. However,
this high flexibility also makes them vulnerable to overfitting on the training
set. To address this issue, regularization techniques are needed.

One way to deal with those problems is to choose the correct weight initialization
combined with a proper activation function. Researchers demonstrated that the
combination showed in Table 2.1 can be useful to help the flow of information
in both forward and backward directions, avoiding the vanishing or exploding
gradients.

Initialization Activation function weights distribution ∼ N (0, σ2)
Glorot None, Tanh, Logistic, Softmax σ2 = 1

navg

He ReLu and its variants4 σ2 = 2
nin

LeCun SeLu σ2 = 1
nin

Table 2.1: Initialization weights for different activation functions.

where nin is the number of inputs and navg = (nin + nout) /2 with nout is number
of neurons of the layer considered.
Another way to address the vanishing/exploding gradients problem is a technique
called batch normalization: this technique involves performing zero-centering and
normalization on each input, followed by scaling and shifting the normalized values
using two additional parameter vectors per layer, one for scaling and the other for
shifting. Essentially, this approach enables the model to determine the optimal
mean and scale for each input in the layer. This operation is performed just before
or after the activation function of each hidden layer. To normalize and zero-center
the inputs, the algorithm requires to estimate the mean and standard deviation
of each input over the present mini-batch. During training, the batches should
not be too small, if possible more than 30 instances, and all instances should be
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IID5. The vanishing gradients problem is strongly reduced with this technique and
convergence is much faster, but there is a runtime penalty: the neural network
makes slower predictions due to the extra computations required at each layer.

The above mentioned batch normalization technique, acts also as a regularizer.
Moreover one of the most popular regularization techniques is the dropout. During
each training step of NNs, a dropout technique is applied by setting the output of
some neurons to zero. This means that, for a given training step, a neuron may
be temporarily "dropped out", and it will be ignored during this step, but it may
be active during the next step. The probability of a neuron being dropped out
is defined by a hyperparameter p, which is commonly set to 50% and is called
dropout rate. This technique is applied to every neuron in the network, except
for the output neurons. Once the training process is completed, the neurons are
no longer dropped out. The basic idea of this tecnique is that neurons trained
with the dropout cannot update with their neighbors, but have to be as useful
as possible for the network on their own. This results in the network becoming
less responsive to minor variations in the input data and, thus, a more resilient
and adaptable network is achieved, leading to better generalization performances.
Therefore, although dropout can slow down convergence considerably, it often leads
to a superior model when the hyperparameters are tuned appropriately. Thus, the
additional time and effort required for dropout are usually justified.

The data modeling for the battery’s behaviour and its adaptive control technology
requires expert system theories and artificial intelligence in the modeling process.
Given the amount of data generated by energy storage systems, it is natural to
consider machine learning algorithms for state and parameter estimation.

5Independent and identically distributed.
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Chapter 3

Proposed data driven
approach

In this chapter there is a detailed description of the approach used to obtain SOC
estimation: it starts from Section 3.1 which describes the collected data; then
Section 3.2 illustrates the data preprocessing steps and the network optimization
techniques adopted.

3.1 Opensource dataset overview
Data are at the heart of disruptive developments in battery development, modeling,
and management. Starting from design and sale, to deployment and management,
and across all the value chain, data plays a key role to make up decisions at all
stages of a battery’s life. Data-informed methods were employed in the design stage
to expedite slower discovery procedures like component creation and production
enhancement (for electrodes, electrolytes, additives and formation). At the point
of sale, batteries can be categorized based on their anticipated lifespan and perfor-
mance capabilities. During deployment, utilizing data on the anticipated lifespan
and efficiency of batteries across different chemistries, shapes, capacities, and man-
ufacturers can aid in identifying the most suitable battery for a specific application,
under different ageing stresses such as various charge/discharge currents, operating
temperatures, depth of discharges (DODs), and periods of disuse.

The battery management system (BMS) used to control battery operation, as
already mentioned in Section 1.2, requires data both for its development, and for
training and calibrating the models it uses to estimate battery states such as state
of health, state of charge, remaining useful life (RUL).

Batteries are subjected to a wide range of operating conditions influencing their
performance, and thus, data covering these conditions is crucial to the design and
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validation of accurate models. EV battery requirements differ from those for laptops,
cell phones, stationary energy storage, and other devices. Thus, application-specific
data are needed for different analysis:

• cycle aging data: generating cycling data that covers the entire lifespan of a
battery demands a substantial investment of time and resources, which could
span several months or even years. For this reason specific experiments to
investigate the influence of in-cycle factors, such as charging and discharging
current, temperature, depth of discharge (DOD), on the capacity retention
are needed. Typically, input data include in-cycle measurements of current,
voltage, and temperature and per-cycle measurements of capacity and internal
resistance or impedance;

• drive cycle data: standardised testing procedures capturing the dynamic power
demands of driving are indispensable for GHG monitoring and to reduce carbon
emissions. These are referred to as driving cycles: they require standardised
dynamic vehicle drive schedule encoded by a velocity-time table/profile. The
predetermined time steps set the velocity and acceleration, making the neces-
sary mechanical power a time-dependent variable. The total energy required
for a given driving cycle can be calculated by integrating the mechanical power
over the duration of the driving schedule. BMS for electric vehicles is the one
that requires that mechanical energy. Then, input data is gathered by cycling
batteries based on the driving schedules;

• chemistry cell modeling: it is used to analyse performance of different lithium
battery chemistries under different operating conditions of temperature, cur-
rent and age. To assess the suitability of lithium batteries for a particular
application, it is essential to consider various aspects of battery performance,
including the OCV-SOC table, impedance, and internal resistance. The cy-
cling characteristics obtained from battery cycling can then be utilized to
construct models that describe the electrical dynamics and cycling performance
of the battery. The experimental data collected primarily involves short-term
responses of current and voltage, with a focus on changes in impedance at
various battery state of charge levels and temperatures;

• calendar aging: comprises all ageing processes that lead to the degradation of a
battery cell independent of charge-discharge cycling. This aging effect is more
relevant in applications where batteries have periods of idleness longer than
periods of operation. Datasets dedicated to calendar aging include information
related to battery cycler such as voltage, current, capacity, and energy from
periodic characterization tests.

Various countries and organizations create driving cycles, which are employed
to evaluate vehicle performance in terms of factors like pollutant emissions, fuel
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consumption, and traffic impact. According to the driving schedules, a variety of
data collected by cycling batteries are used for SOC estimation algorithms under
realistic conditions. The globally accepted driving cycle tables can be divided into
European, American, and Asian driving cycles.

Most used in literature are the following American (US) driving cycles:

• Highway fuel economy test (HWFET) is a chassis dynamometer driving
schedule representing highway driving conditions under 60 mph, for the deter-
mination of fuel economy of light-duty vehicles over highway driving cycle;

• Federal test procedure (FTP-75) has been created by US EPA (Environmental
Protection Agency) to represents a commuting cycle that includes both urban
driving with frequent stops and highway driving;

• US06 is a supplemental federal test procedure cycle that represents aggressive,
high speed and/or high acceleration driving behavior;

• LA92 unified dynamometer driving schedule was developed as an emission
inventory improvement tool, and is for Class 3 heavy-duty vehicles (power-to-
mass ratio is greater than 34);

• Urban dynamometer driving schedule (UDDS) is also known as "the city test"
and represents city driving conditions. It is used for light-duty vehicle testing.

The dataset used for training, testing and validation of the network was released
by the Department of Electrical and Computer Engineering, McMaster University,
Hamilton, Ontario, and is freely available online [1].

Brand LG
Cell dimensions 18mm and 65mm

Chemistry catode Li[NiMnCo]O2
Chemistry anode Graphite + SiO
Nominal capacity 3.0 Ah
Energy density 240 Wh/kg

Charge method Nominal: 1.5A 4.2V, 50mA End-current (CC1-CV2)
Fast: 4A 4.2V, 100mA End-current (CC-CV)

Discharge End voltage: 2V
Max current: 20A (continued discharge current)

Table 3.1: Battery specifications.
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The 3Ah LG 18650HG2 cell, whose technical specifications are summarized
in Table 3.1, was tested with the equipment showed in Figure 3.1: the control
computer holds the driving schedules databases, and once the thermal chamber
is set to the desired ambient temperature and the cell is completely charged, the
system commences recording the current drive cycle. The thermal chamber used
is a 75A, 5V Digatron Firing Circuits Universal Battery Tester channel, with a
voltage and current accuracy of 0.1% of full scale. Various tests were performed at
six different temperatures (one of those is 25°C, the only one used in this work).
After each test the cell was charged at 1C rate until 4.2V was reached, with a
cut-off of 50mA, and maintaining the battery temperature at 22 degrees Celsius or
higher. The tests were performed as follows. Series of four drive cycles performed,
in following order: UDDS, HWFET, LA92, US06. A series of eight drive cycles
(mix 1-8) consist of random mix of UDDS, HWFET, LA92 and US06. The drive
cycle power profiles are repeated until 95% of the 1C discharge capacity at the
respective temperature has been discharged from the cell. The drive cycle power
profile was calculated for a single LG HG2 cell in a compact electric vehicle.

Figure 3.1: Battery test equipment.

The cycler collects the following measurements:

• Time (time in seconds)

1constant current charging
2constant voltage charging
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• TimeStamp (timestamp in MM/DD/YYYY HH:MM:SS AM format)

• Voltage (measured cell terminal voltage, sense leads welded directly to battery
terminal)

• Current (measured current in amps)

• Capacity (measured amp-hours, with Ah counter, typically reset after each
charge, test, or drive cycle)

• Energy (measured watt-hours, with Wh counter, reset after each charge, test,
or drive cycle)

• Battery_Temp_degC (battery case temperature, at the middle of battery, in
degrees Celsius)

3.2 NN structure
The data modeling for the battery’s behaviour and its adaptive control technology
requires expert system theories and artificial intelligence in the modeling process.
Given the amount of data generated by energy storage systems, it is natural to
consider machine learning algorithms for state and parameter estimation.

The model is implemented in Python 3.10.6 version with Tensorflow 2.9.1
package: it is built sequentially, starting with the input layer, then an LSTM layer,
and finally, a dense layer that computes the output. The parameters of the network,
summarized in Figure 3.2, were kept constant in all experiments in order not to
influence the results.

Because parameters optimization is very complex and require lots of effort,
network structure and parameters were chosen accordingly to the guide lines
contained in [2]. This is the reason why those parameters are maintained constant
and are not further improved in this work. The learning rate function scheduling
is defined according to the factors in Figure 3.2 as follows: every 100 epochs the
initial learning rate is dropped by 0.5, as showed in Figure 3.3.

Data pre-processing

The train and test set are chosen as follows:

• train: is composed of the eight drive cycle mix and their respective charges;

• test: is composed of three drive cycles in the following order UDDS, LA92,
US06 and their respective charges.

31



Proposed data driven approach

Figure 3.2: Network layers with corresponding parameters.

Figure 3.3: Function for learning rate scheduling.

All those measurements are collected during tests with a thermal chamber temper-
ature of 25°C.
The first step performed on data pre-processing is the feature selection: only battery
related data are selected, while cycler data are discarded. Then relevant features
are selected with the correlation analysis.
In figure 3.4 voltage, current, capacity, energy, and temperature correlation with
the response variable SOC is showed. The computed correlation coefficient is the
Pearson’s one: it measures how much the relationship between variables is close to
a linear function. The more the absolute value of the coefficient is higher, the more
the correlation is stronger and the feature strongly affects the prediction. It ranges
from -1 to 1. If it is close to 1, it indicates that there is a strong positive correlation:
for example the voltage goes up when SOC goes up. On the other hand, when it is
close to -1 there is a strong negative correlation: for example when SOC goes down
battery temperature tends to go up. When coefficient is close to zero, it means
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Figure 3.4: Correlation between features and response for data collected at 25°C.

that there is no relevance of linear correlation. The response variable, the state of
charge of the battery, is obtained from the capacity (Ah) of the battery calculated
by the cycler. This is the reason why both capacity and energy have been excluded
as predictors.
By looking at the correlation matrix in Figure 3.4 it seems that there is no cor-
relation between the response variable and the battery temperature and current.
Moreover, by looking at the correlation matrix computed on data collected at a
lower temperature of -10°C, showed in Figure 3.5, it can be immediately noticed
that correlation between current and voltage increases a lot, and also correlation
between current and SOC increases. This effect is due to the fact that LIB batteries
have a non-linear nature: researchers have observed that, at lower temperatures,
battery’s internal resistance increases and this produces a voltage drop, so the
battery charge/discharge cycle will be shorter. Moreover, the temperature increases
significantly due to the loss related to the increasing resistance.

The US06 driving schedule is more aggressive compared to the UDDS which
represent city driving conditions. This is the reason why current distribution
represented in Figure 3.6 is different: the current distribution for the US06 driving
schedule is more widespread because of the high accelerations and high speed
driving behaviour. The effect is better represented by the violin plot in Figure 3.7.
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Figure 3.5: Correlation between features and response for data collected at -10°C.

(a) (b)

Figure 3.6: Measured current for UDDS and US06 driving cycles performed at
25°C.

A violin plot is a method for plotting numeric data that is similar to a box plot,
but with the addition of a rotated kernel density plot on each side. Essentially,
a violin plot conveys the same information as a box plot, but also provides an
estimate of the probability density of the data at different values, usually obtained
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(a) (b)

Figure 3.7: Violin plot of current for UDDS and US06 driving cycles performed
at 25°C.

using a kernel density estimator. A violin plot usually contains all the information
that can be found in a box plot, such as a median marker, a box or marker that
denotes the interquartile range, and, if the number of samples is not excessive,
possibly all individual data points. Thus, the driving behaviour clearly influences
the performance of the battery: when the driving style is more aggressive with lots
of accelerations and high velocity, the current necessary to let the battery traction
the vehicle is greater.
This effect produces a voltage drop as showed in Figure 3.8: the duration of the
US06 cycle decreases significantly. This is the reason why current is still maintained
as predictor for SOC, even if the correlation coefficient is very low, because the
battery behaviour is not linear and Pearson correlation coefficient cannot capture
this effect.

Figure 3.8: Voltage drop for UDDS and US06 driving cycles in time, measured at
25°C.
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Figures 3.9 and 3.10 show how the linear correlation between current and SOC
and voltage changes, with different ambient temperatures and with different driving
cycles. In Figure 3.9 the correlation between current and SOC increases a little
bit, because of the aggressive behaviour style. This difference is larger when the
ambient temperature is lower (Figure 3.10): the internal resistance of a battery
increases with lower temperatures, and as a result, a higher current (i.e., higher
amperage) is required to properly operate the battery to maintain a certain speed
of a vehicle, and thus, a specific driving behaviour.

(a) Correlation matrix for UDDS at 25°C. (b) Correlation matrix for US06 at 25°C.

Figure 3.9: Comparing correlation matrices for data of UDDS and US06 driving
cycles at 25°C.

From the correlation matrices in Figures 3.9 and 3.10 the influence of the battery
temperature can be also observed: temperature is negatively correlated with SOC,
but this correlation diminishes with lower temperatures, while correlation between
voltage and temperature increases. Thus, temperature is also affecting SOC
but this effect is not captured by Pearson correlation coefficient: this influence is
indirect because lower ambient temperatures causes a voltage drop due to increasing
internal resistance and consequently increasing temperature (voltage and battery
temperature are negatively correlated) and because voltage and SOC are positively
correlated this means state of charge of the battery goes down. When the more
aggressive driving cycle US06 is considered, this effect is amplified. In Figure 3.11
can be observed the effect of temperature: at lower ambient temperatures, the
driving cycle duration diminishes and the battery temperature rises a lot at -10°C.

Figure 3.12 shows the effect of increasing temperature for the UDDS driving
cycle: temperature oscillates and the oscillations are more widespread at lower
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(a) Correlation matrix for UDDS at -10°C. (b) Correlation matrix for US06 at -10°C.

Figure 3.10: Comparing correlation matrices for UDDS and US06 driving cycles
at -10°C.

Figure 3.11: Temperature behaviour for LA92 driving cycle.

ambient temperatures. Moreover, a little increase in temperature values can be
noticed when SOC approaches zero.

The collected data from the cycler have been saved with different sampling
frequencies: data related to driving cycles and mix of driving cycles are collected
with a frequency of 10 Hz (the time step is 0.1 seconds). On the other hand,
data related to charging phase were considered less important and were collected
at a lower rate of one observation every minute. Because both training and test
set contains data related to drive cycles and charges, both must be up-sampled
to obtain the same frequencies. The two data granularities considered are: one
observation per minute and one observation per second. In both cases down/up
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(a) UDDS at 0°C. (b) UDDS at 25°C.

Figure 3.12: Temperature behaviour for UDDS driving cycle.

sampling are needed, thus some aggregation measures that are mean and standard
deviation of voltage and current are computed, to avoid past information loss.
When up-sampling a forward fill is used: it propagates last valid observation
forward, to fill the missing values.

Figure 3.13: Code snippet of sampling and aggregation.

The above Figure 3.13 shows the steps followed to obtain a training set with
observations’ frequency 1Hz. First of all the index of X_train, tha training set
with the selected features, is converted to the correct format. Then it is sampled to
1Hz (one observation per second) and eventually missing values are filled with the
forward fill. Then aggregated mean and standard deviation are computed with the
rolling method, which provides rolling window calculations. Only first two columns
(the ones corresponding to voltage and current) are saved. Finally the sampled
dataset df2 and the two with the aggregated measures computed df0 and df1 are
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joined.
As mentioned in Section 2.1.4, NNs does not work well with unbounded inputs

and are more addressed to the exploding gradients problem. This is the reason
why a normalization technique in necessary to reduce this effect and to speed up
the training phase. The Mix-Max scaling normalization technique is applied to the
input features, in order to obtained values bounded between 0 and 1, which are
more suitable to NNs.

X = x − min(x)
min(x) − max(x) ,

where X is the normalized input feature and x is the original value.
Neural networks require apriori knowledge of the response variable (i.e., SOC in

this thesis) to be properly trained. Because SOC cannot be directly measured, it
has to be estimated. One way to do so, is to use its definition: SOC is the available
capacity in a battery expressed as a percentage of nominal capacity (i.e., the one in
Table 3.1). Each computed label (SOC value) is associated with the corresponding
features for real-time predictions. When the prediction is extended to future time
horizons, each label is shifted with respect to its initial position by the number
of rows needed to reach that time horizon. For example if data is sampled with
a frequency of 1 observation per minute, and the prediction time horizon is 10
minutes, each label is shifted of 10 rows.

Network optimization

The algorithm is trained and tested considering the two sampling frequencies: 1 Hz
(one observation per second) and 1

60Hz (one observation per minute). As explained
in Section 3.2, aggregated mean and standard deviation of voltage and current
were computed to avoid information loss when down-sampling. Thus, the vector of
inputs fed into the network is

Xk = [V (k), I(k), T (k), MeanV (k), MeanI(k), StdV (k), StdI(k)] .

The parameters used to train the network were listed at the beginning of Section
3.2, and were kept constant in all experiments. The main advantage of the LSTM
layer is the ability to capture dependencies in time, thanks to the memory cell,
which controls how much of the information from the previous neuron should
be used in the current memory cell. In Tensorflow LSTM implementation, the
described information flow can be controlled by the recurrent dropout, whose default
value is 0. A recurrent dropout equal to 1 means no information is passed to the
next memory cell, from the previous one (i.e., a non recurrent NN). The recurrent
dropout does not remove any inputs between layers, as done by the dropout of
non recurrent layers, but inputs between time steps, as showed in Figure 3.14.
Neural Network models frequently encounter overfitting issues, particularly when
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Figure 3.14: Recurrent dropout in RNN structured network.

the number of parameters in the network is large, and the quantity of training data
is limited. Recurrent dropout, like standard dropout, has a regularization effect
that can prevent overfitting in neural network models. Overfitting can negatively
impact model accuracy and decrease its performance on unseen data in real-world
applications.

To find the best recurrent dropout value, an optimization tool called Optuna
has been used: Optuna is a hyperparameter optimization framework that can be
applied to machine learning frameworks and black-box optimization solvers. It
simplifies the process of hyperparameter tuning by allowing to define the types and
ranges of hyperparameters directly within the code using a trial object: an objective
function is defined, which generates a numerical value that is used to assess the
performance of the hyperparameters and determine where to sample in subsequent
trials. This eliminates the need to learn specialized syntax for hyperparameters
and allows the user to use standard Python code to loop through or define them.
Optuna’s default sampler is the Tree-structured Parzen Estimator (TPE), which is
a form of Bayesian Optimization. TPE searches more efficiently than a random
search by selecting points closer to previous successful results. In contrast to
random or grid search, Bayesian approaches use past evaluation results to form
a probabilistic model that maps hyperparameters to a probability of achieving a
high score on the objective function. The primary objective of Bayesian reasoning
is to enhance the accuracy of the model as more data becomes available. This is
achieved by updating the probability model after each objective function evaluation.
Bayesian methods can evaluate more promising hyperparameters from past results,
resulting in better model settings than random search in fewer iterations. This
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means that Bayesian model-based methods can find optimal hyperparameters in
less time by reasoning about the best combination of hyperparameters based on
past trials. Optuna also provides various other features, including visualizations,
alternative samplers, optimizers, and pruning algorithms. Users can also create
their own customized versions of Optuna.

Figure 3.15: Optuna study settings.

In Figure 3.15 there are the command lines used to create the study: there is
a search space for the only hyperparameter to be optimized (i.e., the recurrent
dropout), and optuna.samplers.TPESampler is used. The study direction is set
to let the algorithm minimize the training and validation errors. The goal of this
optimization step is to find the best recurrent dropout that minimizes the errors
(i.e., MAE and RMSE).

The study is performed for both sampling frequency of 1Hz and 1
60Hz. For both

frequencies two studies were performed: one optimizing training and validation
MAE and the other optimizing training and validation RMSE.
When data is down-sampled to 1

60Hz, as showed in Figures 3.16, 3.18, as expected
the training error is always smaller with respect to the validation error, both for
MAE and RMSE. The best recurrent dropout that minimizes training errors is
clearly 0: the more we have information from the past, the more the algorithm
can learn and will be more accurate. Unfortunately lowest training errors does not
correspond to lowest validation errors and this is due to overfitting: the model
makes accurate predictions for the training data but not for the test data. Figures
?? and ?? show the Pareto curves: a Pareto curve is defined as the set of all
efficient Pareto solutions. Pareto efficiency refers to a state in which no individual
or entity can be made better off without making another individual or entity worse
off. The following three concepts are closely related:

• a Pareto improvement is a new situation where at least one individual or
entity benefits and no one is worse off compared to the initial situation;

• a situation is said to be Pareto-dominated if there exists a possibility of a
Pareto improvement;

• a situation is Pareto-optimal or Pareto-efficient if no change can be made
to improve the satisfaction of one individual or entity without reducing the

41



Proposed data driven approach

satisfaction of another individual or entity. In simpler terms, it means that
there is no possibility of improving one objective without causing a reduction
in the performance of another objective.

From Figures 3.16, 3.18, 3.17 and 3.19 a common value of recurrent dropout
that minimizes MAE and RMSE validation errors and correspond to reasonable
small training errors is 0.5 (also 0.9 is promising, but after results comparing 0.5 is
chosen). Because of the chosen sampler, the algorithms starts with random values
for recurrent dropout, sampling from the defined search space, and then uses a
“best guess” approach using Bayesian optimization. This is the reason why in the
displayed plots, errors measurements are not evaluated for all the values of the
search space.

Figure 3.16: Train and validation MAE for sampled data at 1
60Hz.

When the sampling frequency of data is 1Hz, again training errors are smaller
compared to validation errors. From Figures 3.20, 3.21, 3.22 and 3.23 the best
recurrent dropout value that minimizes validation MAE and RMSE and correspond
to low training errors is 0.7.
It is reasonable that with a fine-grained dataset the dropout value is higher,
compared to the one corresponding to the coarse-grained dataset: if measurements
are collected too frequently, the values will change slowly and thus can be difficult
for the algorithm to derive a proper model and this is the reason why a greater
dropout is needed with fine-grained datasets. Moreover, the overfitting risk is
higher. Counterwise in a coarse-grained dataset the best recurrent dropout is lower,
because if dropout is too high it will cause information loss.
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Figure 3.17: Best trial for sampled data at 1
60Hz.

Figure 3.18: Train and validation RMSE for sampled data at 1
60Hz.

In general, when comparing two models, it’s a good idea to use both MAE and
RMSE to get a more complete understanding of how the models are performing,
and this is the reason why both measures are used to choose the appropriate
recurrent dropout. RMSE is calculated by taking the square root of the average of
the squared errors between the predicted and actual values. Squaring the errors has
the effect of penalizing larger errors more heavily than smaller ones. This means
that if there are outliers or large errors in the data, the RMSE will be larger than
the MAE. In contrast, MAE is calculated by taking the average of the absolute
errors between the predicted and actual values. Absolute errors do not penalize
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Figure 3.19: Best trial for sampled data at 1
60Hz.

Figure 3.20: Train and validation MAE for sampled data at 1Hz.

larger errors more heavily than smaller ones. Therefore, if there are outliers or large
errors in the data, the MAE will be similar to the errors for the other data points
and will not be affected as much by the outliers. The RMSE result will always be
larger or equal to the MAE. If all of the errors have the same magnitude, then
RMSE=MAE, and this is the reason why the first measure minimized in always
MAE and then RMSE. As already mentioned minimum training errors does not
correspond to minimum validation errors, thus there is not a unique value that
minimizes both validation and training errors of MAE and RMSE. This is the
reason why the recurrent dropout value chosen does not always correspond to one
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Figure 3.21: Best trial for sampled data at 1Hz.

Figure 3.22: Train and validation RMSE for sampled data at 1Hz.

of the best trials, and also the reason why there is more than one best trial, and
thus more than one recurrent dropout value that minimizes the corresponding error
measure.
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Figure 3.23: Best trial for sampled data at 1Hz.
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Chapter 4

Experimental results

After data collection and all the preprocessing steps explained in Section 3.2 are
performed, the sequential network is trained. The LSTM layer was set with the
optimized dropout explained in previous Chapter 3, with the network parameters
listed in Figure 3.2. After training, the network is used to predict SOC on the test
set.

4.1 Achieved results
The prediction is performed on the test set, considering for both the sampling
frequencies, four distinct time horizons, measured in minutes, denoted by h:

• h = 0 means real-time prediction: using data available at time step k the
algorithm tries to predict SOCk that is the state of charge of the battery at
time k;

• h = 10 means that with data available at time step k the algorithm tries to
predict SOCk+h that is the state of charge of the battery at time k + 10min;

• h = 20 means that with data available at time step k the algorithm tries to
predict SOCk+h that is the state of charge of the battery at time k + 20min;

• h = 30 means that with data available at time step k the algorithm tries to
predict SOCk+h that is the state of charge of the battery at time k + 30min.

To evaluate training and prediction performance the same two measures used to find
the optimal recurrent dropout are evaluated: MAE and RMSE. The remainder of
this chapter presents the achieved results for the two selected sampling frequencies:
in Section 4.1.1 there are the errors obtained for data sampled at frequency of 1HZ
(one observations per second); Section 4.1.2 shows the errors obtained when data is
sampled to 1

60Hz.
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4.1.1 Sampling frequency 1Hz
To account for the different frequencies of stored data for drive cycles (and mix)
and charges, training and testing sets are obtained following the steps already
explained in Figure 3.13. Drive cycles were down-sampled from 10Hz to 1Hz while
charges were up-sampled from 1

60Hz to 1Hz. The outcomes of the LSTM network
are shown in Tables 4.1 and 4.2: the first table reports the training and test errors
obtained in each of the four different time horizons. The second one shows the
errors obtained applying the optimal recurrent dropout of 0.7.

h MAE RMSE

Training
error

0min 0.027 0.050
10min 0.026 0.049
20min 0.039 0.070
30min 0.065 0.117

Test
error

0min 0.139 0.304
10min 0.131 0.296
20min 0.145 0.292
30min 0.151 0.267

Table 4.1: Errors obtained with differ-
ent time horizons (h) with observations
frequency of 1Hz.

h MAE RMSE

Training
errors

0min 0.022 0.043
10min 0.026 0.049
20min 0.045 0.078
30min 0.075 0.127

Test
errors

0min 0.133 0.304
10min 0.130 0.296
20min 0.146 0.294
30min 0.159 0.294

Table 4.2: Errors obtained with differ-
ent time horizons (h) with observations
frequency of 1Hz, with dropout of 0.7.

From Table 4.1, it can be observed that training errors are quite low, especially
for time horizons of 0, 10 and 20 minutes. When the prediction is within 30 minutes
the training MAE and RMSE doubled with respect to real-time prediction (h=0).
The prediction errors on the test set are quite high and the both the errors increase
when time horizon becomes far away. Thus, the algorithm is not able to capture
SOC values with good accuracy when data is sampled with high frequency and
the time horizons are in minutes. When applying recurrent dropout, as showed
in Table 4.2, can be observed som improvements only with real-time prediction:
training error diminishes, but on the other hand there are not great improvements
on prediction. Therefore, even with dropout, if input data is too fine-grained, the
algorithm is not able to capture with good accuracy the relation between features
and SOC.
This limit is supported by the autocorrelation between rows of the response variable
(i.e., SOC). It is computed using the pandas.Series.autocorr, as showed in Figure
4.1, which evaluates the Pearson correlation coefficient between a series and its
shifted self. It accepts as a parameter the Lag that is the number of lags to apply
before performing the autocorrelation. The coefficients obtained are the following:
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Figure 4.1: Autocorrelation for data sampled at 1
60Hz.

• Lag is of 1 second: 0.9939

• Lag is of 10 minutes: 0.9263

• Lag is of 20 minutes: 0.7968

• Lag is of 30 minutes: 0.5404.

It can be noticed that when two values of SOC have a difference of half an hour,
the correlation coefficient drops significantly. It confirms that this algorithm with
fine-grained data cannot correctly predict SOC for 20, 30 minutes or larger time
horizons, even if there are some regularization techniques applied, such as the
recurrent dropout.

4.1.2 Sampling frequency 1
60Hz

In order to address the varying frequencies of the stored data drive cycles were
down-sampled from 10Hz to 1

60Hz. The results generated by the LSTM network
are presented in Tables 4.3 and 4.4. The former displays the training and testing
errors for each of the four different time horizons, while the latter shows the errors
achieved by implementing the optimal recurrent dropout of 0.5.

Train error is quite low for all of the four time horizons considered. On the
other hand the validation error still increases when time horizon is larger, except
for MAE of h = 10min: here there is a big improvement, because validation error
prediction is lower than validation error prediction on real-time SOC (h=0). When
larger time horizons of 20 and 30 minutes are considered, training error is quite
the same for h = 20 and diminishes for h = 30, compared to the values obtained in
Table 4.1 and Table 4.2.
When recurrent dropout of 0.5 is applied, training errors observed in Table 4.4 are
quite similar to the ones obtained in Table 4.3. On the contrary validation errors
have some improvements especially for time horizons of 20 and 30 minutes, in both
MAE and RMSE. Thus, this behaviour suggests that the recurrent dropout needs
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h MAE RMSE

Training
errors

0min 0.012 0.035
10min 0.028 0.119
20min 0.040 0.068
30min 0.042 0.067

Test
error

0min 0.128 0.305
10min 0.052 0.280
20min 0.149 0.280
30min 0.168 0.261

Table 4.3: Errors obtained with differ-
ent time horizons (h) with observations
frequency of 1

60Hz.

h MAE RMSE

Training
error

0min 0.016 0.039
10min 0.033 0.057
20min 0.040 0.066
30min 0.041 0.067

Test
error

0min 0.126 0.304
10min 0.117 0.285
20min 0.137 0.263
30min 0.160 0.254

Table 4.4: Errors obtained with differ-
ent time horizons (h) with observations
frequency of 1

60Hz, with dropout of 0.5.

to be adapted to the time horizon considered, in addition to the frequency of the
input data.

The ability of the algorithm to correctly predict SOC for h = 0 and 10 minutes,
without any dropout, is confirmed by the values of the autocorrelation below:

• Lag is of 1 minute: 0.9965

• Lag is of 10 minutes: 0.9692

• Lag is of 20 minutes: 0.8991

• Lag is of 30 minutes: 0.7938.

The values obtained are higher compared to the ones with input data sampled
at 1Hz, but for larger time horizons the correlation coefficient are not enough
to guarantee a good prediction. Thus, this is the reason why the errors are still
high when time horizon is of 20 or 30 minutes. To obtain a better prediction it is
necessary to down sample to a coarse-grained dataset.

4.2 Performance comparison
By comparing the performances obtained in Section 4.1.1 and 4.1.2, when trying to
predict real-time SOC, the training error approximately halves if data is sampled to
one observation per minute, and the best prediction performance is obtained with
applied recurrent dropout, when data is down-sampled to 1

60Hz. Thus, the algorithm
with more fine-grained data input is not able to capture time dependencies from
the past, even with recurrent dropout applied, and therefore with downsampling
performances are improved.
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When time horizon is of 20 minutes, both training and validation errors does
not show great improvements with data sampled at 1Hz, even when recurrent
dropout is applied (Tables 4.1 and 4.2). Counterwise, when data is down-sampled
to 1

60Hz, even if training errors in Table 4.3 are similar to the ones in Table 4.4,
when considering this sampling frequency and applying the recurrent dropout,
there is a little improvement of some tenths of a percentage points in validation
errors: test MAE is of 13.7%, while in all the other cases was above 14.5%, and
also validation rmse is 26.3% while in all the other cases was above 28.0%, so there
is an improvement of a few percentage point.

For time horizon of 30 minutes, the best performance is again when input data
is sampled to one observation per minute, with recurrent dropout of 0.5 applied.
The improvements obtained in test errors are not significant here, but train error
MAE diminishes of about 2% and RMSE approximately halves.
When looking at results in Section 4.1.1 there is no improvement on both MAE
and RMSE errors in training neither in test: on the contrary errors increase a little
bit, confirming that the algorithm with this input data sampling frequency is not
able to predict SOC within a time horizon of half an hour, or greater.

When the time horizon is of 10 minutes the lowest training errors are obtained
with data sampled at 1Hz and a 0.7 recurrent dropout applied. But for the
validation errors, the best set-up is when input data is sampled at one observation
per minute and no recurrent dropout is applied.

This particular behaviour for time horizon of 10 minutes, is due to the overfitting
effect: when data is sampled to 1Hz, train error is quite low, but the validation error
is very high, similar to the ones obtained with greater time horizons. Applying
the recurrent dropout of 0.7 does not reduce this effect, suggesting that this
sampling frequency is too high to let the algorithm give accurate predictions of
SOC. When input data is down-sampled to one observation per minute, training
errors increase with respect to the ones obtained with 1Hz sampling, but validation
errors, especially MAE, are lower, suggesting that this sampling frequency is more
suitable for time horizon of 10 minutes. Unfortunately applying dropout in this
setting is not useful because it causes information loss and test errors increase again.
This suggests that recurrent dropout needs to be adapted both to the sampling
frequency and to the time horizon.

For time horizon of 30 minutes the algorithm clearly overfits the data and this
is more noticeable with sampling frequency of one observation per minute: for
example RMSE halves compared to the one obtained at 1Hz, but then validation
errors are higher than the two obtained in Table 4.1. By applying recurrent dropout
of 0.5 training errors are the same but MAE loses 0.8% and RMSE loses 0.7%.

This overfitting effect is also related to the newtowk structure and the dimension
of training and test set: if the number of parameters of the network is too high
compared to the available data, the neural network may overfit to the training
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data and have poor ability to generalize to new test data. The lack of significant
improvements for time horizons of 20 and 30 minutes are due also to the too small
dimension of training data. When data is sampled to 1Hz the dataset is:

• Train: 162.247 observations;

• Test: 63.055 observations.

When the input data is bigger the algorithm is more able to adapt to the data
and reaches low values of train errors. But when tries to predict SOC the values
obtained are quite high, suggesting that the algorithm overfits the data, because is
not able to capture time dependencies with a too fine-grained dataset. On the other
hand, when input data is sampled to one observation per minute, the dimensions
are drastically reduced:

• Train: 1.865 observations;

• Test: 773 observations.

This is the reason why the improvements are quite low: the train and test dimensions
are not enough compared to the number of parameters that the network needs
to learn. Thus, even if training errors decrease suggesting that even with those
small amount of data, with a more coarse-grained input data, the algorithm can
better understand time dependencies between input features. But when tries to
predict, because of the high number of parameters, is not able to properly generalize
and adapt to new test data. As showed in Figure 4.2, the number of learnable
parameters is 731 and it is very close to the dimension of the test set. Thus, the
performance of the network is negatively affected by this, and this is the reason
why even if recurrent dropout is applied to data sampled at 1

60Hz, there are no
improvements.

Figure 4.2: Output snippet showing the network structure and parameters.
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Generally, if the number of parameters is too high relative to the amount of
available data, the neural network may overfit to the training data and have poor
generalization ability on new test data. On the other hand, if the number of
parameters is too low relative to the complexity of the problem, the neural network
may not be able to capture the underlying relationships in the data and have poor
predictive ability.
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Chapter 5

Conclusion

LIBs are the most commonly used batteries especially in the electric vehicle industry.
They have become more prevalent in recent years primarly because of their great
efficiency, that is one of the main advantages. They have a longer lifespan (measured
by the number of cycles) and a lower self-discharge rate compared to traditional
cells, thus LIBs will help to enable sustainability and circularity in electric industry,
and will also help reducing air pollution.
State of charge estimation is crucial for electric batteries usage, because it provides
information about the remaining energy in the battery, which is essential to
guarantee safe and efficient operation of many battery-powered devices and systems.
Knowing the correct SOC of a battery, allow users to estimate how long the battery
will last before needing to be recharged or replaced, and to avoid discharging the
battery below a safe or optimal level, which can cause damage to the battery or
reduce its lifespan. SOC estimation is particularly important in electric vehicles,
where accurate estimation of the battery’s remaining charge is critical for predicting
the vehicle’s range and ensuring that it can reach its destination safely. SOC
prediction algorithms can be integrated for anomaly detection in the battery
management system based on future predictions of SOC, can be used for a predictive
maintenance plan for the battery, and are crucial to assign an appropriate target for
the second life of the battery to make the most of its remaining useful life, favoring
sustainability an circularity. Thus, accurate SOC prediction gives advantages both
to the battery manufacturers and to the end user.
There are several methods for estimating SOC, including Coulomb counting, voltage
measurement, Kalman filter, among others. Due to the non-liner behaviour of
LIBs, SOC estimation is quite challenging. Accurate SOC estimation requires a
deep understanding of the battery’s behavior and characteristics, as well as the
development of sophisticated algorithms and models that can account for various
factors that affect the battery’s performance and behavior over time.

Thanks to advances in machine learning, and to the increasing availability of
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battery data, data-driven methods are increasingly replacing or in some cases are
combined with traditional theory-based methods.
Among data-driven methods, neural networks are most popular. In particular
recurrent neural networks, according to experts, are more able to capture time
dependencies of LIBs, because of their internal loop that allows the reuse of
information of previous steps in the training phase.

This thesis shows how different sampling frequencies of input data collected from
testing equipment or, from BMS in case of real-time vehicle monitoring, can provide
different performances. Results demonstrate that when data is too fine-grained,
even if the available data is of large amount, the network is more sensitive to
overfitting: the algorithm is able to learn its own parameters and gives low training
errors, but cannot accurately generalize to new test data. Moreover, the input data
frequency must be chosen in accordance to the time horizon of the SOC prediction.
In general, errors obtained in this thesis are not very low, and this is due to
the fact that the chosen parameters were kept constant and were not properly
optimized to the two considered sampling frequencies, but they show that a proper
sampling frequency combined with a recurrent dropout, can improve the network
performance and give more accurate SOC prediction. The more distant is the
considered horizon, the more we need to aggregate the data and collect them into
a coarse-grained dataset. This must be combined with a proper recurrent dropout,
to let the network properly capture the time dependencies of the features: results
shows that with a fine-grained dataset a higher recurrent dropout is more suitable,
and reduces the overfitting risk; on the other hand, with a coarse-grained dataset
a lower recurrent dropout is more suitable and gives better results (because an
higher recurrent dropout can favor information loss in training phase).

Another important aspect to be considered when down-sampling the input data,
is the dimension of the training and test set: poor improvements obtained for large
time horizons with sampling frequency of one observation per minute are due to the
drastically reduced number of observations of train and test set. Neural networks
require large amount of data to be properly trained, thus when down-sampling
this aspect should be considered: the more distant the time horizon is, the more
input data needs to be down-sampled to a coarse-grained dataset, the more the
covered period of collection of input data needs to be larger, in order to derive
proper models that can accurately predict SOC within different time horizons.

5.1 Future developments
The parameters of the LSTM sequential model were kept constant in all experiments.
This is the reason why training and test errors are not good enough: networks’
parameters necessitate further improvement to make the algorithm fitting better

55



Conclusion

the input data and derive more accurate SOC predictions. There are a lot of
parameters to consider: number of neurons, number of layers, activation function
and weights initialization, and so on. In Section 2.1.4 there are some hints provided,
but this area of research is huge and NNs optimization is still complex. A great
example of this is provided by the optimization of the recurrent dropout of the
LSTM layer: it has been investigated in Section 3.2 how a proper recurrent dropout
can improve errors of SOC prediction.
This thesis is focused on showing the effect of sampling frequency of input data
in prediction within different time horizons. Thus the model does not consider
some aspects that can be included in future works such as the effect of different
temperatures on SOC: in Section 3.2 is explained how SOC behaviour changes as
the ambient temperature is different. Therefore, it is necessary that SOC algorithms
are trained with battery measurements collected at different ambient temperatures.
Unfortunately, the majority of innovative ideas in this area were developed in
the laboratory environment, thus further improvements are needed in the area of
real-time vehicle monitoring. To address this problem, the EU regulation will help
monitoring the entire life cycle of the batteries that are placed on the market in
the European Union.
Thus, monitoring the state of charge of electric vehicle batteries is fundamental
and more accurate algorithms are needed. Those models can be implemented for
real-time battery monitoring by BMS and can be then used for some business
developments related to various aspects:

• battery life: the definition of an appropriate target for the second life of the
battery is crucial to make the most of its remaining useful life.

• Performance:a predictive maintenance plan for the battery can be developed
to avoid battery damage.

• Safety: the integration of anomaly detection techniques in the battery man-
agement system to avoid dysfunctions and failure of the battery.

• User experience: the implementation of a user interface that makes it easier
for the owner of an electric vehicle to monitor the battery parameters.
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