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Abstract

The ongoing coronavirus disease, also known as COVID-19, has created a global
health crisis with also deep social and economic impact. Individual testing has
been shown as an effective non-pharmaceutical intervention strategy to mitigate
the impact of the pandemic, either on the absence of an effective vaccine or co-
existing with one, as vaccines standalone are insufficient to prevent widespread
transmission, disease, and morbidity. In a context where COVID tests are scarce,
pricey and highly demanded it is key to design strategies to optimize the allocation
of them while promoting equality among people.

In this thesis we will propose different strategies to either statically or dynami-
cally allocate COVID tests among people to contain the spread of the virus while
minimizing the number of tests. We conduct a literature review to learn from ex-
perience and design a mathematical model that mimics the diffusion behaviour of
the COVID-19, the so-called SEPIA model. We propose and implement different
strategies to find the most relevant people to test, also know as the Critical Node
Detection Problem. Finally, a Reinforcement Learning algorithm, a branch of Ma-
chine Learning, is trained by interacting with the environment to be able to decide
the number of tests to perform at each time step as well as how to allocate them
depending on the number of reported COVID-19 cases seeking to minimize both
the number of tests and the number of deaths related to COVID-19.

Being able to model and simulate the diffusion of the COVID-19 pandemic plays
a key role when designing non-pharmaceutical intervention strategies, such as
testing, to contain the spread of the virus. Contact tracing resulted as the most
effective mitigation strategy, but a fair allocation of tests can contain the spread of
the virus quickly, hence we distribute the allocation of tests by proposing a novel
buffer management techniques. Deciding how to act in response to the reported
COVID cases optimizes the test allocation which is key in a test shortage context.

Keywords— COVID-19, COVID test, Graph network, Critical Node Detection, Centrality,
Contact tracing, SEPIA, Reinforcement Learning, Exploration, Exploitation, Diffusion model,
Python, OpenAI gym
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Part I - Introduction and Objectives

1 Introduction

In December 2019, an outbreak of a disease caused by a novel coronavirus is reg-
istered in the Chinese municipality of Wuhan. The World Health Organisation of-
ficially recognises the novel coronavirus as SARS-CoV-2 and the disease is named
COVID-19 Council (2022). Current evidence suggests that the virus spreads mainly
between people who are in close contact with each other, for example at a conver-
sational distance (Organization (2022)). Most people who fall sick with COVID-19
will experience mild to moderate symptoms and recover without special treatment.
However, some will become seriously ill and require medical attention. As of 6th of
July 2022 more than 5.5 million COVID-19 cases and more than 6.3 million deaths
related had been reported Ritchie et al. (2020).

It has been a period characterized by uncertainty. Since the outbreak of the pan-
demic there has been a race to find the most effective way to contain the spread
of the virus. In the absence of a vaccine, the first non-pharmaceutical intervention
was social distancing. More than 90 countries declared a total lockdown (Sand-
ford (2021)). However, the total lockdown had a deep economic impact and, more
importantly, an inestimable social impact (Yeyati and Filippini (2021)). Massive
testing followed by social distancing was key to mitigating the impact of the pan-
demic, either in the absence of an effective vaccine or coexisting with one, as
vaccines alone are insufficient to prevent widespread transmission, disease, and
morbidity Haines (2022).

In this thesis we will propose different strategies to either statically or dynami-
cally allocate COVID tests among people to contain the spread of the virus while
minimizing the number of COVID tests, optimizing it by applying a Reinforcement
Learning method.

The pandemic spreading process can be studied as a diffusion network. The net-
work can be denoted as G = (V, E) where each node V represents a person and
each edge E represents the relationship between two persons, as it is shown in
Figure 1. The diffusion model can be mathematically represented and is charac-
terized by the possible states of each of the nodes and the equations that gov-
ern the transmission dynamics, defining transmission, recovery and fatality rates
among others. In this thesis we start by implementing and testing a simple SIR
model (Susceptible, Infected and Removed states) to finally extend it and propose
the so-called SEPIA model (Susceptible, Exposed, Pre-symptomatic, Infected and
Asymptomatic, as well as Quarentized and Death states).
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Part I - Introduction and Objectives

Figure 1: Erdos Renyi graph network

In Part III, we propose ten different strategies of Critical Node Detection to
identify the N most important nodes on which to perform a COVID test to check
whether this node is infected or not. The objective of performing tests is to mitigate
the diffusion of the virus while minimizing the cost function, defined as a weighted
sum of the number of ill people and the unitary cost of a COVID test. We propose
ten different strategies for Critical Node Detection, listed below:

• Random allocation of COVID tests

• Degree centrality

• Eccentricity centrality

• Betweenness centrality

• PageRank centrality

• Degree discount centrality

• VoteRank centrality

• Community based method

• Contact tracing based on most infected neighbors

• Contact tracing plus centrality method

Once that we have proven the effectiveness of each of the above listed strate-
gies, we propose a novel Reinforcement Learning method to be able to decide the
optimum number of tests to allocate at each simulation step. The goal of the RL

3



Part I - Introduction and Objectives

agent is to minimize a goal function which basically is the number of death nodes.
The agent is trained by interacting with the environment and learning which ac-
tion to take depending on the observed state. The environment is defined as the
above described diffusion model and the state is the number of ill tested nodes at
each step.

The thesis is structured as follows. Part 2 presents an overview of related lit-
erature and works, including the main scientific areas studied in this document:
Graph theory and Critical node detection and how it can be applied to the COVID-
19 diffusion, and an introduction to Reinforcement Learning technique and how it
can be applied to the problem presented in this thesis. Part 3 presents a simple
model based on a graph network that represent the diffusion of COVID-19 and pro-
poses ten different strategies for critical node detection and test allocation. Part 4
proposes an extended version of the diffusion model presented in Section 3, taking
advantage of the experience gained since the outbreak of the pandemic. Finally,
Part 5, proposes and studies different Reinforcement Learning algorithms to op-
timize the test allocation within the graph network, by learning from interactions
with the environment proposed in Section 4.

2 Objectives and Methodology

The main objectives of this thesis can be stated as:

• Design a mathematical model that mimics the diffusion behaviour of COVID-
19 pandemic in a reduced population

• Develop ten strategies for Critical Node Detection in a graph network to test
them in order to mitigate the spread of the COVID-19 pandemic within the
network

• Develop and train a Reinforcement Learning framework to mitigate the spread
of the COVID-19 pandemic while minimizing the number of COVID tests per-
formed

We followed an incremental approach both from a conceptual perspective and from
an implementation perspective, starting with an easiest conceptual and practical
model and extending it and adding more software resources.

• Step 1 was to conduct a review of similar literature on the main fields of this
thesis: Graph theory, Critical Node detection and Reinforcement Learning
techniques applied to the diffusion of a virus

• Step 2 was to design and implement a basic diffusion model that mimics
the diffusion behaviour of COVID-19, considering three statuses Susceptible-
Infected-Exposed

4



Part I - Introduction and Objectives

• Step 3 was to design, implement, simulate and analyze ten different strate-
gies of Critical Node Detection to find the K-top relevant nodes to test in
order to mitigate the diffusion of the pandemic

• Step 4 was to design and implement a complex diffusion model that accu-
rately represents the diffusion behaviour of the COVID-19. Considering the
following states: Susceptible, Exposed, Presymptomatic, Infected, Asymp-
tomatic, Quarantined and Dead. Diffusion parameters were set based on
experience.

• Step 5 was to design, implement, simulate and analyze a Reinforcement
Learning framework to mitigate the spread of the COVID-19 pandemic while
minimizing the number of COVID tests performed

5
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Part II - State of the art

1 Graph Theory and Critical Node Detection ap-
plied to COVID-19 diffusion

Graph theory, which is a branch of mathematics, is concerned with networks of
points connected by lines. Graph theory originated in recreational math problems,
but it has grown into a significant area of mathematical research, with applications
in several sciences, such as Computer Science, Linguistics, Physics and Chemistry,
Biology, Social Sciences, Mathematics and many other topics.

We focus in the Biology field, where this thesis lies, and more precisely in “disease
spreading”. This term is used to imply the diffusion of contagious diseases caused
by biological pathogens, like influenza, measles, chickenpox as well as sexually
transmitted diseases. The spread of a disease among people has tight similarities
to other examples as the spread of computer viruses (Szor (2004)) or the diffu-
sion of knowledge, innovations, products in an online social network (Burt (1987)).
Indeed, in this thesis on Section 3 in Part III, Strategies for test allocation, we
consider an algorithm that was designed by Google for ranking web pages.

1.1 Graph Theory applied to COVID-19

On this section we conduct a review of the literature on eight papers that propose
a graph model to describe the dynamic behaviour of the COVID-19 pandemic. The
objective of this literature review are to highlight singularities proposed on these
papers and to adapt as per convenience to our model.

The pandemic spread can be described as a diffusion network, this problem is
broadly defined as the transmission of an influence from one individual to another.
Models of contagion typically fall into one category that we delineate in terms of
the relationship between successive exposures of a “susceptible” to an “infectious”
individual: (i) independent interaction models, in which successive contacts result
in contagion with independent probability p; and (ii) threshold models, in which the
probability of infection changes rapidly from low to high as a critical number of si-
multaneous exposures is exceeded. The SI model of disease spread, the canonical
model of biological contagion, is an example of an independent interaction model,
it was introduced by Kermack and McKendrick (1927). There are some variants
such as the former susceptible-infected (SI), susceptible-infected-recovered (SIR),
susceptible-infected-susceptible (SIS), susceptible-infected-recovered-susceptible
(SIRS), susceptible-exposure-infective-recovered (SEIR), and susceptible-infective-
quarantine-recovered-susceptible (SIQRS), which are proposed to analyse and study
the general characteristics of epidemic.

Among the main concerns in the scientific community are: predicting the evo-
lution of the COVID-19 pandemic worldwide or in specific countries (Buonomo
and Marca (2020), Giordano et al. (2020), Domenico et al. (2020), Flaxman et al.
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(2020) ); predicting epidemic peaks and ICU accesses Supino et al. (2020); assess-
ing the effects of containment measures (Buonomo and Marca (2020), Giordano
et al. (2020), Domenico et al. (2020), Flaxman et al. (2020) and Gatto et al. (2020)]
and, more generally, assessing the impact on populations in terms of economics,
societal needs, employment, healthcare, death toll etc.

Paper number one

Buonomo and Marca (2020) proposed on "Effects of information-induced behavioural
changes during the COVID-19 lock-downs: the case of Italy" a transmission model
which is an information-dependent SEIR-like model. It is based on the key assump-
tion that the choice to respect the lockdown restrictions is partially determined on
a fully voluntary basis. The possible states are susceptible S, exposed E, post-latent
Ip, asymptomatic/mildly symptomatic Im, severely symptomatic (hospitalized) Is,
quarantined Q and recovered R, as shown in Figure 2

It is interesting how the dynamics of the model are also ruled by the available

Figure 2: Transmission model proposed by Buonomo and Marca (2020)

information and rumours about the disease status in the community. Buonomo and
Marca (2020) used the Reproduction numbers for measuring the potential spread
of an infectious disease and assess how the available information affects the Re-
production number.

Paper number two

Giordano et al. (2020) proposes on "Modelling the COVID-19 epidemic and im-
plementation of population-wide interventions in Italy" some non-pharmaceutical
intervention strategies, such as social distancing, testing and contact tracing, to
end the global SARS-CoV-2 pandemic.

They proposed a novel transmission model, the so-called SIDARTHE, which is an
extension of the SIR model, consider eights stages of infection: susceptible (S),
infected (I), diagnosed (D), ailing (A), recognized (R), threatened (T), healed (H)
and extinct (E) as shown in Figure 3.

8
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Figure 3: Transmission model proposed by Giordano et al. (2020)

In this paper some possible scenarios of implementation of measures are depicted
demonstrating that social-distancing policies must be combined with massive test-
ing (as suggested in Peto (2020)) and contact tracing. The reinfection possibility is
neglected. A detailed evolution of the reproduction number, Rt, over time in Italy is
presented. Authors suggests that the case fatality rate is unaffected by the extent
of social restriction and testing.

Paper number three

Domenico et al. (2020) on "Impact of lockdown on COVID-19 epidemic in Île-de-
France and possible exit strategies" proposes an age-structured method to assess,
evaluate the impact of the lockdown and possible exit strategies. The Transmission
model considers the following possible states: susceptible, exposed, infectious,
hospitalized, in ICU, recovered, and deceased, where the infectious phase can be
divided into incubation and symptomatic/asymptomatic.

Non-pharmaceutical interventions are analyzed in different scenarios. Results
show that lifting lockdown with no exit strategy in place would lead to large re-
bound effects). Contact tracing is one essential component allowing the partial re-
lease of social distancing constraints. This paper considers that symptomatic peo-
ple have a higher transmission rate, representing those asymptomatic individuals
a 20% of the infected population. While the majority of the literature estimates the
Reproduction number from reported cases, here it is estimated backwards from
the number of hospital admissions. Authors deduce the reduction in mobility from
mobile phone data to track lockdown periods. They did not consider the seasonal
behaviour in coronavirus transmission due to lack of evidence.

9
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Figure 4: Transmission model proposed by Domenico et al. (2020)

Paper number four

Flaxman et al. (2020) conducted on "Estimating the effects of non-pharmaceutical
interventions on COVID-19 in Europe" a study of non pharmaceutical interventions
in 11 European countries in order to reduce Rt(reproduction number), a funda-
mental epidemiological quantity that represents the average number of infections
generated at time t by each infected case over the course of their infection. Rt is
only dependant on changes in the intervention policies.
R0(basic reproduction number) is defined as the expected number of secondary
infectious cases generated by an average infectious case in an entirely susceptible
population. In absence of control measures Rt = R0 ∗ xt, where xt represents the
fraction of the population infected. Some interesting points on this document are:

• Authors infer the the population infected and Rt backwards from observed
deaths as they seem to be far more reliable than case data(infected people
not detected by the health system, testing policies...).

• Performed sensitivity analysis for under-reporting data.

• Individual measures, such as isolation, lead to an 82% reduction on Rt com-
pared to the pre-intervention values. Therefore, a reduction in the number of
deaths predicted with respect to the deaths predicted under the model with
no intervention.

Paper number five

"The effects of containment measures in the Italian outbreak of COVID-19" (Supino
et al. (2020)) shows that it is possible to predict when the intensive care units will
saturate, within a few days from the beginning of the exponential growth of COVID-
19 intensive care patients. Also lockdown intervention is assessed.The authors
predict the ICU saturation date by performing a linear regression of the logarithm
of the number of ICU patients.

• The later the measures are taken the stronger these measures need to be to
contain the diffusion

10
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• The number of ICU patients represents a more robust information compared
to the number of infected people (under-testing)

Paper number six

Tang et al. (2020) proposes on "Estimation of the Transmission Risk of the 2019-
nCoV and Its Implication for Public Health Interventions" a deterministic varia-
tion of the classic SEIR model, including the following states: susceptible (S),
exposed (E), infectious but not yet symptomatic (pre-symptomatic) (A), infectious
with symptoms (I), hospitalized (H) and recovered (R) compartments, and further
stratified the population to include quarantined susceptible (Sq), isolated exposed
(Eq) and isolated infected (Iq). As shown in Figure 5

Figure 5: Transmission model proposed by Tang et al. (2020)

The authors use in the document the exponential growth law to deduce the
number of reported cases per day in mainland China. Results on this paper show
that non-pharmaceutical interventions, such as intensive contact tracing followed
by quarantine and isolation, can effectively reduce the control reproduction num-
ber and transmission risk.

Paper number seven

Gatto et al. (2020), "Spread and dynamics of the COVID-19 epidemic in Italy: Ef-
fects of emergency containment measures" proposes an extended version of the
meta-community SEIR model, considering the following cases: susceptible (S),
exposed (E), presymptom (P), symptomatic infectious (I), and asymptomatic infec-
tious (A). Presymptom transmission is demonstrated since the serial interval (time
interval between the onset of symptoms in the primary (infector) and secondary
case (infectee) tends to be shorter than the incubation period, thus it plays an im-
portant role in speeding up the spread of the disease within a community

11
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The model proposed in the doc includes the implementation of progressive restric-
tions after the first case confirmed in Italy in different scenarios assessing their
impact. Important consideration from this document are:

• Results suggest that the sequence of restrictions posed to mobility and human-
to-human interactions have reduced transmission by 45% and 0.22× 106 averted
hospitalization cases (results obtained thanks to a well-defined spatially ex-
plicit model)

• In order to reduce the uncertainty the data retrieved from reported data on
hospitalizations, fatality rates, and recovered individuals, without consider-
ing the statistics on reported infections.

• This doc uses detailed information about human mobility among the nodes
(i.e. fluxes and connections), and updates on containment measures and their
effects by relying also on mobile phone tracking (anonymized calls)

• The estimated high presymptomatic transmission parameter with respect to
the transmission rates of symptomatic and asymptomatic infectious repro-
duces field epidemiological evidence -> this fact suggests the need for a
massive swab testing to identify and isolate presymptomatic infectious cases.

• Underestimation of contagions: 600,000 (estimated) vs 74,386 according to
official accounts

Paper number eight

"Substantial undocumented infection facilitates the rapid dissemination of novel
coronavirus (SARS-CoV-2)" (Li et al. (2020)), proposes a mathematical model that
simulates the spatiotemporal dynamics of infections among 375 Chinese cities.
Infections are divided in two classes: documented infections (reported) and un-
documented infected individuals. Model state variables: Susceptible, Exposed,
documented Infected and undocumented Infected. Model parameters: the av-
erage latency period (Z), the average duration of infection (D), the transmission
reduction factor for undocumented infections (µ), the transmission rate for doc-
umented infections(β), the fraction of documented infections(α), and the travel
multiplicative factor(θ). Important recalls are:

• Reported infection within China + mobility data + Bayesian inference to es-
timate the number of undocumented data and its contagiousness.

• Authors estimates that 86% of all infections were undocumented. Trans-
mission of undocumented infections were 55% the rate of the documented
infections.

12
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1.2 Critical Node Detection applied to COVID-19

Identifying a set of influential nodes is an important topic in virus containment. Re-
garding this, researchers have proposed different methods to classify nodes. Some
studies believe that the degree, i.e. the number of connected nodes, can measure
the importance of a node. Pastor-Satorras and Vespignani (2001) demonstrate that
the probability of a node to be infected depends on the number of connections of
this node. The LocalRank algorithm Zhong et al. (2014) extends the previous one
and considers the information of the 4th steps nodes. Chen et al. (2013) combines
the previous one with cluster coefficient of a node.

Contrary, Kitsak et al. (2010) stand that peripherical nodes have neglectable spread-
ing impact regardless the degree of the node. Centrality plays an important role
in node identification. Seidman (1983) underlined on 1983 the concept of network
cohesion and k-core, arguing that the position of the node within the network is
more important that the degree. Lü et al. (2016) propose h-index considering
2nd order neighbours as the node importance. The h-index of a node is defined
as the max value such that there are at least h neighbours with value equal or
greater than h. Eccentricity centrality (Hage and Harary (1995)), closeness cen-
trality (Sabidussi (1966)) and betweenness centrality (Freeman (1977)) are short-
est path-based methods. The latter one is used to identify the bridges between two
communities.

Other researchers consider not only the number of neighbours but the mutual
enhancement effect Wittenbaum et al. (1999). Eigenvector centrality Bonacich
(1972) calculates the influence of a node proportionally to the sum of the centrali-
ties of the nodes which is connected to. Some variants of the eigenvector centrality
are PageRank (Chen et al. (2007)) or LeaderRank (Li et al. (2014)). Some methods
relays on the entropy centrality (Qiao et al. (2017)) to measure the influence of a
node, which implies that the removal of certain nodes is most likely to cause struc-
tural variation.

Some novel methods based on node dynamics has been recently proposed. In a
susceptible–infected–recovered (SIR) process, any information about the infection
state could be of great value to health checking the neighbours of the infected
nodes. Hu et al. (2018) show that any node’s influence can be quantified purely
from its local network environment, based on the nature of the spreading dynam-
ics.

All the above-mentioned approaches introduced techniques to find individual vi-
tal nodes. If we use these methods to find a set of vital nodes, we can rank them
according to one centrality and pick the top-N nodes. However, some nodes from
this set are overlapped. To find a set of vital nodes subject to some functional
objectives is usually called influence maximization problem (IMP). IMP problems
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can be structural or functional. Kempe et al. (2005) proposed a general framework
for IMP under operational dynamical processes and studied two simple yet widely
applied spreading models: the linear threshold model and the independent cas-
cade model (Kempe et al. (2003)). The SIR model is very close to the independent
cascade model with some assumptions.

As the IMP problem are NP-hard, an approximate solution is searched instead
of the exact solution. Heuristic algorithms are the most common among all ap-
proximate algorithms, e.g. rank all nodes according to specific centrality measure
and directly pick up the N top-ranking nodes. A slight improvement is the adap-
tive recalculation, that is, to choose the node of the largest centrality at first, and
then recalculate the centralities of nodes after every step of node removal (Chen
et al. (2009)). Another kind of algorithms to solve IMP problems is the greedy al-
gorithms, they add nodes to the target set, ensuring that each addition brings the
largest increase of influence to the previous set.

14
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2 Reinforcement learning applied to COVID-19 dif-
fusion

On this section we conduct a review of available studies on the field of COVID-19
diffusion that use Machine Learning techniques but more in detail Reinforcement
Learning (RL) techniques.

Machine Learning has been broadly used for COVID-19 pandemic for forecast-
ing and predicting the evolution of the pandemic, to facilitate COVID-19 diagnosis
for healthcare professionals or even for drug discovery and vaccine development.
It is very interesting how ML can assist in detecting COVID cases , for example
through X-Ray techniques (Chen et al. (2021)), screening patients using a Chat
Bot (Bharti et al. (2020)) and assisting healthcare professionals. We now focus on
ML techniques on predicting and tracking the COVID diffusion.

Many computational models are developed for modeling COVID-19’s transmission
dynamics. Kumar et al. (2021) investigates the modified LSTM approach to fore-
casting the likely COVID-19 cases and deaths. It also describes deep reinforcement
learning for optimizing the prediction results based on symptoms using real data.
Ohi et al. (2020) investigate optimal strategies to reduce the spread of disease
using reinforcement learning. A SEIR-like model is used in this paper. Author
proposes various lockdown strategies such as age-based lockdown or n-work-m-
lockdown ((n days without lockdown followed by m days of lockdown). Beigi et al.
(2021) on a Susceptible-Exposed-Infectious-Recovered type model implement rein-
forcement learning optimal control and proposes four different vaccination strate-
gies.
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1 Introduction, objectives and methodology

1.1 Introduction and Objectives

As seen in Section 1.1 in Part II, Graph Theory has been broadly used to model
and analyse the spread of a disease. We define G = (V,E) as a a network where
each node V represents a person and each edge E represents the relation between
two people. The model is characterized by the stages of infection and the dynamic
equations, in this Part III we first define a simple SIR model to represent COVID-
19 considering the following stages of infections: Susceptible (S) if a node has
not been infected, Infected (I) and Removed (R) when a node that is infected tests
positive and is isolated so cannot infect other nodes, which is a slight modification
of the traditional SIR model, widely used in the literature, where the R stands for
Recovered. However, we will consider a sufficiently small number of simulation
steps (analogue to days) to assume that a node, once infected, will not have time
to recover and become infected again.

Throughout this document, we define a simulation as a bunch of subsequent steps
or iterations that analogues to days. A simulation imitates the behaviour of the
COVID-19 pandemic within a network. We can set the inputs of the simulation,
such as the network topology, the initial percentage of the network infected, the
number of tests the strategy for selecting which nodes to test. As an output we get
the evolution of the dynamics of the simulation, that is, the number of nodes for
each status at each time step. The dynamics can be visualized as Diffusion trends
such as in Figure 6. The simulation ends after a predefined number of steps or
iterations, typically 100 steps, or when there is no more nodes infected.

The dynamic equations of the SIR model are mainly characterized by the trans-

Figure 6: Diffusion trends of a simulation
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mission rate (β), that is, the probability that an Infected node infects a Susceptible
neighbour node, defining neighbours as two nodes connected by an edge which
is a concept that will be widely used in this Part, and the removal rate (λ), that
we will later introduce in this document. This Part aim is to propose strategies to

Figure 7: SIR transmission model

effectively contain the spread of the COVID-19 disease within the network. Per-
forming individual testing to detect infected nodes and isolating them to the rest
of the network, has been proved as an effective measure in virus containment in
the absence of an effective vaccine (Section 1 in Part II). The strategies proposed
are then based on finding which are the most important nodes within a network
to test. If a node is tested positive, then is quarantined and will lose his ability of
contagion, what turns to less infected nodes in the long run.

It is obvious to think that the more tests performed at each step, the faster the
spread of the pandemic will be contained. However, since the outbreak of the
pandemic the World has experienced periods of resource shortages, especially in
the early stages or in the spike of COVID-19 cases, the so-called "waves" (Haines
(2022)), so we consider tests as a limited resource. The problem instanced in this
Part then becomes in finding the minimum number of tests that leads to the con-
tainment of the virus spread in the long run. To fine tune the trade-off between
the number of tests performed and the number of nodes infected we introduce
the concept of the cost function. The cost function, Eq. 1, is defined as the sum
of the number of infected nodes, weighted by the penalty of a node becoming in-
fected, the number of test performed, weighted by the cost of an individual test
and a novel factor proposed in this thesis that penalises when there are a high
percentage of the population infected at the same time.

min

⎛⎝ inf∑︂
t=0

⎛⎝ck + r

(︄
N∑︂
i=1

Vi(t)

)︄
+ w

(︄
N∑︂
i=1

Xi(t))

N

)︄3

N

⎞⎠⎞⎠ , (1)

where N is the number of nodes in the network, c, r and w are the cost of a test
and the penalties respectively. Vi(t) is the distribution of nodes infected at time,
that is Vi(t = tn) = 1 if node i became infected at time tn and Xi(t) the infection
state vector at time t. And k is the number of COVID tests done at each time step.

18



Part III - Strategies for test allocation

We propose in this report ten different strategies to decide, at each simulation
step, which are the most important nodes to test in order to minimize the cost
function, what converts the problem into an optimization problem. The strategies
proposed include random test allocation, seven distinct centralities and contact
tracing of already detected infected nodes. A centrality quantifies the importance
of a node in a network and can be measured by various metrics, such as degree
centrality, eccentricity centrality, and betweenness centrality.

1.2 Methodology

The following steps were followed to address the objective of this Part, which is to
effectively define and compare strategies for test allocation:

• Step 1. Defining the nodes of the graph and the probability of edge creation,
which is the probability of two nodes being connected. Defining the possible
states of each node and the dynamic equations, defining the variables of the
network: transmission rates, initial fraction infected.

• Step 2. Implementing Step 1 in Python. Converting the graph network into
a Diffusion model by means of a simulation. Each simulation consist of a
fixed number of subsequent simulation steps. At the end of the simulation we
obtain the trends for each of the states.

• Step 3. Defining the cost function, which is the aggregated value of the cost
function calculated at each time step. Defining the rate between the cost of a
unitary test and the penalty of a node becoming infected and adjusting them
after several experiments.

• Step4. Defining ten different strategies and implementing them to the Diffu-
sion model stated above.

• Step 5. Testing each of the ten strategies to find which is the one that re-
trieves a minimum result of the cost function.
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2 Discussion of the instance generation

2.1 Problem statement

We consider our problem as a functional Influence Maximization Problem (func-
tional IMP). As we have previous mentioned in Section 1 in Part II, typical IMP
problems are NP-hard. Thus, we will try to find an approximate solution by a
heuristic algorithm. This algorithm consists on select at each time step a set of
top-k most spread influencer nodes under the SIR model. Let’s now introduce
some definitions of the mathematical problem.

Let A be the N ×N adjacency matrix of an undirected network of N nodes (Aij = 1

if there is an edge between nodes i and j, and 0 otherwise), and X(t) the infection
state vector at time t (Xi(t) = 1 if node i is infected at time t, and 0 otherwise).
The dynamics of the system are defined as:

Xi(t) =

{︄
0→ 1 at rate β

∑︁
j AijXj(t)

1→ 0 at rate δ
(2)

where β and δ are the infection rate and recovery rate, respectively. In this specific
problem we assume that the recovery rate is large compared to the overall time of
the simulation, thus δ is equal to zero. Whenever a node goes from state 0 to 1, a
penalty r is paid. Let M(t), be the vector of length N representing the distribution
of tests performed in the network (Mi(t) = 1 if node i is being checked at time t,
and 0 otherwise). We apply the following constrain:∑︂

i

Mi(t) ≤ b(t) = b, (3)

where b(t) is the maximum number of tests that can be done at each time step.
We assume it to be fixed at each time interval b. At each time t a test is per-
formed in every node in M(t), at a cost time c and characterized by the following
probabilities:

ρip = P (ill | positive)

ρnp = P (not ill | positive)

ρin = P (ill | negative)

ρnn = P (not ill | negative)

(4)

Once that a node is tested and found positive, it is removed from the network
otherwise no measure is taken. Thus, the dynamic removal rate of the network
will be:

Xi(t) = 0, 1→ removed,at rate ρip
∑︂
i

Xi(t)Mi(t)− ρnp
∑︂
i

(Xi(t))Mi(t) (5)
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We also define k(t) =
∑︁

i Mi(t) , the total number of nodes checked at each time
step t. As the objective of this section is to compare the effectiveness of differ-
ent strategies for Critical Node Detection, we consider the number of COVID tests
fixed at each step within a simulation, K.

The set of K nodes to test at each step, that is, the distribution of the M(t) vector,
are the top K-ranked nodes according to the strategies proposed. If we think of
the network as nodes connected to each other, the most intuitive strategy will be
to test the nodes that have more neighbors, that is, that are connected to more
nodes. These strategies are called "Strategies for Critical Node Detection", and
will be detailed in section 3.

The value of K, i.e. the number of nodes checked at t, will be optimized to minimize
the total cost function, defined as:

min

⎛⎝ inf∑︂
t=0

⎛⎝ N∑︂
i=1

(cMi(t) + rVi(t)) + w

(︄
N∑︂
i=1

Xi(t))

N

)︄3

N

⎞⎠⎞⎠ (6)

N∑︂
i

Mi(t) = k, (7)

min

⎛⎝ inf∑︂
t=0

⎛⎝ck + r

(︄
N∑︂
i=1

Vi(t)

)︄
+ w

(︄
N∑︂
i=1

Xi(t))

N

)︄3

N

⎞⎠⎞⎠ (8)

Where Vi(t) represents the distribution of the node that had been infected at time t
and N the total number of nodes in the network. The parameters r, w and c are the
penalty of a node becoming infected, the penalty of simultaneous nodes becoming
infected and the cost of a test, respectively.

We also add a third term to the cost function:
(︂∑︁N

i=1
Xi(t)
N

)︂
, that represent the

instantaneous number of infected nodes divided by the total number of nodes, that
is, the fraction of people that is infected at time t. Thus, the cost function increases
if there is a high percentage of the network infected. This term is very important
because deals with a very sensitive topic in the COVID-19 pandemic which is that
if the number of infected people who need health care at the same time is greater
than the hospital capacity, the hospitals collapse and people are left unattended.
Therefore, in this document we consider that for the same number of infected peo-
ple is better that these people are more spread in time than concentrated in a
shorter time interval. This term has a polynomial growth with almost negligible in-
fluence when the fraction of infected people is up to 20 % (hospitals can only deal
with low percentage of people infected). This function is multiplied by a penalty
for nodes being infected at the same time, w.

We fix the infection penalty r = 1 and we choose c and w accordingly.
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Figure 8: f(x) = x3, function that models the penalty paid for fraction of people
infected at same time

In order to find the number of tests K that minimizes the total cost function
presented in Eq. 8, several simulations will be run in parallel over a given network
topology while varying the number of tests, kj , done at each step. Let us define
then:

f(xj) = f(x|k = kj) (9)

as the value of the cost function when doing kj at each steps in a simulation. Then,
for each simulation j we will obtain a tuple (f(xj), kj). That can be represented as
Figure 9. Then the goal is to find the value of kj) that minimizes (f(xj).

Also note that the number of simulation steps is not always the same as the simu-
lation can be finished when there is no more infected nodes, then the cost function
is the sum of the values of the cost function at each simulation step divided by the
number of time step.
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Figure 9: Cost function value vs number of tests

2.2 Environment set up

For the simulation of the experiment, we use the Erdos Renyi model for randomly
generate the graph G = (V,E) from the NetworkX library of Python, with the
number of nodes in the network equal to 10000, and the probability of edge cre-
ation equal to 0.0005 which results an average degree per node equal to 5. Refer
to Part IV to see the rationale on why we designed the network with this param-
eters. As we have said to model the diffusion spread of the disease, we use a
Susceptible-Infected-Removed model which is a slight variation of the standard
SIR model where the R stands for Recovered. To develop the model we use as a
reference the NDLIB Python software package that allows to describe, simulate,
and study diffusion processes on complex networks(Rossetti (2022)). To see the
code explained, refer to Appendix A

We represent each of the three possible status with 0-1-2 respectively. The dy-
namic of the diffusion process works as follows: At each iteration (each simulation
day) we check all not-removed nodes (status 1 or 0). If the node is Susceptible
(status 0) a pseudo random number between 0 and 1 is calculated and multiplied
by the number of infected neighbours, this means that the higher the number of
infected neighbours the higher the probability to become infected. If this number
is smaller or equal to the infection rate β this node becomes infected. The same
idea to detect infected nodes in the network: if a node (either infected or suscep-
tible) belongs to the target set of nodes to be checked at a time t, its health status
is checked and a pseudo random number between 0 and 1 is calculated, if it is
infected and the number is lower or equal to the true positive rate ρip the node is
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removed from the network. On the other hand, if it is susceptible and the number
is lower or equal to the false positive rate ρnp the node is removed from the net-
work although it is not infected. The pseudo-code of the behaviour of the diffusion
process is described in Algorithm 1.

Algorithm 1 Diffusion model behaviour

β ← β ▷ Infection rate
PT ← pip ▷ True positive rate
PF ← pnp ▷ False positive rate
K ← [K] ▷ Set of nodes to test selected according some strategy
while t ≤ 100 do

for every node u in the Network if u is not "Removed" do
ϵ is a random number
if status(u) is "Susceptible" then

V are the infected neighbors of u
if ϵ < PF then

status(u) ← "Removed"
else

exposure_rate = 1 − (1 − β len(V ))

if ϵ < exposure_rate then
status(u) ← "Infected"

end if
end if

else if status(u) is "Infected" then
if u in K and ϵ < PT then

status(u) ← "Removed"
end if

end if
end for
t← t+ 1

end while

We fix the probability of a node become infected, β, equal to 0.03 and as we said
before the rate of becoming infected depends on the number of directed infected
nodes. At the initial step we consider that a 5% of the network is infected. The
false positive rate is equal to 0.02 and the true positive rate equal to 0.95. In the
following table we can see a summary of all the model parameters. The parame-
ters of the cost function r, c, ri had been defined according to several simulations.
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Parameter Description Value
N Number of nodes 10000
D Probability of edge creation 0.0005
⟨d⟩ Average node degree 5
T Number of iterations (days) 100
β Infection rate 0.03
α Initial infected fraction 0.05
pip True positive rate 0.95
pnp False positive rate 0.02
r Penalty 1
c Unitary test cost 0.2
ri Penalty paid for simultaneous infected

nodes
0.3

Table 1: Summary of SIR model parameters.

3 Implementation and results

We will consider ten different strategies to select those most influencer nodes
based on the literature reviewed in Section 1 in Part II and we will propose some
novel strategies.

The most straightforward method is to rank all the nodes according to some cen-
trality and directly pick at each time step the top k -valued nodes as the most influ-
ential ones and thus check those nodes. As it has no sense to continuously check
the health status of the same k nodes, once a node has been tested negative, we
place it at the end of the buffer and it won’t be tested again since an epoch has
been completed. At the next iteration we will check the top k -valued nodes ex-
cluding those belonging to the buffer. An epoch has been completed when every
either susceptible or infected node in the network had been tested, then the buffer
is emptied. The existence of a node buffer is a concept that has not been studied
in this type of problems (or at least no literature on the subject has been found)
but provides great advantages in pandemic containment and whose management
will be a topic of interest in future works.

Once the strategy had been decided, designed and developed we run the same
experiment in the same Erdos Renyi network eleven times with different number
of tests performed each day (different number of nodes checked at each time step).
Those number of tests range between 200 and 600 tests per day. For each of those
eleven simulations we calculate the cost function explained in 2 in this Part and
find the number of tests that minimizes the cost function. One simulation consists
in the random generation of the graph at the initial time step, the diffusion of the
pandemic among the nodes for 100 iterations (days) and the target set testing at
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Figure 10: Diffusion trend of the coronavirus pandemic

each iteration. The average cost of each simulation is calculated as follows; the
cost function calculated in each iteration is added up and divided by the total num-
ber of iterations.

In the following sections we will study some strategies including some centrality-
based methods and some tracing-based methods. For each strategy we will follow
the same procedure; a short introduction of the method used will be depicted along
with an image of the cost function and the diffusion trend of the simulation with
the optimum number of tests per day as the one depicted in Figure 10. The graph-
ics are visualized with the Bokeh library for Python.

Figure 10 depicts an example of a diffusion trend of a simulation with a 1% of
the population tested each day, that is, 100 nodes at each iteration. The diffusion
trend represents the evolution of the pandemic over time, in this document we will
only consider the first 100 days of the simulation. In the figure we can see three
trends: The first one, the dark blue one, depicts the evolution of the Susceptible
nodes that we can see that at the initial step is all the network except the initial
infected fraction, it decreases as nodes become infected or removed. The light
blue one depicts the evolution of the percentage of the node infected at each time
that in this example the percentage of infected people reaches almost the 60%.
And finally, the red one represents the evolution of the removed nodes.

Furthermore, for the most relevant strategies we will change some of the param-
eters and probabilities such as the average node degree, the infection probability
or the true positive rate and we will discuss the performance of those strategies.
For other strategies we will not carry out the latter experiments as there are heavy
time consumption strategies such as the eccentricity that has a complexity equal
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to O(n2) where n is equal to 10000 in this document. Thus, a single simulation (of
the eleven carried out for each strategy) can last up to 3 hours.

In Section 4: Discussions of the results we will compare the different strategies
and draw some conclusions.

3.1 Random selection

The first strategy followed is the simplest one and is the basis to demonstrate that
the strategies based on some centrality make sense. Each time step of the simula-
tion represents a day, we select at each time step a set of random nodes without
applying any centrality, excluding those nodes that had been removed from the
network (status 2) and those belonging to the buffer, once a set of nodes had been
tested negative we placed them at the end of the buffer as we explained in the
previous section. Figure 11a represent the average cost function for the different
simulations, we can observe that the number of tests that minimizes the cost func-
tion is equal to 325 tests per day which result a cost of 107.5. We can see that for
lower number of tests the function cost increases as the number of infected nodes
increases and for higher number of tests the cost function also increases as the
number of tests increases and thus the overall cost of the tests. Thus, the optimum
number must be a trade-off between these two parameters.

Figure 11b depicts the diffusion trend of the simulation with the optimum num-
ber of tests per day inferred from the previous image, 325 tests. In the diffusion
trend we can see that the fraction of people infected does not exceed the 20 % of
the total network. It starts decreasing after forty days and after eighty days the
disease is mitigated. If we compare this figure with the one in the previous section,
Figure 10, we can perfectly observe the enhancement in pandemic contention by
performing more tests per day.
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(a) Cost function vs number of tests for ran-
dom nodes selection

(b) Diffusion trend of random node selection

Figure 11: Random allocation of tests - The optimum number of tests to minimize
the cost function is 325

3.2 Degree centrality

Now we assume that the most influential nodes are those who has a higher degree,
that is, a higher number of neighbours. We rank all the nodes according to their
degree, at each iteration we pick the top-k valued nodes, where k is the number of
tests. As the previous strategy, we run the same experiment for eleven simulations
for different values of k. We have calculated the average cost function for each of
them and they are depicted in Figure 12a. We can see that the minimum cost is
achieved with 350 tests per day at a cost equal to 101.7.

In Figure 12a we can see the diffusion trend of this strategy. If we compare it
to the diffusion trend of the random node selection strategy, we can see by study-
ing the curvature of both trends that in this case the maximum is sharper, and the
infected people start decreasing drastically. We also can observe that the first max-
imum occurs at iteration number 28 which precisely coincides after the end of the
first epoch ⌊#nodes

#tests ⌋ = ⌊
10000
350 ⌋ = 28, this means that when the top k-valued nodes

are checked again the number of infected people start decreasing drastically and
when we test the lowest degree-valued nodes the trend flattens. Hence, we can
prove the efficiency of testing the nodes with the highest degree.
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(a) Cost function vs number of tests for de-
gree centrality
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(b) Diffusion trend of degree centrality
(c=118) compared to Random test alloca-
tion (c=140)

Figure 12: Degree centrality - The optimum number of tests to minimize the cost
function is 350. We can see the improvement when testing according to the degree
centrality compared to random allocation

3.3 Eccentricity centrality

The degree centrality method is based only on the neighbourhood of a node, while
from the point of view of disease spreading, the node who has the potential to
spread the virus faster is more vital, which should be largely affected by the paths
of propagation. Eccentricity centrality thinks that the shorter the distance a node
from all other nodes, the faster the virus disseminated. To calculate the eccentric-
ity of a node we have to compute the shortest path length of a node to all the nodes
existing in the network but the eccentricity centrality only considers the maximum
distance among all the shortest paths to the other nodes. The center of a network
is the set of all nodes of minimum eccentricity, that is, the set of all those nodes v
such that the greatest distance distG(v, u) to other nodes u is minimal.

Before computing the eccentricity of each node, we must subdivide the graph in
connected subgraphs, otherwise the eccentricity value (maximum shortest path
length of each node) will be infinite. Once the eccentricity is computed, we order
them according to their eccentricity in descending order, since as we said before
the centrality of a node is inversely proportional to its eccentricity. We test the
top-k valued nodes and we store them at the end of the buffer sequentially.

Figure 13a depicts the cost function depending on the number of tests done per
day. We can observe that the minimum of the function or the optimum number of
tests done per day is 400 at a cost of 107.6.

We can observe the diffusion trend for the optimum number of tests of this strategy
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in Figure 13b. If we focus in the trend of the infected people (light blue curve) we
cannot appreciate the phenomenon previously described for the degree centrality,
that is, the sharped maxima and the drastically decrease of the infected people af-
ter each maximum. This added to the fact that the cost function has similar values
to the cost function of the random strategy makes us think that this centrality is
not efficient. To demonstrate it, we focus in the values of the eccentricity of each
node, the eccentricity only takes values among 5, 6 and 7, that is, each node can
go to any other node in as much 7 steps and as minimum 5 steps. Moreover, ev-
ery node has very similar eccentricity value. This also means that the erdos rainy
network implemented with the defined parameters is similar to a small-world net-
work, where most nodes are not neighbours of one another, but the neighbours of
any given node are likely to be neighbours of each other and most nodes can be
reached from every other node by a small number of hops or steps.

As every node has very similar values, rank them according the eccentricity cen-
trality will lead to very similar results as the random selection strategy. Therefore,
this strategy is not so efficient in this kind of networks with these parameters.

(a) Cost function vs number of tests for ec-
centricity centrality
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(b) Diffusion trend of eccentricity centrality
compared to random test allocation

Figure 13: Eccentricity centrality - The optimum number of tests to minimize the
cost function is 400. We can see the improvement when testing according to the
eccentricity centrality compared to random allocation
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3.4 Betweenness centrality

As the method above explained, betwenness centrality considers that the powerful
of a node to spread a virus is largely related with the paths of virus propagation.
Betweenness centrality measures the extent to which a node lies on paths between
other nodes. Nodes with high betweenness may have considerable influence within
a network by virtue of their ability over virus spreading between others. They are
also the ones whose removal from the network will most disrupt communications
between other nodes because they lie on the largest number of paths taken by
virus spreading. Betweenness centrality is also useful to identify the bridges be-
tween two communities, which is a major issue because a single bridge node could
infect a large number of nodes simply by passing the virus from an infected com-
munity to a “healthy” one.

We follow the same procedure that in previous methods, that is, ranking the nodes
according to their betweenness centrality value, test the top-k valued nodes, re-
moving the infected ones and storing the susceptible ones into a buffer since an
epoch has been completed. We simulate this strategy eleven times for different
values of number of tests per iteration and calculate the cost function trend, we
can see it in Figure 14a. The optimum number of tests is 350 tests per iteration
with a related cost of 104.6.

Figure 14b depicts the diffusion trend of the betweenness centrality strategy. If we
look at the infected people trend we can observe the same phenomenon explained
in the degree centrality; when an epoch had been completed, after 28 iterations
all the not-removed nodes had been checked, occurs a sharp maximum, then the
number of infected nodes starts decreasing drastically when the most influential
nodes are tested and flattens when the least influential nodes are checked. This
phenomenon proves that the strategy of testing those nodes that connects through
the shortest path more pair of nodes is an efficient algorithm to content the spread
of the coronavirus.
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(a) Cost function vs number of tests for be-
tweenness centrality
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(b) Diffusion trend of betweenness central-
ity compared to random test allocation

Figure 14: Betweenness centrality - The optimum number of tests to minimize
the cost function is 350. We can see the improvement when testing according to
betweenness centrality compared to random allocation

3.5 PageRank centrality

This centrality is a variant of the eigenvector centrality. The eigenvector centrality
believes, as the betweenness and eccentricity centralities, that the influence of a
node is not determined by the number of its neighbours, but also by the influence
of each neighbour, known as the mutual enhancement effect. The centrality of a
node is proportional to the summation of the centralities of the nodes to which it is
connected. The PageRank centrality was initial used by Google to rank websites in
Google search engine. This centrality introduces a node random jumping factor to
solve the dangling node problem. There are three distinct factors that determine
the PageRank of a node: (i) the number of links it receives, (ii) the link propensity
of the linkers, and (iii) the centrality of the linkers.

In the graph of Figure 15a we can see the cost function over the number of tests
performed, we can observe that the minimum occurs for 375 tests per day at a cost
equal to 104.0.

The diffusion trend of this strategy is shown in Figure 15b. We can observe that
the disease does not exceed almost the 10% of the population and it is mitigated
before 80 days. We also can observe the same phenomenon of the decrease of the
infected people whenever the nodes with the higher pagerank value are tested,
which proves the efficiency of the pagerank centrality strategy.
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(a) Cost function vs number of tests for
PageRank centrality
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(b) Diffusion trend of PageRank centrality
compared to Random test allocation

Figure 15: PageRank centrality - The optimum number of tests to minimize the cost
function is 375. We can see the improvement when testing according to PageRank
centrality compared to random allocation

3.6 Degree discount centrality

The methods proposed above could be inefficient since the nodes of the highest
centrality values may be highly clustered. These methods could be improved by
removing from the network the top valued node according to some centrality and
then recalculate the centrality for the rest of nodes until reach a set of k nodes.
For example, if we consider that the node with the highest degree is the most in-
fluential in the network, once we have found the node with the highest degree we
remove it from the network and we recalculate the centrality for the rest of the
nodes until there is no more nodes remaining.

Based on the previous concept, Chen et al. (2009) proposed a so-called Degree Dis-
count algorithm which is the strategy that we are going to propose in this section.
This algorithm runs amazingly faster than greedy algorithms. Greedy algorithms
are another important solution to IMP problems and have a similar procedure to
the algorithm proposed in this section, they start with an empty set S and at each
iteration the node that maximizes the objective function is added to the output
set S. The basic idea of the algorithm is that when considering node u as a candi-
date (being u a neighbour of a node v belonging to the output set S of influential
nodes), we should not count edge uv by taking network effect into consideration.
We can see above a pseudo-code to compute the degree discount algorithm in a
graph G = (V,E), where tv is the number of neighbours that v has in the output
set S and dv is the degree of node v. We also consider the probability that v is not
influenced by its immediate neighbours adding the infection rate β to the formula.
A wider demonstration of the formula can be found at Chen et al. (2009).
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Once we have developed the code of the algorithm, we will follow the same

Algorithm 2 Degree discount algorithm

initialize S = ∅
for each vertex v in Network do

Compute its degree and assign to dv
ddv ← dv
tv ← 0

end for
for i=1 to N do

u = argmaxv{ddv|v ∈ V\S}
S = S ∪{u}
for each neighbor v of u and v ∈ V\S do

tv ← tv + 1

ddv ← dv − 2tv − (dv − tv)tvβ

end for
end for
Output S

procedure to study the efficiency of the performance of the proposed degree dis-
count strategy and to find the optimum number of tests. In Figure 16a we can see
a graph of the evolution of the cost function though the different simulations with
distinct number of tests and it is achieved the minimum at 350 tests per day with
a value equal to 102.6.

In order to see how the number of infected people evolves over the time we can
see in the light blue trend of Figure 16b the diffusion trend of the degree discount
algorithm when 350 tests are performed in each iteration. we can observe the pre-
vious analyzed phenomena and a very similar behaviour to the degree centrality. It
will be interesting to analyze the performance of the strategy for different values
of the infection rate β since is the only strategy dependent on the probability of
infection.
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(a) Cost function vs number of tests for de-
gree discount centrality
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(b) Diffusion trend of degree discount cen-
trality compared to Random node selection

Figure 16: Degree discount centrality - The optimum number of tests to minimize
the cost function is 350. We can see the improvement when testing according to
the degree discount centrality compared to random allocation

3.7 Voterank centrality

In this method each node v of the network is characterized by a tuple (Sv, Vv)

where (Vv) is the voting ability of node v and (Sv, Vv) its score defined as the sum
of voting ability of his neighbours Sv =

∑︁K
1 Vi, i = 1, 2, ...,K the neighbours of

v. At the initial step, every node’s voting ability is set to 1 and Si equals the degree
of vi. We are going to explain the algorithm with the following a pseudo-code,
where ⟨d⟩ is the mean degree of the network.

Algorithm 3 VoteRank algorithm

for each node v in Network do
select u = argmaxv{Sv|v ∈ V\S and S = S ∪{u}
Vu ← 0

for each neighbor v of u and v∈ V\S do
Vv ← Vv − 1

d

if Vv < 0 then
Vv ← 0

end if
end for

end for
Output S

After implementing the algorithm in our python code, we simulate it for eleven
different number of tests, compute the average cost function for each one and rep-
resent the function. We can see the function over the number of tests performed
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plotted in Figure 17a. The function reaches a minimum when 375 tests are per-
formed each day with a value of the cost function equal to 105.7.

We can observe the diffusion trend for the optimum number of tests of this strategy
in Figure 17b. We also observe that from the iterations when the most influential
nodes are tested ⌊#nodes

#tests ⌋ = ⌊
10000
375 ⌋ = 26 onwards the number of infected nodes

starts decreasing.

(a) Cost function vs number of tests for
Voterank centrality
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(b) Diffusion trend of Voterank centrality
compared to Random node selection

Figure 17: VoteRank centrality - The optimum number of tests to minimize the cost
function is 375. We can see the improvement when testing according to VoteRank
centrality compared to random allocation
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3.8 Community based method

Many real networks present structures based on communities. A community is
a dense subnet while connections between communities are sparse. Therefore,
a node is more likely to spread the virus among his community than to a differ-
ent community. For this reason, is more reasonable to choose the most influential
nodes from different communities rather than many nodes from one community
where they could be overlapped.

Thus, we propose the so-called community-based method which works as follows:
First, the network is divided into many communities using a community detection
algorithm, that we will further explain. Then all communities are ranked in de-
creasing order according to their sizes.

The first spreader is selected from the largest community according to a certain
centrality index (in this case degree centrality). Similarly, the node with the largest
centrality index in the second largest community is selected as the second spreader
and sequentially since all the communities are visited. If the number of chosen
spreaders is not enough, we restart the above process and choose the remaining
spreaders following the same rules until k spreaders are found. Thus, the influen-
tial spreaders selected are more likely to be distributed in the network.

The algorithm used to divide the network in communities is the Clauset-Newman-
Moore greedy modularity maximization. Greedy modularity maximization begins
with each node in its own community and joins the pair of communities that most
increases modularity until no such pair exists. We can see in Figure 18a the cost
function over number of tests performed with a minimum at 375 test/day at a cost
equal to 103.3. We can also see at Figure 18b the diffusion trend of this method
with a reasonable good performance in the virus spreading mitigation.
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(a) Cost function vs number of tests for
community-based strategy
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(b) Diffusion trend of community-based
strategy compared to Random node selec-
tion

Figure 18: Community based method - The optimum number of tests to minimize
the cost function is 375. We can see the improvement when testing according to
the community based method compared to random allocation

All the strategies that we have proposed so far are static in the sense of simu-
lation iterations since the algorithm is performed at the initial iteration, nodes are
ranked according to certain centrality and stored in a buffer. Onwards the first
iteration the only thing we do is manage the buffer to meet a trade-off between im-
portance of people within the network and fairness of testing every people at least
once per epoch. However, it will be very useful to have some information about the
status of the nodes before selecting which nodes we test at each iteration. Thus,
we are going to propose some dynamic strategic based on this idea.

One step further in identifying a target set of nodes to test to mitigate a pan-
demic diffusion is contact tracing, where the potential risk-nodes are the primary
focus. We define the risk-nodes as those that have been in contact with a reg-
istered positive node. This technique is the standard tool for eliminating minor
outbreaks in the latter stages of disease eradication, especially when the disease
may be asymptomatic (which is one of the main problems in the disease COVID-19).

In order to know which nodes are the potential risk-nodes we should store which
nodes had tested positive so far and consider testing the nodes who have been in
direct contact to those positive-tested nodes. We are going to present two strate-
gies and we will study their performance.

3.9 Contact tracing: Most infected neighbours

The first tracing strategy will consist in testing at each iteration the nodes that
have the most infected neighbours. We must remark that when we refer to tracing
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infected nodes, we only refer to those nodes that had been tested positive, that is
nodes with Removed status or status equal to 2 (does not matter if they are true
positives or false positives) because the vast majority of infected nodes will have
not been detected yet and will remain at Infected status, that is status equal to 1.
The algorithm will work as follows: At the initial iteration, since we have no in-
formation of which nodes are infected, we rank it according some static centrality
and select the top-k valued ones. Onwards, at each iteration, it will be dynamically
recalculated the number of infected neighbours that each node has, the nodes will
be ranked according it and the top-k valued nodes will be selected.

We run this algorithm eleven times for distinct number of tests performed at each
iteration and a cost function that has been previously explained will be compute.
We can see below in Figure 19a the cost function over time, with an optimal value
at 350 tests/day at a cost equal to 92.1

Figure 19b depicts the diffusion trend of this contact tracing strategy over the
time. If we focus in the evolution of infected people (light blue trend) we see that
in the first iterations the growth of infected people is the highest one of the whole
simulation since we have not yet enough information of the health status of the
nodes to decide which ones are the critical nodes. However the number of in-
fected people does not increase much further from the initial infected fraction. We
also observe that after each epoch, that is, when the most influential nodes are
tested again the number of infected people starts decreasing considerably.

(a) Cost function vs number of tests for con-
tact tracing (MIN)
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(b) Diffusion trend of contact tracing (MIN)
compared to Random node selection

Figure 19: Contact tracing method - The optimum number of tests to minimize the
cost function is 350. We can see the improvement when testing the neighbors of
infected people compared to random allocation
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3.10 Contact tracing combined with a centrality

In the context of contact tracing methodology, we are going to propose a new
strategy. We have previously defined the risk-nodes as those nodes that are di-
rectly connected to an already detected infected node. We remind that when we
talk about infected nodes in contact tracing, we only consider the already detected
infected nodes, so whenever a new positive has been detected in the network, we
add its neighbours to the “risk nodes” database, avoiding duplicated nodes in the
database.

Before each iteration we will dynamically rank all the nodes belonging to those
“risk nodes” according to one centrality of those presented in this document, in
this section we will consider the degree centrality due to the low complexity and
reasonable good performance. When the risk nodes are ranked, we will check the
health status of the top-k valued risk nodes. If a node tests positive, we will remove
the node from the network and add its neighbours to the risk-nodes database. Con-
trary, if tested negative we will add it to the end of the buffer in order to meet the
mentioned fairness trade off.

We perform this algorithm for 100 iterations in each simulation each of them with
different values of nodes tested. In Figure 20a we can observe the cost function,
the optimum value is reached when 350 tests are performed at each iteration at a
cost equal to 94.5.

Figure 20b depicts the diffusion trend of the ranking the risk nodes strategy. As
we have mentioned in the previous strategy, in the first iterations the number of
people infected increases as there is not enough information about which nodes
are infected. After the initial days, the number of infected people starts decreas-
ing smoothly but never increases again.
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(a) Cost function vs number of tests for con-
tact tracing (Risk nodes)
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(b) Diffusion trend of contact tracing (Risk
nodes) compared to Random node selection

Figure 20: Contact tracing plus centrality method - The optimum number of tests
to minimize the cost function is 350. We can see the improvement when rank-
ing according a centrality the neighbors of detected COVID+ people compared to
random allocation

4 Result discussion

So far, we have presented ten different strategies some of them where static based
on ranking nodes according different centralities and we have finally proposed two
dynamic strategies based on contact tracing. We are going to present a summary
of the optimum number of tests for each centrality and the related cost in Table
2 and some graphics comparing the cost functions between centralities Figure 24
and between contact tracing strategies Figure 25.

Strategy Optimum # tests Related cost
Random 325 107.5
Degree 350 101.7

Eccentricity 400 107.6
Betweenness 350 104.6

PageRank 375 104.0
Degree discount 350 102.6

VoteRank 375 105.7
Community-based 375 103.3
Contact tracing 1 350 92.1
Contact tracing 2 350 94.5

Table 2: Summary of optimum number of tests and related cost
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Figure 21: Static (centrality) strategies comparison

Figure 22: Contact tracing comparison vs centrality strategy
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1 Introduction

We have studied in Part III: Strategies for test allocation, a simple COVID-19 dif-
fusion model considering three possible states of the nodes: Susceptible, Infected
and Removed. In this simple model we treated all the infected nodes equally re-
gardless the severity of the symptoms, we did not considered the possibility of
being recovered and re-infected and not even the deaths due to the disease. Nev-
ertheless, it was sufficient for the purpose of the previous Part of defining strate-
gies to detect the most important nodes to test at each simulation step.This Part
aims to extend the previously described model resembling it to the reality.

The beginning of the COVID-19 pandemic was full of uncertainty as an inadequate
understanding and a sense of incomplete, ambiguous or unreliable information.
However, since the outbreak of the pandemic we have gained experienced and
been able to draw some conclusions on the spreading behaviour of the COVID-
19 virus. People are more contagious 2-3 days before having symptoms (Preidt
(2021)); the first hours from the time a person is exposed, early stages of incu-
bation, people are unlikely to spread the virus; People showing no symptoms are
unlikely to die; Duration of viral shedding in asymptomatic people is lower than
in people showing symptoms (8 compared to 19 according to Yang et al. (2020));
asymptomatic infections are known to have the same transmission rate as symp-
tomatic infections (Chen et al. (2020)).

We first conducted an extensive review of the literature (Part II) to study already
proposed models of COVID-19 diffusion so we can better adapt the model as close
as possible to reality. We will propose in this Part our model of COVID-19 diffusion.
Many mathematical models have been developed to try to describe the diffusion
of the COVID-19 epidemic in individual countries or at global scale. Actually, no
clear consensus has been reached on the different compartments that should be
included in a proper model. Our model choice was motivated by a review of the
existing approaches (see Part II).

Most models assume a standard SEIR structure but make different hypotheses
on the nature of the different compartments and their respective residence time.
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2 Proposed model

In this section we propose our model, defined by the possible statuses of each of
the nodes and the dynamic equations. We will also provide with the rationale on
why we have designed this model.

The main reasons to expand the number of statuses from the SIR diffusion model
described in Part III, described by Susceptible, Infected and Removed statuses,
are:

• When an individual first comes into contact with a virus or bacteria is COVID-
19 infected but are not yet infectious, i.e. capable of transmitting the disease
to others, for a very short time, they are called Exposed (or latent) individual.
Some literature states that being exposed to the virus not always leads to an
infected individual if, for example, the amount of virus that enters the body
is not in a large enough quantity, or if the body’s immune system is able to
quickly fight it off. However, in this document we assume that every time an
individual becomes exposed it will lead into a COVID-19 infection. (Buonomo
and Marca (2020))

• An individual infected of COVID-19 can transmit the virus before showing
symptoms. To demonstrate this assumption we first introduce two concepts:
the Serial interval and the Incubation period. The serial interval, in epidemi-
ology, are measured from when one infected person starts to show symptoms
to when the next person infected becomes symptomatic (Ali et al. (2020)).
Whereas the incubation period is the time duration between exposure to the
pathogen and the appearance of the disease symptoms (dictionary (2022)).
Alene et al. (2021) combined on an exhaustive research a total of 23 and 14
studies to conclude that the serial interval (weighted pooled mean: 5.2 days)
was lower than the incubation period (weighted pooled mean: 6.5 days). We
can conclude that an individual can infect before showing symptoms, we call
this status Pre-symptomatic.

• There are individuals that do not show any signs that the COVID-19 virus is
present in their body but are actually infected. They are called asymptomatic
individuals.

• We finally assume that individuals showing mid or no symptoms cannot die

• The number of simulation steps (analogue to days) we will consider through-
out this document will be small enough to assume that a recovered node will
not be reinfected. Xiao et al. (2021) showed that the antibodies can last for
more than 12 months, remaining stable for the first 6 months. Thus, we con-
sider in this document negligible the reinfection value.
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• Tests performed to identify infected nodes are not 100% accurate. Indeed,
a test is characterized by its confusion values, i.e., to test positive when the
node is actually not infected and to test negative when the node is actually
infected. We define:

ρip = P (ill | positive)

ρnp = P (not ill | positive)

ρin = P (ill | negative)

ρnn = P (not ill | negative)

(10)

Taking into account the previous assumptions, we now define the statuses of our
model:

• Susceptible: an individual that can be infected if exposed to the infectious
virus

• Exposed: an individual infected with the virus but is not yet infectious

• Presymptomatic: an individual infected of COVID-19 that can transmit the
virus before showing any symptoms

• Infected o Symptomatic: an individual showing severe symptoms directly
related to the virus

• Asymptomatic: an individual infected showing no or mid symptoms

• Recovered: an individual previously infected with the virus and now being
immune to infection and consequently not affecting transmission when they
come into contact with other individuals

• Quarantined: an individual tested positive for the virus

• Dead: an individual dead from causes directly linked to the virus

We call this model, the SEPIA diffusion model, which stands for the Susceptible sta-
tus plus all the statuses representing the infected ones (Exposed, Pre-symptomatic,
Infected, Asymptomatic). It is worthwhile noting that we also call the Symptomatic
status as Infected, but infected statuses also include Exposed, Pre-symptomatic
and Asymptomatic. It could lead to misunderstanding but we will try to avoid con-
fusion throughout the document.

The status variables and the processes included in the model are illustrated in
the flow chart in Figure 23. This flow chart describes the possible statuses that
each status can transit to and the rate of transition. In Table 3, we provide a de-
scription for each parameter as well as the value for each parameter. The rationale
on using these values will be given in Section 2.1 in this Part. Those parameters
without value assigned in Table 3 mean that the value is not fixed and depends on
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the simulation.

Figure 23: Flow chart for the COVID-19 model

The model is given by the following system of nonlinear ordinary differential equa-
tions, where each balance equation rules the rate of change of a state variable:

S = −λ.S −Kρnp

E = λ.S − σE .E −Kρnp

P = σE .E − σP .P −Kρip

I = σP .δ.P − γI .I −Kρip

A = σP .(1− δ).P − γA.A−Kρip

R = γI .I + γA.A

D = αI .I

λ =
βP .P + βI .I + βA.A

N −D −R−Q

(11)
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Parameter Description Value
λ Exposure rate −
βP Transmission rate of pre-symptomatic individuals 0.12
βI Transmission rate of symptomatic individuals 0.035
βA Transmission rate of asymptomatic individuals 0.035
K Number of tests −
σE Latency rate (d−1) 0.3
σP Post-latency rate (d−1) 0.8
δ Symptomatic rate 0.6

(1− δ) Asymptomatic rate 0.4
γI Recovery rate of people with symptoms (d−1) 0.1
γA Recovery rate of people with no symptoms (d−1) 0.1
γQ Quarantine rate (d−1) 0.07
α Fatality rate 0.014
⟨k⟩ Average degree 5
R0 Basic reproduction number 3

Table 3: Summary of SEPIA model parameters

2.1 Design of the proposed model

2.1.1 Reproduction number

We now introduce the basic Reproduction number. In epidemiology, the basic re-
production number R0 (R naught) of a pandemic is defined as the expected number
of secondary cases a primary individual can cause in a susceptible population. If it
is greater than one, then an epidemic is expected to spread after the outbreak of
the infection. Whereas, if R0 is lower than one, the outbreak can be contained and
the disease is expected to decrease.

The effective reproduction number, Re, also denoted as Rt, is the number of peo-
ple a contagious individual can infect at a specific time, where some individuals
can have immune or protected to be infected. Real-time estimates of Rt are a
key topic for policy decisions during a pandemic (Leung et al. (2020)). Effec-
tive reproduction number estimations can be used to study the effectiveness of
non-pharmaceutical interventions (NPIs) such as testing, which is the main topic
throughout this report.

The definition of R0 in a classic SIR model can be approximated to:

R0 = βNσ (12)

Where β is the transmission probability, N is the average number of contacts and
1
σ is the length of the infectious period.
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In our SEPIA model, based on equation 12 and in the absence of quarantine in-
tervention, the basic reproduction number can be approximated as:

R0 =
βPN

σP
+

δβIN(1− α)

σI
+

(1− δ)βAN

σA

= N

(︃
βP

σP
+

δβI(1− α) + (1− δ)βA

σI

)︃ (13)

According to Mahase (2020) the case fatality rate (α) is 1.38%.According to Lavezzo
et al. (2020) the distribution between symptomatic individuals and asymptomatic
individuals is 60% - 40%. The transmission rate of symptomatic and asymptomatic
individuals is the same as the viral load is similar for symptomatic and asymp-
tomatic individuals (Lavezzo et al. (2020)). The post-latency rate, i.e., the pre-
symptomatic rate is 0.8 days−1. In Walsh et al. (2020) review, for 5 of the 13 studies
(with culture attempted in at least 76 patients), the last day on which SARS-CoV-2
could be cultured (ability to infect) occurred within the first 10 days since onset of
symptoms. Thus, the symptomatic rate and asymptomatic rates are equal to 0.1
days−1.

Assuming the above described values for the parameters of the model, there re-
mains three variables in the equation R0, post-latency transmission rate (βP ) and
symptomatic-asymptomatic transmission rate (βI,A). Estimating the transmission
rates from observations has not yet been well characterised. We propose in this
document to estimate it from already observed R0 in the literature. He et al. (2020)
estimates that the of 44% of secondary cases were infected during the presymp-
tomatic stage. Considering that the duration of infectiousness of pre-symptomatic
individuals is 0.8

0.1 times lower, the estimation in He et al. (2020) translates in our
model that pre-symptomatic transmission rate is 3.25 times grater than βI,A. Our
R0 equation in 13 is:.

R0 = 6.25βP + 49.3βA,I

= 6.25βA,I3.25 + 49.3βA,I

= 69.61βA,I

(14)

Doing an exhaustive review, we conclude that R0 ranges between 2 and 3.5. We
assume in our model that R0 is equal to 3 so we can infer the transmission rate
values. A summary of all the values of the parameters used in our SEPIA model
are listed in Table 3.
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2.1.2 Topology of the network

Barabási (2016) lists several examples of real undirected networks and the aver-
age degree of each of them. The average degrees of each real network shown by
Barabási (2016) exceed ⟨k⟩ > 1 but are below the giant threshold ⟨k⟩ < lnN , be-
ing N the number of nodes, this means that the network is expected to be broken
into numerous isolated components. We will consider a network with a number of
nodes ranging between N = 10000 and N = 100000. Thus, the average degree
must range between ⟨k⟩ = 1 and ⟨k⟩ = ln 100000 ≈ 11 to be close to reality. We
assume an average degree equal to 5, meaning that each individual is on stretch
contact to 5 individuals in average.
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2.2 Implementation of the proposed model

Once that we have our model well designed we implement it on Python. Similarly
as in III: Strategies for test allocation, the network is an Erdos Renyi graph net-
work of type networkx. It is described by the Number of edges, N = 10000 or N =
100000 depending on the experiment, and the probability of edge creation, we set
it to lead to an average number of neighbors per node ⟨k⟩ equal to 5.

The Diffusion model is characterized as an object of class DiffusionModel from
the python library ndlib. This class behaves as a bunch of simulation iterations.
The graph starts with a fraction of infected nodes and at each simulation step or
iteration, every node is visited to determine the individual node status transitions.
As an example, if a node is Susceptible, first we calculate all the neighbors nodes
of each of the contagious states (Pre-symptomatic, Infected and Asymptomatic)
and the exposure rate is calculated. It is worth wile noting that the exposure rate
depends also on the number of infectious nodes for each of the contagious states,
i.e., if the node is in contact to two Pre-symptomatic the exposure probability will
be higher than if it is in contact with only one Pre-symptomatic. Once the expo-
sure rate is calculated, if it is greater than a random generated number, the node
transitions to Exposed and subsequently with each of the eight possible states.

Figure 24 depicts an example of simulation process of a graph network generated
with N = 40 from a self developed code, the code can be found in the feature-
branch branch on the GitHub repository. The visualizations are made with net-
workx method draw_networkx and the different statuses are re‘resented by the
different colors, Susceptible = white, Exposed = peachpuff, Pre-symptomatic =
orange, Infected = red, Asymptomatic = salmon, Recovered = blue, Quarantined
= green and Dead = grey.

In the second simulation step (Image 24b in Figure 24) three nodes, which are
in stretch contact to already infected nodes, became Exposed, leading to symp-
tomatic or asymptomatic individuals in the subsequent steps. In the third simula-
tion step (Image 24c in Figure 24) two nodes become Quarantined as a result of
testing positive, we can also see in this Image how an infected node dies.

Showing the dynamic in such way becomes unpractical when the number of nodes
becomes significantly high. Thus we will show the overall trends with the python
library bokeh where each line represents the evolution of nodes belonging to each
status. The DiffusionModel class contains a method to visualize the trends of each
status as shown in Figure in Image 25a in Figure 25 and zoomed in Image 25b.

However, showing all the statuses overcomplicates the visuaization for analysis
purpose. We then modify this class and proposes a new method to build the diffu-
sion trends.
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(a) Step 1: 25% of the network is infected
(b) Step 2: Some nodes become Exposed af-
ter being in contact with Infected nodes

(c) Step 3: Green nodes goes from Infected
to Quarantined, grey one has died and or-
ange one has became Pre-symptomatic

(d) Step 4: Node 11 went from Pre-
symptomatic to Asymptomatic, more nodes
being Quarantined after tested positive

(e) Step 5: Node 33 went from Pre-
symptomatic to Symptomatic

(f) Step 6: Node 36 is recovered and
nodes 27 and 29 goes from exposed to pre-
symptomatic

Figure 24: SEPIA dynamics.
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In the visualization designed in this thesis, only the statuses that are relevant are
shown, i.e., the infected statuses: Exposed plus contagious ones (Pre-symptomatic,
Symptomatic and Asymptomatic), Quarantined and Daed statuses. Furthermore,
the infected nodes should be shown as an aggregated to better understand the
number of nodes infected of COVID-19. Thus, we develop the stacked visualization
for infected statuses.

Figure 25 depicts a comparison of the visualization trends of the same simula-
tion process. Top image (Image 25c) is the inherit method of the DiffusionModel
ndlib class, the middle image as the top one but zoomed and the bottom image
(Image 25c) is the visualization developed in this thesis. The latter is clearly more
convenient for visual analysis and gives a better understanding of the dynamics of
the simulation.

2.3 Reproduction number representation

Keeping the reproduction number below one is an indicator of pandemic diffu-
sion containment. R0 varies with time during the course of the pandemic and is
dependant on epidemiological factors like susceptible population characteristics,
disease transmission rates, and control measures adopted. Our goal now will be
to maintain the basic reproduction number below 1 to control the outbreak of the
pandemic.

We use an already existing estimate approach to represent the reproduction num-
ber over time, the python epyestim package in Hilfiker and Josi (2022). This
method estimates the effective reproduction number from time series of reported
case numbers assuming that there is a delay from actual infection to the event reg-
istration, i.e., the report of the infected case. We adapt this package to adapt our
model as they assumed a mean of 10.3 from infection to reporting which is higher
than our model.

To better understand how can we measure how effective a strategy is by looking
to the reproduction number over time we will plot the evolution of Rt for different
number of tests performed at each simulation step in Figure 26.

If we focus in the right side of the Figure, the reproduction number evolution
is plotted for three different simulations. The first one, Figure 26b, shows the evo-
lution of Rt when no tests are performed, i.e. in the absence of any intervention.
Indeed the value of Rt in the early stage of the simulation reaches 2.2 which it is
actually the value that we fixed to the basic reproduction number R0 when design-
ing the diffusion model. On images 26d and 26f the value of Rt is lower as the
number of tests meaning that the pandemic can be contained when the number
of tests performed increases. However, the evolution of the reproduction number
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(a) Ndlib Diffusion trends visualization

(b) Ndlib Diffusion trends visualization (zoomed)

(c) Designed diffusion trends visualization

Figure 25: SEPIA diffusion trends
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(a) Diffusion trends of the pandemic with
no tests performed

(b) Evolution of Rt over time with no tests
performed

(c) Diffusion trends of the pandemic with
1000 tests performed at each step

(d) Evolution of Rt over time with 1000 tests
performed at each step

(e) Diffusion trends of the pandemic with
5000 tests performed at each step

(f) Evolution of Rt over time with 5000 tests
performed at each step

Figure 26: Reproduction number over time for different number of tests in a net-
work with 1e5 individuals
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needs to be shown alongside the diffusion trends to better interpret the results.
For example, if we only focus on figure 26b, in the middle of the simulation pro-
cess (by the 15th of August) Rt is lower than 1, meaning that the pandemic has
been contained and we can infer that we have reach our goal. However, when
looking at the Figure in 26a the portion of people infected at this simulation step
is over the 30% of the population and effectively the value of Rt is less than 1
because, as its own definition says, there are no Susceptible nodes to infect since
they are already infected, Recovered, meaning they are immune, or Dead, which
is an undesired situation.

In the next section V, we seek the goal of contain the virus by designing non-
pharmaceutical international strategies. We will leverage the model designed and
implemented in this section, using the two tools designed in this section: the
stacked visualization trends and the evolution of the Reproduction number.
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Part V - Reinforcement Learning

1 Introduction and Objectives

We have designed and implemented in Part IV a mathematical model that repre-
sents the diffusion of the COVID-19, the SEPIA model. We have seen the impor-
tance of implementing non-pharmaceutical intervention strategies such as massive
testing and quarantine to mitigate the spread of the pandemic and even contain
the spread when the reproduction number is lower than 1. We have also intro-
duced the Rt a tool to estimate how controlled the pandemic is.

In Part III: Strategies for test allocation, we implemented and discussed the ef-
fective of different approaches to allocate tests among the network in order to
contain the diffusion of the COVID-19 pandemic. We divided these strategies into
centralities, based on finding the most important nodes within a network, and
contact tracing, based on testing the neighbors of the already detected ill nodes.
We discussed that each of the defined strategies performs better under some con-
ditions and they are dependent on the characteristic of the network and the model.

In this Part, we will leverage the knowledge gathered in the previous Parts to
design an effective non-pharmaceutical intervention strategy to contain the diffu-
sion of the pandemic based on performing massive testings. However, we consider,
as we did in Part III, that tests are scarce and costly. We have considered so far
a constant number of COVID tests done at each step regardless the number of in-
fected individuals. However, it would lead to wastage of COVID tests when there
are few infected people, and an under-usage of them when the number of infected
people is high, the so-called peak of COVID waves.

To optimize the usage of tests, we will need to know some insights about the
state of the network, such as the actual number of infected people, the number
of deaths or any available information on the environment in order to perform re-
active strategies.

This problem is similar to a Black box optimization problem, where we don’t know
how the box behaves but we are able to take some actions and change the be-
haviour of it receiving a set of outputs from the box. A black box optimization
involve the execution of a computer code or simulation.

Reinforcement learning is a similar technique as the black box optimization prob-
lem. It is a branch of machine learning different to the supervised and unsuper-
vised learning, it is consider as the third branch. Reinforcement learning is based
on the interactions between an agent and an unknown or unpredictable environ-
ment. The agent can decided among a set of predefined actions and perceives an
observation from the environment lead by the action previously taken. The agent
learns by interacting with the environment seeking to take the actions that leads
to a maximum reward or goal(Sutton and Barto (2018)).
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1.1 Optimization techniques

In this section we take a look at the basic concepts and definitions of black box
optimization technique which will help us to connect and introduce to the Rein-
forcement Learning technique that will be used in this document to design inter-
ventional strategies to mitigate the diffusion of the COVID-19 pandemic.

Reinforcement learning and Black box optimization are the two main approaches
to performing optimization of policy improvement methods. This methods goal is
to optimize the parameters of a policy, a policy can be easily defined as a function
that returns an action given a state or observation of the system.

1.1.1 Black box optimization

A black box is a system that can bee seen as a set of input and output without any
knowledge about the performance within the system.

Bayesian optimization is a sequential design strategy for global optimization of
black-box functions, this kind of optimization is advantageous when the objective
function is unknown. The function is treated as a random function and place a
prior (beliefs about the behaviour of the function) over it.

According to (Carson and Maria (1997)) Simulation optimization is defined as the
process of finding the optimum set of input data among all the possible inputs with-
out evaluating each possibility. A simulation experiment can be defined as a test
or a series of tests in which meaningful changes are made to the input variables
of a simulation model so that we may observe and identify the reasons for changes
in the output variables. When the number of input variables is large and the sim-
ulation model is complex, the simulation experiment may become computationally
prohibitive. The objective of simulation optimization is minimizing the resources
spent while maximizing the information obtained in a simulation experiment.

1.2 Reinforcement learning

Reinforcement learning problems involve learning what to do so as to maximize
a numerical reward signal. Three properties that characterize RL is that it is a
closed-loop system, discovery and subsequent effect. Closed-loop as the learning
system’s actions influence its later inputs. The learner is not told which action to
take, but instead must discover which actions yields to the most reward by trying
them out. Actions not only affect the immediate reward but the subsequent ones.

The most important feature is the ability to evaluate the actions rather than in-
struct by giving correct actions. If you have the estimates of all the actions you
can take for a specific state, the greedy one will b the one with the highest value.
However, due to the uncertainty of the environment there could be another action
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that brings a higher value in the long run. Taking the greedy action is called ex-
ploitation while taking non-greedy actions is called exploration. Having a trade-off
between exploitation and exploration is what characterizes a RL algorithm.

A policy defines how the agent behaves in a specific situation. Maps perceived
states of the environment to actions to be taken.

On each time step the environment sends to the agent a single number, the re-
ward. The agent’s sole objective is to maximize the reward over the long run. In
general, the reward signal can be seen as a stochastic function of the environment
states the actions taken. Whereas rewards represents what is good in immediate
sense, value function specifies what is good in the long run. The value of a state
is the total reward that an agent can expect to accumulate starting from that state.
We are more concerned about values when making a evaluating decision. Values
must be estimated and re-estimated from the sequences of observations an agent
makes over its entire lifetime.

The model mimics the behaviour of the environment i.e. allows to predict the
next state and reward given an action and current state.

1.2.1 Tabular Solution Methods

These methods can be applied when the action-state space is small enough to be
represented with an array or a table.

The multi-arm bandits are a special type of problems where there is only one pos-
sible state. Suppose that we face at each time step to n possible actions, each of
them leads us to an expected or mean reward given that that action is selected; let
us call this the value of that action. We define as greedy action to the selection
of the action with the highest estimated value, if we select it we are exploiting our
knowledge of the values. If instead we select one of the non greedy actions, then
we say you are exploring. Exploitation is the right thing to do to maximize the
expected reward on the one step, but exploration may produce the greater total
reward in the long run ((Sutton and Barto (2018))).

1.2.2 Finite Markov Decision Processes

The interaction between the agent and the environment is depicted in Figure 27.

The agent’s goal is to maximize the cumulative reward it receives in the long run.
The return Gt is defined as some specific function of the reward sequence (the sum
of the rewards):

Gt = Rt+1 +Rt+2 + ...+RT , (15)
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Figure 27: RL interface. Sutton and Barto (2018)

where T is a final step, this notation makes sense when the agent-env interaction
breaks in subsequences, called episodes. Each episode ends in a special state
called the terminal state, followed by a reset to a standard starting state or to
a sample from a standard distribution of starting states. Task with episodes are
called episodic tasks. We need to distinguish the set of all nonterminal states, de-
noted S, from the set of all states plus the terminal state, denoted S+. The intuitive
notation to refer to the state at the time step t of the episode i, would be St,i but it
is commonly referred as St since we will almost never need to distinguish between
different episodes. (Sutton and Barto (2018))

If we consider the task as a continuing task (the agent-env interaction do not break
naturally into identifiable episodes) we should add an extra concept: the discount
rate, which determines the present value of future rewards: a reward received k
time steps in the future is worth only γk−1 times what it would be worth if it were
received immediately.

1.2.3 The Markov Property

In the RL framework, the agent makes its decisions as a function of the state sig-
nal retrieved from the env. A property of environments and their state signals that
is of particular interest is the Markov property. What we would like, ideally, is a
state signal that summarizes past sensations compactly, yet in such a way that all
relevant information is retained. A state signal that succeeds in retaining all rel-
evant information is said to have the Markov property. Mathematically speaking,
the dynamics of how the env responds at time t + 1 to an action taken at t will
depend on what had happened so far:

Pr {Rt+1 = r, St+1 = s′|S0, A0, R1, ..., St−1, At−1, Rt, St, At} (16)

If the state signal has the Markov property then the environment’s response at
t + 1 depends only on the state and action representations at t, thus the environ-
ment’s dynamics (one-step dynamics) will be defined as:

p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St, At} (17)
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A state signal has the Markov property if and only if Eq. 16 is equal to Eq. 17.
The latter allows us to predict the next state and expected next reward given the
current state and action (Sutton and Barto (2018)).

1.2.4 Markov Decision Process

A task that satisfies Markov property is called Markov decision process. If the state
and action spaces are finite, then is called finite Markov decision process (finite
MPD) and are defined by their action and state spaces and the one-step dynamics
of the env (Eq. 17). From the one-step dynamics one can easily derive the expected
rewards for state–action pairs r(s, a), the state-transition probabilities p(s′|s, a) and
the expected rewards for state–action–next-state triples r(s, a, s′)

1.2.5 Value Functions

A value function estimates the return for the agent to be in a given state (to per-
form a given action in a given state). The rewards the agent can expect to receive
in the future depend on what actions it will take. Accordingly, value functions are
defined with respect to particular policies.
A policy is a mapping from each state s ∈ S and each action a ∈ A, to the probabil-
ity π(a|s) f taking action a when in state s. The value of a state s under a policy π,
denoted vπ(s), is the expected return when starting in s and following π thereafter.
qπ(s, a) is the expected return starting from s, taking the action a , and thereafter
following policy π.
The Bellman equation for vπ(s) expresses a relationship between the value of a
state and the values of its successor states. The Bellman equation averages over
all the possibilities, weighting each by its probability of occurring.

1.2.6 Optimal Value Functions

Roughly speaking, solving a reinforcement learning problem consists in finding a
policy that achieves a lot of reward over the long time run. The optimal value
functions assign to each state, or state–action pair, the largest expected return
achievable by any policy. A policy π is optimal (π∗) if vπ(s) ≥ vπ′(s) for all s ∈ S and
π′ ∈ Π. The Bellman optimality equations are special consistency condition that
the optimal value functions must satisfy and that can, in principle, be solved for
the optimal value functions, from which an optimal policy can be determined with
relative ease.

62



Part V - Reinforcement Learning

2 Problem statement and discussion of the instance
generation

The objective of this section is to design a non-pharmaceutical interventional re-
active strategy to mitigate the diffusion of COVID-19. The strategy is based on
performing massive testing in order to detect positive individuals in the network.
Note that the tests are a limited resource, so we seek to maximize our goal of dis-
ease contention while minimizing the total use of COVID tests. We define these
strategies as reactive because they will depend on the status of the environment.

The environment is set to be the SEPIA diffusion model stated in Part IV and the
agent decides which action takes based on the state of the network. However, we
can not predict the behaviour of this environment, we cannot predict how many
infected cases will be reported in the next iteration neither whether our strategy
will be effective. The Reinforcement Learning technique is the most suitable to
the problem stated above: define a policy to take an action based on the state of
an uncertain environment to maximize a reward.

Each simulation step is analogue to a day and the environment calculates the trans-
mission dynamic of each of the nodes within the network. The agent decides an
action to take and after all the dynamics of a day are calculated receives an obser-
vation and a reward.

As said, we seek to define a strategy to mitigate the diffusion of the COVID-19
while minimizing the number of tests performed at each time step. However, we
will first propose a RL interface where the number of tests are fixed at each time
step to test the effectiveness of different RL algorithms.

Reinforcement learning tasks can be divided into two type of tasks: first one, a
task in which the agent-environment interaction naturally breaks down into a se-
quence of separate episodes (episodic tasks) or one in which it does not (continuing
tasks). We then define the Task described in this report as an episodic task, where
an episode is defined as a limited bunch of steps that ends (terminal step) when
the agent identifies for three times in a row no infected nodes, inferring that the
pandemic has been contained.

2.1 Visualization tools

From now on we will use in this document two tools to visualize the results of
a simulation and will help us to understand and analyze what happened in each
simulation. Both tools are a self-developed inherited class from DiffusionTrend
class in NDLIB software package that uses Bokeh, a Python data visualization
library that provides html graphics.
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A A first graph (example in Figure 28) including the evolution of the people
infectious (Presymptomatic, Symptomatic and Asymptomatic statuses) in an
stacked area chart and two lines that represents the trends of the percentage
of people that are Quarantined and the trend of the percentage of people that
have died. The code can be found here: � Visualization tool 1

Figure 28: Visualization tool one

B A 2-axis graph (example in Figure 29) including a dashed line represent-
ing the evolution of the people infectious (Presymptomatic, Symptomatic and
Asymptomatic statuses) compared with the estimation of infectious nodes
calculated from the observations that the RL agent perceives from the envi-
ronment and a stacked chart representing the distribution of tests between
exploitation, exploration and pure exploration at each simulation step. The
stacked chart uses a different scale than the trends and is represented in the
right-hand side of the graph. The code can be found here: �Visualization
tool 2

Figure 29: Visualization tool two
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2.2 Base RL model with fixed number of tests

The action space, i.e. the possible actions that the agent can take, is based on
three possible sets of base actions:

• Test for exploitation: it is a set of tests done to individuals in the neighbor-
hood of a registered ill node.

• Test for pure exploration: it is a set of tests done to randomly chosen people
among the network. The goal of these test is to estimate the real number of
ill people.

• Test for exploration: it is a set of tests done to people in the network related
to a particular policy. In this context, we mean by policy a strategy to identify
the important nodes within the network, such as we did in Part III with the
ten different strategies for Critical Node Detection. This is done to keep
under surveillance people that are particularly important for the network.

Let us define then the action space as:

At = (x1(t), x2(t), x3(t)), (18)

where x1(t) is the number of nodes for exploitation, x2(t) is the number of nodes
for exploration and x3(t) is the number of nodes for pure exploration at time t.
This is a analogue reasoning as how Reinforcement Learning algorithms behaves,
we know that testing a node in the neighborhood of an already registered ill node
is more effective than testing a node with no information about his surrounding.
Whereas, to discover this infected nodes the agent must explore before and test
random nodes. Another exploratory behaviour but more conservative is to test
nodes that the agent knows that are important within the network according to
some centrality among those discussed in Part III, for commodity we will use al-
ways the degree centrality. It is to be expected that the agent will behave more
exploratory at the early steps of the simulation.

Given a set A, we call its cardinality (i.e. the number of element) |A|. Let us
define:

ŝt =
|{ill pure exploration test}|
|{pure exploration test}|

(19)

In Eq. (19) we estimate the state of the system in terms of number of ill peo-
ple. Where we define ill people as the set of people who is either Presymptomatic,
Symptomatic or Asymptomatic. We estimate it by using the result of some ran-
domly picked nodes, pure exploratory tests, and not considering the results of
tested people when doing exploitation or exploration in order to not overestimate
the situation. If we estimate it also considering the tests done to people in the
neighborhood of a detected ill person, which is more likely to be infected, the es-
timation of the state will be biased and we will be overestimating the number of
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infected people.

To demonstrate the previous statement we are going to run two simulations in par-
allel on the same network, a) One considering only tests done for pure exploration
to estimate the state of the environment and b) another considering all the tests
done (exploitation, exploration and pure exploration) when estimating the state.
For this simulations we consider a population of 1e4 people where the average
degree is 5. We perform 300 COVID tests at each time, 200 of them for pure ex-
ploration and the remaining 100 divided for exploitation and for exploration. Now
we compare the trends of the estimated number of infected people vs the actual
in both scenarios a) and b). To understand how these Figures are generated as
well as how the error between the actual and the estimation is calculated refer to
Section 2.2.3.

Figures 30a and 30b represent both simulation for both scenarios described a)
and b) respectively, by looking at the difference in the trends in each graph (green
vs stacked one) we can see how clearly we are overestimating the state of the
environment when considering all the tests done vs when considering only pure
exploratory ones. Also we can see it by comparing the error computed which is
much higher when considering all type tests. Thus, we demonstrate our previous
hypothesis and we propose then a novel and accurate way of estimating the state
of the environment.

(a) State estimation vs Actual state when
considering only pure exploratory tests.
MSE: 1.6e-4

(b) State estimation vs Actual state when
considering all tests. MSE: 5.8e-3

Figure 30: State estimation: Considering all tests vs only pure exploratory ones

It is interesting to note that there will always be a deviation in the estimation
of the state of the environment due to false positives and false negatives but they
represent a small percentage of the overall state and it depends on the parame-
ters ρnp and ρin, which are the probability of not being infected but testing Covid
positive and the probability of being infected but testing negative.
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The state representation is (t, ŝt, Bt), where t is the time step of the simulation,
st is defined in Eq. (19) and Bt is the budget available in time step t. However, we
consider in this section Bt to be fixed at each time t. Since the number of tests is
fixed the terms in the action vector must satisfy the following equation:

x3 = 1− x2 − x1 (20)

Let us finally define
rt = −|{dead people}t| (21)

Where rt is defined as the reward given by the environment to the agent at sim-
ulation time t and is calculated as minus the number of people that have died at
simulation time t.

2.2.1 Buffer management for better allocation of COVID tests

The idea is to test at each simulation step the most important people within the
network. For example when doing tests for exploration, we test the k people with
the higher number of neighbors. However, if we always test the same k people,
there will be {N − k} people that are never tested, where N is the total number of
people in the network and k << N , meaning that the majority of the people will
never be tested and the virus will never be contained.

We introduce, as we did in Part III, the concept of node buffer management. As
the definition from a data perspective says, a buffer is used for temporary storage
of data that is waiting to be sent. If we extrapolate it to our case, the data that is
waiting to be sent is the people that will be tested for COVID. You can think of the
buffer as a cyclic array: first the nodes are ordered according some policy, then
the k first nodes will be picked to test and after being tested they will be placed at
the end of the queue and so on while running the simulation.

We need to establish a balance between testing the most important nodes while
testing all the nodes in the network. We propose the following strategy: concate-
nate in the buffer array a) the nodes considered most important according to some
strategy and b) all the nodes of the network, so that the most important nodes will
be tested twice as often as the nodes considered less important. Refer to Figure 4
and algorithm 4 to better understand it.

When performing for exploration, the important nodes are considered as those
whose degree (number of neighbours) is greater than the average degree in the
network.
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Algorithm 4 Buffer instantiate and management

T ← final iteration of an episode
ki ← set of Ki COVID tests done at iteration i
for each iteration i in [0, T ] do

if i == 0 then
for each node v in Network do

Compute its degree and assign to D[′v′]

end for
⟨d⟩ ← average value of values in D
Di contains each node v in D where D[v] ≥ ⟨d⟩
Buffer ← concatenate(Di, D)

else
test nodes in ki
k′i ← ki
delete subset ki from Buffer
Buffer ← concatenate(Buffer, k′i)

end if
end for

Figure 31: Cyclic buffer management at iteration i, K is the number of COVID tests
done at iteration i, N is the total number of nodes.
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Finally to validate the effectiveness of the novel proposed buffer management
method we test it again to a simulation with no buffer and always testing the k-most
important nodes in the network. We consider a network of N=10000 individuals
with an average degree equal to 5. We perform 300 tests at each simulation step
and we plot the trends of the simulations in Figure 32, we can conclude that if
we use a buffer management technique we are able to mitigate the impact of the
COVID pandemic while applying a fairer treatment among the individuals within
the network.

Figure 32: Infected trends when using buffer management vs when always testing
the k most important nodes

2.2.2 Implementation and results

We implement the Reinforcement Learning interface in python, first we set up the
SEPIA DiffusionModel class implemented in previous the Part to be an OpenAI
gym environment. For the agent we use also the python library OpenAI gym, a
toolkit for developing and comparing reinforcement learning algorithms that pro-
vides a standard interface to communicate between learning algorithms and envi-
ronments.

The action space is a python list of length equal to three, first position of the list, x1

describes the percentage of the total number of tests Bt devoted for exploitation,
second position x2 are the percentage of tests for exploration and x3 is the tests
for pure exploration. Each of the base actions can take values from range [0, 1],
but they will be post normalized to fulfill Eq. (20). As the state is only given by the
tests done for pure exploration, that is, nodes selected randomly, we also set the
condition to the action space to x3 > 0.1Bt to be able to have information about
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the state.

We will test two different Reinforcement learning algorithms:

• A2C from Stable baselines 3 library, is an algorithm for deep reinforce-
ment learning that uses asynchronous gradient descent for optimization of
deep neural network. Main reasons for choosing this algorithm is the ability
to deal with continuous action spaces, as well as its ability to train feed-
forward. It is an on-policy policy search method and uses using ϵ-greedy
exploration.

• PPO from Stable baselines 3 library, is a policy gradient method for re-
inforcement learning that alternates between sampling data through inter-
action with the environment, and optimizing a "surrogate" objective function
using stochastic gradient ascent. Also selected for the ability to work with
continuous spaces.

Reinforcement Learning model performance

To prove the effectiveness of the RL algorithm we test it against three simulations
taking fixed basic actions:

A Always testing random people A = (0, 0, 1)

B Always doing exploratory tests, i.e., A = (0, 1, 0), testing the k-most important
nodes according a centrality

C Always doing exploitation tests, i.e., A = (x1, x2, x3) = (1, 0, 0), testing the
neighbors of the people already tested positive

First we compare the performance between scenarios A (Figures 33a1 and 33a2),
B (Figures 33b1 and 33b2) and C (Figures 33c1 and 33c2). We see in Figures
33b2 and 33c2 that even doing always tests for exploration or exploitation, there
are a number of tests devoted for pure exploration, those represented in purple,
since they are needed to estimate the state of the environment. Performing always
exploiting, that is, testing people in the neighbourhood of already COVID+ tested,
leads to the highest reward, that is, the minimum number of deaths. However,
starting performing pure exploitation is meaningless as there is no data about de-
tected COVID positives, which is the basis of the performance of contact tracing
algorithm. In fact if we look at Figure 33c1, the number of detected COVID pos-
itive people (quarantined trend) up to iteration number 10 is negligible, and thus
it needs to be combined with whether exploration or pure exploration one. This is
an evidence on the need of build an interaction agent-environment.

We set up the Reinforcement Learning agent as the above explained A2C RL
algorithm and let the model train by interacting with the environment a total num-
ber of iterations equal to 8e4. The whole agent training process is all about getting

70



Part V - Reinforcement Learning

to the highest expected return possible, in this case, to minimize the total number
of deaths. If this metric goes up throughout the training, means that the agent is
learning well.

With the defined goal in this problem is difficult to define what return to expect
more than minimize the number of died people to determine what is a good score.
In order to evaluate the results obtained we compare a simulation of the trained
policy with a Random agent baseline, that is an agent that always takes random
actions, and that the rewards in the learning curve goes up.

Figures 34b1 and 34b2 show the trends of the simulation of an episode and the
distribution of COVID tests after training the agent. To validate the trained policy
we compare it to the Random agent baseline (Figures 34a1 and 34a2).

First evidence is that the total reward is maximized, where the total reward is:

RA2C = −148 deaths > RRAB = −178 deaths (22)

being RA2C the total reward of the trained RL agent and RRAB the total reward of
the Random agent baseline, proving the effectiveness of the training RL agent. We
can also observe how the infectious trends are decreased when using the trained
agent, meaning that when using the trained agent, the impact of the COVID pan-
demic is mitigated.

Finally, if we look at Figure 35 we see how the mean reward increases as the
agent interacts with the environment. In the early iterations, the mean reward
falls below 200 died people and after 5e4 iterations, it establishes around 140 to
150 deaths in a single episode. Thus, we prove our hypothesis of the agent being
able to learn by interacting with the environment and maximazing the total reward.

Now we take a closer look at Figure 34b2 to see how the tests are distributed
at each simulation step. In the first iterations (up to iteration #20) the tests are
distributed between testing for pure exploration and for exploration. However,
from iteration 20 onwards, the COVID tests are done for pure exploitation since is
the strategy that standalone leads to the highest reward, as we demonstrated in
Figure 33 and it performs less pure exploratory. Moreover, as we expected, at the
early steps of the episode, the agent behave less exploiting since with no data on
already tested positive it is meaningless to perform pure exploiting.
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(a1) Diffusion trends when performing al-
ways for pure exploration. Total deaths: 309

(a2) Distribution of tests and actual infec-
tious trend vs estimated infectious trend

(a) Always doing tests for pure exploration

(b1) Diffusion trends when performing al-
ways for exploration. Total deaths: 185

(b2) Distribution of tests and actual infec-
tious trend vs estimated infectious trend

(b) Always doing tests for exploration

(c1) Diffusion trends when performing al-
ways for exploitation. Total deaths: 164

(c2) Distribution of tests and actual infec-
tious trend vs estimated infectious trend

(c) Always doing tests for exploitation

Figure 33: Comparison of the trends when the agent is not trained. Number of
people in the network is 1e4 and number of COVID tests done at each iteration is
300
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(a1) Diffusion trends when the agent takes
random actions. Total deaths: 178

(a2) Distribution of tests and actual infec-
tious trend vs estimated infectious trend

(a) Random agent baseline

(b1) Diffusion trends of the the trained pol-
icy. Total deaths: 148

(b2) Distribution of tests and actual infec-
tious trend vs estimated infectious trend

(b) Trained agent

Figure 34: Trained agent performance vs Random agent baseline. Number of
people in the network is 1e4 and number of COVID tests at each iteration is 300

Figure 35: Learning curve of the A2C RL agent
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2.2.3 State estimation

We have seen that the agent devotes the most of the COVID tests to exploit and
few of them to pure exploration. This leads to the highest total reward. However,
this has a drawback as the estimation of the state of the network is poor due to not
performing enough pure exploratory tests. If we take a closer look at the solid gray
line in Figure 34b2, the observation set the agent receives, we can see that there
are several steps where the estimation of the state of the network is 0, meaning
that there is no nodes infected, which is actually not right if we compare them to
the dashed red line in Figure 34b2, that represent the actual number of infectious
people. Then we are underestimating and overestimating the state of the network.

Let’s try to prove the hypothesis that the more tests for pure exploration the better
the estimation of the state. To better illustrate this, for the same network topology
we will run several simulations in parallel by fixing the number of COVID tests
devoted for pure exploration and increasing them in each simulation. Then we will
plot the estimation done by the algorithm with the actual state of the environment.

The nodes that can be detected in the network, that is, what we consider the
actual state of the network are the aggregated number of nodes which statuses
are "Pre-symptomatic" or "Infected" or "Asymptomatic"

Lets assume that we are only doing tests for pure exploration in order to not unbias
our estimation. Thus, the action taken at each step will be a = [0, 0, 1]. We also cal-
culate the Mean Square Error (MSE) between the actual value and the estimation
done by the algorithm, defined as:

MSE =
1

N

T∑︂
t=1

(st − ŝt)
2 (23)

If we take a look at Figure 36 and 37 we can see how the estimation is much better
as long as the number of COVID tests for pure exploration performed increases.
However, devoting that much number of tests to pure exploration will lower the
overall performance of the RL algorithm.

To better estimate the state, the Partially observable Markov decision processes
(POMDPs) methods allow for the modeling of problems that have hidden state.
Hasinoff (2002) introduces the use of memory to maintain an internal state. A
good idea is to introduce some form of memory, so that the agent can attempt to
use its past experiences to disambiguate aliased states and act appropriately.

Another option will be to extend the state space creating a dictionary of obser-
vations, that is, include more information of the state of the network to the obser-
vation such as the cumulative value of positive detected nodes or the number of
individuals under quarantine, which are variables known describing the state of
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(a) Number of tests K= 30, MSE = 3.04e-3 (b) Number of tests K= 50, MSE = 1.28e-3

(c) Number of tests K= 100, MSE = 8.98e-4 (d) Number of tests K= 300, MSE = 1.43e-4

(e) Number of tests K= 500, MSE = 8.57e-5 (f) Number of tests K= 1000, MSE = 2.24e-5

Figure 36: State estimation for different number of tests for pure exploration in a
network with 10000 nodes

the environment.

From now on in this document for simplicity we chose to implement a rule to per-
form a fixed number of pure exploratory tests at each simulation step to estimate
the state of the network. The number of tests for pure exploratory have to make a
trade off between fair estimation of the network while not losing performance on
the contention strategy of the virus as they are randomly allocated. If we look at
Figure 36, sub-figure 36c seems to be the fairest estimation with the lowest num-
ber of tests. Thus we will devote #tests for pure exploration

#Nodes in the network = 100
10000 = 1% of the nodes

will be devoted for pure exploration.
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Figure 37: Number of tests vs MSE

2.3 Optimizing the number of tests using a RL model

2.3.1 Limited number of tests per step

The objective of this section is to design a reactive non-pharmaceutical interven-
tion strategy to contain the diffusion of the disease with the caveat of limited re-
sources. Thus we will try to optimize the use of the COVID tests by adapting it to
the state of the environment.

Let us define:
At = (x1(t), x2(t), x3(t), Bt), (24)

as the action space, where x1(t), x2(t) andx3(t) are defined as in the previous
section. We now introduce a fourth base action to the Action vector, Bt, defined
as the number of COVID tests that the agent performs at step t and it varies from
iteration to iteration, we also limit the maximum number of COVID tests that the
agent can perform at each time step to B.

We also define:
x1(t) + x2(t) + x3(t) = Bt ≤ B, (25)

as the total number of tests done at time step t.

We have demonstrated in the previous section the need to perform a minimum
number of pure exploratory tests in order to let the RL agent estimate properly
the state of the environment. We also have discussed and demonstrated the low
performance of doing pure exploration when aiming to contain the spread of the
pandemic. Keeping in mind that COVID tests are scarce and costly we will devote
the minimum number of pure exploratory tests that allows us to make a fair esti-
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mation of the environment. We then set x3 constant over time and equal to a 1% of
the nodes in the network. As we simulate a network with N, the number of nodes,
equal to 10000, the number of tests for pure exploration is 100.

Then the agent only need to take two actions depending on the state perceived:

• Bt: The number of COVID tests to do at each simulation step or iteration,
ranging from 100 to B

• From those tests, how many are for exploitation and how many for explo-
ration

Let us define
A(s) = (a[0], a[1]), (26)

as the set of actions possible in state s.

Finally, we have:
At = (x1(t), x2(t), x3(t), Bt), (27)

x1(t) = (1− a[0])a[1]B

x2(t) = a[0]a[1]B

x3(t) = 100

Bt = a[1]B

The environment and the observation are defined as in the previous section.

Each unitary test has a cost c. It is worthwhile noting that the test is characterized
by a confusion matrix: [︃

ρip ρnp
ρin ρnn

]︃
(28)

Let us define:
Rt = −(cKt−1 + pDt−1) (29)

as the reward at time step t dependent on At−1 and St−1. The reward function is
composed by two terms the cost of doing a unitary test, c, multiplied by the num-
ber of tests done at time t-1, Kt−1, and the number of victims, Dt−1, weighted by
the penalty rate p of an individual dying. The cost of the tests and the penalty rate
are adjusted and fixed from experience by doing several simulations.

The goal of a classic Reinforcement learning problem is to maximize the episodic
return defined as the sum of the rewards:

R = R0 +R1 + ..+RT (30)
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2.3.2 Implementation and results

The code of the environment can be found here: � RL environment: Optimization
of tests

Now we implement our environment adjusting the action space function and cre-
ating the reward function. We now test the implemented Reinforcement Learning
agent-environment with the above described POP RL algorithm. We train the agent
during 2e5 steps to estimate the optimum policy π.

We validate the trained Reinforcement Learning agent in two different ways, as
described above, a) by comparing it to a Random Agent Baseline and b) by evalu-
ating the learning curve of the training process.

Figure 38 represent the evolution of the episodic rewards. The total mean reward,
defined as the sum of the individual rewards in an episode defined in Eq. 29, went
from -400 to achieve a reward below -335. We can also see how the mean reward
goes up. This clearly demonstrate how the RL agent learns from interacting with
the environment.

On Figure 39b we can see plotted a comparison on the distribution of the tests
during an episode for both, the Random Agent Baseline and the trained POP RL
agent. The reward obtained was higher in the trained RL algorithm, being

RPOP = −332.91 deaths > RRAB = −387.45 deaths (31)

This proves the effectiveness of the Reinforcement Learning and how it optimizes
the use of the COVID tests while containing the spread of the virus.

Now we take a closer look to the distribution of the tests on an episode after
the agent was trained, depicted in Figure 39b. We are going to ignore the pure
exploration tests (those in purple) as they are fixed at each time step, we will focus
only in exploiting and exploratory ones.

We can see that in the early iterations of the episode when the virus is not spread
yet and the agent perceives that the state of the environment is below the 2%, the
agent test at a lower rate, indeed the agent only performs COVID tests on 3 out of
the first 15 iterations and only in 1 of them deciding to do more than the 50% of
the available tests.

Then from iteration 15 to 70 where the agent perceives that more than the 3%
of the population is infected, the agent decides to do COVID tests on 33 out of the
55 subsequent iterations. Deciding in 26 out of the 33 iterations to spend more
than the 50% of the available tests per iteration. Finally, in the last 20 iterations,
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the agent perceives that the state of the environment is 0% in almost every iter-
ation meaning that there is no infected individuals within the network, the agent
decides to test only in 5 out of the 20 iterations.

We can also observe how the agent decides to do almost always tests for exploita-
tion, that is, to test the neighborhood of already positive tested ones as we have
demonstrated during the document that are more effective. Always that there is a
spike of infected people, the agent has the ability mitigate it and revert the trend,
we can see it at iterations 16, 28, 39 and so on

We have reached our goal of designing a strategy that optimizes the allocation
of the COVID tests.

Figure 38: Learning curve of the POP RL algorithm
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(a) Tests distribution of the Random Agent Baseline. Reward:
-387.45

(b) Tests distribution of the trained RL POP agent during 1e5
iterations. Reward: -332.91

Figure 39: Validation of the RL agent to optimize the number of tests done
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Appendix A

Code summary

This appendix explains how to use the code developed for this thesis and where
you can find it.

The code can be found here: � Critical Node Problem

The code is divided in two main repositories:

• node_detection: contains the code developed to find the N more important
nodes within a network to test and mitigate the diffusion of COVID-19. To
find the N more important nodes within the network we propose 10 different
strategies.

• gym_covid: It is an OpenAI gym interface for Reinforcement Learning. The
objective is to train a RL agent to learn how to allocate the tests within the
network to reduce the number of deaths.

node_detection

The code can be found here: �node_detection

The node_detection repository simulates the diffusion of the COVID-19 pandemic
in a graph network. At each each simulation time step finds the N most relevant
nodes within the network, performs a test on them and if tested positive they are
quarantined to contain the diffusion of the pandemic. Each simulation retrieves
the result of a cost function that depends on the number of tests performed and
the number of people infected.

https://github.com/EdoF90/CriticalNodeProblem/tree/develop
https://github.com/EdoF90/CriticalNodeProblem/tree/develop/node_detection


Usage

In the main.py script, define and initialize the graph network that you want to use
as well as the number of nodes and the probability of edge creation, in this project
the network used was an erdos renyi graph from the Python package NetworkX.

1 g = nx.erdos_renyi_graph(number_nodes, prob_edge)

Instantiate the diffusion model and the strategy to use to find the most relevant
nodes in the network.

1 #Strategy selection
2 model = SIR(g)

The diffusion model designed is a DiffusionModel class from NDLIB Python soft-
ware package, refer to DiffusionModel to know how this works and how it can be
modified. It is a simple Susceptible-Infected-Recovered model presented in Part
III.The different strategies to detect the critical nodes are:

1 #Random nodes selection
2 model = SIR(g)
3 #Node selected according to Degree centrality
4 model = SIRDet(g)
5 #Node selected according to Eccentricity centrality
6 model = SIREc(g)
7 #Node selected according to Betweenness centrality
8 model = SIRBe(g)
9 #Node selected according to PageRank centrality

10 model = SIRPar(g)
11 #Node selected according to Degree Discount centrality
12 model = SIRDDB(g)
13 #Node selected according to VoteRank centrality
14 model = SIRVR(g)
15 #Node selected according to Community Based method
16 model = SIRCB(g)
17 #Node selected according to Contact tracing (MI)
18 model = SIRMI(g)
19 #Node selected according to Contact tracing plus centrality method
20 model = SIRDI(g)

For an explanation of each of them, please refer to Section 3 in Part III

Specify the parameters of the model by using a Configuration object. This will
rule hoe the model behaves.

1 # Model Configuration
2 cfg = mc.Configuration()
3 #Infection rate
4 cfg.add_model_parameter('beta', 0.01)
5 #Numer pf tests performed at each iteration
6 cfg.add_model_parameter('tests', test)
7 #Penalty for a person being infected - cost function parameter
8 cfg.add_model_parameter('penalty', 1)
9 #Cost of doing a unitary test - cost function parameter

10 cfg.add_model_parameter('test_cost', 0.2)



11 #Penalty for nodes being infected at the same time - cost function parameter
12 cfg.add_model_parameter('infected_penalty', 0.3)
13 #True positive rate
14 cfg.add_model_parameter("rhotp", 0.95)
15 #False positive rate
16 cfg.add_model_parameter("rhofp", 0.02)
17 #Initial fraction of nodes infecetd
18 cfg.add_model_parameter("fraction_infected", 0.05)
19 model.set_initial_status(cfg)

Define the number of iterations and execute the simulation. Please refer to Diffu-
sionModel to understand what happens in each simulation.

1 #number of iterations
2 iters=100
3 iterations = model.iteration_bunch(iters)

Finally the trends of the dynamics of the simulation are visualized using the NDLIB
package ndlib.viz.bokeh, which is a extension of Bokeh library.

1 #Diffusion trend visualization
2 trends = model.build_trends(iterations)
3 viz = DiffusionTrend(model, trends)
4 p = viz.plot(width=700, height=500)
5 show(p)



gym_covid

The code can be found here: �gym_covid

The gym_covid repository brings a Reinforcement Learning interface that simu-
lates the diffusion of the COVID-19 pandemic in a graph network. The diffusion
model used is a self-proposed model called SEPIA. The agent goal is to learn how
to allocate at each simulation step a set of tests to minimize the number of deaths
due to COVID-19.

Usage

In the main.py script, define and initialize the graph network that you want to use
as well as the number of nodes and the probability of edge creation, in this project
the network used was an erdos renyi graph from the Python package NetworkX.

1 g = nx.erdos_renyi_graph(number_nodes, prob_edge)

Select and initiate the environment. There are two environment available in this
repository, the difference between them is the type of action that the agent takes
at each step. The "gym_covid:covid-v0" environment receives four actions as
described in Section 2.3 in Part V: Optimizing the number of tests using a RL
model and the "gym_covid:covid-v2" environment receives three actions as
described in Section 2.2 in Part V: Base RL model with fixed number of tests.
The environment is a diffusion model, it inherits the DiffusionModel class from
NDLIB Python software package, refer to DiffusionModel to know how this works
and how it can be modified. It is a simple Susceptible-Infected-Recovered model
presented in Part III.

1 #Environment selection
2 env = gym.make("gym_covid:covid-v0", graph=g)

Specify the parameters of the model by using a Configuration object. This will rule
how the model behaves. For a reasoning on how these parameters have been set
to imitate the diffusion behaviour of COVID-19 refer to Section 2 in part IV.

1 # Model Configuration
2 cfg = mc.Configuration()
3 #fatality rate of people with severe symptoms
4 cfg.add_model_parameter('alpha_i', 0.014)
5 #transmission rate of post-latent people
6 cfg.add_model_parameter('beta_p', 0.16)
7 #transmission rate of people with severe symptoms
8 cfg.add_model_parameter('beta_i', 0.032)
9 #transmission rate of people with no/mild symptoms

10 cfg.add_model_parameter('beta_a', 0.032)
11 #latency rate
12 cfg.add_model_parameter('sigma_e', 0.3)
13 #post-latency rate
14 cfg.add_model_parameter('sigma_p', 0.8)
15 #fraction of infected people with symptoms (severe)

https://github.com/EdoF90/CriticalNodeProblem/tree/develop/gym_covid


16 cfg.add_model_parameter('delta', 0.6)
17 #recovery rate of people with severe symptoms
18 cfg.add_model_parameter('gamma_i', 0.1)
19 #recovery rate of people with no/mid symptoms
20 cfg.add_model_parameter('gamma_a', 0.1)
21 #quarentine rate
22 cfg.add_model_parameter('gamma_q', 0.07)
23 #Cost of doing a unitary test - cost function parameter
24 cfg.add_model_parameter('test_cost', 0.0002)
25 #Penalty for a dead node - cost function parameter
26 cfg.add_model_parameter('death_penalty', 1)
27 #Initial fraction of nodes infecetd
28 cfg.add_model_parameter('fraction_infected', 0.01)
29 #Numer pf tests performed at each iteration
30 cfg.add_model_parameter('B_t',1000)
31 #True positive rate
32 cfg.add_model_parameter("rhotp", 0.95)
33 #False positive rate
34 cfg.add_model_parameter("rhofp", 0.02)
35 env.set_initial_status(cfg)

Initiate the agent and build the Reinforcement Learning model. The trained algo-
rithms used on this document are explained in Section 2.2 in Part V. They are a set
of improved implementations of Reinforcement Learning (RL) algorithms based on
OpenAI Baselines .

1 agent = Agent(env)
2 # If the environment don't follow the interface, an error will be thrown
3 check_env(env, warn=True)
4 # build the RL training model
5 model = A2C("MlpPolicy", env, verbose=1)
6 # define the number of simulation steps and train it
7 time_steps = int(10000)
8 model.learn(time_steps)

Once that the RL model has been trained, run a simulation are taken accordingly
with wath the RL model has learn by interacting with the environment. First of all,
you need to call the function env.reset() whenever a new simulation starts, if
not the environment will start as the environment on the last step of the previous
simulation. Define the number of simulation time steps (analogue to real days) al-
though the simulation will stop if done is True, that is, if there is no infected people
in two consecutive steps. You also need to create and object system_status to
store the information of the network at each step

1 system_status = []
2 #reset the environment and set the initial state as the initial observation
3 observation = env.reset()
4 for _ in tqdm.tqdm(range(0, iters)):
5 #the model decides and action based on the previous iteration
6 action, _states = model.predict(observation)
7 #run a step of the simulation with the action selected by the model
8 observation, reward, done, info = env.step(action)
9 #Store the information of each iteration

10 stem_status.append(info)n



11 print("obs=", observation, "action=", action, "reward=", reward, "done=", done)
12 #if done is True (there is no infected people in two consecutive time steps)

finish the simulation
13 if done:
14 break

Finally visualize the diffusion trends given by the simulation. They are done through
a self-developed class that inherits the DiffusionTrend class in NDLIB. You can
select the trends that you want to plot by specifying the statuses as a parameter in
both methods env.build_own_trends and DiffusionTrend2

1 iterations = system_status
2 trends = env.build_own_trends(iterations, [1,2, 3, 4,6,7])
3 viz = DiffusionTrend2(env, trends, ["Exposed" , "Presymptomatic","Infected", "

Asymptomatic", "Quarentized", "Dead"])
4 p = viz.plot(width=900, height=500)
5 show(p)

You can also build the evolution in time of the Reproduction number estimated on
the number of people infected

1 trends = env.build_trends(iterations)
2 env.get_reproduction_number(trends)
3 viz = DiffusionTrend1(env, trends)
4 p1 = viz.plot(width=900, height=500)
5 show(p1)



Diffusion Model

The diffusion model implemented is a class inherited from the parent class Dif-
fusionModel from NDLIB. Also note that the diffusion model in the gym_covid
repository acts as a RL environment, so it also is a child of the Env class from
OpenAI gym package. In this document we have presented two different diffusion
models, a simple SIR model and the extended SEPIA model. In this section we will
explain how a SEPIA object works so an easier model can also been easily under-
stood.

Also note that in this section we are explaining only the Diffusion model, if you
want to use it as a RL environment please refer to the next section

As every Python class, first step is to define the __init__ method and the self
parameters, the most important are the possible states of the network and the
parameters of the network which are defined in the Configuration object in
main.py.

1 def __init__(self, graph, seed=None):
2 """
3 Model Constructor
4 :param graph: A networkx graph object
5 """
6 super(__class__, self).__init__(graph, seed)
7 self.available_statuses = {
8 "Susceptible": 0,
9 "Exposed": 1,

10 "Presymptomatic": 2,
11 "Infected": 3,
12 "Asymptomatic": 4,
13 "Recovered": 5,
14 "Quarentized": 6,
15 "Dead": 7
16 }
17 self.parameters = {
18 "model": {
19 "beta_p": {
20 "descr": "transmission rate of post-latent people",
21 "range": [0, 1],
22 "optional": False},
23 "alpha_i": {
24 "descr": "fatality rate of people with severe symptoms",
25 "range": [0, 1],
26 "optional": False},
27 #The rest of the parameters are not represented for visual commodity reasons
28 },
29 "nodes": {},
30 "edges": {},
31 }
32 self.name = "SEPIA"

The class works as follows: during each simulation iteration all the nodes in the



network are asked to (i) evaluate their current status and to (ii) (eventually) apply
a matching transition rule. The iterations are called through the abstract method
iteration(self) from inherited class Diffusion model or through step(self,
action) if the models acts also as a RL environment.

These methods first check if the actual iteration is the first or not. If it is the
first step, the centrality according the most important nodes is called and stored
in the buffer. It is only called once as the topology of the network will not vary
during the simulation. The buffer is a circular buffer which store at the end of the
buffer the nodes that have already been checked, in order to not to test always the
same nodes.

1 #creates a dictionary with all the nodes and their statuses
2 actual_status = {node: nstatus for node, nstatus in future.utils.iteritems(self.status

)}
3 #check if it is the first iteration
4 if self.actual_iteration == 0:
5 #Ranks the nodes in order of importance according the defined centrality
6 centrality = self.nodes_to_check()
7 self.node_buffer = centrality.copy()
8 self.buffer_capacity = len(self.graph.nodes)
9 self.actual_iteration += 1

10 delta, node_count, status_delta = self.status_delta(actual_status)
11 #stores the information of the network at iteration 0
12 if node_status:
13 return {"iteration": 0, "status": actual_status.copy(),
14 "node_count": node_count.copy(), "status_delta": status_delta.copy(),
15 "cost":0, "centrality": centrality.copy()}

If it is not the first iteration, then all the nodes in the network are asked to (i)
evaluate their current status and to (ii) (eventually) apply a matching transition
rule, the transition rules are ruled by the Dynamic equations presented in PartIV.

1 for u in self.graph.nodes:
2 #check the status of the node
3 u_status = self.status[u]
4 #calculate a random number which will be compared against the transmision rates to

decide the transition of the node
5 eventp = np.random.random_sample()
6 #calculate the neighbors of the node
7 neighbors = self.graph.neighbors(u)
8 if self.graph.directed:
9 neighbors = self.graph.predecessors(u)

10 #check if the status of the node is 0 ("Susceptible")
11 if u_status == 0:
12 #check how many of the neighbors are infectious, that is, are Presymptomatic.

Asymptomatic or Infected
13 presympt_neighbors = [v for v in neighbors if self.status[v] == 2]
14 sympt_neighbors = [v for v in neighbors if self.status[v] == 3]
15 asympt_neighbors = [v for v in neighbors if self.status[v] == 4]
16 #estinmate the exposure rate
17 exposure_rate = 1- ((1 - self.params['model']['beta_p']) ** len(

presympt_neighbors) * (1 - self.params['model']['beta_i']) ** len(sympt_neighbors)

* (1 - self.params['model']['beta_a']) ** len(asympt_neighbors))



18 # check if the node are selcted to be tested, test it and if is a false
positive quarantine it

19 if u in nodes_to_test and eventp < self.params['model']['rhofp']:
20 actual_status[u] = 6 #Quarentized
21 #check if the status of the node is 1 ("Exposed")
22 elif u_status == 1:
23 # check if the node must be tested, test it and if is a false positive

quarantine it
24 if u in nodes_to_test and eventp < self.params['model']['rhofp']:
25 actual_status[u] = 6 #Quarentized
26

27 else:
28 if eventp < self.params['model']['sigma_e']:
29 actual_status[u] = 2 #Presymptomatic
30 #check if the status of the node is 2 ("Presymptomatic")
31 elif u_status == 2:
32 # test the node if applicable, presympt nodes could infect other nodes and can

test positive
33 if u in nodes_to_test and eventp < self.params['model']['rhotp']:
34 actual_status[u] = 6 #Quarentized
35 else:
36 if eventp < self.params['model']['sigma_p']:
37 symptp = np.random.random_sample() #probability of being symptomatic
38 if symptp < self.params['model']['delta']:
39 actual_status[u] = 3 #symptomatic
40 else:
41 actual_status[u] = 4 #Asymptomatic
42 #The rest of the statuses are omitted in this document for simplicity

Once that all the nodes have been checked, increase the number of the iteration
and return the information of this iteration

1 done = self.done()
2 if node_status:
3 return {"iteration": self.actual_iteration - 1, "status": delta.copy(),
4 "node_count": node_count.copy(), "status_delta": status_delta.copy(), "

confirmed_cases": nodes_exposed}
5 else:
6 return{"iteration": self.actual_iteration - 1, "status": {},
7 "node_count": node_count.copy(), "status_delta": status_delta.copy(), "

confirmed_cases": nodes_exposed}

There are two other methods that you need to configure, the done() to check
if the simulation must ends if there has been two consecutive simulation steps
with no nodes infected and the nodes_to_check() to ranks the nodes in order of
importance according to the centrality selected.
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