
POLITECNICO DI TORINO

Master’s Degree in Electronics Engineering

Master’s Degree Thesis

Functional test solutions for delay faults
in CPUs

Supervisors

Prof. Matteo SONZA REORDA

Prof. Riccardo CANTORO

PhD. Sandro SARTONI

Candidate

NIMA KOLAHIMAHMOUDI

October 18, 2022

“If you don’t like where you’re heading,
there’s no shame in going back

and changing your path!”

ii

Abstract

New advanced semiconductor technologies are increasingly adopted in critical
applications. Such technologies are extra complex and sophisticated, leading to
more frequent physical defects and reduced operative lifetime. Most of these defects
are tested by targeting delay faults, such as transition delay faults (TDFs). By
detecting these defects, it is possible to have more reliable applications. The
presented thesis work focuses on the functional test for transition delay faults
(TDFs) and investigates for possible solutions. In order to perform functional test
on integrated circuits, Self-test Libraries (STLs) is one of the widely used technique.
These libraries, guarantee that processor behaves correctly, during its period of the
operative lifetime. Concerning the development of the STLs for stuck-at faults, a
significant amount of the efforts required by test engineers. Moreover, developing
libraries for delay faults are even more formidable.

The proposed method, aims automation of the development of the STLs, target-
ing TDFs, using the available STLs for stuck-at faults (SAFs). Moreover, it relies
on identification of the transition delay faults which, are excited but, not observed.
Then, adds apt instructions which may observe and detect transition delay faults.

The main target of the proposed method, is the faults reached to flip-flop in the
digital circuit. These flip-flops are divided in two main groups:

• User Accessible Registers (UARs): These registers can be accessed directly via
CPU’s instruction set, therefore faults reach to these locations can be observed
through CPU’s instruction set. For instance, for the faults propagated to the
register file, the proposed approach is to insert a store instruction right after
its observation in the register file.

• Hidden Registers (HRs): All other registers that cannot be observed through
CPU’s instruction set, fall within the Hidden registers. These registers are
deeply embedded in the processor core, either belonging to pipeline registers or
inner sub-modules, which makes particularly hard to propagate faults observed
in these locations to the primary outputs of the digital circuit. In this thesis
work, to detect the faults propagated to hidden registers, the applied method
is to insert instructions that are in charge of the propagation of the SAFs from
HRs to primary outputs, in a specific part of the STL code where TDF is
observed in.

The results of the test performed on a RISC-V processor shown in tables 1 and
2, illustrates that, the method is adequate to systematically detect a significant
percentage of the targeted faults using reasonable computational effort and test code
size increase. Specifically, the proposed method is adequate for faults propagated to
the UARs. In a brief gander to table 2, it is observable that, by adding instructions
maximum of 6.34 kBytes in size to STL code, it is possible to detect at least 98.76
% of the faults propagate to the UARs. However, in table 1, it is observable that,
the applied methods are not as adequate as the employed methods for UARs. It
is possible to improve the number of the detected faults up to 15.34 % by adding
only 0.92 kBytes in size to the STL code.

Table 1: Analysis on detected HR faults

STL1 STL2 STL3
Detected HRs 643 183 608
Total HRs 6,741 3,599 3,955
%Detected HRs 9.54 5.08 15.37
Code size [kB] 2.60 0.92 0.92

Table 2: Analysis on detected UAR faults

STL1 STL2 STL3
Detected UARs 6,578 23,912 2,864
Total UARs 6,591 23,922 2,900
%Detected UARs 99.80 99.96 98.76
Code size [kB] 6.34 4.17 3.53

ii

iii

Acknowledgements

In the first place, I’m grateful for the given opportunity by professor Matteo Sonza
Reorda. Also, I’m grateful for the comprehensive support from professor Riccardo
Cantoro, and Sandro Sartoni during the period of this thesis work.

In the following, I’m happy for getting to know friends in Turin. When I arrived
in this beautiful city, I didn’t know anyone. Now, after 3 years I have very kind
friends and colleagues, both in the place I live and in the CAD group and Lab3 I
worked during my thesis activities. I’d like to thank Juan David and Esteban for
all their help without any expectations.

I have a special thanks to my parents Ahmad and Marziyeh, my dearest sister
Ayda, my grandparents, and my uncles for believing in me, and supporting me
endlessly in every single stage of my life.

Finally, I’d like to keep alive memories of my beloved aunt Akram and uncle
Morteza, who are no longer with me and I wished them to be alive and make them
happy about my achievements. May they rest in peace.

i

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1

2 Background 4
2.1 Testing Fundamentals . 4

2.1.1 Stuck-at Fault (SAF) Model 5
2.1.2 Delay Faults . 5

2.2 Automatic Test Pattern Generator 9
2.2.1 Fault Management . 9
2.2.2 Test Pattern Generator . 12

2.3 Scan Design . 14
2.3.1 Full Scan . 15
2.3.2 Multiple Chain . 17

2.4 Functional Testing . 18
2.4.1 Software-Based Self-Test(SBST) 19

2.5 Related Work . 20
2.6 Commercial Tool Features . 22
2.7 PULPino . 25

3 Methodology 28
3.1 Introduction . 28
3.2 Description . 28

iii

3.2.1 User Accessible Register fault 29
3.2.2 Hidden Register faults . 31

3.3 Analyzing Fault Dictionaries . 33
3.3.1 Parsing fault dictionary . 34

4 Experimental Results 42
4.1 Case Study and Setup of the Experiments 42

4.1.1 Case Study . 42
4.1.2 Setup of the Experiments: 43

4.2 Results of Algorithms . 49

5 Conclusions 53

Bibliography 54

iv

List of Tables

1 Analysis on detected HR faults . ii
2 Analysis on detected UAR faults ii

4.1 STLs general information . 43
4.2 Analysis on detected UAR faults 50
4.3 Analysis on detected HR faults . 50
4.4 Sub-modules analysis for the adopted STLs 51

v

List of Figures

2.1 Stuck-at fault propagation example 6
2.2 Stuck-at fault reconvergence example 6
2.3 Transition Delay Fault example . 7
2.4 Path Delay Fault example . 9
2.5 ATPG Architecture . 10
2.6 Example of Untestable fault . 11
2.7 Classification of the faults based on their testability 11
2.8 Faults equivalence example . 12
2.9 Test vector generation, flowchart . 13
2.10 Huffman scheme for sequential circuit 15
2.11 Scan circuit . 16
2.12 Test mode of the scan circuit . 16
2.13 Test mode of the multiple chain scan circuit 17
2.14 Test Generation Flow . 21
2.15 ZO1X fault dictionary example. 25
2.16 PULPino RISCY core[39] . 27

3.1 Single-cycle instructions and fault effects propagation 30
3.2 Multi-cycle instructions and fault effects propagation 31
3.3 Transition Delay Faults propagation to the observation points . . . 34
3.4 Fault dictionary analysis . 34
3.5 Fault dictionary analysis for finding observation location. 35
3.6 Strobe List example. 36
3.7 Dictionary made by the written tool and its format 38

vi

4.1 Simulations flowchart. 49

vii

Chapter 1

Introduction

New advanced semiconductor technologies are increasingly adopted in emerging
applications, thanks to their enhanced working frequencies and computational
capabilities. Such technologies, however, are extremely complex and sophisticated,
leading to more frequent physical defects and reduced operative lifetime. Testing
integrated circuits (ICs), hence, is of paramount importance. Most of these defects
are tested by targeting not only static, but also dynamic defects, often modeled
as delay faults, i.e., faults that affect the timing behavior of the device under test
(DUT), such as transition delay faults (TDFs) or path delay faults (PDFs).

Testing integrated circuits can be done using two different approaches. The
most common one relies on the adoption of Design-for-Testability (DfT) solutions,
which usually require the usage of additional hardware modules such as Logic BIST
or scan chains. Such modules are integrated within the DUT and are employed
to apply test vectors and monitor the circuit’s response to the aforementioned
vectors. Although based on mature technology and supported by most EDA tools,
such solutions impose non-negligible timing and area overheads that could degrade
performances. Moreover, functionally untestable faults[1] (FUFs), i.e., faults whose
effects can never be observed within functional scenarios, will possibly be detected,
leading to a phenomenon known as overtesting, which leads to a yield loss. These
issues can be overcome by adopting another testing solution, namely functional
testing. In the form of Software-Based Self-Test (SBST), functional testing[2, 3] is
based on the execution of a set of Self-Test Libraries (STLs) by the DUT[4].

1

Introduction

The results, produced by the test programs are compacted into a signature that
is compared against the golden circuit’s one to look for the presence of structural
faults. This approach has been proved effective both when processor cores[5, 6, 7,
8, 9, 10, 11, 12] and peripherals[13, 14, 15, 16] are tested, and several companies
provide STLs for their products [17, 18, 19, 20]. SBST is a desirable solution for
in-field testing, i.e., when the device’s reliability and safety has to be guaranteed
throughout the operative lifetime. SBST is reliable, cheap, and flexible — STLs
can be developed such that they fit the idle slots of the application run by the
DUT, hence avoiding any service interruption. Thanks to these properties, SBST
can be successfully used whenever compliance to standards such as the ISO26262
standard for automotive systems is required[4].

However, developing STLs from scratch is not a trivial task, more so when
targeting delay faults on complex devices. For test programs to achieve high fault
coverage figures, they must be able to excite as many faults as possible from the
whole DUT and make their effects observable at primary outputs (POs) by using
instructions from the system’s instruction set architecture, only [21]. Achieving this,
requires a non-negligible amount of manual effort by the test engineer. Moreover,
when fault reports are available, understanding why certain faults are not detected
(possibly isolating the contribution of FUFs) is not always easy. The work in [22]
moves the first step in classifying not-observed transition delay faults, giving some
insights on where these fault effects propagated and stopped and defining some
upper boundaries on how much the final TDF coverage can be increased.

In this thesis work, an automatic and systematic methodology to increase the
TDF coverage of STLs is proposed, by detecting faults identified in [22] on complex
pipelined processor cores, starting from a set of test programs devised for stuck-at
faults (SAFs). This feature is achieved by dividing such faults into two main groups
- namely, User Accessible Register (UAR) and Hidden Register (HR) faults - and
deploying appropriate strategies. Transition delay fault model is chosen over the
path delay one because TDFs are much better supported by both standards and
EDA tools than PDFs. The main contributions of this work are:

• A set of techniques able to identify which instructions are capable of detecting
not-observed transition delay faults;

2

Introduction

• A test flow able to automatically add the previously identified instructions
into the right place within existing STLs to improve the final fault coverage;

• Data on how much overhead is added to the original STL after its enhancement.

This approach is validated on a RISC-V core, using available commercial tools and
a set of pre-existing STLs targeting SAFs. The reported results show that it is
possible to detect most of the aforementioned transition delay faults (increasing
the TDF coverage by up to 15%) with a reasonable test time increase (from 15 %
to 22%) and computational effort[4].

The thesis work document is organized as follows: in chapter2, a background on
the transition delay fault model and related works is outlined, while in chapter3,
the proposed approach is described. In chapter4, the experimental results are
presented and, finally, in 5 the conclusions are drawn.

3

Chapter 2

Background

This chapter presents, fundamentals of the testing, different fault models and
testing methods for sequential and combinational circuits.

2.1 Testing Fundamentals

A test is a procedure which allows one to distinguish between good and bad parts.
This can be done with a test which detects faults. [23]
A fault is present in the system when there is a physical difference between the
‘good’ or ‘correct’ system and the current system. [23]
There is an error in the system (the system is in an erroneous state) when its state
differs from the state in which it should be in order to deliver the specified service.
An error is caused by a fault.[23]
A system failure occurs or is present when the service of the system differs from
the specified service, or the service that should have been offered. In other words:
the system fails to do what it has to do. A failure is caused by an error.[23]
In order to distinguish a defect, it is crucial to model fault into a tangible parameter.
Specifically in digital systems, models can manoeuvre on the binary structure of the
digital design. Two of the widely used fault models are: 1)Stuck-at Faults(SAFs)
2)and Delay Faults(DFs).

4

Background

2.1.1 Stuck-at Fault (SAF) Model

In structural testing, it is necessary to make sure that the interconnections in the
given structure are fault-free and are able to carry both logic 0 and 1 signals. The
stuck-at fault (SAF) model is directly derived from these requirements. A line is
said to be stuck-at 0 (SA0) or stuck-at 1 (SA1) if the line remains fixed at a low or
high voltage level, respectively (assuming positive logic).[23] For instance, in figure
2.1, in order to excite and propagate the stuck-at 1 fault in f, which is output of
the AND gate and input of the NOR gate to the output which is g and make the
fault observable, following considerations need to be taken:

• In order to excite the SA1 fault at f, it is necessary to assume that f has value
of 0.

• To have the 0 in f, the output of the and gate with c and d as inputs, has to
be 0. Thus, c or d have to be 0 and as it is an AND gate, when one input of
the gate is 0, regardless of the other input, the output value is 0.

• For propagation of the fault from f to g, the value of e, must not force the
output of the NOR gate. Thus, the value of e has the be 0.

• In order to have the value of the 0 at e, the output of the AND gate which,
has a and b as two inputs, has to be 0. Therefore, a or b have to be 0 and
as it is an AND gate, when one input of the gate is 0, regardless of the other
input, the output value is 0.

Input vector values, play a crucial role in fault propagation. For example, in figure
2.2, it is depicted that, by having the 1 as input values for a and b, the output of
the AND gate is 1 and the output of the NOR gate is forced to 0. Thus, no fault
is propagated to the output.

2.1.2 Delay Faults

Instead of affecting the logical behavior of the circuit, a fault may affect its temporal
behavior only; such faults are called delay faults (DFs). DFs adversely affect the

5

Background

Figure 2.1: Stuck-at fault propagation example

Figure 2.2: Stuck-at fault reconvergence example

propagation delays of signals in the circuit so that an incorrect logic value may
be latched at the output. With the increasing emphasis on designing circuits for
very high performance, DFs are gaining wide acceptance.[23] Two types of DF
models are usually used: 1) Transition Delay faults (TDFs) 2)and Path Delay
Faults (PDFs).

6

Background

Transition Delay Faults

A circuit is said to have a Transition delay fault (TDF) in some gate if an input
or output of the gate has a lumped DF manifested as a slow 0 → 1 (Slow-to-rise
STR) or 1 → 0 transition (Slow-to-fall STF)[24], [25]. This fault is also called,
Gate Delay Fault (GDF).
For example, following the circuit depicted in figure 2.3, STR fault is excited at
input of the and gate (a). This fault propagates through the AND gate between a
and b inputs. Then, propagates through NOR gate between e and f and, reaches
to g which is the output of the NOR gate and circuit.
In aforementioned example, input vectors are important. Because, if they are not
chosen correctly, fault may get masked and do not propagate to the output of the
circuit.

Figure 2.3: Transition Delay Fault example

Path Delay Faults

A circuit is said to have a path delay fault (PDF) if there exists a path from a
primary input to a primary output in it which is slow to propagate a 0 → 1(Slow
to Rise STR) or 1 → 0(Slow to Fall STF) transition from its input to its output

7

Background

[26], [27].
For instance, as it is depicted in figure 2.4, the STR fault is propagated in a-d-f
path from input to the output. In order to propagate the mentioned fault to the
output, in this case, it is necessary to keep both b and c inputs high.
Clearly, the PDF model is the more general of the two models as it models the
cumulative effect of the delay variations of the gates and wires along the path.
However, because the number of paths in a circuit can be very large, the PDF
model may require much more time for test generation and test application than
the TDF model. [23]

8

Background

Figure 2.4: Path Delay Fault example

2.2 Automatic Test Pattern Generator

Increasing size and complexity of the digital circuits, makes the test vectors manual
generation very difficult and impossible. Thus, having some automatic techniques
to generate test vectors is crucial. Automatic Test Pattern Generation (ATPG)
is the widely used technique for test vector generation. The figure 2.5, shows the
architecture of the ATPG. The architecture comprises of two operative blocks which
are:1) Fault manager 2) and test pattern generator. Fault manager, requires circuit
description in order to generate the fault list. Test pattern generator, needs the
fault list generated by fault manager and using the circuit description, it generates
the test vectors and reports like fault coverage and Untested fault.

2.2.1 Fault Management

This block, generates the fault list and performs three following phases to reach
to final list: 1) Untestable fault identification 2) and fault collapsing 3) and fault
dominance:

9

Background

Figure 2.5: ATPG Architecture

Untestable Faults

A fault for which no test can be found is called an untestable fault. There are two
classes of untestable faults [28]:

• Functionally Untestable: Faults that are redundant, i.e., whose presence
does not change the input output behavior of the circuit.

• Structurally Untestable: Faults that change the input-output behavior
of the circuit but no test can be found by a given method of testing or test
generation. Initialization faults of sequential circuits belong to this class.

For instance, in the depicted circuit in figure 2.6, in order to propagate the SA0 fault
on c, the value of the b has to be zero. However, this value lets the fault propagate
to e, it causes to have 0 on d and get 0 in the output. Thus, the mentioned fault is
untestable.

In a digital circuit, there are faults and as the complexity increases, the number
of the faults increases too. Among these faults, there are some faults are structurally
untestable and some are functionally untestable. In figure 2.7, it is shown that, the
functionally untestable faults are subset of the structurally untestable faults.

10

Background

Figure 2.6: Example of Untestable fault

Figure 2.7: Classification of the faults based on their testability

Fault Collapsing

Collapsing is based on equivalence relationships or fault dominance. Two faults
of a Boolean circuit are called equivalent iff they transform the circuit such that
the two faulty circuits have identical output functions. Equivalent faults are also
called indistinguishable and have exactly the same set of tests. [28] For example,
in figure 2.8, in an OR gate, SA1 faults of the inputs and output of the gate is the
same. Therefore, if only one of these faults get propagated to the output of the
circuit, other two fault propagate to the output of the circuit too.

11

Background

Figure 2.8: Faults equivalence example

Fault Dominance

If all tests of fault F1 detect another fault F2, then F2 is said to dominate F1. The
two faults are also called “conditionally” equivalent with respect to the test set of
F1. When two faults F1 and F2 dominate each other, then they are equivalent.
[28]

2.2.2 Test Pattern Generator

This block is composed of: 1)An ATPG module 2)and a fault simulation module.
It is the most crucial and time consuming block of the architecture. It performs
following steps:

• Select a target fault among the still undetected ones.

• Launch the ATPG for generating the test set for the target fault.

• Launch the fault simulator to perform fault dropping.

These steps are depicted as a flowchart and it is presented in figure 2.9.

Target fault selection

This step, which is presented in figure 2.9, applies testability measures. Introduction
to the testability is provided in section 2.2.1. The utilized technique for target fault
selection, affects the cost of the whole ATPG process.

12

Background

Figure 2.9: Test vector generation, flowchart

Test set generation

This step, is performed by ATPG. Based on the different fault models and type of
the circuits, it generates one or more test vectors.

13

Background

Fault dropping

Thanks to fault dropping, as soon as a fault is detected, it is removed from the
fault list. Thus, number of the ATPG process calls and number of the faults which,
are simulated each time a new vector is generated, reduces. This step, comprises of
2 sub-steps:

• Fault simulation: It applies the test vector to the circuit and checks if the
fault is propagated to the output or not.

• Removal of detected faults from the untested fault list:

At the beginning of the ATPG step, faults in the fault list are labeled as untested.
Test vector generation procedure finishes when, the untested fault list becomes
empty or the available resources such as, CPU time, memory, etc. are exhausted.
In the end of the procedure, based on the results, faults are labeled as:

• Untestable: The ATPG was able to prove the untestablity. in this case the
fault is eliminated from the fault list used by the fault simulator and ATPG.

• Tested: A test vector is generated. In this case the fault is removed from the
same fault list.

• Aborted: Some computational threshold is reached, without generating a test
vector or proving untestability. In this case the fault is removed from the fault
list for the ATPG. But, remains in the fault list of the fault simulator. So, it
can be possibly detected by the test vectors generated later.

2.3 Scan Design

ATPG is powerful for combinational circuits. But, when it comes to sequential
circuits, it fails. Because, observability and controllability through filp-flops require
excessive number of time frames. Moreover, keeping the CPU time reasonable,
demands reducing the backtrack limit, leading to aborting a huge number of faults.
It causes the excessive CPU time for obtaining unsatisfactory fault coverage. The
main idea in scan design is to obtain control and observability for flip-flops. This
is done by adding a test mode to the circuit such that when the circuit is in this

14

Background

mode, all flip-flops functionally form one or more shift registers. The inputs and
outputs of these shift registers (also known as scan registers) are made into primary
inputs and primary outputs. Thus, using the test mode, all flip-flops can be set to
any desired states by shifting those logic states into the shift register. Similarly,
the states of flip-flops are observed by shifting the contents of the scan register
out. All flip-flops can be set or observed in a time (in terms of clock periods) that
equals the number of flip-flops in the longest scan register. [23]

2.3.1 Full Scan

Based on the figure 2.10, a sequential circuit can be modeled as combinational logic
which is connected to flip-flops.

Figure 2.10: Huffman scheme for sequential circuit

After modifying flip-flops into scan flip-flops, the design becomes to a scan
design as it is shown in figure 2.11.

15

Background

Figure 2.11: Scan circuit

Scan circuit has N/T signal which, changes the circuit mode from Normal mode
to Test mode and vice versa. In test mode, as it is depicted in figure 2.12, flip-flops
behave as shift register and they get connected in serial manner. However, in
normal mode flip-flops behave normally and circuit has its normal behavior.

Figure 2.12: Test mode of the scan circuit

16

Background

In order to apply test on the circuit for each ATPG-generated pattern following
steps are taken:

• Uploading serially the PPI values to the circuit in test mode, using the Scan-In
pin.

• Applying the PI values

• Changing the circuit mode to normal and clock it

• Observing the PO values

• Downloading and observing serially the PPO values from Scan-Out pin in test
mode.

2.3.2 Multiple Chain

When all the FFs are in a single chain, the test time increases with the number of
the FFs in the circuit. The majority of the time spent is related to scan operations.
But, by using multiple scan chains, test time can be reduced. Thus, in every clock
cycle it is possible to load bits concurrently as the number of the scan chains. As
it is presented in figure 2.13, FFs are divided in two chains and instead of spending
5 clock cycles to load PPI values, 3 clock cycles is required.

Figure 2.13: Test mode of the multiple chain scan circuit

17

Background

2.4 Functional Testing

Functional test can be introduced in two different ways [29]:

• A performed test which, acts on the functional inputs and observes the
functional outputs and it doesn’t resort to any kind of Design for Testability
(DfT).

• A developed test, only based on the functional information about the module
under test. Thus, it targets testing the functions rather than the faults.(Black
box testing)

The mentioned definitions above, indicate how the test is applied and how the
test is generated, respectively. Nowadays, functional test is very frequently a used
step in the test of the integrated circuits. Because, it covers defects which, are not
covered by other kind of tests.
Functional test is used in following fields:

• End of manufacturing test: This test, is performed by Automated Test Equip-
ment (ATE). There are limited constraints on input and output constraints.
Moreover, structural information are usually available.

• Incoming inspection: However, for inspection structural data may not be
available, the test is performed using an ATE and there are limited constraints
on input and output signals.

• In-field (or on-line) test: For In-field test there are several constraints on
input and output signals and the test cannot be performed using an ATE. In
addition, structural data may not be available.

Functional test, for System on Chips (SoCs) is performed by providing a program
to be executed and some data to work on to the internal processor. Then, the ATE
forces the processor to execute the program on the input data. As last step, ATE
observes the produced results.

18

Background

2.4.1 Software-Based Self-Test(SBST)

The key idea of SBST is to exploit on-chip programmable resources to run nor-
mal programs that test the processor itself. The processor generates and applies
functional-test patterns using its native instruction set, virtually eliminating the
need for additional test specific hardware. (Test-specific hardware such as scan
chains might exist in the chip, but SBST normally does not use this hardware.)
Also, the test is applied at the processor’s actual operating frequency. A typical
flow for an SBST application in a microprocessor chip comprises the following three
steps [30]:

• Test code and test data are downloaded into processor memory (i.e., either the
on-chip cache or the system memory). A low-cost external tester can perform
test code and data loading via a memory load interface running at low speed.

• The processor executes test programs at its own actual speed. These test
programs act as test patterns by applying the appropriate native instructions
to excite faults. The test code loads two patterns and adds them to excite
a fault in the adder module. Finally, the test code stores the test responses
back in the processor data memory to propagate the faults. When the test
process is supported only on the on-chip cache, the self-test program must be
developed so that no cache misses occur during SBST execution. Hence, this
is sometimes called cache-resident testing.

• Test responses are uploaded into the tester memory for external evaluation.

The renewed interest in SBST during the past decade was primarily motivated by
the existence of two opposite trends: the increasing cost of functional testers was
impelling vendors toward structural test techniques such as scan, while the doubts
about the effectiveness of the structural-test patterns and the significant yield
loss due to overtesting was moving them toward functional testing. Consequently,
the emerging approach of SBST (in which normal, functional-test programs use
low-cost structural testers to access the microprocessor chip) gained ground as
a way to improve processor testing by combining the benefits of the functional-
and structural-testing worlds. The question is whether a test program running on

19

Background

the processor can adequately test its modules by satisfying the industry-standard
high-fault-coverage requirements. Achieving this test-quality target requires a
composite test-program-generation phase, which is the main subject of most SBST
approaches described in the literature during the past decade [30]. The other SBST
features that confirmed its role in the microprocessor test flow include the following:

• It is non intrusive. SBST does not need any extra hardware, which sometimes
could be unacceptably expensive for carefully optimized circuits such as
microprocessors. Moreover, it does not consume any extra power compared to
normal operation mode.

• It allows at-speed testing. Test application and response collection are per-
formed at the processor’s actual speed, enabling screening of delay defects
that are not detectable at lower frequencies.

• It avoids overtesting. SBST avoids test overkill and, thus, detection of defects
that will never be manifested during normal processor operation. This leads
to significant yield gains.

• It can be applied in the field. Self-test programs from manufacturing test
can be reused in the field throughout the product lifetime. For example, for
power-up diagnostics to add dependability features to the chip.

2.5 Related Work

The development of test programs for delay faults through a SBST approach has
been faced by some works describing methodologies to do so[7, 9, 11]. Regarding
TDF specifically, [22] introduces a study on transition delay faults of modern
pipelined CPUs that have not been observed throughout the execution of STLs
targeting SAFs, focusing on where their effects propagated and stopped inside the
DUT.[4] The article, introduces two fault groups:

• User Accessible Registers (UARs): Effects reached registers that can
be directly observed through instructions from the CPU’s instruction set
architecture, e.g., the register file [4].

20

Background

• Hidden Registers (HRs): Register which, cannot be accessed directly
through available instructions.

The work in [22] provides some useful insights on which faults to target in order
to improve the final fault coverage. Moreover, it gives an upper limit on the final
transition delay fault coverage improvement.
The article, proposes a systematic methodology that, given test programs already
developed for SAFs, allows to pinpoint code regions within the STL to be modified
to increase transition delay fault coverage in complex pipelined processor cores.
Given three test programs, namely STL1, STL2 and STL3, [22] presents that it is
possible to increase their fault coverage by, relatively, 9.15, 17.85 and 8.96 percentile
units. This work, however does not provide strategies to detect them, which is the
goal of this thesis[4].
The work [13] describes STL development strategies for peripherals embedded in
modern System on Chips, achieving significant fault coverage figures. Figure 2.14,
depicts the flow designed and followed for test generation in [13].

Figure 2.14: Test Generation Flow

Works [5, 6], on the other hand, focus on the development of test programs for

21

Background

processor cores. [5] describes a methodology to test delay faults on computational
blocks within superscalar processors, while [6] aims at testing RISC-like CPUs by
dividing them into modules under test and devising test strategies for each of these
modules without the need of knowing implementation details[4].
Finally, [31] presents a reinforcement learning-based test program generation tech-
nique for TDFs validated on a MIPS32 core. Although effective, showing that
it is possible to thoroughly test delay faults through functional means, all these
works require the generation of test programs starting from scratch, a task that
requires non-negligible time and effort from test engineers. [31], moreover, requires
the usage of a reinforcement learning algorithm, which might not be particularly
effective when tackling high-complexity cores[4].
Articles like [32, 33, 34] focus on the improvement of available programs to reach
high fault coverage values. [32] describes how to derive test patterns intended
for online testing starting from programs originally intended for verification pur-
poses, significantly increasing the final coverage of stuck-at faults on a RISCV core.
Works [33, 34], on the other hand, present a tool based on High-Level Decision
Diagrams (HLDDs) for modeling microprocessors and faults, used in conjunction
with previously prepared code templates to generate the final self-test program
targeting stuck-at faults.
These works show that methodologies for improving test programs can be success-
fully devised. Nonetheless, they are developed bearing the classical stuck-at fault
model in mind.
The goal of this thesis is to propose some techniques allowing to automate the
transformation of existing STLs targeting SAFs so that the resulting TDF coverage
is improved[4].

2.6 Commercial Tool Features

In this thesis work, in order to perform simulations and experiments and derive
fault information needed to apply algorithms and methodologies defined in section
3, commercial tools such as ZO1X[35], ModelSim[36] and Design Compiler [37] are
utilized. Given the introduction in section 2.2.2, for circuit description, three files
are required by ZO1X tool:

22

Background

• Digital circuit description in hardware description language(HDL): Digital
circuit design can be presented in any HDLs and the circuit is usually defined
in VHDL or Verilog languages. The ZO1X using the circuit design, generates
the fault list.

• Value Change Dump (VCD) file: This file, is standard for EDA tools and it is
generated by simulating the circuit using the ModelSim. This file contains
simulation values of the circuit. It comprises of 5 main sections:

– Header section with date, simulator and timescale information.

– Variable definition section.

– Value change section.

In listing provided in 2.1, there is a simple example of the VCD file.

23

Background

Listing 2.1: Basic example of VCD file
1 $date
2 Date text . For example : September 11 , 2022 .
3 $end
4 $ve r s i on
5 VCD generator t o o l v e r s i on i n f o t ext .
6 $end
7 $comment
8 Any comment text .
9 $end

10 $ t imes ca l e 1ps $end
11 $scope module l o g i c $end
12 $var wire 8 # data $end
13 $var wire 1 $ data_val id $end
14 $var wire 1) underrun $end
15 $upscope $end
16 $ e n d d e f i n i t i o n s $end
17 $dumpvars
18 bxxxxxxxx #
19 #267
20 0 ’
21 #476
22 b0 #
23 1$
24 #1245
25 0$
26 #1893
27

• Strobe file: This file, is used to define observation points in the circuit and
based on the locations in the processor where, faults propagate to, faults
get labeled. For instance, all faults can be labeled as not detected at the
beginning and when, faults propagate to UAR or HR locations, get labeled as
HR or UAR accordingly. In the end, if they reach to primary outputs they
get labeled as detected. Surely, if a fault propagates to the primary outputs,
there is no need to keep the previous label of the fault. This file, is written in
systemverilog hardware description language.

24

Background

The output of the ZO1X tool is the fault dictionary which, reports the label of
the fault and time of the observation, the exact location of the fault and the type
of the fault (STR or STF). In figure 2.15, one example of the fault dictionary is
provided.

Figure 2.15: ZO1X fault dictionary example.

2.7 PULPino

The applied methodologies in this thesis work, are performed, tested and validated
on the PULPino architecture. PULPino is an open-source single-core microcontroller
system, based on 32-bit RISC-V cores developed at ETH Zurich. PULPino is
configurable to use either the RISCY or the zero-riscy core[38]. For the work of this
thesis, the RISCY configuration of the PULPino is used. This core has following
specifications which are mentioned in [38]:

• In-order execution

• Single issue core

• 4 pipeline stages

• Full support for following instruction sets:

– base integer instruction set (RV32I)

– compressed instructions (RV32C)

– multiplication instruction set extension (RV32M)

• Configurable to have single-precision floating-point instruction set extension
(RV32F)

25

Background

It is able to implement several Instruction Set Architecture (ISA) extensions such
as:

• Hardware loops

• Post-incrementing load and store instructions

• bit-manipulation instructions

• MAC operations

• Support fixed-point operations

• Packed-SIMD (Single Instruction stream, Multiple Data stream) instructions

• Dot product

RISCY has been designed to increase the energy efficiency of in ultra-low-power
signal processing applications. It also, implements a subset of the 1.9 privileged
specification.
On the other side, zero-riscy is an in-order, single-issue core with 2 pipeline stages
and it has full support for the base integer instruction set (RV32I) and compressed
instructions (RV32C). It can be configured to have multiplication instruction set
extension (RV32M) and the reduced number of registers extension (RV32E)[38].
For communication with the outside world, PULPino contains a broad set of
peripherals, including I2S, I2C, SPI and UART. The platform internal devices can
be accessed from outside via JTAG and SPI which allows pre-loading RAMs with
executable code. In standalone mode, the platform boots from an internal boot
ROM and loads its program from an external SPI flash[38].
Pulpino RISCY core design is depicted in the figure 2.16.

26

Background

Figure 2.16: PULPino RISCY core[39]

27

Chapter 3

Methodology

3.1 Introduction

This thesis work mainly stems from an empirical observation: STLs targeting
stuck-at faults often fail in achieving a high TDF coverage because of their inability
to propagate TDF effects up to some observable point.
By improving the ability of an STL to propagate TDF effects we could significantly
increase its TDF coverage. Detecting transition delay faults that were excited
but not observed by STLs requires some considerations on where their effects
propagated and stopped within the DUT.
The reason for doing so lies in the fact that, in order to detect the aforementioned
faults, we need to propagate their effects towards observable points (e.g., memory
locations) and strategies for such task may vary based on the functional sub-module
from which the propagation occurs[4].

3.2 Description

Given the introduction, in this work the beginning points are two main categories
of internal observation points are introduced in [22], i.e., User Accessible Registers
(UARs) and Hidden Registers (HRs), and define some internal observation points
to be used during simulation to further refine the topological analysis about fault
effects. Inserting observation points is done by exploiting capabilities offered

28

Methodology

by available commercial fault simulation tools. Such task does not require the
modification of the DUT’s hardware as they are simply labels that the tool attaches
to the netlist. To each label a fault status is associated, and the hierarchy of the
statuses can be customized to make sure that locations closer to the primary outputs
of the architecture are prioritized. As a further step, this thesis work describes how
to introduce suitable instructions in the STL code, so that for each group of faults, a
significant percentage of them is made observable, and hence detected[4]. Moreover,
this work describes how to extract the information required to extract from fault
dictionaries of the commercial tool, in order to extract aforementioned instructions
in the STL code. In the following, we discuss strategies for the aforementioned two
main fault categories.

3.2.1 User Accessible Register fault

User Accessible Register faults, are faults whose effects have been propagated from
the original fault site to registers that, can be directly observed through instructions
from the instruction set architecture.

Being able to directly access these registers’ content through instructions helps
the test engineer to make faults effects observable at the primary outputs. In order
to detect such faults, first the fault data base produced at the end of the fault
simulation where internal observation points have been added, has to be analyzed.
Such data base stores information on which faults have been observed at any given
internal observation point at some specific time instant[4].

This helps to obtain topological information, i.e., what register has to be worked
on, as well as chronological information, i.e., what portion of the test program has
to be improved. The latter is possible since we are able to associate instructions
being executed by the CPU to the simulation time reported in the dictionary.

When analyzing the time at which fault effects reached user accessible registers,
it is crucial to keep in mind that, in modern in-order pipelined processor cores,
there are instructions that take more than one clock cycle to go through the CPU
execution stage, e.g., division operations.

These instructions — from hereinafter referred to as multi-cycle instructions, as
opposed to single-cycle instructions that only take one cycle in figure 3.2. Multi-
cycle instructions and fault effects propagation the execution stage — should be

29

Methodology

carefully taken into account, as the fault effect might be overwritten during the
required execution cycles.

For instance, given an instruction that takes 4 clock cycles to go through the
execution stage, a situation similar to the one reported in figure 3.2, may occur,
where the fault effect is propagated at an inner cycle only to be overwritten later,
losing the possibility of observing the faulty value. For this reason, two strategies
depending on whether single-cycle or multi-cycle instructions are dealt with, are
introduced:

• Single-cycle instructions: Detecting these faults is quite easy, as it is sufficient
to perform a store operation on the register affected by the faulty value after
the time at which said effect reached the register, and before the register is
overwritten by another operation[4].

Figure 3.1: Single-cycle instructions and fault effects propagation

• Multi-cycle instructions: If the fault effect is still present at the last execution
cycle the same strategy adopted for single-cycle instructions is used, else the
operands of the multi-cycle instructions are modified — either arithmetical
or logical operations — to ensure that the faulty value reaches the register
towards the end of the execution stage, so that it can be observed through a
store instruction. As it is demonstrated by the gathered experimental results,

30

Methodology

identifying suitable operands for this purpose is a feasible task, which can
often performed following a try-and-error approach[4].

Figure 3.2: Multi-cycle instructions and fault effects propagation

3.2.2 Hidden Register faults

All those faults whose effects reach registers that cannot directly observed through
instructions fall within the Hidden Register faults group. These registers are
deeply embedded inside the processor core, either belonging to pipeline registers or
inner sub-modules, which makes particularly hard to propagate values from those
locations to either primary outputs or user accessible registers (in this case the
techniques described in the previous sub-section can then be adopted).

The proposed strategy to detect these faults, starts off similarly to Section 3.2.1,
that is, by analyzing the fault data base to extract information on where faults
propagate and stop and at what time instant, i.e., in what portion of the STL,
such events occur.

Given the nature of hidden registers, however, additional analysis are needed
to understand how to detect these faults. In order to do so, we observe that the
process of exciting a transition delay fault and observing its effects in a pipelined
CPU can be decoupled into two sub-processes .

First, a specific pair of test vectors must be applied to generate the required

31

Methodology

Algorithm 1: HR faults detection algorithm
input : A list L of triplets (Fi, Hi, Ti) where

Fi is the transition delay fault to be tested
Hi is the HR bit reached by the fault’s effect
Ti is the time at which the fault effect reached Hi

An STL S that has been developed for SAFs
output : A set of instructions to propagate transition delay fault effects to

primary outputs
foreach (Fi, Hi, Ti) in L do

if S detects Hi’s stuck-at-1 and/or stuck-at-0 faults then
get the time Ts at which the stuck-at fault on Hi is detected;
extract a block B with the last N instructions before Ts from S;
check whether B does not contain jump instructions;
if Fi has been detected by B then

add B to the original program;
end

end
end

transition and propagate it towards an endpoint, may that be a primary output—in
which case the fault is marked as detected — or a register within the processor
core. Secondly, if the fault’s effect reached a register, methodologies to propagate
such effect to primary outputs are employed to detect the fault.

While the first step obviously depends on the fault model and the transition
that we want to generate, the second step does not depend as much on the fault to
be excited, and is just a problem of propagating a value from one point to another.
The aim of this work is to define an automatic way to easily increase the transition
delay fault coverage for STLs that were previously devised for stuck-at faults[4].

Given this group of faults, hence, we define the algorithm summarized in
Algorithm 1.

The basic idea behind this algorithm is that the available STLs may already be
able to test stuck-at-0 and stuck-at-1 faults located in pipeline registers. The code
that serves that purpose, however, can also be used to propagate values from said
locations to primary outputs. This makes for an effortless way to detect transition
delay faults, as we just need to find the appropriate chunk of code and put it right
next to the one that excites the transition delay fault and propagate its effect up
to the relative pipeline register. This operation, however, should not disrupt the

32

Methodology

overall flow of the original test program: for this reason, jump instructions in the
code to be added should be avoided. In the rare case when the TDF propagated to
a bit in a pipeline register, whose corresponding SAFs were still not detected by
the existing STL, methods such as [40] can be used to generate the required chunk
of instructions (improving the SAF coverage as well). A final point that applies to
both User Accessible Register and Hidden Register faults is that, given the right
premises, a set of instructions added to the original test program may be capable
of detecting more than one TDF at the same time. This is only possible for all
those transition delay faults whose effects propagate to the same register at the
same time. Thanks to this feature, it is possible to achieve better fault coverages
with a smaller test program with respect to having a set of instructions for each
fault to be tested.

3.3 Analyzing Fault Dictionaries

As mentioned in the section 2.6, one of the output files of the commercial tool
(ZO1X), is the Fault Dictionary. This file, provides crucial information about
each fault in the digital circuit. These information are: 1)Fault location 2)Fault
observation location which, extracted using strobe and the change in Faulty values
position, 3)fault detection time, 4)label of the fault 5)and type of the fault (STR
or STF).

In order to apply algorithms proposed in section 3.2, it is necessary to parse
this dictionary and extract all required information.

As it is described in section 3.2, the main idea of this methodology is to detect
transition delay faults for the cases in which, as depicted in figure 3.3, a transition
delay fault propagates to an observation point. In this case, observation points
are UARs and HRs therefore, during parsing the fault dictionary, information of
faults which are propagated to target observation points (HRs and UARs), need
to be extracted. As the next step, SAFs of target observation points which are
propagated to the primary outputs of the digital circuit, need to be extracted
and using the detection time, it is possible to find instructions which, possible
propagated the fault to the primary outputs.

33

Methodology

Figure 3.3: Transition Delay Faults propagation to the observation points

3.3.1 Parsing fault dictionary

In order to parse the fault dictionary, and apply the previously mentioned algorithms
in section 3.2, following steps need to be taken:

• First step of parsing fault dictionary, generated for TDFs is to extract the
strobe number of each label. These strobe numbers is given to the tool which,
is written in python, as a dictionary and for each label. For instance, as it
is shown in figure 3.4, in this fault dictionary the strobe3 is allocated to the
Special Registers (SR). Both are shown in green in figure 3.4, also R or F
shown in blue indicates the slow-to-rise or slow-to-fall type of the TDF. The
fault locations are shown in gray.

Figure 3.4: Fault dictionary analysis

• After knowing the fault label, type, detection time and location, it is necessary

34

Methodology

to extract also data related to the fault observation location. The exact
location of the observation point can be extracted from the matrix of Faulty
Machine(FM) and Good Machine(GM) which, is provided above the fault
locations in figure 3.4. The observation locations are the locations in the faulty
machine which are different from the good machine. The locations remained
fault free are indicated in dots and the rest are the faulty ones which are
marked in red in the figure 3.4.

For instance, as depicted in figure 3.5, the fault from location in grey is
observed in 19 and 20 locations of the strobe8 at time in orange color. This
fault is labeled as Load Store (LS) and based on the location, they have to be
on pins 19 and 20. In strobe pins provided in fault dictionary figure 3.6, the
strobe8 list contains 76 pins. However, in the FM and GM matrix, there are
80 elements and these numbers don’t add up.

The main reason behind this problem, is the fact that the strobe list provided
by tool, contains only connected pins while, there are pins in the design, which
are not connected.

Figure 3.5: Fault dictionary analysis for finding observation location.

35

Methodology

Figure 3.6: Strobe List example.

The solution proposed in this work is to ignore this strobe list and use the
components locations written in strobe file and retrieve all pins using the
Design Compiler tool. In this way, all pins locations can be found and it is
possible to use these observation locations for the next step. The tcl code
written to retrieve these locations is provided in script 3.1.

Listing 3.1: TCL script for retrieving the strobe pins
1 # read por t s from f i l e ex t rac t ed from st robe f i l e
2 s e t i n p u t _ f i l e [open " . / . . / p o r t s _ l i s t . t x t " r]
3 s e t f i l e_da ta [read $ i n p u t _ f i l e]
4 s e t data [s p l i t $ f i l e_data " \n "]
5 s e t net [l i s t]
6 # F i r s t , i n i t i a l i z e r equ i r ed v a r i a b l e s and s e t l i b r a r i e s
7 s e t search_path [l i s t . / . . / . . / a s i c / synopsys / bin . / . . / . . / a s i c /

t e c h l i b / [getenv "SYNOPSYS"]]
8 s e t s y n t h e t i c _ l i b r a r y dw_foundation.s ldb
9 s e t t a r g e t _ l i b r a r y NangateOpenCel lLibrary_fast .db

10 s e t l i n k _ l i b r a r y [l i s t $ t a rg e t_ l i b ra ry $ syn the t i c_ l i b r a ry]
11

12 # Next, read synthe s i z ed core and e l abo ra t e i t
13 analyze −f v e r i l o g . / . . / . . / gate / r i s c v _ c o r e . g a t e . v
14 e l abo ra t e r i s cv_core
15 s e t output_f i l e [open " . / . . / n e t s _ l i s t . t x t " w]

36

Methodology

16 s e t n 0
17 f o r each l i n e $data {
18 # Now we have to a s s o c i a t e path endpoints to the r e l a t i v e

f l i p f l o p output and put NC (Not connected) i f i t i s not
connected

19 i f { $ l i n e == " " } { break }
20 i n c r n 1
21 s e t pin [get_object_name [get_pins − f i l t e r { @pin_direct ion == out

} −of_object $ l i n e]]
22 s e t pin_Q [l i ndex $pin 0]
23 s e t Q [get_object_name [get_net −of_object $pin_Q]]
24 i f {$Q == " " } { s e t str_out1 "$n− NC" }
25 s e t pin_QN [l i ndex $pin 1]
26 s e t QN [get_object_name [get_net −of_object $pin_QN]]
27 i f {$Q == " " } { s e t str_out1 "$n− NC" } e l s e {
28 s e t str_out11 [s t r i n g map {/ . } $Q]
29 s e t str_out1 "$n− r i s cv_core . $ s t r_out11 " }
30 puts −nonewline $output_f i l e " $str_out1 "
31 puts −nonewline $output_f i l e " \n "
32

33 i n c r n 1
34 i f {$QN == " " } { s e t str_out2 "$n− NC" } e l s e {
35 s e t str_out21 [s t r i n g map {/ . } $QN]
36 s e t str_out2 "$n− r i s cv_core . $ s t r_out21 " }
37 #Write the output data in the output f i l e
38 puts −nonewline $output_f i l e " $str_out2 "
39 puts −nonewline $output_f i l e " \n "
40 }
41

42 c l o s e $ i n p u t _ f i l e
43 c l o s e $output_f i l e
44

45 e x i t

• Strobe file: This file, is used to define observation points in the circuit and
based on the locations in the processor where, faults propagate to, faults
get labeled. For instance, all faults can be labeled as not detected at the
beginning and when, faults propagate to UAR or HR locations, get labeled as

37

Methodology

HR or UAR accordingly. In the end, if they reach to primary outputs they
get labeled as detected. Surely, if a fault propagates to the primary outputs,
there is no need to keep the previous label of the fault. This file, is written in
systemverilog hardware description language.

• In this step, given the fault observation locations, fault dictionary for stuck-at
faults are searched in the fault dictionary. If the SA0 or SA1 faults related to
mentioned locations are detected, the observation time is extracted. In the
end of this step, the outcome is a dictionary depicted in figure 3.7.

Figure 3.7: Dictionary made by the written tool and its format

In figure 3.7, the format of the output dictionary is shown below the example
of the output and each highlighted part of the example, corresponds to the
same color in the format. For instance, the TDF is highlighted in orange.

• In this step, after having the observation times for SAF and TDF, it is possible
to track the instructions in the STLs and choose possible blocks for fault
coverage improvement and insert them in the part STL which, the TDF is
observed in. In order to check the trace of STL execution, the tool provided
in [41], is used. In this tool, there is a database comprised of execution
tracer(Example in 3.2) and disassembly files(Example in 3.3) of the STLs. By
merging data of two files, tool receives the observation times and provides the
instruction blocks which possibly detects the SAFs and provides the location
in STLs which these produced instruction blocks can be inserted. The example
of the output dictionary is provided in script 3.4.

38

Methodology

Listing 3.2: Example of execution tracer [41]
1 Time Cycles PC I n s t r Mnemonic
2 18880000 455 00000080 0350606 f j a l x0 , 26676
3 18960000 457 000068b4 30501073 csrrw x0 , x0 , 0x305
4 19000000 458 000068b8 00000093 addi x1 , x0 , 0
5 19040000 459 000068 bc 00008113 addi x2 , x1 , 0
6 19080000 460 000068 c0 00008193 addi x3 , x1 , 0
7 19120000 461 000068 c4 00008213 addi x4 , x1 , 0
8 19160000 462 000068 c8 00008293 addi x5 , x1 , 0
9 19200000 463 000068 cc 00008313 addi x6 , x1 , 0

10 19240000 464 000068d0 00008393 addi x7 , x1 , 0

39

Methodology

Listing 3.3: Example of Disassembly file [41]
1 . . .
2 / . . / s imple . S :77
3 190 : f 3 f 290e3 bne t0 , t6 , b0<f a i l >
4 / . . / s imple . S :78
5 194 : f f f 0 0 2 9 3 l i t0 ,−1
6 / . . / s imple . S :79
7 198 : f 1 f 3 1 c e 3 bne t1 , t6 , b0<f a i l >
8 / . . / s imple . S :80
9 19 c : f f f 0 0 3 1 3 l i t1 ,−1

10 / . . / s imple . S :81
11 1a0 : f 1 f 398e3 bne t2 , t6 , b0 <f a i l >
12 . . .

Listing 3.4: Example of output dictionary of tracer tool.
1 " 8 " : {" f a u l t s " :
2 ["R r i s cv_core . ex_stage_i_alu_i . int_div_div_i . U329 . B1 " ,
3 "F r i s cv_core . ex_stage_i_alu_i . int_div_div_i . U294 . A1" ,
4 "F r i s cv_core . ex_stage_i_alu_i . int_div_div_i . U327 . B2 "] ,
5 " sa f_blocks " : [" l i x31 , 0 x106a9e
6 sw x14 , 0(x31)
7 l i x18 , 0 xcc8109c3
8 l i x19 , 0x3579b1b0
9 remu x22 , x18 , x19 " ,

10 " l i x31 , 0x102036
11 sw x8 , 0(x31)
12 l i x23 , 0 xadc7eee3
13 l i x1 , 0 x fd f66728
14 rem x22 , x23 , x1 "] ,
15 " d e s t i n a t i o n " : {" tdf_program " : "G31 " , " s ou r c e_td f_ f i l e " : " s imple .

S " , " s t a r t_td f_ l in e " : 439 , " end_tdf_line " : 441}} ,

In script 3.4, it is shown that the format of the output dictionary is as following:

– Key: It is used to count the number of the destinations in the STLs.

– faults: It contains the TDFs.

– saf_blocks: It comprises of the blocks of the STLs which, may be able to
detect the TDF faults mentioned above.

40

Methodology

– destination: It contains details about the line range of specific file in
specific STL, which saf_blocks can be inserted in to detect the TDF
faults. It is possible that, by inserting some of these saf_blocks in the
code, several TDFs get detected. Therefore, all TDFs are gathered to
optimize the number of the simulations.

The steps provided above are used to make a final dictionary in order to
perform simulations for HRs. However, for UARs the steps are more simple.
Instead of finding saf_blocks, it is only required to have a store instruction
in the destination. In the strobe related to the UARs, the bit of the related
register can be found. In the end it is only a matter of generating an instruction
in format of sw Faulty register, 0(sp).

41

Chapter 4

Experimental Results

4.1 Case Study and Setup of the Experiments

This chapter, contains information about the case study, setup of the experiments
of the thesis work and results of the applied algorithms.

4.1.1 Case Study

The methodology introduced in this thesis work has been validated on PULPino[38],
a 32-bit RISC-V-based SoC platform developed by ETH Zurich and Università di
Bologna.

As this approach focuses on CPUs, this SoC has been configured to solely include
the RI5CY core, an in-order, single-issue core with 4 pipeline stages; peripherals
and other boundary components, on the other hand, have been left out. Details
about PULPino are mentioned in 2.7. The DUT has been synthesized using the
45nm Silvaco Open Cell library[42] and accounts for 51,001 NAND2-equivalent
gates, 159,326 stuck-at faults (SAFs) and transition delay faults (TDFs), and 1,207
flip-flops belonging to hidden registers[4].

As for the test programs, three different STLs that were originally specialized
in order to test SAFs on the PULPino core, namely STL1, STL2, and STL3, are
adopted. In order to ensure a diverse and realistic testbench, the three selected
test programs have been developed following different implementation strategies,
by different test engineers. A summary of the most important characteristics of

42

Experimental Results

the adopted STLs, namely the execution time (expressed in the total amount of
clock cycles), memory size (in kB), and SAF coverage, is reported in 4.1.

Table 4.1: STLs general information

Test
Program

#Clock
cycles

Memory
size [kB]

SAF
coverage %

STL1 17,308 27.32 81.42
STL2 31,158 27.86 81.86
STL3 80,455 16.68 82.18

It is noted that the reported amount of clock cycles is obtained by executing all
STLs completely; depending on the situation, the test engineer can then decide
to split them into sub-modules that can be launched separately, each requiring a
fraction of the overall time with the same final fault coverage. Fault simulations
have been carried out using Synopsys Z01X, a commercial tool devised specifically
for functional safety.(Details in 2.6) Experiments have been conducted by means of
Python scripts, with the goals of collecting information from fault dictionaries(for
more details refer to 3.3), improving test programs according to the methodologies
described in 3, and launching the actual fault simulations. As a result, the full flow
of STL improvement and fault simulation for transition delay faults took no longer
than 4 days on an Intel Xeon CPU E5-2680 v3 server with a clock frequency up to
3.3GHz.

4.1.2 Setup of the Experiments:

In order to perform fault simulations, it is necessary to design a tool chain to
perform simulations in an automatized approach to optimize the time required for
performing fault simulations. The designed tool chain comprises of following steps:

• Step1: As first step, the output dictionary generated in 3.4 is taken and
TDFs are inserted to the fault list of the fault simulator. The python function
defined in 4.1, is used for this reason. It reads the TDFs and modify them in
order to adapt to the format used in the tool.

Listing 4.1: Function for inserting TDFs.

43

Experimental Results

1 de f i n s e r t _ f a u l t s (l i s t _ f a u l t s) :
2 with open (’ . / zoix_SAF_TRF/ bin /user_pipe_tmp . s f f ’) as fd :
3 new_lines= fd . r e a d l i n e s ()
4 f o r f a u l t in l i s t _ f a u l t s :
5 l i n e = "NA " + f a u l t . s p l i t (" ") [0] + ’ { PORT " ’ + f a u l t .

s p l i t (" ") [1] + ’ " } ’
6 new_lines . append (l i n e+’ \n ’)
7 new_lines . append (" } ")
8 output_f i l e = open (’ . / zoix_SAF_TRF/ bin / user_pipe . s f f ’ , "w")
9 output_f i l e . w r i t e l i n e s (new_lines)

10 output_f i l e . c l o s e ()

• Step2: In the next step, after inserting of the TDFs, code blocks used for
detecting the SAFs, are inserted in the destination range. Based on the
performed manual experiments, this range is chosen as 5 lines. For instance,
if the starting line in the STL is line 200, the code block can be inserted in
line range of 200 to 205.

• Step3: In this step, after inserting the code blocks, the fault simulation is
performed. In order to perform the fault simulation, first a tool chain is
executed to generate the VCD file required by ZO1X. In order to generate
the VCD file it is necessary to run simulation in the ModelSim. However,
during insertation of the code blocks, there is the possibility of the infinte loop
generation in the modified STL. Hence, to avoid this problem a time threshold
based on the performed manual experiments is chosen which, considers the
worst case of execution time and in case, simulation continues more than this
period, it is identified as an infinite loop case.

• Step4: As fourth step, the fault simulation is performed using ZO1X. In order
to be able to run the ZO1X tool, following steps have to be followed:

– Step1: First step is removal of the log files and unnecessary files from
previous simulations. The script 4.2, is the bash script used for this step.

Listing 4.2: Bash script to remove redundant files.
1 #! / bin / csh −f e

44

Experimental Results

2

3 # Remove old f i l e s to ensure c l ean d i r e c t o r y
4 s e t o u t p u t F i l e L i s t =(f l o p s . txt \
5 sim . s r c \
6 zo ix . l og \
7 sim . zdb \
8 zo ix . sim \
9 __ddbfiles__ \

10 f au l t_repor t . l og \
11 __fmdict__ \
12 fmsh . l og \
13 f r 2 f d e f . l og \
14 __fubs__ \
15 __globfiles__ \
16 sim . f d e f \
17 user_coverage . s f f \
18 t e s t a b i l i t y . txt \
19 __tests__ \
20 __tmp__ \
21)
22

23 f o r each f ($ou tpu tF i l eL i s t)
24 i f (−e $ f) then
25 rm −r f $ f
26 e n d i f
27 end

– Step2:In this step, using another bash script the ZO1X environment is
opened and transition_v3.fmsh is executed by suggestion of the ZO1X
tool documentation. The bash script is provided in 4.3.

Listing 4.3: Bash script to run ZO1X simulation.
1 #! / bin /bash
2 #F i r s t s tep
3 . / c l ean . csh
4

5 rm −r f zo ix . sim sim . zdb f a u l t s . f d e f simout−N0∗ zo ix . l og zo ix .
p rog r e s s ∗ zo ix_rt . l og ∗ . l og ∗ ∗ . cd f

6 #Second step

45

Experimental Results

7 zo ix −f . / bin / read_design . f . / bin /strobe_v3_2 . sv +t ime s ca l e+
o ve r r i d e+1ps /1 ps +top+r i s cv_core+st robe +sv +
not imingchecks +d e f i n e+ZOIX +suppres s+c e l l +
delay_mode_fault − l l og / zoix_compile . l og

8

9 fmsh −load bin / t rans i t i on_v3 . fmsh

The transition_v3.fmsh script is also provided in 4.4. This script is created
according to the official documentation of the ZO1X tool. In this script,
some parameters such as fault statuses and used VCD file address, are
passed to the tool. Moreover, there is a file required by the tool which
contains the list of the faults needed to be simulated by the tool and in
optional cases, a promotion table is provided to in order to merge the
faults when multiple tests are run which, an example of it is presented in
4.5.

Listing 4.4: Script required to configure and run ZO1X simulation.
1

2 s e t (var =[r e s o u r c e s] , messages =[a l l])
3 s e t (var =[d e f i n e s] , format =[standard])
4 s e t (var =[d e f i n e s] , d i c t i o n a r y . enable =[1])
5 s e t (var =[f s im] , d i c t i o n a r y . va lue s =[a l l])
6 s e t (var =[d e f i n e s] , t rans . de lay =[40 ns])
7 s e t (var =[f d e f] , method=[f r] , f r . f r =[bin /user_v3 . s f f] , f r .

t r a n s i t i o n =[1] , abort =[e r r o r])
8 s e t (var =[coat s] , s t a tu s =[NA,NX,PP,FP,PD,FD,PE,FE,PL, LS , PS ,RS,

PR,RE,PX,DX])
9 s e t (var =[f s im] , hype r f au l t =[0])

10 des ign ()
11

12 addtst (t e s t =[r i s cv_core] , st imtype =[vcd] , d i c t i o n a r y . enable
=[1] , st im = [. . / tmax/dumpports_rtl . r i s cv_core . vcde] , dut .
st im =[r i scv_core , tb . top_i . core_region_i .CORE.RISCV_CORE] ,
st im_options=[+TESTNAME=r i s cv_core])

13 f s im ()
14

15 coverage (type =[coverage] , f i l e =[TDF_coverage_V3 . s f f] ,
c o l l a p s e o f f = [1])

46

Experimental Results

16 coverage (type =[d i c t i o n a r y] , f i l e =[tdf_dic_short_V3 . txt] , t e s t
=[r i s cv_core] , s t y l e =[shor t])

Listing 4.5: Example script to pass fault list to ZO1X simulator[35].
1 S t a t u s D e f i n i t i o n s
2 {
3 Redef ine ND NX " Not Detected "
4 NN " Not Observed Not Diagnosed " ;
5 NP " Not Observed Pot en t i a l Diagnosed " ;
6 ND " Not Observed Diagnosed " ;
7 PN " Pot en t i a l Observed Not Diagnosed " ;
8 OP " Observed P o t e n t i a l l y Diagnosed " ;
9 ON " Observed Not Diagnosed " ;

10 OD " Observed Diagnosed " ;
11 Defau l tStatus (NN)
12 Se l e c t ed (NA, NN, NP, PN, OP, ON)
13 PromotionTable
14 {
15 StatusLabe l s (NN,NP,ND,PN,OP,ON,OD)
16 # NN NP ND PN OP ON OD
17 [− | | | ON | | ; # NN
18 − − | | | | | ; # NP
19 − − − | OD | | ; # ND
20 − − − − ON | | ; # PN
21 ON − OD ON OD | | ; # OP
22 − − − − − − | ; # ON
23 − − − − − − − ; # OD
24]
25 }
26 }
27 Fau l tL i s t {
28 NN F { PORT " r i s cv_core . ex_stage_i_alu_i . int_div_div_i .

ResReg_DP_reg_28_ .Q" }}

After running each simulation, a fault dictionary is generated. Using the
python function provided in 4.6, detected faults are extracted and removed
from the fault list for next fault simulations. The reason behind removing
detected faults is to reduce the fault simulation time.

47

Experimental Results

• Step5: In this step, steps 2,3,4 are repeated in a loop until all the TDFs are
detected or all code blocks are tried in the destination and there is no code
block left. Also, results are stored as a dictionary which, shows detected TDFs
by each code block in each position in STL.

The mentioned steps, are depicted as a flowchart in figure 4.1.

Listing 4.6: Function for checking TDF detection.
1 de f check_detected (input_f i l e , name) :
2 dd_line =[]
3 with open (i n p u t _ f i l e) as fd :
4 f o r l i n e in fd :
5 i f l i n e . s t r i p () . s t a r t s w i t h (’DD’) or l i n e . s t r i p () .

s t a r t s w i t h (’−− ’) :
6 dd_search=re . s earch (r ’DD ([R/F]) {TRAN " (. ∗ ?) "} ’ , l i n e

)
7 i f dd_search :
8 dd_line . append (dd_search . group (1)+’ ’+dd_search .

group (2))
9 eq_search=re . search (r ’DD ([R/F]) {TRAN " (. ∗ ?) "} ’ , l i n e

)
10 i f eq_search :
11 dd_line . append (eq_search . group (1)+’ ’+eq_search .

group (2))
12 re turn {
13 name : dd_line
14 }

48

Experimental Results

Figure 4.1: Simulations flowchart.

4.2 Results of Algorithms

In this section the achieved results in details is described. 4.2 and 4.3 show summary
data on the user accessible register (UAR) and hidden register (HR) faults that
were detected as a result of the proposed methodology.

Starting with 4.2, it is possible to see that the proposed approach is greatly
effective as it is capable of detecting almost every fault out of those that are excited

49

Experimental Results

but not detected by the existing STL, with the worst case scenario being STL3
with a 98.76% of UAR faults being detected. Given a total amount of 159,326
transition delay faults, through our methodology we can increase the final fault
coverage by 4.13% for STL1, 15.01% for STL2, and 1.80% for STL3, respectively.

Table 4.2: Analysis on detected UAR faults

STL1 STL2 STL3
Detected UARs 6,578 23,912 2,864
Total UARs 6,591 23,922 2,900
%Detected UARs 99.80 99.96 98.76
Code size [kB] 6.34 4.17 3.53

This improvement comes with an increase of the final code size, which amounts to
an additional 22.21% for STL1, 14.97% for STL2, and 21.16% for STL3. This proves
that the proposed strategy in this work is able to systematically test not-observed
transition delay faults whose effects reached user accessible registers.

Moving on to 4.3, it is possible to see that the results we achieved thanks to our
methodology are quite dependent on the considered STL.

Table 4.3: Analysis on detected HR faults

STL1 STL2 STL3
Detected HRs 643 183 608
Total HRs 6,741 3,599 3,955
%Detected HRs 9.54 5.08 15.37
Code size [kB] 2.60 0.92 0.92

For the HR group of faults, the worst case scenario is represented by STL2, for
which 5.08% HR faults can be detected, while the best case scenario is represented
by STL3, with a total of 15.37% faults detected. Although the results are not as
high as for UARs, it is still worth mentioning that, the proposed methodology
allows to automatically detect these faults, thus not requiring any manual effort
from the test engineer. For this latter group, the increase in the code size is rather
small, amounting to an additional 9.52% for STL1, 3.30% for STL2, and 5.52% for

50

Experimental Results

STL3, respectively. It is also worth mentioning that some of the undetected faults
may belong to the group of FUFs.

Table 4.4: Sub-modules analysis for the adopted STLs

Test Program Hidden Register faults User Accessible Register faults
Fetch Stage Decode Stage Execute Stage Memory Stage GPRs SPRs

STL1
Detected faults 23 587 32 1 4,359 2,219
Total faults 1,109 5,109 388 135 4,359 2,232
Added Instructions 45 550 25 5 1,107 478

STL2
Detected faults 52 120 5 6 23,814 98
Total faults 1,311 1,976 221 91 23,814 108
Added Instructions 80 115 20 15 1,022 20

STL3
Detected faults 13 595 0 0 2,853 11
Total faults 1,028 2,463 351 113 2,853 47
Added Instructions 35 195 0 0 877 6

Table 4.4, describes the information regarding sub-modules of the tested proces-
sor core in details, reporting the contributions in terms of detected faults, total
faults and added instructions for each sub-module and STL. All the pipeline stages
columns belong to the hidden registers category, while general purpose registers
(GPRs) and special purpose registers (SPRs) are user accessible registers. Starting
from the UAR group, the table shows how all GPRs have been tested, while only a
small minority of SPRs is left undetected. When talking about UAR faults, it is
also worth mentioning how many fall within the single-cycle and multi-cycle groups.
Concerning STL1, out of all the 4,359 GPR faults 1,366 are related to single-cycle
instructions and 2,993 to multi-cycle instructions, while the 2,232 SPR faults are
divided into 2,219 single-cycle and 13 multi-cycle related faults. STL2, on the other
hand, has a total of 23,814 UAR faults, of which 22,683 are related to single-cycle
instructions and 1,131 are related to multi-cycle instructions, and the 108 SPR
faults can be grouped into 98 single-cycle and 10 multi-cycle related faults. Finally,
STL3 has 2,853 faults of which 1,367 are related to single-cycle instructions and
1,486 multi-cycle instructions; of all 47 SPR faults, 11 are single-cycle and 36 are
multi-cycle related faults. The distinction between single-cycle and multi-cycle
related faults impacts the number of added instructions required to detect the
faults as well. As mentioned in 3.2.1, single-cycle related faults only need a store
instruction to be detected, with an additional overhead of one instruction for SPR
faults consisting in moving the value of the special register into a general purpose
register so that it can be stored. Multi-cycle related faults, on the other hand,

51

Experimental Results

require to duplicate the related multi-cycle instruction and change its operands to
make sure that the fault’s effects are propagated towards the final cycles of said
instruction, plus a store instruction to observe the aforementioned effects at the
primary outputs. Most not-detected SPR faults belong to the multi-cycle category,
due to the fact that finding the correct operands to propagate the error can be non
trivial.

52

Chapter 5

Conclusions

This work introduces an automated and systematic methodology to detect transition
delay faults whose effects have been excited but not observed by already available
STLs. Starting from a library of self-test programs developed for stuck-at faults, the
approach defines strategies to detect faults based on where their effects propagated
and stopped inside the DUT, dividing them into user accessible registers and hidden
register groups. Experimental results gathered on a RISC-V test case show that
almost every fault affecting UARs is detectable, with the worst case scenario being
a 98.76% UAR fault coverage. Data on HR faults, on the other hand, show that we
are capable of detecting from 5% to more than 15% of all HR faults. Such increase
in fault coverage comes with a reasonably small increase of the code size, with
the worst case scenario consisting in about 22% added code size for UAR faults,
while the contribution for HR faults is practically negligible. The main strength of
this work resides in the fact that it is completely automated, hence not requiring
any effort from the test engineer, and can drastically enhance the quality of the
available STL. Future works will include the refinement of strategies to test HR
faults, in order to match as closely as possible the upper bounds in recoverable
fault coverage presented in [22].

53

Bibliography

[1] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan. «On-
line functionally untestable fault identification in embedded processor cores».
In: Design, Automation & Test in Europe Conference Exhibition (DATE).
2013, pp. 1462–1467. doi: 10.7873/DATE.2013.298 (cit. on p. 1).

[2] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghunathan,
and S. Ravi. «Systematic software-based self-test for pipelined processors».
In: ACM/IEEE Design Automation Conference (DAC). 2006, pp. 393–398.
doi: 10.1145/1146909.1147014 (cit. on p. 1).

[3] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda. «Micropro-
cessor Software-Based Self-Testing». In: IEEE Design & Test of Computers
27.3 (2010), pp. 4–19 (cit. on p. 1).

[4] Riccardo Cantoro, Francesco Garau, Patrick Girard, Nima Kolahimahmoudi,
and Sandro Sartoni et al. «Effective techniques for automatically improving
the transition delay fault coverage of Self-Test Libraries.» In: ETS 2022 -
IEEE 27th European Test Symposium 27 (May 2022), pp. 1–2 (cit. on pp. 1–3,
20–22, 28–32, 42).

[5] N. Hage, R. Gulve, M. Fujita, and V. Singh. «On Testing of Superscalar
Processors in Functional Mode for Delay Faults». In: International Conference
on VLSI Design and International Conference on Embedded Systems (VLSID).
2017, pp. 397–402. doi: 10.1109/VLSID.2017.58 (cit. on pp. 2, 21, 22).

[6] A. S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik. «Implementation-Independent
Functional Test for Transition Delay Faults in Microprocessors». In: Euromi-
cro Conference on Digital System Design (DSD). 2020, pp. 646–650. doi:
10.1109/DSD51259.2020.00105 (cit. on pp. 2, 21, 22).

54

https://doi.org/10.7873/DATE.2013.298
https://doi.org/10.1145/1146909.1147014
https://doi.org/10.1109/VLSID.2017.58
https://doi.org/10.1109/DSD51259.2020.00105

BIBLIOGRAPHY

[7] K. Christou, M.K. Michael, P. Bernardi, M. Grosso, E. Sanchez, and M. Sonza
Reorda. «A Novel SBST Generation Technique for Path-Delay Faults in
Microprocessors Exploiting Gate- and RT-Level Descriptions». In: 26th IEEE
VLSI Test Symposium (vts 2008). 2008, pp. 389–394. doi: 10.1109/VTS.
2008.37 (cit. on pp. 2, 20).

[8] C. H. -. Wen, L. -. Wang, Kwang-Ting Cheng, Kai Yang, Wei-Ting Liu, and
Ji-Jan Chen. «On a software-based self-test methodology and its application».
In: IEEE VTS. 2005, pp. 107–113 (cit. on p. 2).

[9] Virendra Singh, Michiko Inoue, Kewal K. Saluja, and Hideo Fujiwara. «Instruction-
Based Self-Testing of Delay Faults in Pipelined Processors». In: IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 14.11 (2006), pp. 1203–
1215. doi: 10.1109/TVLSI.2006.886412 (cit. on pp. 2, 20).

[10] P. Bernardi, R. Cantoro, S. De Luca, E. Sánchez, and A. Sansonetti. «Devel-
opment Flow for On-Line Core Self-Test of Automotive Microcontrollers». In:
IEEE Transactions on Computers 65.3 (2016), pp. 744–754 (cit. on p. 2).

[11] Wei-Cheng Lai, A. Krstic, and Kwang-Ting Cheng. «Test program synthesis
for path delay faults in microprocessor cores». In: Proceedings International
Test Conference 2000 (IEEE Cat. No.00CH37159). 2000, pp. 1080–1089. doi:
10.1109/TEST.2000.894321 (cit. on pp. 2, 20).

[12] P. Bernardi, M. Grosso, E. Sanchez, and M. Sonza Reorda. «A Deterministic
Methodology for Identifying Functionally Untestable Path-Delay Faults in
Microprocessor Cores». In: International Workshop on MTV. Dec. 2008,
pp. 103–108. doi: 10.1109/MTV.2008.9 (cit. on p. 2).

[13] M. Grosso, S. Rinaudo, A. Casalino, and M. Sonza Reorda. «Software-Based
Self-Test for Transition Faults: a Case Study». In: IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC). 2019, pp. 76–81.
doi: 10.1109/VLSI-SoC.2019.8920306 (cit. on pp. 2, 21).

[14] R. Cantoro, S. Sartoni, and M. Sonza Reorda. «In-field Functional Test
of CAN Bus Controllers». In: IEEE VTS. 2020, pp. 1–6. doi: 10.1109/
VTS48691.2020.9107628 (cit. on p. 2).

55

https://doi.org/10.1109/VTS.2008.37
https://doi.org/10.1109/VTS.2008.37
https://doi.org/10.1109/TVLSI.2006.886412
https://doi.org/10.1109/TEST.2000.894321
https://doi.org/10.1109/MTV.2008.9
https://doi.org/10.1109/VLSI-SoC.2019.8920306
https://doi.org/10.1109/VTS48691.2020.9107628
https://doi.org/10.1109/VTS48691.2020.9107628

BIBLIOGRAPHY

[15] A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, and M. Sonza Reorda.
«Test Program Generation for Communication Peripherals in Processor-Based
SoC Devices». In: IEEE Design & Test of Computers 26.2 (2009), pp. 52–63.
doi: 10.1109/MDT.2009.43 (cit. on p. 2).

[16] A. van de Goor, G. Gaydadjiev, and S. Hamdioui. «Memory testing with a
RISC microcontroller». In: DATE. 2010, pp. 214–219. doi: 10.1109/DATE.
2010.5457210 (cit. on p. 2).

[17] Hitex. Microcontroller self-test libraries. url: https://www.hitex.com/
tools-components/software-components/selftest-libraries-safety-
libs/pro-sil-safetlib/ (cit. on p. 2).

[18] ARM. Enabling Our Partnership to Bring Safer Solutions to the Market
Faster. url: https://developer.arm.com/technologies/functional-
safety (visited on 06/26/2019) (cit. on p. 2).

[19] Microchip Technology Inc. 16-bit CPU Self-Test Library User’s Guide. 2012.
url: http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf
(visited on 06/26/2019) (cit. on p. 2).

[20] STMicroelectronics. Guidelines for obtaining IEC 60335 Class B certification
for any STM32 application. Mar. 2016. url: http://www.st.com/content/
ccc / resource / technical / document / application % 5C _ note / 02 / 1a /
91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:
content/translations/en.CD00290100.pdf (cit. on p. 2).

[21] J. Perez Acle, R. Cantoro, E. Sanchez, M. Sonza Reorda, and G. Squillero.
«Observability Solutions for In-Field Functional Test of Processor-Based
Systems». In: Microprocessors and Micros. (2016), pp. 392–403. issn: 0141-
9331. doi: 10.1016/j.micpro.2016.09.002 (cit. on p. 2).

[22] Riccardo Cantoro, Patrick Girard, Riccardo Masante, Sandro Sartoni, Matteo
Sonza Reorda, and Arnaud Virazel. «Self-Test Libraries Analysis for Pipelined
Processors Transition Fault Coverage Improvement». In: 2021 IEEE 27th
International Symposium on On-Line Testing and Robust System Design
(IOLTS). 2021, pp. 1–4. doi: 10.1109/IOLTS52814.2021.9486711 (cit. on
pp. 2, 20, 21, 28, 53).

56

https://doi.org/10.1109/MDT.2009.43
https://doi.org/10.1109/DATE.2010.5457210
https://doi.org/10.1109/DATE.2010.5457210
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/pro-sil-safetlib/
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/pro-sil-safetlib/
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/pro-sil-safetlib/
https://developer.arm.com/technologies/functional-safety
https://developer.arm.com/technologies/functional-safety
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf
http://www.st.com/content/ccc/resource/technical/document/application%5C_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application%5C_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application%5C_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application%5C_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
https://doi.org/10.1016/j.micpro.2016.09.002
https://doi.org/10.1109/IOLTS52814.2021.9486711

BIBLIOGRAPHY

[23] N. K. Jha and S. Gupta. Testing of Digital Systems. Cambridge University
Press, New York: Cambridge University Press, 2003 (cit. on pp. 4–6, 8, 15).

[24] E.P. Hsieh, Rasmussen, Vidunas R.A., L.J., and W.T. Davis. «Delay test
generation.» In: Proc. Design Automation Conference (1977), pp. 486–491
(cit. on p. 7).

[25] T.M. Storey and J.W. Barry. «Delay test simulation». In: Proc. Design
Automation Conference (1977), pp. 492–494 (cit. on p. 7).

[26] J.P. Lesser and J.J. Shedletsky. «An experimental delay test generator for
LSI logic». In: IEEE Trans. on Computers (1980), pp. 235–248 (cit. on p. 8).

[27] G.L. Smith. «A model for delay faults based on paths.» In: Proc. Int. Test
Conference (1985), pp. 342–349 (cit. on p. 8).

[28] Michael L. Bushnell and Vishwani D. Agrawal. Essential of Electronic Testing.
New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers,
2002 (cit. on pp. 10–12).

[29] Matteo Sonza Reorda. Testing and Fault Tolerance course. 2021 (cit. on p. 18).

[30] Mihalis Psarakis, Dimitris Gizopoulos, Ernesto Sanchez, and Matteo Sonza
Reorda. «Microprocessor software-based self-testing». In: IEEE Design &
Test of Computers 27 (2010), pp. 4–19 (cit. on pp. 19, 20).

[31] C. -Y. Chen and J. -L. Huang. «Reinforcement-Learning-Based Test Program
Generation for Software-Based Self-Test». In: IEEE Asian Test Symposium
(ATS). 2019, pp. 73–735. doi: 10.1109/ATS47505.2019.00013 (cit. on p. 22).

[32] A. Ruospo, R. Cantoro, E. Sanchez, P. D. Schiavone, A. Garofalo, and L.
Benini. «On-line Testing for Autonomous Systems driven by RISC-V Processor
Design Verification». In: IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT). 2019, pp. 1–6. doi:
10.1109/DFT.2019.8875345 (cit. on p. 22).

[33] A. Jasnetski, R. Ubar, and A. Tsertov. «On automatic software-based self-test
program generation based on high-level decision diagrams». In: IEEE LATS.
177-177. 2016. doi: 10.1109/LATW.2016.7483357 (cit. on p. 22).

57

https://doi.org/10.1109/ATS47505.2019.00013
https://doi.org/10.1109/DFT.2019.8875345
https://doi.org/10.1109/LATW.2016.7483357

BIBLIOGRAPHY

[34] A. Jasnetski, R. Ubar, and A. Tsertov. «Automated software-based self-test
generation for microprocessors». In: International Conference MIXDES. 2017,
pp. 453–458. doi: 10.23919/MIXDES.2017.8005252 (cit. on p. 22).

[35] ZO1X. Functional Safety Assurance. url: https://www.synopsys.com/
verification/simulation/z01x-functional-safety.html (cit. on pp. 22,
47).

[36] ModelSim. url: https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/model-sim.html (cit. on p. 22).

[37] Synopsis. Design Compiler: Concurrent Timing, Area, Power, and Test
Optimization. url: https://www.synopsys.com/implementation- and-
signoff/rtl-synthesis-test/dc-ultra.html (cit. on p. 22).

[38] ETH Zurich and Universita di Bologna. PULPino microcontroller system.
url: https://github.com/pulp-platform/pulpino (cit. on pp. 25, 26,
42).

[39] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini; Germain
Haugou, Eric Flamand, Frank K. Gürkaynak, and Luca Benini. PULPino:
A small single-core RISC-V SoC. url: https://riscv.org/wp-content/
uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf (cit. on p. 27).

[40] Andreas Riefert, Riccardo Cantoro, Matthias Sauer, Matteo Sonza Reorda,
and Bernd Becker. «A Flexible Framework for the Automatic Generation of
SBST Programs». In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 24.10 (2016), pp. 3055–3066. doi: 10.1109/TVLSI.2016.
2538800 (cit. on p. 33).

[41] Francesco Garau. Enhancing programs for delay test of microprocessors
through fault propagation analysis. url: http://webthesis.biblio.polito.
it/id/eprint/21298 (cit. on pp. 38–40).

[42] Silvaco. Silvaco 45nm Open Cell Library. url: https://www.silvaco.com/
products/nangate/FreePDK45_Open_Cell_Library/ (cit. on p. 42).

58

https://doi.org/10.23919/MIXDES.2017.8005252
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://github.com/pulp-platform/pulpino
https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://doi.org/10.1109/TVLSI.2016.2538800
https://doi.org/10.1109/TVLSI.2016.2538800
http://webthesis.biblio.polito.it/id/eprint/21298
http://webthesis.biblio.polito.it/id/eprint/21298
https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/
https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/

	List of Tables
	List of Figures
	Introduction
	Background
	Testing Fundamentals
	Stuck-at Fault (SAF) Model
	Delay Faults

	Automatic Test Pattern Generator
	Fault Management
	Test Pattern Generator

	Scan Design
	Full Scan
	Multiple Chain

	Functional Testing
	Software-Based Self-Test(SBST)

	Related Work
	Commercial Tool Features
	PULPino

	Methodology
	Introduction
	Description
	User Accessible Register fault
	Hidden Register faults

	Analyzing Fault Dictionaries
	Parsing fault dictionary

	Experimental Results
	Case Study and Setup of the Experiments
	Case Study
	Setup of the Experiments:

	Results of Algorithms

	Conclusions
	Bibliography

