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1 CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

There has been an extensive amount of work dedicated to search for more efficient
ways in which one can simulate disordered systems, like spin-glasses [1–3]. The inher-
ent slow dynamics of glasses translates into difficulties while attempting to extract
quasi-equilibrium properties from Monte Carlo simulations; at low temperatures one
finds relaxation times that depend on the system size, hence diverging in the ther-
modynamic limit. The display of out-of-equilibrium behaviour while attempting to
measure observable quantities for this system seems unavoidable.

Several methods have been developed in order to get around this conundrum,
such as the well established parallel tempering algorithm [4] where one modifies the
acceptance procedure in the Monte Carlo simulation (whose most basic form will
be described in section 3.1) to include the interchange of configurations quenched at
different temperatures running in parallel. In this work we attempt to propose another
candidate of a Monte Carlo algorithm that might be able to accelerate the dynamics
of spin-glass systems. We argue that an algorithm that was able to accelerate the
dynamics of structural glass systems, proposed by Berthier et. al [5], known as the
SWAP method, is translatable into the context of spin-glasses and might provide an
efficient way to accelerate the dynamics of the standard Monte Carlo simulation.

We want to probe the efficiency of the swap procedure for spin-glass systems, in
order to do so, one needs a local degree of freedom to be interchanged between agents
of the system, in our case the spins. We promote the standard Ising variables to
be continuous variables and assign the length or strength of the spins as the local
parameter to be affected by the SWAP procedure. This, as will be explained in later
chapters, is expected to have a direct effect on the energy of the system, specifically,
in overcoming the energy barriers that trap the system in meta-stable configurations
that one encounters in the spin-glass problem. To have a better of understanding
of the behaviour of a model with continuous spin, the mean field model of both the
standard and the disordered case have been solve exactly in the first chapter, plus an
introduction of the usual calculations of a mean-field disordered model (the SK model
to be precise) have also been included in the theoretical framework. Although we have
considered the condition that the average spin length should be centered around 1,
with the aim of just adding small variations to the model without changing its overall
behaviour, it is clear that the effect will not be negligible, and solving the mean-field
case can provide some insight regarding the equilibrium properties of the new model.
Special interest has been devoted to the dependence of the critical temperature with
the change of lengths in the spins, as it is an essential property while performing
the quenches during the MC simulations. We will see that promoting the spins to
be continuous variables will indeed change the behaviour of the critical temperature,
from this we are able to track the value of the critical temperature in order to perform
the proper quench in the Monte Carlo simulation.
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The second chapter is dedicated to give a small introduction of the standard MC
simulation for spin-systems and comment the behaviour of the quenches and two-
time observables (specifically the auto-correlation function) while performing MC
simulation. We then introduce the version of the SWAP method applied to spin
systems with length and present some of the results of the simulations. Although
several results have been produced for several models (Sherrington-Kirkpatrick, 3D,
2D Edwards-Anderson, 3D-2D Ising models) with and without lengths, we mainly
focus our discussion for the 3D Edwards-Anderson model. The finite dimensional
models will always be presented in a regular square-cubic lattice, with coordination
number equal to 2d where d is the dimension of the system.
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Chapter 2

Theoretical Framework

2.1 Fully-connected Ising model with soft-spins

We will introduce a by-pass model to accelerate the relaxation dynamics of the spin-
glass problem. A natural choice to probe the swap method would be to endow the
spins with a akin of length or a strength, such that it will serve as the swapped
degree of freedom in our system (i.e. analogous to the molecules diameter in [5]);
this variation in spin-systems is commonly referred as soft-spins in the literature [6],
although other less general models refer them just as continuous spins [7,8]. We will
choose the soft-spins variables (si) not to far from the classic Ising spins (σi), so they
can be related via the new strength variable τi s.t. si = τiσi. The strength degrees
of freedom will be i.i.d. random variables sampled from the probability distribution
p(τi) with positive support.
As a first approach, we will consider the model without disorder i.e. the fully-
connected Ising model with soft-spins, with its Hamiltonian defined in the following
way

HSS({σi}, {τi}) = −
J

2

∑
i ̸=j

τiτjσiσj − λ1
N∑
i=1

(τi − 1)− λ2
N∑
i=1

(
τ 2i − 1− ∆2

12

)
, (2.1)

here σi ∈ {−1, 1} are the classic spin variables, J will refer to the coupling constant
(to be taken ferromagnetic i.e. J > 0) and we have included two Lagrange multipliers
{λ1, λ2} in order to control the fluctuations of the strength variables, specifically, we
want to fixed the mean to 1 (the case of classic Ising spins) and the sample variance
to be that of a uniform distribution in a box of size ∆.

In order to calculate the partition function of the model we are in need of decouple
the different lattice sites, with this goal in mind we use the following identity

(
N∑
k=1

ck

)2

=
N∑
k=1

c2k +
N∑
l ̸=k

clck. (2.2)

Furthermore, Kac’s re-scaling shall be introduced to render the energy of the long-
range model extensive [9]

J → J

N
. (2.3)

With these considerations we get
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HSS({σi}, {τi}) = −
J

2N

(
N∑
i=1

τiσi

)2

+
N∑
i=1

ψi(τi), (2.4)

where we have defined

ψi(τi) =

(
J

2N
− λ2

)
τ 2i − λ1τi + λ1 + λ2

(
1 +

∆2

12

)
, (2.5)

and after neglecting the terms sub-leading in N (as they will become zero in the
thermodynamic limit) we are left with

ψi(τi) = −λ2τ 2i − λ1τi + λ1 + λ2

(
1 +

∆2

12

)
, (2.6)

to be a function already decoupled of degrees of freedom. We now proceed to calculate
the partition function of the model defined as Z = Tr

[
e−βHSS({σi},{τi})

]
, here the trace

operator is summing over all the degrees of freedom in the model taken to be {σi}
and {τi}; in order to decouple the exponential of the first term in the Hamiltonian,
we introduce the Hubbard-Stratonovich transformation, defined as

exp
(
bm2

)
=

√
b

π

∫ ∞

−∞
dx exp

(
−bx2 + 2bxm

)
, (2.7)

this yields

e−βHSS({σi},{τi}) =

√
NβJ

2π

∫ ∞

−∞
dxe−

NβJ
2
x2+βJx

∑N
i=1 σiτi−β

∑N
i=1 ψi(τi). (2.8)

Now we should make explicit the form of the trace operator, in the way we have
defined our variables we define it as

Tr ≡
∑
{σi}

∫ N∏
i=1

dp(τi), (2.9)

hence

Z(β) =

√
NβJ

2π

∫ ∞

−∞
dxe−

NβJ
2
x2
∑
{σi}

∫ N∏
i=1

dp(τi)e
β
∑N

i=1[Jxσiτi−ψi(τi)], (2.10)

that after some reordering and manipulations becomes

Z(β) =

√
NβJ

2π

∫ ∞

−∞
dxe−NβHeff (x), (2.11)

where we have defined
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Heff(x; β) ≡
J

2
x2 − 1

β
log

[
2

∫
dp(τ)e−βψ(τ) cosh(βJxτ)

]
, (2.12)

to be the effective Hamiltonian also known as the Landau-Ginzburg free energy. Note
that the i-index has been dropped since we have fully decoupled our degrees of free-
dom. Now we are able to evaluate the integral in (2.11) by means of the saddle-pint
method, considering N ≫ 1 but still finite will yield

Z(β) ≈
√
NβJ

2π
e−Nβ infx Heff(x;β), (2.13)

and now we are able to evaluate the free energy density of our model (that, as can be
seen in the following, coincides with the infimum of the Landau-Ginzburg free energy)

f(β) = − 1

βN
logZ = inf

x
Heff(x; β). (2.14)

We now search for the value of x that minimizes the effective Hamiltonian, hence
solving for ∂Heff

∂x
|x∗ = 0 provides us with

x∗ =

∫
dp(τ) τ e−βψ(τ) sinh(βJx∗τ)∫
dp(τ) e−βψ(τ) cosh(βJx∗τ)

, (2.15)

value of x∗ coincides precisely with the value of the order parameter of the model,
hence equation 2.15 is the equation of state of the model. It is easy to show that such
value is the magnetization density defined as follows

m = x∗ =
1

N

N∑
i=1

τiσi. (2.16)

Clearly, we can see that x∗ = 0 is a solution, signaling the existence of a disordered
phase. Moreover, we can also obtain two more equations for the constraints imposed
from the Lagrange multipliers i.e. minimizing the effective Hamiltoinian w.r.t. λ1
and λ1 one obtains

∫
dp(τ) τ e−βψ(τ) cosh(βJmτ)∫
dp(τ) e−βψ(τ) cosh(βJmτ)

= 1, (2.17)

and

∫
dp(τ) τ 2 e−βψ(τ) cosh(βJmτ)∫
dp(τ) e−βψ(τ) cosh(βJmτ)

= 1 +
∆2

12
. (2.18)

We are interested in finding the critical temperature of the model. We attempt an
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expansion near criticality for small values of the order parameter, in doing so, it is
convenient to define the following operator

Eτ [...] ≡
∫
dp(τ) e−βψ(τ)[...], (2.19)

which is clearly linear but notice that is not normalized i.e. Eτ [1] ̸= 1. We now
expand up to first order of m in the equation of state, as

m =
Eτ [τ sinh(βJmτ)]
Eτ [cosh(βJmτ)]

≈ βJmEτ [τ 2]
Eτ [1 + (βJmτ)2

2
]
=

βJmEτ [τ 2]
Eτ [1]

(
1 + (βJm)2

2
Eτ [τ2]
Eτ [1]

)
≈ βJm

Eτ [τ 2]
Eτ [1]

(
1− (βJm)2

2

Eτ [τ 2]
Eτ [1]

)
≈ βJm

Eτ [τ 2]
Eτ [1]

(2.20)

We may proceed in the same fashion with equations 2.17 and 2.18,

Eτ [τ ]
Eτ [1]

≈ 1, (2.21)

Eτ [τ 2]
Eτ [1]

≈ 1 +
∆2

12
, (2.22)

Therefore, we are able to extract the critical temperature dependence with the pa-
rameter ∆

kBTc
J

= 1 +
∆2

12
(2.23)

That we will choose it to be, as mentioned before, the size of the box centered at
1 from which we are sampling our strengths, i.e. τi ∈

[
1− ∆

2
, 1 + ∆

2

]
. Moreover,

for the mean-field approximation we include the coordination number of a lattice
with finite dimension d, this corresponds to the transformation J → 2dJ from the
fully-connected model, hence

kBTc
J

= 2d

(
1 +

∆2

12

)
, (2.24)

so that in our case of a simple cubic lattice with a box distribution of size ∆ = 1.5
and a natural temperature scale in which (J/kB = 1) we have Tc = 7.125.

The increasing quadratic behaviour of the critical temperature w.r.t. the strength
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parameter ∆ can also be seen from the numerical solution of equations (2.15), (2.17),
(2.18) presented graphically in figure 2.1, where it can be seen that as we increase the
spin-strength the low-temperature ordered phase expands its temperature domain.
Notice that the critical exponent β is left unchanged w.r.t. the classical model with
Ising spins, a similar behaviour will appear when we introduce disorder in this model
at section 2.2.2.
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Figure 2.1 : Magnetization density (m) dependency with temperature (T ) for several
values of the strenght parameter (∆). The increasing quadratic behaviour of the
critical temperature is confirmed.

2.2 Disordered models

The spin-glass phase arises when we take into account disordered interactions within
our model. In such cases the computation of the partition function develops further
difficulties that are dealt with by introducing the notion of replicas [10]. we then
introduce the simplest model bearing a spin-glass phase: the Sherrington-Kirkpatrick
model, basically, a fully-connected Ising model with random couplings. known as the
Sherrington-Kirkpatrick model [11].

2.2.1 Sherrington-Kirkpatrick (SK) Model

We defined the Hamiltonian of the disordered model with spins of fixed length i.e.
we are dealing with standard Ising variables where σi ∈ {−1,+1}

HSK({σi}) = −
1

2

∑
i ̸=j

Jijσiσj, (2.25)

and we are considering the case where no external field is present. Note that we
have introduced the disordered nature of the system through the couplings (Jij), by
taking them to be independent and identically distributed (i.i.d.) Gaussian random
variables
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p(Jij) =
1√
2πJ2

exp

[
− (Jij − J0)2

2J2

]
, (2.26)

with Jij = J0, J
2 = J2

ij − Jij2 ∗.

For any quantity Q, our notation implies that Q will be used to denote an average
over the disorder (accordingly, in this context, a Gaussian average). Nevertheless,
we want to consider just the symmetric case i.e. where J0 = 0 hence, as we shall
soon confirm, the case where no ordered ferromagnetic phase is present. Moreover, a
proper Kac’s re-scaling shall be taken into account, in this case just to the couplings’
variance.

J2 → J2

N
(2.27)

2.2.1.1 Free Energy Calculation

As in the preceding section, our goal is to obtain the free energy of the system,
specifically, as we are dealing with a disordered system, we proceed to calculate
the disorder-averaged free energy, from it we are able to derive most of the typical
properties of the model [12].

FJ = − 1

β

∫
dJijp(Jij) logZJ = − 1

β
logZJ (2.28)

The sub-index J stresses out the explicit dependence of the partition function on
the specific disorder realization of the couplings, hence the couplings are said to be
quenched variables, i.e. they remain ”frozen” within the scales where the d.o.f. vary†.
This problem translates into a difficult evaluation of the free energy that is simplified
by using the identity

logZJ = lim
n→0

Zn
J − 1

n
, (2.29)

here we relax the nature of n for it to be a natural number, representing the number of
copies of our system called replicas. It has been shown that the analytic continuation
while evaluating the limit yield the exact results [10]; therefore, we may write

FJ = − 1

β
lim
n→0

1

n

(
Zn
J − 1

)
. (2.30)

From now onwards we concern ourselves with the evaluation of Zn
J . The n copies of

the partition function are calculated as follows

∗Note that here J is no longer the coupling constant in this section, but the variance of the
random couplings

†Note that the previous calculation (the one with soft-spins) represented a case of annealed
disorder, as the random strengths vary on the timescale of the other degrees of freedom
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Zn
J =

∑
{σ1

i }

e−βHSK({σ1
i })
∑
{σ2

i }

e−βHSK({σ2
i })...

∑
{σn

i }

e−βHSK({σn
i }), (2.31)

we define a new index a running through the replicas (a = 1, ..., n) and denote the
sum over all d.o.f. as a trace operator Tr. We then re-write the equation above as

Zn
J = Tr e−β

∑n
a=1HSK({σa

i }), (2.32)

at this point the usefulness of the replica trick becomes evident; as we attempt to
compute the disorder-average of the partition function, we can now exchange the trace
and the Gaussian average, i.e. the couplings and the spins have become temporarily
annealed variables that vary together. Thence

Zn
J = Tr e−β

∑n
a=1HSK({σa

i }) = Tr e−β
∑n

a=1HSK({σa
i }), (2.33)

with the couplings as our random variables, we compute the Gaussian expected value
of the quantity above

Zn
J = Tr eβ

∑n
a=1

∑
i>j Jijσiσj = Tr exp

[
β2J2

2N

∑
i>j

(∑
a

σai σ
a
j

)2
]
. (2.34)

We now are confronted again with the task of decoupling variables interactions, but
this time is between the replica indices, we will use again the identity

(
N∑
k=1

ck

)2

=
N∑
k=1

c2k + 2
N∑
l>k

clck =
N∑
k=1

c2k +
N∑
l ̸=k

clck, (2.35)

that in our case yields

β2J2

2N

∑
i>j

(∑
a

σai σ
a
j

)2

=
nβ2J2

4
(N − 1) +

β2J2

N

∑
a>b

∑
i>j

σai σ
b
iσ

a
j σ

b
j . (2.36)

Using (2.35) again to expand the i > j sum on the right-hand side of the equation
we arrive at

β2J2

N

∑
a>b

∑
i>j

σai σ
b
iσ

a
j σ

b
j =

β2J2

2N

∑
a>b

(
N∑
i=1

σai σ
b
i

)2

− nβ2J2

4
(n− 1), (2.37)

as we take the thermodynamic limit N → ∞ we can consider N − 1 ≈ N in the
first term of equation (2.36), and neglect the last term in equation (2.37) (as it just
produces a constant factor that will go to zero when the n→ 0 limit is taken), hence
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Zn
J = Tr exp

nNβ2J2

4
+
Nβ2J2

2

∑
a>b

(
1

N

N∑
i=1

σai σ
b
i

)2
. (2.38)

Once again, a form similar to (2.4) has been reached, where a suitable decoupling of
the different lattice-site variables is required; this is achieved by means of (2.7). In
this case the conjugated variable will be a matrix of the replica indices, set to be qab,
with this consideration the equation above yields

Zn
J = e

β2J2

4
nN

∫ ∏
a>b

dqabe
−Nβ2J2

2

∑
a>b q

2
ab Tr eβ

2J2
∑

a>b qab
∑N

i=1 σ
a
i σ

b
i . (2.39)

Finally, we are able to extract a factor of N from the sum over the lattice-sites, that
are now i.i.d. random variables by virtue of the H-S transformation. We are now
able to drop the i index so that the remaining spin variables will depend solely on
the replica indices a and b. We then define the function‡

L({σa}) ≡ β2J2
∑
a>b

qabσ
aσb, (2.40)

so the exponential term affected by the trace in equation (2.39) can be re-expressed
as

Treβ
2J2

∑
a>b qab

∑N
i=1 σ

a
i σ

b
i = elog Tr exp[NL({σa})], (2.41)

thereof transforming equation (2.39) into

Zn
J = exp

(
nNβ2J2

4

)∫
Dqab exp

[
−Nβ

2J2

2

∑
a>b

q2ab +N log Tr eL({σ
a})

]
. (2.42)

As N ≫ 1, we can evaluate the integral above using the saddle-point method

Zn
J ≈ exp

[
nNβ2J2

4
− Nβ2J2

2

∑
a>b

(q∗ab)
2 +N log Tr eL

∗({σa})

]
, (2.43)

where ∗ denotes we have evaluated qab in its saddle-node value, q∗ab. We now extract
a factor nN and consider the limit n→ 0 while keeping N large but still finite, so we
can expand the exponential as a series. Keeping just the first order term, yields

Zn
J ≈ 1 + nN

[
β2J2

4
− β2J2

2n

∑
a>b

(q∗ab)
2 +

1

n
log Tr eL

∗({σa})

]
, (2.44)

we may now extract a factor of N to work with the free energy density (fJ = FJ/N),

‡whose convenience shall become apparent when dealing with the soft-spins case



11 2.2. DISORDERED MODELS

then inserting this in (2.29) we arrive at

βfJ = lim
n→0

[
− β2J2

4
+
β2J2

2n

∑
a>b

(q∗ab)
2 − 1

n
log Tr eL

∗({σa})
]
. (2.45)

2.2.1.2 Replica-symmetric solution

In order to evaluate the limit (2.45), we consider the simplest case, that of replica
symmetry i.e. the fact that

q∗ab = q for a ̸= b, (2.46)

even-though we are neglecting the vast richness of the free-energy landscape inside
the spin-glass phase with this assumption, the result provides a first approximation
to the equilibrium and critical properties of the spin-glass phase, although testing
the stability through the Replica Symmetry Breaking solution should attempt in
future work; for the time being we will our analysis to the replica-symmetric scenario.
Inserting explicitly this assumption into equation (2.45) yields

βfJ = −1

4
β2J2q2 − lim

n→0

1

n
log Tr eL

∗({σa}), (2.47)

where we have neglected the constant term in (2.47). Making explicit the form of
the L∗ function in order to take the limit of vanishing replicas, equation (2.40) with
condition (2.46) takes the form

L({σai }) = β2J2q
∑
a>b

σaσb, (2.48)

this in turn can be expanded using (2.35) again. Upon exponentiation of the function
above, we subsequently use a H-S transformation in the arising squared-sum term,
arriving at

eL
∗({σa

i }) =

√
β2J2q

2π

∫ ∞

−∞
dx exp

(
−β

2J2q

2
x2 + β2J2qx

∑
a

σa − n

2
β2J2 q

)
, (2.49)

after computing the trace of the expression above the only affected term will be the
second term inside the exponential, that can be evaluated as

Tr exp

(
β2J2 qx

∑
a

σa

)
=
∏
a

∑
{σa}

exp
(
β2J2 qxσa

)
= 2n coshn(β2J2qx), (2.50)
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all together can be written as

Tr eL
∗({σa

i }) =

∫
Dz exp

[
−n
2
β2J2q + n log(2 cosh(βJ

√
qz))

]
, (2.51)

where we have simplified our original expressing by using the change of variables

z = βJ
√
qx, (2.52)

and defined the Gaussian measure∫
Dz =

∫ ∞

−∞

dz√
2π
e−

z2

2 . (2.53)

Returning to (2.45) we can now evaluate the n→ 0 limit by extracting a factor of n,
then expanding the exponential for small n values and subsequently using the identity

lim
n→0

1

n
ln(1 + nα) = α; (2.54)

all in all, we get

βfJ = −β
2J2

4
(1− q)2 −

∫
Dz log[2 cosh(βJ√qz)], (2.55)

after the several transformations introduced, we have arrived at the Landau-like free
energy density of our model, depending on q, the corresponding order parameter.

2.2.1.3 Phase Transition

The extremum of the thermodynamic free energy w.r.t. its order parameter defines
an equilibrium phase; i.e. as seen in the previous sections by extremizing the free
energy we get the respective equation of state for the model. Usually we regard such
extremum as a minimum, however, due to the nature of the limit n → 0, this is not
longer the case. The limit induces a change of sign, such that second order coefficient
in the free energy becomes negative for T > Tsg; hence the paramagnetic solution
(q = 0) corresponds to a maximum instead [13]. Therefore, extremizing w. r. t. q

β
∂fJ
∂q

=
β2J2

2
(q − 1) +

∫
Dz βJ

2
√
q
z tanh(βJ

√
qz) = 0, (2.56)

and after integrating by parts

q =

∫
Dz tanh2(βJ

√
qz). (2.57)

It is straight-forward to see that the equation of state (2.57) fulfills the paramagnetic
solution (q = 0), while at low temperatures q ̸= 0 and it corresponds to the spin-glass
phase, thence q plays the role of the order parameter for our model.
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Figure 2.2 : Edwards-Anderson order parameter for the standard Sherrington-
Kirkpatrick model, here the temperature scale is set such that J/kB = 1.

We may expand equation (2.57) near criticality to obtain the critical temperature,
by doing so we arrive at

q =

∫
Dz(βJ√qz)2, (2.58)

solving for the critical temperature, Tsg, yields

β2
sg =

1

J2
⇒ Tsg =

J

kB
(2.59)

by setting the temperature scale J/kB = 1, we are able to compare the above result
with the numerical solution of equation (2.57), shown in Figure 2.2.

2.2.2 SK model with soft-spins

After examining in detail the two prior models, we are now able to merge both
considerations in the present section: search for the critical temperature for a 1) soft-
spin 2) disordered system; i.e. we will consider the soft version of the SK model.
This will serve as the by-pass model to probe the accelerating dynamics of the swap
algorithm with continuous spins, as will be discussed in later sections.

The Hamiltonian of the model is defined as

HSKSS({σi}, {τi}) = −
∑
i>j

Jijτiτjσiσj − λ1
N∑
i=1

(τi − 1)− λ2
N∑
i=1

(
τ 2i − 1− ∆2

12

)
,

(2.60)
here the only difference w.r.t. (2.1) is that now as in (2.25) the couplings (Jij) are
now deemed i.i.d. random variables. Again, the {τi} variables are the strength or
length of the spins, also a random variable sampled from some distribution p({τi})
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for which we are setting the mean equal to 1 and its sample variance as ∆2/12 and,
once again, σi is the standard Ising variable taking discrete values ±1.

2.2.2.1 Free energy calculation for soft-spins

Here, we proceed in a similar fashion as in the SK-model. This time inside the
partition function (ZJ) we should also take into account the distribution of spin-
strengths, hence, equation (2.31) acquires the following form:

Zn
J =

∫ ∏
i

D
[
s
(1)
i

]
e−βHSKSS

(
{s(1)i }

)
...
∏
i

D
[
s
(n)
i

]
e−βHSKSS

(
{s(n)

i }
)
, (2.61)

where we have set si = σiτi. Repeating the procedure of the previous section, we
can define the index a running over the replicas and the trace operator, so we will
have the same expressions as (2.32) and (2.33) but with the change HSK

(
{σ(1)

i }
)
→

HSKSS

(
{s(1)i }

)
. Moreover, the trace operator is redefined, as the degrees of freedom

are no longer just standard Ising variables

Tr ≡
∫ ∏

i,a

D
[
s
(a)
i

]
=
∑
{σa

i }

∫ ∏
i,a

dp(τai ), (2.62)

where dp(τai ) is just the probability measure that as in 2.1 we will just restrict it to
have positive support.

Once again we compute the disorder-averaged partition function, concerning our-
selves first with the n power of the function after introducing the replica trick

Zn
J = Tr

{
eβ

∑n
a=1

∑
i>j Jijsisje

β
∑

a

∑
i

[
λ1(τi,a−1)+λ2

(
τ2i,a−1−∆2

12

)]}
= Tr e

β2J2

2N

∑
i>j(

∑
a s

a
i s

a
j )

2
+β

∑
a

∑
i

[
λ1(τi,a−1)+λ2

(
τ2i,a−1−∆2

12

)]
,

(2.63)

note that the second exponential factor (dependent on the lagrange multipliers) is
unaffected by the disorder-average. Moreover, these coincide again with the definition
in (2.6), with the modification of adding the replica index a

ψai (τi,a) = −λ2τ 2i,a − λ1τi,a + λ1 + λ2

(
1 +

∆2

12

)
, (2.64)

we now proceed then by using (2.35) only to the first exponential term to produce

Tr e
β2J2

2N

[∑
a>b

(∑
i τ

a
i τ

b
i σ

a
i σ

b
i

)2
−
∑

a>b

∑
i(τ

a
i τ

b
i )

2+
∑

a

∑
i>j(τ

a
i τ

a
j )

2
]
, (2.65)

where we have made explicit the form of the soft-spin variable si. Notice that the last
two sums in the exponential will depend solely on {τai }. Again, using a rearrangement
of (2.35)
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∑
i>j

τ 2i,aτ
2
j,a =

1

2

(∑
i

τ 2i,a

)2

− 1

2

∑
i

τ 4i,a, (2.66)

and after neglecting the terms§ sub-leading in N (as their contribution to the free
energy will vanish in the thermodynamic limit) we obtain

Zn
J = Tr e

1
2
NJ2β2

[∑
a>b

(
1
N

∑
i τ

a
i τ

b
i σ

a
i σ

b
i

)2
+ 1

2

∑
a

(
1
N

∑
i(τ

a
i )

2
)2]

−β
∑

i,a ψ
a
i (τi,a)

, (2.67)

and we may now use the H-S transformation to each of the two terms in (2.67)

exp

[
1

2
NJ2β2

∑
a>b

(
1

N

∑
i

τai τ
b
i σ

a
i σ

b
i

)2
]

=
∏
a>b

√
NJ2β2

2π

∫ ∞

−∞
dqab exp

(
−N

2
J2β2q2ab + J2β2qab

∑
i

τai τ
b
i σ

a
i σ

b
i

)
(2.68)

exp

[
1

4
NJ2β2

∑
a

(
1

N

∑
i

τ 2i,a

)2
]

=
∏
a

√
NJ2β2

4π

∫ ∞

−∞
dϕa exp

(
−N

4
J2β2ϕ2

a +
1

2
J2β2ϕa

∑
i

(τai )
2

)
(2.69)

dropping the constant factors and re-inserting the products into the integrals (by
defining D[ϕa, qab] =

∏
a dϕa

∏
a>b dqab) we get

Zn
J =

∫
D[ϕa, qab] exp

[
−N

2
J2β2

(∑
a>b

q2ab +
1

2

∑
a

ϕ2
a

)]
Tr eL

′({tai ,σa
i }), (2.70)

here

L′({tai , σai }) = β2J2
∑
a>b

qab
∑
i

τai σ
a
i τ

b
i σ

b
i +

1

2
β2J2

∑
i,a

ϕaτ
2
i,a − β

∑
i,a

ψai (τi,a); (2.71)

moreover, we have fully decoupled the spin site variables within this last expression,
and we are now able to extract the sum over i as a product outside the exponential.
We safely drop the index i as we include a factor of N , and now, as with the standard

§those terms being: − 1
N2

∑
i

∑
a>b(τ

a
i τ

b
i )

2 and − 1
2N2

∑
a

∑
i τ

4
i,a
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calculation, we can re-define the trace term as

Tr exp[L′({τai , σai })] = exp
[
N log Tr eL({τa,σa})

]
, (2.72)

where

L({ta, σa}) = β2J2
∑
a>b

qabτaτbσaσb +
1

2
β2J2

∑
a

ϕaτ
2
a − β

∑
a

ψa(τa), (2.73)

hence

Zn
J =

∫
D[ϕa, qab] exp

[
−N

2
J2β2

(∑
a>b

q2ab +
1

2

∑
a

ϕ2
a

)
+N log Tr eL({τa,σa})

]
. (2.74)

Once again, we use the saddle-point method to solve the integral above, under the
proper considerations

Zn
J ≈ exp

{
−N

2
J2β2

[∑
a>b

(q∗ab)
2 +

1

2

∑
a

(ϕ∗
a)

2

]
+N log Tr eL

∗({τa,σa})

}
, (2.75)

by extracting the factor nN and consider the limit n→ 0 while keeping N large but
still finite, so we expand the first order term in the exponential

Zn
J ≈ 1 − nN

{
1

2n
β2J2

[∑
a>b

(q∗ab)
2 +

1

2

∑
a

(ϕ∗
a)

2

]
− 1

n
log Tr eL

∗({τa,σa})

}
. (2.76)

Finally, evaluating for the free energy density (f = F/N) we get

βfJ = lim
n→0

{
1

2n
J2β2

[∑
a>b

(q∗ab)
2 +

1

2

∑
a

(ϕ∗
a)

2

]
− 1

n
log Tr eL

∗({τa,σa})

}
(2.77)

2.2.2.2 Replica-symmetric solution

Once again we probe the replica-symmetric solution of the model, we consider the
usual condition (2.46), plus a new one for the other variable depending on the replica
label

ϕ∗
a = ϕ, (2.78)

inserting both assumptions into (2.77)
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βfJ = −1

4
J2β2q2 +

1

4
J2β2ϕ2 − lim

n→0

1

n
log Tr eL({τa,σa}) (2.79)

with

L({τa, σa}) =
1

2
β2J2q

(∑
a

τaσa

)2

− 1

2
β2J2q

∑
a

τ 2a

+
∑
a

[(
1

2
β2J2ϕ+ βλ2

)
τ 2a + βλ1τa − βλ1 − βλ2

(
1 +

∆2

12

)]
,

(2.80)

that for reasons that will become apparent in following calculations, it is convenient
to define the last term as

Ψa(τa;ϕ, λ1, λ2) =

(
1

2
β2J2ϕ+ βλ2

)
τ 2a + βλ1τa − βλ1 − βλ2

(
1 +

∆2

12

)
, (2.81)

both last terms are already decoupled terms of the replicas, so we proceed with a H-S
transformation for the remaining one

e
1
2
β2J2q(

∑
a τaσa)

2

=

√
β2J2q

2π

∫ ∞

−∞
dx exp

(
−1

2
β2J2qx2 + β2J2qx

∑
a

τaσa

)
, (2.82)

the first term inside the integral of (2.82) is unaffected by the trace operator, while
the remaining term plus the two untouched terms of (2.80) are. Thence, we are able
to take the trace operator as

Tr e
∑

a[− 1
2
β2J2q(τ2a−2xτaσa)+Ψa(τa;ϕ,λ1,λ2)] =

∑
{σa}

∏
a

∫
dp(τa)e

− 1
2
β2J2q(τ2a−2xτaσa)+Ψa(τa;ϕ,λ1,λ2)

=

[∫
dp(τ)2e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2) cosh

(
β2J2qxτ

)]n
,

thence arriving at a new form of the exponential term (now independent of {σa, τa})

Tr eL =

√
β2J2q

2π

∫ ∞

−∞
dxe−

1
2
β2J2qx2

[∫
dp(τ)2e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2) cosh

(
β2J2qxτ

)]n
,

in order to isolate the q and ϕ dependence as much as possible, the equation above can
be recast by using (2.52), and introducing (2.53) while denoting the integral inside
the square parenthesis above as I(z; q, ϕ, λ1, λ2)

Tr eL =

∫
Dz[I(z; q, ϕ, λ1, λ2)]n, (2.83)
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then setting [I(z; q, ϕ, λ1, λ2)]
n = elog[I(z;q,ϕ,λ1,λ2)]

n
= en log I(z;q,ϕ,λ1,λ2) and expand for

n≪ 1

Tr eL = 1 + n

∫
Dz log I(z; q, ϕ, λ1, λ2), (2.84)

and we are now able to take the limit of the replicas going to zero by using the identity
(2.54). Finally, the disorder-averaged free energy acquires the form

βfJ = −1

4
β2J2(q2 − ϕ2)−

∫
Dz log I(z; q, ϕ, λ1, λ2), (2.85)

stressing out again that we have defined

I(z; q, ϕ, λ1, λ2) =

∫
dp(τ)2e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2) cosh(βJ

√
qzτ). (2.86)

It is straightforward to see that for dp(τ) = δ(t − 1)dt, i.e. the case where the
spin-strengths are fixed to 1, ϕ = 1 i.e. the self-overlap for classic Ising variables [14],
and the constraints are lifted (λ1 = 0, λ2 = 0) the standard SK-model is recovered

Ψ(τ ;ϕ = 1, λ1 = 0, λ2 = 0) =
1

2
β2J2τ 2 (2.87)

I(z; q, ϕ, λ1, λ2) =

∫ ∞

0

dτδ(τ − 1) exp

[
−1

2
β2J2(q − 1)τ 2

]
cosh(βJ

√
qzτ)

= exp

[
− 1

2
β2J2(q − 1)

]
cosh(βJ

√
qz),

(2.88)

yields

βfJ = −β
2J2

4
(1− q)2 −

∫
Dz log[2 cosh(βJz√q)], (2.89)

that coincides with equation (2.55).

2.2.2.3 Equations of state

As we discussed before, we search for an extremum of the free energy as the equilib-
rium condition. However, we now have three new parameters to extremize: the new
defined self-overlap (now different from 1) and both Lagrange multipliers, for the first
and second moments of the distribution.
For he self-overlap we have

β
∂fJ
∂ϕ

= 0, (2.90)
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ϕ =

∫
Dz
[∫

dp(τ)τ 2 cosh
(
βJ
√
qzτ
)
e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2)∫

dp(τ) cosh
(
βJ
√
qzτ
)
e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2)

]
, (2.91)

for the replica overlap

β
∂fJ
∂q

= 0, (2.92)

q = ϕ− 1

βJ
√
q

∫
Dz
[∫

dp(τ)zτ sinh
(
βJ
√
qzτ
)
e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2)∫

dp(τ) cosh
(
βJ
√
qzτ
)
e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2)

]
, (2.93)

and for the Lagrange multipliers

β
∂fJ
∂λ1

= 0, β
∂fJ
∂λ2

= 0, (2.94)

∫
Dz
[∫

dp(τ)τ cosh
(
βJ
√
qzτ
)
e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2)∫

dp(τ) cosh
(
βJ
√
qzτ
)
e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2)

]
= 1, (2.95)

∫
Dz
[∫

dp(τ)τ 2 cosh
(
βJ
√
qzτ
)
e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2)∫

dp(τ) cosh
(
βJ
√
qzτ
)
e−

1
2
β2J2qτ2+Ψ(τ ;ϕ,λ1,λ2)

]
= 1 +

∆2

12
. (2.96)

Investigating the equations above at the high temperature limit (β → 0), we see that
Ψ→ 0 and find the equations

q = 0

ϕ =

∫
dp(τ)τ 2,

(2.97)

confirming the vanishing order parameter in the disordered high-temperature phase.
Moreover, is clear that ϕ, is indeed a parameter controlling the fluctuations of the
spin-strengths (the second moment for our chosen distribution p(τ)).

We can now proceed in a similar fashion to what we did in 2.1 to find the critical
temperature of the model. In this case we shall defined the new operator

Eτ [...] ≡
∫
dp(τ)eΨ(τ ;ϕ,λ1,λ2)[...], (2.98)

where one should stress out that this operator still depends implicitly of ϕ, λ1 and
λ2. We proceed to expand the functions dependent on q up to O(q). First we take
into account the common denominator
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Eτ [cosh(βJ
√
qzτ)e−

1
2
β2J2qτ2 ] ≈ Eτ

[(
1− 1

2
β2J2qτ 2

)(
1 +

1

2
β2J2qz2τ 2

)]
= Eτ

[
1− 1

2
β2J2qτ 2(1− z2) +O(q2)

]
≈ Eτ [1]−

1

2
β2J2q(1− z2)Eτ [τ 2],

(2.99)

where again notice that Eτ [1] ̸= 1 as the operator is not normalized.
Now, for the numerators of each equation, starting with the ϕ variable

Eτ [τ 2 cosh(βJ
√
qzτ)e−

1
2
β2J2qτ2 ] ≈ Eτ

[
τ 2
(
1− 1

2
β2J2qτ 2

)(
1 +

1

2
β2J2qz2τ 2

)]
= Eτ

[
τ 2 − 1

2
β2J2qτ 4(1− z2) +O(q2)

]
≈ Eτ [τ 2]−

1

2
β2J2q(1− z2)Eτ [τ 4],

(2.100)
that is actually the same for the second multiplier λ2 and the first multiplier has just
one less power of τ , so it yields

Eτ [τ cosh(βJ
√
qzτ)e−

1
2
β2J2qτ2 ] ≈ Eτ [τ ]−

1

2
β2J2q(1− z2)Eτ [τ 3], (2.101)

finally, for the numerator of the order parameter q

Eτ
[

zτ

βJ
√
q
sinh(βJ

√
qzτ)e−

1
2
β2J2qτ2

]
≈ Eτ

[(
zτ

βJ
√
q
− zτ

2
βJ
√
qτ 2
)(

βJ
√
qzτ +

1

6

[
β2J2qz2τ 2

]3/2)]

= Eτ
[
z2τ 2 +

1

6
β2J2z4τ 4q − 1

2
β2J2z2τ 4q +O(q2)

]
≈ z2Eτ

[
τ 2
]
+ β2J2q

(
z4

6
− z2

2

)
Eτ
[
τ 4
]
.

(2.102)

All together, we expand again the denominator as a binomial series of the form

Eτ [1]
(
1− 1

2
β2J2q(1− z2)Eτ [τ

2]

Eτ [1]

)−1

= E−1
τ [1]

(
1 +

1

2
β2J2q(1− z2)Eτ [τ

2]

Eτ [1]
+O(q2)

)
,

(2.103)
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then joining all numerators and denominators for each equation on ϕ, q, λ1 and λ2
respectively, we get

ϕ ≈
∫
DzE−1

τ [1]

(
1 +

1

2
β2J2q(1− z2)Eτ [τ

2]

Eτ [1]

)(
Eτ [τ 2]−

1

2
β2J2q(1− z2)Eτ [τ 4]

)
=

∫
Dz
(Eτ [τ 2]
Eτ [1]

− 1

2
β2J2q(1− z2)Eτ [τ

4]

Eτ [1]
+

1

2
β2J2q(1− z2)E

2
τ [τ

2]

E2τ [1]
+O(q2)

)
≈ Eτ [τ

2]

Eτ [1]
(2.104)

q ≈ ϕ−
∫
DzE−1

τ [1]

(
1 +

1

2
β2J2q(1− z2)Eτ [τ

2]

Eτ [1]

)(
z2Eτ

[
τ 2
]
+ β2J2q

(
z4

6
− z2

2

)
Eτ
[
τ 4
])

= ϕ−
∫
Dz
(
z2
Eτ [τ 2]
Eτ [1]

+ β2J2q

(
z4

6
− z2

2

) Eτ [τ 4]
Eτ [1]

+
1

2
β2J2qz2(1− z2)E

2
τ [τ

2]

E2τ [1]
+O(q2)

)
≈ ϕ− Eτ [τ

2]

Eτ [1]
+ β2J2q

E2τ [τ 2]
E2τ [1]

= β2J2q
E2τ [τ 2]
E2τ [1]

(2.105)

∫
DzE−1

τ [1]

(
1 +

1

2
β2J2q(1− z2)Eτ [τ

2]

Eτ [1]

)(
Eτ [τ ]−

1

2
β2J2q(1− z2)Eτ [τ 3]

)
=

∫
Dz
(Eτ [τ ]
Eτ [1]

− 1

2
β2J2q(1− z2)Eτ [τ

3]

Eτ [1]
+

1

2
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(2.106)
as the equation for λ2 is exactly the same as for ϕ, we conclude

ϕ ≈ Eτ [τ
2]

Eτ [1]
≈ 1 +

∆2

12
(2.107)

hence finding the closed form of the critical temperature as a function of ∆

kBTsg
J
≈ 1 +

∆2

12
. (2.108)

Note that the form of the critical temperatures for the disorder-less case is con-
served. The only remaining difference comes with the explicit form of the operator
Eτ [...], this just complicates further the numerical solution of the equations of state
although the increasing quadratic behaviour of the critical temperature remains.
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Chapter 3

Numerical Simulations

3.1 Single-Spin-Flip Dynamics with Metropolis’ rates

The simplest approach to model the evolution of spin-systems is by means of a Monte-
Carlo (MC) simulation. Several versions of the algorithm have been explored in the
past [15], we restrict ourselves to the simplest case of a Markov Chain Monte Carlo
with Glauber kinetics. The procedure consists of

1. Starting with some randomly generated spin configuration S0
∗

2. A new trial configuration is proposed, which differs from the previous one by
just a single spin flip (Glauber), Stri+1

3. The trial configuration is accepted as the one following Si with some acceptance
probability w(Stri+1|Si). If rejected, the next configuration in the Markov chain
will correspond to the previous one Si.

We require the acceptance probability defined above to be such that, after several
iterations of the procedure, it properly samples spin configurations in agreement with
the Boltzmann distribution, i.e. w(Stri+1|Si) should fulfill detailed balance. This con-
dition, for two spin configurations S and S′ with a differing spin flip between each
other, is expressed as

w(S|S′)Peq(S
′) = w(S′|S)Peq(S), (3.1)

where the equilibrium probabilities Peq are precisely Boltzmann distributions.
There are several ways of choosing the acceptance probabilities for the condition

above to be fulfilled, during the present work we consider the standard Metropolis’
choice

w(S′|S) = min{1, exp[−β(E(S)− E(S′))]}, (3.2)

although others are possible, such as heat-bath acceptance rates [16]. Moreover,
we will adopt the convention of defining our MC steps system-size independent i.e.
defining the time unit as the MC step per site, so for a system of size N a MC
time-step will refer to N attempted moves of flipping a random spin in the lattice,
with every spin having probability 1/N of being selected. The pseudo-code for the
implementation of the Metropolis’ step can be seen in Algorithm 1.

∗This configuration, of each spin pointing in either direction with a probability 1/2 is the typical
configuration of a sample at T =∞, while the completely ordered phase, that of every spin pointing
parallel to each other, hence T = 0, is another possible choice of the initial condition. However,
during the present work, we will always choose T =∞, unless otherwise stated.
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Algorithm 1 Metropolis rule for Monte-Carlo step

1: procedure MCstep(S, J)
2: Initialize S randomly
3: for k ∈ {1, 2, ..., N} do
4: ∆E = 2

∑N
i( ̸=k) JikSiSk

5: Pacc = exp(−β∆E)
6: if Pacc > rand() ∈ [0, 1) then
7: Sk ← −Sk
8: end if
9: end for
10: end procedure

We have chosen this procedure to be our benchmark case when measuring the per-
formance of the SWAP algorithm, yet to be defined in the following chapters. With
it, we are able to measure several quantities such as energy, magnetization and, the
auto-correlation functions (ACF), among others. We will devote our attention in the
last of this quantities as it provides us with rich information regarding the evolution
dynamics of the system†. We have also set periodic boundary conditions to diminish
the finite size effects.

3.2 Quench dynamics & the ACF

Before diving deeper into the subtleties and details of the simulations, we need to
understand the underlying dynamics of any system that can be separated into two
equilibrium phases; an ordered phase below some critical temperature Tc and a dis-
ordered one above it. As stated before, we start with some initial condition in one
of the extremes of the critical line, say at T = ∞, and perform a rapid quench to
a desired temperature TF . This will correspond, in our computational setting, of
passing the configurations through the algorithm described in the previous section,
but any possible choice of suitable dynamics should produce the same behaviour.

Take TF > Tc, the system is obliged to pass from a configuration with vanishing
correlation length (ξ = 0) towards one with a finite one (0 < ξ(TF ) < ∞) this leads
to a finite relaxation time (teq). Nevertheless, for TF ≤ Tc, the correlation length
diverges in the thermodynamic limit and, as the correlation length scales as a power
law [17], we are deemed to have ever-increasing relaxation times with system size, this
is known as aging phenomena. While studying these quenches, since teq is infinite,
the only relevant time scale we are able to probe is that of ”the age of the sample”
tw, that we will call the waiting time, and compared it to the observational time t‡;
this is achieved by the auto-correlation function, defined in our model as

†As it is also the case with other two-time observables, like the auto-response function R(t, tw),
that however, we will not discuss during the present work.

‡Actually t − tw as we are considering in the following t to span the entire evolution of the
dynamics.
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Figure 3.1 : ACF for 2D Ising model (L = 40, TF = 0.53Tc). The quasi-equilibrium
regime is evident for tw = 32769 while for tw = 512, 4096 aging manifests. The lowest
waiting time tw = 64 doesn’t even reach the same plateau, we can conclude that tw
is not large enough to have a separation of time scales and we are just witnessing the
decay due to the thermal fluctuations inside the domains.

C(tw, tw + t) =
1

N

N∑
i=1

⟨Si(tw)Si(tw + t)⟩ (3.3)

where ⟨...⟩ is the standard thermal average, and both times will be measured in units
of MC steps. Given a large enough tw is possible to observe a separation of timescales.
At the short timescale, t − tw ≪ tw, we are in a quasi-equilibrium regime where the
system appears to have relaxed to equilibrium at the quenched temperature TF and
the auto-correlation function becomes time-translation-invariant

C(tw, tw + t) = Ceq(t− tw, TF ), (3.4)

we then say the system is ageless and it has apparently reached a plateau, in the ACF
as seen in Figure 3.1, where we have computed the ACF for an Ising 2d model, for
several ages of the system. In terms of domain growth this would correspond to a
relaxation of the thermal fluctuations inside big domains of parallel spins, while the
domains themselves remain frozen. As we reach t− tw ∼ tw the system ”realizes” it
is not in equilibrium and its purely out-of-equilibrium behaviour becomes apparent;
again, under the domain growth view, this is associated to the motion of the domain
walls composing the system. This last behaviour defines the start of the second
timescale, the large timescale where t− tw ≫ tw, this is the aging regime where ACFs
start decaying.
The exact functional form of the aging regime is unknown and depends on the model
of consideration, within a model of simple aging one can express it as the product of
a power law of tw with a scaling function also dependent of both observational and
waiting times. In a more general way, one can define the ACF as
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C(t, tw) = Ceq(t− tw, TF ) + Cag

(
h(t+ tw)

h(tw)

)
, (3.5)

where h(t) is an unknown increasing function with time, and Cag is a scaling function.
It is worth noting that this behaviour breaks at criticality (i.e. when the quenched
temperature is TF = Tc), and the functional form of ACF should be separated as a
product of the quasi-equilibrium and aging regimes [18].

Notice that, for large enough systems (L→∞), the plateau at the quasi-equilibrium
regime defines the Edwards-Anderson order parameter,

qEA = lim
t→∞

lim
tw→∞

C(tw, tw + t), (3.6)

that in the disorder-less coincides with the magnetization squared; as can be seen that
for a quench performed at higher-temperatures teq is finite and the system becomes
age-less, decaying towards zero for several tw, hence yielding the value of zero for
the limit above (i.e. M = 0, as it should be for the disordered paramagnetic phase).
Recall hence that qEA = qEA(T ) and for qEA(T = 0) = 1, that coincides with the
equilibrium value of the magnetization density. However, this apparent equilibrium
can always be broken for a finite tw, as we go deeper into larger observation times
the system is always able to escape far from the initial configuration reached at tw;
leading to weak-ergodicity breaking [19], for which the commutativity of the limits in
(3.6) breaks down

lim
t→∞

lim
tw→∞

C(tw, tw + t) = 0. (3.7)

A system undergoing strong-ergodicity breaking for infinite times lacks definite stable
states in the phase phase, for which the system can relax to, while for the weak case the
dynamic behaviour of the states depend in the initial conditions. See that a relaxation
is possible for a quench from T = ∞ to TF > Tc, this condition is symmetric for a
quench on the other extreme of the critical line, the relaxation time is still finite for
a quench from T = 0 towards TF < Tc; for initial conditions close (not crossing Tc)
to the equilibrium state there’s a fast relaxation process and aging is not present.

This aging behaviour becomes ubiquitous in disordered systems like spin-glasses.
The relaxation times at low temperatures in spin-glass systems becomes exceedingly
large, as there are a plethora of meta-stable configurations within the frustrated
system that lead to extremely slow dynamics. Therefore, the waiting times required
to assess the quasi-equilibrium plateau in the ACF will become increasingly large
with system size at low temperatures. This can be seen in Figure 3.2 where we have
recreated the results of Takayama et al [20] for the case of the SK model.
As we decrease the temperature of the system the number of overlapping curves for
different waiting times decrease, clearly revealing the presence of aging behaviour.

In the following we have performed simulations for several systems, with our main
interest being the 3D Edwards-Anderson model, basically, a 3D Ising model with
couplings {Jij} promoted to random variables taken from some distribution, as the
SK-model, but with just nearest-neighbor interactions. This system has been studied
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Figure 3.2 : SK-model (N = 512, T = 0.4 and Jij ∼ N
(
0, 1

N

)
). Aging behaviour

in the auto-correlation function. As we increase tw the quasi-equilibrium starts to
become visible while the aging regime is lost deeper in larger observation times.

extensively through numerical simulations, and the knowledge of its main properties
may be verified from several works [21–23]. In the present work we have chosen the
probability distribution of the {Jij} to be bimodal

p({Jij}) =
1

2
δ(Jij − J) +

1

2
δ(Jij + J), (3.8)

as it preserves the frustrated properties of the system and in turn, decreases the com-
putational cost of the simulation. One can refer to several works, as that pointed out
by [3], where the numerical value of the critical temperature for these distribution of
the couplings is found to be around 1.1, with natural units of temperature (J/kB = 1).
Furthermore, as shown in the theoretical framework, by endowing our spin variables
with a length between the range [1 − ∆/2, 1 + ∆/2], the critical temperature scales
as a quadratic function of ∆. Although we are not simulating the mean-field case,
we expect this increasing dependence to be preserved, even if the exact quadratic
form requires some higher-order corrections we expect that the shift on the critical
temperature to be small thence tractable when performing simulations and let us
distinguish between temperature quenches above and below the critical point.

3.3 The SWAP method

As discussed in the introduction, the goal of the project is to probe if the mapping of
the SWAP algorithm, originally designed by Berthier et al. in [5], to the context of
spin-glass systems accelerates their dynamics. In the original work, an implementa-
tion of an hybrid Molecular-Dynamics (MD)/Monte-Carlo simulation was performed;
the standard MD evolution is periodically interrupted by MC-step, in it, the pro-
posed configuration in the MC-step is one with some molecules interchanged w.r.t.
the precedent configuration of molecules. Being a poly-disperse mixture, some config-
urations where the energy is minimized will correspond to the case where molecules
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of larger diameter size are interchanged with smaller ones. A pictorial representation
of the physical system is shown in Figure 3.3. Here one can distinguish between large
diameter particles (blue) and the small ones (red); the green particles denote the
proposed ones to be exchanged. Notice that if such exchange takes place there will
be a local acceleration in the highlighted orange region and the small particles inside
it are free to wander when the MD evolution is reinstated.






                       
































as

SWAP

Figure 3.3 : SWAP MC-step for polydisperse mixture.

In terms of the energy of the system, the SWAP procedure basically performs a jump
out of the energy barriers surrounding the trap configuration in which the system was
frozen, after overcoming those barriers the system is able to explore other possible
(meta)-stable configurations. In general, this is achieved by exchanging some local
degree of freedom that directly affects the energy of the system, in this case the di-
ameter of the molecules plays the role of this local degree of freedom that affects the
in the inter-molecular forces via some potential energy.

We argue that by endowing the system with lengths we are setting up a feasible
local degree of freedom to can serve as the exchange parameter during the simulation,
and producing also the escape from the local barriers of energy that enclose the
configuration in the trapped state, this would lead to an accelerated dynamics towards
equilibrium, as seen in the structural case. This effect can be visualized in the spin
analog from the pictorial representation (with bimodal couplings) shown in Figure
3.4 where we have 3 possible spin length values s+ = +1/2, S+ = +2 and S− = −2.
One can see that while attempting to flip the central spin in the first plaquette in the
upper-left side, the Metropolis’ acceptance using standard single-spin-flip dynamics
fails to access this new configuration the flipped spin (∆E = 20 > 0), while the
attempt of interchanging the spins highlighted in green through the swap method is
accepted (∆E = −9/4 < 0).
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Figure 3.4 : SWAP method for soft-spins in a regular grid.

However, this situation is uncommon, as it has been stated that the acceptance rates
for the swap method are low [24]; nevertheless, it seems that when it occurs it produces
a measurable impact on the dynamics for a suitable choice of the parameters, at least
in the structural case. All in all, the SWAP algorithm for the spin case is defined as
presented in Algorithm 2.
Notice that it can also be interpreted as a sort-of non-local Kawasaki dynamics in-
serted in the single-spin-flip evolution.

We have defined nswap as the frequency probability of performing a SWAP move
i.e. nswap = 1 means every move in our MC simulation will be spin-exchanges while
nswap = 0 reduces to the standard single-spin-flip dynamics.
We have implemented this algorithm for the 3D Edwards-Anderson model, and mea-
sure the auto-correlation function§ for several values of nswap, here the case of nswap =
0.5 is shown in Figure 3.5 below. One can see a quicker decay of the auto-correlation
function for every waiting time considered, so both timescales of the ACF seem to be
accelerated.

Here, one needs to remember that as we are dealing with continuous spins, the
zero temperature Edwards-Anderson order parameter is no longer 1, but 1 + ∆2/12,
the value of the spin length variance. Moreover, we can measure the characteristic
time of decay, that in which the ACF has decay to 1/e of its original value. As we
don’t have access to the EA order parameter for this specific temperature, we used as
a reference the value qEA(T = 0) = 1+∆2/12. This characteristic time (τ) for several
temperatures is shown below in Figure 3.6, one can observe from it an improvement
of the performance for low temperatures, while the expected convergence of both
methods at high-temperatures becomes apparent. The proper qEA needs to be assess
in order to have a good measure of the characteristic time, this can be extracted from
the replica distribution PJ(q), this is currently being performed, however the times to
access these spin-glass configurations are large and are not yet available by the time

§One needs to remember that, as we are dealing with a disordered system, one needs to include
an average over the disorder in the definition of the correlation function shown in 3.3
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Algorithm 2 Metropolis rule for Monte-Carlo step with swap

1: procedure MCstep(S, J , nswap)
2: Initialize S randomly
3: for k ∈ {1, 2, ..., N} do
4: x = 1, with probability nswap and x = 0 with probability 1− nswap
5: if x = 0 then
6: ∆E = 2

∑
j∈nn(k) JjkSjSk

7: Pacc = exp(−β∆E)
8: if Pacc > rand() ∈ [0, 1) then
9: Sk ← −Sk
10: end if
11: else
12: ∆E = (Sµ − Sν)

(∑
j∈nn(µ) JµjSj −

∑
j∈nn(ν) JνjSj

)
13: Pacc = exp(−β∆E)
14: if Pacc > rand() ∈ [0, 1) then
15: Sµ, Sν ← Sν , Sµ
16: end if
17: end if
18: end for
19: end procedure
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Figure 3.5 : 3D Edwards-Anderson model (L = 8, ∆ = 1.5, T ≈ 0.80 Tsg). Apparent
acceleration of the dynamics.

of the writing of this work.
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Figure 3.6 : 3D Edwards-Anderson model (L = 8, ∆ = 1.5). Characteristic time of
decay for the auto-correlation function for several temperatures.

Moreover, we are interest in probing the dependency of the method with the
parameter nswap, as optimized in the original work. We measure the characteristic
time τ for increasing values of nswap, as shown in Figure 3.7 where again, one observes
an acceleration of the dynamics for the several tw, although no clear pattern for the
optimization of the method is observed, at least w.r.t. the nswap; as soon as one
introduces a swap step, the characteristic time decreases, irrespective of the frequency.
This plot was performed for several values of the temperature where one can see that
as we increase it, all the different curves start to collide from the large tw towards the
lower one, again indicating the entrance of the system to the disordered phase where
both methods are equivalent.

0.00 0.25 0.50 0.75 1.00

1.0× 103

1.0× 105

1.0× 107

1.0× 109

1.0× 1011

nswap

Ch
ar

ac
te

ris
tic

tim
e

(τ
c)

tw = 8
tw = 64
tw = 512
tw = 4096
tw = 32768
tw = 262144

Figure 3.7 : 3D Edwards-Anderson model (L = 8, ∆ = 1.5, T ≈ 0.80 Tsg). Charac-
teristic time of decay for the ACF for several values of the frequency probabilty nswap.
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Chapter 4

Conclusions and further work

At first glance, the swap method appears to be improving the characteristic times
of decay of the ACF, although for more waiting time values need to be considered
to clearly point out any difference between the possible acceleration on the quasi-
equilibrium regime and the aging one. Along the same lines, a strange behaviour
seems to be happening for the quasi-equilibrium regime, this becomes clearer when one
studies the disorder-less model (i.e. the standard Ising model with continuous spins),
where the quasi-equilibrium regime seems to be yielding different values between the
two methods, this is not possible as the equilibrium properties of the models should
remain the same independent of the dynamics. Moreover, this behaviour is not present
in the models with ∆ = 0 (i.e. the standard Ising models for 2D and 3D) i.e. the
correct equilibrium behaviour is display for both methods within the auto-correlation
function. One argument for what could be happening with the soft-spin model is
that endowing the spins with lengths introduces akin of ”glassiness” into the system
without disorder, in the form of a proliferation of meta-stable states that may stuck
the dynamics for one of the two methods hence longer sampling times are required
to extract the correct quasi-equilibrium behaviour.

Furthermore, the behaviour around criticality has been probed just for the replica-
symmetric solution in the disordered case of soft-spins, the stability of this solution
needs to be tested at least with the 1-step Replica Symmetry Breaking (1RSB) so-
lution. Furthermore, although it seems that one is able to reconstruct the correct
increasing behaviour for the critical temperature with the parameter (∆) this calcu-
lation is barely a guide, as it just contemplates the mean-field case, and more pre-
cise and quantitatively analysis should be performed to understand the short-ranged
model. The precise critical temperature should be found (both in the disorder and
disorder-less case) with a proper scaling of the binder cumulant to assess the finite
size effects of the simulations.

Finally, after overcoming the difficulties mentioned above, more systematic sim-
ulations ought to be performed, varying the other parameters such as ∆ and larger
system sizes, this might provide us with a proper quantitative measure of the ef-
ficiency of the swap method; if the results seem to be promising compared to the
standard MC as the benchmark case, more confrontations may be deemed necessary
to measure further the possible application of the SWAP for this kind of systems.
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