
POLITECNICO DI TORINO
Master Degree course in Energy and Nuclear Engineering

Master Degree Thesis

Analysis of the Field Quality
in Bent Superconducting Magnets

for Hadrontherapy Gantries

Supervisors
Prof. Gianni Coppa
Dott. Marco Pullia
Dott. Enrico Felcini

Candidate
Marika D’Addazio

Academic Year 2022-2023





A nonno,
e agli occhi lucidi
che avrebbe avuto

sapendomi felice oggi.

3



Abstract

In the framework of the European project HITRIplus and the SIGRUM collaboration,
the National Centre for Oncological Hadrontherapy (CNAO) has launched initiatives to
design and build a superconducting gantry for hadrontherapy. Such a gantry is based on
short and strongly bent superconducting dipoles that require an appropriate description
of the quality of the produced magnetic field. In accelerator magnets, the field quality
is conveniently described by a set of coefficients known as field harmonics or multipole
coefficients. Generally, two different approaches can be used for determining the field
harmonics. The first is the Fourier series expansion of a calculated field component along
a circle. The second method provides an estimation of the field harmonics from the
coefficients in a suitable Taylor series expansion in the case of symmetric fields. These
methods are commonly used to analyse the field quality of long accelerator magnets with
small apertures. However, in the case of such a gantry, a detailed investigation is required
since the magnet is short and strongly curved with a relatively large gap. Moreover, the
length of the coils’ heads represents roughly 25% of the total length of the magnet thus the
contribution of the introduced non-linear field components cannot be neglected. Both ap-
proaches were thoroughly examined in order to determine their applicability. The results
revealed that the Fourier series expansion of the field components may not be appropriate
for the field quality description of a magnet with a small bending radius. Indeed, the
vector Laplace equation is not fulfilled due to the presence of an additional term and
the interpretation of the coefficients results unclear. In the case of short and strongly
bent magnets, the analysis method employed for determining the multipole coefficients
considering a field symmetric about the median plane is the Taylor series expansion of
the magnetic flux density. The multipole coefficients obtained through the Taylor ex-
pansion analysis were compared with the field components derived by particle tracking
showing an agreement within a few units level. In conclusion, the field derivatives can be
effectively used to represent short and strongly bent magnets in accelerator codes.
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Chapter 1

Introduction

1.1 Hadrontherapy

Cancer appears to be one of the major causes of death and an important barrier to
increasing life expectancy. In 2019, according to the World Health Organization (WHO),
cancer is one of the leading cause of death before the age of 70 years in 112 of 183 countries.
In 2020, worldwide, occurred an estimated 19 million new cancer cases and roughly 10
million cancer deaths. The global cancer cases are expected to be 28 million in 2040, a
47% rise from 2020. For global cancer control, preventive and therapeutic interventions
are available for tumours and their integration into health planning nationally can serve
to reduce the future incidence worldwide [1].

Radiotherapy, surgery and pharmacotherapy, such as chemotherapy and immunother-
apy, are the principal methods for the treatment of oncological diseases. Up to 70% of
cancer patients in developed countries receive radiotherapy alone or in combination with
other methods. Proton and ion beam therapy is comparable in terms of cost with surgical
treatment and 2.5 times less costly than pharmacotherapy of malignant tumors [2].

Particles such as protons, neutrons, nuclei of a few ions like carbon and oxygen belong
to the class of hadrons, a Greek word meaning “strong”, from which the word hadron-
therapy, a form of radiotherapy for the treatment and cure of tumours, derives.

Globally, at the end of 2021, more than two hundred fifty thousand patients were
treated with protons and heavy-ions [3] and a clear growth in terms of applications with
respect to the early twenty-first century of this particle therapy can be noticed in Fig. 1.1.

As regards the charged hadrons in radiation therapy, the story started in 1945 when
Ernest Lawrence asked his student to clarify the stopping process of protons in the matter.
After some calculations, he realized that the depth profiles have a significant increase in
dose at the end of their range in the matter, the so-called Bragg peak, and he wrote a
paper on the possibility to concentrate the dose on the tumour target sparing healthy
tissues better than what can be done with X-rays. This is considered the first work on
hadron therapy [4].

For the record, the “dose” is the energy deposited per unit of mass in a body and is

13



Introduction

Figure 1.1: Statistics of patients treated in particle therapy facilities worldwide [3].

measured in Gray:

D = E [J ]
m [kg] (1.1)

where E is the energy deposited in a volume and m is the mass of the material volume.
The probability of causing cell damage increases with the dose but it is also necessary

to keep safe the healthy tissues in the vicinity of the tumour. In that perspective, charged
hadrons allow well-defined dose distribution in depth with respect to photons. Protons
and carbon ions have, indeed, an energy distribution that guarantees low values of dose
in the first part of the path inside a volume and a peak localized in the cancer zone, the
Bragg peak previously cited, as shown in Fig. 1.2.

Figure 1.2: Depth dose distribution for photons, carbon ions and protons [5].

Within the hadron family, carbon ions have a silver lining compared to protons, i.e.
the ability to transfer energy to matter over a path of equal length is more efficient
and that implies more ionization acts over the same paths. To account for this effect, a
parameter called linear energy transfer (LET) is introduced and it is defined as the density
of energy deposition along the track of the particles within tissues measured in keV µm−1.

14



1.2 – National Centre for Oncological Hadrontherapy (CNAO)

In other words, densely ionizing radiation considerably reduces the possibility of repairing
ionization damages allowing the overcoming of tumour radio-resistance, such as carbon
ions that, in terms of cell destruction, are more efficient than protons as previously
mentioned.

The property of particles related to higher or lower density of ionization acts is in-
dicated as radiation quality measured in terms of relative biological effectiveness (RBE),
i.e. the ratio between the photon and the ion doses necessary to produce the same bi-
ological effect. For instance, carbon ions give the maximum ratio of RBE in the Bragg
peak which means that the irreparable damages are concentrated in that zone. In reality,
some complications need to be added when one considers that the effects depend on many
parameters not mentioned in this context such as cell type, blood perfusion and so on [6].

The noticeable advantages of hadrontherapy also require a careful cost analysis and
a comparison with state-of-the-art photon radiotherapy techniques. Any advantage in
terms of increased cure rate or reduction of acute and late complication rates results in
cost savings for salvage treatments. Hadrontherapy centres are more complex and costly
than conventional photon therapy units but the costs of radiotherapy in general, including
hadrontherapy, are much lower than the costs of all other types of therapy for malignant
diseases [7].

1.2 National Centre for Oncological Hadrontherapy (CNAO)

The status of hadrontherapy in the world shows a situation of strong expansion, with
105 operating centres as reported by the site of PTCOG, Particle Therapy co-operative
Group (PTCOG), upated to October 2022 [3]. It should be remarked that some of these
centres such as Pavia (Italy), Wiener Neustadt (Austria), Shanghai (China), Heidelberg
and Marburg (Germany) and Hyogo (Japan) have accelerators which can accelerate both
protons and carbon ions.

In Italy, the publication in 1991 of the report “For a centre of teletherapy with
hadrons” by U. Amaldi and G. Tosi started the history of the National Centre for On-
cological Hadrontherapy (CNAO). In 2014, CNAO started patient treatments within the
national health system and it is the only Italian facility that operated with both protons
and carbon ions to treat tumours. The centre is located in Pavia, in an area adjacent
to other hospitals and to the city university campus, thus allowing for the creation of
synergies and collaborations [8]. In 2020, an expansion project was approved with the
aim of enlarging the number of possible tumour treatments and the number of patients in
a year. In particular, CNAO will host a commercial proton therapy facility equipped with
a rotating gantry and an accelerator-based Boron Neutron Capture Therapy (BNCT) [9].

From an engineering and physical point of view, the core of hadrontherapy at CNAO
is the complex of accelerators and lines shown in Fig. 1.3a and Fig. 1.3b.

The particle accelerator is used to accelerate beams from 60 MeV to 227 MeV1 for

1The maximum energy for clinical applications
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(a) (b)

Figure 1.3: (a) View of the synchrotron and beam transport lines [9]. (b) Layout of the
high technology of CNAO [8].

protons and from 120 MeV/u up to 400 MeV/u2 for carbon ions. Different energies are
available to properly select the depth of the Bragg peak inside the body.

The dose distribution is “shaped” to surround the area to be treated exploiting a
system called dose delivery. There are basically two categories of irradiation techniques:
passive and active beam delivery. In the passive systems, the beam is first enlarged by
scattering, then a variable thickness device degrades the energy to match the tumour
depth. The energy spread is increased by employing a range modulator to obtain a
spread-out Bragg peak (SOBP), the overlap of many Bragg peaks. The beam is then
collimated to select the central uniform region and a multileaf collimator is employed
to obtain the wanted shape. The passive dose delivery system is required to cover the
tumour volume but unfortunately, an unwanted dose is delivered to the patient.

In the second technique, also called active scanning, a pencil beam is deflected by
a couple of magnets and is used to “paint” an image. The target volume is subdivided
longitudinally into iso-energetic “slices”. Then, the beam energy is varied to treat each
slice. With active scanning, the dose is distributed in small volumes called voxels (volume
pixels) which are treated individually. The result is a better conformation of the dose
and, consequently, the possibility to treat arbitrary tumour shapes. Active scanning
requires that the position of the beam is controlled with high accuracy and therefore,
also the target shape and position inside the body have to be precisely known. To treat
tumours close to moving organs, e.g. the lungs, synchronization with breathing and other
adjustments need to be implemented. In Fig. 1.4 the different conformation of the dose
in the two delivery systems is approximately shown.

CNAO is designed for a fully active dose distribution system. The energy of the
particles is varied by the synchrotron [8].

2Kinetic energy per nucleon
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Figure 1.4: Conformation difference of the dose in passive and active systems. Healthy
tissues are better spared with active beam delivery [6].

Once the particles have been accelerated, they are injected into beam-lines and trans-
ported into treatment rooms. The transfer lines can be either fixed or mobile, rotating
around the patient. The latter solution is named gantry and allows irradiation from
multiple directions. Thanks to the ability to select treatment angles, the dose to healthy
tissues can be reduced and the treatment is less prone to delivery errors.

Currently, the presence of a proton gantry is widespread in hadron therapy centres
while the gantries for carbon ions are limited to just few installations. The complexity of
the technology and the high capital cost are the reason why the diffusion of this medical
device is still limited.

1.3 Heavy-Ion Therapy Gantries
Gantries can be classified on the basis of the delivery system topology and its relative
movement with respect to the patient [10]. The great majority of the gantries currently in
operation are isocentric machines. The isocenter is defined as the point where the beam
delivery direction crosses the tumour. A schematic representation of these gantry types
is displayed in Fig. 1.5. If the rotation axis is not coincident with the patient location,
the configuration of the gantry is called ex-centric but, in the present work, it has been
chosen to use an isocentric configuration.

Theoretically, considering the case of full 360◦ rotation capacity of the gantry and
a possible treatment table rotation of ±90◦, the tumour can be irradiated from every
point situated on a sphere around it, i.e. a “full 4π-irradiation” is realized. Neverthe-
less, geometrical constraints need to be observed to avoid collisions between patient and
equipment [11].

On the one hand, the technology related to proton therapy gantries can be considered
mature and nowadays several companies are able to commercialise specific solutions. On
the other hand, carbon ions gantries are still in the early stage of their spread; however,
it is clear that finding solutions with the aim of reducing size, weight and cost would
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Figure 1.5: Schematic isocentric gantry layout types [10].

result in a significant diffusion of heavy-ions gantries. Examples of the latter gantries are
described hereafter.

The Heidelberg Ion-beam Therapy centre (HIT, DE) is the first heavy-ion treatment
facility with a gantry that has a rotation capacity of 360◦. The rotating structure of the
HIT gantry is installed on two large rings at both ends, the so-called barrel structure,
as shown in Fig. 1.6. The total weight of rotating parts amounts to 570 tons and in
addition there are 130 tons of room fixed components such as the main gantry supports.
The energy range is between 50 and 430 MeV/u corresponding to a penetration depth in
tissue between 20 and 300 mm. The first patient was treated with carbon ions in 2012
[12].

Figure 1.6: HIT isocentric ion gantry [13].

At the National Institute of Radiological Science (NIRS, JP), the carbon ions treat-
ment has been carried out since 1994 using the Heavy-Ion Medical Accelerator in Chiba.
The construction of a compact superconducting (SC) rotating-gantry was completed in
the 2015 and in Fig. 1.7 is exhibit its three-dimensional picture. The gantry is designed
to have a length approximately equal to 13 m and a beam orbit radius of 5.5 metres.
The isocentric rotating gantry can deliver carbon ions with kinetic energy up to 430
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MeV/u. The dimension of the facility is considerably reduced thanks to the presence
of SC magnets in the beam-transport line, indeed the total weight is roughly 300 tons.
Specifically, combined-function SC magnets with different apertures can provide both
dipole and quadrupole fields avoiding the use of standard quadrupoles and allowing a rel-
evant footprint reduction. The peak magnetic field is equal to 2.88 T and the maximum
gradient is 9.3 T/m. The gantry is installed on a barrel structure and it can guarantee a
full rotation within a range of ±180◦ [14] [10].

Figure 1.7: NIRS superconducting rotating gantry for heavy-ion therapy [10].

To achieve a further size reduction of the first SC gantry installed at NIRS, a next-
generation SC rotating gantry has been developed in a project of the Yamagata University
Hospital at the East Japan Heavy-Ion Centre. The same type of gantry will be also in-
stalled at the Yonsei University Health System and Seoul National University Hospital. A
drawing of the magnet layout is shown in Fig. 1.8a. The maximum dipole and quadrupole
field of the SC magnets is increased up to 3.5 T and, as a result, the gantry is downsized
to 2/3 of the NIRS gantry, indeed the axial length is about 8 m and the radius is roughly
6 m. Another interesting aspect is the assembling of two types of quadrupole coils on the
full surface of a single dipole coil as displayed in Fig. 1.8b. In order to excite the magnets
separately, the dipole and quadrupole coils are electrically isolated and connected to an
independent power supply. Moreover, the length of the scanning system is reduced by
arranging a horizontal and a vertical scanning magnet in parallel to further reduce the
dimensions of the machine; however, the level of complexity in the development of the
scanning system is significantly higher [15].

1.4 The CNAO Gantry Project

In European context, an initiative launched by TERA (Foundation for oncological hadron
therapy) and CERN (European Organization for Nuclear Research, Geneve) proposed a
conceptual design of a very light (~50 tons, a factor 4 to 5 less than the present state-
of-the-art) SC rotating gantry based on cosθ magnets called SIGRUM (Superconducting
Ion Gantry with Riboni’s Unconventional mechanics) [16]. After this pre-study phase,
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(a) (b)

Figure 1.8: (a) Compact superconducting gantry for carbon ion therapy [15]. (b) cross-
section of the superconducting magnet [15].

the current collaboration among CERN, CNAO, MedAustron (centre for ion beam ther-
apy and research located in Austria) and INFN (National Institute for Nuclear Physics,
Italy), in the framework of both SIGRUM and HITRIplus (Heavy Ion Therapy Research
Integration) projects, has resulted in a concrete first step toward the detailed design and
construction of an evolution of the SIGRUM rotating gantry that might be implemented
in the expansion project of CNAO Foundation. In Fig. 1.9 is represented a preliminary
layout of the light SC rotating gantry [9].

Figure 1.9: 3D layout of the superconducting ion gantry[9].

The construction of the entire facility will be preceded by an initiative called SIG
(Superconducting Ion Gantry). The project foresees the construction of a 1 m long
demonstrator to be manufactured and tested at INFN (LASA laboratory) in about three
years with the aim of exploring the concrete possibility of using superconducting cosθ
magnet technology. Specifically, the required field of the SC dipole magnets is equal to 4
T, the bore aperture is equal to 80 mm and the ramp rate is about 0.4 T/s. The required
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field quality, in technical language, ranges from 1 to 10 units and it is reached typically
in a region of about two-thirds of the magnet aperture. The most critical challenge is the
curvature of the magnet, indeed a small bending radius between 1.3 and 1.6 m will be
chosen dictated by the 430 MeV/u of C-ions which have a beam rigidity of Bρ = 6.6 Tm
[17] [18].

It is important to underline that the demonstrator serves “only” to demonstrate that
the main technical issues are solvable but this magnet is not directly employed in the SC
rotating gantry for ion therapy planned in CNAO.

In conclusion, to compare the SIG demonstrator with other relevant SC dipoles em-
ployed in gantries and particle accelerators, a general overview is reported in Fig. 1.10
with the bending radius in abscissa and the squared product of field times the magnet
aperture in ordinate. The latter parameter is related to the energy stored per unit length
and it is proportional to the complexity of the magnet itself [18].

Figure 1.10: Plot of various magnets as a function of bending radius and the squared
product of field times the magnet aperture [18].
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Chapter 2

Field Quality Analysis

2.1 Field Harmonics in Straight Magnets

The field quality in accelerator magnets with a sufficiently large bending radius is gen-
erally described by a set of Fourier coefficients, also called field harmonics or multipole
coefficients. The quality criteria of a magnetic field are assessed by defining limits on
the unwanted multipole coefficients. The theoretical discussion presented here refers to
[19]. The field harmonics are evaluated by finding a general solution with the separa-
tion of variables method that satisfies the Laplace equation, ∇2Az = 0 where Az is the
z-component of the magnetic vector potential. Considering Az = ρ(r)ϕ(φ), the following
equalities hold:

∂Az

∂r
= dρ(r)

dr
ϕ(φ) (2.1)

∂2Az

∂r2 = d2ρ(r)
dr2 ϕ(φ) (2.2)

∂2Az

∂2φ
= d2ϕ(φ)

dφ2 ρ(r) (2.3)

Therefore, the Laplace equation in circular coordinates, a coordinate system com-
monly used for the computation of the field in long accelerator magnets, can be written
as:

r2 ∂2Az

∂r2 + r
∂Az

∂r
+ ∂2Az

∂φ2 = 0 (2.4)

After the introduction of a separation constant n2, for the case n /= 0, the solutions
of two ordinary differential equations are obtained:

ρn(r) = Enrn + Fnr−n (2.5)
ϕn(φ) = Gn sin nφ + Hn cos nφ (2.6)
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The vector potential is single-valued, thus it must be a periodic function in φ with
Az(r,0) = Az(r,2π). The separation constant n assumes integer values and the general
solution of the homogeneous differential equation 2.4 is given by the following expression:

Az(r, φ) =
∞∑︂

n=1
(Enrn + Fnr−n)(Gn sin nφ + Hn cos nφ) (2.7)

Figure 2.1: Representation of the aperture domain Ωa and the exterior domain Ωe in a
2D circular coordinates problem. The radius r0 is the reference one at which the analysis
is performed, φ is the angular position, ra and re are respectively the aperture radius and
the exterior one [19].

The aperture domain Ωa (see Fig. 2.1) is considered the problem domain. The condi-
tion of a finite flux density at r = 0 imposes Fn = 0 and the introduction of two constants
Cn = EnGn and Dn = −EnHn in Eq. 2.7 allows to evaluate the general solution for the
vector potential in the selected domain:

Az(r, φ) =
∞∑︂

n=1
rn(Cn sin nφ − Dn cos nφ) (2.8)

The components of the field can be then expressed in the problem domain as:

Br(r, φ) = 1
r

∂Az

∂φ
=

∞∑︂
n=1

nrn−1(Cn cos nφ − Dn sin nφ) (2.9)

Bφ(r, φ) = −∂Az

∂r
= −

∞∑︂
n=1

nrn−1(Cn sin nφ + Dn cos nφ) (2.10)
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Each value of the integer n in the solution of the Laplace equation corresponds to a
specific flux density distribution generated by an ideal magnet. For instance, n = 1,2,3
correspond respectively to the dipole, quadrupole and sextupole flux density distributions.

To determine the multipole coefficients or field harmonics Cn and Dn, two different
approaches will be discussed.

The first method is a comparison of the integration constants in the general solution of
the Laplace equation with the Fourier series expansion of the calculated field components
along a circle. In the case of accelerator magnets, the domain is commonly chosen as a
circle with a radius of 2/3 of the aperture radius. Imposing that the radial component of
the magnetic flux density is calculated at a reference radius r = r0 as a function of the
angular position φ, the Fourier series expansion of the field components results in:

Br(r0, φ) =
∞∑︂

n=1
(Bn(r0) sin nφ + An(r0) cos nφ (2.11)

Bφ(r0, φ) =
∞∑︂

n=1
(Bn(r0) cos nφ − An(r0) sin nφ) (2.12)

where

An(r0) = 1
π

∫︂ 2π

0
Br(r0, φ) cos nφ dφ n = 1,2,3... (2.13)

Bn(r0) = 1
π

∫︂ 2π

0
Br(r0, φ) sin nφ dφ n = 1,2,3... (2.14)

The components Bn(r0) and An(r0) are respectively named normal and skew multi-
pole coefficients and are given in units of tesla at a reference radius r0. It is common
practice to normalize the coefficients with respect to the main field BN (r0).

Br(r0, φ) =
∞∑︂

n=1
(Bn(r0) sin nφ + An(r0) cos nφ

= BN (r0)
∞∑︂

n=1
(bn(r0) sin nφ + an(r0) cos nφ (2.15)

Bφ(r0, φ) =
∞∑︂

n=1
(Bn(r0) cos nφ − An(r0) sin nφ)

= BN (r0)
∞∑︂

n=1
(bn(r0) cos nφ − an(r0) sin nφ (2.16)

The small bn(r0) and an(r0) are normal and skew multipole coefficients related to the
main field BN (r0)1.

1In this case, B1 represents the dipole component, B2 the quadrupole and so on.

25



Field Quality Analysis

The second method foresees a comparison of the field harmonics with the Taylor
coefficients of a series expansion of the calculated flux density at the horizontal median
plane. Assuming an up/down field symmetry, the skew multipole components can be
assumed as null. Generally, the field can be expanded in the median plane y = 0 about
an axis at x0:

f(x) =
∞∑︂

n=0

1
n! (x − x0)nfn(x0) =

∞∑︂
n=0

1
n! (x − x0)n dnf(x)

dxn

⃓⃓⃓⃓
⃓
x=x0

(2.17)

where fn is the n-th derivative of the function at x0. Since the transverse dimensions
of the beam are small compared to the radius of curvature of the particle trajectory, the
expansion can be performed in the vicinity of the reference trajectory [20]. Imposing
x0 = 0, the Eq. 2.17 is called Maclaurin series and the y-component of the magnetic flux
density can be expanded on the median plane as:

By(x) = B0 + dBy

dx

⃓⃓⃓⃓
⃓
x=y=0

x + 1
2!

d2By

dx2

⃓⃓⃓⃓
⃓
x=y=0

x2 + ... + 1
n!

dnBy

dxn

⃓⃓⃓⃓
⃓
x=y=0

xn + ... (2.18)

where the constant term B0 corresponds to the dipole component, dBy

dx to the quadrupole
one and so on.

To compare the results obtained with the two methods described, the relation between
the multipole coefficients and the ones evaluated in the Maclaurin series can be derived:

bn = rn−1

BN

1
(n − 1)!

dn−1By

dxn−1

⃓⃓⃓⃓
⃓
x=y=0

(2.19)

where bn represents the field unit component of order n, starting with n = 1 for the
dipole, and BN is the main field. Generally, to easily compare the values, the outcomes
of the conversion formula Eq. 2.19 are multiplied by 104.

2.2 Field Harmonics in Curved Magnets

The application of a bending transformation to straight magnet conductors introduces
unwanted field components in a magnet with a strong curvature. Generally, for large
accelerators, the magnets can be approximated to be straight while compact accelerators
require strongly curved magnets characterized by a small ratio of bending radius to aper-
ture. The field quality in the body of a strongly curved magnet is described by a finite
set of multipole coefficients, truncated to some order, which constitutes, in the 2D case,
a full basis for the solution of the Laplace equation [21].

Nevertheless, considering the entire geometry of a strongly curved magnet, cylindrical
multipoles in the transverse plane cannot describe the field because the introduced func-
tions do not satisfy 2D Maxwell’s equations. To characterize the transverse field in curved
magnets, toroidal harmonics [22][23] are identified to describe appropriately the magnetic
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Figure 2.2: Representation of the coordinate system and variables for a curved magnet.
The red line schematizes the winding geometry, the green line is the trajectory travelled by
the particle beam, the capital X, Y, Z illustrate the global Cartesian coordinate system
and the lower case x,y,s the beam one. The variables illustrated in the figure are the
bending radius ρ, the angle around the beam ϑ, the magnet aperture radius R (or the
winding radius) and the angle coordinate φ [21].

field but the topic will not be discussed in detail because for beam optics calculations is
not practical to use directly the field expansion in terms of toroidal harmonics.

The magnetic field of a curved magnet cannot be described by any linear combination
of the multipole coefficients previously discussed in Sec. 2.1. Indeed, by introducing a
curved system shown in Fig. 2.2 with the bending radius ρ, invariance along the mag-
netic axis, and the transverse beam coordinates centred on the reference trajectory, the
magnetic field can be derived from a vector potential which satisfies the following version
of the Laplace equation in the current-free region [21]:

−∂2Az

∂x2 − ∂2Az

∂y2 − 1
ρ + x

∂Az

∂x
+ 1

(ρ + x)2 Az = 0 (2.20)

The fact of the matter is that the definition of the multipole coefficients as the Fourier
coefficients of the radial field on a reference circle around the nominal trajectory can
still be possible but the interpretation of the results in a curved geometry is unclear.
However, in this context, a correct characterization of the magnetic field in the transverse
plane, assuming the presence of mid-plane symmetry, is possible by comparing the field
harmonics with the coefficients of the Taylor series expansion [21].
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(a) (b)

Figure 2.3: (a) 3D representation of the magnetic coils in red and the iron yoke in green.
(b) View of the magnet in the plane XZ. In both figures, the trajectory of the reference
particle is shown in blue.

2.3 Description of the Magnet Model
The magnet model considered in the evaluation of the field harmonics is based on 45◦ 4T
superconducting dipoles (with an aperture of 80 mm), shown in Fig. 2.2. The 2D cross-
section of the magnet is optimized to be a pure dipole and the curvature of the magnet
introduces an additional quadrupolar component and it can be considered as a combined
function magnet. In general, the combined function magnets combine the dipole field for
the deflection of the particles and the quadrupole field for focusing the particle beam in
one plane and for defocusing in the other plane [24].

The bending of the particles on the XZ plane occurs thanks to the action of the
y-component of the magnetic field. As shown in Fig. 2.4, the y-component of the field
decreases rapidly after passing the heads of the dipole. The clinical requirement for
carbon ions of a maximum kinetic energy of 430 MeV per nucleon, corresponds to a
beam rigidity of 6.6 Tm. This results in a radius of curvature ρ of 1.65 m and a total
length l of about 1.3 m [25] [18]. The total length of the field map used is roughly 1.78
m and this ensures that the field components at the end of the magnetic field map are
roughly null. In this design, the heads account for approximately 25% of the total length
of the magnet and the field transition to zero cannot be approximated as a hard edge
model [10]. The strong contribution of the heads generates non-linear components of the
magnetic field that cannot be neglected. The sections below describe in detail the field
quality analysis performed with the two analysis methods previously introduced, i.e. the
comparison of the field components with the Taylor coefficients and the Fourier series
expansion, considering a 3D magnetic field map generated from the Opera Simulation
Software [26]. Then, the data of the 3D magnetic field map are interpolated with cubic
interpolation in order to obtain the values of the magnetic field at the desired coordinates.
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Figure 2.4: Representation of the behaviour of the magnetic field components in tesla
plotted with respect to the reference particle trajectory.
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Chapter 3

Taylor Series Expansion

3.1 Trajectory Analysis

(a) (b)

Figure 3.1: (a) Illustration of the magnetic field map where the colour bar on the left
represents the values of the y-component of the magnetic field; the blue curve is the all-
curved trajectory of the reference particle and the black one is curved up to ±22.5◦ and
then straight to simulate the drift length. (b) Zoom on the discrepancy between the two
particle trajectories studied for the analysis.

To properly represent the orbit of the reference or ideal particle, defined as the parti-
cle that follows the nominal geometry of the magnet and that is deflected by the nominal
bending angle of 45◦, two different approximated trajectories were analyzed and illus-
trated in Fig. 3.1a and Fig. 3.1b. The first trajectory is the simplified one in fact it
considers only an arc of a circle with a radius of curvature ρ and the variable φ ranging
from −31◦ to 31◦. This specific range covers the total length of 1.78 m and it assures that
the field components at the end of the field map are roughly null. The second trajectory is
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constructed considering an arc of a circle with the same radius of curvature ρ, φ ranging
from −22.5◦ to 22.5◦ and two straight parts from the end of the arc to the end of the
map. The parameter ld, representing the drift length, is about 0.24 m for each straight
part. A “drift” in the jargon of accelerators is a field-free region [20].

As can be noticed in Fig. 3.1b, the two trajectories differ in the drift region. Ana-
lyzing the field along different paths yields different results, especially for the coefficients
represented by the odd derivatives, but the entire field quality analysis is not irremediably
compromised by the selection of one of the two trajectories.

The choice of the trajectory constituted by the arc of a circle and the two straight
parts is clearly visible in Fig. 3.2 where the black curve, the one representative of the
previously mentioned trajectory, is the better approximation of the reference particle
trajectory, the red dashed curve, simulated by the particle tracking tool, a MatLab algo-
rithm implemented to perform the local tracking inside the 3D magnetic field map of the
magnet, also described in [27]. The values of the magnetic field are visible in Fig. 3.1a
where the field component is represented in a 2D plot.

Figure 3.2: The blue curve represents the circular trajectory with φ ranging from −31◦

to 31◦, the black curve is the combination of an arc of a circle with −22.5◦ ≤ φ ≤ 22.5◦

and two straight parts and, finally, the red dashed curve corresponds to the reference
particle trajectory evaluated with the particle tracking.

3.2 Taylor Series Expansion Analysis
With the purpose of analyzing the field quality of the curved dipole described in Sec. 2.2,
the first step is the evaluation of the y-component of the magnetic flux density By.
The last-mentioned flux density can be expanded as Eq. 2.18 on the median plane after
imposing x0 = 0. As discussed above in Sec. 3.1, the reference particle trajectory in the
bending plane is assumed to be the reference path s on which a set of perpendicular
segments, represents in Fig. 3.3, is defined and therefore By is assessed on each segment.
The half-length of each segment ∆L is equal to 21.6 mm. Specifically, ∆L is selected to
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be inside a region in which, as a first approximation, the magnetic field behaves properly
(in the case of accelerator magnets, this region is conventionally defined as two-thirds
of the aperture radius) and to be coherent with the particle beam size employed in the
particle tracking tool to benchmark the field components obtained through the Taylor
analysis of the magnetic field map [27].

Figure 3.3: Representation of the reference trajectory s on which a set of perpendicular
segments is defined.

The interpolation of the y-component of the magnetic field By with respect to the
local x-coordinate identified on the segment itself is calculated using a polynomial curve
fit polyfit in MatLab. Basically, the MatLab function polyfit is employed to evaluate the
coefficients for a polynomial p(x) of a degree n, defined as p(x) = p1xn + p2xn−1 + ... +
pnx + pn+1, that is the best fit for the data in y. The data in x are defined as the query
points and the data in y are the fitted values at query points. Specifically, the query
points are the points identified on the segments perpendicular to the reference trajectory
and the data in y are the values obtained by the function that performs the interpolation
on a 3D data set represented by the magnetic field map values from the Opera Simulation
Software. The number of points set on the perpendicular segment is equal to 200 in order
to guarantee a sufficiently accurate analysis. The match between the y-component of the
magnetic flux density and the interpolated curve obtained with the polynomial curve fit
in MatLab is represented in Fig. 3.4a where, as an example, it is illustrated the behaviour
of By and the polynomial curve in a segment positioned in the body of the dipole, indeed
the values of the magnetic field reported on the vertical y-axis are roughly equal to 4 T,
i.e. the required dipole field. As a comparison, it is also illustrated an overlap between
the flux density and the interpolated curve in the case of the length of the segment ∆L
is set equal to 33 mm, a greater value than the one identified considering the two-thirds
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of the aperture radius (see Fig. 3.4b).

(a) (b)

Figure 3.4: (a) Representation of the y-component of the magnetic flux density By in
blue and the interpolated curve obtained with the polynomial curve fit in red considering
∆L = 21.6 mm. (b) Representation of the By in blue and the interpolated curve in red
considering ∆L = 33 mm. In both figures, the x-axis represents the points located on the
segment with a half-length ∆L and the y-axis shows the values of the field of a segment
placed around the middle of the reference trajectory.

The coefficients assessed by the interpolation are then multiplied by the factorial of
(n − 1), where n is the degree of the polynomial term, in order to define the multipole
coefficients of the field By on each segment along the reference trajectory. Specifically, the
polynomial coefficients p0, p1, p2, p4 are associated with the field components introduced
in Eq. 2.18 shown again here:

By(x) = B0 + dBy

dx

⃓⃓⃓⃓
⃓
x=y=0

x + 1
2!

d2By

dx2

⃓⃓⃓⃓
⃓
x=y=0

x2 + 1
3!

d3By

dx3

⃓⃓⃓⃓
⃓
x=y=0

x3 + 1
4!

d4By

dx4

⃓⃓⃓⃓
⃓
x=y=0

x4

The equality between the polynomial coefficients and the field derivatives up to the
decapole component identified with n = 4 is explicitly reported in Eq. 3.1:

B0 = p0

dBy

dx
= p1

d2By

dx2 = 2! p2 (3.1)

d3By

dx3 = 3! p3

d4By

dx4 = 4! p4
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In Fig. 3.5, the behaviour of the field components along the trajectory of the reference
particle s is illustrated. Generally, the polynomial degree is established according to the
multipole coefficients which are to be analyzed. In Appendix A, a detailed polynomial
convergence analysis is described in order to demonstrate that the multipole coefficients
after the decapole are negligible.

The dipole component, i.e. the main field component shown in Fig. 3.5a, assumes
the value of 4 T in the body of the magnet and decreases rapidly in the magnet heads
down to 0 T in the field-free region. In the plot of the quadrupole component is clearly
visible the connection point between the arc of a circle and the two straight lines which
correspond to the points identified at ±22.5◦. However, the geometric approximation
introduced does not interfere with the results. The other even derivatives that represent
the sextupole and the decapole field components indicate a lower fluctuation tendency
with respect to the odd-derivatives, as the octupole component.
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(a) (b)

(c) (d)

(e)

Figure 3.5: (a) The dipole component plotted along the reference trajectory. (b) The
quadrupole component plotted along the reference trajectory. (c) The sextupole compo-
nent plotted along the reference trajectory. (d) The octupole component plotted along
the reference trajectory. (e) The decapole component plotted along the reference trajec-
tory. In all figures, the dashed lines in red indicate the points at ±22.5◦ that represent
the range of the angle φ considering a reference trajectory constructed with an arc of a
circle and two straight parts and the blue line represents the values of the average integral
calculated by normalizing the integral results for the reference trajectory path.
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3.3 The Integral of the Taylor Series Expansion Coefficients

To retrieve the values of the n-poles components for the complete magnet, the integral of
the multipole components is approximated as follows:

∫︂ s

0

dn−1By

dxn−1 ds ≈
N−1∑︂
i=1

dn−1By,i

dxn−1
i

∆si (3.2)

where s represents the length of the reference trajectory travelled by the ideal particle; N
is the total number of points established along the entire path s with the aim of assuring
a fair approximation of the integral operation and therefore i ranges from 1 to N − 1;
∆si is the discrete step-length.

Integral of Taylor coefficients
Dipole Quadrupole Sextupole Octupole Decapole

[Tm] [T/m m] [T/m2 m] [T/m3 m] [T/m4 m]
-5.19 -0.21 36.20 101.43 2.57×105

Table 3.1: Results obtained by the integral of the multipole coefficients evaluated with
Eq. 3.2.

Then, the average integral is calculated normalizing the results retrieved from Eq. 3.2
by the length of the reference trajectory s traveled by the ideal particle and the values
obtained are shown in Tab. 3.2. The bending of the magnet coils introduces a quadrupole
gradient equal to 0.12 T/m in the horizontal plane in addition to the weak focusing effect
which is compatible with the beam optics and does not have to be compensated [25]. The
results of the average integral are illustrated in Fig. 3.5 with the blue lines.

Average integral of Taylor coefficients
Dipole Quadrupole Sextupole Octupole Decapole

[T ] [T/m] [T/m2] [T/m3] [T/m4]
-2.91 -0.12 20.27 56.81 1.44×105

Table 3.2: Results obtained by the average integral of the multipole coefficients. The
normalization is performed by considering the length of the entire reference trajectory
travelled by the ideal particle.

To convert the outcomes in field units, the conversion formula Eq. 2.19 is used at
r = r0 equal to 21.6 mm. The field units are commonly used by the magnet design
community to easily compare the evaluated results and to determine whether the out-
comes are technically acceptable. Specifically, the results indicated in Tab. 3.1 are the
ones converted in the mentioned above equation. The values in field units are displayed
in Tab. 3.3. In this case, the value of BN , i.e. the integrated dipole field, is calculated
with the relation Eq. 3.2 and is equal to -5.19 Tm.
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Multipole coefficients in field units
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

10000 8.65 -16.26 -0.33 -4.48

Table 3.3: The values of the multipole coefficients converted in field units using the
conversion formula Eq. 2.19 where r = r0 is equal to 21.6 mm. The main field BN

employed in the formula is the value of the integrated dipole component.

The sign of the multipole coefficients converted in field units is not relevant for eval-
uating the acceptability of the outcomes. Concerning the quadrupole field component,
the imposed limit of around 10 units to guarantee uniformity in the good field region is
respected while the sextupole component is slightly above the range. The latter field com-
ponent requires further optimization to reach the acceptable limit. The other high-order
multipole coefficients present satisfactory results for analysis purposes.
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3.4 The Taylor Series Expansion Coefficients of the Inte-
grated Field

To approximate the field harmonics from the coefficients of a Taylor series expansion, a
different configuration is involved in the analysis. Instead of performing the integral of
the multipole components considering the reference trajectory s of the ideal particle, it
is reasonable to integrate and normalize the y-component of the magnetic flux density
introducing the so-called toroidal lines illustrated in Fig. 3.6.

Figure 3.6: The curves in blue are the representation of the toroidal lines and the dashed
curve in red is the illustration of the reference particle trajectory.

The integral and the normalization of the magnetic field By are evaluated in order to
obtain the segment representing the local x-coordinate on which the interpolation with a
MatLab polynomial curve fit is performed. The values of the normalized magnetic field
are reported on the colour bar in tesla and the range is coherent with the value of the
average integral of the dipole component illustrated in Tab. 3.2. The normalization of the
integrated magnetic field is calculated considering the length of each toroidal line and it is
useful to take into account the different path lengths of the toroidal lines. As mentioned,
the interpolation is evaluated with the MatLab function polyfit generated with the least
square method. In this case, the query points are the points identified on the segment
representing the local x-coordinate and the y data are the values calculated by integrating
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and normalizing the y-component of the magnetic field. The match between the inte-
grated and normalized y-component of the magnetic flux density and the interpolated
curve obtained with the polynomial curve fit is represented in Fig. 3.7. The behaviour
of the integrated and normalized magnetic field By and the polynomial curve exhibits a
shifted parabola which is the result of the non-negligible presence of the quadrupole and
sextupole field components.

Figure 3.7: Illustration of the trend of the integrated and normalized magnetic field in
blue and the behaviour of the interpolated curve obtained with the polynomial curve fit
in red. The x-axis shows the values of the points identified on the segment and the y-axis
represents the values of the integrated and normalized field.

Therefore, the results calculated by interpolating the data with the MatLab polyno-
mial curve fit are multiplied by the factorial of n − 1 as shown in Eq. 3.1, where n is
the degree of the polynomial term, in order to define the multipole coefficients of the
integrated and normalized field By on the horizontal segment.

The field components are then reported in Tab. 3.4.

Taylor coefficients of the integrated and normalized field
Dipole Quadrupole Sextupole Octupole Decapole

[T ] [T/m] [T/m2] [T/m3] [T/m4]
-2.91 -0.12 20.21 57.00 1.44×105

Table 3.4: Field components obtained after the interpolation of the data calculated by
integrating and normalizing the y-component of the magnetic field.

The results shown in Tab. 3.4 are converted in field units exploiting the conversion
formula Eq. 2.19. In this case, the main field component BN is the dipole field component
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calculated considering the integrated and normalized magnetic field By and its value is
equal to −2.91 T. The values of the multipole coefficients converted in field units are
reported in Tab. 3.5.

Multipole coefficients in field units
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

10000 8.64 -16.19 -0.33 -4.48

Table 3.5: The values of the multipole coefficients converted in field units using the
conversion formula Eq. 2.19. The main field BN employed in the formula is the value of
the integrated and normalized dipole component.

The results converted in field units are similar to the ones evaluated in Tab. 3.3. Once
again, it may be underlined that the sextupole field component requires an improvement
in order to guarantee the demanded limit of 10 units.

To demonstrate that the two analysis approaches are consistent with each other, a
comparison between the values of the retrieved field components is performed. Specifi-
cally, the difference in absolute value of the multipole coefficients converted in field units
and reported in Tab. 3.3 and Tab. 3.5 is calculated. The results are shown in Tab. 3.6
and all the differences are below 0.1 field units. The dipole difference is perfectly equal
to zero because the multipole coefficients expressed in field units are normalized with
respect to the value of the main field BN , therefore no relevant information is added by
reporting the dipole difference.

Difference in absolute value
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

0 0.0021 0.0667 0.0007 0.0051

Table 3.6: The difference in absolute value of the multipole coefficients retrieved by the
two different approaches and expressed in field units. In particular, the difference is
performed between the values reported in Tab. 3.3 and in Tab. 3.5.

3.5 Trajectory from the Particle Tracking Tool

Before proceeding into further details of the field quality analysis, it may be useful to
remind a few concepts of particle physics. The total energy of a particle is the sum of its
rest energy E0 = mc2, where m and c are respectively the particle mass and the speed of
light, and the kinetic energy K [28]:

Etot = E0 + K (3.3)

To change the depth of the Bragg peak in a given material, the kinetic energy of the
particles has to be modified. For instance, considering the energy range of carbon ions
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from 120 MeV/u up to 430 MeV/u, the penetration depth in water ranges from 3 to 30
cm in order to reach deep tumour location [11]. The Lorentz factor γL is given by:

γL = Etot

E0
(3.4)

Therefore, the velocity of the particle can be calculated as follow:

v = c

√︄
1 − 1

γ2
L

(3.5)

The momentum p = γLmv can be expressed as:

p = 1
c

√︂
E2

tot − E2
0 (3.6)

The beam rigidity Bρ is defined as the ratio between the particle momentum p and
the particle charge q:

Bρ = p

q
(3.7)

This quantity is expressed in Tm and indicates how the particles interact with an
applied magnetic field or, in other words, how rigid is the beam in relation to the bending
force introduced by the magnetic field. The beam rigidity for carbon ions of 430 MeV/u is
Bρ = 6.6 Tm. The motion of a charged particle subjected to a magnetic field is governed
by the Lorentz force:

FL = γLm
dv
dt

= q(v × B) (3.8)

where v and B are respectively the particle velocity and the magnetic flux density. The
solution of Eq. 3.8 determines uniquely the particle trajectory in vacuum. Considering a
circular orbit, a centripetal force can be introduced:

Fc = γLmv2

ρ
(3.9)

Considering the Eq. 3.8 for a one-dimensional transverse flux density and combining
it with Eq. 3.9, the definition of beam rigidity Bρ can be derived as reported in Eq. 3.10:

Bρ = γLmv

q
= p

q
(3.10)

Taking into account that the beam rigidity corresponds to Bρ =6.6 Tm and the
magnetic field B is equal to 4 T, the radius of curvature ρ results equal to 1.65 m.

To analyse the transport of the particle beam and specifically, the transport of the
ideal particle for the purpose of the field quality analysis, a particle tracking tool imple-
mented in MatLab is introduced to perform the tracking inside the 3D magnetic field map
illustrated in Fig. 3.1a. The tracking algorithm is employed to produce the trajectory of
the reference particle without geometric approximation as a circle and straight lines. The
3D magnetic field map is calculated with Opera Simulation Software and then it is in-
terpolated in MatLab in order to properly describe the magnet. The MatLab function
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3.5 – Trajectory from the Particle Tracking Tool

ode45 [29] is used in the tracking algorithm to propagate the particle in the magnet. The
function is based on the Runge-Kutta-Fehlberg method useful for the numerical solution
of ordinary differential equations (ODE). Thanks to the function ode45, the Lorentz force
is integrated and divided by the relativistic mass of the particle in order to obtain the
velocity of the particle at different instants:∫︂ Ti

Ti−1

dv(t)
dt

dt =
∫︂ Ti

Ti−1

q

mγ
(v(t) × B) dt, i = 1, ..., n (3.11)

where q is the particle charge, m and v are respectively the mass and the velocity
of the particle, γ is the relativistic Lorentz factor. The relative error tolerance in the
particle tracking is set equal to 10−9. The detailed description of the particle tracking
algorithm is reported in [30], [27] and a similar approach is also implemented in [31].
The entire path followed by the ideal particle and evaluated by exploiting the particle
tracking tool is illustrated in Fig. 3.8. The green line is the representation of the reference
particle trajectory in the whole magnet. The nominal orbit of a carbon ion particle with
an energy equal to 428 MeV/u is determined by setting an entry angle of 22.5◦, which
coincides with the exit angle of the particle, at the entrance of the dipole. It is more
convenient to fine tune the beam energy to get the nominal deflection angle in the current
field map than running the Finite Element Analysis for fine tuning the magnet current to
deflect the nominal beam by the nominal angle. However, the magnetic field still needs
to be optimized to guarantee the same exit angle at 430 MeV per nucleon which is the
nominal energy of the gantry.

Figure 3.8: Representation of the entire reference particle trajectory (green line).

After the evaluation of the particle trajectory exploiting the particle tracking tool, the
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coefficients of the Taylor series expansion are assessed. First of all, a set of equally-spaced
segments is defined perpendicularly to the reference trajectory of the ideal particle and
it is illustrated in Fig. 3.9.

Figure 3.9: Representation of a set of segments equally paced and constructed perpen-
dicularly to the reference particle trajectory.

To calculate the field components, the polynomial curve fit generated with the least
square method, the MatLab function polyfit, is employed to perform the interpolation of
the y-component of the magnetic field By with respect to the local x-axis identified by
each segment. Also in the case of the trajectory determined with the tracking particle
tool, the half-length of each segment ∆L is selected to be equal to 21.6 mm in order
to assure the comparability of the results. Thus, the coefficients of the polynomial p(x)
assessed by the interpolation function are then multiplied by the factorial of (n−1), where
n is the degree of the polynomial term, in order to calculate the multipole coefficients of
the field By on each segment as shown in Eq. 3.1.

The behaviour of the field components along the tracked reference particle trajectory
is represented in Fig. 3.10. The trends of the dipole and the sextupole components
are really close to the ones illustrated in Fig. 3.5a and Fig. 3.5c. The behaviour of the
quadrupole field component evaluated by considering the tracked reference trajectory
does not identify the junction points as a consequence of the geometric approximation
of the particle trajectory with an arc of a circle and two straight parts clearly visible in
Fig. 3.5b. In the case of the tracked trajectory, the same area appears more smooth. To
clarify, the junction points cannot be identified on any of the figures due to the different
evaluation of the trajectory then, in all field components graphs, the junction point zone
is characterized by a greater regularity. The octupole and the decapole components are
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the ones that show larger differences with respect to the other plots displayed in Fig. 3.5,
indeed Fig. 3.5d and Fig. 3.5e have more pronounced fluctuations than the trends of the
octupole and decapole components displayed in Fig. 3.10d and Fig. 3.10e.
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(a) (b)

(c) (d)

(e)

Figure 3.10: (a) The dipole component behaviour plotted along the reference particle
trajectory. (b) The quadrupole component behaviour plotted along the reference particle
trajectory. (c) The sextupole component behaviour plotted along the reference particle
trajectory. (d) The octupole component behaviour plotted along the reference particle
trajectory. (e) The decapole component behaviour plotted along the reference particle
trajectory. In all figures, the trajectory s of the ideal particle is evaluated with the particle
tracking tool and the blue lines represent the values of the average integral calculated by
normalizing the integral results for the reference trajectory path.
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The multipole coefficients are integrated by introducing the formula Eq. 3.2 and the
results are reported in Tab. 3.7. The integral is calculated along s that represents the
length of the tracked reference trajectory. The retrieved results are satisfactorily compa-
rable with the ones illustrated in Tab. 3.1.

Integral of Taylor coefficients
Dipole Quadrupole Sextupole Octupole Decapole

[Tm] [T/m m] [T/m2 m] [T/m3 m] [T/m4 m]
-5.19 -0.22 36.26 46.31 2.56×105

Table 3.7: Results obtained by the integral of the multipole coefficients considering the
tracked reference particle trajectory.

The values of the integrated multipole coefficients are normalized with respect to the
length of the reference trajectory evaluated with the particle tracking tool and the results
are shown in Tab. 3.8. The average integral outcomes are also graphically illustrated in
Fig. 3.10 with the blue lines just to have visual feedback of the data. The results are in
agreement with the average integral values reported in Tab. 3.2.

Average integral of Taylor coefficients
Dipole Quadrupole Sextupole Octupole Decapole

[T ] [T/m] [T/m2] [T/m3] [T/m4]
-3.03 -0.13 21.14 27.00 1.50×105

Table 3.8: Results obtained by the average integral of the multipole coefficients consid-
ering the tracked reference particle trajectory.

The outcomes are converted in field units and the conversion formula Eq. 2.19 is
used. The conversion in field units is useful for the comparison with the data retrieved
by considering the reference trajectory approximated with an arc of a circle with a radius
of curvature ρ = 1.65 m and two straight parts simulating the drift regions. The results
in field units are displayed in Tab. 3.9 and the value of BN is the integrated dipole
component equal to -5.19 Tm. The weight of the field components in terms of field units
is the same reported in Tab. 3.3 where the sextupole field component is the one that has
to be reduced to remain in the established range for the field quality. Specifically, the
difference between the multipole coefficients expressed in field units calculated considering
the trajectory approximated with an arc of a circle and two straight parts and the ones
evaluated with the tracked trajectory is much lower than one unit.

Also in the case of the reference trajectory evaluated with the particle tracking tool,
the y-component of the magnetic field can be integrated along the toroidal lines intro-
duced in Sec. 3.4. Then, the integrated magnetic field is normalized by considering the
length of each toroidal line. The interpolation of the integrated and normalized magnetic
field is performed with the MatLab polynomial curve fit. In order to define the multipole
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Multipole coefficients in field units
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

10000 9.29 -16.29 -0.15 -4.47

Table 3.9: The values of the multipole coefficients converted in field units using the
conversion formula Eq. 2.19 and considering the tracked reference particle trajectory.

coefficients of the integrated and normalized field By, the results calculated by interpo-
lating the data are multiplied by the factorial of n − 1, where n is the polynomial degree.
The values of the field components are illustrated in Tab. 3.10. Except for the octupole
component, the other field components are closely comparable with the data reported in
Tab. 3.4.

Taylor coefficients of the integrated and normalized field
Dipole Quadrupole Sextupole Octupole Decapole

[T ] [T/m] [T/m2] [T/m3] [T/m4]
-3.04 -0.13 21.22 27.11 1.50×105

Table 3.10: Field components obtained after the interpolation of the data calculated
by integrating and normalizing the y-component of the magnetic field considering the
tracked reference particle trajectory.

The results shown in Tab. 3.10 are converted in field units using the conversion for-
mula Eq. 2.19. In this case, the main field component BN is the dipole field component
calculated considering the integrated and normalized magnetic field By and its value is
equal to −3.04 T. The values of the multipole coefficients converted in field units are
reported in Tab. 3.11. In terms of field units, the outcomes evaluated by considering the
integrated and normalized field By are strictly similar to the multipole coefficients results
shown in Tab. 3.5, indeed the difference of all field components is much smaller than one
field unit.

To demonstrate that both approaches are suitable for the correct analysis of the field
quality of a curved magnet, the difference in absolute value of the multipole coefficients
converted in field units is calculated and the results are reported in Tab. 3.12. Specifically,
the difference is performed by taking into consideration the results reported in Tab. 3.9
and Tab. 3.11. The difference of the dipole component is perfectly equal to zero since the
conversion formula introduced for expressing the multipole coefficients in field units is
normalized with respect to the main field BN respectively equal to the integrated dipole
field and the integrated and normalized dipole field. The differences of the other high-
multipole components are lower than 10−3 units which may be regarded as a satisfactory
outcome.

As a further conclusion, the values of the average integrals of the coefficients calcu-
lated with the Taylor series expansion and the results retrieved by the Taylor expansion
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Multipole coefficients in field units
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

10000 9.29 -16.29 -0.15 -4.47

Table 3.11: The values of the multipole coefficients converted in field units using the
conversion formula Eq. 2.19 and calculated considering the tracked reference particle
trajectory. The main field BN is the value of the integrated and normalized dipole
component.

Difference in absolute value
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

0 0.0005 0.0007 4.31×10−5 0.0020

Table 3.12: The difference in absolute value of the multipole coefficients retrieved by
the two different approaches and expressed in field units. In particular, the difference is
performed between the values reported in Tab. 3.9 and Tab. 3.11.

analysis of the integrated and normalized y-component of the magnetic field are in agree-
ment if the reference trajectory of the ideal particle is approximated with an arc of a circle
and two straight lines or the reference particle trajectory is computed with the particle
tracking tool, i.e. the local tracking is directly performed inside the 3D magnetic field
map. Therefore, with good approximation, the field quality of the magnet can be charac-
terized by evaluating the ideal particle trajectory geometrically, taking into account the
greater simplicity of the geometric approximation compared to the algorithm employed
for particle tracking.

3.6 Reconstruction of the Magnetic Field Map

The magnetic field is commonly described by the main integrated field components and
the high-order field coefficients. From a mathematical perspective, the magnetic field
representation is an analytical function in a simply-connected domain developed into
eigenfunctions with the multipole coefficients [32]. The magnetic field reconstruction
inside the domain of interest is useful for analysing the calculation uncertainties and
approximations.

The reconstruction of the magnetic field can be performed only on the length of the
segment selected for the Taylor expansion analysis set equal to 21.6 mm to be coherent
with the particle beam size employed in the tracking to benchmark the field components
obtained through the Taylor analysis of the 3D magnetic field map [27] and to be inside
the so-called good field region, conventionally defined as two-thirds of the magnet aperture
[18].

First, to perform the analysis, the reference trajectory of the ideal particle is approx-
imated by an arc of a circle and two straight parts as thoroughly in Sec. 3.1. Second, the
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set of segments perpendicular to the reference trajectory is constructed in order to eval-
uate the y-component of the magnetic field By on each segment. The 3D magnetic field
map illustrated in Fig. 3.1a presents an up/down symmetry allowing the reconstruction
of the magnetic field considering only the half length of the magnet.

The MatLab function polyfit is employed to define the coefficients for a polynomial
p(x) of a degree n. Specifically, the x points are the ones identified on the segments and
the y data are the ones obtained after manipulating the 3D magnetic field map data from
the Opera Simulation Software.

The MatLab function polyval is then used to evaluate the polynomial p at each point in
x. Specifically, the polynomial p is assessed at the points identified on the set of segments
perpendicular to the reference particle trajectory. To properly reconstruct the magnetic
field, the MatLab function scatteredInterpolant is used to perform the interpolation on
a data set of scattered data and it returns an interpolating function F for the given data
set. The interpolant F can be evaluated at a set of query points to produce interpolated
values. The option “linear” is selected for the interpolation method and the extrapolation
method is set as “none”. The representation of the magnetic field values calculated by the
interpolating function F at query locations is illustrated in Fig. 3.11 with the red wildcard
characters. The values of the polynomial p at each point in x are instead illustrated with
blue circles.

Figure 3.11: Representation of the magnetic field values calculated with the interpolant
F at query points (red wildcard characters) and the values of the polynomial p at each
point x (blue circles).

To quantify the discrepancy between the magnetic field values calculated with the
interpolating function F and the field values obtained from the 3D magnetic field map
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evaluated in Opera Simulation Software at the same query locations, the absolute differ-
ence in tesla is assessed and the result is illustrated in Fig. 3.12. The critical region is the
one in the proximity of the magnet’s heads due to their strong contribution that generates
non-linear components of the magnetic field that cannot be neglected. The accuracy of
the magnetic field reconstruction is in the order of 10−4 that is a satisfactory result for
the desired precision of the analysis. Concerning the magnetic field quality analysis, this
is an additional validation of the Taylor series expansion approximation.

Figure 3.12: Illustration of the absolute difference in tesla between the magnetic field
values calculated with the interpolating function F and the values of the 3D magnetic
field map at the same query points.
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Chapter 4

Fourier Series Expansion

4.1 The Fourier Expansion of the Radial Field Component

Typically for large accelerators, the magnets are straight or can be approximated as such.
This is the case of the CERN Large Hadron Collider (LHC), where the dipoles are 15
m long and the heads measure a few percent of the dipole length [33]. The field quality
description in such magnets is generally based on cylindrical multipoles, which constitute
a full basis for the solution of the Laplace equation in the 2D case [21]. However, the design
of short and strongly bent SC dipoles requires an appropriate description of the quality
of the produced magnetic field [17]. Although it is common practice to describe the field
by introducing cylindrical multipoles in the transverse plane, the curved magnets require
further discussion on the validity of this approach. The design of the magnet involved
in the analysis is described in Sec. 2.3. As a reminder, the SC combined function dipole
analyzed in the present work is based on a main field of 4 T and an aperture ranging
from 70 mm up to 90 mm. The beam rigidity of 6.6 Tm yields a bending radius ρ of 1.65
m and the bending angle is equal to 45◦, resulting in a magnetic length of about 1.3 m.
The 3D magnetic field map evaluated with the Opera Simulation Software is displayed
in Fig. 3.1a. The design bending plane is chosen perpendicular to the y-axis. The ideal
particle is defined as the particle that follows the nominal geometry of the magnet and
that is deflected by the nominal bending angle of 45◦. In the following analysis, the
trajectory of the ideal particle is approximated by considering an arc of a circle with a
radius of curvature ρ of 1.65 m, φ ranging from −22.5◦ to 22.5◦ and two straight parts
to reach the end of the field map, as described and represented in Sec. 3.1.

With the purpose of determining the field harmonics with the Fourier series expansion
approach on the domain boundary, the first step is the definition of the domain of the
problem. In the case of accelerator magnets, the domain boundary is often chosen as a
circle with a radius of two-thirds of the aperture radius [19]. In this work, the selected
reference radius r0 is equal to 21.6 mm in order to remain inside a region in which, as a
first approximation, the magnetic field behaves properly and to guarantee the compara-
bility of the field harmonics with the multipole coefficients approximated with a suitable
Taylor series expansion of the flux density at the horizontal median plane. To evaluate
the multipole coefficients or the field harmonics An and Bn, the radial component of the
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magnetic flux density can be used. Firstly, a set of circles orthogonal to the reference
particle trajectory, approximated with an arc of a circle and two straight parts, is defined.
To properly evaluate the radial field component Br, the magnetic field component orthog-
onal to the ideal particle trajectory is calculated on each circle and it is called the rotated
field component Bx,rot. Specifically, the rotated component Bx,rot can be expressed in
terms of the x-component and the z-component of the magnetic flux density as shown in
Eq. 4.1 where α is the angle that identifies the longitudinal position along the particle
trajectory (see Fig. 4.1).

Brot = Bx cosα + Bz sinα (4.1)

The value of the radial field component Br of the magnetic flux density at a reference
radius r = r0 equal to 21.6 mm as a function of the angular position φ is obtained, on
each circle, by associating the Bx,rot component and the y-component By.

Br(r0, φ) = By sinφ + Brot cosφ (4.2)

Then, the radial field component can be expressed with the Fourier series expansion.
The set of circles on which the radial field component Br is assessed is built perpendic-
ularly with respect to the reference trajectory and it is illustrated in Fig. 4.1 where the
colour bar indicates the values of the radial field component in tesla. As expected, the
radial field component decreases down to 0 T.
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Figure 4.1: Illustration of the set of circles transverse to the reference particle trajectory
s approximated with an arc of a circle and two straight parts. The colour bar on the
right indicates the values of the radial field component Br in tesla.
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The Fig. 4.2 shows the values of the radial field component, expressed in tesla, on a
circle selected in the central region of the magnetic field map. The radius of the circle
is the reference one r0 = 21.6 mm. The behaviour of Br, as a function of the angular
position φ, ranges from -4 T to 4 T.

Figure 4.2: Illustration of the values of the radial field component Br expressed in tesla
on a circle located in the central region of magnetic field map.

The normal and skew multipole coefficients Bn(r0) and An(r0) at a reference radius
r0 equal to 21.6 mm are evaluated by using the relations introduced in Eq. 2.13 and
Eq. 2.14. In computational practice, the component Br is numerically calculated at N
discrete points in the interval [0,2π) and the multipole coefficients An(r0) and Bn(r0) are
assessed by introducing the discrete Fourier transform [19]:

An(r0) ≈ 2
N

N−1∑︂
k=0

Br(r0, φk) cos nφk (4.3)

Bn(r0) ≈ 2
N

N−1∑︂
k=0

Br(r0, φk) sin nφk (4.4)

where φk = 2πk
N with k = 0,1,2, ..., N − 1. To guarantee sufficient accuracy for the

calculation of the skew and normal coefficients up to order n =15, the number of discrete
points N is set equal to 60 [19]. In the present work, the multipole coefficients are taken
into account up to the order n =5 considering that the coefficients after the decapole
component are negligible as discussed in Appendix A. Assuming field symmetry about
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the median plane, the skew multipole components An(r0) are expected to be null. The
distributions of the normal multipole components Bn(r0) are represented in Fig. 4.3. The
coefficient n = 1 represents the dipole field. The other field components are illustrated by
normalizing the multipole under consideration for the reference radius r0 raised to n − 1.

The behaviour of the dipole component is coherent with the trend illustrated in
Fig. 3.5a where the field component is evaluated by the comparison with the Taylor co-
efficients of a series expansion of the magnetic flux density. As expected, the value of the
dipole field component is equal to 4 T inside the body of the magnet. The higher-order
multipole coefficients exhibit relevant differences with respect to the field harmonics rep-
resented in Fig. 3.5. In particular, the quadrupole field component displays two negative
peaks and, as a consequence, the quadrupole gradient is higher than the one evaluated
with the Taylor expansion equal to −0.12 T/m. The sextupole and the decapole compo-
nents differ slightly in the trend with respect to the Fig. 3.5c and Fig. 3.5e, however, the
numerical results are not comparable with the outcomes of the average integrals of the
Taylor expansion coefficients reported in Tab. 3.2. Concerning the octupole component,
both the plot and the numerical outcome are not analogous with the results retrieved in
Sec. 3.2 and Sec. 3.3.
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(a) (b)

(c) (d)

(e)

Figure 4.3: (a) Representation of the dipole component behaviour B1 in T plotted along
the reference trajectory. (b) Representation of the quadrupole component behaviour B2
in T/m plotted along the reference trajectory. (c) Representation of the sextupole com-
ponent behaviour B3 in T/m2 plotted along the reference trajectory. (d) Representation
of the octupole component behaviour B4 in T/m3 plotted along the reference trajectory.
(e) Representation of the decapole component behaviour B5 in T/m4 plotted along the
reference trajectory. In all figures, the red dashed lines indicate the points at ±22.5◦ that
represent the range of the angle φ.
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To compare numerically the field harmonics determined with the Fourier series expan-
sion of the radial field component with the multipole coefficients evaluated by comparison
with the Taylor coefficients of a series expansion of the magnetic field at the median plane,
the mean value of the normal multipole components is evaluated as 1

N

∑︁N
i=1 Bni, where

N is the total number of observation points. The results are reported in Tab. 4.1 consid-
ering that each normal multipole component is divided by the reference radius r0 raised
to n − 1.

Mean value of the Bn coefficients
Dipole Quadrupole Sextupole Octupole Decapole

[T ] [T/m] [T/m2] [T/m3] [T/m4]
-2.91 -1.65 16.59 22.20 1.08×105

Table 4.1: Results retrieved by calculating the mean value of the normal multipole coef-
ficients Bn divided by the reference radius r0 raised to n − 1.

The results calculated by evaluating the mean value of the normal multipole com-
ponents Bn and then normalizing for the reference radius to the power of n − 1 differ
completely from the average integral values reported in Tab. 3.2 except for the dipole
field component that yields the same result.

To guarantee the correct evaluation of the radial field component and consequently
of the multipole coefficients, the component Brec is calculated by employing the Eq. 2.11
also reported here:

Brec(r0, φ) =
∞∑︂

n=1
(Bn(r0) sin nφ + An(r0) cos nφ)

where the skew and multipole components An(r0) and Bn(r0) are determined with
the Eq. 4.4 and Eq. 4.3. The difference expressed in tesla between the radial field com-
ponent Br evaluated with the rotated component Bx,rot and the y-component By and
the reconstructed radial field component Brec calculated with the harmonic components
An(r0) and Bn(r0) is graphically represented in Fig. 4.4. The accuracy achieved with the
evaluated difference is on the order of 10−4 and the result is acceptable for the purpose
of the analysis.

Although the radial field component is supposed to be correctly evaluated, the de-
scription and the characterization of the magnetic field in the curved magnet based on
the cylindrical multipoles lead to a questionable interpretation of the results. In the case
of curved magnets, using field derivatives rather than cylindrical multipoles is suitable
to characterize the field and analyse the field quality requirements. Moreover, the field
derivatives are directly used by beam optics calculations thus promoting and facilitating
the dialogue between magnet and accelerator designers [21].
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Figure 4.4: Illustration of the difference between the radial field component Br and the
reconstructed radial component Brec expressed in tesla.
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4.2 The Scaling Law of the Multipole Coefficients
The scaling law of multipole coefficients to any radius r inside the magnet aperture was
verified to exclude an evaluation error for the field harmonics’ distributions related to the
choice of the reference radius r0 initially imposed equal to 21.6 mm for the determination
of the multipoles with the Fourier series expansion approach.

First, a preliminary analysis is carried out to validate the scaling laws in the case of
a strongly bent magnet performing the evaluation of the multipole coefficients at radii
lower than the reference one r0; second, the scaling laws are used to verify the extension
of the good field region (GFR) calculating the normal and the skew components at radii
higher than the reference one.

The scaling laws are based on multipole coefficients evaluated earlier at the same
reference radius r0 = 21.6 mm and they are expressed as:

An(rk) =
(︄

rk

r0

)︄n−1

An(r0) (4.5)

Bn(rk) =
(︄

rk

r0

)︄n−1

Bn(r0) (4.6)

where An(rk) and Bn(rk) are the skew and normal multipole coefficients calculated at
any radius rk inside the aperture. The field scaling is tested at 4 radii 2 mm apart in the
range of 15.6 to 21.6 mm. The coefficient n corresponds to the field harmonic distributions
and An(r0) and Bn(r0) are the skew and normal multipole components evaluated with
the integral of the radial field component Br as introduced in Eq. 2.13 and Eq. 2.14 and
also reported below:

An(r0) = 1
π

∫︂ 2π

0
Br(r0, φ) cos nφ dφ n = 1,2,3...

Bn(r0) = 1
π

∫︂ 2π

0
Br(r0, φ) sin nφ dφ n = 1,2,3...

where, for instance, n = 1 corresponds to the dipole field component.
To validate the scaling laws, the skew and normal multipole coefficients An(rk) and

Bn(rk) are therefore calculated at each radius rk inside the magnet aperture with the
integral of the radial field component Br(rk, φ) as:

An(rk) = 1
π

∫︂ 2π

0
Br(rk, φ) cos nφ dφ n = 1,2,3... (4.7)

Bn(rk) = 1
π

∫︂ 2π

0
Br(rk, φ) sin nφ dφ n = 1,2,3... (4.8)

where, once again, the radius rk goes from 21.6 mm up to 15.6 mm with a step of 2
mm, thus moving inwards through the aperture.

The distributions of the normal multipole coefficients evaluated with the scaling law
and with the integral of the radial field component at each radius rk are graphically rep-
resented in Fig. 4.5 to qualitatively observe the presence of some divergences. Concerning
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the dipole field component, it remains constant since in the scaling law of multipole co-
efficients n is equal to one and consequently the ratio (r/r0)n−1 is always equal to 1.
The quadrupole and the sextupole field components (see Fig. 4.5) are shown to analyse
the scaling law’s consistency. The quadrupole distributions, evaluated with the scaling
law Bn(rk) and with the integral of the radial field component Bn(rk), are illustrated
in Fig. 4.5a. In the body of the magnet, the difference between the two evaluation ap-
proaches is roughly null whereas, in the magnet’s heads, where the determination of the
field harmonics becomes more complicated with the Fourier expansion method, the curve
differences need to be carefully monitored. Concerning the distributions of the sextupole
component evaluated at different radii starting from the reference one 21.6 mm up to
15.6 mm using a step equal to 2 mm, the difference between the field components eval-
uated with the scaling law Bn(rk) and the ones directly calculated with Bn(rk) presents
irrelevant discrepancies in the body of the magnet while, in the region of the heads,
some variation can be observed. The illustration of the sextupole field distributions con-
sidering the two different evaluation approaches is reported in Fig. 4.5b. All the field
distributions are represented considering Bn(rk)/(rk)n−1, i.e. normalizing the normal co-
efficients for the radius under analysis raised to n − 1 where n corresponds to a specific
field distribution.
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(a)

(b)

Figure 4.5: (a) Representation of the quadrupole field distributions evaluated with the
scaling law of the multipole coefficients and with the integral of the radial field component
calculated at each analysis radii. (b) Representation of the sextupole field distributions
evaluated with the scaling law of the multipole coefficients and with the integral of the
radial field component calculated at each analysis radii. All the curves are plotted with
respect to the reference trajectory s of the ideal particle.
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To numerically quantify the discrepancies between the field distributions evaluated
with the scaling law of the multipole coefficients expressed with Eq. 4.5 and Eq. 4.6 and
the ones determined with the integral of the radial field component Br(rk), the absolute
difference in field units is calculated between the results retrieved by the two approaches.
To consistently compare the normal multipole coefficients computed with the scaling law
and directly with the integral, the mean value of the dipole field determined with the
Fourier expansion of the radial component Br at a reference radius r0 = 21.6 mm is used
as the main field component BN and it is equal to −2.91 T. Such a choice is also related
to the distributions of the dipole component B1 and the other high-order coefficients that
assume values around zero in the region of the magnet heads and consequently, B1 should
not be selected as the main field component BN (see Eq. 2.19 as reference) in order to
avoid numerical errors.

The differences, determined for the quadrupole and the sextupole field components
and expressed in field units, have relatively high values in the region of the magnet’s
heads, especially for analysis radii equal to 17.6 mm and 15.6 mm. The reason could
be related to the uncertainty introduced a priori in the evaluation of these components
at the coil’s heads. In the body of the magnet, the evaluated differences are lower than
one unit as a confirmation of the satisfactory comparison achieved between the multipole
coefficients calculated with the Fourier series expansion of the radial field component and
the field harmonics computed with a suitable Taylor series expansion. These field com-
ponents’ differences are illustrated in Fig. 4.6a and Fig. 4.6b. Concerning the octupole
field component illustrated in Fig. 4.6c, the differences evaluated in the magnet’s heads
are approximately equal to one field unit whereas in the body of the magnet are lower
than the unit. The reason could be related to the unit value of the octupole component
of -0.12, significantly lower than one field unit. In conclusion, the scaling law of the mul-
tipole coefficients is verified taking into account the evaluation uncertainty of the field
harmonics in the coil’s head region.
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(a) (b)

(c)

Figure 4.6: (a) Differences evaluated for the quadrupole distributions. (b) Differences
evaluated for the sextupole distributions. (c) Differences evaluated for the octupole dis-
tributions. All the curves are plotted with respect to the reference trajectory s of the
ideal particle and the differences are converted into field units for all the field harmonics.
The analysis radii rk are selected lower than the radius of 21.6 mm to certainly remain
inside the good field region, specifically rk = 19.6 mm, 17.6 mm, 15.6 mm.
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The scaling law of the multipole coefficients can be applied to the extension verification
of the good field region (GFR). To qualitatively identify the good field region of the
magnet, two-thirds of the aperture radius is calculated. This value is conventionally used
by the magnet design community to evaluate the good field region. In the dipole currently
analysed, the radius of the aperture is equal to 40 mm and thus the size for the good field
region can be identified as 26.7 mm. The blue line in Fig. 4.7 represents y-component
of the magnetic field versus the x-axis and it can be noticed the presence of strongly
high-order field components in close proximity to the good field region limits.

Figure 4.7: Illustration of the y-component of the magnetic field in tesla versus the x-axis
in the centre of the magnet (blue line). The dashed vertical lines in black indicate the
points at ± 26.7 mm, i.e. the two-thirds of the aperture radius.

As a verification, the field harmonics calculated with scaling laws reported in Eq. 4.5
and Eq. 4.6 are compared with the multipole coefficients determined with the integral
of the radial field component Br(rk) calculated at each analysis radii rk higher than the
reference one equal to 21.6 mm and in particular rk = 25.6 mm, 29.6 mm, 33.6 mm. The
differences of the field harmonics, expressed in field units, are calculated by considering
only the body of the magnet, where the multipoles evaluated with a Fourier series ex-
pansion of the radial component Br are punctually comparable with the ones determined
by employing a Taylor series expansion of the calculated field at a symmetry axis. The
differences representation is graphically illustrated in Fig. 4.8 and the evaluation is per-
formed by roughly varying φ from −16◦ up to 16◦, i.e. a region far enough away from
the heads of the magnet.

In all the multipole coefficients represented, the differences between the curves eval-
uated with the scaling law and the ones determined with the integral of the radial field
component Br(rk) are lower than one field unit when the radius is equal to 25.6 mm.
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(a) (b)

(c)

Figure 4.8: (a) Differences evaluated for the quadrupole distributions. (b) Differences
evaluated for the sextupole distributions. (c) Differences evaluated for the octupole dis-
tributions. All the curves are plotted with respect to the reference trajectory s of the
ideal particle considering only the body of the magnet where φ ranges approximately
from −16◦ to 16◦. The values of the difference are converted into field units for all the
field harmonics. The analysis radii are selected higher than the radius of 21.6 mm to
reach the boundary of the good field region, specifically rk = 25.6 mm, 29.6 mm, 33.6
mm.

Considering a radius higher than the latter, the difference expressed in field units in-
creases; for instance, the difference of the quadrupole component at a radius of 33.6 mm
is higher than 10 field units.

An accurate analysis is performed between a reference radius r0 at 25.6 mm and 33.6
mm with a 1 mm step in order to have clear evidence of the extension of the good field
region. The results of this analysis are illustrated in Fig. 4.9. The procedure involves
evaluating the average of the absolute unit difference between the multipole coefficients
determined with the integral of the radial field component Br(rk) and the ones calculated
with the scaling law Bn(rk). The evaluation is carried out by varying the variable φ from
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−16◦ to −16◦, i.e. a region that identifies the body of the dipole thus quite far from the
coils’ heads. In the graph, the red line represents one field unit value. The outcomes of the
average unit difference of the multipole coefficients are represented at different reference
radii. The analysis results underline that the agreement between the evaluation of the
field harmonics with the scaling law Bn(rk) and with the integral of Br(rk) is verified
up to a radius of 29.6 mm where the average unit difference of high-order multipole
coefficients is lower than one unit. Instead, considering a radius of 30.6 mm, the average
unit difference for the dipole and the quadrupole components tends to be higher than one
unit field.

Figure 4.9: Representation of the average unit difference results for the multipole coef-
ficients from the dipole up to the decapole component plotted with respect to different
analysis radii, specifically rk = 25.6 mm, 26.6 mm, 27.6 mm, 28.6 mm, 29.6 mm, 30.6
mm, 31.6 mm, 32.6 mm, 33.6 mm.
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4.3 The Integrated Multipole Coefficients

If only the two lowest order elements are used for steering the beam, forces on the par-
ticles are either constant or vary linear with the distance from the origin. This is called
linear beam optics. It has to be noted that the treatment of each harmonic separately is
a mathematical abstraction. In practical situations, many harmonics will be present and
many of the coefficients will be non-vanishing. A successful magnet design will, however,
minimize the unwanted terms to small values. Therefore, tolerance thresholds for the
high-order field harmonics need to be defined. However, in the magnet extremities, there
is a non-negligible magnetic field in the axial direction and the multipole coefficients do
not satisfy the 2D Laplace’s equation. Once again, the normal and skew multipole coeffi-
cients Bn(r0, z) and An(r0, z), evaluated at some longitudinal position z, can be derived
by considering the Fourier series expansion of the radial field component Br(r0, φ, z).
However, the scaling laws of the multipole coefficients, discussed in the previous Sec. 4.2
and reported in Eq. 4.5 and Eq. 4.6, cannot be applied to the 3D field harmonics. Any-
way, the problem can be overcome by calculating the integrated transverse multipole
coefficients [19].

It is relevant to highlight that both magnetic scalar and vector potentials can be used
for the formulation of a boundary value problem in the aperture of an accelerator magnet
free of currents and magnetized material. In two dimensions, both formulations provide a
scalar Laplace equation for the magnetic scalar potential ϕm and for the magnetic vector
potential Az [19].

To return to the previous discussion, as described above, the scalar potential in the
magnet aperture satisfies the Laplace equation [19]:

∆2ϕm(x, y, z) = ∂2ϕm(x, y, z)
∂x2 + ∂2ϕm(x, y, z)

∂y2 + ∂2ϕm(x, y, z)
∂z2 = 0 (4.9)

The parameter ϕm(x, y) can be defined as:

ϕm(x, y) =
∫︂ z0

−z0
ϕm(x, y, z)dz (4.10)

Therefore, the Eq. 4.9 can be written as:

∆2ϕm(x, y) = ∂2ϕm(x, y)
∂x2 + ∂2ϕm(x, y)

∂y2 = 0 (4.11)

The Eq. 4.11 can be considered valid if the magnet is symmetric with respect to the
centre or the integration path is extended far enough outside the magnet so that the field
is null. At this point, the scaling laws of the multipole coefficients (Eq. 4.5 and Eq. 4.6)
can be applied to the integrated multipoles derived from ϕm. Moreover, the Eq. 4.11 can
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be written as:

∆2ϕm(x, y) = ∂2ϕm(x, y)
∂x2 + ∂2ϕm(x, y)

∂y2 =
∫︂ z0

−z0

(︄
∂2ϕm

∂x2 + ∂2ϕm

∂y2

)︄
dz

=
∫︂ z0

−z0

(︄
−∂2ϕm

∂z2

)︄
dz = −∂ϕm

∂z

⃓⃓⃓⃓
⃓
z0

−z0

= Hz(−z0) − Hz(z0) = 0 (4.12)

The Eq. 4.12 is fulfilled for symmetric magnets where Hz(z0) = −Hz(−z0), i.e. sym-
metric with respect to the axis origin, or for longitudinal field component that has dropped
to zero [19].

Concerning the short and strongly curved dipole with a high contribution of non-
linear field components due to the non-negligible influence of the coil’s heads involved
in the analysis of the field quality, the mathematical treatment previously discussed is
not considered valid despite the extension of the integration path, i.e. the toroidal lines,
ensures that the field components at the end of the magnetic field map are roughly null
and the longitudinal component of the magnetic field satisfy the symmetry resulting from
Eq. 4.12. The 3D representation of the toroidal lines is illustrated in Fig. 4.10.

Figure 4.10: Representation of the so-called toroidal lines in a 3D plot. The thicker black
line in the plot is the reference trajectory s of the ideal particle, i.e. the particle that
follows the geometric orbit of the magnet.

Before proceeding with the evaluation of the multipole coefficients An and Bn, the
radial component of the magnetic field Br, assessed at a reference radius r0 = 21.6 mm on

70



4.3 – The Integrated Multipole Coefficients

each circle transverse to the reference particle trajectory and calculated by introducing
the rotated component Bx,rot and the y-component By, is integrated and then normalized
on each toroidal line (see Eq. 4.13) in order to obtain an equivalent circle cross-section
on which the Fourier series expansion analysis can be performed. Specifically, the nor-
malization of the integrated radial field component is assessed by considering the number
of points into which each toroidal line is divided to take into account the different path
lengths of the toroidal lines. The integrated and normalized field component Br,int for
the i-th toroidal line is reported in Eq. 4.13:

Br,int(r0, φi) = 1
stot,i

∫︂ stot,i

0
Br(r0, φi) dsi ≈ 1

Ntot

Ntot∑︂
j=1

Br(r0, φi)∆si (4.13)

where stot,i is the total length of the i-th toroidal line, Ntot is the total number of j-th
points identified on the toroidal lines. Each toroidal line is defined with equally steps
∆si.

Therefore, the skew and normal multipole coefficients An and Bn are evaluated at a
reference radius r0 by considering the integration of the integrated and normalized radial
field component Br,int with φ ranging from 0 to 2π as:

An(r0) = 1
π

∫︂ 2π

0
Br,int(r0, φ) cos nφ dφ n = 1,2,3... (4.14)

Bn(r0) = 1
π

∫︂ 2π

0
Br,int(r0, φ) sin nφ dφ n = 1,2,3... (4.15)

where n = 1 corresponds to the dipole field component. In computational practice,
the integrated and normalized radial field components are numerically calculated at N
discrete points in the interval [0,2π) as discussed in Sec. 4.1 and then the evaluation of
the multipole coefficients An(r0) and Bn(r0) is computed by using the discrete Fourier
transform.

Just as an example, the results of the quadrupole and sextupole components calculated
at a reference radius r0 equal to 21.6 mm are graphically represented in Fig. 4.11. All the
comments are also applicable to the other high-order components not explicitly shown.
The graphs report the values of the quadrupole and sextupole field components evaluated
with the integral of the integrated and normalized radial field component Br,int and the
outcomes of the same multipole coefficients retrieved by the Fourier series expansion of
the radial field component Br.

Specifically, to compare the quadrupole and the sextupole components calculated by
using the Br,int(r0, φ) and the same ones evaluated with the Fourier series expansion of
Br(r0, φ), the mean values of the latter multipoles are performed as 1

N

∑︁N
i=1 Bni, where

N is the total number of observation points. The field harmonics are then represented
by dividing the retrieved values for the reference radius r0 raised to n − 1 according
to the multipole considered; for instance, the quadrupole component requires that the
radius is raised to 1 and therefore, its unit of measure is T/m. Concerning the multipole
coefficients evaluated with Br,int(r0, φ), the outcomes retrieved are practically similar
to the ones evaluated with the Fourier series expansion of the radial field component
Br(r0, φ).
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(a) (b)

Figure 4.11: (a) Comparison between the mean value of B2 and the same quadrupole
component calculated with Br,int. (b) Comparison between the mean value of B3 and
the same sextupole component calculated with Br,int.

4.4 Comparison with Taylor Expansion Results
The great agreement between the average integral of the Taylor expansion coefficients and
the Taylor coefficients of the integrated and normalized magnetic field By demonstrates
that the two approaches are consistent with each other. To simplify the comparison of
the retrieved field harmonics with the coefficients evaluated with the Fourier expansion
analysis, only the outcomes calculated with one of the two Taylor expansion approaches
are considered. The same comment on the retrieved results can be done for the field har-
monics evaluated with the Fourier expansion of the radial field component Br(r0, φ) and
the multipole coefficients calculated with the integrated and normalized field component
Br,int(r0, φ), therefore only the coefficients results of one of the two Fourier expansion
approaches is taken into account for the above-mentioned comparison.

The comparison between the approximated field harmonics from the coefficients in
a suitable Taylor series expansion and the multipole coefficients evaluated by using a
Fourier series expansion of a field component along a circle is performed by adapting the
conversion formula Eq. 2.19 as:

∆units = bn − rn−1

BN

1
(n − 1)!

dn−1By

dxn−1

⃓⃓⃓⃓
⃓
x=y=0

(4.16)

where ∆units indicates the difference in field units between the multipole coefficients
and those in the Maclaurin series [19].

The evaluation of the difference, graphically illustrated in Fig. 4.12, highlights that,
in the body of the magnet, the assessment accuracy of the multipole coefficients with
the two different approaches is below one unit, a quite satisfactory result. However, the
same achievement is not reached in the heads of the magnet where the difference between
the multipole coefficients respectively determined with the Fourier and Taylor expansion
approaches is strongly visible. In addition, the comparison illustrated in Fig. 4.13 between
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Figure 4.12: Illustration of the difference expressed in field units between the multipole
coefficients determined with the Fourier series expansion and the field harmonics evalu-
ated with a suitable Taylor series expansion. The black dashed lines indicate the points
at ±18◦, near the beginning of the dipole heads. In general, the parameter n refers to
the field harmonic distributions and, in this graph, n = 1 coincides with the difference
evaluated for the dipole component and so on.

the multipole coefficients evaluated with the Fourier series expansion of the radial field
component and the field harmonics calculated with a suitable Taylor series expansion
of the flux density at the horizontal median plane confirms that the description of the
magnetic field in a strongly bent magnet based on cylindrical multipoles, already assessed
globally incorrect, leads to an unclear interpretation of the results.
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(a) (b)

(c) (d)

(e)

Figure 4.13: (a) Comparison between the dipole component evaluated with Fourier expan-
sion of Br,int and with Taylor expansion of the integrated field. (b) Comparison between
the quadrupole component evaluated with Fourier expansion of Br,int and with Taylor
expansion of the integrated field. (c) Comparison between the sextupole component eval-
uated with Fourier expansion of Br,int and with Taylor expansion of the integrated field.
(d) Comparison between the octupole component evaluated with Fourier expansion of
Br,int and with Taylor expansion of the integrated field. (e) Comparison between the de-
capole component evaluated with Fourier expansion of Br,int and with Taylor expansion
of the integrated field.
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Chapter 5

Tracking and Taylor Agreement

The work presented in this chapter is also reported in [27].
The description of the short and strongly bent dipole magnets in traditional beam optics
codes requires appropriate examination. Generally, the magnets in transfer lines are
described with a linear hard edge model, where the magnetic field is constant inside the
magnets and null outside. This approximation is an appropriate representation for long
accelerator magnets as long as the length of the magnet’s heads is negligible with respect
to the magnetic length and the non-linear components are neglected. Nevertheless, these
constraints are not valid for short magnets with a relatively large aperture such as the
ones involved in the gantry design. Indeed, the coil’s heads represent the 25% of the
total length of the magnet and the transition of the field cannot be approximated as
a hard edge model. Moreover, the strong curvature of the dipole introduces non-linear
components that have to be considered in the analysis.

An algorithm based on particle tracking inside the 3D magnetic field map of the
combined function dipole is employed to extract the set of linear and non-linear magnets
parameters [30]. First, with a least-square fitting algorithm, a linear transfer matrix can
be extracted using the initial and the final coordinates of the tracked particles. Second, an
optimization algorithm is used to match the calculated matrix with the main parameters
of a sequence of known linear optics elements (such as combined function dipole, drifts
and dipole edges). Then, these results are used as starting point to evaluate the magnet’s
non-linear components including thin lenses in the above-mentioned sequence. The high-
order field components of the thin lenses are used as a base to minimize the differences
in particles’ position and divergence between the tracking in the 3D magnetic field map
and the developed non-linear model. Finally, the described procedure is benchmarked
with the calculation of the multipole coefficients of the magnetic field through a suitable
Taylor series expansion in the case of magnets with a mid-plane symmetry [19], [21]. The
produced transport matrices can be used in accelerator codes, such as MAD-X, to feasibly
describe the beam transport. The MAD-X (Methodical Accelerator Design) project is
a simulation tool for charged particle optics design in accelerators and beamlines [34].
In this context, the program is used to simulate the transport of the beam through the
transport line.

The 3D magnetic field map, calculated with the Opera Simulation Software [26] and
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illustrated in Fig. 3.1a, is the input for the investigation process. The analysis of the field
map will be thoroughly described hereafter.

5.1 Field Components Evaluation with Particle Tracking

The particle beam is propagated in the magnet by using the Runge-Kutta-Fehlberg
method, an algorithm useful for the numerical solution of ordinary differential equa-
tions (ODE). As introduced in Sec. 3.5, the Lorentz force is integrated and divided by
the relativistic mass mγ of the particle and then, the velocities of the particles at different
instants are determined as reported in Eq. 3.11:∫︂ Ti

Ti−1

dv(t)
dt

dt =
∫︂ Ti

Ti−1

q

mγ
(v(t) × B dt, i = 1, ..., n

where q is the particle charge, m and v are respectively the mass and the velocity
of the particle, γ is the relativistic Lorentz factor. The relative and the absolute error
tolerances of the Runge-Kutta algorithm are imposed both equal to 10−9. The space
coordinates are consequently evaluated from the velocities.

To correctly reproduce the transport properties of the magnet, a local reference system
co-moving with the reference particle has to be determined. An illustration of the co-
moving system is reported in Fig. 5.1.

Figure 5.1: Representation of the co-moving system. The s-axis is tangent to the reference
trajectory [34].

The reference particle is the one that performs the nominal bending angle of 45◦ and
its orbit is selected as the reference trajectory. To calculate the local system co-moving
with the reference particle, the traslation and rotation transformations are applied to
the particle’s global coordinates for each point of the tracking. The traslation brings
the reference system on the reference particle and the rotation is applied to have the
longitudinal axis of the motion coincident with one of the reference particle velocity.
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5.1 – Field Components Evaluation with Particle Tracking

The particles’ coordinates in the co-moving system are interpolated in the longitudinal
direction to obtain the distribution of the particles in the motion transverse plane of
the reference particle [30]. The phase-space divergence is evaluated by considering the
coordinates difference of two successive points and then, dividing by the space travelled
along these ones.

Firstly, it is assumed that the transport through the magnetic field map can be rep-
resented using a lattice composed of linear magnetic elements. Considering that the
transverse dimension of the beam is small compared to the radius of curvature of the
particle trajectory, the y-component of the magnetic flux density By(x) can be expanded
in the proximity of the reference trajectory on the median plane as reported in Eq. 2.18.
The latter equation terms can be multiplied by q/p, where q is the particle charge and p
is the particle momentum, to obtain [20]:

q

p
By(x) = 1

ρ
+ kx + 1

2!mx2 + 1
3!ox3 + ... (5.1)

where the term k(x) = q
p

dBy

dx x is the normalized quadrupole gradient and ρ = p
qB0

is the trajectory curvature radius. The terms m and o are respectively the normalized
sextupole and octupole gradients. Generally, the design of a beamline is performed with
linear beam optics and hard edge model representation. The beam optics is defined as
linear where the forces are constant (dipole term) or increase linearly with the transverse
displacement (quadrupole term).

The motion equations are reported, after some manipulation, as [20]:⎧⎪⎪⎨⎪⎪⎩
x′′(s) + [ 1

ρ2 − k(s)]x(s) = 1
ρ

∆p
p

y′′(s) + k(s)y(s) = 0
(5.2)

where x
′′(s) = d2x

ds2 and y
′′(s) = d2y

ds2 are respectively the second derivative of x and
y with respect to s, and the term ∆p

p is the relative momentum deviation assumed to
be null. The motion equations’ solutions describe the particles’ oscillation around the
reference trajectory.

The propagation of the particles through magnetic elements can be described with a
series of transfer matrices of each element:

Xfinal = MT X0 (5.3)

where the transfer matrix MT =
∏︁

i Mi and i indicates the number of magnetic
elements in the transfer line, X represents the vector that contains the particle coordinates
in phase space x, px, y, py for each point. The coordinates of the particles in the co-moving
system are used to obtain the coefficients of the transfer matrix MT . Knowing Xfinal and
X0, MT can be estimated with the least square method. Specifically, the optimization
algorithm is used to evaluate the best configuration of the transfer matrix coefficients that
minimize ||Xtracking − MmodelX0||. The calculated transfer matrix is used to determine
the magnet parameters in terms of the usual transfer matrices employed in the accelerator
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optics codes. The linear model of the magnetic field map is performed as a symmetric
set of elements including combined function dipole, dipole edges including the fringe field
and drifts on each side of the dipole. These linear element matrices are evaluated by
solving the motion equations Eq. 5.2.

The total transfer matrix of the 3D magnetic field map can be represented as:

Mmodel = Mdrift,2 · Medge · M̃ · Medge · Mdrift,1 (5.4)

where M̃ is the transfer matrix of the combined function dipole. To obtain the
coefficients of the transfer matrix Mmodel which are the best-reproducing set of the matrix
MT calculated with the particle tracking, an optimizer is used. The principle of the non-
linear optimization code is based on varying some free parameters to minimize the sum
of squared differences of each matrix coefficient.

A more accurate representation of the magnetic field map is performed by considering
the non-linear field components. In this case, the matrix notation cannot be used, thus the
non-linear components are retrieved by employing another optimization function. Two
multipolar lenses are added to the linear optic system previously described and located at
the dipole edges. Moreover, a sextupole component is added inside the combined function
dipole. A schematic configuration of the magnetic system is illustrated in Fig. 5.2.

Figure 5.2: Illustration of the magnetic system implemented in MAD-X. The longitudinal
axis is represented with the black line, the multipolar lenses are reported with the black
rows and the combined function dipole is shown with the red rectangle.

To perform particle tracking through the beamline, the PTC module is used in MAD-
X. The Polymorphic Tracking Code (PTC) is a library for integrating the equations of
orbital spin motion for particles in modern accelerator and storage rings [35].

The results of the particle distributions obtained with the PTC code and the particle
tracking based on the Runge-Kutta algorithm are finally matched by changing the mul-
tipolar lens components and the sextupole component in the dipole at each step to find
the optimal configuration.

5.2 Analysis Results

As a reminder, the analysed 3D magnetic field map represents a 4 T combined function
dipole with a bending radius of 1.65 m and a bending angle of 45◦. The total length of
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the map and the magnetic length of the dipole are respectively equal to 1.78 m and 1.3
m. A detailed description of the field map characteristic is also reported in Sec. 2.3. To
evaluate the beam transport along the optic line that simulates the magnetic field map,
PTC is employed and, specifically, the linear and the non-linear optic system approxima-
tions are evaluated. The PTC tracking results are then compared with the ones directly
retrieved from the magnetic field map performing the tracking based on the Runge-Kutta
algorithm.

The beam used for the analysis is a Gaussian beam with βx = βy = 10 m, αx = αy =
0 rad and ϵrms,x = ϵrms,y = 5π mm mrad, that represents a possible realistic beam
distribution at the entrance of such a dipole. The energy of the particle that performs
the bending angle of 45◦ is equal to 428.5 MeV/u and all the particles of the initialized
beam are set to the same energy. The final particle distribution is compared to the one
evaluated with the Runge-Kutta tracking along the magnetic field map.

In the case of a non-linear approximation, the multipolar thin lenses and the sextupole
component inside the dipole are considered as shown in Fig. 5.2. The multipolar lenses
combined with the sextupole component along the thick dipole reproduce satisfactorily
the behaviour of the particle in the magnetic field map and the beam distributions are
represented in Fig. 5.3. The maximum differences between the coordinates obtained with
Runge-Kutta tracking performed on the field map and the PTC tracking performed in
MAD-X are reported in Tab. 5.1.

Maximum absolute difference Non-Linear system - Gaussian beam
∆x[mm] 7.41·10−2

∆x′[mrad] 4.88·10−2

∆y[mm] 6.49·10−2

∆y′[mrad] 5.23·10−2

Table 5.1: Maximum difference for the phase-space coordinates.

As a final analysis, the field components determined with the tracking based on the
Runge-Kutta algorithm are benchmarked against the multipoles obtained through the
Taylor expansion analysis of the magnetic field map along the reference particle trajec-
tory thoroughly described in Sec. 3.2 and Sec. 3.3. First, the average integral values of
the dipole and the quadrupole components are evaluated considering only the region of
the thick dipole approximately identified at ±22.5◦, whereas the sextupole component
along the dipole is not taken into account; second, the integrals up to the decapole com-
ponent are calculated considering the magnetic field map from the beginning (out of the
magnet) to the middle to obtain the field components of the multipolar thin lenses. In
this case, the calculation of the integral as reported in Eq. 3.2 is imposed by the fact
that the multipolar lenses have zero length. The non-linear optic system illustrated in
Fig. 5.2 is then adapted to the Taylor expansion analysis and, since the dipole fringe
fields may require further investigation in the Taylor analysis, they have been removed
from the system. Furthermore, the sextupole component along the thick dipole is not
considered since this component is evaluated only in the multipolar lenses. The Taylor
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Figure 5.3: Representation of space and divergence distributions at the end of the non-
linear magnetic system. The particle coordinates evaluated by using the PTC track are
represented in red, while in black are illustrated the coordinates retrieved with Runge-
Kutta tracking.

series expansion is evaluated along the reference trajectory approximated with an arc of a
circle with a bending radius ρ=1.65 m and two straight sections each one long ld= 0.24 m.
The length of the segment ∆L selected for the Taylor expansion analysis is equal to 21.6
mm in order to be coherent with the beam size analysed with the particle tracking and
to remain inside a region in which, as a first approximation, the magnetic field behaves
properly. The results obtained with the two analysis are reported in Tab. 5.2.

Magnet coefficient Taylor Analysis Runge-Kutta Tracking
K1 [T/m] 0.125 0.123

K2L [T/m2 m] -17.4 -17.7
K3L [T/m3 m] -66 -57
K4L [T/m4 m] -7.5·103 -93 ·103

Table 5.2: Values of the magnetic coefficients calculated with the Taylor expansion anal-
ysis and tracking based on Runge-Kutta algorithm. The coefficient K1 is the quadrupole
component inside the thick dipole. The parameters with L represent the integrated mul-
tipolar components from sextupole component K2L to decapole component K4L.

The maximum differences between the coordinates calculated with the two sets of
field components shown in Tab. 5.2 are reported in Tab. 5.3.

To properly evaluate the difference of the field components values retrieved respec-
tively with the tracking based on the Runge-Kutta algorithm and with the Taylor series
expansion approach, the results are converted into field units by employing the conver-
sion formula reported in Eq. 2.19 considering the radius of 21.6 mm. In the conversion
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Max difference Taylor Analysis Adapted Non-Linear system
∆x[mm] 3.01·10−1 2.93·10−1

∆x′[mrad] 1.21·10−1 1.09·10−1

∆y[mm] 3.27·10−1 2.69·10−1

∆y′[mrad] 1.06·10−1 1.01·10−1

Table 5.3: Maximum difference for the phase-space coordinates.

formula, BN is the dipole field component and it is used to normalize the retrieved co-
efficients respectively evaluated with the tracking based on the Runge-Kutta algorithm
and with the Taylor expansion analysis. The difference of the field components reported
in Tab. 5.2 is listed in terms of field units in Tab. 5.4.

Absolute Unit Difference Value
∆k1,d[unit] 0.35
∆k2,l[unit] 0.19
∆k3,l[unit] 0.03
∆k4,l[unit] 1.93

Table 5.4: Difference in terms of units among the field components evaluated using the
Taylor expansion analysis and the Runge-Kutta tracking. The dipole components differ-
ence is not considered in the table. The subscript d represents the coefficients in the thick
dipole and the subscript l indicates the components considered in the multipolar lenses.

The differences evaluated between the field components are below two field units.
Therefore, as a first approximation, the Taylor expansion method can be employed to
analyse the 3D magnetic field maps. The evaluated field components are comparable
with the magnet coefficients calculated by the particle tracking based on the Runge-
Kutta algorithm. In conclusion, the Taylor series expansion analysis allows an effective
non-linear description of the magnetic field map.
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Chapter 6

Field Quality in Straight Magnet

The magnetic field quality analysis is performed on a straight magnet in order to verify
the consistency between the Taylor series expansion and the Fourier series expansion.
The straight dipole is designed in Opera Simulation Software. The model of the dipole’s
coils is the straight version of the one described in Sec. 2.3. The design of the iron yoke
is then built after importing the coils inside the Opera Simulation Software and the yoke
material is the same employed in the modelling of the curved dipole. Thanks to the
symmetry of the magnet, the analysis can be performed just considering one-fourth of
the iron yoke. The magnetic field is imposed normal with respect to the ZX plane and
tangent to the XY plane.

The 3D magnetic field map for the straight dipole is evaluated and the data for
the magnetic field components Bx, By, Bz are determined. The model of the straight
magnet designed in Opera Simulation Software is shown in Fig. 6.1, where the 3D coils
are illustrated in red and the iron yoke is represented in green.

The behaviour of the magnetic field in the middle section of the magnet is illustrated
in Fig. 6.2 and it is expressed in tesla. The value of the magnetic field in the dipole
aperture is equal to 4 T and it decreases going outwards down to 0 T at a sufficient
distance from the dipole.

83



Field Quality in Straight Magnet

Figure 6.1: Illustration of the straight magnet modelled in Opera Simulation Software.

Figure 6.2: Representation of the magnetic field behaviour calculated in Opera Simulation
Software.
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6.1 – Taylor Expansion Analysis

6.1 Taylor Expansion Analysis

The particle trajectory in the case of a straight magnet is approximated with a straight
line. It is fundamental to point out that the straight line does not represent the real
orbit of an ideal carbon ion particle with a maximum kinetic energy of 430 MeV per
nucleon, however, it is an appropriate choice for the analysis purpose. The total length
of the field map is roughly 1.78 m and this is chosen so that the field components at the
end of the magnetic field map are roughly null. The length of the straight line is set in
order to remain inside the magnetic field map. The 3D magnetic field map evaluated in
Opera Simulation Software and the straight line constructed to perform the field quality
analysis are illustrated in Fig. 6.3.

Figure 6.3: Illustration of the magnetic field map calculated in Opera Simulation Software
where the colour bar on the right represents the values of the y-component of the magnetic
field By in tesla; the black straight line is the path selected for analysing the magnetic
field quality.

The field components are illustrated in Fig. 6.4 and the bending of the particles on
the XZ plane occurs thanks to the action of the y-component of the magnetic field. The
component By decreases after intercepting the heads of the dipole. The current and the
coils’ model are the same employed in the case of the bent dipole described in Sec. 2.3.

The y-component of the magnetic flux density By(x) and its derivatives with respect
to x are assessed on a set of segments perpendicular to the straight line. The set of
perpendicular segments is illustrated in Fig. 6.5.

Specifically, the magnetic flux density By(x) can be expanded in the median plane
about an axis at x0 = 0 as shown in Eq. 2.18. The length of each segment, equal to
21.6 mm, is imposed to remain inside a region in which, as a first approximation, the
magnetic field behaves properly. In the case of accelerator magnets, the extension of this
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Figure 6.4: Representation of the magnetic field components in tesla plotted with respect
to the longitudinal coordinate s.

Figure 6.5: Illustration of the straight line on which a set of perpendicular segments is
defined.

magnetic field region is conventionally defined as two-thirds of the aperture radius. The
interpolation of the y-component of the magnetic field By with respect to the local x-
coordinate identified on the segment itself is calculated using a polynomial curve fitting as
thoroughly described in Sec. 3.2. The query points x are identified on the perpendicular
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segments and the y data are the values of the magnetic field evaluated with the Opera
Simulation Software. To define the multipole coefficients of the field By on each segment,
the coefficients determined by interpolating are multiplied for the factorial of (n − 1)
where n is the degree of the polynomial term. To remain consistent with the field quality
analysis performed with the bent dipole, the polynomial degree n is set equal to six.

The field components are represented in Fig. 6.6 and plotted with respect to the
reference path s approximated with a straight line.

The main field component, shown in Fig. 6.6, takes on the value of 4 T in the body
of the straight dipole and decreases after having reached the coils’ head down to 0 T, i.e.
a field-free region. The quadrupole component presents evident peaks remaining anyway
above −0.03 T/m. Indeed, the quadrupole coefficient converted in field units is below one
unit and this result confirms the optimization of the magnet as a pure dipole in 2D cross-
section. The octupole component indicates strong oscillations, while the even-derivatives,
such as the sextupole and the decapole components, present a less visible oscillation.
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(a) (b)

(c) (d)

(e)

Figure 6.6: (a) The dipole component plotted along the longitudinal coordinate. (b)
The quadrupole component plotted along the longitudinal coordinate. (c) The sextupole
component plotted along the longitudinal coordinate. (d) The octupole component plot-
ted along the longitudinal coordinate. (e) The decapole component plotted along the
longitudinal coordinate. In all figures, the blue line represents the values of the average
integral calculated by normalizing the integral results for the chosen path.
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To evaluate the n-poles components for the complete straight magnet, the integral of
the multipole components is calculated using Eq. 3.2, where s, in this case, represents
the longitudinal coordinate. The integration results are illustrated in Tab. 6.1.

Integral of Taylor coefficients
Dipole Quadrupole Sextupole Octupole Decapole

[Tm] [T/m m] [T/m2 m] [T/m3 m] [T/m4 m]
-5.19 -0.004 36.19 6.19 2.32×105

Table 6.1: Results obtained by the integral of the multipole coefficients evaluated with
Eq. 3.2 considering the longitudinal coordinate s.

The average integral is calculated by normalizing the results of the integrated multi-
pole coefficients for the length of the straight line used for the analysis and the evaluated
values are shown in Tab. 6.2.

Average integral of Taylor coefficients
Dipole Quadrupole Sextupole Octupole Decapole

[T ] [T/m] [T/m2] [T/m3] [T/m4]
-2.91 -0.002 20.33 3.47 1.30×105

Table 6.2: Average integral of the multipole coefficients calculated by normalizing for the
length of the straight line.

The quadrupole gradient of the straight magnet model is significantly lower than
the one evaluated in the case of the strongly curved dipole where the bending of the
magnet coils introduces a gradient of 0.12 T/m in the horizontal plane. The quadrupole
component of the straight magnet is effectively equal to 0.002 T/m and this value confirms
the optimization of the magnet as a pure dipole in the 2D coil cross-section.

However, the coils’ head introduces high-order components that result in a non-
negligible value of the average integral especially for the sextupole and the decapole
components. In any case, the average integrals evaluated by normalizing the integral of
the multipole coefficients for the length of the straight line are consistent with the values
illustrated in Fig. 6.6 with the blue lines.

The conversion formula (see Eq. 2.19) is used to convert the results of the integrated
multipole coefficients in field units. The outcomes are reported in Tab. 6.3 and the value
of BN , i.e. the main field component, is the integrated dipole field equal to −5.19 T.

The sextupole component requires further optimization to respect the limit of 10 units
imposed for the analysis. However, the other high-order multipole coefficients fulfil the
requirements.
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Multipole coefficients in field units
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

10000 0.15 -16.26 -0.02 -4.04

Table 6.3: The values of the multipole coefficients converted in field units using the
conversion formula Eq. 2.19. The main field component BN used in the formula is the
value of the integrated dipole component.
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6.2 Fourier Expansion Analysis
The field quality analysis of the straight magnet is also performed by considering the
Fourier series expansion of the radial component of the magnetic flux density. The Fourier
expansion approach is detailed described in Sec. 2.1. As a reminder, the 3D magnetic field
map evaluated with the Opera Simulation Software is displayed in Fig. 6.3. The trajectory
selected for the field quality analysis is a straight line, a reasonable approximation for
the assessment purpose. For accelerator magnets, the domain of the problem is generally
chosen as a circle with a radius of two-thirds of the aperture radius [19]. The reference
radius r0 is set equal to 21.6 mm in order to remain inside a region where the field behaves
suitably and to guarantee the comparability with the multipole coefficients evaluated by
the Taylor series expansion of the magnetic flux density at the median plane. The field
harmonics An and Bn require the calculation of the radial field component of the magnetic
flux density. First, the definition of a set of circles perpendicular to the straight line is
performed. The radial field component Br of the magnetic flux density at a reference
radius r0 as a function of the angular position is evaluated on each circle and then, it
is expressed with the Fourier series expansion. The radial field component is assessed
on a set of circles built perpendicularly with respect to the straight line. These circles
are illustrated in Fig. 6.7 where the colour bar indicates the values of the radial field
component in tesla.

Figure 6.7: llustration of the set of circles transverse to the straight line. The colour bar
on the right indicates the values of the radial field component Br in tesla.

The behaviour of the radial field component on each circle confirms that the field
components at the end of the magnetic field map are roughly null. In computational
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practice, the component Br is evaluated at N discrete points in the interval [0,2π) and
the multipole coefficients An(r0) and Bn(r0) are determined by using Eq. 4.3 and Eq. 4.4
reported below.

An(r0) ≈ 2
N

N−1∑︂
k=0

Br(r0, φk) cos nφk

Bn(r0) ≈ 2
N

N−1∑︂
k=0

Br(r0, φk) sin nφk

The skew component An(r0) is supposed to be null due to the symmetry of the field
about the horizontal median plane. The distributions of the normal multipole components
Bn(r0) are represented in Fig. 6.8. The coefficient n = 1 represents the dipole field. The
other field components are illustrated by normalizing the multipoles for the reference
radius r0 raised to n − 1.

The trend of the dipole component is unchanged from the y-component of the mag-
netic field illustrated in Fig. 6.4 and the value of the dipole field is confirmed at 4 T in
the dipole’s body. The high-order multipole coefficients present less pronounced varia-
tions with respect to the field harmonics represented in Fig. 6.6. The quadrupole and
the decapole components respectively illustrated in Fig. 6.8b and Fig. 6.8e have an en-
tirely comparable trend with the same field components shown in Fig. 6.6b and Fig. 6.6e.
However, the sextupole and the octupole components shown in Fig. 6.8c and Fig. 6.8d
present some trend differences with respect to the components displayed in Fig. 6.6c and
Fig. 6.6d but the mean values of the respective Bn component normalized for the ref-
erence radius raised to n − 1 are perfectly consistent with the average integral of the
multipole components evaluated with the Taylor series expansion.
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(a) (b)

(c) (d)

(e)

Figure 6.8: (a) Representation of the dipole component B1 in T plotted with respect to
the straight line. (b) Representation of the quadrupole component B2 in T/m plotted
with respect to the straight line. (c) Representation of the sextupole component B3
in T/m2 plotted with respect to the straight line. (d) Representation of the octupole
component B4 in T/m3 plotted with respect to the straight line. (e) Representation of
the decapole component B5 in T/m4 plotted with respect to the straight line.
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The mean values of the normal multipole components determined with the Fourier
series expansion are then represented in Tab. 6.4 considering that each normal multipole
component is divided by the reference radius r0 raised to n − 1.

Mean value of the Bn coefficients
Dipole Quadrupole Sextupole Octupole Decapole

[T ] [T/m] [T/m2] [T/m3] [T/m4]
-2.91 -0.002 20.18 -3.56 1.32×105

Table 6.4: Results retrieved by calculating the mean value of the normal multipole coef-
ficients Bn divided by the reference radius r0 raised to n − 1.

The results presented in Tab. 6.2 and Tab. 6.4 are perfectly in accordance as a con-
firmation that the two discussed methods for determining the field harmonics are both
valid in case a straight magnet configuration is analysed.

The retrieved results are converted in field units (see Eq. 2.19) and reported in
Tab. 6.5. In this case, the value of BN is the mean value of the dipole component equal
to -2.91 T.

Multipole coefficients in field units
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

10000 0.15 -16.14 0.02 -4.11

Table 6.5: The values of the multipole coefficients converted in field units using Eq. 2.19.
The main field component BN used in the formula is the mean value of the dipole com-
ponent.

Moreover, the absolute unit difference of the multipole coefficients calculated with the
Taylor series expansion and the field harmonics evaluated with the Fourier expansion of
the radial field component is reported in Tab. 6.6. The difference results demonstrate
that both methods are suitable for a correct analysis of the field quality in the case of a
straight magnet.

Finally, the unit difference between the multipole coefficients respectively evaluated
with the Fourier and Taylor expansion methods (see Eq. 4.4) is graphically illustrated in
Fig. 6.9. In the body of the magnet, the results show a great agreement while the dif-
ferences of the field harmonics in the coils’ heads are affected by noticeable inaccuracies.
The reason can be related to the fact that the expansion of the field with a Fourier series
does not provide understandable results in the dipole heads where the field variation in
the axial direction is relevant. However, in the case of symmetric fields or for longitu-
dinal field component that has dropped to zero [19], the integral of the field harmonics
determined with the Fourier expansion are coherent with the results obtained with the
Taylor expansion as also shown in Tab. 6.6.
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6.2 – Fourier Expansion Analysis

Difference in absolute value
Dipole [-] Quadrupole [-] Sextupole [-] Octupole [-] Decapole [-]

0 0.0034 0.1239 0.0405 0.0706

Table 6.6: The absolute unit difference of the multipole coefficients retrieved by Taylor
and Fourier expansions. In particular, the difference is performed between the values
reported in Tab. 6.3 and Tab. 6.5.

Figure 6.9: Illustration of the unit difference between the multipole coefficients deter-
mined with the Fourier series expansion and the field harmonics evaluated with a suitable
Taylor series expansion. The parameter n refers to the field harmonic distributions and,
in this graph, n = 1 coincides with the difference evaluated for the dipole component and
so on.
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Chapter 7

Conclusions

The purpose of this thesis is to analyze the field quality of a short and strongly bent
superconducting (SC) dipole designed for a novel carbon ions gantry for hadrontherapy.
The initiative has been undertaken by the National Centre for Oncological Hadrontherapy
(CNAO) in the framework of the European project HITRIplus and a four-part collabo-
ration with CERN (CH), INFN (IT) and MedAustron (AT).

The first step is the calculation of the magnetic field map of the curved magnet. The
clinical requirement for carbon ions of a maximum kinetic energy of 430 MeV per nucleon
corresponds to a beam rigidity Bρ of 6.6 Tm and considering that the magnetic field
B is equal to 4 T, the radius of curvature ρ results equal to 1.65 m. The 3D magnetic
field map of the SC dipole involved in the field quality analysis was calculated with the
Opera Simulation Software. The 2D cross-section of the magnet is optimized to be a pure
dipole and then the curvature introduces a quadrupolar component. The total length of
the magnetic field map is roughly 1.78 m to ensure that the field components at the
end of the map are null. The sensitive issue lies in the bending transformation of the
straight dipole conductors that introduces non-negligible field components with a relevant
contribution of the coils’ heads.

Then, a theoretical discussion on the state-of-art of field quality analysis in acceler-
ator magnets was introduced and, specifically, two different methods were described to
determine the multipole coefficients or field harmonics.

The first discussed method provides for a comparison of the field harmonics with the
Taylor coefficients of a suitable series expansion of the magnetic flux density in the hor-
izontal median plane. The analysis was performed on the orbit of the ideal carbon ion
particle defined as the particle that follows the nominal geometry of the magnet and that
is deflected by the nominal bending angle of 45◦. The reference trajectory may be geomet-
rically approximated with an arc of a circle with a radius of curvature ρ and two straight
parts or can be computed with particle tracking based on the Runge-Kutta algorithm.
In order to analyse the field quality, the multipole coefficients were assessed by interpo-
lating the y-component of the magnetic field on a number of segments perpendicular to
the reference trajectory. To retrieve the values of the n-poles components for the whole
magnet, the average integral of the multipole coefficients or the field harmonics of the
integrated and normalized magnetic field By on the horizontal segment were computed.
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Conclusions

Both Taylor expansion approaches are consistent with each other. The results revealed
that the bending of the dipole coils introduces in the horizontal plane a quadrupole gra-
dient around 0.1 T/m in addition to the weak focusing effect which is compatible with
the beam optics of the gantry. However, the sextupole component roughly equal to 16
units requires further optimization to remain within the acceptable limit of around 10
units.

Moreover, the multipoles obtained through the Taylor analysis of the magnetic field
map along the reference particle trajectory were benchmarked against the field compo-
nents determined with particle tracking based on the Runge-Kutta algorithm showing an
agreement within a few units level. The representation of the beam distribution at the
end of the field map with the Taylor expansion analysis is possible considering a relative
error of the order of a few percent. Therefore, the Taylor series expansion allows the
suitable representation of short and strongly bent dipoles in beam optics.

The second analysis method foresees a comparison of the integration constants in the
general solution of the Laplace equation with the Fourier series expansion of the radial
field component along a circle. The radial component of the magnetic flux density was
assessed at a reference radius r0 = as a function of the angular position φ on a set of
circles transverse to the geometrically approximated trajectory. Thus, the normal and
skew multipole coefficients Bn(r0) and An(r0) can be determined with the integral of
Br(r0, φ) or with the Fourier expansion of the integrated and normalized radial field
component Br,int(r0, φ). However, concerning such dipole extremities, there is a non-
negligible magnetic field in the axial direction and the multipole coefficients do not satisfy
the 2D Laplace’s equation. Indeed, the high-order multipole coefficients show significant
differences with respect to the field harmonics determined with the Taylor expansion
method. In particular, it has been observed that the difference between the multipole
coefficients respectively determined with the Fourier and Taylor expansion methods was
below one unit in the body of the magnet while, in the coils’ heads, the same difference
increased by one or two orders of magnitude.

Furthermore, the scaling law of multipole coefficients to any radius r in the body of
the magnet aperture was verified in the case of strongly bent magnets. These scaling laws
were used to have feedback on the extension of a region where the field behaves properly.
For accelerator magnets, the extension of this field region is conventionally defined by
the magnet design community as two-thirds of the aperture radius and in this case, is
equal to 26.7 mm. In the body of the magnet, the agreement between the evaluation of
the field harmonics with the scaling law and with the integral of the radial component
is confirmed at a radius of 29.6 mm where the average unit difference of the high-order
coefficients is lower than one unit.

On the one hand, the description of the magnetic field based on the multipoles eval-
uated with the Fourier expansion lead to a questionable interpretation of the results
because the integral of the Fourier coefficients is not valid in the case of strongly curved
magnets. On the other hand, the field derivatives are suitable to characterize the field
and analyse the field quality requirements. The field derivatives are also directly used by
beam optics calculations thus facilitating the dialogue between magnet and accelerator
designers.
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Conclusions

Finally, the field quality analysis was performed on a straight magnet designed in
Opera Simulation Software to verify the consistency between Taylor and Fourier expan-
sion methods. In such a case, the average integral of the multipole coefficients determined
with the Taylor expansion and the field harmonics evaluated with the Fourier expansion
of Br(r0, φ) were in agreement as expected. Moreover, the results have shown that the
gradient of the straight magnet was significantly lower than the one of the curved dipole
where the coil bending introduces a gradient of 0.1 T/m in the horizontal plane. This
outcome confirms the optimization of the magnet as a pure dipole in the 2D coil cross-
section. However, the coils’ head introduces high-order components.

In conclusion, the Fourier series expansion of the field components may not be ap-
propriate for the description of the field quality in the case of short and strongly bent
magnets. Nevertheless, a suitable characterization of the field, assuming a mid-plane
symmetry, is possible by evaluating the field harmonics with the Taylor series expansion.
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Appendix A

Convergence Analysis of the
Polynomial Curve Fitting

The interpolation of the y-component of the magnetic field and the interpolation of the
integrated and normalized magnetic field By are performed by fitting the data points with
a polynomial curve. The MatLab function employed for the interpolation is polyfit and
it is useful to find the coefficients of a polynomial that fits a set of data in a least-squares
sense using the syntax p = polyfit(x, y, n), where x and y are vectors containing the
coordinates of the data points and n is the degree of the polynomial fit. To define the
polynomial degree suitable for the field quality analysis, different degrees of the polyno-
mial are selected to be tested in the code. Specifically, the simulations are performed
considering an initial degree n equal to two up to nine. The length of the polynomial is
n + 1 and it implies the presence of the constant term. For instance, n = 2 involves the
possibility to get up to the sextupole component, thus truncating the expansion of the
magnetic field in the vicinity of the reference trajectory as reported in Eq. A.1:

By(x) = B0 + dBy

dx

⃓⃓⃓⃓
⃓
x=y=0

x + 1
2!

d2By

dx2

⃓⃓⃓⃓
⃓
x=y=0

x2 (A.1)

The high-order multipole coefficients after the decapole component are negligible. As
an example, the values of the integrated dodecapole component, converted in field units
and evaluated considering the polynomial degree up to nine, are illustrated in Fig. A.1.

It is noticeable that the results retrieved for the dodecapole component are signif-
icantly lower than one unit and therefore negligible for the field quality analysis con-
straints.

The quadrupole and the sextupole components remain practically stable already im-
posing a low polynomial degree. The octupole and the decapole multipole coefficients
fluctuate more than the other relevant components and these oscillation trends are re-
ported in Fig. A.2.

Nevertheless, the polynomial degree n selected to perform the field quality analysis
is set equal to six, a reasonable degree to observe a fair stabilization of the field unit
results.
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Convergence Analysis of the Polynomial Curve Fitting

Figure A.1: Representation of the integral values of the dodecapole component consid-
ering the different degrees of the polynomial. In the x-axis are reported the field unit
values and in the y-axis are shown the polynomial degrees selected for the convergence
analysis.

(a) (b)

Figure A.2: (a) Representation of the integral values of the octupole component, con-
verted in field units, considering different degrees of the polynomial. (b) Representation
of the integral values of the decapole component, converted in field units, considering dif-
ferent degrees of the polynomial. In both graphs, the x-axis reports the field unit values
and the y-axis shows the polynomial degrees selected for the convergence analysis.
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