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Abstract

The deployment of the Gen-IV Molten Salt Fast Reactor (MSFR) requires the
demonstration of its enhanced safety features with respect to other traditional
reactor concepts. To this aim, a power plant simulator including the primary
system, the secondary system and the balance-of-plant has been developed in
the framework of the SAMOFAR EU project. This simulator allows to describe
the plant (transient) response to a variety of normal and abnormal operating
conditions.
Within this framework, the objectives of the present thesis are: 1) to propose
a simulation-based method to characterize the system behaviour with respect
to variations in physical and operational parameters, by means of a thorough
exploration of the MSFR power plant state space; 2) to develop a data-driven
algorithm for the efficient detection and classification of incidents, relying on a
k-Nearest Neighbors (kNN) classifier.
The proposed approach comprises the following steps. First, a set of physical
(input) parameters that are found to strongly influence the behaviour of the plant
simulator (e.g., the fuel and intermediate salt mass flow rates and the gas flow
rate) is selected, together with their ranges of variation. Second, several possible
combinations of physical parameters values are generated by random sampling and
the corresponding time-varying (transient) behaviour of the MSFR is simulated.
Finally, the time evolution of some relevant (output) plant parameters (e.g., the
fuel and intermediate molten salt temperatures) is analysed in detail to: (i) identify
normal and abnormal system (output) configurations; (ii) train, validate and test
the kNN incident detection and classification model; (iii) retrieve those combinations
of the reactor physical (input) variables (e.g., circulation pumps failures) that are
responsible for the abnormal system states (namely, fault diagnosis). The proposed
method has shown a satisfactory performance: in particular, the incident detection
and classification accuracy ranges between 89% and 99%.
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Chapter 1

Introduction

1.1 Background

The process of constructing the infrastructures needed in a modern and rapidly
developing economy till now has been very energy and emissions intensive [1].
Moreover it is foreseen that the majority of the two billion people expected to
be added to the world’s population by 2050 are going to be people of rapidly
developing economy [1]. In the framework of the Paris Agreement for fighting
against climate change, green-house gases emissions in the atmosphere need to
be consistently reduced in order to not overcome the 2°C increase. Missing the
objective will lead to well known catastrophic scenarios for the environment and
life in general [2].
In this framework, low carbon energy sources play a key role. In particular nuclear
energy can provide clean, very reliable electricity and high-thermal energy, at
competing cost [3]. In response to the public and political debate on nuclear energy
about wastes, costs, safety and proliferation, the Generation IV International
Forum (GIF) was formed, in 2001, with the aim of addressing these issues. The
GIF, during its activities has selected six promising reactor technologies for further
research and development [4]. One of these reactor technology is the one of the the
Molten Salt Reactor (MSR). In this thesis a safety study of the Molten Salt Fast
Reactor (MSFR) is carried out.
The remaining part of this chapter is structured as follows. In section 1.2 a brief
history of MSR, their challenges and advantages are presented; section 1.3 gives
details about the specific configuration of the MSFRs, which is the subject of this
work; section 1.4 introduces the computational model of the MSFR used in this
work while section 1.5 depicts the thesis objectives and outline.
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Introduction

1.2 Molten Salt Reactors
The history of MSR starts in the US in 1954, with the Aircraft Reactor Experiment
(ARE) [5]. This research project then shifted to the Molten Salt Reactor Experiment
(MSRE) 1964-1969 [6]. In the years 1970-1976 the design of a Molten Salt Fast
Breeder Reactor (MSFBR) was carried out but never built [7]. In the ’90s the US
studies on MSR were recovered by the French Alternative Energies and Atomic
Energy Commission (CEA), addressing the main issues of the MSFBR: null to
positive feedback coefficients, positive void coefficient, unrealistic reprocessing and
problems related to the graphite moderator. After that, the selection of the MSR
as one of the six designs of generation IV new reactors by the GIF, relaunched
the global research on this technology. The MSR technology offers many design
possibilities like working in thermal or fast spectrum, with solid or liquid fuel and
adopting different fuel cycles. In Europe, starting from the ’90s french work, the
idea of a liquid fuel MSR operated in the fast spectrum named Molten Salt Fast
Reactor (MSFR) arose.
The choice of a MSR design gives many benefits but provides also some challenges
[8]. Some of the benefits are:

• the possibility to operate near atmospheric pressure;

• the radioisotope retention of the molten salt compared to the high mobility
for the most volatile fission products in solid fuels;

• being chemically inert and not flammable; the absence of fuel failure due to
irradiation;

• excellent neutron economy and flexible fuel cycle;

• the possibility to operate at high temperatures, reaching high thermal efficien-
cies;

• effective load following for a correct integration in modern grids;

• high resources utilization.

Some of the main technical challenges are:

• finding suitable combinations of salts composition and structural materials for
containment;

• the characterization of the salt physical and chemical properties and the
behaviour of the fission products in it;

• the lack of multi-physics simulations software which can be acceptable for a
regulator body for licensing purposes.
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1.3 The Molten Salt Fast Reactor
The MSFR is a further development of the ’60s studies on the MSBR. The current
MSFR, concived during the EU projects SAMOFAR and SAMOSAFER, is a 3000
MWth reactor consisting of a cylindrical vessel with diameter and height of 2.25 m.
The vessel, made of a nickel-based alloy, is filled with ≈ 18 m3 of liquid salt, which
acts both as fuel and as a coolant. The molten salt is operated under ambient
pressure with a mean temperature of 750 °C and is pumped around the primary
circuit in upward direction through the central core zone and in downward direction
through the heat exchangers located circumferentially around the core. Between
the core and the heat exchangers a container filled with a fertile blanket containing
a thorium salt is present to increase the breeding gain. A dedicated heat removal
system is needed to remove the power generated in the fertile blanket [9]. The
MSFR plant is composed by three main circuits involved in power generation and
extraction: the Fuel Circuit (FC), the Intermediate Circuit (IC) and the power
conversion circuit/Gas Circuit (GC).
Figure 1.1 shows a detail of the core and of the FC. Figure 1.2 depicts a schematic
view of the Balance of Plant (BoP).

(a) MSFR core (b) MSFR Fuel Circuit

Figure 1.1: Schematic views of the MSFR [9]

The fuel composition is being investigated based on different aspects involving
chemistry, neutronics, burning capabilities, safety features and deployment capabil-
ities. The optimal fuel salt composition, selected in the EU projects, is a binary
fluoride salt, composed of LiF and a heavy nuclides (HN) mixture initially composed
of fertile thorium and fissile matter. The MSFR can be operated with different
fuel compositions, thanks to its online fuel control and flexible fuel processing: its
initial fissile inventory can be composed of enriched natural uranium or transuranic
(TRU) elements, currently produced by pressurized water reactors (PWRs), mainly

3
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Figure 1.2: Schematic view of the BoP [9]

Plutonium and other minor actinides. The fission fragments produced in the salt
are then removed in a salt treatment unit, with the main purpose of controlling
thermophysical properties as neutron economy is weakly affected by fission products
as the reactor is operated in the fast spectrum.

1.4 The MSFR simulation model
In this thesis, a model of the MSFR is used to investigate the system time-dependent
response. The model consists in a power plant simulator developed by Politecnico di
Milano during the SAMOFAR project [10]. The simulator is a control-oriented plant-
dynamics tool, developed using the open-source, object-oriented Modelica language
[11]. A one-dimensional modelling approach was used for thermal-hydraulics and
heat transfer. For various plant components, standard and validated thermal-
hydraulic Modelica libraries were used. On top of this an ad hoc neutronic MSR
library was developed in order to model the peculiar behaviour of the motion of
delayed precursors, which are extremely important in the reactor kinetics, and the
circulating fuel.
Figure 1.3 depicts the power plant simulator in the Modelica environment and a
conceptual scheme of the system.
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(a) Fuel Circuit (b) Energy Conversion System

(c) Coupled plant simulator (d) MSFR plant conceptual scheme

Figure 1.3: Object-oriented Modelica models and conceptual scheme [10]
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1.5 Thesis objectives and outline
The first part of this section describes the goals of this thesis while the second part
of the section summarizes the content of the next chapters of the thesis.
The deployment of the Gen-IV Molten Salt Fast Reactor (MSFRs) requires the
demonstration of its enhanced safety features with respect to other reactor concepts.
A relevant amount of work has been performed with this objective and is available
in literature. Some works focus on modelling, design and analysis of the MSFR [12],
[13]; other works focus on the safety issues of the MSFR [14], [15]. A number of
data-driven works on the safety issues of nuclear reactor are available in literature
[16], [17]. Nevertheless, to the best of our knowledge, this work is one of the first
data-driven accident detection and classification approaches to the MSFR.
To this aim, the previously presented power plant simulator is used to describe the
plant transient response to a variety of normal and abnormal operating conditions.
Within this framework, the objectives of the present thesis are:

1. to propose a simulation-based method to characterize the system behaviour
with respect to variations in physical and operational parameters, by means
of a thorough exploration of the MSFR power plant state space;

2. to develop a data-driven algorithm for the efficient detection and classification
of incidents, relying on a k-Nearest-Neighbor (kNN) classifier.

The proposed approach consists of the following steps:

• selection of a set of physical input parameters that are found to strongly
influence the behaviour of the plant simulator, together with their ranges of
variation;

• generation of several possible combinations of physical parameters values by
random sampling and the corresponding time-varying (transient) behaviour of
the MSFR is simulated. Finally, the time evolution of some relevant output
plant parameters is analysed in detail;

• identification of normal and abnormal system output configurations;

• train, validate and test the kNN incident detection and classification model;

• retrieve those combinations of the reactor physical input variables that are
responsible for the abnormal system states (namely, fault diagnosis).

The content of next chapters can be summarized as follows. Chapter 2 presents
the rationale behind the use of the inputs (control variables) and outputs (controlled
variables) adopted during the work; introduces the possible abnormal system status;

6
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provides some information on the simulation settings and presents the different
categorization rules adopted for classification purposes.
Chapter 3 describes all the steps of the analysis from a procedural point of view
such as: the data generation; the production of exploration maps which act also
as correctly labelled maps (namely, Ground Truth (GT)) in the classification part
of the work; the procedures for building, validating, testing and evaluating the
data-driven kNN algorithm; the fault diagnosis.
Chapters 4 and 5 provide the results coming from the application to two different
Data Sets (DS) of the procedures described in chapter 3.
Finally, chapter 6 summarizes the work performed and its main outcomes, providing
some conclusions and giving some future perspectives.
This thesis has been carried out in the framework of the SAMOSAFER project [9]
and a portion of the work has been presented at the Young Molten Salt Reactor
(YMSR) conference in Lecco, in June 2022 [18].
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Chapter 2

Preliminary analysis of the
MSFR model

This chapter provides the information regarding the preliminary simulations and
the final setup of the work. In section 2.1 the first step of this part of the work
is discussed. Some initial simulations are run using the Modelica Model of the
MSFR, in order to examine the behaviour of the system under inputs of different
intensity and type. In section 2.2, the second step, which consisted in identifying
some possible control and controlled variables suitable for the analysis, is shown.
To support such choices, some additional simulations were run. In section 2.3 the
definition of the possible states of a simulation are described. Section 2.4 shows the
selection of a suitable range in which sampling the control variables for building the
inputs of the simulations in the exploration phase of the work. Section 2.5 describes
the simulation settings adopted while section 2.6 presents the categorization rules
used during the classification part of the work.

2.1 Initial simulations
In order to test the behaviour of the Modelica Model of the MSFR, some preliminary
simulations were run. Two simulations were run, characterized by mass flow rates
variation. The mass flow rate variations are in the first simulation of linear type, in
the second simulation of exponential type. The rationale for opting for the linear
type of variation rests on its straightforward implementation and testing, while
the exponential type is better suited for modeling the inertia of the circulation
pumps. In the following the inputs and the outputs of two different sets of transient
simulations are shown.
Concerning the first simulation a variation of the Fuel Circuit flow rate, figure 2.1,
was used as input signal for the transient simulation of the system. The flow rate,

8
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starting from its nominal value for the first seconds of the transient, is then subject
to a linear variation with a reduction of 20% of its nominal value. In figure 2.2 the
model outputs can be appreciated in terms of thermal and mechanical power and
temperatures of the FC and IC. The transient can be described as follows: as soon
as the FC mass flow starts decreasing, the core average temperature increases (as
the salt slows down). This provides a prompt negative reactivity insertion, due to
temperature feedback, that causes a reduction in the thermal power. The FC mass
flow rate reduction leads to a decrease in the heat transfer rate in the intermediate
HX, hence the intermediate salt outlet temperature starts to decrease 2.2d. The
reduced intermediate salt temperature then causes a corresponding decrease in the
temperature of the helium at the turbine admission, which leads to a reduction of
the mechanical power output 2.2b. When the transient initiator ends, the increased
fuel heating in the core can be removed in the intermediate HX by means of a
larger temperature difference, leading to a new equilibrium [10].

9



Preliminary analysis of the MSFR model

(a) FC flow rate (b) IC flow rate

(c) GC flow rate (d) RH flow rate

Figure 2.1: Input signals for the transient simulation caused by a 20% linear
reduction of the FC flow rate

10
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(a) Thermal power (b) Mechanical power

(c) FC temperatures (d) IC temperatures

Figure 2.2: Output from the transient simulation caused by a 20% linear reduction
of the FC flow rate
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In the second simulation scenario an exponential variation of the GC flow rate
and proportionally of the re-heat gas circuit, figure 2.3, was used as input signal
for the transient simulation of the system. The GC flow rate, starting from its
nominal value for the first seconds of the transient is subject to an exponential
variation with a reduction of 90% of its nominal value. In figure 2.4 one can see
the model outputs in terms of temperatures of the FC and IC. The transient can
be described as follows: the reduction of the gas flow rate causes a decrease in the
heat extraction from the IC. This causes an increase in the IC salt temperature
that propagates the heat extraction reduction to the FC. Consequently the core
average temperature rises causing a sharp reduction in the thermal power. The
system then evolves to a new steady state with higher average temperatures and
lower thermal power, with respect to nominal conditions.

(a) FC flow rate (b) IC flow rate

(c) GC flow rate (d) RH flow rate

Figure 2.3: Input signals for the transient simulation caused by a 90% exponential
reduction of the GC and RH flow rates

12
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(a) (b)

(c) (d)

Figure 2.4: Output from the transient simulation caused by a 90% exponential
reduction of the GC and RH flow rates: a) Thermal power b) Mechanical power c)
FC temperatures d) IC temperatures

13
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2.2 Selection of control and controlled variables
This section shows the investigation on which simulation inputs and which simula-
tion outputs to use during the work. Regarding which control variables (inputs),
the flow rates of the FC, IC and GC were selected, denoted as ṁF C , ṁIC ,
ṁGC respectively. By tuning the intensity variation of these variables, different
inputs could be provided to the Modelica model for simulating different operational
scenarios.
For what concerns the controlled variables (outputs), the FC (core) inlet and (core)
outlet temperatures and the IC cold (heat-exchanger inlet) and hot (heat-exchanger
outlet) temperatures were chosen. The choice comes from the fact that these signals
can be measured in real time by instruments. The capability to measure in real
time the output signals is fundamental for the final aim of the work, which is
accident detection.
Before starting with the analysis, in order to see in which relationship the con-
trolled variables are with the control variables, the following analysis was set up.
All the control variables were kept constant, except one that was sampled in an
investigation interval. Building in this way different inputs for the Modelica Model,
different simulations were obtained. From each simulation, the value of all the
controlled variables was extracted at the same time instant of t=500s (a time instant
in which all the outputs are considered to have reached their steady state) and
represented versus the control variable value at that time instant in each simulation.
The results are shown in figure 2.5 and 2.6 respectively for FC linear variations
of [−20, −16, +16, +20]% of the nominal value and GC exponential variations of
−[90, 80, 70]% of the nominal value. These figures show that their relationship
is not constant. On the contrary, being almost linear means that there is some
input-output dependence, making the choice of control and controlled variables
suitable for the continuation of the analysis.
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(a) Temperature inlet FC (b) Temperature outlet FC

(c) IC cold temperature (d) IC hot temperature

Figure 2.5: Behaviour of controlled variables due to different linear FC flow rate
reductions
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(a) Temperature inlet FC (b) Temperature outlet FC

(c) IC cold temperature (d) IC hot temperature

Figure 2.6: Behaviour of controlled variables due to different exponential GC
flow rate reductions
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To summarize, the following control variables have been selected:

• fuel circuit molten salt mass flow rate: ṁF C ;

• intermediate circuit molten salt mass flow rate: ṁIC ;

• gas circuit (and proportionally the re-heat gas circuit) mass flow
rate: ṁGC .

For what concerns the outputs, the following controlled variables have been chosen:

• inlet core temperature: TF C inlet;

• outlet core temperature: TF C outlet;

• IC cold temperature (inlet HX): TIC cold;

• IC hot temperature (outlet HX): TIC hot.
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2.3 Definition of the simulation status
In order to correctly classify each simulation there is the need for defining its status.
This section outlines the criteria for determining if the system has failed its mission
(i.e. producing power within the safety margins of the plant) during the transient
simulation or if it remains in a successful state.
A particular type of simulation failure is indicated in this work as "Numerical
Failure" (NF), when the simulation terminates prior to reaching its intended end
time. This failure can occur when one or more variables exceed the acceptable
limits during the simulation’s transient phase, leading to errors in the property
evaluation process of the molten salt.
A second type of failure, more interesting for the objective of this thesis, is the one
due to physical constrain violation. In particular a maximum allowable temperature
Tmax = 1373K, which characterizes the temperature at which structural damages
can occur, and a minimum allowable temperature Tmin = 858K, which defines the
salt freezing point in the FC, are introduced. These two thresholds constitute an
upper and lower bound for the temperature value of the molten salt outside which
the system can be considered failed. Given these definitions the following status
are possible for a given simulation:

• Success: the simulation stops at the requested end simulation time; the
molten salt temperature stays between the maximum and minimum allowable
temperatures during the whole transient;

• Numerical Failure: the simulation stops before the requested end simulation
time;

• High Temperature Fuel Circuit (HTF C): the molten salt temperature
exceeds Tmax in the FC;

• Low Temperature Fuel Circuit (LTF C): the molten salt temperature goes
below Tmin in the FC;

• High Temperature Intermediate Circuit (HTIC): the molten salt tem-
perature exceeds Tmax in the IC;

• Low Temperature Intermediate Circuit (LTIC): the molten salt temper-
ature goes below Tmin in the IC;

In figure 2.7 the temperatures evolution of two different simulations are shown. In
figure 2.7a an example of transient which ends before the requested end simulation
time is presented; on the right, 2.7b displays an example of LTIC failure, a status
in which the lower temperature constrain is violated during the simulation.
An important note about numerically failed simulation needs to be drawn to the
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attention of the reader. Specifically, two different types of data were used in the
analysis. The first type of data is numerical failure-free, meaning that all simulations
that failed numerically were removed from the data set before any post-processing
was attempted. The second type of data used contained simulations that failed
numerically but were manipulated to be consistent with the rest of the data to allow
their post-processed. The manipulation consisted of extending the value of the
output signals at the time of failure, maintaining the value of the variable constant
until the end of the simulation. Figure 2.8 depicts an example of numerically failed
simulation in which the inlet FC temperature signal is manipulated. Specifically it
can be seen that between 80 and 120 seconds the signal is characterized by rapid
changes a characteristic peculiar to simulations that fail numerically. Around 120
seconds the point in which the signal would have ended is prolonged as a constant.

(a) (b)

Figure 2.7: a) Numerical Failure b) LTIC failure

Figure 2.8: Signal extension until the end simulation time
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2.4 Range definition of control variables
To determine an appropriate range for the control variables during the exploration
phase, the individual ranges in which each control variable could vary independently
were studied. The result was that standalone intensity variations of −98%, −80%,
−94% of FC flow rate, IC flow rate, GC flow rate respectively, were able to induce
numerical failures in the simulator. On the other hand, in the following of the
analysis, combination of different flow rates reductions are used as simulation
inputs. To reduce the risk of producing too much data with numerical failures, a
conservative range was selected for control variables sampling. This approach is
based on the a priori assumption that the combined effects of the inputs would
not provide beneficial compensation towards safer states. For these reasons, the
range [−90; 0]% reduction from nominal value was chosen for each control variable.

2.5 Simulation settings
The simulations were run using the Modelica model of the MSFR. All the simulations
were run in free dynamics conditions. The study of the plant free dynamics is a
fundamental step in order to understand the behavior of the reactor in response
to different transient initiators [10]. The simulations started from steady state
nominal conditions and at time t = 50s all three control variables, namely FC flow
rate, IC flow rate, GC flow rate, started varying according to the specific input
of each simulation. For each input a transient lasting 800 seconds was simulated.
In order to be sure that the time step of the time grid used to solve the problem
was not impacting the results some preliminary simulations were run. Figure 2.9
shows the four controlled variables evolution using different time steps. Figure
2.10a shows the controlled variables value at a specified time instant, for different
time steps. Figure 2.10b shows the error, relative to a benchmark simulation using
the finest time step of ∆t = 0.01s, of using a coarser time step. From all these
figures, it can be appreciated qualitatively 2.9 and quantitatively 2.10 how the
choice of the time step is quite irrelevant to the quality of the solution. This is
justified by the fact that the solver uses, to compute the solution of the problem,
an adaptive time step when needed. For this reason, for optimizing the time step
value, other metrics had to be used. Figure 2.11 depicts the file dimension (2.11a)
and simulation time (2.11b) reductions obtained by using larger time steps with
respect to a benchmark simulation using the finest time step. It can be seen that
around a time step of one second, both curves flatten providing low to no benefits
in choosing a coarser time step. For these reasons, a time step of 1 second was
enough to provide time-step independent results for a reasonable computational
time and output file dimension. Each simulation took about 90 seconds to run.
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(a) Temperature inlet FC (b) Temperature outlet FC

(c) IC cold temperature (d) IC hot temperature

Figure 2.9: Time evolution of the controlled variables using different time steps.

(a) Temperature at t*=60s for different
time steps

(b) Error relative to benchmark simulation
with finest time step

Figure 2.10: Quality of the results for different time steps

21



Preliminary analysis of the MSFR model

(a) File size reduction for different time
steps

(b) Simulation time reduction for different
time steps

Figure 2.11: File size and simulation time reductions relative to benchmark
simulation with finest time step.
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2.6 Categorization rules
According to the definitions of the simulation status discussed in section 2.3, three
different categorizations have been developed. Each category defines what are the
possible classes and the rules for the attribution of the class name to a simulation.
For this reason, a given simulation can be classified differently depending on the
categorization rule used. The categories are called C1, C2 and C3 and are defined
as follows:

• C1: the classes can be "Success", "Numerical Failure" (if present) or "Physical
Failure" where the latter class is assigned if the simulation status is of HTF C

or LTF C or HTIC or LTIC ;

• C2: the class name can either be "Success" or is determined by identifying the
first type of failure to occur among the various controlled variables throughout
the entire transient period;

• C3: the class name can either be "Success" or a list of the names of all the
failures that occur during the simulation time.

It is evident that the categorization rules go from simpler to more challenging clas-
sification purposes going from C1 to C3. Furthermore the different categorization
rules can be used for different purposes. For example C1 can give an idea of what
is a safe operative zone; C2 is the more appropriate for accident identification
purposes; C3 is for testing the developed data-driven classifier in a potential large
multi-class problem.
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Chapter 3

Methodology

This chapter provides an overview of the techniques used in the subsequent chapters
without showing actual results. Since similar procedures were applied to different set
of data throughout this work the reader can refer to this chapter for the methodology
when looking at the different results presented in the following. Chapters 4 and
5 demonstrate the application of these techniques and present the corresponding
results.
Throughout the work, four distinct data sets were employed, each varying in terms
of the number of simulations used for both the Training Set (TRS) and Test Set
(TES), as well as the inclusion or exclusion of NF simulations. Table 3.1 provides a
summary of the characteristics of the different data sets.

Types of data used
Data set name TRS (# of sim) TES (# of sim) NF simulations
DS1A 1000 250 Included
DS1B 780 207 Removed
DS2A 5982 1747 Included
DS2B 5003 1478 Removed

Table 3.1: Type of Data Sets used during the analysis

Figure 3.1 depicts, in the form of a flow chart, all the steps of the analysis. In
the flow chart, T1, T2, T3, T1 represent the controlled variables fuel circuit inlet and
outlet temperature, intermediate circuit cold and hot temperature, respectively.
Being the controlled variables, outputs of simulations, they are described as vectors
of points evaluated at different time instants as follows:

T (t) where t ∈ t0, t1, t2, . . . , tn

Here, T (t) is the generic controlled variable at time t, and t0, t1, t2, . . . , tn are
the discrete time grid points where the signal is defined.
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Data generation

The first step of the analysis consisted in generating the data by sampling points in
the simulation input space, by varying the control variables ṁF C , ṁIC , ṁGC from
nominal conditions. These sampled points are then used to generate the input
signals for the simulations of the MSFR. All the control variables undergo expo-
nential transitions (a good model for the description of the physical behaviour of
circulation pumps due to inertia) when moving from nominal conditions to new
values. All the simulations are performed in free dynamics (i.e., the plant response
with no control actions). Once the simulations were performed running the four
temperature signals designated as controlled variables (section 2.2) were extracted,
using ad hoc MATLAB [19] scripts, and used for representing their simulation in
the post-processing part.

Exploration maps

The second step of the analysis consisted in making exploration maps of both
the training and test set, used as ground truth maps in the following part of the
work. The expression "ground truth" refers to the accurate data that is used as a
reference/benchmark against which other data (the classifier predictions) can be
compared. Given a data set, six different ground truth maps were produced, three
for the training set and three for the test set. The reason for which there are more
than one ground truth map for a given training or test set is due to the fact that
different classification rules were used as discussed in 2.6.

Time evolution of controlled variables

The third step of the analysis consisted in plotting the time transients of the
controlled variables (output). This step allows the visualization of the behaviour of
the output space.
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3.1 Building a kNN classifier
The fourth step was the central part of the analysis and consisted in building a
k-nearest neighbor (kNN) classifier [20].
In this work the kNN algorithm is used for classification purposes. In order to
use a kNN algorithm a list of examples with their features needs to be used as a
training set. The definitions of these terms are:

• example/observation/sample: it refers to a single instance of data in the
training or test set, that is used to train a model or evaluate its performance.
An example is typically represented as a vector of features [21];

• features: it refers to the attributes or characteristics of the data points being
used to train the model or being classified [21];

A kNN classifier is a type of non-parametric supervised machine learning algorithm
that can be used for both classification and regression tasks. The kNN algorithm
is based on the idea of feature similarity, which assumes that examples that are
similar in terms of their feature values are likely to belong to the same class. One
of the key advantages of the kNN algorithm is its simplicity, as it requires minimal
training. However, the algorithm can be computationally expensive, as it requires
the calculation of the distance between a test example and all training examples
for each prediction. Additionally, the algorithm can be sensitive to the choice of k
and the distance metric used, which can affect the performance of the classifier.
For this reason an hyperparameters optimization routine was implemented during
the cross-validation step as described in subsection 3.1.3.
The data analysis pipeline used in this work can be described as follows:

• sampling the intensity variations of the control variables and generation of
the simulation input;

• system transient simulation;

• output extraction of the controlled variables from simulation;

• feature selection (reduction) from the raw data. In order to reduce the number
of features of each example the Singular Value Decomposition (SVD) technique
was used;

• normalization: it is common practice to normalize data before any training or
classification is attempted;

• cross validation: the training set is subject to a cross validation process for
the optimization of the k parameter and the distance function;
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• application to the test set: the newly built, cross validated and optimized
kNN classifier is used to make predictions on the test set, which is independent
from the training set.

In order to make predictions on the test set, the MATLAB function predict [22]
was used. The function classifies by minimizing the expected misclassification cost:

ŷ = arg min
y=1,..,nc

ncØ
j=1

P̂ (j|x)C(y|j) (3.1)

where:

• ŷ is the predicted classification;

• nc is the number of classes;

• P̂ (j|x) is the posterior probability of class j for observation x;

• C(y|j) is the cost of classifying an observation as y when its true class is j.

The posterior probability is defined as follows:

P̂ (j|x) =
q

i∈nbd W (i) · 1Y (X(i))=jq
i∈nbd W (i) (3.2)

where:

• Where W (i) is the weight associated to the i-th data point;

• Y (X(i)) is the true class of the feature vector X(i);

• 1Y (X(i)) = j is 1 when Y (X(i)) = j and 0 otherwise.

The posterior probability is used in sections 3.2 and 5.6 to perform fault diagnosis.
In the next sections, a more in depth description of the steps performed for building
the classifier are presented.
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3.1.1 Feature extraction for dimensionality reduction
This step consists in reducing the number of features of a training or test observation
in order to improve the performances of the kNN classifier while reducing the
computational resources.
Let us assume that no treatment of the data is performed yet. Then the feature
matrix, i.e. the list of all the features (columns) for each example (rows), would
be generated as follows. Starting from a simulation, the four controlled variables
are extracted as four different vectors. Note that each controlled variable is a
vector, because it contains the values of the physical quantities of interest at
the different time instants of the transient. The four vectors of the controlled
variables are then concatenated forming a single row vector of dimension (1,4nt)
where nt is the number of time-steps in which the transient is discretized. This is
done for each simulation at disposal leading to a matrix (m,4nt) where m is the
number of samples. In this way the m-th row of the matrix is a sample and in the
corresponding columns all the features associated are listed.
In order to reduce the number of features while not losing important data the
Singular Value Decomposition (SVD) [23] technique can be used. If this step is used
the procedure to build the feature matrix is changed as follows. Four matrices, each
containing all the transients of a controlled variable are built. Each matrix is then
subject to the SVD procedure and the feature matrix is obtained by concatenating
the four SVD-reduced matrices. The resulting size of the feature matrix in this
way is (m, p) with p << 4nt.
It is important to notice that, for each matrix-signal, the SVD was applied firstly to
the training set, obtaining the SVD coefficients and a set of basis that can describe
that data. Secondly, the corresponding test set signals were cast in a matrix form
and projected obtaining the corresponding SVD coefficients.
Figure 3.2 depicts how the SVD quality is assessed, using training set data. Figure
3.2a shows how many basis are needed for the SVD decomposition as the Percentage
of Variance Explained (PVE) requested is increased. It can be noted that a modest
number of basis is associated to high levels of PVE requested. This can be explained
as the data under analysis come from simulations and are noise free.
Figure 3.2b shows the original signals and the reconstructed version using seven
basis for each signal (corresponding to a request on the PVE of 99.999%). Figure
3.2a depicts that a relatively low number of basis are needed to describe such
a large request on the PVE. This is justified by the fact that the data set is of
numerical simulation nature and hence free of experimental noises. Figure 3.2b
provides a qualitative measure of how well the original training set signals have
been reconstructed using seven basis for each signal.
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(a) Number of basis vs requested PVE (b) Original signals and SVD reconstruction

Figure 3.2: SVD quality

3.1.2 Normalization
In machine learning, normalization refers to the process of transforming the features
of a data set to a standardized scale. This is done to ensure that all features have
equal importance in the analysis and that the model can learn from the data
effectively. There are a few reasons why normalization is a common practice in
machine learning:

• different features may have different units of measurement, ranges, or scales;

• normalization ensures that all features are on the same scale so that they can
be compared and weighted equally;

• normalization can help to prevent the model from being biased towards certain
features. For example, if one feature has a much larger range than the others,
it may dominate the model’s predictions, even if it is not actually the most
important feature.

Equation (3.3) describes the normalization routine used in this work

M̂ = minnew + (maxnew − minnew) · (M − minold)
(maxold − minold) (3.3)

where minnew, maxnew represent the minimum and maximum of the new interval
range; minold, maxold represent the minimum and maximum of the old interval
range; M̂, M represent the newly normalized matrix and the matrix to normalize.
Two different normalization approaches were used. In the first one the data is
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normalized, then the SVD is applied and the feature matrices derived; in the second
one, the normalization is carried again after the SVD.
In this specific application all the features come from temperature signals thus
having values of the same units of measurements and ranging in similar intervals.
Therefore also a non normalized configuration was investigated. In this way, 3
different group of data are used in the following of the work: one in which the data
is not normalized, one in which the data is normalized once before the SVD and
another in which data is normalized twice: before and after the SVD.
It is important to notice that for each matrix-signal, the normalization was applied
firstly to the training set storing the maximum and the minimum values. Secondly
using the previously computed maximum and minimum, the normalized test set
matrix-signal was computed.

3.1.3 Hyperparameters optimization and cross-validation
In the context of Machine Learning (ML), the term parameters is used to refer to
something that can be learned by the algorithm during training while the term
hyperparameters refers to something that is passed to the algorithm. The kNN
is a type of non-parametric ML algorithm, which means it does not make any
assumptions about the underlying distribution of the data. The aim of this routine
was to find the best combination of the hyperparameters k (the number of nearest
neighbors) and distance function, which could minimize the cross-validation error
of the kNN classifier.
The optimal number of neighbors depends on the size of the data set in terms of
both observations and features and predicting an optimum value is impossible. The
choice of the number of neighbors strongly impacts the model’s behavior. A lower
value of k can overfit the data, whereas an higher value of k tends to “smooth out”
the prediction by averaging the values over a greater neighborhood. However, if
the value of k is too high, then the model can underfit the data [24]. In order to be
sure to find the best value of k a large exploration interval from 1 to 40 was used.
The optimization routine involved first choosing a distance function and then
iterating through the various values of k in the selected range. For each combination
of k and distance function, the kNN classifier was trained, cross-validated, and the
miss-classification error was stored. After these steps, the k values were tested for
a given distance function and the k value that was associated with the minimum
miss-classification error was stored. The whole process was then repeated for each
distance function in the list of the possible candidates. At the end of the routine,
the analyst had a vector of the best k values for each distance function used.
The final step consisted, by using this vector, to choose the optimal combination
of hyperparameters (k and distance function) that provided the smallest miss-
classification error.
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Figure 3.3 allows to visualize the output of the hyperparametrs optimization routine.
In this case the couple of hyperparameters which is associated to the minimum
cross-validation error is k=6 using the minkowksi distance.

Figure 3.3: Hyperparameters optimization in cross-validation routine
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3.1.4 Testing and evaluation
The purpose of the testing and evaluation phase was to assess the accuracy of the
newly trained kNN classifier on unseen data which is the test set. This phase was
crucial to determine whether the model could generalize well to new, unseen data.
To evaluate the model’s performance, several types of tools were adopted, including
prediction maps, correct or miss-classified maps, and confusion matrix charts.

• Prediction maps were generated to visualize the spatial distribution of the
predicted classes in the simulations input space.

• Correct or misclassified maps are created, which highlight the areas, in
the simulations input space, where the model performed well or poorly in
terms of classification accuracy. These maps helped identifying the regions in
which the classifier performed well or poorly.

• Confusion matrix charts to provide a summary of the model’s classification
performance, were used. A confusion matrix can be used to analyze the
performances of the classifier. Along the rows the correct labels are listed
while along the columns the classifier predictions. Hence the diagonal elements
denote correctly classified outcomes. The misclassified outcomes are the
elements of the off diagonals of the confusion matrix. For this reason the best
classifier will have a confusion matrix with only diagonal elements and no off
diagonals elements.
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3.2 Inference on inputs
The last step of the work consisted in using the classifier outputs for performing
inference on the simulations inputs. The idea was to retrieve those combinations
of the reactor physical input variables (e.g., circulation pumps failures) that were
responsible for the abnormal system states. The process can be described in more
details as follows: a triplet of pump failure intensity generates a transient simulation
from which the usual features are extracted generating a query point (a feature
vector for which the output label is unknown). The query point is then classified by
the model which predicts the probabilities that the query belongs to the different
classes. The aim of this part of the analysis consisted in the following: given an
example which is classified by the model with a given label, going back to what
were the inputs that generated that transient from which the features for building
that example were extracted. In this way, when the classifier outputs a class, one
could know the causes and intervene, trying to avoid them if possible or simply
take actions accordingly. In more detail this part of the analysis consisted in the
following steps:

• construction of histograms showing the number of observations in the training
set that belong to each class, for each pump failure intensity range (3 his-
tograms); these represent the probability distributions of the pumps failure
intensities (inputs) conditional on the different transients (output) classes;

• normalization of the histograms to get the conditional Probability Distribution
Functions (PDFs) that belong to each class, for each pump failure intensity
range (3 conditional PDFs), which possibly represent a "new" transient coming
from an hypothetical real MSFR plant. ;

• construction of the PDFs of some examples of the test set. This was done by
using the previously built conditional PDFs and the probabilities to belong in
each class for the example (these probabilities are provided by the classifier).
With these instruments and by using the total probability formula the PDFs
of the test example were obtained.

• use of the newly built PDFs of the test set example for identifying the causes
of the transients in terms of pumps failures. This simulates an hypothetical
real application of the classifier-based inference: a new transient coming from
the "real" MSFR is first detected and classified (in terms of failure type); then,
the combination of pump failure intensities that were most likely responsible
of the plant anomalous behavior are identified (and possibly inspected and
maintained).
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Results on coarse sampled
data set

This chapter presents the results obtained using DS1A and DS1B. The characteris-
tics of these data sets can be found in table 3.1.

4.1 Training and test set ground truth maps
In this section the exploration maps for both the training and test set are shown.
These maps act also as Ground Truth (GT) for the classification part of the work.
In particular these maps show how the different classes are distributed in the input
space of the simulation.
Figure 4.1 shows the ground truth maps for the training and test sets in the case
of NF data, using the DS1A data set. It is possible to see that each categorization
rules contains different number of classes, having less in C1 and more in C3 as
expected since the latter categorization rule is more general. By looking at figure
4.1a one can see that the majority of the numerically failed simulations are found
in correspondence of large values of IC flow rate reductions (∆IC flow rate > 70%
are present). A lower, but still relevant, amount of numerically failed simulations
but still relevant can be observed for ∆FC flow rate > 80%.
Figure 4.1c shows the training set simulations classified according to C2 rules. This
classification allows to see how, in most of the simulations that failed, numerically
or physically, the most frequent first failure is LTIC . Only a few HTIC failures are
present, previously labelled, with C1 rules, as Numerical Failure. There is only one
instance in which HTF C is the first cause of failure.
Figure 4.1e shows the most general classification used in the work (C3). In this
case, the labels of the classes related to failures are composed by the sequence of
all the failures that happen during the transient. Many instances of multi-failure
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simulations are visible. Moreover, for ∆IC flow rate > 70%, most of the simulations
in which the first failure was of LTIC happened to have a second failure of low
temperature in the FC, hence according to C3 rules the LTF CLTIC class was
associated.
The ground truth maps for the training and test sets in the case of NF free data,
i.e. the DS1B data set, are presented in figure 4.2. It is evident that the possible
number of classes for this data set is smaller, especially using C3 rules, as most of
the heterogeneity is contained in the NF data which are excluded.
By looking at either the group of figures of 4.1 or 4.2 it can be seen that the "safe
zone" of operation, denoted by the blue dots, tends to be strongly influenced by
the values of the GC flow rate reductions. In particular, for values of GC flow rate
near the nominal values, there is a smaller area of safe operation with respect to
larger GC flow rate reductions. From the inspection of the maps the following
comments can be drawn:

• large reductions in the IC flow rate are the major cause for Numerical Failure
accidents, with a minor cause to be imputed to reductions in the FC flow rate;

• large reductions of the GC flow rate are actually beneficial for maintaining
the system in a successful state.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Ground Truth maps of the training set (left figures) and test set (right
figures) according to the different classification rules using data which contains NF
simulations (DS1A).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Ground Truth maps of the training set (left figures) and test set
(right figures) according to the different classification rules using data which is NF
free (DS1B).
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4.2 Classifiers construction
In this section some comprehensive tables regarding the classifiers are shown. In
particular table 4.1 summarizes the relevant outcomes of the feature reduction step.
This step was performed with a request on the Percentage of Variance Explained
(PVE) of 99.999% for each controlled variable matrix. The request of an high
value for the PVE is justified by the fact that there is no noise in the signals and
their evolution is quite smooth. The table reports: the number of features selected
(where N1

f ,N2
f ,N3

f ,N4
f are the number of features extracted from TF C,in , TF C,out ,

TIC,in , TIC,out respectively), the total number of features used in the analysis
(NT OT

f ), and the Feature Reduction (FR) percentage with respect to using the
concatenation of the full signals as an example (3224 features).

PVE = 99.999 %
Type of data set N1

f N2
f N3

f N4
f NT OT

f FR (%)
DS1A 18 20 9 11 58 98.2
DS1B 6 6 6 6 24 99.3

Table 4.1: Feature reduction using DS1

Tables 4.2 and 4.3 presents a summary, for DS1A and DS1B data sets respectively,
of the hyperparameters selected and of the performances of the different classifiers.
Depending on the type of normalization procedure and classification rule selected,
different classifiers are built using different hyperparameters and showing different
performances.
As expected the performances on test data are better when trying to classify NF-free
data. The overall, accuracy on test data is between 69% and 94% showing that
the procedure is promising despite the need for some more data may improve the
quality of the classification.
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DS1A
Pre-processing Hyperparameters Metrics

Normalization CR k Distance Accuracy on test (%)
none C1 1 minkowski 83.2
none C2 5 euclidean 73.2
none C3 3 euclidean 78
once C1 1 euclidean 82.4
once C2 1 euclidean 74.8
once C3 5 chebychev 78.8
twice C1 1 minkowski 82.8
twice C2 3 chebychev 73.6
twice C3 1 correlation 78.8

Table 4.2: Hyperparameters selections and accuracy on test of different classifiers
using DS1A

DS1B
Pre-processing Hyperparameters Metrics

Normalization CR k Distance Accuracy on test (%)
none C1 19 chebychev 94.2
none C2 20 chebychev 93.7
none C3 21 chebychev 87.9
once C1 5 minkowski 83.1
once C2 11 chebychev 87.9
once C3 6 euclidean 72.9
twice C1 17 chebychev 87.9
twice C2 22 chebychev 87.4
twice C3 11 euclidean 69.6

Table 4.3: Hyperparameters selections and accuracy on test of different classifiers
using DS1B
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4.3 Prediction Maps
This section provides a more visual support for the interpretation of the perfor-
mances of the different classifiers. The first three figures (4.3, 4.4 and 4.5) refer to
DS1A, while the last three (4.6, 4.7 and 4.8) refer to DS1B. All the figures present
prediction maps (the left column figures) and "correct" or misclassified maps (the
right column figures) for the following cases: not normalized, normalized once
before SVD, normalized twice before and after SVD, in order of appearance of each
DS.
The results of the classifiers are overall good and allow, with the support of new data,
to further investigate the problem. These new results are more deeply investigated
and presented in the next chapter.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS1A). The Feature Matrix is not normalized.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS1A). The Feature Matrix is normalized once before
SVD.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS1A). The Feature Matrix is normalized twice before
and after SVD.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS1B). The Feature Matrix is not normalized.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS1B). The Feature Matrix is normalized once before
SVD.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS1B). The Feature Matrix is normalized twice before
and after SVD.
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Chapter 5

Results on fine sampled data
set

This chapter presents the results obtained using DS2A and DS2B. The charac-
teristics of these data sets can be found in table 3.1. This chapter continues the
analysis presented in the previous chapter. In the first part some of the already
shown results are integrated by means of more data. In the second part newly
post-processed results are provided.

5.1 Training and test set ground truth maps
In this section, the exploration maps for both the training and test set are shown.
These maps act also as Ground Truth (GT) for the classification part of the work.
In particular these maps show in the input space of the simulation how the different
classes are distributed.
Figure 5.1 shows the ground truth maps for the training and test sets in the case of
NF data, which i.e. the DS2A data set. It is possible to see that each categorization
rules contains different number of classes, having less classes in C1 and more in C3
as expected since the latter categorization rule is more general.
One difference with respect to the previous chapter is visible in figure 5.1c. The
figure shows the training set classified according to C2 rules. In this case, most of
the numerically failed simulations (according to C1 5.1a) are those in which the
first failure to happen is because of high temperature in the IC (HTIC). This is a
difference with respect to the same figure of the previous chapter, in which most
of the numerically failed simulations happened to be classified using C2 rules as
(LTIC). This can be justified by the fact that in the previous chapter, the DS1
data set was used. This data set contains an insufficient number of simulations for
correctly mapping the details of these classes distributions. In this chapter, having
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used a larger number of simulations, a better map of the model of the MSFR can
be appreciated.
Figure 5.2 shows the ground truth maps for the training and test sets in the case
of NF-free data, i.e. the DS2B data set. Also in this case, going from NF presence
to NF-free data, shows a reduction in the number of possible classes in all the
categorization rules. For example, concerning figure 5.2c one can see that all the
accidents classes are only of the type "low temperature in the IC" (LTIC).
Figure 5.2e shows that for ∆FC flow rate > 70%, those simulations which physically
failed due to (LTIC) at first, evolved and reached a low temperature failure in the
FC also.
Figure 5.3 shows the Scatter Plot Matrix of the inputs of the simulations of
the training set, for each categorization rule, using data without NF simulations.
Figures 5.3a describes the impact of the different inputs on the safety operation area.
Figure 5.3b delineates how the generic ’physical failure’ is being fully represented
by the (LTIC) class. Figure 5.3c characterizes in more detail the generic ’physical
failure’ class, showing how the (LTF CLTIC) class is independent on the intensity
variation of the IC flow rate. Overall, the presence of more data supports the
two observations made in the previous chapter: the GC mass flow rate strongly
influences the safety operation area; the IC and FC mass flow rate influence the
Numerical Failure class.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Ground Truth maps of the training set (left figures) and test set (right
figures) according to the different classification rules using data, which contains
NF simulations (DS2A).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Ground Truth maps of the training set (left figures) and test set
(right figures) according to the different classification rules using data, which is NF
free (DS2B).
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(a) (b)

(c)

Figure 5.3: Scatter Plot Matrix of the inputs of the training set according to the
different classification rules using data, which is NF-free (DS2B).
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5.2 Test set transients
In this section the transient evolution of some simulations are shown. In particular,
figure 5.4 shows the transients of the four controlled variables using simulations
from the test set containing NF data. The figure contains three sub-figures, one for
each class available with C1 rules. The transients are plotted accordingly.
Figure 5.4a shows the transients for those simulations classified as successful.
Coherently the physical values of these variables never exceeds the threshold limits
for low or high temperature failures. Figure 5.4c is another way of appreciating the
heterogeneity of the class of numerically failed simulations, in which some transients
reach very high temperatures while others are featured by very low temperatures.
One common feature among all these signals is the sharp slope developed during
the transient evolution, often caused by the sharp reduction in the circulating
pumps flow rates.
Figure 5.5 shows the transients of the four controlled variables using simulations
from the test set which do not contain NF simulations. The figure contains
three sub-figures, one for each class available within C3 rules. The transients are
represented accordingly.
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(a)

(b)

(c)

Figure 5.4: Transient evolution of the controlled variables, using C1 rules and
data with NF presence.
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(a)

(b)

(c) Transient evolution of the controlled variables, using C3 rules and
NF-free data .

Figure 5.5
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5.3 Classifiers construction
In this section, some comprehensive tables regarding the classifiers are shown. In
particular, table 5.1 summarizes the relevant outcomes of the feature reduction
step. This step was performed with a request on the Percentage of Variance
Explained (PVE) of 99.999% for each controlled variable matrix. The table reports:
the number of features selected (where N1

f ,N2
f ,N3

f ,N4
f are the number of features

extracted from TF C,in , TF C,out , TIC,in , TIC,out , respectively), the total number of
features used in the analysis (NT OT

f ), and the Feature Reduction (FR) percentage
with respect to using the full concatenation of the signals as an example (3224
features).

PVE = 99.999 %
Type of data set N1

f N2
f N3

f N4
f NT OT

f FR (%)
DS2A 25 1 19 19 64 92.1
DS2B 7 7 7 7 28 96.5

Table 5.1: Feature reduction using DS2

Tables 5.2 and 5.3 presents a summary of the hyperparameters selected and of the
performances on test data of the different classifier, for DS1A and DS1B data sets
respectively. Depending on the type of normalization procedure and classification
rule selected, different classifiers are built using different hyperparameters, showing
different performances.
Accuracy on the test data is always above 89%, and goes up to 99% in certain
cases. The only exception occurs when a classifier is built with DS2A and the data
are not normalized, resulting in very poor performances. The reason behind this
could be related to the fact that NF data are quite heterogeneous thus requiring
mandatory normalization for training and classification purposes.
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DS2A
Pre-processing Hyperparameters Metrics

Normalization CR k Distance Accuracy on test (%)
none C1 5 cosine 41.7
none C2 3 cosine 32.9
none C3 1 correlation 13.2
once C1 5 euclidean 90.8
once C2 1 euclidean 92.1
once C3 1 euclidean 89.4
twice C1 3 cosine 89.9
twice C2 1 minkowski 92.1
twice C3 1 euclidean 89.5

Table 5.2: Hyperparameters selections and accuracy on test of different classifiers
using DS2A

DS2B
Pre-processing Hyperparameters Metrics

Normalization CR k Distance Accuracy on test (%)
none C1 7 euclidean 98.9
none C2 8 minkowski 99.2
none C3 7 euclidean 98.3
once C1 9 minkowski 98.9
once C2 8 minkowski 99.1
once C3 3 chebychev 97.9
twice C1 3 correlation 98.6
twice C2 3 cosine 98.6
twice C3 7 euclidean 98.3

Table 5.3: Hyperparameters selections and accuracy on test of different classifiers
using DS2B
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5.4 Prediction and correct or misclassified maps
This section provides a more visual support for the interpretation of the perfor-
mances of the different classifiers. The first three figures (5.6, 5.7 and 5.8) refer
to DS2A, while the last three (5.9, 5.10 and 5.11) refer to DS2B. All the figures
present prediction maps (the left figures) and correct or misclassified maps using
the following features: not normalized, normalized once before SVD, normalized
twice before and after SVD.
In particular, by looking at the left column of figure 5.6, one can see how the clas-
sifier model is unable to predict the class "Success", which implies a poor accuracy
as a result .Looking at the right column of the same figures, one can appreciate
how most of the predictions are actually wrong.
The results are much better in the case of normalized features, as shown in figures
5.7 and 5.8, in which the accuracy ranges between 89% and 92%.

For what concerns figures related to DS2B, figures 5.9, 5.10 and 5.11, show
results that are always satisfactory. This underlines how normalization is much less
relevant in this application, where NF data is filtered out before. The accuracy, in
this case, ranges from 97% to 99%.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS2A). The Feature Matrix is not normalized.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS2A). The Feature Matrix is normalized once before
SVD.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
contains NF simulations (DS2A). The Feature Matrix is normalized twice before
and after SVD.

61



Results on fine sampled data set

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
does not contain NF simulations (DS2B). The Feature Matrix is not normalized.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
does not contain NF simulations (DS2B). The Feature Matrix is normalized once
before SVD.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Model prediction maps (left figures) and correct or miss-classified
maps (right figures) according to the different classification rules using data which
does not contain NF simulations (DS2B). The Feature Matrix is normalized twice
before and after SVD.

64



Results on fine sampled data set

5.5 Confusion matrix charts
This section shows confusion matrix charts providing new metrics such as class-wise
precision and recall. The classifier predictions can be categorized, for a given class,
as follows:

• True Positive (TP): the actual class and the predicted class are the same;

• False Negative (FN): the actual class is positive and the prediction is negative;

• False Positive (FN): the actual class is negative and the prediction is positive;

Precision can be interpreted as what percentage is truly positive out of all the
positive predictions and is defined as follows:

TP

TP + FP
(5.1)

Recall can be interpreted as what percentage is predicted positive out of the total
positive and is defined as follows:

TP

TP + FN
(5.2)

Figures 5.12, 5.13 and 5.13 show confusion matrix charts for three cases of features
used: not normalized, normalized once before SVD, normalized twice before and
after SVD. In each figure, the left column refers to DS2A, while the right column
to DS2B.
In particular, the left column of figure 5.12 shows the poor performances of the
classifier under the perspective of new metrics like the class-wise recall and precision.
On the other hand, in figures 5.13 and 5.14, one can see, on the left, the improvement
on the classifier metrics when the features are normalized.
In all the three figures, the column on the right refers to DS2B. Each figure exhibits
good performances in this application, independently of the normalization.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Confusion matrices using DS2A data (left figures) or DS2B data
(right figures) according to the different classification rules. Feature Matrix is not
normalized.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Confusion matrices using DS2A data (left figures) or DS2B data
(right figures) according to the different classification rules. Feature Matrix is
normalized once before SVD.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Confusion matrices using DS2A data (left most figures) or DS2B
data (right figures) according to the different classification rules. Feature Matrix is
normalized before and after SVD.
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5.6 Inference on inputs (diagnosis on pumps fail-
ure intensities)

This section describes the last part of the work, which is of fault diagnosis. This
part of the work is carried out by using the categorization rules C3 and data which
belong to DS2B (numerical failure free). In particular the graphs of figure 5.15 are
built on the training set data: they represent the empirical probability distributions
(histograms) of the pumps failure intensities conditional on the different (output)
transients classes, i.e., the distributions of the pump failure intensities that generated
(i.e., that are responsible for) the plant failure behavior of a given class (e.g., LTF C ,
LTF CLTIC). On the other hand, the graphs of figure 5.16 are built for four points
of the test set by using the PDFs of the pump failure intensities constructed on the
training set and the probabilities of those test-examples to belong in the different
classes, provided by the trained classifier (see section 3.1 for technical details).
In more detail, the left part of figure 5.15 shows some histograms that have on the
horizontal axis different failure intensities of the recirculating pumps flow rates (one
subplot for each of the three circuits), and as common vertical axes the number of
observations in that class. The right column describes the normalized version of
these histograms which are probability density functions.
The conditional distributions on the right column of figure 5.15 are weighed by
the above mentioned assignment probabilities (Theorem of Total Probability) as
follows:

f(∆ṁi) =
ncØ
j

f(∆ṁi|Cj) · Pr(τ(∆ṁi) ∈ Cj) where i ∈ {FC, IC, GC} (5.3)

where

• nc is the total number of classes;

• f(∆ṁi|Cj) is the i-th conditional (on class Cj) distribution (depicted on the
right column of figure 5.15);

• Pr(τ(∆ṁi) ∈ Cj) indicates the assignment probability provided by the classi-
fier (the probability that transient τ , caused by the pump failure ∆ṁi, belongs
in the j-th class (Cj).

The unconditional probability distributions of the pump failure intensities, are
obtained for each transient: these can be used to retrieve a posteriori the most
likely root causes of the observed (output) system failure behaviour.
Figure 5.16 provides the inference results for four different test example points.
The four test transients (τ1, τ2, τ3, τ4) are generated with the following combinations
of failure intensities respectively: -(66, 45, 23)%, -(80, 12, 54)%, -(30, 37, 19)% and
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-(60, 5, 8)%. The trained classifier provides the following assignment probabilities,
i.e., the probabilities that each test transient belongs to the available classes:

• [Pr(τ1 ∈ LTF CLTIC), Pr(τ1 ∈ LTIC), Pr(τ1 ∈ Success)] = [0; 85.7; 14.3]%

• [Pr(τ2 ∈ LTF CLTIC), Pr(τ2 ∈ LTIC), Pr(τ2 ∈ Success)] = [14.3; 28.6; 57.1]%

• [Pr(τ3 ∈ LTF CLTIC), Pr(τ3 ∈ LTIC), Pr(τ3 ∈ Success)] = [71.4; 28.6; 0]%

• [Pr(τ4 ∈ LTF CLTIC), Pr(τ4 ∈ LTIC), Pr(τ4 ∈ Success)] = [0; 14.3; 85.7]%

These assignment probabilities are used in equation 5.3 to retrieve the unconditional
probability distributions of figure 5.16. Overall, the most likely causes (inferred
inputs) coincide with the real inputs for all the tested points. Nevertheless, a
specific routine assessing the confidence interval of the inference should be carried
out.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Number of observations (left figures) and conditional probability
density functions (right figures) for different failure intensities typologies. Using
DS2B and categorization rules of C3.
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(a) (b)

(c) (d)

Figure 5.16: Probability density functions characterizing four different classified
test points.
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Chapter 6

Conclusions

In the context of the deployment of the Gen-IV Molten Salt Fast Reactor (MSFRs),
there is the need for the demonstration of the reactor enhanced safety features with
respect to other reactor concepts. To this aim, with the support of a power plant
simulator developed in the framework of the SAMOFAR EU project, this thesis was
carried out with two different objectives: 1) to propose a simulation-based method
to characterize the system behaviour with respect to variations in physical and
operational parameters, by means of a thorough exploration of the MSFR power
plant state space; 2) to develop a data-driven algorithm for the efficient detec-
tion and classification of incidents, relying on a k-Nearest Neighbors (kNN) classifier.

For what concerns the first objective, the input parameters that strongly influ-
ence the behaviour of the MSFR power plant have been identified as: fuel circuit,
intermediate circuit and gas circuit salt mass flow rates.
The output parameters, for the system status representation, have been selected
in the form of the FC (core) inlet and (core) outlet temperatures and the IC cold
(heat-exchanger inlet) and hot (heat-exchanger outlet) temperatures, given the
constrain of choosing signals that would be measurable in a real experimental
facility.
The MSFR state exploration has been carried out by random sampling several
combinations of the different mass flow rates and by analyzing the corresponding
simulated transient behaviour of the MSFR. This has resulted in the identification
of a safe operating zone and an abnormal operating zone. Moreover by means of
different detailed rules of classification a precise characterization of the abnormal
states has been described, with the most common failure to be identified in the
reaching of the salt freezing temperature in the intermediate circuit.

For what concerns the second objective, the k-Nearest Neighbors (kNN) method
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has been selected as the data-driven algorithm due to its simplicity and interpretabil-
ity.. Different incident detection and classification models have been trained, using
different normalization routines and classification rules, and then validated and
tested with accuracy ranging between 89% and 99%, which can be considered
satisfactory. Additionally, the incident detection and classification models have
demonstrated strong precision performance, between 98% and 99%, which is crucial
for the application’s success. Specifically, in the case of fault detection, the model’s
precision is critical for the plant’s availability. In the case of (possible) accident
classification, high model precision is essential to ensure accurate identification and
avoid confusion between different types of accidents.
The foundations for a Fault Diagnosis (FD) analysis (i.e., the a posteriori identifi-
cation of the "input" root causes - i.e., components failures - responsible for the
system anomalous behaviour) have been established and qualitatively tested on
four test cases providing promising results.

6.1 Future developments

Different parts of the work carried out are worthy of further analysis for the purpose
of improvement.
First of all, efficient exploration techniques of the MSFR state space (e.g., combi-
nations of adaptive sampling methods and fast-running emulators and regression
models) can be used if any additional data is needed. More data may be required
for example to better characterize sparsely populated classes of system failure,
which would result in improved training of the classifier and, therefore, in better
recognition rates.
It’s crucial to also address the issue of what type of data to use in the future,
specifically whether to incorporate simulations that have failed numerically into
the data set or not. In particular this work has shown how the classifier model is
able to perform better on data which does not contain numerical failures. However
the omission of this part of the data could result in worst performances in case
real-experimental data had to be used. The reason for this is the relevance of such
data which may provide also relevant physical information. Simply removing this
data may result in a biased (and thus poorly performing) classifier, as entire failure
classes could be erased and, thus, would not be available for the classifier training.
Nevertheless the presence of numerical failure data is for sure a challenge for the
data analysis and requires special attention.
Also, there may be the need of considering, taking into account and adding new
controlled (critical) variables to be used for a more accurate and precise identifi-
cation of the system (safe or failed) status (constraint in a real application, this
choice could be driven by the availability - or not - of real-time measurable signals
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from the experimental facility or from the power plant).
In addition, notice that in general different data-driven incident detection and
classification methods can present different, peculiar characteristics (and corre-
spondingly different performances with respect to different types of failures). In
this view, another possible development of the present work could focus on the
use of ensembles of methodologies of different nature and on the aggregation of
the corresponding classification results, with an expected increase in the overall
robustness.
Finally, based on the results produced in this work, there is a broader goal of
developing a tool capable of classifying and detecting the presence of anomalous
states in the system in real-time (online) conditions.
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