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Abstract

Hyperthermia treatment (HT) is a thermal treatment which uses non-ionizing
electromagnetic radiation, like microwaves, to rise the temperature in the tumor
region (where cells reach 42/44°C) creating tissue damage. Recent studies show that
HT can sensitize cancer cells to both chemotherapy and radiotherapy treatments,
increasing their efficacy without providing new dose exposition.

During HT, it is crucial to limit the heating process only in the tumor site while
maintaining the temperature values in the surrounding healthy tissues around
the physiological level. For internal cancers, phased antenna arrays are properly
designed to focus the electromagnetic radiation on the tumor region, avoiding
hotspots, i.e., dangerous overheated regions far from the tumor site, which could
be harmful especially in the treatment of head and neck (H&N) cancers. In the
clinical practice, a water-bolus (plastic bag filled with cold water) is introduced
between the antenna applicator and the patient to avoid overheating of the skin,
where temperature must remain tolerable, and improve the radiation coupling into
the body.

Good clinical outcomes are achieved using a patient-specific treatment planning,
where the antenna feedings are optimized by means of numerical simulations
using patient-specific phantoms derived from MRI and CT scans of the patient.
After optimizing the power deposition on the tumor target, thermal solvers are
used to generate the temperature map distribution in the numerical phantom.
Although the solvers produce high valuable results, they are often not reliable per
se. The dielectric and thermal parameters assigned to the different tissues of the
phantom are currently known with high uncertainty. These values, reported in the
Literature and derived from ex-vivo measurements, can introduce inaccuracies in
the simulations, leading to incorrect temperature maps of the patient. For this
reason, during HT treatments it is essential to quantify the temperature in the
heated tissues with invasive temperature probes (inserted into closed-tip catheters),
which cause great discomfort to the patient and provide limited spatial information.

The goal of the present Master Thesis is to validate and improve the accuracy
of the simulated 3D temperature map from few known temperature values during
HT treatments in the H&N cancer scenario. A realistic numerical phantom is used
for the thesis purpose; then, via the Sim4Life software and Python and MATLAB
scripts, simulations are performed to maximize the specific absorption rate (SAR)
on the tumor target and to generate the corresponding temperature map. Assuming
to know few temperature values (along the direction of a catheter) of different target
maps corresponding to random combinations of the tissue parameters, a numerical
reconstruction method is applied to retrieve the target maps in the whole region of



interest. This method employs high-performance simulations of the temperature
map (to be performed prior to treatment). An in-depth analysis is carried out
to estimate the number of such simulations needed to ensure a sufficiently good
reconstruction, for different scenarios, i.e., when a different number of parameters
of a given number of tissues are supposed to be different from their baseline values.
Finally, the quality of the reconstruction is also discussed for different directions of
insertion of the catheter in the region of interest.
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Introduction

During thermal cancer therapies, the temperature within the tumor is altered in
order to cause cell death. The majority of cancer cases cannot be successfully
treated with one cancer treatment alone due to the complexity of the disease. Thus,
combining traditional treatments, like radiotherapy (RT) and chemotherapy, with
thermal therapies could improve the effectiveness.

In combination with radiotherapy or chemotherapy, hyperthermia treatment
(HT) has shown good clinical result [1, 2, 3]. In this context, HT acts as an
enhancer mechanism of action ensuring the same clinical outcome with a lower dose
of ionizing radiation in RT or drugs in chemotherapy. Hyperthermia treatment
aims to increase the temperature in the tumor region at 42/44 °C to damage the
cells, by exploiting the energy provided by an electromagnetic applicator. The
applicator in head and neck cancers (HNC) usually consists of multiple antennas
placed equidistantly around the patient’s neck inside a structure having the shape
of a collar [4]. As part of the latter, the waterbolus system formed by bags filled
with water is also included, with the function to avoid overheating of the skin and
favor the electromagnetic coupling into the body.

Electromagnetic energy interacts with the biological tissue and causes tempera-
ture rise due to its dissipation through the human body. Different frequencies allow
distinct penetration depths inside the human body, so it is crucial to set the working
frequency correctly. Head and neck cancers are usually treated with microwave
frequencies due to the physiology of the region. It is essential to optimize the
energy provided and focus it on the tumor without damaging sensitive surrounding
tissues, thus avoiding hotspots, and creating customized treatments for each patient
to improve the effectiveness of the therapy. The optimization process involves
the antenna feedings which need to be properly modified, acting on the phases
and amplitudes of each antenna. Hyperthermia treatment planning (HTP) is the
process that allows to customize the therapy and make it patient-specific. HTP
starts with the acquisition of patient CT scans by which the different tissues are
segmented, creating a virtual model where the treatment can be simulated. Firstly,
Maxwell’s equations are solved, describing the interaction between tissues and the
EM energy provided by the antenna applicator in the region of interest. From those
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outcomes, the thermal solver is employed to solve the bio-heat equation generating
the related temperature map distribution.

Solvers provide very valuable results but are often unreliable by themselves. The
dielectric and thermal parameters associated to the different tissues of the phantom,
which are known in Literature with high uncertainty, affect the simulation outcomes
and so the heat map distribution may differ from the real patient situation. Hence,
in HT treatments, invasive temperature probes (inserted into closed-tip catheters)
are necessary for measuring the temperature inside the heated tissues. In this
thesis, numerical algorithms aimed at reconstructing the real temperature map in
the whole region of interest starting from few known temperature values (the ones
along the catheter) are analyzed to improve their performance in terms of results
and computational time.

Thesis Overview
This thesis contains an extensive analysis of all the mentioned topics, organized
into four chapters and two appendices as follows.

Chapter 1 illustrates the common head and neck cancer therapies outlining their
principal aspects. Hyperthermia therapy is emphasized, analyzing its treatment
planning and related issues.

In Chapter 2, the equations underlying the HT mechanism are introduced,
together with the chosen phantom and tumor model involved inside the simulation.
The EM solver is run and the SAR-optimization process is performed modifying
phases and amplitudes of each antenna to maximize the temperature rising inside
the tumor region. After the optimization, the temperature maps are produced.

Chapter 3 presents the multigrids generation which are the structures used
to create several combinations of parameter values varying within the Literature
range. The Python script that assigns the different sets to the phantom tissues
and generates the corresponding temperature maps is also presented. Finally, the
reconstruction algorithm performed in MATLAB is introduced and applied for
different directions of insertion of the catheter’s points used in the reconstruction.

In Chapter 4, the quality of the reconstruction is evaluated for different choices
of the multigrids and a different number of parameters and tissues involved.

2



Chapter 1

Head and Neck Cancer
Therapies

1.1 Overview and General Attributes
Cancer is a complex, multifunctional disease that begins with mutations at a
single-cell level followed by the combination of several sequential mutations. The
mutations can alter the normal mechanisms that regulate cell proliferation leading
to loss of apoptotic control: cells grow uncontrollably and spread to other parts of
the body.

Cancers that are known collectively as head and neck cancers (HNC) usually
begin in the squamous cells (squamous cell carcinomas) that line the mucosal
surfaces of the head and neck (i.e., oral cavity, pharynx, larynx, paranasal sinuses
and nasal cavities, tongue, and salivary glands) [5, 6, 7]. HNC incidence is around
900,000 cases worldwide and almost half a million deaths yearly. Bad habits like
smoking and alcohol consumption represent one of the major risk factors, together
with viruses as the human papillomavirus (HPV) infection [8].

Figure 1.1: Head and Neck Cancer Regions

© 2012 Terese Winslow LLC,
U.S. Govt. has certain
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1.2 HNC Treatments
In head and neck (H&N) regions, cancer treatments can involve surgery (physically
removing tumor mass from the patient’s body), immunotherapy (helping the
patient’s immune system fight cancer), radiotherapy (RT), chemotherapy, or a
combination of them. The treatment plan for an individual patient depends on
several factors including the tumor location, the stage of cancer, and the patient’s
overall health [7]. HNC are the specific disorder involved in the present thesis.

1.2.1 Radiotherapy
H. Coutard, almost 100 years ago, was the first to use X-rays for laryngeal cancer
treatment [9], since then radiation therapy (RT) has been key for the treatment of
these tumors. RT is a cancer treatment that uses high doses of radiation to shrink
tumors, kill cancer cells or slow their growth by damaging their DNA. In order
to reduce tissue toxicity next to cancer, new advanced radiation techniques are
currently employed. Intensity-modulated radiation therapy (IMRT) and volumetric-
modulated therapy (VMAT) are widely used for HNC [10].

1.2.2 Chemotherapy
Chemotherapy is a treatment that uses drugs to stop the growth of cancer cells,
either by killing the cells or by stopping them from dividing [11]. This therapy,
usually combined with other treatments, typically occurs in stages III and IV
of HNC where the latest standard regimes [12], i.e., docetaxel, cisplatin, and
fluorouracil (TPF), have been accepted. However, in some cases, those drugs may
fail due to chemotherapy resistance; innovative therapeutic strategies should be
studied [13].

1.3 Hyperthermia Therapy
Over the most known tumor therapies, like RT and chemotherapy, also thermal
cancer therapies have progressed during the last decades thanks to new research.
This improvement, even in clinical trials, is linked to the technological development
in the radiation techniques on which these processes are based. The energy delivered
comes from electromagnetic-based technologies which are divided, considering the
frequency applied during the treatment, into radiofrequency (RF), microwaves
(MW), and infrared (IR) [14]. The concept, behind these therapies for cancer
treatment, is the temperature rising in the tumor area, above the physiological
values, creating cell damage. The beneficial effects, however, depend on the thermal
dose exposition (i.e., the temperature reached and accumulative time exposition) in
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the region of interest which is given in CEM43°C (cumulative equivalent minutes),
where 43 °C is target value based on the Arrhenius relationship.

Hyperthermia treatment (HT) aims at inducing a temperature increase, through
energy delivery, in a range of 42/44 °C for nearly one hour, triggering changes in
the immune system, oxidation, and vasodilatation. Blood perfusion and vascular
permeability play a significant role in heat dissipation inside the tissues. The
tumor microenvironment is characterized by a heterogeneous structure, with a high
number of proliferative cells, creating a random and chaotic distribution. This
structure led to different nutrients concentration, forms hypoxic areas, and increases
tumor interstitial fluid pressure. For all these reasons, heat dissipation in the tumor
area is dissimilar to healthy tissues and aids treatment success. According to some
research [15, 1, 2], due to these biological modifications in the tumor region, HT
can improve the effectiveness of radiotherapy and chemotherapy at the same dosage,
hence limiting the patient dose exposition.

1.3.1 State of the Art
Paramount settings are related to the EM-based mechanism, which enhances
the temperature increase inside the body. The operating frequency is a critical
parameter, it determines the interaction with the tissues hence the achievable
penetration depth. During the MW energy application, all tissues of the body
behave as lossy dielectrics (i.e., poor insulators and poor electrical conductors)
prevalently with a frequency above 100 MHz [14]. The microwave frequency range
is between 100 MHz and 10 GHz, and is characterized by non-ionizing radiation
capable to prevent health risks. Moreover, HT MW is immediate, and uniform
compared to the previous methods.

Generally, the higher frequencies in MW localize heating on superficial tissues like
skin, while the lower ones are involved in larger and deeper areas. Power deposition
decreases as microwaves penetrate through the tissue. HT can be divided into
Superficial hyperthermia or Deep hyperthermia according to the distance between
the applicator, made by antennas, and the tumor region and also considering the
target volume size [14]:

• Superficial HT: heat limited to a volume of tissue, i.e., skin and outer
tissue, which is facing the heating device. The applicator can be single or
multi-antenna according to the dimensions of the treated area. Superficial HT
is usually employed for the treatment of large regions.

• Deep HT: the heating concentration is optimized in the tumor region, placed
internally to the human body, limiting the surrounding healthy tissues from
irradiation. This is achievable with a phased-array approach, placing an array
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of antennas around the anatomical region of interest, and optimizing their
amplitudes and phases.

For both these two techniques, the thermal penetration it is around 2-4 cm obtained
with a frequency in a range from 400 MHz to 1 GHz. Waterbolus, bags filled with
deionized water at a controlled temperature [16], are placed between the sources and
the patient’s surface to provide and improve the applicator-body EM coupling and
to prevent skin from possible burns. Acting on the temperature of the circulating
water inside the waterbolus, it is possible to modify the depth penetration.

The mentioned cooling system, and the radiation area optimization, become
crucial in anatomical sites like the head and neck (H&N) region where the structures
are extremely sensitive to temperature rising. Thanks to their previous research,
in antenna design for H&N regions, M.M. Paulides et al., have realized their own
applicator called HYPERcollar [4]. The HYPERcollar consists of 12 probe-fed
patch antennas divided into 2 circular arrays, spaced 6 cm, creating a cylinder
positioned around the neck of the patient. The antennas work, with independent
phase shifts and amplitude, at 434 MHz which is the frequency clinically validated
for head and neck region [16]. The waterbolus system completes the applicator,
cooling the skin and coupling the EM field into the body. In this system, the
feedings of the antennas are properly optimized to maximize the Specific Absorption
Rate (SAR) in the tumor region, minimizing the risk of overheatings (hotspots)
in the surrounding healthy tissues. It has been demonstrated that is the most
effective way to optimize properly the antenna feedings to target the tumor region.
This is related to its short computational time, the possibility to easily control
its performance, and the correlation between SAR indicators and clinical result
[17]. However, the effect of thermal boundary conditions could affect the outcomes
and form incongruities between SAR distributions and temperature. This can be
associated to the external cooling (i.e., the waterbolus) and physiology processes like
airflow able to modify the related temperature maps [18]. The other optimization
mechanism is the Temperature-based which works directly on the temperature
distribution. This approach, in contrast with the SAR-based, is characterized by
high computational costs due to the solution of the thermal equation for every step.
Additionally, the results could be not reliable due to the uncertainty characterizing
tissue thermal parameters, which are known only with ex-vivo measurements.
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Figure 1.2: HYPERcollar applicator for HT in H&N region. [4]

1.3.2 Hyperthermia Treatment Planning
Starting from retrospective verification of clinical therapy capabilities, hyperthermia
treatment planning (HTP) is used nowadays as the standard process to improve
clinical outcomes [17](i.e., Quality Assurance Guidelines for clinical application
of locoregional hyperthermia [19]). The HTP allows the creation of a patient-
specific treatment and the radiation focalization only on the tumor region avoiding
hotspots, i.e., dangerous overheated regions far from the tumor site. The typical
HTP workflow for the SAR-based techniques, on which this work is focused, can
be divided into the following steps [20]:

1. Patient CT or/and MRI scan in the therapy position, whose images allow
the reconstruction of the 3D patient model improving the specificity of the
treatment.

2. From the previous slices tissue segmentation is performed, in a manual or
semi-automatic way, generating the model. This step influences simulation
results due to the association of electrical and thermal properties to every
tissue. The model of the antenna applicator is included in the simulation and
Maxwell’s equations are solved using an EM software. Different techniques
can be used like the finite difference time domain method (FDTD), the finite
integration technique (FID), or others.

3. Phase-amplitude optimization is the critical stage to optimize tumor heating
while limiting the healthy tissues. SAR-based techniques evaluate the SAR
distribution and modify the applicator feedings to maximize it on the tumor
region avoiding the other tissues.
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4. Finally, the thermal solver provides 3D temperature map distribution, cor-
responding to the optimized SAR, in the patient model solving the bio-heat
equation. This step considers the heat removal by the blood flow, however,
large uncertainties are present.

Figure 1.3: H&N HTP workflow. [21]

8



Chapter 2

Numerical Simulation

The importance of creating a patient-specific hyperthermia treatment is crucial
to enhance the efficacy of the therapy. As mentioned before, the electromagnetic
applicator transfers energy inside the body and increases the temperature thanks
to its interaction with tissues. The numerical simulation allows to reproduce the
interaction between the radiation, produced by the antennas, and the patient tissue.
Thanks to the electromagnetic solver and thermal solver it is possible to evaluate
the treatment and further improved it by optimizing the heating process only on
the tumor region.

2.1 Equations and Parameters Involved

2.1.1 Electromagnetic Modeling
The electromagnetic solver generates results solving Maxwell’s equations, which
describe the interaction between the magnetic field and the electric field, but also
how microwave energy propagates into the patient tissue [22].

∇ × H = J + ∂D
∂t

(2.1)

∇ × E = −∂B
∂t

(2.2)

∇ · D = ρ (2.3)

∇ · B = 0 (2.4)
The (2.1) is the “Maxwell-Ampere Equation” and describes how the conduction,
current density J [A/m2] and the electric flux density D [A s m−2], as well as
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displacement current ∂D/∂t [A/m2], influence the magnetic field H [A/m].
The (2.2) is the “Maxwell-Faraday Equation”, it states that changes in the magnetic
field B [V s m−2] affect the electric field strength E [V/m]. The Gauss’ Law for the
electric field (2.3) enounces that the electrical charge density is the source of the
electric field, while the (2.4) is the Gauss’ Law for the magnetic field and defines
that magnetic monopoles do not exist.

Dielectric losses convert microwave energy into heat within tissues, so modeling
wave propagation is necessary [22]. The time-dependent energy balance for a
volume (Ω) in which the electromagnetic field propagates is given by:

pdiss,Ω(t) + d

dt
WΩ(t) = p∂Ω(t) (2.5)

where pdiss,Ω [W] is the power dissipated, so transformed in heat, within volume.
WΩ is the energy stored in (Ω) and p∂Ω is the power exchanged through the volume
with the outside.

The dissipation term pdiss,Ω can be defined as:

pdiss(t)
dΩ = E · σE = σ|E(t)|2 (2.6)

Also the harmonic form can be introduced using the electric field’s magnitude
(peak value) |E| [V/m]:

pdiss(t)
dΩ = σ

2 |E|2 (2.7)

The SAR is obtained by normalizing by the tissue mass density (ρ):

SAR = σ

2ρ
|E|2 (2.8)

At a given location, the SAR is calculated as the ratio between the dissipated
power and the mass densities. In EM dosimetry, the quantity that measures
the energy absorbed by biological tissues is denoted as the Specific Absorption
Rate (SAR) and provides the temperature rise estimation induced into the tissue.
However, SAR is susceptible to the computational methods approximation so is
more commonly described in an averaged form in two different ways, namely over
the region mass:

〈SAR〉M = 1
M

Ú
R(M)SAR(r)

dm (2.9)

or over the region volume:

〈SAR〉V = 1
V

Ú
R(V )SAR(r)

dv (2.10)
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Though the unit of thermal dose it’s possible to evaluate the effectiveness of the
hyperthermia treatment. It is expressed in cumulative equivalent minutes (CEM)
of exposure to 43 °C [23] and is defined as follows:

CEM43 =
nØ

i=1
ti · R(43−Ti) (2.11)

R=0.25 per T<43 °C

R=0.5 per T>43 °C

where ti is the i-th exposure time interval, R is related to the dependence among
temperature and cell death rate, and T is the average temperature in the period of
ti. The resulting CEM43°C value represents the effect of the entire history of heat
exposure on cell death [24, 25].

Modeling CEM43 does not require specific tissue parameters. Hotspots, expo-
sure duration, the transient development of temperature and the different tissue
temperature sensibilities are considered, establishing the tissue damage correlation
between both temperature and time. R is the thermal isoeffect dose and specifies
the exposure times necessary to obtain the same effect with a temperature increase
of 1 °C.

Accuracy in simulating therapeutic heat treatment is essential for the planning
of the same and for the dosimetry of single patients.

2.1.2 Thermal Modeling
On the other hand, thermal solver produces outcomes solving the Pennes’ equation
(or bio-heat equation):

ρC
∂T

∂t
= k∇2T + qs (2.12)

where ρ is the tissue mass density [kg/m3], C is the heat capacity [J kg−1 K−1],
k is the thermal conductivity [W m−1 K−1]. The source term, qs[W/m3] can be
divided into 3 components:

qs = qhs + qm + qp (2.13)

• qhs external heat source term

• qm metabolic heat generation term (metabolic reactions)

• qp heat loss due to blood perfusion

11
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In this case, the heat source term is the EM heating (2.7):

qhs = σ

2 |E0|2 (2.14)

σ is the electrical conductivity in [S/m] and |E0|2 is the electric field intensity
[V/m]. To simplify, metabolic heat generation can be assumed negligible (qm ≈ 0).

If the heat source does not change with time, (2.12) can be rewritten as follows:

ρC
∂T

∂t
= k∇2T + qhs + qp (2.15)

After reaching equilibrium, i.e., in stationary conditions, the term relating to
the temperature variation over time is canceled ∂Tss/∂t = 0 (where Tss represents
the steady-state temperature). That allows to rewrite the (2.15) by omitting the C
and forming the Pennes’ steady-state equation:

k∇2Tss + qhs + qp = 0 (2.16)

During EM heating in a stationary state (SS), the EM source can be approx-
imately considered, in the region of interest, bigger than all the other thermal
gradient:

qhs >>
---k∇2Tss

--- (2.17)

which leads the (2.16) to:
qhs ≈ −qp (2.18)

According to the (2.14) and also to the (2.8), it is possible to write:

ρSAR ≈ −qp (2.19)

The (2.15) enables to describe the physiological phenomenon including however
some constraints. It avoids the consideration of the veins heat, the arteries heat
released is assumed to be absorbed locally by the tissues, and so it equals arteries
temperature to the body temperature. All these factors produce a blood perfusion
overestimation, that could be calculated [26]:

qp = −ωbCbρb(T − Ta) (2.20)

where ωb is the blood perfusion rate [s−1], Cb is the specific heat of blood [J
kg−1K−1], ρb the mass density of blood and Ta is the arterial blood temperature
[K]. The minus sign in (2.20) represents the blood compensation to temperature
variations, it provides heat if the temperature decreases and removes heat if there
is a rise. From the ωb in (2.20) it is possible to calculate the perfusion rate relative
to tissue mass ω as follows:
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ω = ωb

ρ
(2.21)

which is expressed in [ml kg−1 min−1] and it is one of the thermal parameters that
will be considered and varied for the examined tissues.

Monitoring patient temperature during HT only via simulations is not safe, since
the parameters, included in the simulations, are known with high uncertainty. This
could lead to bias in the temperature maps and failure in heating the target region.
Controlling the temperature in these areas is essential, so accurate thermometry
tools are employed to obtain reliable data. Commonly, interstitial catheters with
fiber optic sensors are involved, despite being an invasive and discomfort method
for the patient. For this reason, new progressing studies aim to discover specific
non-invasive methods for temperature monitoring [27].

2.1.3 Tissue Parameters
The electromagnetic energy absorption is related to electrical tissue parameters,
whereas thermal parameters affect heat transfer within tissues [22].

• Dielectric Parameters

– Electric permittivity
ϵ = D

E
(2.22)

ϵ [F/m] defined as the ratio between the electric displacement and electric
field within a material. From ϵ, for one specific material, the Relative
Permittivity ϵr can be calculated as:

ϵr = ϵ

ϵ0
(2.23)

it is the ratio between the electric permittivity of that material and the
electric permittivity of a vacuum (ϵ0), it is a dimensionless quantity.

– Electric conductivity
σ = J

E
(2.24)

σ [S/m] defines the ratio between the current density within a material
and the electric field.
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• Thermal Parameters

– Thermal conductivity
k = Q

∇2T
(2.25)

k [W m−1 K−1] describes heat conduction within tissue.
– Perfusion

represented by the letter ω [ml kg−1 min−1].

Temperature distribution is influenced by blood perfusion inside the vascular system,
particularly in local regions. The distribution of tumor vasculature, due to multiple
angiogenic grow factor release, is chaotic and generally reduces the blood flow.
One potential explanation for this evident contradiction is that the mechanisms
regulating growth and adaptation of vascular networks are impaired. According
to a recent theory for structural adaptation of vascular networks, heterogeneous
perfusion in tumors may result from perturbation of this system. Consequently,
angiogenesis may increase perfusion heterogeneity [28] and leads to loss efficiently
heat removal within the tumor region, which possibly results in higher temperatures
during heating. Thermal and dielectric tissue parameters of normal and tumor
tissues, assigned to the different tissues in the numerical model, are currently
known with high uncertainty. These values, reported in the Literature, derived
from ex-vivo measurements and can introduce errors in the simulations, leading to
wrong temperature maps of the patient.

2.2 Sim4Life Software
Sim4Life, product by ZMT Zurich MedTech, is a revolutionary Multiphysics simu-
lation platform for computational life scientists. It combines computable human
phantoms with the most powerful physics solvers and the most advanced tissue
models. The software directly analyzes biological real-world phenomena and com-
plex technical devices in a validated biological and anatomical environment. The
software’s phantoms, subsequentially provide a realistic biological environment for
conducting fundamental studies for testing the effectiveness and safety of medical
devices and treatments, and for supplementing clinical trials [29].

The Electromagnetics Full Wave Solvers (P-EM-FDTD) enable accelerated
full-wave, large-scale EM modeling (billion voxels) with Yee discretization on
geometrically adaptive, inhomogeneous, rectilinear meshes with conformal sub-cell
correction and thin layer models. These solvers, which are the most frequently
applied in near-field dosimetry, have been extensively validated and documented
according to the IEEE/IEC 62704-1 standard as well as by comparisons with
measured data [30].
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The Thermodynamic Solvers (P-THERMAL) enable the modeling of heat
transfer in living tissue using advanced perfusion and thermoregulation models.
Exclusive thermal damage and effect quantification models, e.g., CEM43, are
included [31].

One of the key features of Sim4Life is its data visualization capability, it can
process and analyze various medical image data with the fully integrated toolbox
Isaac, or the medical image segmentation tool set. Anatomical models from various
types of imaging data can be generated efficiently, rapidly, and flexibly. The wide
selection of available segmentation methods ensures that surface models with many
different tissue types can be also generated with efficiency and flexibility.

2.2.1 Anthropomorphic Phantom
The human phantoms are based on the virtual population ViP 3.x/4.0 of the IT’IS
Foundation at ETH Zurich. These models include integrated posing and morphing
tools, characterized to predict the real-world physiological phenomena. Tissues are
linked to the “physical properties database” which is constantly updated [32].

The phantom used for this work, taken from ViP, is the female young adult
Yoon-sun shown in Figure 2.1.

Figure 2.1: Yoon-sun Phantom

Yoon-sun
Sex Female
Type Young Adult
Age [Years] 26
Height [m] 1.52
Weight [kg] 54.60
BMI [kg/m2] 23.60

Table 2.1: Yoon-sun Phantom
Characteristics

The tumor model was created inside Yoon-sun phantom in the neck region (in
green in Figure 2.3), in order to recreate a H&N cancer scenario and perform a
hyperthermal treatment. The tumor, represented by an ellipsoid (see Figure 2.2),
is modelled using the modelling tool in Sim4Life.
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Figure 2.2: Tumor

Tumor Model

Volume [mm3] 4041.44

H [mm] 26.25

L [mm] 16.36

W [mm] 18.07

Table 2.2: Tumor
Model Dimensions

Figure 2.3: Tumor
Location

2.2.2 Antenna Array

The applicator used for the thesis purpose is similar to M.M Paulides’ model [33].
It is made by a circular array of 8 equidistant patch antennas, which create a ring
shape applicator, positioned around the neck of the Yoon-sun phantom as presented
in Figure 2.4.

Figure 2.4: Array of Antennas

This set-up, according to Henke et al. [34, 35], in symmetrical geometry regions
like the neck, guarantees the optimal configuration to maximize transversal waves
interference [33]. Single patch antenna is designed as in Figure 2.5, then was set the
operating frequency at 434 MHz, clinically approved for H&N cancers, preventing
hotspots and improving treatment outcomes.
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Figure 2.5: Patch Antenna

Patch Antenna
Parameters Dimensions [mm]

Wgr 40.00
Lgr 50.00
Wp 7.21
Lp 31.00
xd 4.96

hsub 8.40

Table 2.3: Patch Antenna
Dimensions

Patch antennas, also known as microstrip antennas, are commonly used in medi-
cal applications due to their simple design and easy band optimization. Microstrip
patch antenna consists of a dielectric substrate and of a metal patch, the ground,
placed on the side. The substrate is usually thin and the metal patch on the front
can have numerous shapes [36]. The patch antennas considered in the present thesis
have the substrate made by the water of the waterbolus (ϵr = 76.7 for distilled
water and thickness hsub) in which they are immersed. The geometry of the antenna
influences the working frequency, so the antennas are dimensioned properly to
provide 434 MHz.

The reflection coefficient S11 of each antenna, the ratio between the amplitude
of the reflected signal to the incident signal, is validated to verify the frequency
setup. Figure 2.6 shows the S11 of the source 8, acquired maintaining this as
the only active source and keeping off the others, plotted both through Sim4Life.
The resonance in bandwidth around the set frequency (434 MHz) testifies to the
accurate set.

Figure 2.6: S11 of the 8th antenna
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The modeling process is now completed: the highly realistic human phantom
Yoon-sun is loaded from the ViP library, tumor model is allocated in the neck region
and the antenna array, made by 8 microstrip patch antennas, is placed around
the anatomical region of interest. The next step consists in solving the Maxwell’s
equation in the volume, which was divided into voxels, i.e., a finite number of
cubic elements (see Figure 2.7), running the Sim4Life’s EM FDTD Multiport
simulation. It computes the fields generated by each antenna acting as standalone
(i.e., with unitary feeding voltage, when all the other antennas are switched off
and closed to a 50 W load). Then, the computed electric fields are saved for all the
computational domain points and exported to MATLAB for future optimization.

Figure 2.7: Domain Voxels

2.3 HTQ SAR-based Optimization
The SAR is related with the tumor surface area and depth, depending on the hyper-
thermia applicator characteristic [17]. The perturbations on the SAR distribution
are provided by anatomy, antenna array and waterbolus biases. Accurate analysis
can be done separately to these three cases, verifying which one has more influence
on the outcome. In this work the validation process does not cover the waterbolus
distortion, analyzing however the antenna array phase and amplitude optimization
and the accuracy of the tissue parameters. By considering the two latter aspects,
it is possible to validate the performances of the temperature map reconstruction
algorithm which recreates the temperature distribution inside the human phantom
from few known thermal points.

In the previous Section 2.2.2, the entire model is created in order to analyze the
antenna array outcomes without any optimization. Figure 2.8 reports the |E|, |J|
and SAR, in the xy plane, relative to the whole array with a total input power of
20W, when the feedings of the different antennas are not optimized. As the figures
show, no specific target region is present in the anatomical site, all the volume is
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exposed to the microwave energy. In SAR distribution (Fig. 2.8c) however, it is
evident that the highest values are in a specific spot, in the posterior neck of the
phantom, far from the tumor region, which is the circular element easily detectable
in the image.

(a) |E| (b) |J| (c) SAR

Figure 2.8: Sim4Life viewer, xy plane at 20W power

2.3.1 Phase and Phase-Amplitude Optimization
Firstly, the results are exported automatically, thanks to the Python code (see
Code 11 full reported in Python Scripts 4.3), as MATLAB files; in MTALAB is
then possible to run the optimization algorithms. Code lines 11, thanks to the
“mask filters”, which allows to mask a 3D field assigning specific value in the region
of interest and other outside it, divide the entire domain into two main structures:
the healthy region H, made by the whole neck region with all the sensible organs
without tumor, and the tumor region T .
def all_entities_within_group ( entity_group ):

if isinstance ( entity_group , model . EntityGroup ):
return list( itertools . chain . from_iterable (
all_entities_within_group (e) for e in entity_group . Entities ))

else:
return [ entity_group ]

vip_group = model . AllEntities ()[’Yoon -sun ’]
entities_H = all_entities_within_group ( vip_group )
entities_T = model . AllEntities ()[’Tumor ’]

Code 2.1: Tissues Selection for Mask Filter

Mask filters are applied multiple times to export (see Code 16) all the 8 stan-
dalone electric fields E for each region, using an iterative loop, but also to export
the induction current J and SAR related to each structure.
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# Adding a new MatlabExporter (T)
inputs = [ field_masking_filter . Outputs ["EM E(x,y,z,f0)"]]
matlab_exporter = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter )

for i, output_port in enumerate ( em_multi_port_simulation_extractor . Outputs ):
em_port_simulation_extractor .raw. SetInputConnection (0, output_port .raw)
em_port_simulation_extractor . UpdateAttributes ()
inputs = [ field_masking_filter . Outputs ["EM E(x,y,z,f0)"]]
matlab_exporter . FileName = (dir + "E{} _T.mat". format (i+1))

print ( matlab_exporter . FileName )
matlab_exporter . UpdateAttributes ()
matlab_exporter . Update ()

Code 2.2: Mask Filter Application and MATLAB Exporter for the ET

The latter are used to calculate, for both groups, the electrical conductivity σ
and the mass density ρ:

σ = |J |
|E|

(2.26)

ρ = 1
2 SARσ|E|2

(2.27)

Then, in MATLAB environment, the 8 electric fields of each region, EH and
ET , are sorted in 3 matrices dividing them by coordinates.

EH .X =




E1,x(r1)
E1,x(r2)

. . .
E1,x(rMH

)




E2,x(r1)
E2x(r2)

. . .
E2,x(rMH

)

 . . .


EN,x(r1)
EN,x(r2)

. . .
EN,x(rMH

)


 , EH .Y, EH .Z (2.28)

MH : total points in H. N = 8 number of antennas

ET .X =




E1,x(r1)
E1,x(r2)

. . .
E1,x(rMT

)




E2,x(r1)
E2x(r2)

. . .
E2,x(rMT

)

 . . .


EN,x(r1)
EN,x(r2)

. . .
EN,x(rMT

)


 , ET .Y, ET .Z (2.29)

MT : total points in T . N = 8 number of antennas

From these two matrices, one filled with all fields related to tumor while the other
containing all fields related to the healthy area, the Hotspot to Tumor Quotient
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(HTQ) coefficient is minimized focusing the SAR on the tumor preventing the
surrounding tissues.

HTQ = 〈SARH
V 1〉

〈SARtarget〉
(2.30)

where 〈SARH
V 1〉 is the hotspot SAR, defined as the average SAR in V1, which is

the 1% of the healthy volume with the highest SAR, whereas the SARtarget is the
average SAR in the tumor [37, 38]. Minimizing the HTQ, which is our objective
function, allow us to know the proper characteristics we need to set on our array,
so to each antenna, leading to a SAR pattern focused on the tumor region.

The electric field E in equation (2.8), as mentioned before, is exported in each
point of the region of interest and allocated into two structures (healthy and tumor).
The total electric field E generated by the antenna array can be written as:

E =
NØ

n=1
ν̃n · En (2.31)

In (2.31) the En is the electric filed generated by the Nth antenna of the array,
acting as standalone (i.e., feeded with unitary excitation when all the other antennas
of the array are off) and ν̃n are the coefficients that need to be optimized. For the
phase optimization ν̃n are expressed as:

ν̃n = C · ν0 · eiφn (2.32)

where φn are the antennas phases included in the range [0,2π], ν0 =
√

2R0P0, with
R0=50Ω and P0 as the total input power of the array, while C:

C = 1√
N

(2.33)

is a coefficient for the power normalization where N represent the number of
antennas.

For the optimization of phase and amplitude the ν̃n can be written as follow:

ν̃n = C · ν0 · ζn · eiφn (2.34)

where ζn are included in the range [0,1]. The optimization of the amplitude of each
antenna in the array is achieved varying them. In this case C is:

C = 1ñq
n ζ2

n

(2.35)

To minimize the objective function HTQ, and so obtain the phases only and
phase and amplitude values for each antenna, particle swarm optimization is
involved. Particle swarm optimization (PSO) [39] allows function minimization,
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receiving the limits and the objective function, in this case HTQ is a hybrid
function, through an iterative process. The results of the two cases are reported
below (Fig. 2.9).

Antenna φ
[deg]

1.00 28.29
2 29.54
3 0.00
4 337.37
5 294.87
6 296.53
7 301.06
8 2.08e−04

Table 2.4: Phase-Only
Optimization

Antenna φ ζ2

[deg] [W]
1.00 27.05 0.86

2 32.53 0.75
3 36.00 0.54
4 0.00 0.04
5 307.29 0.35
6 293.56 0.41
7 311.66 0.99
8 5.28e−06 0.75

Table 2.5: Phase-Amplitude
Optimization

Figure 2.9: PSO Comparison Phase-Only and Phase-Amplitude Optimization

2.3.2 Optimized SAR Maps
Thanks to the MATLAB algorithm, the SAR optimization is achieved working
both only on the phases of the antennas in the array and also modifying their
phases and amplitudes.
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(a) Phase-Only P0=20W (b) Phase-Amplitude P0=20W

(c) Phase-Only P0=40W (d) Phase-Amplitude P0=40W

(e) Phase-Only P0=60W (f) Phase-Amplitude P0=60W

(g) Phase-OnlyP0= 80W (h) Phase-Amplitude P0=80W

Figure 2.10: SAR distribution in different cases, plane xy
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Figure 2.10 displays the comparison between the two different scenarios. It is
evident that in second case the hosposts in the posterior neck healthy region on
the phantom are reduced, and a better radiation focusing on the tumor region is
acheved. In Figures 2.12c and 2.12d both array powers are normalized at 20W like
done in the 2.8c. The next step consists in different normalization by increasing
the power given to the array. As displayed in all the plots reported in Figure 2.10,
more power added results in higher SAR values in the tumor region.

2.3.3 Temperature Maps
In hyperthermia treatments, the microwave array applicator provides energy to the
tumor region to increase the local temperature damaging its cells. Hence, is crucial
to see the temperature map distribution inside the model, corresponding to the
optimized SAR maps (i.e., when the optimized SAR maps shown in Section 2.3.2
are used as input source for the bioheat equation), at different power normalizations.
In the computational domain for the bioheat equation all neck tissues are considered
except the trachea and the lungs.

(a) Phase-Only, plane xy (b) Phase-Amplitude, plane xy

(c) Phase-Only, plane xz (d) Phase-Amplitude, plane xy

Figure 2.11: Temperature Maps at 20W
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(a) Phase-Only, plane xy (b) Phase-Amplitude, plane xy

(c) Phase-Only, plane xz (d) Phase-Amplitude, plane xy

Figure 2.12: Temperature Maps at 40W

In Figures 2.11 and 2.12 the temperature maps show that 20W and 40W power
are not sufficient to reach the treatment goal temperature in tumor area, the
maximum values do not exceed 40.5 °C. Furthermore, is clearer here how important
is to also optimize the amplitude of the antenna array due to its better temperature
distribution, which leads to a better and safer hyperthermia outcome for the
patient. Therefore, the examples reported in the following will only report the
results corresponding to the phase and amplitude optimization.
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(a) 60W, plane xy
(b) 60W, plane xz

(c) 60W, plane yz

Figure 2.13: Temperature Map Phase-Amplitude Optimization at 60W

(a) 80W, plane xy
(b) 80W, plane xz

(c) 80W, plane yz

Figure 2.14: Temperature Map Phase-Amplitude Optimization at 80W

The 60W power case provides its highest quantity at 42.6 °C (Fig. 2.13), while
at 80W the peak temperature value is 44.6 °C (Fig. 2.14).

For the subsequent works we must examine and select one of these two latter
cases of antenna array power normalizations. Due to the uncertainty that affects
the tissue parameters assigned to the solvers, we opted for a conservative choice
that could preserve the patient from reaching too high temperature values, over
the 44 °C which is considered the upper limit, in the tumor region. For this reason,
the 80W case was discarded and all the follow simulations involved a 60W power
normalization of the applicator.
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Temperature Maps
Reconstruction

In this chapter, the tissue parameters of the phantom are modified several times in
order to reach a most reliable 3D temperature map of the patient by means of a
reconstruction algorithm. Sections 1 and 2, especially the equation (2.20), explain
how blood flow plays a key role in heat modification and distribution within tissues
during biological processes. As mentioned before, parameters values are reported
in the Literature, but they cannot be considered 100% correct since they derived
from anatomical measurements made on dead bodies. Moreover, these parameters
may vary from one patient to another, and be different from the baseline values,
making the treatment less patient-specific. Therefore, ex-vivo values could lead to
misleading patient-simulated temperature maps making the therapy ineffective or
even dangerous.

3.1 Multigrid Creation
Despite the uncertainty characterizing the values reported in Literature, they are
consistent and provide an idea of the dimensions involved in the problem. Over
the baseline, i.e., the average value, also the upper and lower limit are described
giving a range (see Table 3.1) [32].

In this thesis, different combinations of parameter values are produced for the
most relevant tissues in the H&N region: muscle, tumor, skin, and fat, also consid-
ering the SAT (subcutaneous adipose tissue), varying the parameters indicated in
Section 2.
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ϵr Baseline Min Max

Muscle 56.90 54.00 59.70
Fat 11.60 11.00 12.20
Skin 49.40 46.90 51.90

Tumor 59.00 56.00 62.00

(a) Relative Permittivity Values

σ Baseline Min Max
[S m−1]

Muscle 0.81 0.77 0.85
Fat 0.08 0.08 0.09
Skin 0.68 0.65 0.72

Tumor 0.89 0.85 0.94

(b) Dielectric Conductivity Values

k Baseline Min Max
[W m−1 K−1]

Muscle 0.49 0.40 0.56
Fat 0.21 0.18 0.50
Skin 0.37 0.32 0.50

Tumor 0.51 0.48 1.50

(c) Thermal Conductivity Values

ω Baseline Min Max
[ml kg−1 min−1]

Muscle 39.10 39.10 442.00
Fat 33.00 33.00 255.00
Skin 106.00 106.00 175.00

Tumor 72.30 72.30 848.00

(d) Perfusion Values

Table 3.1: Parameters Literature Values [32]

In order to create different combinations, pseudo-random multidimensional
grids are employed. Multidimensional grids (multigrids) are grids of Ntot n-tuples,
where Ntot is the number of combinations considered, and n is the number of
parameters in each set. Thanks to the multigrids, performed in the MATLAB
environment, several distinct sets are generated. Providing the baseline, maximum
and minimum values of the parameters investigated, the MATLAB algorithm
produces value combinations that vary in the range, stated in Literature, for each
tissue in analysis. Thus, it is possible to evaluate separately the different nature
of parameters, dielectric and thermal, or the various tissues type present in the
region.

Two different types of multidimensional grids are created (see Figures 3.1 and
3.2), building in that way two different approaches by which the sequences of values
are generated. Consequently, it is possible to have several sets and then produce
their temperature maps, observing how the changed values alter them.

3.1.1 Multigrid A + Baseline
The first type of multidimensional grid is the “MGrid Type A” (see Figure 3.1).
The dimension of the points forming the multigrid is indicated as N , i.e., as the
product of the number of tissues n and parameters m considered. MGrid Type
A is formed from the different combinations of the extreme bound values (1 in
Fig.3.1) of the parameters involved plus some pseudo-random or Sobol [40] values
NS (2 in Fig.3.1). For this reason, there is a minimum number of combinations
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created, which is 2n·m = 2N . The total combinations is reported in equation (3.1):

Figure 3.1: MGrid type A with N=3

Ntot = 2N + NS (3.1)

where N = n · m

For the next analysis, the “Multigrid Type A” is made considering 2 tissues,
muscle and tumor, and their 2 thermal parameters, w and k, having dimension
N =2·2=4 and forming 22·2 = 16 minimum combinations. The number of Sobol
values NS inserted is defined during the creation process. Moreover, one line is
added: the first set is made forcedly by the baseline values, creating the “MGrid
Type A + Baseline”.

Ntot = 1 + 2N + NS (3.2)

3.1.2 Multigrid B + Baseline
The other multidimensional grid type, called the “Multigrid Type B” (fig.3.2),
is produced only from pseudo-random values NS within the range provided. Its
dimension is related to the number of tissues and parameters inserted without
having a minimum number of combinations.

Figure 3.2: MGrid type B with N=3

Ntot = NS (3.3)

where N = n · m

This case is also modified as before by adding the baseline values as the first set

29



Temperature Maps Reconstruction

for the next steps:
Ntot = 1 + NS (3.4)

3.2 Svar Matrix Creation
After the generation of several combination sets for tissue parameters, the allocation
step occurs. One set at a time is assigned to the corresponding tissue parameters
inside the thermal solver which runs the simulation and creates the corresponding
temperature maps. These maps allow the creation of the Svar and Scath matrices,
used in the reconstruction algorithm.

3.2.1 Map Extraction via Python Scripts
Thanks to the Python interface present in Sim4Life, it is possible to create a Python
code that allocates diverse parameters sets to the segmented tissues and runs the
thermal solver iteratively. Firstly, MATLAB multrigrid generation script (see Code
4.3 in Matlab Scripts) reads the Excel file “Parameters”, where all the Literature
parameter values for each tissues are reported, and generates the required sets in
a text file organized in columns and rows. Each column represents the values of
a different parameter for a specific tissue, so every row corresponds to a different
set of combinations. In Table 3.2 are reported the 27 combinations created with a
MGrid Type A + Baseline, modifying both the thermal parameters, ω and k, in
tumor and muscle and considering NS = 10 (see equation (3.2)). These sets are
then imported in Sim4Life via Python Code lines 3.1, which read the output text
file, and by Code lines 3.2 that change the properties for the tissues selected.
for i in range (0, num_rows ):

km = coord [i ,0]
kt = coord [i ,1]
wm = coord [i ,2]
wt = coord [i ,3]

Code 3.1: Set Reading

entity__tumor = model . AllEntities ()[" Muscle "]
muscle_new_w_value = wm , Unit("ml/min/kg")
muscle_new_k_value = km , Unit("W/m/K")
entity__tumor = model . AllEntities ()[" Tumor "];
tumor_new_w_value = wt , Unit("ml/min/kg")
tumor_new_k_value = kt , Unit("W/m/K")

# Change the Perfusion value and Thermal Conductivity of an existing material
sets = simulation . AllSettings
for idx ,set in enumerate (sets):

if set.Name == ’Muscle ’:
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = muscle_new_w_value
set. ThermalConductivity = muscle_new_k_value

if set.Name == ’Tumor ’:
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set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = tumor_new_w_value
set. ThermalConductivity = tumor_new_k_value

simulation . UpdateAllMaterials ()

Code 3.2: New Values Association

Finally, the Code 3.3 run the simulation and generate the corresponding 27 tem-
perature maps, using as a EM source the antenna array optimized in both phases
and amplitude and normalized at the total input power of 60 W (see Section 2).

simulation = document . AllSimulations ["Th 60W"]
simulation . ClearResults ()
simulation . ResetVoxels ()

# RUN
simulation . UpdateGrid ()
simulation . CreateVoxels ()
simulation . RunSimulation (wait=True)

Code 3.3: Simulation Run

In Figures 3.3 and 3.4 is noticeable how different temperature distributions relate
to different combinations. These temperature maps are created in Sim4Life, then
exported, iteratively by the Code 3.4, and visualized in MATLAB. The fact that
some maps, e.g fig. 3.4, do not reach 42/43 °C on the tumor is a normal consequence.
The perfusion ω and thermal conductivity k of two important tissues (muscle and
tumor) have been varied so the conditions of the problem are strongly altered, also
recalling that the optimization process was carried out from the baseline values.
# EXPORT MATLAB

inputs = [ overall_field_sensor . Outputs ["T(x,y,z)"]]
field_masking_filter = analysis .core. FieldMaskingFilter ( inputs = inputs )
field_masking_filter . SetAllMaterials ( False )
field_masking_filter . SetEntities ( entities__all )
field_masking_filter . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter )

inputs = [ field_masking_filter . Outputs ["T(x,y,z)"]]
matlab_exporter = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter .Name = ("{}". format (i))
matlab_exporter . FileName = (dir + " T_Map {}. mat". format (i))
matlab_exporter . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter )
matlab_exporter . Update ( overwrite =True)
matlab_exporter . Update ( overwrite =True)

Code 3.4: MATLAB Exporter
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(a) Plane xy

tissue k ω
[W m−1 K−1] [ml kg−1 min−1]

muscle 0.56 39.10
tumor 1.50 72.30

(b) Parameters Values

(c) Plane xz (d) Plane yz

Figure 3.3: Tmap 5
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(a) Plane xy

tissue k ω
[W m−1 K−1] [ml kg−1 min−1]

muscle 0.41 361.09
tumor 1.44 314.71

(b) Parameters Values

(c) Plane xz (d) Plane yz

Figure 3.4: Tmap 25
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km kt ωm ωt

[W m−1 K−1] [W m−1 K−1] [ml kg−1 min−1] [ml kg−1 min−1]

0.49 0.51 39.10 72.30
0.40 0.48 39.10 72.30
0.56 0.48 39.10 72.30
0.40 1.50 39.10 72.30
0.56 1.50 39.10 72.30
0.40 0.48 442.00 72.30
0.56 0.48 442.00 72.30
0.40 1.50 442.00 72.30
0.56 1.50 442.00 72.30
0.40 0.48 39.10 848.00
0.56 0.48 39.10 848.00
0.40 1.50 39.10 848.00
0.56 1.50 39.10 848.00
0.40 0.48 442.00 848.00
0.56 0.48 442.00 848.00
0.40 1.50 442.00 848.00
0.56 1.50 442.00 848.00
0.48 0.99 240.55 460.15
0.44 1.25 139.83 654.08
0.52 0.74 341.28 266.23
0.42 1.12 391.64 751.04
0.50 0.61 190.19 363.19
0.46 0.86 290.91 169.26
0.54 1.37 89.46 557.11
0.41 1.44 316.09 314.71
0.49 0.93 114.64 702.56
0.45 0.67 416.85 508.63

Table 3.2: MGrid Type A + Baseline Values, k and ω of muscle and tumor

3.2.2 Temperature Map Reconstruction

After the maps exportation in MATLAB, the reconstruction algorithm is employed.
It requires the creation of two matrices:

• Svar formed by different temperature maps Ntot obtained after the modification
of the tissues values. Each map is an array containing the temperature values
for each point in the whole domain. The Svar matrix is created by adding
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every temperature map as a column.

Svar =




T1(r1)
T1(r2)

. . .
T1(rM)




T2(r1)
T2(r2)

. . .
T2(rM)

 . . .


TN(r1)
TN(r2)

. . .
TN(rM)


 (3.5)

(r1, r2...rM) spatial domain points

• Scath is the matrix formed by temperature maps evaluated along the direction
of insertion of a catheter, included as columns. This matrix is related to
the known thermal points that, in real clinical application, can be measured
through the minimally invasive catheter to obtain some measured temperature
values inside the patient. The direction of insertion and the number of
catheter capture points, hence the number of the investigated points of the
whole domain, affect the outcomes of the reconstruction algorithm which tries
to recreate the entire region from them. To generate the columns of the matrix
Scath, the coordinates in xy plane of the tumor are required, in that way it is
possible to explore in the tumor direction.

for i = 1: Np
T = load ([ filepath ,’T Map ’,num2str (i -1) ,’.mat ’]);
Tmap = reshape (T. Snapshot0 ,[ length (T. Axis0 ) -1, length (T. Axis1 ) -1, length (T. Axis2
) -1 ,1]);
Tmap = Tmap (:,:, sz1:sz2);
Tmap = reshape (Tmap ,[ numel (Tmap) ,1]);
Tmap( isnan (Tmap)) = [];
Svar (1: numel (Tmap),i) = Tmap;

end

Code 3.5: Svar Matrix Input

type = ’y’ % type of catheter considered ( along ’x’ or ’y ’)
coord = -0.00333; %[m] coordinate xc or yc of the catheter (e.g., xc_tum =

-0.00333 m, yc_tum = -0.01236 m)
Nc = 20; % number of points along the catheter
dir_c = ’rev ’; % catheter ’s direction ( options : ’fw ’, ’rev ’)
step = 1; % spacing among points along the catheter

Code 3.6: Scath Matrix Input

The reconstruction algorithm considers one of the temperature maps of the
Svar matrix as a target; it is supposed to be unknown. From the target map the
algorithm creates the β vector, made by coefficients as follows:

[Svar]=
1è

Tb

é
,
è
T1

é
· · ·

è
Tt=2N

é
,
è
Tsobolt=1

é
· · ·

è
Tsobolt=Ns

é2
(3.6)
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[Ttarget] =


Tsobol,t(r1)

...
Tsobol,t(rM)

 (3.7)

β = pinv([Svar]|1...Ncath
, 10−3) · [Ttarget]|1...Ncath

(3.8)

[Svar]|1...Ncath
= Scath (3.9)

Finally, the temperature map can be reconstructed:

[Trec] = [Svar][β] (3.10)

Starting from the Svar matrix (3.6), a Scath matrix is built using the first Np,min

columns of the Svar matrix. The (Np,min+1)th column of the Svar matrix is assumed
as a target field and reconstructed using Scath. Then, the (Np,min+1)th column
is added to the Scath matrix and the (Np,min+2)th column is assumed as a new
target field and reconstructed. Assuming Np,min = 4, 27-4 = 23 target fields are
sequentially reconstructed using an Scath matrix which has an additional columns
at each step.

Srec
var =




T1(r1)
T1(r2)

. . .
T1(rM )




T2(r1)
T2(r2)

. . .
T2(rM )

. . .


TNp,min(r1)
TNp,min

(r2)
. . .

TNp,min
(rM )


ü ûú ý

Minimum Number of Columns


TNp,min+1(r1)
TNp,min+1(r2)

. . .
TNp,min+1(rM )


ü ûú ý

First Target Field
t=1


TNp,min+2(r1)
TNp,min+2(r2)

. . .
TNp,min+2(rM )


ü ûú ý
Second Target Field

t=2

· · ·


(3.11)
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3.2.3 Variation of Catheter Insertion
Table 3.2 reports the 27 sets of combinations created with the MGrid type A +
Baseline. From them, the linked temperature maps are generated in Sim4Life, two
of these are plotted in Figures 3.3 and 3.4. From this group of values, the Svar

matrix is created and the reconstruction algorithm is applied, varying multiple
catheter direction and characteristics. Starting with a Scath matrix with a minimum
number of columns Np,min = 4, the other 23 maps are considered one at a time as
target fields and then added to the Scath as new columns. In this way, the dimension
of the Scath matrix increases at each step, i.e., each target field is reconstructed
using a reconstruction matrix with increasing dimension. The reconstructed fields
are then compared to the starting target fields (i.e., the columns of the matrix
Svar). The direction of the catheter insertion is evaluated in different positions
on the xy plane where the tumor centroid is localized. However, one of the two
coordinates on the plane is set to be the tumor one, in that way the insertion, so
the investigation, is always towards the tumor. Different cases are created varying
the number of points of the catheter, the spacing between them and the direction as
mentioned previously. For each different case, the xy plane with the representation
of the catheter on the baseline map is reported, together with a statistical analysis
performed on the reconstructed fields. The three plots of the statistical analysis
are organized as follows:

1. The first plot (upper row, right) reports the boxplot statistics of the difference
∆T=|Trec − Ttarget| performed over the points of the whole region of interest,
for each of the 23 target fields considered.

2. The second plot (lower row, left) reports on the same plot: the boxplot relative
to |Trec − Tbaseline| and the boxplot relative to |Trec − Ttarget| for the 5th target
field considered.

3. The third plot (lower row, right), finally reports the median and the maximum
value of ∆T for the different target fields considered.
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Case 1
• Coordinates: x = 0, y = −3.33 [mm]
• Direction: along y
• Type: forward
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 3.5: Case 1
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Case 2
• Coordinates: x = 0.00, y = −3.33 [mm]
• Direction: along y
• Type: reverse
• N.Points: 40
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 3.6: Case 2
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Case 3
• Coordinates: x = −12.36, y = 0.00 [mm]
• Direction: along x
• Type: forward
• N.Points: 40
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 3.7: Case 3
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Case 4
• Coordinates: x = −12.36, y = 0.00 [mm]
• Direction: along x
• Type: reverse
• N.Points: 20
• Step: 2 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 3.8: Case 4
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Chapter 4

Reconstruction Fidelity
Evaluation

Chapter 3 introduced some algorithms, both in MATLAB and Python, used to
change the tissue values inside the thermal solver and produce the corresponding
temperature maps. Firstly, the multigrid generation algorithm, in MATLAB
environment, that creates several combinations of parameter values, varying them
inside the range provided in the Literature. Then, thanks to the Python script,
these are iteratively, each set at a time, attached to the human phantom in
Sim4Life and the bio-heat equation is solved forming the associated maps. The
reconstruction algorithm is performed as the last step, creating the Svar and Scath

matrices, including different catheter conditions and the related statistics.
Now the performance of the reconstruction algorithm is evaluated producing

results from both the MGrid Type A and MGrid Type B, modifying more param-
eters, including more tissues, and varying the minimum number of temperature
maps involved in the reconstruction.

4.1 Multigrid Type Comparison
In the section above, different 4 cases of catheter insertion are plotted. These derive
from the reconstruction algorithm performed with the creation of a MGrid Type A
+ Baseline made by 27 combination sets, modifying thermal parameters of tumor
and muscle.

Similar analysis is conducted here where the two different multigrid typologies
are compared. For both multigrids, Type A + Baseline and Type B + Baseline, 25
combinations (four-tuples) of parameters are created using the MATLAB script,
aiming to change k and ω of tumor and muscle. As derived from the equation
(3.2), the Type A + Baseline is formed by the baseline values as a first set, 16
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combinations created from the extreme bounds of the parameters and completed
with 8 Sobol-based sets (Table 4.1a). On the other hand, the Type B + Baseline
is made by all pseudo-random values generated from the literature ranges except
the first row which is the baseline (see the equation (3.4)), reported in Table 4.1b.
After that, the Python script is run twice to assign the parameters combinations
of each multigrid to the segmented tissues in the Sim4Life simulation, producing
the temperature maps. Then, the maps are exported in MATLAB where the
reconstruction algorithm is executed for the two map types, creating 4 different
cases. All these cases, reported below with the statistic plots described in Section
3.2.3, are formed by altering the insert position of the catheter which is made by
20 points spaced 1mm.

Map km kt ωm ωt

[W m−1 K−1] [W m−1 K−1] [ml kg−1 min−1] [ml kg−1 min−1]

T0 0.49 0.51 39.10 72.30
T1 0.40 0.48 39.10 72.30
T2 0.56 0.48 39.10 72.30
T3 0.40 1.50 39.10 72.30
T4 0.56 1.50 39.10 72.30
T5 0.40 0.48 44.20 72.30
T6 0.56 0.48 44.20 72.30
T7 0.40 1.50 44.20 72.30
T8 0.56 1.50 44.20 72.30
T9 0.40 0.48 39.10 848.00
T10 0.56 0.48 39.10 848.00
T11 0.40 1.50 39.10 848.00
T12 0.56 1.50 39.10 848.00
T13 0.40 0.48 442.00 848.00
T14 0.56 0.48 442.00 848.00
T15 0.40 1.50 442.00 848.00
T16 0.56 1.50 442.00 848.00
T17 0.48 0.99 240.55 460.15
T18 0.44 1.25 139.83 654.08
T19 0.52 0.74 341.28 266.23
T20 0.42 1.12 391.64 751.04
T21 0.50 0.61 190.19 363.19
T22 0.46 0.86 290.91 169.26
T23 0.54 1.37 89.46 557.11
T24 0.41 1.44 316.09 314.71

(a) MGrid Type A + Baseline

Map km kt ωm ωt

[W m−1 K−1] [W m−1 K−1] [ml kg−1 min−1] [ml kg−1 min−1]

T0 0.49 0.51 39.10 72.30
T1 0.48 0.99 240.55 460.15
T2 0.44 1.25 139.83 654.08
T3 0.52 0.74 341.28 266.23
T4 0.42 1.12 391.64 751.04
T5 0.50 0.61 190.19 363.19
T6 0.46 0.86 290.91 169.26
T7 0.54 1.37 89.46 557.11
T8 0.41 1.44 316.09 314.71
T9 0.49 0.93 114.64 702.56
T10 0.45 0.67 416.82 508.63
T11 0.53 1.18 215.37 120.78
T12 0.43 0.79 165.01 605.59
T13 0.51 1.31 366.46 217.74
T14 0.47 1.05 64.28 411.67
T15 0.55 0.54 265.73 799.52
T16 0.41 1.02 202.78 241.98
T17 0.49 0.51 404.23 629.83
T18 0.45 0.77 102.05 823.76
T19 0.53 1.28 303.50 435.91
T20 0.43 0.64 253.14 726.79
T21 0.51 1.15 51.69 338.95
T22 0.47 1.40 353.87 145.02
T23 0.55 0.89 152.42 532.88
T24 0.42 0.96 379.05 387.43

(b) MGrid Type B + Baseline

Table 4.1: Multigrids Values, k and ω of muscle and tumor
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Type A - Case 1
• Coordinates: x = −12.36, y = 0.00 [mm]
• Direction: along x
• Type: reverse
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 4.1: Case 1
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Type B - Case 1
• Coordinates: x = −12.36, y = 0.00 [mm]
• Direction: along x
• Type: reverse
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 4.2: Case 1
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Type A - Case 2
• Coordinates: x = −12.36, y = 0.00 [mm]
• Direction: along x
• Type: forward
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 4.3: Case 2
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Type B - Case 2
• Coordinates: x = −12.36, y = 0.00 [mm]
• Direction: along x
• Type: forward
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 4.4: Case 2
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Type A - Case 3
• Coordinates: x = 0.00, y = −3.33 [mm]
• Direction: along y
• Type: reverse
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 4.5: Case 3
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Type B - Case 3
• Coordinates: x = 0.00, y = −3.33 [mm]
• Direction: along y
• Type: reverse
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 4.6: Case 3
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Type A - Case 4
• Coordinates: x = 0.00, y = −3.33 [mm]
• Direction: along y
• Type: forward
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 4.7: Case 4
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Type B - Case 4

• Coordinates: x = 0.00, y = −3.33 [mm]
• Direction: along y
• Type: forward
• N.Points: 20
• Step: 1 [mm]

(a) Catheter Rappresentation (b) Plot 1

(c) Plot 2 (d) Plot 3

Figure 4.8: Case 4

One more specific statistical comparison is done. Figure 4.9, which considers all
four cases for each multigrid type, plots the ∆T median value and maximum ∆T
calculated in each case. It is possible to notice, looking at Type A graphs, that
the highest maximum error occurs in case 2. This could be expected since in this
case the catheter is inserted very far from the tumor region, therefore it does not
provide information on the variation of the parameters in that region. For a similar
reason, it is quite logical that the highest mean error occurs in case 4 where the
catheter direction passes through the tumor, measuring in this scenario the fewest
points in the muscle tissue. On the other hand, comparing the two multigrid types
it is evident that temperature maps created by multigrid Type B have globally
lower values than in the other case. As a result, for this first analysis MGrid Type
B seems to be the most convenient.
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(a) MGrid Type A + Baseline

(b) MGrid Type B + Baseline

Figure 4.9: 4 Cases Comparison
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4.2 Svar matrix Dimension
This section aims at estimating the correlation between the reconstruction fidelity
and the number of columns used for the reconstruction algorithm. Thus, some
reconstructions are made multiple times, with the same target, varying the number
of the minimum maps Np,min taken from the Svar matrix and included in the
algorithm for the reconstruction. Two parallel investigations are done for both the
multigrid types.

In this analysis, target fields are set the as the last 5 temperature maps taken from
the Scath matrix, created from MGrid Type B using the same catheter condition
present in case 4 (see Figure 4.8), while the minimum number of temperature maps
Np,min required for the reconstruction is increased iteratively. Each target field
is reconstructed several times and, at each step, one more temperature map is
added to the minimum number of maps required for the reconstruction. For each
value of Np,min, the corresponding mean and maximum error values in the whole
region are calculated. Case 4 is taken as the catheter condition being the only
case that reaches several points in the tumor region. Besides, the Scath is created
from the multigrid Type B because is random generated so more adequate for the
assessment.

4.2.1 Thermal Parameters Only
The tissue parameters characterized by the higher uncertainty are the thermal
parameters k and ω, so the analysis starts with them.

4.2.1.1 Multigrid with and without Baseline

With the aim of changing thermal conductivity k and perfusion ω in tumor and
muscle, the combination set types reported in Table 4.1 are used. Because of the
previous section, the related Svar matrix and Scath matrices, with 25 maps each,
are already created for the two multigrids including the baseline. From the latter,
the Code 4.3 is run to start the analysis. To improve the comprehension, it plots
both the trend of maximum and median of the ∆T values related to the different
number of maps Np,min used to reconstruct each target fields, which are the last five
maps of the Scath MGrid Type B as mentioned above. Figure 4.10, which compares
the results for both different multigrids, shows that for all the ∆T error types
there is a decreasing trend: the higher the number of maps Np,min considered in
the reconstruction matrix, the lower the errors achieved. The significative drop for
both ∆T errors in Figure 4.10a, referred to MGrid type A + Baseline, occurs after
10 maps involved (Np,min=10). The higher ∆T, both in maximum and median
values, are related to the algorithm that used the Svar created with the MGrid

53



Reconstruction Fidelity Evaluation

Type A + Baseline.

(a) MGrid Type A + Baseline

(b) MGrid Type B + Baseline

Figure 4.10: Np,min Statistics Comparison varying k and ω of muscle and tumor
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Figure 4.11: MGrid Type B + Baseline.
The limits on the y-axis are set to show more clearly the values reached.

The same analysis is done using MGrid Type A and MGrid Type B without
adding the baseline values. These two are created from MATLAB script as before,
modifiyng the number of Sobol points in order to obtain also here 25 maps,
and all the passages explained in Section 3 are repeated. After the exportation
in MATLAB, the reconstruction algorithm is run, creating new Svar and Scath

matrices and providing the results plotted in Figure 4.12.
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(a) MGrid Type A Without Baseline

(b) MGrid Type B Without Baseline

Figure 4.12: Np,min Statistics Comparison varying k and ω of muscle and tumor
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Figure 4.13: MGrid Type B Without Baseline.
The limits on the y-axis are set to show more clearly the values reached.

Figure 4.12a displays two ∆T trendlines similar to the to the previous case
reported in Fig. 4.10, with lower values in the MGrid Type B condition. However,
in this image the drops in the Svar created from MGrid Type A occurs at Np,min=9
instead of 10. The only difference between this case and the previous one is the
baseline row which in the present case is absent, so in this Svar it is realistic that
everything is shifted one row behind. Values below 1 °C in the max ∆T in MGrid
Type B plot (Fig.4.13) are immediately obtained for almost all the target fields
except for T22.

4.2.1.2 Adding Fat Tissue

In order to enlarge the analysis, the fat and also the SAT , as mentioned in Section
3.1, tissues are added. Both the multigrids are created by adding the baseline
values like before but, including one more tissue, their dimension increase and
consequently the number of sets. From equation (3.1), the MGrid Type A has a
minimum number of combinations 2N which is related to dimension. Particularly,
by increasing the number of tissues n = 3, the minimum number of combination is
calculated, according to equation (3.2), as:

Ntot = 1 + 2N + NS

= 1 + 23·2 + 5
= 1 + 64 + 5 = 70

(4.1)
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by adding the baseline values and 5 Sobol points the total sets number results
Ntot = 70.

The same number of combinations for the MGrid Type B + Baseline is reached
by using 69 Sobol points plus the baseline values included in the first row, according
to the equation (3.4).

The steps listed in Section 3 are then replicated, exporting 70 maps for each
multigrid. Svar and Scath matrices, with the same catheter conditions used in
Section 3.2.3, are created from the two maps group in a domain reduced along the
z-axis reduced z domain to narrow the analysis closer to the tumor region (see
Figure 4.14); from them the reconstruction algorithm is performed. The last five
maps of the matrix Scath, formed by the MGrid Type B + Baseline, are taken as
target values like mentioned in Section 4.2. The plots, created by the algorithm for
this analysis, are shown in Figure 4.15.
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(a) Plane xz (b) Plane yz

(c) Catheter Position, Plane xy

Figure 4.14: T0 Map Visualization
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(a) MGrid Type A + Baseline

(b) MGrid Type B + Baseline

Figure 4.15: Np,min Statistics Comparison varying k and ω of muscle, tumor
and fat + SAT
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Figure 4.16: MGrid Type B + Beseline.
The limits on the y-axis are set to show more clearly the values reached.

Even if the number of total maps is greater than the case above, also here we
have a tendentially decreasing trend in both multigrids. In MGrid Type A there
are critical drops for both the errors like before, here around Np,min=34 number
of maps involved in the reconstruction, so almost in the half of the total maps
number. MGrid maximum error, on the other hand, remains low for all the maps,
reaching acceptable values, so ∆T max around 1 °C, after just few maps added.

4.2.1.3 Adding Skin Tissue

To complete the investigation in all the most relevant tissues in head and neck
region, skin is included. Creating as usual the two multigrids and repeating the
previous steps, it is possible to change the thermal parameter values for all the
four tissues. For MGrid Type A + Baseline, the number of combinations is:

Ntot = 1 + 2N

= 1 + 24·2

= 1 + 256 = 257
(4.2)

In this specific case, due to the high number of maps that will be created, the
first 150 combinations are selected with the aim of reducing the computational
costs and verifying the goodness of the reconstruction considering a reasonable
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number of maps. For MGrid Type B + Baseline, 149 Sobol points are added to
the baseline reaching the same number of combinations of the other multigrid.

Firstly, the Python script and then the reconstruction algorithm are applied
with the same settings enounced in the previous case, creating the graphs reported
in Figure 4.17.

(a) MGrid Type A + Baseline
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(b) MGrid Type B + Baseline

Figure 4.17: Np,min Statistics Comparison varying k and ω of muscle, tumor,
fat + SAT and skin

Figure 4.18: MGrid Type B + Baseline.
The limits on the y-axis are set to show more clearly the values reached.
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The two multigrids present the decreasing trend and MGrid Type B results to
have lower errors like above. One difference here is that in MGrid Type A there
are two different drops: one at almost 60 temperature maps involved and the other
around the 120. It is evident in MGrid Type A that acceptable ∆T max values are
achieved with a large number of maps, over the 80% of the total maps. Otherwise,
in MGrid Type B the maximum errors drop below 1 °C after considering only 20
maps.

4.2.2 Dielectric Parameters
In the previous Subsection 4.2.1, the thermal parameters are examined for four
tissues in the H&N region due to their direct connection with the temperature
maps. Nevertheless, as equation (2.14) explains, the deposition of EM energy in
biological tissues depends on the dielectric properties of the tissues involved.

The first electric parameter that is chosen and altered is the electric conductivity
σ, since it affects both the EM and thermal solvers (see equations (2.26) and (2.27)).
The following analyses involved only the two most important tissues for the HTP
which are the muscle, the most present, and tumor which is the target tissue.
The different set combinations are created only with the MGrid Type B, because
is the one that comprehensively provides the lowest error. To create the same
number of maps generated in Section 4.2.1.1, where only two tissues are involved,
MGrid Type B + Baseline is made by adding 24 Sobol points. In addiction to the
electric conductivity σ, the perfusion ω is also changed, forming an heterogeneous
parameter analysis . Thanks to the MATLAB Script 4.3, appropriately modified
to include the selected tissue properties, the sets in Table 4.2 are generated:

The electric conductivity has to be changed inside the EM solver, because is a
dielectric tissue property, so a new Python script (see Codes 4.1 and 4.2) is written
to:

1. Change the σ of the two tissues in the electromagnetic simulation.

2. Run the EM solver, where the antennas are normalized at P0=60W and
optimized in phases and amplitudes using the baseline values, and save the
outcome

3. Change tissues perfusion inside the thermal solver.

4. Solve the bio-heat equation using the previous EM solver results as a source.

5. Export the related temperature maps in MATLAB.
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Map σm σt ωm ωt

[S m−1] [S m−1] [ml kg−1 min−1] [ml kg−1 min−1]

T0 0.81 0.89 39.10 72.30
T1 0.81 0.89 240.55 460.15
T2 0.79 0.91 139.83 654.08
T3 0.83 0.87 341.28 266.23
T4 0.78 0.90 391.64 751.04
T5 0.82 0.86 190.19 363.19
T6 0.80 0.88 290.91 169.26
T7 0.84 0.92 89.46 557.11
T8 0.77 0.93 316.09 314.71
T9 0.81 0.88 114.64 702.56
T10 0.79 0.86 416.82 508.63
T11 0.83 0.91 215.37 120.78
T12 0.78 0.87 165.01 605.59
T13 0.82 0.92 366.46 217.74
T14 0.80 0.90 64.28 411.67
T15 0.84 0.85 265.73 799.52
T16 0.77 0.89 202.78 241.98
T17 0.81 0.85 404.23 629.83
T18 0.79 0.87 102.05 823.76
T19 0.83 0.92 303.50 435.91
T20 0.78 0.86 253.14 726.80
T21 0.82 0.90 51.69 338.95
T22 0.80 0.93 353.87 145.02
T23 0.84 0.88 152.42 532.87
T24 0.77 0.89 379.05 387.43

Table 4.2: MGrid Type B + Baseline σ and ω of muscle and tumor

for i in range (0, num_rows ):

sm = coord [i ,0]
st = coord [i ,1]
wm = coord [i ,2]
wt = coord [i ,3]

print (sm , st , wm , wt)
# Define the version to use for default values
ReleaseVersion . set_active ( ReleaseVersion . version7_0 )
simulation = document . AllSimulations ["EM 1 - Copy"]
simulation . ClearResults ()
simulation . ResetVoxels ()

entity__muscle = model . AllEntities ()[" Muscle "]
muscle_new_s_value = sm
muscle_new_w_value = wm , Unit("ml/min/kg")
entity__tumor = model . AllEntities ()[" Tumor "]
tumor_new_s_value = st
tumor_new_w_value = wt , Unit("ml/min/kg")

# Change the Mass Density value of an existing material
sets = simulation . AllSettings

65



Reconstruction Fidelity Evaluation

for idx ,set in enumerate (sets):
if set.Name == ’Muscle ’:

set. ElectricConductivity = muscle_new_s_value
#set. ElectricProps . Conductivity = muscle_new_s_value

if set.Name == ’Tumor ’:
set. ElectricConductivity = tumor_new_s_value
#set. ElectricProps . Conductivity = tumor_new_s_value

# Update the materials with the new frequency parameters
simulation . UpdateAllMaterials ()
#RUN
simulation . UpdateGrid ()
simulation . CreateVoxels ()
simulation . RunSimulation (wait=True)

simulation = document . AllSimulations ["EM 1 - Copy"]
simulation_extractor = simulation . Results ()

Code 4.1: Dielectric Parameter Variation

## Thermal Simulation
ReleaseVersion . set_active ( ReleaseVersion . version7_0 )
simulation1 = document . AllSimulations ["Th 60 W - Dielectric "]
simulation1 . ClearResults ()
simulation1 . ResetVoxels ()

# Change the Mass Density value of an existing material
sets = simulation1 . AllSettings
for idx ,set in enumerate (sets):

if set.Name == ’Muscle ’:
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = muscle_new_w_value

if set.Name == ’Tumor ’:
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = tumor_new_w_value

simulation1 . UpdateAllMaterials ()
# Adding a new StationaryUserDefinedHeatSource

if i >0:
simulation1 . Remove ( stationary_user_defined_heat_source , components )

stationary_user_defined_heat_source = thermal . StationaryUserDefinedHeatSource
()
components = []
stationary_user_defined_heat_source . UserDefinedFileName = (dir + " Source {}.
cache ". format (i+1))
simulation1 .Add( stationary_user_defined_heat_source , components )

Code 4.2: Thermal Solver With the New EM Source

The reconstruction algorithm is then applied using as target fields the last 5
maps of the Scath matrix. The results are displayed in Figure 4.19.

As shown in Figure 4.19, errors have a decreasing trend but not so marked due
to the are very small global values. Despite that, a little drop is shown at Np,min=7
for all the target values.
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(a) Np,min Statistics with the Limits of the Section 4.2.1.1

(b) Np,min Statistics Proper Limits

Figure 4.19: Np,min Statistics Comparison varying σ and ω of muscle and tumor
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To complete the dielectric analysis, the relative permittivity ϵr is changed for
the same tissues, also considering the variation of perfusion ω. Same steps are
performed for this case, creating 25 sets through the MGrid Type B + Baseline
(see Table 4.3), running the Python script with appropriate modifications for
modifying the tissues properties, exporting the temperature maps and running the
reconstruction algorithm. The visual outcome, reported in Figure 4.20, illustrates
plots that are really similar to the previous one (Fig. 4.19) in terms of errors values,
while the drop visualized before here is almost absent.

Map ϵrm ϵrt ωm ωt

[ml kg−1 min−1] [ml kg−1 min−1]

T0 56.90 59.00 39.10 72.30
T1 56.85 59.00 240.55 460.15
T2 55.43 60.50 139.83 654.08
T3 58.28 57.50 341.28 266.23
T4 54.72 59.75 391.64 751.04
T5 57.56 56.75 190.19 363.19
T6 56.14 58.25 290.91 169.26
T7 58.99 61.25 89.46 557.11
T8 54.36 61.63 316.09 314.71
T9 57.21 58.63 114.64 702.56
T10 55.78 57.13 416.82 508.63
T11 58.63 60.13 215.37 120.78
T12 55.07 57.88 165.01 605.59
T13 57.92 60.88 366.46 217.74
T14 56.49 59.38 64.28 411.67
T15 59.34 56.38 265.73 799.52
T16 54.18 59.19 202.78 241.98
T17 57.03 56.19 404.23 629.83
T18 55.60 57.69 102.05 823.76
T19 58.45 60.69 303.50 435.91
T20 54.89 56.94 253.14 726.80
T21 57.74 59.94 51.69 338.95
T22 56.32 61.44 353.87 145.02
T23 59.17 58.44 152.42 532.87
T24 54.53 58.81 379.05 387.43

Table 4.3: MGrid Type B + Baseline ϵr and ω of muscle and tumor
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(a) Np,min Statistics with the Limits of the Section 4.2.1.1

(b) Np,min Statistics Proper Limits

Figure 4.20: Np,min Statistics Comparison varying ϵr and ω of muscle and tumor
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4.3 Discussion and Temperature Reconstruction
General observation can be done in all the cases presented, for thermal and dielectric
parameter values variation, validating the algorithm employed.

Globally MGrid Type B has lower ∆T values compared to the MGrid Type A,
the difference between the two is relevant especially when few maps are involved. As
mentioned, the target maps are taken from Type B multigrid, which is formed only
by pseudo-random values varying within the Literature ranges. The different nature
of the MGrid Type A, which is composed mainly by the different combination of
the extreme bounds of the ranges, results a weak strategy to recreate those random
values due to the gap between the domain limits and its average content (see Figure
3.2 for a visual representation). On the other hand, even if MGrid Type B values
inside the Svar are random-generated and so they may differ largely to the target
ones, they remain closer to the targets rather than to the domain boundaries.

Another consideration can involve the Svar size and the minimum number of
maps involved in the reconstruction. Setting at 0.5 °C the threshold for acceptable
maximum ∆T errors in the whole region of interest, it is possible to estimate the
minimum number of temperature maps needed to generate appropriate quality
temperature map reconstruction. Taking into consideration MGrid Type A, which
is the one that have the largest fluctuations of values, it is evident that a higher
number of parameters and tissues involved makes impossible to reach small ∆T
values with few temperature maps in the reconstruction matrix. To corroborate
this argument, it is possible to compare 3 different cases where the dimension of
the problem is gradually bigger (see Figures 4.10a, 4.15a and 4.17a). The reported
plots are assembled in the Figure 4.21 reported below. It is evident that the critical
drop of the ∆T max errors arise sequentially forward as the dimension is extended.
In conclusion, as expected, as the size of the domain increases, the number of
minimum maps needed to produce a sufficiently good reconstruction reconstruction
also increases.
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(a) MGrid Type A + Baseline varying k and ω of muscle and tumor

(b) MGrid Type A + Baseline varying k and ω of muscle, tumor and fat + SAT

71



Reconstruction Fidelity Evaluation

(c) MGrid Type A + Baseline varying k and ω of muscle, tumor, fat + SAT and skin

Figure 4.21: Np,min Statistics Comparison MGrid Type A + Baseline with
Different Dimensions of the Parameters Space.

MGrid Type B represents the proper type of multigrid to choose between the two.
From the analyses involving 25 combinations sets, i.e., when 2 tissue parameters
are changed, it is possible to assess that the number of minimum maps necessary
to obtain a reconstruction map of good quality reconstruction map is around 9
maps involved.

Finally, two different reconstruction maps are reported from the case where the
thermal parameters were changed for all the four tissues. Figure 4.22, shows the
reconstructed temperature map with the highest ∆T max error, i.e., ∆T=89.51
°C (see Figure 4.17a), next to the target map that the algorithm tried to recreate.
With the same settings, i.e., same number of minimum maps involved Np,min=24
and same target map, the reconstruction process applied using MGrid Type B
(see Figure 4.18) provides ∆T=0.09 °C as a max error and for this reason there is
no perceptible difference between the reconstructed map and the target map (see
Figure 4.23), reconfirming which of the two enhances the quality of outcomes. This
borderline case demonstrates how important it is to set properly the algorithm to
prevent completely wrong reconstructed maps.

Instead, Figure 4.24, reports the first reconstructed temperature map, using the
MGrid Type B when the thermal parameters were varied for the 4 tissues, that
has the maximum ∆T values under the threshold, i.e., ∆T=0.48 °C. To achieved
this result, the algorithm needs at least Np,min=16 (see 4.18) and, as the maps
reported in Figure 4.24 show, maximum error values below the threshold allow a
high-quality reconstruction.
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(a) Reconstructed Map, plane xy (b) Target Map, plane xy

(c) Reconstructed Map, plane xz (d) Target Map, plane xz

(e) Reconstructed Map, plane yz (f) Target Map, plane yz

Figure 4.22: Comparison Between The Reconstructed Map with ∆Tmax=89.51
°C, Obtained Using the MGrid Type A and Np,min=24, and The Corresponding

Target Map
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(a) Reconstructed Map, plane xy (b) Target Map, plane xy

(c) Reconstructed Map, plane xz (d) Target Map, plane xz

(e) Reconstructed Map, plane yz (f) Target Map, plane yz

Figure 4.23: Comparison Between The Reconstructed Map with ∆Tmax=0.09
°C, Obtained Using the MGrid Type B and Np,min=24, and The Corresponding

Target Map

74



Reconstruction Fidelity Evaluation

(a) Reconstructed Map, plane xy (b) Target Map, plane xy

(c) Reconstructed Map, plane xz (d) Target Map, plane xz

(e) Reconstructed Map, plane yz (f) Target Map, plane yz

Figure 4.24: Comparison Between The Reconstructed Map with ∆Tmax=0.48
°C, Obtained Using the MGrid Type B and Np,min=16, and The Corresponding

Target Map
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In this thesis was validate the algorithm, that allows to retrieve the patient
temperature map of the whole region of interest from few known thermal points
which are supposed to be known, and correspond to the temperature measurement
points obtained in the clinical practice using invasive catheters. High realistic
human phantom was taken from the ViP population, and an ellipsoidal tumor was
inserted in its H&N region, obtaining a reliable patient model on which simulate
the HTP. Then, after the proper optimization of the electromagnetic applicator,
several combinations of parameter values were changed inside the phantom creating
different temperature maps. Finally, the reconstruction algorithm, with different
settings, was applied to recreate the entire map, assuming to know few temperature
values. The latter outcomes were then compared trying to figure out which settings
allowed a better reconstruction and how it can be further improved.

The electromagnetic simulation, so interaction between the microwaves and the
phantom tissues, was simulated via the EM solver in Sim4Life and then exported
to optimize the feedings of the antennas by maximizing the SAR in the tumor
region. After the optimization and the normalization of the antennas, the bio-heat
equation was solved through the Sim4Life thermal solver providing temperature
maps. Different multigrids were employed to create distinct combinations of the
parameters inside the human phantom and generate the related temperature maps.
The modification affected two dielectric parameters, electric conductivity σ and
relative permittivity ϵr, and two thermal parameters, perfusion ω and thermal
conductivity k, for the most relevant tissue in the H&N region: muscle, tumor, fat
+ SAT and skin. The thermal parameters were changed for tumor and muscle,
then the fat was added and finally these parameters were varied simultaneously for
all the four tissues; on the other hand the dielectric parameters were altered one at
the time together with the perfusion for only muscle and tumor.

The generation of the multigrids allow the construction of different bases of
temperature maps corresponding to different combinations of the tissue parameters,
which are varied within ranges fixed according to the Literature. These bases form
the reconstruction matrix, which allows to retrieve a more reliable temperature
map in the whole region of interest, starting from few known temperature values
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of different target fields which are assumed to be unknown (except for the points
along the catheter). The main goal of this thesis was to analyze the best way
to generate these bases (using different multigrids), when different parameters
and tissues are considered. Since, in principle, the best reconstruction should be
achieved by varying all the parameters of all the tissues involved, another important
point was to find the minimum number of elements of the reconstruction matrix
(i.e., the minimum number of columns) necessary to achieve a sufficiently good
reconstruction. This point is important to contain the computational cost necessary
to produce the basis of temperature maps used to perform the reconstruction.

The implemented analyses, performed by considering a gradual number of tissues
and parameters, show how a good way to create a reconstruction matrix is by
using a grid where the points are obtained by randomly extracting the parameters’
combinations according to a Sobol sequence. This choice limits the number of
elements that is necessary to consider to achieve a good reconstruction. It should
be noted that this number also depends on the considered catheter configuration
used for the extraction of the known points and should be determined according to
the specific clinical scenario.

Further analysis will involve the variation of all the thermal and dielectric
parameters of all the tissues involved in the region of interest. This analysis can
be performed in Sim4Life using the Python scripts developed during this thesis.
Moreover, adaptive algorithms aimed at gradually populating the basis matrix to
minimize the achieved errors by choosing the most proper points in the space of
the parameters’ combinations can be implemented.
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Multrigrid Generation Script
% Multi - dimensional pseudo - random Sobol grid.
% The parameters are organized in an external Excel file.

clear all
clc

filename = ’Parameters .xlsx ’;
filepath = [pwd ,’\’,filename ];

param = [3 ,4]; % Type of parameters : [epsr ,sigma ,k,w]
tissue = [1 ,4]; % Type of Tissues : [Muscle ,Fat ,Skin , Tumor ]

S = 10; % [-] number of Sobol quasi - random points
MGrid = MultiGrid_Sobol_A_baseline (filepath ,param ,tissue ,S);

save ([pwd ,’\ MGrid_A_baseline .txt ’],’MGrid ’,’-ascii ’,’-tabs ’);

MGrid Type A + Baseline Function
function MGrid = MultiGrid_Sobol_A_baseline (filepath ,param ,tissue ,S)

%%% Grid of fixed bounds points (red points ) %%%

table = cell (1, numel ( param ));

for i = 1: numel ( param )
table {i} = xlsread (filepath , param (i),’A1:D5 ’);
table {i} = table {i}( tissue ,:);

end

ranges = cell( numel ( tissue ),numel ( param ));
avg = cell( numel ( tissue ),numel ( param ));

for i = 1: numel ( tissue )
for j = 1: numel ( param )

ranges {i,j} = [ table {j}(i ,2) ,table {j}(i ,3) ];
avg{i,j}= table {j}(i ,1);

end
end

output = cell (1, numel ( param )* numel ( tissue ));
[ output {:}] = ndgrid ( ranges {:});

avg_output = cell (1, numel ( param )* numel ( tissue ));
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[ avg_output {:}] = ndgrid (avg {:});

results = [];
avg_res = [];

for i = 1: length ( output )
results = [ results output {1,i}(:) ];
avg_res = [ avg_res avg_output {1,i}(:) ];

end

%%% Quasi random Sobol sequence ( green points )

q = qrandstream (’sobol ’,numel ( param )* numel ( tissue ),’Skip ’ ,1);
X = rand(q,S, numel ( param )* numel ( tissue ));

RF = reshape ([ ranges {:}] ,2 , numel ( param )* numel ( tissue )).’;

for i = 1: length (RF)
X(:,i) = RF(i ,1)+ range (RF(i ,:)).*X(:,i);

end

%%% Final grid %%%

MGrid = [ avg_res ; results ; X];
end

MGrid Type B + Baseline Function
function MGrid = MultiGrid_Sobol_B_baseline (filepath ,param ,tissue ,S)

table = cell (1, numel ( param ));

for i = 1: numel ( param )
table {i} = xlsread (filepath , param (i),’A1:D5 ’);
table {i} = table {i}( tissue ,:);

end

ranges = cell( numel ( tissue ),numel ( param ));
avg = cell( numel ( tissue ),numel ( param ));

for i = 1: numel ( tissue )
for j = 1: numel ( param )

ranges {i,j} = [ table {j}(i ,2) ,table {j}(i ,3) ];
avg{i,j}= table {j}(i ,1);

end
end

output = cell (1, numel ( param )* numel ( tissue ));
[ output {:}] = ndgrid ( ranges {:});

avg_output = cell (1, numel ( param )* numel ( tissue ));
[ avg_output {:}] = ndgrid (avg {:});

avg_res = [];

for i = 1: length ( output )
avg_res = [ avg_res avg_output {1,i}(:) ];

end
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%%% Quasi random Sobol sequence ( green points )

q = qrandstream (’sobol ’,numel ( param )* numel ( tissue ),’Skip ’ ,1);
X = rand(q,S, numel ( param )* numel ( tissue ));

RF = reshape ([ ranges {:}] ,2 , numel ( param )* numel ( tissue )).’;

for i = 1: length (RF)
X(:,i) = RF(i ,1)+ range (RF(i ,:)).*X(:,i);

end

MGrid = [ avg_res ; X];
end

4 Statistical Analysis
filepath = ’C:\ Users \ Diego \ Desktop \Tesi\ Script Matlab \Svar Matrix \T Map\’;

d = dir ([ filepath ,’\*. mat ’]);

Np = 27; % [-] number of target fields considered
Np_min = 10; % [-] minimum number of columns for the Svar matrix

sz1 = 50; % [-] lower cut ( slice ) along z for the neck region
sz2 = 111; % [-] upper cut ( slice ) along z for the neck region
szc = 88; % [-] slice along z passing through the z- coordinate

of the tumor ’s centroid

type = ’y’; % [-] type of catheter considered ( along ’x’ or ’y ’)
coord = -0.00333; % [m] coordinate xc or yc of the catheter (e.g.,

yc_tum = -0.00333 m, xc_tum = -0.01236 m)
Nc = 20; % [-] number of points along the catheter
dir_c = ’rev ’; % [-] catheter ’s direction ( options : ’fw ’, ’rev ’)
step = 1; % [-] spacing among points along the catheterNt = Np

- Np_min ;
Nt = Np - Np_min ; % [-] number of target fields considered (i.e.,

columns of the Svar_cath matrix )

Svar_matrix (filepath ,Np ,sz1 ,sz2);

Svar_cath_matrix (filepath ,Np ,step ,Nc ,szc ,type ,dir_c , coord )

load(’Svar_new .mat ’);
load(’Svar_cath_new .mat ’);
delta_T = zeros (size(Svar ,1) ,Nt);
stat = zeros (Nt ,3);

for k = 1: Nt

T_target_cath = Svar_cath (:, Np_min +k); % andrà da 5 a 27
-> 23 colonne target

beta = pinv( Svar_cath (: ,1:( Np_min +k -1)) ,1e -3)* T_target_cath ;
T_rec = Svar (: ,1:( Np_min +k -1))*beta;

delta_T (:,k) = abs(T_rec -Svar (:, Np_min +k));
stat(k ,1) = median ( delta_T (:,k));
stat(k ,2) = max( delta_T (:,k));
stat(k ,3) = min( delta_T (:,k));

end
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figure ()
boxplot ( delta_T )
set(gcf ,’color ’,’w’)
xlabel (’t’)
ylabel (’\ Delta (T) ( C )’)
title ([ ’Catheter along ’,type ,’ (’,dir_c ,’), Ncath = ’,num2str ( round (Nc/step))])

target_ind = 5;
delta_T_base = cat (2, abs(Svar (: ,1) -Svar (:, Np_min + target_ind )),delta_T (:, target_ind

));

figure ()
boxplot ( delta_T_base ,’Labels ’ ,{’baseline ’,’quasi - random ’})
set(gcf ,’color ’,’w’)
ylabel (’\ Delta (T) ( C )’)
title ([ ’Catheter along ’,type ,’ (’,dir_c ,’), Ncath = ’,num2str ( round (Nc/step))])

figure ()
subplot (2 ,1 ,1)
plot (1:Nt ,stat (: ,1) ,’.-’,’MarkerSize ’ ,18)
set(gcf ,’color ’,’w’)
xlabel (’t’)
ylabel (’median (\ Delta (T)) ( C )’)
title ([ ’Catheter along ’,type ,’ (’,dir_c ,’), Ncath = ’,num2str ( round (Nc/step))])
subplot (2 ,1 ,2)
plot (1:Nt ,stat (: ,2) ,’.-’,’MarkerSize ’ ,18)
set(gcf ,’color ’,’w’)
xlabel (’t’)
ylabel (’max (\ Delta (T)) ( C )’)

Svar Function
function Svar_matrix (filepath ,Np ,sz1 ,sz2)

Svar = size (4e6 ,Np);

for i = 1: Np

T = load ([ filepath ,’T’,num2str (i -1) ,’.mat ’]);
Tmap = reshape (T. Snapshot0 ,[ length (T. Axis0 ) -1, length (T. Axis1 ) -1, length (T. Axis2
) -1 ,1]);
Tmap = Tmap (:,:, sz1:sz2);
Tmap = reshape (Tmap ,[ numel (Tmap) ,1]);
Tmap( isnan (Tmap)) = [];
Svar (1: numel (Tmap),i) = Tmap;

end

Svar = Svar (1: numel (Tmap) ,:);
save(’Svar_new .mat ’,’Svar ’);
end

Scath Function
function Svar_cath_matrix (filepath ,Np ,step ,Nc ,szc ,type ,dir_c , coord )
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T = load ([ filepath ,’T0.mat ’]);

T_map = reshape (T.Snapshot0 ,[ length (T. Axis0 ) -1, length (T. Axis1 ) -1, length (T. Axis2 )
-1 ,1]);

x = (T. Axis0 (1:( length (T. Axis0 ) -1))+T. Axis0 (2: length (T. Axis0 )))./2;
y = (T. Axis1 (1:( length (T. Axis1 ) -1))+T. Axis1 (2: length (T. Axis1 )))./2;
z = (T. Axis2 (1:( length (T. Axis2 ) -1))+T. Axis2 (2: length (T. Axis2 )))./2;

[X,Y ,~] = ndgrid (x,y,z);

c1 = squeeze (X(:,:, szc));
c2 = squeeze (Y(:,:, szc));
T_cut = squeeze ( T_map (:,:, szc));

if strcmp (type ,’y’)
ind = find(abs(c1 (: ,1).’- coord ) <1e -3);
ind_c = ~ isnan ( T_cut (ind ,:));

c1_cath = c1(ind , ind_c );
c2_cath = c2(ind , ind_c );

else
ind = find(abs(c2 (1 ,:).’- coord ) <1e -3);
ind_c = ~ isnan ( T_cut (:, ind));

c1_cath = c1(ind_c ,ind);
c2_cath = c2(ind_c ,ind);

end

figure ()
s = surf(c1 ,c2 , T_cut );
set(s,’edgecolor ’,’none ’);
h = colorbar ;
title (h,’T ( C )’)
shading interp
colormap jet
axis ([ min(x) max(x) min(y) max(y)])
set(gcf ,’color ’,’w’)
xlabel (’x (m)’)
ylabel (’y (m)’)
grid off
view (90 ,90)
title (’Catheter on the baseline map T0 ’);
hold on
if strcmp (dir_c ,’fw ’)

plot3 ( c1_cath (1: step:Nc),c2_cath (1: step:Nc) ,1e3 .* ones(Nc ,1) ,’k.’,’MarkerSize ’
,8)

ind_c = find( ind_c ==1);
ind_c = ind_c (1: step:Nc);

else
plot3 ( c1_cath (end -Nc +1: step:end),c2_cath (end -Nc +1: step:end) ,1e3 .* ones( numel (

c1_cath (end -Nc +1: step:end)) ,1),’k.’,’MarkerSize ’ ,8)
ind_c = find( ind_c ==1);
ind_c = ind_c (end -Nc +1: step:end);

end

Svar_cath = size (4e6 ,Np);

for i = 1: Np
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T = load ([ filepath ,’T’,num2str (i -1) ,’.mat ’]);
T_map = reshape (T.Snapshot0 ,[ length (T. Axis0 ) -1, length (T. Axis1 ) -1, length (T.
Axis2 ) -1 ,1]);
T_cut = squeeze ( T_map (:,:, szc));

if strcmp (type ,’y’)
T_cut = T_cut (ind , ind_c );

else
T_cut = T_cut (ind_c ,ind);

end

Svar_cath (1: numel ( T_cut ),i) = T_cut ;

end

Svar_cath = Svar_cath (1: numel ( T_cut ) ,:);
save(’Svar_cath_new .mat ’,’Svar_cath ’);
end

Np,min Statistic Comparison
grid_type = ’A’;

filepath = [pwd ,’\ Mappe_MGrid_ ’,grid_type ,’\’];

filepath1 = [pwd ,’\ Mappe_MGrid_B \’];

d = dir ([ filepath ,’\*. mat ’]);

Np = length (d(not ([d. isdir ]))); % [-] total number of columns in the Svar matrix
Nt = 5; % [-] number of target fields

Nric=Np -Nt -3

sz1 = 70; % [-] lower cut ( slice ) along z for the neck
region

sz2 = 105; % [-] upper cut ( slice ) along z for the neck
region

szc = 88; % [-] slice along z passing through the z-
coordinate of the tumor ’s centroid

type = ’y’; % [-] type of catheter considered ( along ’x’ or ’
y ’)

coord = -0.00333; % [m] coordinate xc or yc of the catheter (e.g
., xc_tum = 0.158 m, yc_tum = 0.281 m)

Nc = 20; % [-] number of points along the catheter
dir_c = ’fw ’; % [-] catheter ’s direction ( options : ’fw ’, ’rev ’)
step = 1; % [-] spacing among points along the catheter (

default value = 1)

if grid_type == ’A’;
if isfile ( fullfile (cd ,’Svar_A .mat ’))==0

Svar_matrix_ros (filepath ,’A’,Np ,sz1 ,sz2);
end
Svar_cath_matrix_ros (filepath ,’A’,Np ,step ,Nc ,szc ,type ,dir_c ,coord ,’on ’);

end
if isfile ( fullfile (cd ,’Svar_B .mat ’))==0

Svar_matrix_ros (filepath1 ,’B’,Np ,sz1 ,sz2);
end
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% Svar_cath_matrix_ros (filepath ,’A’,Np ,step ,Nc ,szc ,type ,dir_c ,coord ,’on ’)
Svar_cath_matrix_ros (filepath1 ,’B’,Np ,step ,Nc ,szc ,type ,dir_c ,coord ,’off ’);

Svar = importdata ([ ’Svar_ ’,grid_type ,’_pt6.mat ’],’Svar ’);
Svar_B = importdata (’Svar_B_pt6 .mat ’,’Svar ’);
Svar_cath = importdata ([ ’Svar_cath_ ’,grid_type ,’_pt6.mat ’],’Svar_cath ’);
Svar_cath_B = importdata (’Svar_cath_B_pt6 .mat ’,’Svar_cath ’);

stat = zeros (Nt ,Np -Nt -3 ,3);

for k = 1: Nt
kind = (Np -Nt)+k;

for n = 1:(Np -Nt -3)
Np_min = 3+n;

T_target_cath = Svar_cath_B (:, kind);
beta = pinv( Svar_cath (: ,1: Np_min ) ,1e -3)* T_target_cath ;
T_rec = Svar (: ,1: Np_min )*beta;

delta_T = abs(T_rec - Svar_B (:, kind));
stat(k,n ,1) = median ( delta_T );
stat(k,n ,2) = max( delta_T );
stat(k,n ,3) = min( delta_T );

end
end

array =1: Nric;

figure ()
subplot (2 ,1 ,1)
plot(stat (1 ,: ,1) ,’.-’,’MarkerSize ’ ,18);
hold on
plot(stat (2 ,: ,1) ,’.-’,’MarkerSize ’ ,18);
hold on
plot(stat (3 ,: ,1) ,’.-’,’MarkerSize ’ ,18);
hold on
plot(stat (4 ,: ,1) ,’.-’,’MarkerSize ’ ,18);
hold on
plot(stat (5 ,: ,1) ,’.-’,’MarkerSize ’ ,18);
hold off

ylim ([0 4]);
xticks ([ array ]);
xlim ([0 Nric ]);
title ([ ’Delta T Average Value in the Reconstruction Matrix from Svar ’, grid_type ,’

case 4’]);
xlabel (’T Maps ’);
ylabel (’Median (\ Delta (T)) ( C )’);
set(gcf ,’color ’,’w’)
legend (’T 145 ’,’T 146 ’,’T 147 ’,’T 148 ’,’T 149 ’)

subplot (2 ,1 ,2)
plot(stat (1 ,: ,2) ,’.-’,’MarkerSize ’ ,18);
hold on
plot(stat (2 ,: ,2) ,’.-’,’MarkerSize ’ ,18);
hold on
plot(stat (3 ,: ,2) ,’.-’,’MarkerSize ’ ,18);
hold on
plot(stat (4 ,: ,2) ,’.-’,’MarkerSize ’ ,18);
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hold on
plot(stat (5 ,: ,2) ,’.-’,’MarkerSize ’ ,18);
hold off

ylim ([0 90]);
xticks ([ array ]);
xlim ([0 Nric ]);
title ([ ’Delta T Maximum Value in the Reconstruction Matrix from Svar ’, grid_type ,’

case 4’]);
xlabel (’T Maps ’);
ylabel (’Max (\ Delta (T)) ( C )’);
set(gcf ,’color ’,’w’);
legend (’T 145 ’,’T 146 ’,’T 147 ’,’T 148 ’,’T 149 ’)
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Electric Fields Export

# Antenna electric fields extrapolation for the SAR - based focusing
import numpy
import s4l_v1 . analysis as analysis
import s4l_v1 . document as document
import s4l_v1 . model as model
import s4l_v1 . units as units
from s4l_v1 import ReleaseVersion
from s4l_v1 import Unit
import itertools

def all_entities_within_group ( entity_group ):
if isinstance ( entity_group , model . EntityGroup ):

return list( itertools . chain . from_iterable (
all_entities_within_group (e) for e in entity_group . Entities ))

else:
return [ entity_group ]

vip_group = model . AllEntities ()[’Yoon -sun ’]
entities_H = all_entities_within_group ( vip_group )
entities_T = model . AllEntities ()[’Tumor ’]

# Name of the directory where the files will be saved
dir = "C:\\ Users \\ Diego \\ Desktop \\ S4L_Fields \\"

# HEALTHY REGION standalone electric fields Ei_H
try:

# Define the version to use for default values
ReleaseVersion . set_active ( ReleaseVersion . version7_0 )

# Creating the analysis pipeline
# Adding a new EmMultiPortSimulationExtractor
simulation = document . AllSimulations ["EM 1"]
em_multi_port_simulation_extractor = simulation . Results ()
# Create the postprocessing pipeline once
output_port = em_multi_port_simulation_extractor . Outputs [0]
# Adding a new EmPortSimulationExtractor
em_port_simulation_extractor = analysis . extractors . EmPortSimulationExtractor (
inputs =[ output_port ])
em_port_simulation_extractor . UpdateAttributes ()
document . AllAlgorithms .Add( em_port_simulation_extractor )
# Adding a new EmSensorExtractor (H)
em_sensor_extractor = em_port_simulation_extractor [" Overall Field "]
em_sensor_extractor . FrequencySettings . ExtractedFrequency = u"All"
em_sensor_extractor . SurfaceCurrent . SurfaceResolution = 0.001 , units . Meters
document . AllAlgorithms .Add( em_sensor_extractor )
# Adding a new FieldMaskingFilter (H)
inputs = [ em_sensor_extractor . Outputs ["EM E(x,y,z,f0)"]]
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field_masking_filter = analysis .core. FieldMaskingFilter ( inputs = inputs )
field_masking_filter . SetAllMaterials ( False )
field_masking_filter . SetEntities ( entities_H )
field_masking_filter . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter )
# Adding a new MatlabExporter (H)
inputs = [ field_masking_filter . Outputs ["EM E(x,y,z,f0)"]]
matlab_exporter = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter )

for i, output_port in enumerate ( em_multi_port_simulation_extractor . Outputs ):
em_port_simulation_extractor .raw. SetInputConnection (0, output_port .raw) #

this is the main " trick "
em_port_simulation_extractor . UpdateAttributes ()

inputs = [ field_masking_filter . Outputs ["EM E(x,y,z,f0)"]]
matlab_exporter . FileName = (dir + "E{} _H.mat". format (i+1))

print ( matlab_exporter . FileName )
matlab_exporter . UpdateAttributes ()
matlab_exporter . Update ()

except Exception as exc:
import traceback
traceback . print_exc (exc)
# Reset active version to default
ReleaseVersion . reset ()
raise (exc)

# TUMOR REGION standalone electric fields Ei_T
try:

# Define the version to use for default values
ReleaseVersion . set_active ( ReleaseVersion . version6_2 )

# Creating the analysis pipeline
# Adding a new EmMultiPortSimulationExtractor
simulation = document . AllSimulations ["EM 1"]
em_multi_port_simulation_extractor = simulation . Results ()

# Create the postprocessing pipeline once
output_port = em_multi_port_simulation_extractor . Outputs [0]
# Adding a new EmPortSimulationExtractor
em_port_simulation_extractor = analysis . extractors . EmPortSimulationExtractor (
inputs =[ output_port ])
em_port_simulation_extractor . UpdateAttributes ()
document . AllAlgorithms .Add( em_port_simulation_extractor )
# Adding a new EmSensorExtractor (T)
em_sensor_extractor = em_port_simulation_extractor [" Overall Field "]
em_sensor_extractor . FrequencySettings . ExtractedFrequency = u"All"
em_sensor_extractor . SurfaceCurrent . SurfaceResolution = 0.001 , units . Meters
document . AllAlgorithms .Add( em_sensor_extractor )
# Adding a new FieldMaskingFilter (T)
inputs = [ em_sensor_extractor . Outputs ["EM E(x,y,z,f0)"]]
field_masking_filter = analysis .core. FieldMaskingFilter ( inputs = inputs )
field_masking_filter . SetAllMaterials ( False )
field_masking_filter . SetEntities ([ entities_T ])
field_masking_filter . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter )
# Adding a new MatlabExporter (T)
inputs = [ field_masking_filter . Outputs ["EM E(x,y,z,f0)"]]
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matlab_exporter = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter )

for i, output_port in enumerate ( em_multi_port_simulation_extractor . Outputs ):
em_port_simulation_extractor .raw. SetInputConnection (0, output_port .raw) #

this is the main " trick "
em_port_simulation_extractor . UpdateAttributes ()

inputs = [ field_masking_filter . Outputs ["EM E(x,y,z,f0)"]]
matlab_exporter . FileName = (dir + "E{} _T.mat". format (i+1))

print ( matlab_exporter . FileName )
matlab_exporter . UpdateAttributes ()
matlab_exporter . Update ()

except Exception as exc:
import traceback
traceback . print_exc (exc)
# Reset active version to default
ReleaseVersion . reset ()
raise (exc)

# HEALTHY and TUMOR REGION SAR and J fields for the antenna n
try:

# Define the version to use for default values
ReleaseVersion . set_active ( ReleaseVersion . version6_2 )

# Creating the analysis pipeline
# Adding a new EmMultiPortSimulationExtractor
simulation = document . AllSimulations ["EM 1"] # check the name of the
Simulation node (EM , EM 1, etc)
em_multi_port_simulation_extractor = simulation . Results ()

# Create the postprocessing pipeline once
output_port = em_multi_port_simulation_extractor . Outputs [0] # use [n -1] for
Source n

# Adding a new EmPortSimulationExtractor
em_port_simulation_extractor = analysis . extractors . EmPortSimulationExtractor (
inputs =[ output_port ])
em_port_simulation_extractor . UpdateAttributes ()
document . AllAlgorithms .Add( em_port_simulation_extractor )

# Adding a new EmSensorExtractor
em_sensor_extractor = em_port_simulation_extractor [" Overall Field "]
em_sensor_extractor . FrequencySettings . ExtractedFrequency = u"All"
em_sensor_extractor . SurfaceCurrent . SurfaceResolution = 0.001 , units . Meters
document . AllAlgorithms .Add( em_sensor_extractor )

# Adding a new FieldMaskingFilter for SAR (H)
inputs = [ em_sensor_extractor . Outputs ["SAR(x,y,z,f0)"]]
field_masking_filter = analysis .core. FieldMaskingFilter ( inputs = inputs )
field_masking_filter . SetAllMaterials ( False )
field_masking_filter . SetEntities ( entities_H )
field_masking_filter . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter )

# Adding a new FieldMaskingFilter for SAR (T)
inputs = [ em_sensor_extractor . Outputs ["SAR(x,y,z,f0)"]]
field_masking_filter_2 = analysis .core. FieldMaskingFilter ( inputs = inputs )
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field_masking_filter_2 . SetAllMaterials ( False )
field_masking_filter_2 . SetEntities ([ entities_T ])
field_masking_filter_2 . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter_2 )

# Adding a new FieldMaskingFilter for J (H)
inputs = [ em_sensor_extractor . Outputs ["J(x,y,z,f0)"]]
field_masking_filter_3 = analysis .core. FieldMaskingFilter ( inputs = inputs )
field_masking_filter_3 . SetAllMaterials ( False )
field_masking_filter_3 . SetEntities ( entities_H )
field_masking_filter_3 . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter_3 )

# Adding a new FieldMaskingFilter for J (T)
inputs = [ em_sensor_extractor . Outputs ["J(x,y,z,f0)"]]
field_masking_filter_4 = analysis .core. FieldMaskingFilter ( inputs = inputs )
field_masking_filter_4 . SetAllMaterials ( False )
field_masking_filter_4 . SetEntities ([ entities_T ])
field_masking_filter_4 . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter_4 )

# Adding a new MatlabExporter for SAR (H)
inputs = [ field_masking_filter . Outputs ["SAR(x,y,z,f0)"]]
matlab_exporter = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter . FileName = (dir + " SAR1_H .mat")
matlab_exporter . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter )
matlab_exporter . Update ()

# Adding a new MatlabExporter for SAR (T)
inputs = [ field_masking_filter_2 . Outputs ["SAR(x,y,z,f0)"]]
matlab_exporter_2 = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter_2 . FileName = (dir + " SAR1_T .mat")
matlab_exporter_2 . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter_2 )
matlab_exporter_2 . Update ()

# Adding a new MatlabExporter for J (H)
inputs = [ field_masking_filter_3 . Outputs ["J(x,y,z,f0)"]]
matlab_exporter_3 = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter_3 . FileName = (dir + "J1_H.mat")
matlab_exporter_3 . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter_3 )
matlab_exporter_3 . Update ()

# Adding a new MatlabExporter for J (T)
inputs = [ field_masking_filter_4 . Outputs ["J(x,y,z,f0)"]]
matlab_exporter_4 = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter_4 . FileName = (dir + "J1_T.mat")
matlab_exporter_4 . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter_4 )
matlab_exporter_4 . Update ()

except Exception as exc:
import traceback
traceback . print_exc (exc)
# Reset active version to default
ReleaseVersion . reset ()
raise (exc)
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Thermal Parameter Variation and Map Extraction

import numpy
import math
import s4l_v1 . document as document
import s4l_v1 . materials . database as database
import s4l_v1 . model as model
import s4l_v1 . simulation . thermal as thermal
import s4l_v1 . analysis as analysis
import s4l_v1 . units as units
from s4l_v1 import ReleaseVersion
from s4l_v1 import Unit
import itertools

def all_entities_within_group ( entity_group ):
’’’return a list of all model entities within a given group , including all
subdirectories ’’’
if isinstance ( entity_group , model . EntityGroup ):

return list( itertools . chain . from_iterable (
all_entities_within_group (e) for e in entity_group . Entities ))

else:
return [ entity_group ]

vip_group = model . AllEntities ()[’Yoon -sun ’]
entities__all = all_entities_within_group ( vip_group )
entities__air_internal = model . AllEntities ()[’Air_internal ’]
entities__tumor = model . AllEntities ()[’Tumor ’]
entities__all . remove ( entities__air_internal )
entities__all . append ( entities__tumor )

dir = u"C:\\ Users \\ Diego \\ Desktop \\ Tesi \\6 _Adding Skin Tissue \\ Mappe_MGrid_A \\"

coord = numpy . loadtxt ("C:/ Users / Diego / Desktop /Tesi /6 _Adding Skin Tissue /
MGrid_A_base_pt_6 .txt")

print ( coord )
num_rows , num_columns = coord . shape

for i in range (0 ,1):
km = coord [i ,0]
kf = coord [i ,1]
ks = coord [i ,2]
kt = coord [i ,3]
wm = coord [i ,4]
wf = coord [i ,5]
ws = coord [i ,6]
wt = coord [i ,7]

print (km ,kf ,ks ,kt ,wm ,wf ,ws ,wt)

# Define the version to use for default values
ReleaseVersion . set_active ( ReleaseVersion . version7_0 )
# simulation = document . AllSimulations ["60 W T#"]
simulation = document . AllSimulations ["Th 60 W - Dielectric "]
simulation . ClearResults ()
simulation . ResetVoxels ()

entity__muscle = model . AllEntities ()[" Muscle "]
muscle_new_k_value = km , Unit("W/m/K")
muscle_new_w_value = wm , Unit("ml/min/kg")
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entity__fat = model . AllEntities ()["Fat"]
fat_new_k_value = kf , Unit("W/m/K")
fat_new_w_value = wf , Unit("ml/min/kg")

entity__fat = model . AllEntities ()["SAT"]
SAT_new_k_value = kf , Unit("W/m/K")
SAT_new_w_value = wf , Unit("ml/min/kg")

entity__fat = model . AllEntities ()["Skin"]
skin_new_k_value = ks , Unit("W/m/K")
skin_new_w_value = ws , Unit("ml/min/kg")

entity__tumor = model . AllEntities ()[" Tumor "]
tumor_new_k_value = kt , Unit("W/m/K")
tumor_new_w_value = wt , Unit("ml/min/kg")

# Change the Perfusion value of an existing material
sets = simulation . AllSettings
for idx ,set in enumerate (sets):

if set.Name == ’Muscle ’:
set. ThermalConductivity = muscle_new_k_value
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = muscle_new_w_value

if set.Name == ’Fat ’:
set. ThermalConductivity = fat_new_k_value
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = fat_new_w_value

if set.Name == ’SAT ’:
set. ThermalConductivity = SAT_new_k_value
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = SAT_new_w_value

if set.Name == ’Skin ’:
set. ThermalConductivity = skin_new_k_value
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = skin_new_w_value

if set.Name == ’Tumor ’:
set. ThermalConductivity = tumor_new_k_value
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = tumor_new_w_value

# Update the materials with the new frequency parameters
simulation . UpdateAllMaterials ()

# RUN
simulation . UpdateGrid ()
simulation . CreateVoxels ()
simulation . RunSimulation (wait=True)

# Create extractor for a given simulation output file
results = simulation . Results ()

# overall field sensor
overall_field_sensor = results [ ’Overall Field ’ ]

# EXPORT MATLAB
inputs = [ overall_field_sensor . Outputs ["T(x,y,z)"]]
field_masking_filter = analysis .core. FieldMaskingFilter ( inputs = inputs )
field_masking_filter . SetAllMaterials ( False )
field_masking_filter . SetEntities ( entities__all )
field_masking_filter . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter )
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inputs = [ field_masking_filter . Outputs ["T(x,y,z)"]]
matlab_exporter = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter .Name = ("{}". format (i))
matlab_exporter . FileName = (dir + " T_PT6_A_ {}. mat". format (i))
matlab_exporter . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter )
matlab_exporter . Update ( overwrite =True)
matlab_exporter . Update ( overwrite =True)

Dielectric Parameter Variation and Map Extraction
import numpy
import math
import s4l_v1 . document as document
import s4l_v1 . materials . database as database
import s4l_v1 . model as model
import s4l_v1 . simulation . thermal as thermal
import s4l_v1 . analysis as analysis
import s4l_v1 . units as units
from s4l_v1 import ReleaseVersion
from s4l_v1 import Unit
import itertools

def all_entities_within_group ( entity_group ):
’’’return a list of all model entities within a given group , including all
subdirectories ’’’
if isinstance ( entity_group , model . EntityGroup ):

return list( itertools . chain . from_iterable (
all_entities_within_group (e) for e in entity_group . Entities ))

else:
return [ entity_group ]

vip_group = model . AllEntities ()[’Yoon -sun ’]
entities__all = all_entities_within_group ( vip_group )
entities__air_internal = model . AllEntities ()[’Air_internal ’]
entities__tumor = model . AllEntities ()[’Tumor ’]
entities__all . remove ( entities__air_internal )
entities__all . append ( entities__tumor )

dir = u"C:\\ Users \\ Diego \\ Desktop \\ Tesi \\7 _Dielectric \\ Mappe_MGrid_B \\"
#dir2 = u"C:\\ Users \\ Diego \\ Desktop \\ Tesi Vecchi \\ Focusing_RealisticModel - Copia .

smash_Results \\"

coord = numpy . loadtxt ("C:/ Users / Diego / Desktop /Tesi /7 _Dielectric / MGrid_B_base_pt_7 .
txt")

print ( coord )
size= coord .size
num_rows , num_columns = coord . shape

for i in range (0, num_rows ):

sm = coord [i ,0]
st = coord [i ,1]
wm = coord [i ,2]
wt = coord [i ,3]

print (sm , st , wm , wt)
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# Define the version to use for default values
ReleaseVersion . set_active ( ReleaseVersion . version7_0 )
simulation = document . AllSimulations ["EM 1 - Copy"]
simulation . ClearResults ()
simulation . ResetVoxels ()

entity__muscle = model . AllEntities ()[" Muscle "]
muscle_new_s_value = sm
muscle_new_w_value = wm , Unit("ml/min/kg")
entity__tumor = model . AllEntities ()[" Tumor "]
tumor_new_s_value = st
tumor_new_w_value = wt , Unit("ml/min/kg")

# Change the Mass Density value of an existing material
sets = simulation . AllSettings
for idx ,set in enumerate (sets):

if set.Name == ’Muscle ’:
set. ElectricConductivity = muscle_new_s_value
#set. ElectricProps . Conductivity = muscle_new_s_value

if set.Name == ’Tumor ’:
set. ElectricConductivity = tumor_new_s_value
#set. ElectricProps . Conductivity = tumor_new_s_value

# Update the materials with the new frequency parameters
simulation . UpdateAllMaterials ()

#RUN
simulation . UpdateGrid ()
simulation . CreateVoxels ()
simulation . RunSimulation (wait=True)

simulation = document . AllSimulations ["EM 1 - Copy"]
simulation_extractor = simulation . Results ()

# Adding a new EmSensorExtractor
em_sensor_extractor = simulation_extractor [" Overall Field "]
em_sensor_extractor . FrequencySettings . ExtractedFrequency = u"All"
em_sensor_extractor . Normalization . Normalize = True
em_sensor_extractor . Normalization . AvailableReferences = u"EM Input Power (f)"
em_sensor_extractor . Normalization . NewReferenceValue = 60.0 , units . Watts
em_sensor_extractor . SurfaceCurrent . SurfaceResolution = 0.001 , units . Meters
document . AllAlgorithms .Add( em_sensor_extractor )

# Adding a new FieldSnapshotFilter
inputs = [ em_sensor_extractor . Outputs ["El. Loss Density (x,y,z,f0)"]]
field_snapshot_filter = analysis . field . FieldSnapshotFilter ( inputs = inputs )
# field_snapshot_filter . Snapshots . ExistingValues = u"not matching "
# field_snapshot_filter . Snapshots . TargetValue = 0.0 , units .Hz
field_snapshot_filter . UpdateAttributes ()
document . AllAlgorithms .Add( field_snapshot_filter )

# Adding a new DataCacheExporter
inputs = [ field_snapshot_filter . Outputs ["El. Loss Density (x,y,z,f0)"]]
data_cache_exporter = analysis . exporters . DataCacheExporter ( inputs = inputs )
data_cache_exporter .Name = "Data Cache Exporter - User Defined Source "
data_cache_exporter . FileName = (dir + " Source {}. cache ". format (i+1))
data_cache_exporter . UpdateAttributes ()
document . AllAlgorithms .Add( data_cache_exporter )
data_cache_exporter . Update ( overwrite =True)
data_cache_exporter . Update ( overwrite =True)
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## Thermal Simulation
ReleaseVersion . set_active ( ReleaseVersion . version7_0 )
simulation1 = document . AllSimulations ["Th 60 W - Dielectric "]
simulation1 . ClearResults ()
simulation1 . ResetVoxels ()

# Change the Mass Density value of an existing material
sets = simulation1 . AllSettings
for idx ,set in enumerate (sets):

if set.Name == ’Muscle ’:
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = muscle_new_w_value

if set.Name == ’Tumor ’:
set. HeatTransferRate . UsePerfusionUnits = True
set. HeatTransferRate . PuConstantTerm = tumor_new_w_value

simulation1 . UpdateAllMaterials ()
# Adding a new StationaryUserDefinedHeatSource

if i >0:
simulation1 . Remove ( stationary_user_defined_heat_source , components )

stationary_user_defined_heat_source = thermal . StationaryUserDefinedHeatSource
()
components = []
stationary_user_defined_heat_source . UserDefinedFileName = (dir + " Source {}.
cache ". format (i+1))
simulation1 .Add( stationary_user_defined_heat_source , components )

# RUN
simulation1 . UpdateGrid ()
simulation1 . CreateVoxels ()
simulation1 . RunSimulation (wait=True)

# Create extractor for a given simulation output file
results1 = simulation1 . Results ()

# overall field sensor
overall_field_sensor1 = results1 [ ’Overall Field ’ ]

# EXPORT MATLAB
inputs = [ overall_field_sensor1 . Outputs ["T(x,y,z)"]]
field_masking_filter = analysis .core. FieldMaskingFilter ( inputs = inputs )
field_masking_filter . SetAllMaterials ( False )
field_masking_filter . SetEntities ( entities__all )
field_masking_filter . UpdateAttributes ()
document . AllAlgorithms .Add( field_masking_filter )

inputs = [ field_masking_filter . Outputs ["T(x,y,z)"]]
matlab_exporter = analysis . exporters . MatlabExporter ( inputs = inputs )
matlab_exporter .Name =(" Matlab {}". format (i))
matlab_exporter . FileName = (dir + " T_PT7_B {}. mat". format (i))
matlab_exporter . UpdateAttributes ()
document . AllAlgorithms .Add( matlab_exporter )
matlab_exporter . Update ( overwrite =True)
matlab_exporter . Update ( overwrite =True)
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