

Master in Photonics for Security Reliability and Safety (PSRS)

DESIGN OF THE BACK-END PROCESSING SYSTEM FOR THE
ACCELERATION OF THE MICROWAVE IMAGING RECONSTRUCTION

ALGORITHMS
Master Thesis Report

Presented by

Nathalia Della Giustina Ballmann

and defended at

Université Jean Monnet

31 August 2022

Academic Supervisors:
PhD, Francesca Vipiana
PhD, Mario Casu
PhD, Jorge Tobon

Jury Committee:
PhD, Nathalia Destouches PhD, Carlo Ricciardi
PhD, Baptiste Moine MSc, Arnaud Meyer

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

I

Abstract

Microwave imaging (MWI) is a diagnostic tool whose working principle relies on the

dielectric contrast between lesions and healthy tissues, and could be used, for instance, to detect

breast cancer or brain strokes. This work aims to improve the speed of the processing of MWI data

acquired when using a finite element contrast source inversion method. The processing consists of

solving a large sparse and complex linear system with 24 right-hand sides.

Multiple open-source solvers (UMFPACK, KLU, Eigen and MUMPS) were tested to solve

this linear system, including direct and indirect methods, and the precision obtained from each

trial was compared. The only direct solver tested that could solve the all the MWI linear systems of

interest was MUMPS. The indirect methods tested did not achieve precise results.

The original proposal of this thesis was to perform the factorization of the matrix and then

use a GPU to accelerate the solution of the triangular linear systems, MUMPS does not support

exporting the factorization results, though. Therefore, UMFPACK was used to factorize matrices

from the SuiteSparse Collection in order to test OpenCL implementations in a GPU so to employ

parallelism.

Two different types of kernels to solve triangular linear systems were implemented: a)

column block algorithms, which only worked for very small matrices and presented

synchronization issues for bigger matrices; b) solving multiple right-hand sides in parallel. When

solving multiple right-hand sides in parallel, the row-compressed format could be executed faster

than the column-compressed format. The latter format had worst performance because it

required more accesses to the GPU’s global memory. Two modified versions of the kernel to deal

with column-compressed format using local memory were also implemented, which resulted in

smaller run times, but still slower than executing the same task in a CPU. In general, the observed

overhead of moving data to and from the GPU was greater than the time to execute the same task

sequentially in a CPU for the tested matrices.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

II

Acknowledgments

 My first and earnest acknowledge to the PSRS Consortium for awarding me the EMJMD

scholarship. Enrolling in an Erasmus Mundus Joint Master Degree had been a dream of mine for

years, and you enabled this dream to come true.

I would like to extend the acknowledgements to my advisors at Politecnico di Torino, for

providing guidance for this work.

 I wish to express my gratitude to the Professors and instructors I had in Université Jean

Monnet, University of Eastern Finland and Politecnico di Torino.

 I would like to show my appreciation to my family and friends for the support I received. I

can only hope to make up someday for the time I’m away. I swear it is more than I originally

planned.

 To the friends I made along the way and the people I got closer to during this two-year

period, for making things easier when the end of the world seemed to be happening every couple

of weeks. Merci. Kiitos. Grazie. Obrigada.

Finally, to my partner in life, Yuri, thank you for always supporting me in all aspects of life

and for making the best of every situation.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

III

Table of Contents

Abstract .. I

Acknowledgments ... II

1 Introduction .. 1

2 Microwave Imaging ... 3

2.1 System Prototype .. 3

2.2 Contrast Source Inversion ... 4

3 Backend processing practical aspects ... 8

3.1 Computers used .. 8

3.2 Available data .. 9

3.2.1 Matrix MWI 1 ... 9

3.2.2 Matrix MWI 2 ... 9

3.2.3 Suite Sparse Matrix Collection ... 10

3.3 Data format ... 11

3.4 Data compression .. 11

3.4.1 List of non-zero elements ... 11

3.4.2 Column-compressed Storage ... 13

3.4.3 Row-Compressed Storage .. 14

4 Factorizing Sparse Matrices .. 14

4.1 Methodology ... 15

4.2 UMFPACK .. 16

4.3 MUMPS ... 19

4.4 Other attempts .. 20

4.5 Summary of results ... 20

5 Iterative Solvers ... 21

5.1 Matrix MWI 1 .. 22

5.2 Matrix MWI 2 .. 25

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

IV

6 Solving Triangular Linear Systems ... 25

6.1 Algorithms and parallelization .. 27

6.2 OpenCL .. 32

6.3 Prototype 1 – Solve multiple RHSs in parallel ... 35

6.5 Prototype 3 – Solve multiple RHSs in parallel and store accumulation variable in local
memory ... 39

6.6 Prototype 4 – Column Block Algorithm ... 41

6.7 Comparison between CPU and GPU ... 43

7 Conclusion ... 45

8 Bibliography .. 47

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

1

1 Introduction

Microwave imaging (MWI) is a diagnostic whose working principle relies on dielectric

contrast between lesions and healthy tissues. This technology could be used as a complement to

other imaging techniques like mammography and magnetic resonance. It presents advantages,

such as not offering risk to the patient and the cost is potentially low [1]. It is also particularly well

suited for prehospital use since the devices can be built in compact and portable formats. [2]

One application of MWI would be brain imaging for stroke detection, since permittivity

and conductivity for blood are higher than for grey and white matter. It is estimated that stroke is

ranked as the second most common cause of death and the third cause of years of disability-

affected life [2]. For instance, [3] reports a prototype for brain stroke 3D imaging.

Another example of application would be breast cancer detection, as presented in [1]

along with a proposal of COTS (Commercial off-the-shelf) equipment that would make the

technology more affordable. It has also been proposed to use Microwave techniques in

applications like “bone imaging and bone density measurements, thermal monitoring in

hyperthermia, cardiac imaging, imaging of soft tissue in extremities, detection of compartment

syndrome, and detection of thoracic and abdominal injuries.” [2]

This thesis focuses on the back-end processing of data arising from the Finite-Element

Contrast Source Inversion Method applied to MWI. This algorithm allows for accurate quantitative

reconstructions of images but needs higher computational resources [4]. The processing of the

data consists primarily of a large sparse linear system to be solved. There are two possible ways to

solve the resulting linear system: with direct or indirect methods (or iterative ones). The direct

methods start with the factorization of the matrix and, to perform this task, it’s possible find open-

source software solutions. As a result of the direct methods’ factorization, the initial matrix is

transformed into a multiplication of two sparse triangular matrices, which, in practice represents

two simpler to solve linear systems, also called the SpTRSV kernel. This kernel is also present when

solving many numerical methods and is one of the building blocks of sparse Numerical Linear

Algebra [5].

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

2

SpTRSV can be parallelized to accelerate the algorithm execution. Different kind of devices

could be used: GPUs (Graphic Processing Unit), FPGAs (Field Programmable Gate Array) or ASICs

(Application Specific Integrated Circuit). As a rule of thumb, there is always a compromise between

cost, time necessary to develop a solution and achieved acceleration (which is related to how

specific can be the computer architecture to tackle a problem). An ASIC would be the most

expensive solution and take more time to develop, but potentially the best in terms of

performance, as it enables building hardware extremely specialized for a certain application.

Hardware acceleration with GPUs is constrained by the GPU architecture but could be

implemented more quickly. FPGAs are usually seen as a compromise between the other two

solutions.

There are cases in which the use of FPGA may not be beneficial, mainly when the data

transfer time to an FPGA is too big. For instance, a Monte-Carlo computation could benefit of

being run in a FPGA because it has few inputs and many computations are performed; a vector

addition operation, however, would likely not benefit, since there are only twice as many inputs

are there are computations. [6] GPUs can be programmed using parallel computing platforms like

CUDA and OpenCL. The latter has the advantage of being portable for more platforms, including

GPUs and FPGAs, and was chosen to be used in this work in prototypes that attempted to

accelerate the execution of the SpTRSV kernel.

In literature that are many examples of works that cover the implementation of the

SpTRSV kernel: [7] implements block algorithms in a GPU, [8] solves multiple right-hand sides using

GPUs, [5] measures the performance of the kernel implemented in FPGAs using the OpenCL

platform.

This work is presented as follows. Section 2 presents a short description of the hardware

used in a prototype developed at Politecnico di Torino for 3D Brain stroke imaging, and a brief

introduction on how the Finite Element Contrast Source Inversion Method, which produces the

data used in this thesis. Section 3 contains practical aspects of this work, such as hardware

specifications of the computers used, as well as a description of the data used to evaluate the

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

3

prototypes, data formats and different compression formats. Section 4 presents the different

direct solvers tested to factorize MWI matrices and a quantitative analysis of the results, whereas

Section 5 presents the indirect solvers tested and how they compare to the direct solvers. Section

6 contains a bibliography review covering the main strategies used to accelerate the solution of

triangular linear systems, a summary of OpenCL’s memory architecture, the description of the

prototypes developed for this task using GPUs and interpretation of the obtained results.

Conclusions sum up the findings of this work and provides suggestions on how to proceed to

speed MWI reconstructions algorithms.

2 Microwave Imaging

2.1 System Prototype

The MWI system prototype developed at Politecnico di Torino [3] has the goal of

generating images of the brain in order to detect brain strokes. The different human tissues

exhibit different electrical properties at microwave frequencies. The goal of detecting brain

strokes can be achieved by creating a 3D plot of the dielectric permittivity and conductivity of the

human head. A CAD model of the developed device is shown in Figure 1 along with a photography

of the prototype, presented in Figure 2.

The prototype’s working principle is based on 24 printed monopole antennas placed

around the head mimicking a wearable helmet. The antennae are connected to a two-port vector

network analyser (VNA) through a 24 × 24 switching matrix. The working frequency is around 1

GHz. The process of acquiring data to generate the images consists of turning on alternately each

of the 24 antennae and then measuring the received signal in the remaining 23.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

4

Figure 1 – CAD model of the MWI system prototype. Image extracted from [3].

Figure 2 – Photography of the MWI system prototype. Image extracted from [3].

2.2 Contrast Source Inversion

The contrast source inversion (CSI) is a non-linear iterative algorithm that is widely used to

numerically solve microwave inversion problems. It allows for accurate quantitative

reconstructions, even though the use of the algorithm yields in a high computational cost [4].

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

5

Figure 3 – Illustration of the regions of the 3D scattering problem. In red is an example of placement of an

antenna.

The way the CSI algorithm works is briefly described in this section, taking [4] as reference.

The 3-D scattering problem is depicted in Figure 3. The whole 3-D domain is denoted by Ω, which

is filled with a medium of known complex relative permittivity ϵ. Within Ω, we have a region of

interest 𝐷 with unknown complex relative permittivity ϵ The antennae are placed in the

boundary of 𝐷.

Each antenna 𝑡 illuminates Ω without the target and this measure corresponds to the

incident field 𝐸௧
൫𝑟൯, whereas 𝐸௧

௧௧൫𝑟൯ correspond to the illuminated Ω when the target is

present. The scattered field 𝐸௧
௦௧൫𝑟൯ is defined as:

𝐸௧

௦௧൫𝑟൯ = 𝐸௧
௧௧൫𝑟൯ − 𝐸௧

൫𝑟൯
(1)

The dielectric contrast χ൫𝑟൯ between the background medium and the target is defined in

Equation 2 and a parameter called contrast source is defined in equation 3, which links the total

field radiated by the 𝑡-th antenna and the dielectric contrast.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

6

χ൫𝑟൯ ≜
ϵ൫𝑟൯ − ϵ൫𝑟൯

ϵ൫𝑟൯

(2)

ω௧൫𝑟൯ ≜ χ൫𝑟൯𝐸௧

௧௧൫𝑟൯
(3)

 𝐸௧
௦௧൫𝑟൯ and ω௧൫𝑟൯ are linked by the wave equation, as presented In Equation 4, with the

wave number 𝑘
ଶ൫𝑟൯ = ωଶμϵϵ൫𝑟൯, ω is the angular frequency, μ and ϵ are, respectively, the

free space permeability and permittivity [9].

∇ × ∇ × 𝐸௧

௦௧൫𝑟൯ − 𝑘
ଶ൫𝑟൯𝐸௧

௦௧൫𝑟൯ = 𝑘
ଶ൫𝑟൯ω௧൫𝑟൯

 (4)

 The solution for the CSI problem is achieved by minimizing the cost function in Equation 5,

where 𝐹ௌ and 𝐹 represent, respectively, the mismatch at the antennae locations and the

mismatch in the region of interest 𝐷. The minimization process is done through iterative

optimization.

𝐹ௌூ൫χ, ω௧,൯ = 𝐹ௌ൫ω௧,൯ + 𝐹൫χ, ω௧,൯

(5)

The implementation of the CSI algorithm requires the discretization of the 3-D domain Ω.

Illustrations of this discretization are shown in Figure 4 and Figure 5, in which are depicted,

respectively the antennae and the area to be detected. The work in [4] proposes a novel way of

discretization which involves only scalar coefficients and simplifies the CSI implementation.

This Finite Element Method (FEM) produces a linear system 𝐴𝑥 = 𝑏, which must be solved

so to reconstruct the 3-D image of the brain based on its electric properties and be able to detect,

for instance, a blood clot.

𝐴 is a square sparse complex and symmetric matrix and 𝑏 are the multiple right-hand side

vectors. The number of right-hand sides is equal to the number of antennae. 𝑥 is of the same

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

7

dimension as 𝑏. Since most of the elements of Matrix 𝐴 are zero, the matrix is said to be sparse.

The matrix has dimensions of 2050637 × 2050637 and has 28722845 non-zero elements.

The placement of the non-zeroes depends on how the FEM problem was formulated. The

size of the matrix depends roughly on the ratio between the domain under analysis and the

emitted wavelength by the antennae cubed, that is, on the granularity of the discretization.

The resolution of this FEM problem was previously done using a solver called Pardiso [10]

[11] [12] through a MATLAB interface. This solver, however, is not available for academic use

anymore.

Considering data obtained from a previous run of the solution with Pardiso, of all the time

it took to solve the FEM problem (97 min), 85.5% the time was spent in factorizing matrix 𝐴, and

an additional 7.5% in solving the triangular linear systems after obtaining the factorization results.

The total time to solve the system was also considered excessive and not suitable for the

goal of enabling a fast diagnosis. The scope of this work aims to find alternatives to accelerate the

solution of this linear system, and at first, focus on the acceleration the resolution triangular linear

systems through parallelism.

Figure 4 – Illustration of 3D discretization used in the CSI algorithm with the antennae.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

8

Figure 5 - Illustration of 3D discretization used in the CSI algorithm with the region to be detected.

3 Backend processing practical aspects

3.1 Computers used

Most of the computation were performed in a Windows PC within Ubuntu WSL. The PC

specifications are shown in Table 1. WSL stands for Windows Subsystem for Linux, and it allows to

run a Linux environment on Windows [13]. The Linux-like environment simplifies the process of

installing open-source programs, as it can be done directly from the command line.

Processor AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz

Installed RAM 16.0 GB (15.4 GB usable)

Operational System Windows 10 Home

WSL Ubuntu 20.04.4

Table 1 - PC specifications

A server that belongs to the VLSI Research Group from Politecnico di Torino was used for

the Hardware Acceleration section of this work due to its GPU. The server specifications are

presented in Table 2.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

9

Operational System CentOS 7

GPU NVIDIA Tesla P100

Table 2 - Server specifications

Some tests were also run in a Google Colab environment, which is a free Jupyter notebook
environment that runs in the cloud and does not require any installations.

3.2 Available data

3.2.1 Matrix MWI 1

Figure 6 – 3D problem: Box and single radiating antenna

Matrix MWI 1 refers to a small 3D problem which consists of a box and a single radiating

antenna. This matrix is smaller compared to Matrix MWI 2 and allowed to validate some of the

algorithms developed. Its size is 257361 × 257361 and it has 3995111 non-zero elements. Thus,

also a sparse matrix.

3.2.2 Matrix MWI 2
Matrix MWI 2 refers to data acquired with the prototype and the CSI algorithm described

in Section 2.2.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

10

3.2.3 Suite Sparse Matrix Collection
The SuiteSparse Matrix Collection [14] is a set of sparse matrices resulting from various

applications to be used to test algorithms for sparse matrices. From this collection, 11 matrices

were selected to assist in developing the work presented in this document. The list of matrices

used is displayed in Table 3.

Name Size NNZ Pattern

symmetry

Origin

rajat11 † 135 812 89.10% Circuit Simulation Problem

cavity05 † 1182 32747 90.50% Computational Fluid Dynamics

Problem Sequence

dw1024 † 2048 10114 98.50% Electromagnetics Problem

cavity17 † 4562 131735 95.30% Subsequent Computational Fluid

Dynamics Problem

LeGresley_4908 † 4908 30482 97.70% Power Network Problem

cell2 † 7055 30082 99.70% Directed Weighted Graph

cryg10000 † 10000 49699 99.70% Materials Problem

rajat27 † 20640 97353 96.50% Circuit Simulation Problem

hvdc1 † 24842 158426 98.20% Power Network Problem

t2em † 921632 4590832 99.90% Electromagnetics Problem

young1c * 841 4,089 100.00% Acoustics Problem

MWI 1 * 257361 3995111 100% MWI - Box

MWI 2 * 2050637 28722845 100% MWI – Head

Table 3 - List of matrices used to analyse algorithms

† real matrix, * complex matrix

The criterium to select which matrices to use was based on pattern symmetry, opting for

the ones with pattern symmetry close to 100%, which is also the case for MWI 1 and MWI 2.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

11

3.3 Data format

MATLAB was used to perform the finite element modelling and processing of measured

data of the MWI prototype described in Section 2. The data that was exported from MATLAB is in

mat format, which is a binary format.

Since it was not possible to find a straight-forward tool to import mat files using C++ (the

primarily used programming language), it was opted for using a text format to store matrix data.

Examples of file formats to store matrices are mtx (Matrix Market) or rb (Rutherford Boeing). The

SuiteSparse Matrix Collection provides all matrix data in mat, mtx and rb formats.

The time to convert a matrix or vector from mat to mtx or rb depends on the number of

non-zero elements of the matrices. It can, thus, become significant for large matrices. In this work,

this data conversion process was done through a MATLAB script.

3.4 Data compression

One important consideration when dealing with the back-end processing of MWI data is

that the matrices are sparse. For a non-sparse matrix, that is, a dense matrix of dimensions 𝑛 × 𝑛,

the expected software complexity is at least 𝑂(𝑛ଶ). When the sparsity is considered, most of the

arithmetical computations are not necessary.

When exploiting the sparsity of matrices, the goal is to make the software complexity to

be approximately proportional to the number of non-zeros, that is 𝑂(𝑛𝑛𝑧). This is also valid for

the format sparce matrices are stored.

The three most common storage formats are: list of non-zero elements, column-

compressed storage and row-compressed storage. The format in which mtx and rb file extensions

store matrix data is a list of the non-zeros elements, whereas the result of a factorization

performed by a solver can be provided in either column or row-compressed Storage formats.

3.4.1 List of non-zero elements
The row index, column index and data of non-zero elements are stored in three separate

vectors, starting from the first column, and then going through the successive columns.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

12

An example of how a sparse matrix 𝐴 would be stored is shown in Figure 7: 𝐴 and 𝐴 are

vector of integers; vector 𝐴௫ is of the same format as the matrix (integer, float, double, etc). In

case the matrix is complex, there is a fourth vector to store the imaginary data information.

Figure 7 – List of non-zero elements example

Figure 8 – Column-compressed storage example

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

13

3.4.2 Column-compressed Storage
In the column-compressed format, storage starts by the non-zero elements of first

column. Instead of storing both row and column information, only row index is stored in vector 𝐴

while vector 𝐴, also called “pointer vector”, stores an index that indicates at which index the

information of the first element of a certain column is stored.

Figure 8 helps illustrate how this compression works. For instance, information regarding

the second column is equal to 𝐴[1], whose value is 2. 𝐴[2] is equal to 1, which means that the

first non-zero element of the second column is in the second row. To know how many non-zeros

there are in a hypothetical column 𝑐, the value of 𝐴[𝑐] should be subtracted of 𝐴[𝑐 + 1].

The length of 𝐴 is equal to the number of non-zeros. The length of vector 𝐴 is equal to

the number of columns added by one. The last element of vector 𝐴 is equal to the number of

non-zeros for the whole matrix. In the occasion a column does not have any non-zero element, an

add-in zero is included for that column.

Figure 9 – Row-compressed storage example

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

14

3.4.3 Row-Compressed Storage
Like column-compressed, another possibility is to use the row-compressed Storage

format. It follows the same reasoning as the column-compressed Storage format, however,

instead of starting from the first column, it starts form the first row and then proceeds to store

information that refers to the subsequent rows. Column information is stored in vector 𝐴 and 𝐴

stores the column index at which the first element of a row is stored, as depicted in Figure 9.

4 Factorizing Sparse Matrices

The idea behind the factorization of matrices is to split the solution of a linear systems is

to split the solution of the linear system into the solution of two simpler linear systems. The most

common factorization is called LU, which consists of transforming matrix 𝐴 into a multiplication of

matrices 𝐿 and 𝑈, respectively, a lower and an upper triangular linear system.

After the factorization, the way to solve the system is presented in Equations 6-9.

𝐴𝑥 = 𝑏 (6)

𝐿(𝑈𝑥) = 𝑏 (7)

𝑈𝑥 = 𝑦 (8)

𝐿𝑦 = 𝑏 (9)

In case the matrix is symmetric positive defined (SPD), it possible to perform the Cholesky

factorization, which turns matrix 𝐴 into a multiplication between a lower triangular matrix 𝐿 and

its transposed (𝐿்). That is, 𝐴 = 𝐿𝐿்.

If the matrix is only symmetric, but not positive defined, another possibility is a LDLT

factorization, which is a multiplication between a lower triangular matrix 𝐿, a diagonal matrix 𝐷

and 𝐿், so that 𝐴 = 𝐿𝐷𝐿். LU, Cholesky and LDLT are said to be direct methods of factorization,

that is, the result of the factorization should correspond to exactly the value of

Another concern is the number of zeros the resulting. That’s it may be interesting to

perform a permutation of the matrix, which can employ methods like AMD, COLAMD or Natural

ordering. The goal of the reordering is usually to reduce the number of fill-ins (non-zero elements)

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

15

of the matrices 𝐿 and 𝑈 keeping the sparsity as low as possible, but also to maintain accuracy

(when the numerical value of the different non-zero elements are considerable different). [15]

For instance, AMD, or the Approximate Minimum Degree ordering algorithm, “uses

techniques based on the quotient graph for matrix factorization that allow us to obtain

computationally cheap bounds for the minimum degree.” [16] As a result of the ordering

algorithms, matrix 𝐴 elements permutated according to row permutation matrix 𝑃 and column

permutation matrix 𝑄 . The matrices are multiplied in the following order: 𝑃𝐴𝑄.

Most of these algorithms are made available via open-source software and are updated by

the open-source community. Examples of sparse solvers are: UMFPACK, KLU, Eigen, MUMPS,

PasTix.

4.1 Methodology

The goal for the factorization step was to successfully factorize matrix MWI 2 and use the

factorization results (lower and upper matrix) as inputs to the software that performs the solution

of triangular linear systems (which would be accelerated using GPUs).

To check whether the factorization result was successful in an easy way, an artificial vector

𝐵 was created, where 𝐵 is the result of the multiplication of the sparse matrices (𝐴) and a unit

vector of appropriate size. This way, at the end of the solution of the linear system, it would be

possible to easily assess whether the algorithm was working as expected.

Furthermore, since the expected value of vector 𝑋 is a unity vector of size 𝑛, it was

possible to define an error parameter to compare different methods of factorization, which is

shown in the Equation 5.

𝐸𝑟𝑟 =

∑ |𝑋[𝑖] − 1|

𝑛

(10)

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

16

4.2 UMFPACK

UMFPACK uses Unsymmetric MultiFrontal method and direct sparse LU factorization to

solve unsymmetric sparse linear systems. It is written in ANSI/ISO C and it’s possible to use the

MATLAB interface. It’s also what is in the backend of MATLAB’s LU function and 𝑥 = 𝐴\b. [15]

UMFPACK has two versions: standard and SuiteSparse_long. The standard version limits

the memory usage to 2GB, whereas the SuiteSparse_long version can use as much as there is

available in the computer. In both cases, the matrix can be either real or complex.

The factorization step is divided in two steps: symbolic and numeric factorization. The

output is an object that stores the factorization result. Following the numeric factorization, it is

possible to either use the mentioned object to solve a linear system by providing a dense vector 𝐵.

The other possibility is to export the factorization data.

It was decided to use the UMFPACK solver as a C library, since the solution of triangular

linear systems would later be done using OpenCL’s C++ interface. Starting from the smaller

matrices and increasingly incrementing the size of the matrix the factorization process using

UMFPACK was successfully validated. Most of the issues solved during this scaling process were

related to allocation of memory.

Matrix MWI 1 was successfully factorized using UMFPACK in around 3 min and resulted in

lower and upper triangular matrices of over 230 million non-zero elements, despite the original

matrix presenting only around 4 million non-zeroes. It was not possible to factorize Matrix MWI 2

in the regular PC due to lack of memory.

It was then attempted to factorize MWI 2 in the server, due to its much superior

processing power and memory. The factorization, however, was not possible either even after 2h.

Figure 10 shows the amount of memory the process was using during the factorization attempt:

55.9 GB and 70.5 GB of virtual memory, which is considerably more memory than a regular PC

would have.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

17

Figure 10 – Resources used while processing matrix MWI 2 in server

Figure 11 – Number of non-zeros before and after factorization

The data obtained from the factorization of other matrices was analysed and the number

of non-zeros (𝑛𝑛𝑧) before the factorization and the sum of the non-zeros of the lower (𝑙𝑛𝑧) and

upper (𝑢𝑛𝑧) was plotted in a graph, which is displayed in Figure 5. It can be observed that the

matrices from the SuiteSparse collection followed approximately the trend line in red, while matrix

MWI 1 has considerably more non-zero elements in the lower and upper matrices.

If MWI 2 followed the same proportion as MWI 1, it would have 3 billion non-zeros in

matrix 𝐿 and matrix 𝑈. The complexity that processing this number of non-zeros can be the

explanation why it required so much memory to perform factorization and it took so long without

completing it.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

18

The placing of the non-zero elements plays a role in the resulting lower and upper

triangular matrices. In the case of the MWI matrices, this placement depends on how the finite

element problem is formulated.

An example of how this process works can be observed in the two linear systems

presented in Equations 11 and 12. In both Equations, the four matrices represent, in order, the

matrices 𝑃 (permutation matrix), 𝐴 (original matrix), 𝐿 (lower triangular matrix) and 𝑈 (upper

triangular matrix). Both 𝐴 matrices have 11 non-zeros elements, however, in Equation 11 𝑙𝑛𝑧 +

𝑢𝑛𝑧 is 12, whereas 𝑙𝑛𝑧 + 𝑢𝑛𝑧 is 22 for Equation 12.

⎝

⎜
⎛

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1⎠

⎟
⎞

⎝

⎜
⎛

9 0 9 0 9
0 7 0 0 0
9 0 9 0 9
0 0 0 4 0
9 0 9 0 9⎠

⎟
⎞

=

⎝

⎜
⎛

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 1⎠

⎟
⎞

⎝

⎜
⎛

9 0 9 0 9
0 7 0 0 0
0 0 0 0 0
0 0 0 4 0
0 0 0 0 0⎠

⎟
⎞

(11)

⎝

⎜
⎛

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0⎠

⎟
⎞

⎝

⎜
⎛

3 0 0 0 0
0 9 8 5 3
0 8 8 0 0
0 5 0 8 0
0 3 0 0 6⎠

⎟
⎞

=

⎝

⎜
⎛

1 0 0 0 0
0 1 0 0 0
0 5/9 1 0 0
0 1/3 3/5 1 0
0 8/9 −2/10 17/24 1⎠

⎟
⎞

⎝

⎜
⎛

3 0 0 0 0
0 9 8 5 3
0 0 −40/9 47/9 −5/3
0 0 0 −24/5 6
0 0 0 0 −29/4⎠

⎟
⎞

(12)

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

19

4.3 MUMPS

MUMPS was discarded at first as an option in this project as it does not allow to export the

result of a factorization to allow working on accelerating the solution of triangular linear systems.

However, due to the limitations found in UMFPACK, MUMPS was tested to factorize matrices MWI

1 and MWI 2.

MUMPS supports both single and double precision computations for real and complex

systems. When this solver is installed, it comprises an example code in Fortran to solve non-

symmetric matrices. The input for this solver is a text file in a certain format that could be easily

generated using MATLAB based on the mat files.

The Fortran example program was also updated and compiled to allow using symmetric

matrices as input, which is both the case for MWI 1 and MWI 2. This way, only half of the matrix

needs to be included in the input file.

When the program is run, after importing the data, an analysis step takes place before the

factorization. During the analysis step the amount of memory needed is estimated and in case it is

not possible to allocate enough memory, the program execution fails.

By observing the execution log, it was possible to check that when the symmetric matrix

solver is run, a LDLT factorization is performed. When the asymmetric solver is run, it performs LU

factorization. This information was also found in the solver’s user guide [17].

The solution of matrix MWI 1’s linear system was successfully run considering both single

and double precision for both the symmetric (LDLT factorization) and asymmetric solvers (LU

factorization). The solution of matrix MWI 2’s linear system, however, was only possible

considering single precision in a LDLT factorization. Factorization of MWI 2 failed due to lack of

memory when considering double precision for symmetric and asymmetric solvers and single

precision for the asymmetric solver.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

20

4.4 Other attempts

Other direct solvers were also tested to find a tool that would allow to both factorize MWI

2 and export the factorization results. The results obtained were unsuccessful and are briefly cited

next:

- KLU. It was developed to solve matrices arising in SPICE-like circuit simulation

applications. It was used to successfully factorize some of the other matrices listed in Table 3 with

results close to UMFPACK’s, however it was not capable of factorizing neither MWI 1 nor MWI 2

after 10s of minutes. [18]

- Scipy in Google Colab. UMFPACK is in the back end of factorization functions of this

Python library. Although, it is possible to use up to 25 GB of RAM memory, the machine ran out of

memory during factorization of MWI 2. [19]

- SparseLU, SparseQR and SimplicialLDLT from Eigen. In all cases the factorization was not

completed after several minutes neither for MWI 1 nor MWI 2. All Ordering options were tested

(COLAMD, AMD, Natural). [20]

4.5 Summary of results

Tables 4 and 5 compare the obtained results for MWI 1 and MWI 2.

Solver MUMPS LDLT MUMPS LU UMFPACK

Precision Single Double Single Double Double

Error 1.38E-05 2.12E-14 1.40E-05 1.99E-14 1.72E-20

Time 9m30s 9m24s 5m34s 5m26s 2m50

Memory Use

Estimation

1207 Mb

2368 Mb

2292 Mb

4536 Mb

NA

Table 4 - Factorization results for MWI 1

From the obtained results, LDLT factorization is the most memory-efficient factorization

method to deal with the data from MWI problems. Considering the double precision and only

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

21

MWI 1, UMFPACK offers the smallest error, although it was not capable of solving the linear

system with MWI 2.

Solver MUMPS LDLT MUMPS LU UMFPACK

Precision Single Double Single Double Double

Error 8.03E-04 NA NA NA NA

Time 62m32s NA NA NA NA

Memory Use

Estimation

13623 Mb

26886 Mb

25549 Mb

50713 Mb

NA

Table 5 - Factorization results for MWI 2

Pardiso, which was the previous solution used for solving the linear system, also employed

a LDLT factorization. According to the User guide:

“The solver first computes a symmetric fill-in reducing

permutation P based on either the minimum degree algorithm or

the nested dissection algorithm from the METIS package, followed

by the parallel left-right looking numerical Cholesky factorization

𝑃𝐴𝑃் = 𝐿𝐿் or 𝑃𝐴𝑃் = 𝐿𝐷𝐿் for symmetric, indefinite matrices.

The solver uses diagonal pivoting or 1 × 1 and 2 × 2 Bunch-

Kaufman pivoting for symmetric indefinite matrices and an

approximation of X is found by forward and backward substitution

and iterative refinement.” [21]

5 Iterative Solvers

Given the observed limitations when using direct solvers to factorize and solve the linear

systems related to MWI, some attempts on using iterative solvers were done. As the name

suggests, an iterative solver computes the solution of a linear system through a sequence of

approximations until either a desired tolerance or the set maximum number of iterations is

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

22

reached. The used library for this type of solver is called Eigen and two of the built-in iterative

solvers were tested: ConjugateGradient and BiCGSTAB. BiCGSTAB stands for Biconjugate gradient

stabilized method.

For iterative solvers, it is possible to use preconditioners, which may accelerate

convergence to the solution. There are three preconditioners available: Diagonal, Identity and

IncompleteLUT.

The IncompleteLUT preconditioner is based on a direct method and for both tested MWI

matrices, it did not complete the first iteration and thus, results for this preconditioner are not

presented.

5.1 Matrix MWI 1

When running an iterative solver, it is necessary to set a tolerance and maximum number

of iterations. When either of those parameters are met, the solver solution is presented. For this

problem, the tolerance (Equation 13) was set to be very small (1𝑒 − 10) and the solver was run

considering number of iterations from 100 up to 3000.

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 𝐴𝑋 − 𝐵

(13)

A summary of the results is presented in Figure 12. BiCGSTAB solver presents an overall

tendency to converge to a solution as the number of iterations increases. Tolerance, as well as the

defined Error metric tend to decrease (Equation 10).

The ConjugateGradient solver does not converge to a solution. In Eigen’s documentation

[20], it is said that the ConjugateGradient method is most suited for SPD matrices (symmetric and

positive defined), which is not the case for MWI 1. According to [22] “For the CG method the

matrix A should ideally be positive-definite. The application of CG to indefinite matrices may lead

to failure, or to lack of convergence.”

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

23

Figure 12 - Err and Tolerance evolution with number of iterations for BiCGSTAB and ConjugateGradient

iterative solvers

Table 6 – Samples of the iterative solver solution

Vector

Index

Found solution for X Expected X B vector

Real Imaginary Real Imaginary Real Imaginary

0 1.19109 -0.168486 1 0 -2.31484e-3 6.845032e-9

1 0.41729 -0.121286 1 0 1.01977e-3 0

6 1 -2.69182e-13 1 0 1 0

7 1 -2.69182e-13 1 0 1 0

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

24

When analysing the results obtained that presented the smallest tolerance (BiCGSTAB,

Diagonal Preconditioner and 3000 iterations), it was possible to notice that the solution to the

linear system varies considerably, although the expected value of 𝑋 is a unit vector.

Figure 13 – Run time of iterative solvers

Samples of the obtained soluiton are presented in Table 6, alongside the expect value and

the corresponding right-hand side value. It can be observed that the solver does not seem to

converge for some of the elements of the vector. This issue may be due the algortihm that aims to

minimize the tolerance, which is proportional to 𝐴𝑋 − 𝐵. Thus, smaller values of vector 𝐵 affect

less the overall tolerance.

When comparing run time of direct and iterative solvers to solve matrix MWI 1, although

they are in the same order of magnitude of magnitude (between 1 and 10 minutes), the results

obtained from iterative solver were not as precise. A plot of the time taken for each solver to run

is shown in Figure 13.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

25

5.2 Matrix MWI 2

Some efforts were made to try to factorize matrix MWI 2 with BiCGSTAB solver, however,

the results were also not satisfactory. The solver’s error metrics did not decrease as the number of

iterations reached hundreds of iterations, and when observing the resulting 𝑋 vector, the results

were like those reported for matrix MWI 1 and shown in Table 6.

6 Solving Triangular Linear Systems

The initial proposal of this work was to focus on the acceleration of solution of the

triangular linear systems resulting from the factorization of MWI 2. However, among the open-

source solvers tested, it was not possible to find a direct solver that would allow to both factorize

and export the results for this matrix. To cover the initial intent of this thesis, the developed

prototypes of triangular linear system solvers using a GPU were therefore tested using matrices

from the SuiteSparse Collection.

Figure 14 – Block diagram of the programs that use GPU

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

26

For the prototypes described next, it was necessary to import the factorization done by

UMFPACK. A block diagram that illustrates all the process the data is subject to is shown in Figure

14. The conversion from mat to mtx file was done through a MATLAB script. The process of

importing mtx files for both input matrix A and right-hand sides B was done through a C++ script

based on the fstream library.

The output of the UMFPACK factorization consists of 2 matrices and 3 vectors, as follows:

a) 𝐿: lower triangular matrix in row-compressed format.

b) 𝑈: upper triangular matrix in column-compressed format.

c) 𝑃: vector with indexes corresponding to the row permutation matrix of 𝐴.

d) 𝑄: vector with indexes corresponding to the column permutation matrix 𝐴.

e) 𝑅ௌ: scaling factor for each row of matrix 𝐴.

Given an input matrix 𝐴, the result of the factorization would correspond to:

𝑃(𝑅௦ ⋅ 𝐴)𝑄 = 𝐿𝑈

(14)

Based on UMFPACK’s factorization outputs, it is possible to split the solution of linear

system 𝐴𝑋 = 𝐵 into four steps, which are:

 Step 1: 𝐵ᇱ = 𝑃(𝐵 ⋅ 𝑅௦)

 Step 2: 𝑌 = 𝐿\𝐵ᇱ

 Step 3: 𝑋ᇱ = 𝑈\𝑌

 Step 4: 𝑋 = 𝑄𝑋ᇱ

Steps 1 and 4 represent the reordering operations of a vector. Steps 2 and 3 represent the

resolution of a lower and upper triangular linear system, respectively. Steps 1-4 were developed in

C++ using sequential algorithms and successfully validated to serve as a starting point to work on

the hardware acceleration algorithms.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

27

6.1 Algorithms and parallelization

Assuming that the factorization process was successfully performed resulting in a lower

triangular matrix 𝐿 and an upper triangular matrix 𝑈, a linear system 𝐿𝑦 = 𝑏 (Equation 14) could

be then solved as shown in Equations 15-18. This process is sequential and requires that the

previous step was solved beforehand, which illustrates the challenges in performing this task with

parallelism.

൮

𝑙ଵଵ 0 0 0
𝑙ଶଵ 𝑙ଶଶ 0 0
𝑙ଷଵ 𝑙ଷଶ 𝑙ଷଷ 0
𝑙ସଵ 𝑙ସଶ 𝑙ସଷ 𝑙ସସ

൲ ൮

𝑦ଵ

𝑦ଶ

𝑦ଷ

𝑦ସ

൲ = ൮

𝑏ଵ

𝑏ଶ

𝑏ଷ

𝑏ସ

൲

(15)

 𝑦ଵ = 𝑏ଵ/𝑙ଵଵ (16)

 𝑦ଶ = (𝑏ଶ − 𝑙ଶଵ𝑦ଵ)/𝑙ଶଶ (17)

 𝑦ଷ = (𝑏ଷ − 𝑙ଷଶ𝑦ଶ − 𝑙ଷଵ𝑦ଵ)/𝑙ଷଷ (18)

 𝑦ସ = (𝑏ସ − 𝑙ସଷ𝑦ଷ − 𝑙ସଶ𝑦ଶ − 𝑙ସଵ𝑦ଵ)/𝑙ସସ (19)

Alternatively, however, the linear system 𝐿𝑦 = 𝑏 could be solved as shown in Equations

10-16. Still, all steps must be solved sequentially, although it is possible to solve independently

each vector line in Equations 11 and 13.

 𝑦ଵ = 𝑏ଵ/𝑙ଵଵ (20)

ቌ

𝑏ଶ
ᇱ

𝑏ଷ
ᇱ

𝑏ସ
ᇱ
ቍ = ൭

𝑏ଶ

𝑏ଷ

𝑏ସ

൱ − ൭

𝑙ଶଵ

𝑙ଷଵ

𝑙ସଵ

൱ 𝑥ଵ
(21)

 𝑦ଶ = 𝑏ଶ
ᇱ /𝑙ଶଶ (22)

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

28

൬

𝑏ଷ
ᇱᇱ

𝑏ସ
ᇱᇱ൰ = ൬

𝑏ଷ
ᇱ

𝑏ସ
ᇱ ൰ − ൬

𝑙ଷଶ

𝑙ସଶ
൰ 𝑥ଶ

(23)

 𝑦ଷ = 𝑏ଷ
ᇱᇱ/𝑙ଷଷ (24)

 (𝑏ସ
ᇱᇱᇱ) = (𝑏ସ

ᇱᇱ) − (𝑙ସଷ)𝑥ଷ (25)

 𝑦ସ = 𝑏ସ
ᇱᇱᇱ/𝑙ସସ (26)

Figure 15 – Parallelization of a sparse matrix based on graphs. Non-zeros are represented by blue and red

circles. Red circles for the diagonal elements and blue for non-diagonal elements.

When matrices are sparse there may be more room for parallelism since most of the

arithmetical operations are not necessary. An example on how to parallelize a sparse matrix is

presented in Figure 15. It consists of mapping the dependencies between rows to find which rows

could be solved in parallel and generating a graph based on that. In the example, rows 0, 1 and 6

only have one element (in the matrix diagonal), therefore, they are at Level 0 and can be solved

with no dependencies. Row 5 depends on rows 1 and 2. Although row 1 is ready when Level 0

rows are solved, it depends also on Row 2, which also depends on Row 1.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

29

This approach is often referred to as graph colouring (each execution path is represented

by a colour) [23] and has a mandatory pre-processing phase to map the parallelism. The pre-

processing increases in complexity as the number of non-zeros/sizes of the matrix increases as

well. This approach is not advised for matrices that have strong links between rows, that is, when

the matrix’s rows depend on the result from the previous one.

One way to orchestrate the solution is to maintain a counter for each node that is

decremented whenever a dependency is solved. Once the counter reaches zero, the unknown

value of the row can be solved. This is called a self-scheduling algorithm. [23] With this algorithm,

it is necessary to synchronize rows. Algorithms that do not required synchronization are called

sync-free.

Another alternative is to explore the parallelism of the matrix-vector multiplication (also

referred to as SpMV kernel). In general, SpMV has better parallelism than solving a triangular

system [7]. The basic premise would be similar to solving in parallel each row of Equations 20 and

22.

The first algorithm presented by [7] is called Column Block. As illustrated in Figure 16, the

idea consists in solving the linear system 𝐴ଵ𝑋ଵ = 𝐵ଵ sequentially to find the values of vector 𝑋ଵ.

Then, the value column matrix 𝐶ଵ is multiplied by 𝑋ଵ and the resulting column vector is used to

subtract the values of 𝐵ଶ, 𝐵ଷ and 𝐵ସ. Next, the linear system 𝐴ଶ𝑋ଶ = 𝐵ଶ is solved and, similarly, 𝐶ଶ

is multiplied by 𝑋ଶ and the values is subtracted of 𝐵ଷ and 𝐵ସ, and so on. SpMV parallelism is

explored in the multiplications 𝐶ଵ𝑋ଵ, 𝐶ଶ𝑋ଶ and 𝐶ଷ𝑋ଷ.

The reference paper also presents two other algorithms that would explore parallelism in

a similar way: they are called Row Block and Recursive Block algorithms. The sectioning of matrix 𝐴

is shown in Figure 17. The order to solve the linear system follows the same reasoning that was

explained for the Column Block algorithm. In [7] the three block algorithms (column, row and

recursive) are implemented on modern GPUs, and an adaptive approach that can automatically

select the best kernels according to input sparsity structures is proposed.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

30

Figure 16 – Column Block algorithms’ graphical representation

Figure 17 – Row Block and Recursive Block algorithms’ graphical representation

In case the linear system has multiple right-hand sides, which can be solved parallelly. This

is called a SpTRSM kernel. According to [8], when solving multiple right-hands sides, the cost of the

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

31

pre-processing and synchronization is reduced, which may lead to improvements in the overall

performance.

Another detail to account for is how the matrix data is provided. For instance, taking the

data format which is the output of the UMFPACK solver. The lower triangular matrix (𝐿) is

provided in row-compressed format and the upper triangular matrix (𝑈), in column-compressed

format.

The algorithm to solve the linear system with 𝐿 is presented in Algorithm 1 and the

algorithm to solve the linear system with 𝑈 is presented in Algorithm 2.

1 for j = 0 to n-1 do

2 row_ptr = Lp[j]

3 next_row_ptr = Lp[j+1]

4 nnz_in_row = next_row_ptr-row_ptr

5

6 acc = 0

7 for k = 0 to nnz_in_row-2 do

8 col = Lj[row_ptr+k]

9 acc = acc + Lx[row_ptr+k]*Y[col]

10 end for

11

12 B’[j] = B’[j] - acc

13 Y[j] = Bl[j]/Lx[next_row_ptr-1]

14 end for

Algorithm 1 – Solving 𝐿𝑌 = 𝐵′ with 𝐿 is in row-compressed format

In Algorithm 1, since data is in Row-Compressed Storage format, the algorithm starts from

the first row and propagates onwards (line 1). Starting from the second row, in case the element in

the first column is not null, it is multiplied by the value of 𝑌 computed in the previous step (line 7-

10) and subtracted of vector 𝐵 (line 12). Then, the value of the second element is computed (line

13). This process is repeated for every row of the triangular matrix.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

32

1 for j = n-1 to 0 do

2 col_ptr = Up[j]

3 next_col_ptr = Up[j+1]

4 nnz_in_col = next_col_ptr-col_ptr

5

6 X’[j] = Y[j]/Ux[next_col_ptr-1]

7

8 for k = 0 to nnz_in_col-1 do

9 row = Ui[col_ptr+k]

10 Y[row] = Y[row] - Ux[col_ptr+k]*X’[j]

11 end for

12 end for

Algorithm 2 - Solving 𝑈𝑋′ = 𝑌 with 𝑈 is in column-compressed format

For the resolution of the upper triangular matrix (Algorithm 2), the process starts from the

last row of the matrix. The data is in column-compressed storage format, so to make the best of

the way data is stored, after each value of 𝑋′ is found (line 6), for all the non-zeros of that column,

the relative element value of 𝑌 is updated (lines 8-11).

6.2 OpenCL

OpenCL stands for Open Computing Language is an open. It is an open royalty-free

standard for general purpose parallel programming across different platforms, which includes

CPUs, GPUs, and other processors. It gives software developers more portability and efficiency, as

the same code can be compiled for different processing platforms. It also supports a wide range of

applications and provides a low-level, high-performance, and portable abstraction.

The programs that run in parallel in a platform are called kernels and they use a subset of

ISO C99 with extensions for parallelism.

A schematic with the abstractions used by OpenCL is shown in Figure 18. The kernels are

executed parallelly in the work-items and to each work-item, an item index is attributed. All work-

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

33

items execute the same code. A group of work-items is called a computer unit, or work-group.

Each work-group has also an associated group index.

Figure 18 – OpenCL memory architecture

 In Figure 18 it is also possible to see the 3 different levels of memory in a GPU: global,

local, and private. Global memory is common for all work-items and work-groups in a GPU. Global

memory it may be cached depending on the capabilities of the device.

Local memory is common for all work-items in the same workgroup. It may be

implemented as a dedicate region of memory on the OpenCL device. Alternatively, the local

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

34

memory region may be mapped onto sections of the global memory. Lastly, private memory,

which refers only to a specific work-item.

 The GPU used in this work, the global memory size is 15.9 Gb and local memory size is 48

kb (according to OpenCL’s clGetDeviceInfo function). The private memory size is only a few bytes.

[24] Access time to global memory is the slowest, followed by local memory and, lastly, private

memory. [24] Ideally the access to global memory should be minimized whenever possible, as it

hinders the kernel performance.

The communication between CPU and GPU (represented by the arrow in black) is done by

data buffers, which must be declared and serve as inputs for the kernels. The biggest challenge

when dealing with GPUs is the memory management, which must be done explicitly.

To successfully run a program in a GPU using OpenCL, it is necessary to follow the

following steps:

a) Set up OpenCL

I. Identify devices and pick device with which to work

II. Create command queue for the picked device

b) Compile kernels – The process consists of importing the kernel programs written in C

and compiling then in run-time.

c) Buffer input data - Each data input must be added into an OpenCL data buffer, which

takes parameters like data type, size, whether it’s a read only, write only or read-write

data. The process of buffering data may significantly affect the performance of a

program, as will be presented later in this section.

d) Run kernels - After they are compiled, it’s possible to create function-like structures

and then run them with the data buffers as inputs, possibly also some constants.

e) Copy output data from buffer – After running all kernels, the results are exported from

the GPU to the CPU.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

35

6.3 Prototype 1 – Solve multiple RHSs in parallel

The matrix MWI 2 originates from a MWI problem has 24 right-hand side vectors, one for

each antenna. Thus, the next prototype aims to do is to solve the triangular linear systems of the

24 right-hand side problems parallelly.

After exporting data from UMFPACK, the implementation consisted of solving sequentially

step 1, which consisted of a reorder and multiplication operation between vectors. The output

vectors 𝐵ିଶ , along with 𝐿, 𝐿, 𝐿௫, 𝑈, 𝑈 and 𝑈௫ were added to read-only buffers of appropriate

size and type, a read-write buffer for 𝑌ିଶଷ and a read-only buffer for 𝑋′ିଶଷ were also created.

The OpenCL kernels were written following Algorithm 1 and Algorithm 2.

The comparison between the execution of this algorithm sequentially in the CPU repeat 24

times and the parallel execution of 24 work-groups is shown in Table 6. The prototype was

evaluated for the 3 largest real matrices because from the SuiteSparse collection. For smaller

matrices, the run time was not consistent and varied widely. The smaller matrices took a shorter

amount of time to be run and were more influenced by other processes running on the same

machine

Kernel Platform rajat27 hvdc1 t2em

Step 2 CPU 15.120 ms 20.808 ms 3520.008 ms

GPU 1.716 ms 1.877 ms 211.905 ms

Step 3 CPU 20.232 ms 20.952 ms 4784.856 ms

GPU 121.699 ms 155.228 ms 6704.505 ms

Table 7 – Performance of prototype 1 compared to CPU

From the obtained run times, it can be observed that step 2 performed consistently better

when run parallelly in a GPU. Step 3, however performed generally worse. This run time analysis

does not include the overhead of compiling kernels and moving memory to and from GPU, which

will be done in a later section.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

36

The explanation as to why step 2 was accelerated lies in the data from it being

represented in a row-compressed format, which minimizes the need to update data in global

memory. The accumulation variable 𝑎𝑐𝑐 is stored in the work-item’s private memory (lines 6 and 9

of Algorithm 1), minimizing the accesses to global memory by only updating vector 𝑌ିଶଷ once per

row.

In case step 3 (Algorithm 2) were to be altered so that it is execute more similarly to

Algorithm 1, thus updating 𝑋′ only once per row, an exhaustive algorithm to check whether a

column has one element of the row would also result in a lot of accesses to global memory. The

likely better solution would be to convert data to compress-row storage before buffering data into

the GPU. The conversion would have to be performed only once per matrix, as all right-hand sides

have the same data as input.

This is an algorithm that has complexity close to 𝑂(𝑛 𝑛𝑛𝑧): for all rows, almost all non-

zero elements should have their row index checked. When we consider, for instance, the

factorization results for matrix MWI 1, it has 𝑛𝑛𝑧 of around 300 million elements and 𝑛 equals to

around 250 thousand.

6.4 Prototype 2 – Solve multiple RHSs in parallel and store Y in local memory

Based on the results of Prototype 1, in order to improve the speed of step 3, the proposal

was to use local memory to minimize accesses to global memory.

To solve sequentially the problem 𝑈𝑋′ = 𝑌, element 𝑗 of vector 𝑌 is first fetched to find

the respective value of 𝑋′[𝑗]. Vector 𝑌 is subtracted of the multiplication of 𝑋′[𝑗] and column 𝑗 of

matrix 𝑈. Taking the assumption that matrix 𝑈 elements are predominantly placed around the

diagonal (which is true for matrix MWI 1 and MWI 2), the proposal was to store parts of 𝑌 that are

more likely to be needed in the local vector.

Figure 19 illustrates how the adapted algorithm works. As it was already shown in

Algorithm 2, it starts by the last row. First, local 𝑌 is updated with the 𝑘 values of 𝑌 (in the image,

𝑘 = 4). Next, the value of 𝑋′[𝑗] is found by dividing 𝑌[𝑗] by the element in the diagonal of matrix

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

37

𝑈’s 𝑗-th row. Finally, either 𝑌 or local 𝑌 are updated according to the non-zero elements in matrix

𝑈’s 𝑗-th column accordingly.

Figure 19 – Visual representation of Prototype 2’s algorithm

The way local 𝑌 is updated is shown in Figure 20 in an example where 𝑘 = 4 and size of 𝑌

(𝑛) is 12 during 5 iterations. Each colour represents one different index of the local 𝑌 vector. As it

can be inferred, local 𝑌 acts like a ring buffer. A pointer variable is used to track at which index of

local 𝑌 the corresponding 𝑌 vector element is stored.

The amount of memory that can be used for local 𝑌 is, however, limited. The GPU used in

this implementation has 48 Mb of local memory available. This would allow to store 2 Mb for each

right-hand side. All information in this computation is stored with double precision, that is, 8 bytes

per matrix/vector element. It is possible to store 256 doubles with 2 Mb of memory. Since this

prototype was to then be altered to support MWI data, which is in complex format, the code was

written to store 128 elements in local 𝑌.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

38

Figure 20 – Ring buffer behaviour for local Y in Prototype 2.

Since all right-hand side calculation are independent, there is no need to any

synchronization between work-items. The proposed prototype was successfully implemented, run,

and compared to what was obtained for Prototype 1 and the CPU. The obtained results for this

implementation are presented in Table 8, where it can be observed that some improvements

compared to prototype 1 for all the 3 analysed matrices by 13-18%. The performance, however, is

still far from the performance obtained with the CPU.

Table 8 also presents how many times local 𝑌 and global 𝑌 were updated for each of the

analysed matrices. For hvdc1, local 𝑌 updates represented 81.1% (the highest percentage) and a

reduction in 16.6% in execution time of the kernel when compared to Prototype 1. t2em has both

the smallest acceleration rate (13.1%) and smallest percentage of access to local 𝑌 (26.9%).

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

39

Kernel Platform rajat27 hvdc1 t2em

Step 3 CPU 20.232 ms 20.952 ms 4784.856 ms

GPU – Prototype 1 121.699 ms 155.228 ms 6704.505 ms

GPU – Prototype 2 99.586 ms 129.501 ms 5832.055 ms

Prototype 2 / Prototype 1
81.8%

-18.2%

83.4%

-16.6%

86.9%

-13.1%

Update local 𝑌 60025 78221 10968137

Update global 𝑌 43931 18199 29849594

Update local 𝑌 / total 57.7% 81.1% 26.9%

Table 8 - Performance of prototype 2 compared to CPU and prototype 1

6.5 Prototype 3 – Solve multiple RHSs in parallel and store accumulation variable in

local memory

Another proposal to use local memory was by creating an accumulation variable to store

the multiplication between matrix 𝑈 elements and the computed values of 𝑋′. This accumulation

variable vector also acts as a ring buffer, like in Prototype 2.

In Figure 21, an illustration of the ring buffer is shown, where each colour represents a

different index of the accumulation vector. In each block, the index to which the vector element

refers to is written. In this case, the size of the ring size is 𝑘 = 4 and it illustrates also that, to solve

the upper triangular linear system, we start from the last (𝑛-th) row.

The changes to Algorithm 2 consisted of, after the value 𝑋′[𝑗] was found, testing whether

the row index of matrix 𝑈‘s column 𝑗 had a respective accumulation variable in the local memory

at that iteration of the algorithm. Before computing the value of a 𝑋′ element, the value of 𝑌[𝑗] is

subtracted of the accumulation vector.

Considering the same 48 Mb of available data, the size of the ring buffer is still 128 for

each of the 24 right-hand sides. The obtained results for this prototype are presented in Table 9,

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

40

which are very close to the results obtained for Prototype 2. Prototype 3 performed better than

Prototype 1 for the analysed kernel, however, it is still slower than running the same task

sequentially in a CPU.

Figure 21 – Ring buffer behaviour for accumulator in Prototype 3

 The number of updates to local 𝑎𝑐𝑐 for each matrix presented in Table 9 is the

same as those reported in Table 8 for Prototype 2. This indicates that both prototypes attempt to

optimize the kernel in an extremely similar way, which also explains the almost identical run times.

Kernel Platform rajat27 hvdc1 t2em

Step 3 CPU 20.232 ms 20.952 ms 4784.856 ms

GPU – Prototype 1 121.699 ms 155.228 ms 6704.505 ms

GPU – Prototype 3 99.678 ms 129.357 ms 5829.387 ms

Prototype 3 / Prototype 1
81.9%

-18.1%

83.3%

-16.7%

87%

-13%

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

41

Update local 𝑎𝑐𝑐 60025 78221 10968137

Update global 𝑌 43931 18199 29849594

Update local 𝑎𝑐𝑐 / total 57.7% 81.1% 26.9%

Table 9 - Performance of prototype 3 compared to CPU

6.6 Prototype 4 – Column Block Algorithm

The next prototype presented attempts to use another parallelization technique that was

presented and described previously in this section: the Column Block Algorithm.

The algorithm was implemented considering that the data input is in Row-Compressed

format. Even though this is not also the format the output format that UMFPACK exports the

upper matrix, it was deemed more appropriate to implement the parallelization of the SpMV

kernel. Additionally, the upper matrix in Column-Compressed converted to Row-Compressed

format to solve the very similar problem.

When this kernel was implemented, the first thing to be noticed is that the complexity of

the algorithm increased considerably. Algorithm 1 has around 10 lines of code, whereas the

Column Block algorithm has around 60 lines.

The most relevant implementation decisions taken while developing this kernel’s

algorithm are the list below:

a) The kernel was developed so that it would be possible to run the algorithm considering

any size for the small triangular matrices. This parameter was named granularity.

b) From the granularity, it was possible to determine a parameter called chunks, which is the

number of times the sequence of solving the small linear system, matrix-vector

multiplication and updating vector 𝐵.

c) The number of work-items for this kernel was said to be equal to the number of lines of

the matrix, but at each step of the algorithm, there would be a test to assess whether the

work-item would be executed.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

42

d) The triangular linear system is solved parallelly in all work-items. This represents a

redundancy, but the motivation for that is that there would be no need to synchronize the

obtained values of 𝑋 vector. Also, in case only work-items were to solve the linear system,

the others would be in an idle state waiting for the resolution of this step.

e) To assure that all work-items had updated the value of vector 𝐵 before solving the

following triangular linear system, local and global memory barriers were added.

According to OpenCL’s user manual:

“The OpenCL C programming language provides a built-in work-

group barrier function. This barrier built-in function can be used by

a kernel executing on a device to perform synchronization

between work-items in a work-group executing the kernel. All the

work-items of a work-group must execute the barrier construct

before any are allowed to continue execution beyond the barrier”.

[25]

The prototype worked appropriately well for the smallest matrix only (rajat11), which

served to validate that the algorithm was correctly implemented and for different values of

granularity. No acceleration could be observed (instead, the prototype took 400 times more to be

executed than a CPU), which is likely do to the relatively small size of the matrix that would take a

short time to solve in a CPU (only a few milliseconds). The overhead previously mentioned when

dealing with GPUs and the much more complicated algorithm also must be considered.

The implementation, however, did not work for any other of the listed matrices, starting

from cavity05. When solving the cavity05’s linear system, the results obtained were close in value

to the expected in first few values of 𝑋 (unit vector), but increasingly became more different,

indicating a propagation of the error. The values of 𝑋 were also different at each run. This last

characteristic and having had the algorithm validated for matrix rajat11 signals that the failure was

due to the synchronization between work-items.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

43

The problem observed may be due to the relaxed memory model, which means that “the

state of memory visible to a work-item is not guaranteed to be consistent across the collection of

work-items at all times” [25]. This is a characteristic of the memory type:

“Local memory is consistent across work-items in a single

workgroup at a work-group barrier. Global memory is consistent

across work-items in a single workgroup at a work-group barrier,

but there are no guarantees of memory consistency between

different work-groups executing a kernel.” [25]

After encountering this and not finding a solution for them in OpenCL’s, it was decided not

to continue implementing solution. The referenced paper [7] does not hint on how to deal with

such issues.

6.7 Comparison between CPU and GPU

From the previous session, it could be observed that the solution of the lower triangular

linear system using the developed kernel executed 24 times in parallel was faster than executing

the same task sequentially in the CPU. The comparison between the execution time in CPU and

GPU should also consider the overhead of transferring data, compiling kernels, and searching for

the target to be used.

The best result among the prototypes (Prototype 3) is presented in the Figure 22 alongside

the necessary time to run the same task in a CPU. The graph also represents the fraction of time

for each different task. As it was seen from previous results, step 2 was accelerated and represents

a very small fraction of the total time to run the whole task in a GPU. Step 3, however, was not

accelerated.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

44

Figure 22

Most of the time to run the task on the GPU was spent in buffering and unbuffering data

(in the case of the largest analysed matrix – t2em) and in setting OpenCL for the other two smaller

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

45

matrices (rajat27 and hvdc1). Therefore, for this specific application, it can be said that the use of

GPU did not accelerate the software execution.

It can be observed though, that the time necessary to compile kernel is very small and the

time needed in the “Set OpenCL” step becomes less significant as the matrix increases in size.

Another issue in using GPU to solve large linear system, such as those arising from MWI,

would be the available memory. Global memory for this GPU is around 16 Gb. The amount of data

resulting from the factorization of MWI 1 would be around 6 Gb (over 300 million non-zero double

precision and complex elements for each triangular matrix). For bigger matrices, it could be

necessary to think of strategies to split the solution of the linear system, which would also increase

the time portion that represents the transfer of data to the GPU.

7 Conclusion

An extensive list of open-source solvers were tested to solve sparse linear systems arising

from MWI problems. Matrix MWI 1 was successfully solved using various methods, however, this

was not the focus of this thesis, as it can be easily solved using MATLAB in a few minutes. To be

solved using LU factorization and MUMPS, Matrix MWI 2 required more RAM memory than

regular computers have. With UMFPACK, however, it was not possible to factorize it in the server,

which has a lot of computational resources.

The type of factorization that is the most appropriate to solve MWI Matrix 2 is likely LDLT,

which takes advantage of the symmetry of the matrix, and was employed by MUMPS and Pardiso

(solver previously used by the Research Group). The main indication for the research group to

continue solving this problem is, therefore, to use MUMPS, which has an interface with MATLAB.

Another possibility would be to use the PasTiX solver, that was not tested but also performs LDLT

factorization. According to the solver’s documentation, however, it also does not support

exporting the results of a factorization [26], which would prevent other students to work on the

parallelization of the solution of sparse triangular linear systems with MWI data.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

46

The iterative methods tested presented a considerably worse precision in the solution for

matrix MWI 1 considering the same run time (limited by the number of iterations). The obtained

results were not satisfactory, as shown in Table 6.

OpenCL was successfully used to create kernels that executed the SpTRSV kernel using

parallelism, including the explicit management of the GPU memory, although with limitations. The

use of local memory was explored in two of the prototypes and the results indicated

improvements.

It could also be observed that row-compressed format was more efficient to solve the

SpTRSV kernel than the column-compressed format for a matrix roughly of the same size.

It was also observed that the overhead of moving data to and from the GPU is

considerably large. The time to set OpenCL, compile kernels, buffer and unbuffer data may be

greater than time to run the same process sequentially in a CPU. This aspect was not analysed by

the bibliography covered for this work and is relevant when applying a GPU algorithm to a real-life

scenario. Additionally, MWI 1 factorization data is already almost as large as the global memory of

the GPU used, which means that it would be necessary to find strategies to buffer data arising

from the factorization of bigger matrices in this GPU.

Other strategies that could be tried to accelerate the solution of the studied linear

systems: using tools to explore parallelism in CPUs (such as OpenMP), installing versions of solvers

that explore parallelism according to the hardware available.

Another point to consider is that, since the placement of non-zeros elements affects

greatly how fast the factorization of a matrix can be executed, and not necessarily the number of

non-zeros, other formulation of the FEM problem could be tested. Whenever possible, it is

preferable to reduce the size of the problems to allow a faster solution of the linear system and

enable the goal of a fast diagnosis using MWI.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

47

8 Bibliography

[1] M. R. Casu, M. Vacca, J. A. Tobon, A. Pulimeno, I. Sarwar, R. Solimene and F. Vipiana, “A COTS-
Based Microwave Imaging System for Breast-Cancer Detection,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 11, no. 4, pp. 804-814, 2017.

[2] A. Fhager, S. Candefjord, M. Elam and M. Persson, “Microwave Diagnostics Ahead: Saving
Time and the Lives of Trauma and Stroke Patients,” IEEE Microwave Magazine, vol. 19, no. 3,
pp. 78-90, 2018.

[3] J. A. Vasquez, R. Scapaticci, G. Turvani, G. Bellizzi, D. O. Rodriguez-Duarte, N. Joachimowicz, B.
Duchêne, E. Tedeschi, M. R. Casu, L. Crocco and F. Vipiana, “A prototype microwave system
for 3d brain stroke imaging,” Sensors, vol. 20, no. 9, 5 2020.

[4] V. Mariano, J. A. Tobon Vasquez and F. Vipiana, “Discretization Error Analysis in the Contrast
Source Inversion Algorithm”.

[5] F. Favaro, E. Dufrechou, P. Ezzatti and J. P. Oliver, “Exploring FPGA optimizations to compute
sparse Numerical Linear Algebra kernels”.

[6] Xilinx, Fundamentals of FPGA-based Acceleration, Frankfurt: Xilinx Developer Forum, 2018.

[7] Z. Lu, Y. Niu and W. Liu, “Efficient Block Algorithms for Parallel Sparse Triangular Solve,” ACM
International Conference Proceeding Series, 8 2020.

[8] W. Liu, A. Li, J. Hogg, I. Duff and B. Vinter, “Fast Synchronization-Free Algorithms for Parallel
Sparse Triangular Solves with Multiple Right-Hand Sides,” Concurrency and Computation:
Practice and Experience, vol. 29, 2017.

[9] A. Zakaria, “The Finite-Element Contrast Source Inversion Method for Microwave Imaging
Applications”.

[10] M. Bollhöfer, A. Eftekhari, S. Scheidegger and O. Schenk, “Large-scale Sparse Inverse
Covariance Matrix Estimation,” SIAM Journal on Scientific Computing, vol. 41, no. 1, pp. A380-
A401, 2019.

[11] M. Bollhöfer, O. Schenk, R. Janalik, S. Hamm and K. Gullapalli, State-of-the-Art Sparse Direct

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

48

Solvers, 2020.

[12] C. Alappat, A. Basermann, A. R. Bishop, H. Fehske, G. Hager, O. Schenk, J. Thies and G.
Wellein, “A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse
Matrix-Vector Multiplication,” ACM Trans. Parallel Comput., vol. 7, no. 3, 2020.

[13] Microsoft, “What is the Windows Subsystem for Linux?,” 2022. [Online]. Available:
https://docs.microsoft.com/en-us/windows/wsl/about. [Accessed 17 08 2022].

[14] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,” ACM Trans. Math.
Softw., vol. 38, 2011.

[15] T. A. Davis, “Algorithm 832: UMFPACK V4.3---an Unsymmetric-Pattern Multifrontal Method,”
ACM Trans. Math. Softw., vol. 30, no. 2, p. 196–199, 2004.

[16] P. R. Amestoy, T. A. Davis and I. S. Duff, “An Approximate Minimum Degree Ordering
Algorithm,” SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 4, pp. 886-905,
1996.

[17] Mumps Technologies, MUltifrontal Massively Parallel Solver (MUMPS 5.4.1) Users’ guide,
2021.

[18] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, A Direct Sparse Solver for Circuit
Simulation Problems,” ACM Trans. Math. Softw., vol. 37, no. 3, 2010.

[19] Scipy, “Sparse linear algebra (scipy.sparse.linalg),” [Online]. Available:
https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html. [Accessed 17 08 2022].

[20] Eigen, “Solving Sparse Linear Systems,” [Online]. Available:
https://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html. [Accessed 17 08 2022].

[21] O. Schenk and K. Gärtner, “PRADISO - User Guide Version 7.2,” 28 12 2020. [Online].
Available: https://pardiso-project.org/manual/manual.pdf. [Accessed 18 08 2022].

[22] The Numerical Algorithms Group Ltd. 2022, “Large Scale Linear Systems,” [Online]. Available:
https://www.nag.com/numeric/nl/nagdoc_28.3/flhtml/f11/f11intro.html. [Accessed 17 08
2022].

[23] R. Li, “On Parallel Solution of Sparse Triangular Linear Systems in CUDA,” arXiv preprint
arXiv:1710.04985, 10 2017.

Design of the Back-end Processing System of the Acceleration of Microwave Imaging Reconstruction Algorithms

49

[24] National Energy Research Scientific Computing Center, “OpenCL: A Hands-on Introduction,”
[Online]. Available: https://www.nersc.gov/assets/pubs_presos/MattsonTutorialSC14.pdf.
[Accessed 17 08 2022].

[25] Khronos, “The OpenCL Specification,” 14 11 2012. [Online]. Available:
https://registry.khronos.org/OpenCL/specs/opencl-1.2.pdf. [Accessed 17 08 2022].

[26] PaStiX Handbook, “PaStiX: A sparse direct solver,” [Online]. Available:
https://solverstack.gitlabpages.inria.fr/pastix/. [Accessed 17 08 2022].

