
POLITECNICO DI TORINO
ICT for Smart Society

Master’s Degree Thesis

Non-Rigid registration of
histopathological breast cancer images

using Deep Learning

Supervisors

Prof. Enrico MAGLI

Prof. Veronica VILAPLANA BESLER

Prof. Josep RAMON CASAS

Candidate

Lucia CAVALLARI

December 2022





Summary

Cancer is one of the leading causes of death in the world, in particular, breast cancer
is the most frequent in women. Early detection of this disease can significantly
increase the survival rate. However, the diagnosis is difficult and time-consuming.
Hence, many artificial intelligence applications have been deployed to speed up
this procedure. In this MSc thesis, we propose an automatic framework that
could help pathologists to improve and speed up the first step of the diagnosis of
cancer. It will facilitate the cross-slide analysis of different tissue samples extracted
from a selected area where cancer could be present. It will allow either patholo-
gists to easily compare tissue structures to understand the disease’s seriousness or
the automatic analysis algorithms to work with several stains at once. The pro-
posed method tries to align pairs of high-resolution histological images, curving and
stretching part of the tissue by applying a deformation field to one image of the pair.

A pyramid-based, patch-based, group based, and iterative neural network is
implemented to align images. It takes as input a pair of histopathological images
that are generated from the digitalization of the same tissue. In each pair, there
is a moving image that has to be modified in order to be aligned with the fixed
image. Depending on the resolution, each image is divided into different pyramid
levels, which are then divided in small groups. At each iteration, for each group,
the network computes the deformation field minimizing a cost function. The final
deformation field is applied to the moving image using a linear interpolation. The
result is a deformed moving image that it’s better aligned to the fixed one.
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Chapter 1

Introduction

1.1 Motivation

Cancer is one of the main causes of death throughout the world. There are over
100 different types of cancers that are categorized on the basis of the affected tissue
or organ of the human body. Although each type has its unique features, the basic
processes that produce cancer are quite similar in all forms of the disease.
Cancer occurs when the cellular reproduction process goes out of control. Usually,
normal cells in the body grow and divide as necessary to replace defective or dying
cells. Cancer cells are characterized by uncontrolled, uncoordinated and undesirable
cell division, they continue to grow and divide, replicating into more and more
harmful cells. A clump of cancer cells is known as a tumor and it causes many
of the symptoms of cancer by pressuring, crushing and destroying surrounding
non-cancerous cells and tissues.

Breast cancer is the most frequent malignancy in women worldwide and is
curable in 70–80% patients with early-stage, non-metastatic disease. Advanced
breast cancer with distant organ metastases is considered incurable with currently
available therapies [1].
The sooner this disease is detected, the more efficient the treatment will be and
the most likely the patient will recover. Two important conclusions can be derived
from this fact, the disease must be detected and well-classified, and it must be
detected as early as possible.
Unfortunately, this analysis is an arduous process that is difficult, time-consuming,
and requires in-depth knowledge. For this reason, much artificial intelligence (AI)
applications have been deployed to improve and speed up this procedure.
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Introduction

1.2 Histopathological analysis
Before the actual treatment for breast cancer, the most important steps are the
diagnosis and the prognosis (the expected development of a disease).

The diagnosis of breast cancer utilizes breast imaging techniques, the most
adopted ones are X-ray mammography, echography, magnetic resonance imaging
(MRI) and computed axial tomography (CT). Each imaging technique plays its
own role corresponding to the stage of the tumour, and therefore for many cases, a
complete diagnosis would involve more than one imaging technique.

For the prognosis, the standard procedure is histopathological tissue analysis
which corresponds to the detailed analysis of a biopsy tissue sample performed by
a pathologist. Thanks to this last step, it is possible to gather detailed information
on the types of cells and on the characteristic of the tumour.

Before conducting the histopathological analysis, there are some steps that need
to be executed. [2]

• Tissue extraction: extraction of a tissue sample (specimen) from the area of
interest where the tumour is located.

• Tissue fixation: the specimen is placed in a liquid fixing agent (fixative) such
as formaldehyde solution (formalin). This will slowly penetrate the tissue
causing chemical and physical changes that will harden and preserve the tissue
and protect it against subsequent processing steps. [3]

• Specimen transfer to cassettes: specimens are trimmed using a scalpel to
enable them to fit into an appropriately labelled tissue cassette.

• Tissue processing: before cutting the sample, it needs to be dehydrated, cleared
and embedded with a specific agent that makes the tissue solid.

• Sectioning: the tissue is cut into sections that are placed on a slide.

• Staining: most cells are transparent and appear almost colourless when
unstained. Histochemical stains (typically hematoxylin and eosin) are therefore
used to provide contrast to tissue sections, making tissue structures more
visible and easier to evaluate. Each stain highlights different information
regarding the tumour.
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Figure 1.1: WSI of mammary gland

Finally, each stained slice is scanned and the Whole Slide Images (WSI) (i.e.
Fig. 1.1 [4]) are generated. The WSI are high-resolution digital files that can be
efficiently stored, accessed, analyzed, and shared.
Thanks to this process, pathologists can analyze the tissue by navigating through
different parts of the image to explore the tissue and to determinate whether tumor
cells are present or not. If it is confirmed the presence of these type of cells in the
sample, then pathologists need to analyze other slices colored with different stains
to obtain more information relevant to the diagnosis and treatment.
Hence, pathologists need to be able to compare tissue slides colored with different
stains in order to obtain a good diagnosis and prognosis of the cancer stage and to
highlight different structural and/or functional information: they combine visual
information obtained from multiple stains from the same tissue sample.
In the figure 1.2, there are shown different samples of tissue colored with CK19,
KI67 and HE stain.

(a) CK19 stain (b) KI67 stain (c) HE stain

Figure 1.2: Stained images of breast cancer tissues
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1.3 Project Objective
The aim of this project is to develop a solution that can perform the alignment of
multi-staining slides extracted from the same tissue, this method is called image
registration.
This task is needed because, in the laboratory during the creation of the slices,
they are often stretched, rotated and displaced, causing WSI of the same tissue to
be very different among each other.
The disalignments present on slices makes the cross-slide analysis very difficult: the
more different the slices are, the harder is for pathologists to compare them and to
get a quick diagnosis. As previously mentioned, cross-slide analysis is performed
on serial or transverse sections taken consecutively from a tissue block. Each
tissue section is stained to highlight particular features of interest in the tissue.
In this case, immunohistochemical (IHC) stains are of particular interest, as they
indicate the presence and expression of a chosen protein. Expression profiles of the
various different markers can usually be compared directly, as each section is only a
microscopic distance (typically 3–5 microns) from the neighbouring sections. Thus
larger anatomical structures are likely to be present across many sections. Analysis
of the expression profiles of multiple markers in a common region of interest, such as
a tumour region, can potentially reveal important information about the tumour’s
molecular composition [5].

In Figure 1.3, there is displayed an example of two WSIs of a sample tissue
extracted from a lung before any registration method is applied.
Image registration will enable automated analysis algorithms to estimate classes
by fusing information from the different stains. Moreover, it will allow pathologists
to make more precise and quicker diagnoses from the collected information. For
example, when an area of interest is found in a reference stain, the same area has
to be retrieved and displayed in the other stain, so the different visual information
can be merged and it is possible to obtain an overall view of the cells in the selected
area.
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Figure 1.3: Example of two WSIs before registration [4]

Image registration refers to the process of aligning images so that comparable
characteristics can be easily related to one another. During this process, points
from one image are mapped to analogous points on another image.

There are two main image registration methods used in fusion biopsy: rigid

registration and non-rigid (or elastic) registration.
Rigid registration does not change the images acquired, it preserves the internal
architecture of the tissue. Each image set is limited to rotational and translational
transformations.
On the other side, non-rigid (elastic) registration changes the images acquired by
stretching one of the image volumes to match the other.

A rigid registration solution was already developed by another student[6] from
the DigiPatics project. In this project, we will combine the rigid registration
solution with non-rigid registration approach. The details of the method deployed
are going to be explained in the third chapter.

Overall, the main goals of the project are:
1. Understand the medical motivation behind the task.

2. Develop a solution that is able to perform an automatic non-rigid registration,
taking as input pairs of tiles where the rigid registration is already applied.

3. Test and evaluate the performance of the solution.

4. Create a framework that combines rigid and non-rigid registration.

5
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1.4 DigiPatics project
This thesis project was done in collaboration with the DigiPatics group at UPC.
DigiPatics is a 4-year project that aims to optimize the anatomopathological diag-
nosis in the network of hospitals of the Institut Català de la Salut (ICS) through
the digitization of the images and the use of artificial intelligence.[7]
It works directly in touch with doctors and researchers, it tries explicitly to opti-
mize their resources and improve the quality of the diagnostic process of patients.
DigiPatics delivers solutions to pathologists that will allow them to take measure-
ments, create annotations, use image processing tools and apply quantification and
computer vision algorithms on images in an easy and fast way.

The Universitat Politècnica de Catalunya, more specifically the Image and Video
Processing Group (GPI), is involved in the development of these computer vision
algorithms. Other companies are participating in the project such as 3DHistech
and Palex.
The overview of the project organization is shown in Figure 1.4.

Figure 1.4: DigiPatics organization flow

The DigiPatics project already explored solutions for image registration on
samples of tissues coming from breast cancer only using a rigid approach.
However, in order to improve the results, the requirement of the present project is
to develop a solution that could integrate the rigid registration, and apply also a
non-rigid one with the use of neural networks.
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1.4.1 Document Structure
This document is presented in a sequential format and is divided into the following
chapters:

• Chapter 2: State of art gives an overview of the previous image registration
algorithms deployed in the past with and without the use of deep neural
networks. In addition, it explains the main challenges that are currently being
faced.

• Chapter 3: Methodology describes the solution and the methods adopted
during the development of the thesis.

• Chapter 4: Results starts by the stating the hypothesis being tested and
presents the results obtained using different approaches.

• Chapter 6 Conclusions and Future Work states the conclusions drawn from
the experiments and presents the challenges met alongside possible projections
on the research of image registration.

7



Chapter 2

State of art

2.1 Image registration

Image registration, also known as image alignment, is a crucial step in a wide
range of applications, including remote sensing, medical imaging, and multi-sensor
fusion-based target recognition. It’s a fundamental image processing technique
that’s effective for combining data from various sensors, detecting changes in photos
recorded at different times, inferring three-dimensional information from stereo
images, and recognizing model-based objects, among other things.

The registration process can be done manually or automatically.
Human operators manually choose corresponding features in the photos to be
registered in the first case. To acquire reasonable registration results, an operator
must select a significant number of feature pairs over the entire image set, which
is not only time-consuming and exhausting but also prone to inconsistency and
restricted precision. As a result, there is a natural need to develop automated
techniques that require little or no operator supervision. Over the years, a broad
range of automated techniques has been developed for various types of data and
problems. Moreover, the growth of neural networks has affected also this field of
study, giving the possibility to create more robust solutions.

An important distinction in image registration is the imaging modality: the
reference and aligned image can be uni-modal or multi-modal.
There are many different imaging methods, depending on the physical characteris-
tics needed to study. However, each one of them has also some weaknesses that
make image interpretation based on a single image difficult. Therefore, it can be
very useful to acquire images using different imaging techniques and then combine
the information gathered from each of them.

8
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Mono-modal registration algorithms are used to register images acquired using the
same modality. Multi-modal registration methods concentrate on aligning images
originating from different modalities. Such images usually have a totally different
appearence[8].

Image registration can be applied not only to 2D images, many applications are
able to register 3D images as well. A very interesting multi-modal case is 2D-3D
registration: it is performed by generating 2D projections of the 3D volume which
are then compared to the 2D image the volume is being registered to. It can be
very useful in biomedical applications.

The most relevant distinction is the case of rigid and non-rigid registration.
In the following sections, the main difference between rigid and non-rigid image
registration is described. The main techniques used in the biomedical field are
explained, with an in depth study of the histological image registration case.

2.2 Rigid vs Non-rigid Registration

Image registration has traditionally been classified as:

• rigid: where images are assumed to be of objects that can be rotated and
translated with respect to one another to achieve correspondence;

• non-rigid: where the correspondence between structures in two images cannot
be achieved without some localized stretching of the images due to structural
differences, image acquisition, or both.

The main difference is that linear transformation functions (rigid registration case)
map any straight line to a straight line, whereas nonlinear transformation functions
(non-rigid case) map a straight line to a curve.
Today, rigid registration is frequently extended to incorporate affine registration,
which includes scale factors and shears and can partially account for variations in
scanner calibration or large-scale variances between participants [9].
The main differences between the two types of registration are displayed in figure
2.1.

9
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Figure 2.1: Differences between rigid and non-rigid registration [4]

2.2.1 Rigid Registration
A horizontal and/or vertical shift is the most basic linear transformation function.
This shifting transformation is called translation. For picture registration, rotation
and scaling (i.e. zoom up/down) are also common linear geometric changes.
Affinity transformation and perspective transformation are two more general geo-
metric transformations. Translation, rotation, scaling, shear, and their arbitrary
combinations are all examples of affine transformations. The main property of the
affine transformation is that parallel lines are still parallel after applying it.

Considering the case where we want to apply a rigid registration among two
images A and B, any linear transformation function can be represented as a matrix:A

X
Y

B
=
A

a b
c d

BA
x
y

B
+
A

e
f

B
(2.1)

or equivalently:

X
Y
1

 =

a b e
c d f
0 0 1


x

y
1

 (2.2)

where (x, y) are the coordinates of image A and (X, Y) of image B.
Translation is represented by parameters e and f in the x and y direction, respec-
tively.
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For rotation:

a = d = cosθ (2.3)
−b = c = sinθ (2.4)

For affine transformation, all six parameters are arbitrary (this explains that
affine transformation includes translation, etc., as noted above.)

In rigid registration, the goal is to estimate the parameters of the linear trans-
formation. The estimation criterion is typically described as:

Ø
x,y

||IA(x, y) − IB(W (x, y|a, b, .., f))|| (2.5)

which has to be minimized with respect to the parameters a, b, ..,f.
In the formula, IA and IB are the images A and B to register, W() denotes the
above geometric transformation function, or the warping function, and maps (x, y)
to (X, Y) according to the six parameters a, b, .., f.

It should be noted that, despite its simplicity, the geometric transformation
function’s estimation problem is not trivial. In truth, there is no direct or analytical
method for determining the ideal parameters.

Registration techniques are divided into intensity-based and feature-based meth-
ods. Prior to the registration phase, feature-based approaches require the identifi-
cation or extraction of some features that can be control points, edges, contours,
surfaces, prominent features or statistical features. On the other hand, the use of
intensity-based approaches does not necessitate the extraction of any features. In
this case, raw pixel values are used directly[10].
In most cases, the image registration procedure is carried out in three steps:

1. Feature selection/extraction. Features could be control points, edges, contours,
surfaces, salient features, and statistical features[11].

2. Selection of similarity metrics used to determine the quality of matching
between images. The most popular metrics include Mutual Information
(MI), Cross Correlation (CC), Sum of Squared Difference (SSD) and absolute
difference

3. Definition of a spatial transformation model to determine the positions of
corresponding points between images. The transformations involve parameters
that may need to be optimized for obtaining the best alignment.

11
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Metric selection is one of the most important decisions in the registration
problem. The metric specifies the goal of the process measuring the quality of
matching the Target image with the Reference image after the application of a
transformation on it. The selection of Metric depends on the types of images to be
registered and the expected miss-alignment.
To obtain the optimum transformation parameters needed to align the images,
optimization techniques are used. Good algorithms determine the transformation
parameters, hence they determine the quality of the final registration.

Figure 2.2: Rigid transformation steps [11]

2.2.2 Non-rigid Registration
Non-rigid image registration realizes more flexible image registration than linear
image registration.
The choice of transformation is very specific to the nature of the registration
problem and will depend on the modalities of the imaging systems.
Mathematically, the non-rigid registration problem can be defined as finding the
optimal transformation T∗ such that:

T ∗ = argminT C(I, T (J)) (2.6)

Unlike rigid image registration, in which T is restricted to a rigid transformation,
for non-rigid image registration there is still no common consensus in the literature
regarding how the transformation T should be modelled.
Some models restrict T to be of a low degree of freedom, hence, they constrain the

12
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transformation to be smooth or elastic.
However, there are cases where the structure of the two images varies significantly,
and a transformation with a low degree of freedom may not have the flexibility to
represent these complex changes. Therefore, any hard constraints on the domain
of T should not be imposed.

In equation 6, we are optimizing C(I, T(J)) without adding restrictions on T, in
this way, it can map any point in J to any point in I. Thus, it’s better to add a
penalization function S(T), to penalize transformations that are not smooth.
λ is added as a positive constant that penalizes non-smooth T, it becomes:

T ∗ = argminT C(I, T (J)) + λS(T ) (2.7)

A non-rigid registration defines a deformation field that gives a translation or
mapping for every pixel in the image [12]. This is generally described by the
following equation:

If ◦ T (x) = If (x − u(x)) = Ir (2.8)

where If is the image undergoing the deformation, Ir is the reference image. T
denotes the non-rigid transformation which equates to a translation of every pixel
x in the floating image by a certain displacement defined by u(x).
The displacement is u: R2 −→ R2, u = (u1, u2).

A common way to estimate u(x) is through deformation models. They can be
roughly split into two groups: [13]

• Deformations derived from physical models, for example, elastic body models,
fluid flow models and diffusion-based models. These models are non-parametric
in nature, they allow a per-pixel estimation for the deformation.

• Deformation models derived from approximation theory. One popular example
can be free-form deformation whereby the deformation field is represented
using basis functions, such as B-splines at fixed integer grid positions. They
are capable of describing a wide range of transformations using a low/limited
number of parameters.

In Figure 2.3, the concept of a displacement field is shown. For every pixel position
in the template image, the displacement field gives the direction and the distance
it has to move in order to match the reference image. In the end, the field is
subsampled.
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Many different solutions have been deployed and tested in the last years, however,
non-rigid registration continues to be a field of active research and development.

Figure 2.3: Example of deformation field [8].

2.3 Image Registration in the biomedical field
The expanding variety of medical imaging techniques provides the medical commu-
nity with an increasingly detailed view of the functionality and structure of our
anatomy. The information provided by the various imaging modalities is often
complementary and synergistic (i.e. the combination of information provides useful
extra information).
For example, X-ray computed tomography (CT) and magnetic resonance (MR)
imaging shows brain anatomy but provides little information on the functional
aspect of the brain. Positron emission tomography (PET) and single photon emis-
sion computed tomography (SPECT) scans display aspects of brain function and
allow metabolic measurements but poorly show its anatomy. [14] Furthermore, CT
and MR images describe complementary morphologic features. For example, bone
and calcification are best seen on CT images, while soft-tissue structures are more
visible by MR imaging. Clinical diagnosis and therapy planning and evaluation
are increasingly based on this complementary image information that can be done
using image registration.

That is not the only application in which image registration is adopted: it is

14
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utilized in medical image processing for a variety of purposes. Tumour identifica-
tion, anatomy segmentation, image subtraction for contrast-enhanced images and
computational model building are just some of the fields in which this technology
is used.
Moreover, it plays a vital role in treatment planning. For example, registration is
used in the analysis between healthy subjects and ones with brain tumours in order
to localize important brain structures to be taken into consideration for surgical
planning.
Registration is important even during the surgery itself as it allows for accurate
localization of anatomical structures accounting for position shifts induced by
surgical operations. In terms of treatment planning, we should also note the impact
that registration has in radiotherapy by localizing tumorous cells and thus limiting
the destruction of healthy ones. Finally, it has played a crucial role in the analysis
of histopathological images.

Image registration, along with image segmentation, is one of the most important
problems in the field of image processing. Despite important advances, registration
is still considered a challenging problem.

Figure 2.4: Example of image registration: from left to right – the reference,
target, and the registered CT kidney images

In figure 2.4, [15] there is an example of uni modal image registration applied to
a CT scan of kidney.
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2.3.1 Registration of histological images
Most of the solutions realized until now, apply for registration on MRI or CT scans
images of all our organs, especially the brain and lungs. Nowadays, more focus is
given to the registration of histological images and it is becoming a popular field of
research.

Different methods have been proposed to register histological images. Some
techniques involve intensity variations [16], and some others are based on the shape
of the sections. For some specimens, the anatomical structures can be used as
landmarks, along with landmark-based registration methods[17].

Deep learning-based medical image registration is a relatively new field. It is
a powerful tool and it is starting to be more employed because of the low time
required during the execution, permitting the development of real-time nonrigid
registration. This is crucial, e.g. for registration during surgical interventions.
The deep registration approaches can be divided into three main categories based
on the training scheme:

• Supervised, which requires ground-truth deformation fields or pre-aligned
images that are often impossible to obtain [18].

• Adversarial registration, which is based on generator and discriminator net-
works, suffers from similar limitations as the supervised category. Moreover,
the training stage is not trivial but is usually costly and time-consuming [19].

• Unsupervised, that do not require any ground-truth [20]. They are based on
the minimization of a given cost function and the registration accuracy mostly
depends on:

– choice of the similarity measure,
– a regularization term enforcing plausible deformations (as previously

explained in equation 8),
– the ability to converge during training,
– a generalization ability.

The main challenge with the learning-based registration of histology images is
connected with the high resolution of these images, coupled with large and complex
deformations.
WSI are designed to be accessed through different resolution levels in order to avoid
memory problems. They can have different resolution levels, for example, the ones
used in the projects have 11 levels: the highest resolution is at level 0, while at 10
there is the lowest resolution.
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Each level is associated with a downsampled factor, from level 0 to 10, the factors
are 2, 4, .., 512, and 1024, respectively. Therefore, the size of the images in each of
the levels also varies according to the detail that is required. For example, while
the highest resolution image has a size of 200.000×90.000 (original), the smallest
one has 195 × 90 pixels.
Hence, the size of these images is one of the main problems to face in the deploy-
ment of registration algorithms. On top of this, deep learning methods suffer from
large GPU memory utilization. The higher the image resolution, the larger the
necessary receptive field and the required GPU memory. The simplest solution is
to downsample the images, however, it reduces the registration quality and makes
it harder to register fine details.

To summarize, the main problems related to the registration of histological
images are given by: (i) a very high resolution of the images, (ii) complex, large
deformations, (iii) differences in appearance and partially missing data.
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Chapter 3

Methodology

3.1 Previous work: rigid registration
As previously mentioned, a rigid registration algorithm was already implemented
by another student from the DigiPatics project. This rigid part has to be applied
before the non-rigid registration, it can be seen as a preprocessing step that the
input images have to go through.

The algorithm aligns a selected area given as input from two WSI that can be
at any resolution level. The image used as a reference (the one in which the area is
selected) is called template. The image to be registered is called moving image or
aligned image (when the algorithm has already been applied).
The algorithm must first locate the region of interest with respect to the entire
moving image. In this way, it will be possible to approximately know which part of
the other staining region to be registered is.

In particular, the algorithm takes as input two Whole Slide Images from the
same patient with different stains (the available stains are CK19, HE, HER2, KI67,
RE and RP) and the coordinates of the area of interest.
In order to locate the selected area on the moving image, it creates an image
pyramid at different resolutions: from the area of interest, it expands the visual
field zooming out so more and more areas can be seen, at the cost of reducing the
level of details. Hence, the resolution seen is the lowest.
Then, from the lowest resolution to the higher one, it starts the registration and
begins to align all the tissue until it ends up aligning the region of interest.

The approach can be divided into three stages:

• a prealignment using the shape of all the tissue,
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• a global registration using also the shape but of a delimited region,

• a local alignment using the internal structure of the tissue.

In each step, a different technique and different evaluation metrics are used.

3.1.1 Prealignment

The objective of the first step is to obtain the binary masks of the tissue pixels of
the template and the image to be registered.
At the lowest resolution, it differentiates the tissue from the background pixel
and focuses on aligning the shape obtained through binarization. It obtains the
translation vector from the centre of mass of both masks and the difference between
the centre point of the template staining and the one to be aligned is calculated.
The mask of the moving image is then translated according to the translation
vector and the optimal angle of rotation is found maximizing the Intersection Over
Union (IOU) between the two masks.

3.1.2 Global alignment

From the binary mask obtained before, the distance transform of the tissue pixels
to the closest background pixel is calculated. From this distance map, the optimal
translation vector is searched, the one that maximizes the cross-correlation between
the two images is chosen.
In order to compute this, the FFT (Fast Fourier Transform) is used to find the
best value directly from the time-shifting property of the transform.

3.1.3 Local alignment

This last step is applied at a higher resolution. The main problem is that the tissue
can have a very different appearance in different stains, both in colour and shape
in the highlighted elements in each of them. For this reason, in both images, the
hematoxylin channel is extracted. In this way, an attempt is made to extract the
nuclei of the cells to highlight these elements and to make the images as similar as
possible.
From the hematoxylin channel, as in the previous cases, the optimal translation is
also obtained from the crosscorrelation using the FFT.
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Figure 3.1: Example of rigid registration of a pair in different region size (500,
1000 and 2000)

3.2 Dataset

3.2.1 ANHIR dataset
The dataset used to train the neural network employed in the project comes from
the ANHIR challenge [4]. ANHIR was the first open competition of image registra-
tion algorithms on microscopy images.
(ANHIR) Automatic Non-rigid Histological Image Registration challenge was or-
ganized to compare the performance of image registration algorithms on several
kinds of microscopy histology images in a fair and independent manner.

ANHIR offers a dataset that contains high-resolution (up to 40× magnification)
whole slide images. They are organized in sets such that any two images within
a set could be meaningfully registered, as they come from spatially close slices.
Different stains are used for each image in a set and the local structure often differs.
It consists of 481 image pairs, there are 8 tissue types: (i) mammary glands, (ii)
the colon adenocarcinomas, (COADs), (iii) gastric mucosa and adenocarcinomas,
(iv) breast, (v) mice kidney, (vi) human kidney, (vii) lung lesions, and (viii) lung
lobes. [21]
The consecutive slices were stained by: (i) prosurfactant protein C, (ii) antigen
KI-67, (iii) clara cell 10 protein, (iv) human epidermal growth factor receptor
2, (v) progesterone receptor, (vi) estrogen receptor, (vii) platelet endothelial cell
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adhesion molecule, (viii) cytokeratin, (ix) hematoxylin and eosin, (x) podocin
[22]. In total there are 49 sets, and each set has on average 5 slices. Each slide
is resampled to approximately 25% of the full original resolution, resulting in
larger size varying from 6k to 17k pixels in one dimension (from 4369x6930 to
17179x15042). Depending on the image the resolution varies.
The images are provided as .jpg and .png files without the metadata.
This dataset was used for the huge variety of images, belonging to different organs
and coloured in different stains. In this way, the network is robust to any changes
and it can be used for more applications.
Figure 3.2, there are shown some images taken from the dataset. It is possible to
see different tissue types stained using various dyes.

Figure 3.2: Example of images from the ANHIR dataset[4]

3.2.2 DigiPatics images
The images to which the algorithm is applied were provided by the DigiPatics
project. For now, the project is focusing on breast cancer histology images, however,
it is starting to analyze also lung histology images.
All the images come from the Institut Catala de la Salut (ICS), specifically those
from the Vall d’Hebron hospital. The available stains are CK19, HE, HER2, KI67,
RE and RP.
Some examples are shown in Figure 9 and Figure 1.2.
The images used are not WSIs but selected areas of WSI where regions of interest
are present. They are called tiles and they were generated by the rigid registration
previously explained.
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3.3 Project development
In order to decide the most suitable non-rigid registration technology to apply
to the Digipatic dataset, the algorithms published in the most recent years were
studied and compared.
In the state-of-the-art, all the methods proposed are applying non-rigid image
registration to WSI images, never to smaller and more detailed tiles. For this
reason, the search for a suited algorithm was very challenging.

Consulting the ANHIR challenge (organized jointly with the IEEE ISBI 2019
conference, which is the only open comparison of image registration algorithms on
microscopic images), it was seen that almost all of the best scoring methods were
based on the classical, iterative image registration approach resulting in the long
time required for the analysis[21]. Even though the registration accuracy of the
proposed methods is close to the level of the human annotation, the computational
time is relatively high, hence, the usefulness of the solution is lower. Probably
the majority of the challenge participants didn’t adopt a deep learning approach
because of the high resolution of histology images, making them difficult to register
due to the GPU memory constraints (most GPUs have a maximum of 16-32 GB
of RAM). The only method adopting deep learning was proposed by Tsinghua
University [23] and it applies a Structural Feature Guided Convolutional Neural
Network for the non-rigid registration. The network is first trained in an unsuper-
vised manner, maximizing an image correlation coefficient, then finetuned using
provided landmark positions on the training data. However, it performs much
better on training than on testing data, hinting again at possible overfitting.
Other solutions adopting neural networks are registering WSI as wholes, while, in
this project, the goal is to register tiles which have higher resolution and they are
much smaller and more detailed.

For this reason, it was chosen a framework proposed outside of the challenge:
DeepHistReg: Unsupervised Deep Learning Registration Framework for Differ-
ently, Stained Histology Samples [22]. It is an unsupervised deep learning-based
registration framework. The pipeline consists of data loading, transferring to
GPU, preprocessing, initial alignment, affine registration, and, finally, nonrigid
registration.
One of the main benefits of this solution is the fact that it registers the WSI
iteratively at different resolutions including the higher one, making it suitable for
this project.
Three different neural networks are implemented in the pipeline:

• Tn the preprocessing, tissues are segmented from the background by a UNet-
based [24] network, which is fast, robust, and easily convertible to other
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histology datasets.

• The affine registration is executed thanks to a ResNet-like convolutional neural
network [25]. The output is an affine transformation matrix (2x3) that is then
converted to the transformation grid used in the spatial transform.

• For the non-rigid part it is proposed a pyramid-based, patch-based, groupbased,
and iterative deep registration solution. The architecture of the network is
explained in the next subsection.

As with most registration methods, it can be divided into two parts: rigid
registration and non-rigid registration. This project is based only on the non-rigid
part, however, the first part is still trained and tested to compare it with the rigid
solution implemented by the DigiPatics project.

Figure 3.3: Framework pipeline of DeepHistReg

Nonrigid registration is the most challenging step in histology registration. Only
using a simple network, it is almost impossible to achieve accurate registration
because the parameter gradients don’t fit into the GPU memory. Also, even a
common patch-based approach that reduces an image into smaller patches, that
are then combined in the batch dimension, is not enough since the batches would
not fit in the GPU memory too.
The method proposed tries to solve these issues by adopting a new state-of-the-art
network.

3.4 Requirements
All the code is implemented with Python using the following libraries:

• NumPy and Pandas for general-purpose data manipulation.

• PyTorch to create and manage the neural networks.

• SimpleITK, PIL and tifffile to read, manage, process and save the images.

• SciPy to apply interpolation to the data.
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On the hardware side, all the code was run on the GPI (Image and video processing
group) servers. GPI offers GNU/Linux servers with the following resources for each
experiment run: 10 GB of RAM, 10 GB of GPU memory and 16-core CPU with a
maximum of 15 threads.
Moreover, to open the different image formats present in the framework, this three
specific software are used:

• QuPath: to visualize and navigate the WSI [26].

• Matlab, "Read Medical 3D data" library: to visualize .mha format [27].

• GIMP: to visualize .tiff format; also Photoshop can be used [27].

3.5 Preprocessing
To obtain the input tiles of the non-rigid network, first, the rigid part has to be
executed.
The WSIs to align are visualized using a software called QuPath which allows one
to navigate and visualize the single WSI at different resolutions. The coordinates
and the size of the area of interest are used as input to run the rigid algorithm.
The output of the rigid part is the pair of tiles of the selected area rigid registered.
The images are saved in .png format.

Before entering the network, each image has to go through a phase of prepro-
cessing.
All the pairs are padded and parsed from .png format into a .mha uncompressed
format. MHA files mostly belong to ITK, the graphic data files contain information
regarding the Insight Segmentation and Registration Toolkit (ITK). This format is
mostly used in 3D MRI images, but in this case, it was very useful to speed up the
data loading on the GPU during the training.
There were some problems encountered with this data format, especially for the
visualization of the images without any software. At the end, it was possible to
visualize the images using a specific library in Matlab.

Then, all images are converted to greyscale and downsampled. The downsample
depends on the size of the tile During the training set this step was necessary
because the images are much bigger, however, when tiles are processed, it can be
skipped.
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Then, all the images are transferred to the GPU memory. The image transfer is
being done only if a single GPU is used and both images fit into the memory. If
it’s used in a multi-GPU computing cluster the memory transfer is done later.
At the end, before entering the network, images are re-sampled to a predefined
number of levels, building a classical resolution pyramid.

Moreover, it is possible to apply the registration on couples of tiles saved in .png
format. It doesn’t convert them in .mha, however it applies the same preprocessing
steps listed above. The main advantage comes from the fact that a large portion of
memory is saved without having to convert pairs in .mha format. In fact, .mha
is an uncompressed format and it occupies a large amount of memory (at least
three times a .png picture). The main disadvantage is that the network works a
bit slower, however, in this testing stage and with small tiles, it is not a problem.

3.6 Non-rigid Network
In order to create a flexible and robust network, the solution proposed is structured
according to the following approaches: pyramid-based, patch-based, group-based,
and iterative.

• Pyramid-based: the images are registered at different resolutions starting from
the coarsest level. From the first level, a deformation field is computed and
subsequently, it is upsampled to the next resolution.

• Patch-based: at the given resolution the images are unfolded into smaller
patches that can be handled by a relatively small deep network.

• Group-based: patches are grouped together and, at once, only a small group
of patches is propagated by the network due to GPU memory constraints and
the loss function is being evaluated and optimized at the group level, not at
the image level.

• Iterative: at each pyramid level, images are propagated through the network
several times composing the calculated deformation fields.

It is defined as source, the moving image that has to be aligned to the pair
image which is called target.
In this network, the cost function is given by the negative normalized cross-
correlation (NCC) and by the curvature (CURV) as the displacement field regular-
ization term.
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The objective is:

S(F, M, u) = −NCC(M, F ) + αCURV (u) −→ min (3.1)

where M, F, u are the warped moving patches, target patches and the dis-
placement fields respectively, α controls the deformation smoothness and it is the
regularization parameter that was explained in equation 7; CURV is the curvature
regularization.
Normalized cross-correlation (NCC) has been commonly used as a metric to evalu-
ate the degree of similarity (or dissimilarity) between two images. It was chosen
because it improves the ordinary cross-correlation: the main advantage is that
it is less sensitive to linear changes in the amplitude of illumination in the two
compared images. [28].

Figure 3.4: Structure of the non-rigid network [29]
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Figure 3.4 shows a scheme on how the network is structured.
It starts after the resolution pyramids are built for both the source and the target
image. Then, starting at the coarsest resolution, for a given number of iterations
the images are being registered. The deformation field is initialized with the identity
transformation and it is warped to the source image.
The images are then unfolded into overlapping patches in each iteration. Patches
have a stride of half the patch size and this causes a slightly longer registration
time, which is not a problem. But more importantly, it addresses the issue of
deformation field discontinuities at patch boundaries.
Then, a fixed number of patches, based on the GPU limitation, is grouped together.
With the GPI servers, there were no limitations, however, this constraint has to be
considered in case the algorithm is run on other machines.
The current velocity field is calculated by propagating each relevant group via the
registration network. The group is converted and the cost function is calculated
during training.

The calculated velocity fields for each group are concatenated together, and
after all the groups are processed, the concatenated velocity fields are folded back
into the velocity field with the same shape as the current deformation field.
The current deformation field is composed of the velocity field and used for the
next iteration where the whole process is repeated.
This makes the interpolation error negligible since the source image is never inter-
polated more than once.
After composing, the current level deformation field is upsampled to the next
resolution.
The deformation field after the highest resolution becomes the final deformation
field which is the one applied to the source image.

This structure is used for training the network with WSI. But, depending on
the size of the pair of tiles given as input, the number of pyramid levels can be
decreased: if the tiles is small, it’s possible to just consider one level of the pyramid,
if it gets to bigger size it can be divided into 2, if it is used the whole slide, the
image is divided into three levels.
This structure is very robust to any given size of pair of images.

On the following page, there is the pseudocode of the algorithm.
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3.6.1 Parameters
There are several parameters to set in this network:

1. the patch size,

2. the stride,

3. the group size,

4. number of pyramid levels,

5. number of iterations per level,

6. the regularization parameter (α)

Every parameter is important in the functionality and quality of the network.
Increasing the number of pyramid levels allows for bigger deformations to be calcu-
lated but at the cost of increased registration time. The number of iterations per
level is critical for registering fine details, but raising the value, like increasing the
number of resolutions, increases the registration time.
The patch size is linked to the deep network architecture, and its value should be
chosen carefully to make the most of the network’s receptive field.
The stride determines the amount of overlap between the unfolded patches.
Finally, the group size determines how many patches are registered at the same
time. The higher the value, the faster the registration and GPU memory usage
will be.
Finally, the regularization parameter is responsible for controlling the deformation
smoothness.

3.6.2 Training
As mentioned before, the training was done using the dataset offered by the ANHIR
challenge. There are used 481 image pairs split into 251 evaluation (validation set)
and 230 training pairs.
The training of the first two neural networks took around a few hours each, however,
it took three days to complete the training of the non-rigid neural network because
of the complicated structure and the big size of the training images. In fact, the
bigger the number of levels, the longer the time needed to train the network and
register images.
In the model the parameters are set as:

1. 256x256 patch size,
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2. 128 stride size,

3. 32 patches per group,

4. 3 pyramid leves,

5. 3 iterations per level

6. 0.001 regularization parameter (α)

3.7 Interpolation of the original image
One of the main issues of the postprocessing steps was to apply the deformation
field computed by the neural network to the source coloured image. In the prepro-
cessing step, the pair of images is converted to mha format, converted to greyscale,
downsampled and normalized. These steps convert the pixel values in float numbers
between 0 and 1. The deformation field values are float numbers between -1 and 1.
The goal of the project is to apply this deformation to the coloured original image,
not to the processed one.
The original input is in ’.png’ format and its pixel values are integer numbers be-
tween 0 and 255. Hence, there is the need to apply some invertible transformations
to it in order to make it suitable for the spatial transformation that will apply the
final deformation field to the image.

In the preprocessing stage, the images are mirrored with respect to the vertical
axis and rotated by 90°, hence, also the coloured image has to go through the same
process.
A necessary condition in order to apply the deformation field is to have an image
with just one channel (i.e. greyscale images). The png format, by definition, has
4 channels: red, green, blue and opacity. The opacity channel doesn’t contain
any information in the dataset used, hence it can be discarded. The other three
channels need to be considered as single greyscale images.
The next step is to normalize the pixel values of each image and to convert them
in float.
After applying these operations, it is possible to warp the images with the defor-
mation field.

The spatial transformation used to apply the deformation is the bilinear inter-
polation. Bilinear interpolation is a method for two-dimensional interpolation. To
perform a spatial transformation of the input image, a sampler must take the set
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of sampling points (deformation field in this case), along with the input image U
and produce the sampled output image V.
Each (xi, yi), coordinates of the deformation field that belongs to the grid G, defines
the spatial location in the input where a sampling kernel is applied to get the value
at a particular pixel in the output image. In this case, the spatial kernel used
applied is the bilinear interpolation.[30].
The transformation can be defined as:

Vi =
HØ
n

WØ
m

Unmk(xi − m, Φx)k(yi − n, Φy) ∀i ∈ [1, .., H, W ] (3.2)

where Φx and Φx are the parameters of the kernel k() which defines the bilinear
interpolation, Umn is the value at location (n, m) of input image U. Vi is the output
value for pixel i at location (xi, yi) of the output image. H and W are the height
and width of the input image and of the grid that contains the deformation field
(in this case they are the same).

Once the three deformed images are obtained, it is necessary to merge them
back together to return to an RGB image format.
The main issue is that the pixel values after the transformation are float numbers.
The classical image formats (i.e. png, jpg) are constrained to integer pixel value
which, in this case, can’t be used. In fact, if the floats of each greyscale image
are rounded to integer and then merged together, the resulting image will present
areas where the colours don’t combine and the deformation is not accurate. An
example of this effect is shown in Figure 3.5.

The only image format that supports three channels, floating pixels image
is TIFF (Tagged Image File Format) which is a high-quality graphics format.
Therefore, the output of the network has to be saved as .tiff. It can only be opened
by dedicated software (i.e. Photoshop). In this project it was used GIMP (GNU
Image Manipulation Program) which is free and available for any operating system.
vspace2cm .
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Figure 3.5: On the left image is saved with integer values, on the right same
image is saved with float values.
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Results

4.1 Evaluation metric: rTRE
Unfortunately, there are no standard way to evaluate the quality of non-rigid
registered pairs of images. Unlike the rigid registration where there are many
different metrics available, it is hard to measure the accuracy of a deformation.
In this project, the method employed by the online challenges of histological image
registration (ANHIR, ACROBAT) was adopted: the target registration error (TRE)
which measures the Euclidean distance between the annotated and transformed
landmarks.

In the ANHIR dataset, in each pair of images, the most significant structures
are manually annotated with landmarks. On average, around 80 landmarks per
image were positioned by pathologists, and their coordinates were saved.
In particular, for each pair of images (i, j), the coordinates of corresponding
landmarks xl

i, yl
i were determined, where l ∈ Li, and Li is a set of landmarks that

occurs in both i and j.
When the deformation is applied to the image, also the landmarks are moved
according to the deformation field. In this way, it is possible to keep track of the
exact movement of each landmark, hence of the deformation of the main structures
of the image. The coordinates of the landmarks on the transformed image are
defined as x̂l

i.
The relative Target Registration Error (rTRE) is the Euclidean distance between the
computed coordinates x̂l

j and the manually determined (ground truth) coordinates
xl

j and it is computed as:

rTREij
l =

||x̂l
j − xl

j||
dj

(4.1)
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where dj is the length of the image diagonal.
The main criterion used to evaluate the registration algorithms is the average of
median rTRE:

µi,j(m) = median rTREij
l (m) (4.2)

Finally, to evaluate the overall performance of the network, average median rTRE
(AMrTRE) and median of median rTRE (MMrTRE) are computed:

AMrTRE(m) = mean µi,j(m) (4.3)
MMrTRE(m) = median µi,j(m) (4.4)

Moreover, to evaluate robustness, individual rTREs for each landmark and the
relative Initial Registration Error (rIRE) before registration are compared:

rIREij
l =

||xl
i − xl

j||
dj

(4.5)

The registration times tij in minutes for each registration, including loading
input images and writing the output files is also evaluated.

An example of landmarks on the ANHIR dataset is shown in Figure 4.1.

Figure 4.1: Landmarks on ANHIR dataset

4.2 Landmark positioning
In order to evaluate the output of the algorithm on the breast cancer images from
the DigiPatics projects, landmarks were manually positioned as done in other
challenges and the evaluation metrics were computed.
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To generate the landmarks it was used the library OpenCV. At the same time
and with the same order, points have to be positioned on the same portion of the
tissue on both images. With some particular stains (KI67 for example), it is not
possible to identify structures of the tissue, hence, the contrast of the images was
increased. Moreover, a grid on top of the images is added to facilitate the process.
All the coordinates are then saved in a file with the same order and sent as input
to the code.

Figure 4.2: Procedure of positioning landmarks

4.3 Tests and results
The quality of the output of the network depends mainly on:

• the quality of the rigid registration,

• the size of the image given as input and the number of pyramid levels chosen
for that particular size.

The network was tested tuning these values until the best score was obtained.

On the images of ANHIR dataset, the output of the non-rigid registration
performs well.
The results presented on the paper [29] show that the DeepHistReg method is
comparable in terms of the rTRE to the best state-of-the-art algorithms. The
results are slightly worse (by about 0.002% of the image diagonal) than the three
best state-of-the-art algorithms.
However, the images from the DigiPatics dataset are different, smaller and more
detailed, therefore, the accuracy of the registration decreases.
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4.3.1 Case study
To demonstrate the performance of the framework, in this subsection, a case study
using a pair coming from the DigiPatics dataset is presented. The target is stained
with KI67 and the source with CK19, they are shown in Figure 4.4. From a quick
view, they look very similar, however, the cells have different structures.
As explained before, to evaluate the performance of the registration, landmarks on
both images were positioned. In this case, I applied 6 landmarks on well defined
contours. (see Figure 15)

Figure 4.3: Target and source images from DigiPatics dataset

The network was tested for different values of pyramid levels and iterations. Best
results were obtained when using two levels of the pyramid. In fact, the network
was trained with whole slide images that have less resolutions and less details. The
tiles registered are 4096x4096 pixels, hence they are much smaller than a WSI.
The number of iterations affects the precision of the deformation that is applied to
the tile. In this case, the tiles are very similar and 2 iterations each were applied.
From the result, it can be seen that the tissue was deformed following the structure
and contours of the target tile, however, the network is not able to erase or create
new tissue. The deformation field can just move it a small amount.
This is the main limitation of the network and it decreases the quality of the
registration.

From the image, changes are not very visible or distinguishable. However, using
the evaluation metric TRE, the improvement is clear:
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Figure 4.4: Source and deformed source

Initial Final
median TRE 0.010751 0.001516
pixel error 62.264 8.780

Table 4.1: evaluation on pair of tiles studied

As indicated by equation 11, the target registration error is divided by the
diagonal of the image. In this case, the two images have size 4096x4096, their
diagonal is 5792. It means that in the original pair, the difference of the landmark
coordinates is equal to more than 62 pixels, in the second case is less than 10.
This is not an absolute criteria considering that landmarks where positioned on
the contours of the tissue, but it still gives an idea whether the registration is
improving the alignment or not.

The displacement field generated by the network can be divided into the hori-
zontal and vertical directions and it is possible to visualize it as a greyscale image
of the size of the source and target images.
For this case study, the displacement has the following shape:

Finally, in the following figure, the changes applied by the neural network to
the source image are highlighted. In Figure 4.6, bright colors underlies the main
differences among the two images.

As previously mentioned, the main changes appear on the border of the tissue,
also other internal structures are modified as well in order to match with the target
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Figure 4.5: Horizontal and vertical displacement field

Figure 4.6: Difference between source and transformed source

image.

Another example is given by tiles from another patient, where the KI67 stained
is used as target and CK19 as source:

The deformation field succeed in moving the tissue along the correct direction,
however, it doesn’t align perfectly the two images.
It has to be considered that the two stains are very different: in the target, the
structures of the cells are not as defined as the one in the source. Even if the
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(a) Target tile (b) Source tile

(c) Transformed source tile (d) Difference

Figure 4.7: Another example of non-rigid registration

images are processed in greyscale colors, the differences are still very noticeable.
In Figure 4.9, the deformation field shrinks the tissue of the source to align it to
the target in the small portion of cells in the right part of the image. While, in the
center, it stretches it.
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(a) Target tissue (b) Source tissue (c) Transformed tissue

Figure 4.8: Details of non rigid registration

A more visible example on how the deformation field works can be seen in the
next sequence of images taken from another pair. As before, the tile stained with
KI67 is the target and the one stained with CK19 is the source that is transformed.

(a) Target tissue (b) Source tissue
(c) Transformed tis-
sue

(d) Transformed tis-
sue with 3 pyramid
levels

Figure 4.9: Details of non rigid registration

In the third image, it can be seen the good alignment achieved using 1 level
of the pyramid: the white space in the middle is better aligned and the tissue
is shrunk. In the fourth image, there were used 3 levels and it is clear that the
deformation is too big and it changes the structure of the cell.

The most relevant characteristic of the proposed solution is the speed at which
it performs the non-rigid registration. It takes on average 4 seconds to register
each pair of 4096x4096 tiles. Moreover, even for bigger images (i.e. WSI used to
train the network), it only takes less than 8 seconds to generate the deformation
field making this solution very fast.
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4.3.2 Limitation of the network
The main limitation of the network is that it can only move the tissue but it can’t
generate it when it is not present in one of the two tiles. It moves it along to the
correct directions but, in some cases, it’s not enough to compensate the differences
among the pair.
Based on the output of the rigid registration, the non-rigid registration fails or
succeeds to align correctly the two tiles.

(a) Target tissue (b) Source tissue (c) Transformed tissue

Figure 4.10: Bad results on non rigid registration

In this case, the deformation field generated is to small to compensate the differ-
ences in the pair: only small deformations are applied, but the main dissimilarity
remains untouched.

4.3.3 Tables of results
To test the overall performance of the network, landmarks were positioned on 9
pairs of tiles from the DigiPatics dataset. Initial TRE is compared to the final
TRE of each pair and also the time of execution is evaluated.
The images chosen to test the performance have a defined structure of the tissues
in both stains in order to position correctly landmarks. On average, there are 60
landmarks per image.
To evaluate the TRE in each pair, it has to be taken into account that the precision
of the landmarks is not perfect, there can be an error of a few pixel. Moreover,
most of landmarks are positioned on the contour of the tissue and not on internal
parts (i.e. Figure 4.2).

The average execution time consists of the time needed to load the image on
the GPU and the time needed to generate and apply the deformation field. On
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Pair Initial TRE Final TRE Execution Time [min]
1 0.010013 0.0048 0.24994
2 0.010108 0.005796 0.082272
3 0.010751 0.007027 0.082006
4 0.00596 0.003754 0.082009
5 0.0641 0.063653 0.082358
6 0.008305 0.00475 0.082238
7 0.012146 0.00645 0.083008
8 0.02164 0.00547 0.082192
9 0.054184 0.05369 0.082415

Table 4.2: Landmarks evaluation

average is around 4 seconds, except for the first pair, which takes a bit longer.
On most cases, the deformation generated by the network improves the target
registration error which ranges from 120 pixels error to 30 pixels error. However,
there are two cases where the registration doesn’t work: on pair 5 and pair 9 there
aren’t any improvement. The pixels error range from 350 to 320, hence the error is
still pretty large. Pair 9 is shown in Figure 4.10.

Overall, when the initial TRE is already low, so when the pair is already good
aligned from the rigid registration, the non-rigid improves it, successfully deforming
the tissue along the correct direction. But when the disalignment is too big, the
network fails to align the pair.
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Chapter 5

Conclusions and future
development

In the state-of-the-art, there are not models that can apply non-rigid registration to
high resolution histological images. At the moment, most of researches are focused
on aligning Whole Slide Images, which are much larger. The DeepHistReg frame-
work was chosen because of its accuracy in aligning WSI and of its pyramid-level
approach, which makes it scalable to different resolutions.
It is a powerful framework that can be still used on different WSI to apply real-time,
complete and accurate registrations.

In the case analyzed, the proposed solution has some limitations on the quality
of the deformation, especially when the source presents some tissue that doesn’t
appear in the target or viceversa. At this level of resolution, the deformation field
generated is not enough to correct big changes. If the quality of the pairs generated
by the rigid registration is not good enough, the non-rigid registration fails to align
correctly the images. On the other hand, it corrects small deformations, especially
on contours points, minimizing the target registration error.

This limitations might come from the dataset used to train the network: WSIs
are multiresolution images, tiles are low resolution images of WSIs. The model of
the network can’t generate big field to deform correctly some pairs.

Fortunately, this could be improved training the network with pairs of tiles
collected by the DigiPatics project. Once the rigid registration algorithm generates
a sufficient number of pairs belonging to different stains, it will be possible to use
them to train the network. Moreover, based on the size of these images, one, two
or three levels of the pyramid can be generated, increasing the final accuracy. This
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is an idea for a future implementation that can improve the quality of the network.

The main issues of big deformations, however, is that they might change too
much the structures of cells, modifying important information needed for doctors
to conduct accurate diagnosis. It’s a trade off between the deformation required
and the regularization term that holds the network from applying deformations
to all the pixels in an image and changing its structure [31]. This is another
field of research within image registration algorithms and it has to be taken into
consideration, especially when working with biomedical images.

Another promising method that could improve the network consists in applying
style transfer using the adversarial networks [19] to one image of the pair, to make
it more similar to the other one. It consists in applying a style connected with
a particular dye from a given slice to another consecutive slice. For example,
considering to apply style transfer to two slices stained with HE and CK19. The
algorithm will convert HE to the CK19 without losing information. An example of
style transfer is displayed in Figure 5.1. This could be useful to create ground-truth
alignments for adversarial registration networks which may produce even more
accurate registration, without the necessity to define a similarity measure. Or to
directly use these transformed pairs as input of the non-rigid network.
There already exists some state-of-the-art technologies that perform style transfer.
Moreover, it is also a subject of research of the DigiPatics project, they are
developing an algorithm that applies style transfer to the DigiPatics dataset used
in this project. Hence, a future work could be to use those images to train the
non-rigid network.

Figure 5.1: Example of style transfer on histological images[32]
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Appendix A

Code functions

A.1 Visualize .mha image
Function used to visualize .mha file in matlab using the library "read medical 3D
data".
Note that the conversion in mha format works only if the depth of the image is
32bit.
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A.2 Position landmarks
Run the script twice, opening target and source image at the same time and position
landmarks in the same order for both images.
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Appendix B

Additional results

B.1 Example 1
Details:
In Figure B.2, there is shown how the deformation field moves the tissue of the
source to align it to the target. The main problem is the fact that the deformation
can’t erase the tissue.
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(a) Target tail (b) Source tile

(c) Transformed source tile (d) Difference

Figure B.1: Example 1 of non-rigid registration

(a) Target tissue (b) Source tissue (c) Transformed tissue

Figure B.2: Details of non rigid registration
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B.1.1 Example 2
Another example:

(a) Target tile (b) Source tail

(c) Transformed source tile (d) Difference

Figure B.3: Example 2 of non-rigid registration
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