
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Understanding traffic matrix estimation
with eXplainable AI (XAI)

Supervisors

Prof. Guido MARCHETTO

Dr. Alessio SACCO

Candidate

Cristian ZILLI

December 2022

Abstract

Diagnostics constitute a foundation for the management, maintenance, and improve-
ment of computer networks. To this end, traffic matrices are an effective element of
diagnostics by representing directed traffic flows between pairs of networked nodes
in a compact manner. In detail, a traffic matrix is a two-dimensional array where
each row (column) corresponds to a node, and each cell contains the value of traffic
flow between the row and column nodes, obtained by aggregating link load measure-
ments over a sampling time interval. The collection of this data serves the purpose
of enacting strategies for infrastructural enhancement and traffic engineering in a
conscientious, informed way. However, such information can often be only partially
available: this is the case, for example, of networks dealing with massive volumes
of traffic such that telemetry operation may put heavy computational strain on the
measuring devices, causing these to suffer degradation of performance for their net-
working functions (e.g. forwarding throughput). Simply scaling the computational
resources up to satisfy the requirements’ overhead is not always feasible and is an
expensive solution. This is a reason for the prominent interest in the problem of
traffic matrix estimation and completion, namely the problem of inference of traffic
flows via statistical or Artificial Intelligence (AI)-based techniques. This work
focuses mostly on the category of AI and data-driven as a regression tool to tackle
the aforementioned problem. At the same time, we aim to solve another issue that
stems directly from the intrinsic nature of AI: its lack of human interpretability.
The main contribution of this thesis is the comparison (in terms of different error
metrics) of several models for traffic matrix completion and the explanation of
the decision process of the black box-like techniques via eXplainable Artificial
Intelligence (XAI) methods such as saliency maps. Experimental results show
that the accuracy of Machine Learning (ML)-based and statistical models highly
depends on the set of network conditions, i.e., the dataset used. The complexity of
traffic and the absence of clear patterns alter the ability of the model to generalize
the findings among different network traces. On the other hand, the study of the
model decision process via XAI demonstrates that models are majorly influenced in
their inference process by the surrounding square around the missing traffic matrix
cell.

i

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1

2 Related Work 4
2.1 Matrix Completion . 4
2.2 eXplainable Artificial Intelligence 6

3 Background 11
3.1 Artificial Intelligence Architectures 11

3.1.1 Convolutional Neural Network 11
3.1.2 Convolutional Autoencoder 12
3.1.3 Adversarial Autoencoder . 13

3.2 Explainable Artificial Intelligence 14
3.2.1 Saliency Maps . 14
3.2.2 Occlusion Sensitivity Analysis 14
3.2.3 Activation Maximization . 15

4 Solution 16

5 Results 18
5.1 Datasets . 18
5.2 Metrics . 18
5.3 Benchmark Algorithms . 19

5.3.1 Convolutional Autoencoder 19
5.3.2 Adversarial Autoencoder . 20
5.3.3 Cascaded Convolutional Autoencoder 20
5.3.4 Convolutional Neural Network 20
5.3.5 Convolutional Long Short-Term Memory Network 20

ii

5.3.6 k-Nearest Neighbours . 20
5.3.7 LMAFit . 21
5.3.8 Smooth Low Rank Tensor Tree Completion 21
5.3.9 Smooth Low Rank Tensor Completion 21

5.4 Preprocessing . 21
5.5 Performance . 23

5.5.1 Results - Geant Dataset . 23
5.5.2 Results - Abilene Dataset 26
5.5.3 Results - Mawi Dataset . 28
5.5.4 Training and Prediction Times 31

5.6 XAI Results . 33
5.6.1 Saliency Maps . 33

6 Conclusion 44

iii

List of Tables

5.1 Data normalization and masking schemata 22
5.2 NMAE comparison between normalization schemes 22
5.3 Normalized Root Mean Squared Error values (Geant) 24
5.4 Normalized Mean Absolute Error values (Geant) 25
5.5 Normalized Root Mean Squared Error values (Abilene) 26
5.6 Normalized Mean Absolute Error values (Abilene) 28
5.7 Normalized Root Mean Squared Error values (Mawi) 29
5.8 Normalized Mean Absolute Error values (Mawi) 30
5.9 Training Times (Geant) . 31
5.10 Training Times (Abilene) . 31
5.11 Training Times (Mawi) . 31
5.12 Average Prediction Times (Geant) 32
5.13 Average Prediction Times (Abilene) 32
5.14 Average Prediction Times (Mawi) 33

iv

List of Figures

3.1 Architecture of a CNN . 12
3.2 Architecture of a CAE . 13
3.3 Architecture of a AAE . 13

5.1 NRMSE for increasing noise ratios (Geant) 24
5.2 NMAE for increasing noise ratios (Geant) 26
5.3 NRMSE for increasing noise ratios (Abilene) 27
5.4 NMAE for increasing noise ratios (Abilene) 28
5.5 NRMSE for increasing noise ratios (Mawi) 29
5.6 NMAE for increasing noise ratios (Mawi) 30
5.7 Saliency Maps (Geant, coordinate 1,3) 35
5.8 Saliency Maps (Geant, coordinate 8,9) 36
5.9 Saliency Maps (Geant, coordinate 11,7) 37
5.10 Saliency Maps (Abilene, coordinate 3,4) 38
5.11 Saliency Maps (Abilene, coordinate 2,8) 39
5.12 Saliency Maps (Abilene, coordinate 7,9) 40
5.13 Saliency Maps (Mawi, coordinate 1,8) 41
5.14 Saliency Maps (Mawi, coordinate 11,2) 42
5.15 Saliency Maps (Mawi, coordinate 19,14) 43

v

Chapter 1

Introduction

Traffic flows statistics are a key product of network diagnostics, and traffic matrices
are a common choice for gathering those statistics in an efficient and intuitive
representation; in detail, a traffic matrix is a bi-dimensional array where columns
and rows correspond to the nodes which comprise a network infrastructure, and
their meeting point indicates the traffic flow between the two nodes, sampled
in a time interval of choice; each node might correspond to a single or multiple
aggregated network devices, with the latter choice being sensible in large scale
contexts. In other words, given a matrix M , for each pair of nodes i,j, the cell Mij

corresponding to those indices contains the volume of the directed flow fi−→j . These
matrices find a multitude of uses in the fields of network and traffic engineering
(e.g. capacity planning, congestion avoidance and route optimization).
With that said, while conceptually simple, traffic matrices are not always easy to
obtain in practice: solutions for TM computation from measured traffic data do
exist, and follow a variety of approaches that rise to the practical challenges (as
exemplified in [1]), but they are not always applicable. This is because of different
possible reasons, as stated in [2]:

• network devices may lack support for measuring protocols.

• network devices may suffer the computational overhead of frequent measuring
under heavy load conditions; conversely, lowering the frequency of measure-
ments reduces the quality of the information used to build the traffic matrices.

• upgrading the infrastructure so as to solve the aforementioned issues is expen-
sive.

• even if we assume the network to be adequately equipped in both hardware and
software resources, protocols for data collection generally rely on connection-
less, unreliable transport mechanisms (e.g. SNMP on UDP) without retention,

1

Introduction

therefore some diagnosed data may be lost during transmission through the
network.

Because of these causes, the problem of TM estimation has seen a lot of interest
around the years, and the reason why many kinds of techniques have been devised
for both future matrix estimation and matrix completion.
Our focus in this thesis lies on Artificial Intelligence architectures employed as
regression methods for TM completion, because of the remarkable results and
attention they have been drawing as of late. In particular, these architectures
(along with general Machine-Learning), have been following an upward trajectory
for several years now. To translate words into numbers, the total amount of AI
related publications produced by the efforts of Research & Development units all
over the world has doubled between 2010 and 2021, as reported in [3], going from
160 thousands to 330 thousands, and interestingly enough this growth has seen an
increment in steepness between 2016 and 2017 which holds steady to this day. This
positive tendency is not only encountered in academic environments, but also finds
correspondence in terms of yearly corporate investments fueling R&D departments,
meaning that industries are more likely than ever to foresee the potential behind the
adoption of AI. Consequentially, with a lot of interests being at stake, but also more
importantly from an ethical standpoint, using Artificial Intelligence as black boxes
in decision processes is not feasible, especially in critical contexts. Motivated by
this conundrum, institutions for regulation and standardization have been working
during the last few years towards the definition of governance paradigms that
would allow for a more conscious usage of these tools. Hence the current direction
of practical AI applications is to try and equip decision models with explanation
suites, in order to enable the principles of trustworthiness[4], accountability and
transparency[5].
This leads us to the ultimate goal of our work, that is, the proposition of several ad-
hoc AI models for TM completion, their comparison with other solutions drawn from
recent literature, and most importantly the application of eXplainable Artificial
Intelligence techniques in order to understand the "reasoning" of the models.
As expected, the problem proved itself to be challenging because of the non
immediately recognizable and inconsistent spatial patterns of traffic matrix data,
for example when compared to other simpler bi-dimensional data use cases of AI
such as RGB images; therefore, because avoiding under-fitting and over-fitting
showed to be difficult for the neural networks, this inconsistency in the data
translated to inconsistent results across the board in our tests. Conversely, a
consistent pattern has been observed in our attempt to visualize the decision
process of the networks via saliency maps: these collectively showed that, on
average, the models assign a higher degree of importance towards the estimation
to a subset of matrix entries, which are mostly localized in the close proximity of
coordinate of the missing data to be predicted. Generally speaking, because entries

2

Introduction

in the matrices which are close to one another might constitute flows with little to
no real correlation, and vice versa distant entries in the matrices might represent
flows with strong mutual influence, we observe that a more thoughtful placement
strategy of the flow data might assist the networks in using the most relevant
data in a more focused manner, hence improving performances; in particular, our
hypothesis for future works is that it might prove beneficial to structure the data in
such a way to keep distances between flows in the matrices inversely proportional
to their correlation, since as we already mentioned, the models on average tend to
privilege the surrounding cells of the missing value(s) when making an estimation.

This thesis is structured as follows. Chapter 2 offers an overview of related
literature, exploring the spectra of both matrix estimation algorithms and XAI
techniques, while also mentioning some of their applications to practical use
cases. Chapter 3 provides high level information about the architecture of the
three proposed models that constituted the test subjects for the XAI methods
chosen for the analysis, and explains what these methods consist of at an intuitive
level. Chapter 4 presents a formal definition of the problem of Traffic Matrix
Completion. Chapter 5 briefly presents notions about the datasets of choice and
the preprocessing schemata, lists the metrics employed for the comparison of the
performance of models, and displays the results of our work, in terms of comparison
of prediction performance in variable conditions, training and prediction times, and
finally explanation of the rationale behind the estimations through visualization of
saliency maps. Chapter 6 summarizes the objectives of our work and the steps we
followed in order to meet them, while also suggesting a starting point for reflection
on future related works.

3

Chapter 2

Related Work

In this chapter we review some of the existing literature about Traffic Matrix
Completion and eXplainable Artificial Intelligence, so as to define the scope into
which this thesis ought to be inserted.

2.1 Matrix Completion
Studies in field of matrix completion are abundant, and follow a variety of different
approaches applied to disparate use cases. Considering the general problem of
matrix completion and also focusing on the particular issue of network traffic
inference, we proceed to mention some of these works and the relative proposed
methodologies. One of the most explored approaches to the problem of completion
is to solve the optimization problem of low rank matrix (and by extension tensor)
completion; its formal definition is as follows:

min rank(E), s.t. Eij = Mij ∀(i, j) ∈ Ω (2.1)
where E is an estimated matrix, M is the matrix to complete, Ω is the set of all
indices of the matrix; in other words, the objective is to find a matrix E that closely
approximates the target M, while also minimizing the rank of the former; the main
issue with this approach is that finding a solution to 2.1 is NP-Hard, therefore the
main challenge in this case has been to reduce the complexity of the computation.
Several workarounds have been devised for this purpose, mainly consisting in the
substitution of the optimization criterion function (rank(.)) with surrogates that
allow for faster resolution with lower complexity and comparable results. The
problem statement in 2.1 thus becomes:

min f(E), s.t. Eij = Mij ∀(i, j) ∈ Ω (2.2)
where f(E) is the surrogate of choice, replacing rank(E). Common choices for the
surrogate function are tensor nuclear norm and Schatten-p norm. In [6], a smooth

4

Related Work

low rank tensor tree completion algorithm is described; this is a member of the
populous family of the nuclear norm minimization approach[7] and introduces a
solution to 2.1 that aims to minimize, rather than the sole nuclear norm, the sum
of the latter with total variation norm [8], in order to improve the reconstruction
capabilities in the cases of tensors possessing the property of smoothness (e.g.
images), while also forgoing the need to estimate a bound for the tensor rank
bound.
Some other variations of norm based approaches are exhibited in [9] and [10];
in the first, three alternative approximations of f(E) are implemented, namely
EPT, MCP and SCAD, used in conjunction with a divide et impera approach by
reducing the optimization problem into several, more manageable subproblems
(approach known as Block Coordinate Descent), while in the second two ulterior
alternatives are presented, labeled NS-LRTC and S-LRTC, whose purpose is to
improve reconstruction accuracy close to tensor boundaries, which tends to be a
weakness of smoothness-aware functions.
LMAFit[11] is an efficient solution for a wide array of generic matrix completion
and estimation problems, and works by introducing a low rank matrix factorization
model which aims to reduce computation time with relation to nuclear norm mini-
mization approaches[7] by avoiding the computation of the nuclear norm entirely;
although it possesses drawbacks such as reliance on the provision of an initial rank
estimate, and lack of a guarantee to achieve a global solution, LMAFit is proven to
be as empirically reliable as norm based approaches, while being much faster.
STTC-CP[12] employs a tensor representation for time series of traffic matrices,
thereby enabling the application of the CANDECOMP/PARAFAC ([13], [14]) ten-
sor decomposition technique; by exploiting the lower dimensional latent structures
hence produced and by factoring the feature of temporal stability of the OD flows
in temporally adjacent traffic matrices, this method aims to better capture the
structural properties of traffic data and therefore to exhibit superior performance
by comparison to 2-dimensional matrix based algorithms in presence of high loss
rates.
STGM[2] uses traffic matrix data, partitioned and modeled as a set of gaussian
distributions via spectral clustering (based on spatial affinity), as an adjuvant to
a linear regression algorithm in order to improve the performance of the latter,
especially under the conditions of heavy data loss.
NiTMC[15] proposes a way to exploit the potential relationship between the prob-
lems of traffic volume interpolation and network anomaly detection for the purpose
of solving both in a more efficient manner, by making use of the low rank property
and temporal characteristics of traffic matrices; this approach achieves improved
estimation accuracy in the presence of complex (e.g. non simply gaussian) noise
distribution patterns in the data when compared to models that ignore the issue of
anomaly detection.

5

Related Work

With [16], Roughan et al present the application of Gravity[17] and Tomogravity[18]
models for traffic matrix estimation, to drive traffic engineering operations; in par-
ticular, estimated traffic matrices, used in conjunction with traffic optimization
algorithms, are shown to provide solutions for congestion avoidance in some cases
close to optimal.
As for AI based approaches, convolutional networks are often employed in this case
because of their compatibility with multidimensional data. R-CNTME[19] is an
example of a network made of convolutional, pooling and fully connected layers,
built to tackle the traffic matrix completion problem under the often deal-breaking
assumptions of limited, sparse and noisy training data, which showcases how, by
using the global spatial correlations between OD flows extracted via convolution,
it is possible to achieve superior performances with relation to architectures that
only take into account correlations between a singular prediction target flow and
the others.
In [20] a CCAE architecture, namely a cascaded autoencoder built with (mostly
or exclusively, depending on the case) convolutional filters is described in its use
case of electric load matrix data recovery; since the measured data here represents
a time series, this is a case of revisiting mono-dimensional data, by exploiting
its periodicity and transforming it into bi-dimensional data so that horizontally
adjacent data constitute measurements in proximate time points, and vertically
adjacent data instead constitute measurements at corresponding moments within
successive periods; such a representation allows the CCAE to shine: because of its
capability to extract the correlations between cells in multidimensional data, the
network makes use of a larger amount of information when compared to traditional
mathematical estimation methods, which only use spatial neighbors of the missing
data point.
In [21] a ConvLSTM architecture (first introduced in [22]) for future traffic matrix
prediction is presented, that is, a combination of CNN and LSTM models capable
of extracting and modeling the spatio-temporal features of historical traffic data
and ultimately generate estimated traffic matrices in successive time-steps; in
this specific context, the objective of the architecture is to not only to produce
projections of future traffic, but to do so in the case of sparsely available historical
data, therefore of traffic matrices being comprised of mostly predicted, non directly
measured values.

2.2 eXplainable Artificial Intelligence
With the complexity and opaqueness of AI models increasing enormously since their
original conception, along came a surge of interest in the topic of AI interpretation;
this interest, which saw a steady increase in the last decade[23], has been the

6

Related Work

propelling force behind the development of several XAI solutions of assorted nature.
Barredo Arrieta et al, provide in [23] a theoretical introduction to XAI and its core
concepts, while also making the case for its necessity and providing a comprehensive
and detailed taxonomy of recently developed solutions, for both general Machine
Learning and Deep Learning.
Here we cite a number of these solutions and their application to various use-cases.
A common technique for AI interpretation is the visualization of the attention levels
of a model to features of a particular input through heatmaps: these attention
levels can be computed in a multitude of ways, which usually involve extrapolating
information about how the input is processed from the inner layers of neural
networks. We report some of these techniques and relative use cases. In [24],
Amarasinghe et al present a framework for explainable, Deep Neural Network based
anomaly detection, whose purpose is to offer insight on the anomaly classification
made by the network in terms of estimation confidence, relevance score of the
input features towards the outcome of the classification, and by constructing
textual, human friendly descriptions of the anomaly. The main tool used for
implementing the framework is the Layer-wise Relevance Propagation technique[25],
whose functioning consists in a backwards (output to input) layer to layer mapping of
relevance attribution by each neuron, allowing to distribute the relevance values over
the input sample features, all the while abiding by a total relevance conservation
law; to explain this method in simpler terms we can consider the example of
image classification: the objective is to perform a "pixel-wise decomposition" of a
classification decision, that is, construct a heatmap of contribution over the pixels
of the classified image, where each pixel is considered as an individual feature; each
neuron of the last layer, for a given classification, yields a particular value which is
function of all its connections with neurons of the previous layer and corresponds
to the contribution of said neuron towards the output. By traversing the network
in a backwards fashion, and iteratively computing the relevance factors for each
neuron of each layer as function of neurons of successive layers, the input layer is
eventually reached, and thus a relevance distribution over the pixel is obtained.
Grad-CAM[26] is an activation based technique for visualizing class activation maps
of CNN-based models in a highly discriminative way; this means that, similarly
to LRP, it produces heatmaps which highlight the classification-deciding features
(more specifically, those that have a positive impact towards a particular output
class), and does so by exploiting information extracted from the last convolutional
layer of a CNN (namely, the gradient of the score of a class with respect to
the feature maps of the layer); the choice of analyzing information from the last
convolutional layer, rather than any other, be it convolutional or fully connected,
is because the former reaches, inside these sort of architectures, the highest level of
feature abstraction out of all convolutional predecessors, while also retaining the
spatial information which is lost in the fully connected layers.

7

Related Work

In [27], Chen et al make use of Grad-CAM to visualize the attention of a CNN
classifier over time-frequency spectral images generated by vibration analysis of
rolling elements bearing (REBs); in this context, given that the AI model is capable
of detecting and classifying different faults of the REBs by analyzing said spectra,
Grad-CAM generates heatmaps that represent the different level of attention over
the frequency bands of the vibration, therefore highlighting the correlation (as seen
by the CNN) between a particular kind of REB fault and the frequency bandwidths
of the vibration it produces.
Another potential application of CAM to CNN classifiers can be seen in [28]; in
this case the network is not built to deal with bi-dimensional data, but rather
constitutes a network packet flow classifier, thus dealing with mono-dimensional
structures; CAM provides added value to the model by visualizing the importance
of each byte of a flow during classification.
Zheng et al[29] showcase the potential of visualization techniques, namely Saliency
Maps and Activation Maximization[30], by explaining the inner workings of a
neural network trained for job scheduling in a cloud computing environment (a
concise overview of the two methods is provided in 3.2.1 and 3.2.3); by the means
of these two methods, it is possible to understand how the state of the platform’s
resources together with the the resources’ demand of a job influence the scheduling
outcome (with saliency maps), and what profile of resources’ demands leads he
model to favor a job over the others (with Activation Maximization).
Another option for for interpretability is sensitivity analysis, whose application
to neural networks was first presented in [31]; in essence, it represents a group of
methods whose objective is to observe and visualize through map representations
how a model responds to arbitrary perturbation of input (for example, a translation,
rotation, or mirroring of a figure in an image); as such, these method share a common
root with DeepLIFT and CAM variations, with the latter two being respectively
gradient based and activation based, and the former being perturbation based.
A commonly encountered sub-type of sensitivity analysis is occlusion sensitivity
analysis: in this case, the input is perturbed by partially removing some of its
information (e.g. replacing portions of an image with non informative data), and for
each output node (classes or regression output) the variation of the score function
is registered; by applying occlusion over the portions of the data iteratively, it is
possible to compile those score variations over an attention map. In [32], Uchiyama
et al demonstrate an application of occlusion sensitivity analysis to the case of a
CNN video classifier.
One more possibility for producing explanations is local approximation of the output
function of the complex AI models with simpler, naturally interpretable algorithms.
This solution entails, given some particular input and the relative output by the
black-box network, to build surrogate models (e.g. decision trees) which exhibit
congruous decision making strategies, although only for data whose features are

8

Related Work

positioned in the surroundings of the input data; once the approximative model is
generated, insight about its rationale, which is also locally representative of the
opaque network, is extracted. Some examples of this approach are mentioned in
the following paragraphs.
DeepSHAP[33] belongs to the family of additive feature attribution methods,
approaches rooted in game theory consisting in the attribution of effect values
to features of data which sum to output function of the model to explain; the
framework is built by using a combination of SHAP values as feature importance
metric, representing the change in expected prediction of a model when conditioned
to the feature itself, and DeepLIFT[34] as a technique to approximate the hard-
to-compute SHAP values, and at the same time guarantee local accuracy in
approximation of the model (in other words, the approximation of the model’s
behaviour against a certain input).
In [35], Nascita et al detail the usage of DeepSHAP[33] as a means of explaining
the proposed framework for mobile traffic classification, MIMETIC-ENHANCED;
in particular, the application of DeepSHAP here consists in the attribution of
importance values to input data belonging to a mobile traffic bi-flow: these values
represent a confidence measure of the model’s assignment of a bi-flow to a particular
class.
LIME[36] is an algorithm for model-agnostic, local explanation of both classifiers
and regressors; in order not to be tied to any specific architecture, the algorithm
works by building linear, interpretable, surrogate models around a data sample
that the non-linear model associated to a certain output, and does so by generating
samples via random perturbation of the sample to be explained; these perturbated
data samples are fed to the non-linear model, which associates them with an
output value (e.g. a class label); by observing the variation of the outputs and its
correlation with the variation of the perturbations the surrogate linear model is
finally generated.
The EXPLAIN-IT framework[37] is a proposal for explanation of unsupervised
(e.g clustering) learning architectures, and relies on LIME for this purpose; its
system is comprised of two steps: first, the dimensionality of the data is reduced
to a summarized space via clustering (or similar techinques), then these clusters
are analysed in terms of the characteristics separating them from one another;
this second step is achieved in two sequential substeps, namely training a black-
box model model (e.g. SVM) with higher discrimination power (w.r.t. naturally
interpretable white box models like decision trees) to trace boundaries around the
clusters and finally explaining the discrimination criteria by applying LIME on
said trained model.
Doctor XAI [38] is an ad-hoc framework conceived for the explanation of the Doctor
AI Recurrent Neural Network[39], built for the prediction of a patient’s clinical
events, given their medical history records; the approach followed by Panigutti et

9

Related Work

al when devising the explanation pipeline is to generate local (that is, for each
given input sample and corresponding prediction) surrogate decision models which
are trained by using sets of data-points (both real and synthetic medical records)
similar to the explanation target as training data correlated with the corresponding
Doctor AI prediction as ground truth; the outcome of this process is the creation
of a model which closely mimicks the behaviour of Doctor AI, and from which
interpretable decision rules can be extracted.
The contribution of this work is to mount a comparison of performance for some
of the traffic matrix completion solutions (or some variation of them) we have
mentioned thus far, for the use case of single coordinate inference with different
degrees of noise polluting the matrix data, and to exploit Vanilla Saliency maps
in order to derive visual explanations for the predictions of three proposed deep
learning models, in order to understand which OD flows are the most influential
towards the regression output.

10

Chapter 3

Background

This chapter provides a general overview of the XAI techniques this work is focused
on, and the AI models they were tested upon.

3.1 Artificial Intelligence Architectures
3.1.1 Convolutional Neural Network
Convolutional Neural Networks (CNN) are a subclass of Artificial Neural Networks
(ANN), widely used for problems belonging to a wide spectrum, such as Computer
Vision, Natural Language Processing, Object Detection and Segmentation, Image
Classification and more [40]. These architectures, in particular, are attractive
when dealing with image data (and by extension matrix data), because of the
reduced computational complexity, number of training parameters, and over-fitting
tendencies when compared to traditional ANNs, while retaining good performance
[41]. A generic representation of the model can be seen in Figure 3.1: the core of a
CNN is comprised of three kinds of layers:

• Convolutional Layers, which include a set of filters (or "kernels"), multidimen-
sional parameters that act as operands for convolution operations with the
input data, which in turn produce a set of "activation maps", and represent
the key component that enables the layer to distinguish features in the data.

• Pooling Layers, which apply a form of downsampling to the input data (which
are generally activation maps), reducing its dimensionality.

• Fully Connected Layers, inherited from traditional ANN architectures, made
of units called neurons which are linked to each neuron of adjacent layers
through weighted connections, whose values are repeatedly updated during
the training phase.

11

Background

Figure 3.1: Architecture of a CNN

The first two kinds of layers are responsible for the extraction of features from the
data, while the last one ultimately produces the output of the model. Since CNN
is a prime and flexible alternative for working with matrix data, it is taken into
consideration in this work as a regressive model for estimating missing traffic data.

3.1.2 Convolutional Autoencoder
Convolutional Autoencoders belong, as the name implies, to the family of autoen-
coders, with the peculiarity of employing Convolutional, Pooling, and Up-Sampling
layers to build the encoder and decoder stages. Such architectures find applications
in tasks like Image Denoising [42], Coloring, (De)Compression, being particularly
suited for image data for reasons already stated in 3.1.1. The way they work is as
follows: (see Figure 3.2)

• the encoder stage, consisting of a number of Convolutional and Pooling layers,
is responsible of extracting the features from the input and compress the
information into a representation known as "Latent Space".

• the decoder stage, consisting of a number of Convolutional and Up-Sampling
layers, expands the data compressed inside the Latent Space up to the desired
output shape.

Because of the spatial features abstraction capabilities of convolution based net-
works, these models are capable of generating results (e.g. images) that are devoid
(to various degrees) of "spurious" portions of the input, such as visual noise, whose
information may be discarded/replaced during the compression-expansion process,
and for this reason, they represent a valid option as a solution to the Traffic Matrix
Completion problem.

12

Background

Figure 3.2: Architecture of a CAE

3.1.3 Adversarial Autoencoder
Adversarial Autoencoders (AAE) as introduced in [43], represent a form of Genera-
tive Adversarial Network (GAN), that is, a method for training generative models
by pitching two neural networks against each other; the composition of a GAN is
generally as follows (figure 3.3):

• A generator, which is trained to produce data samples that seemingly belong
to the data space so as to fool the discriminator.

• A discriminator, which is trained to distinguish whether an input sample
belongs to the data space ("true" sample) or not ("fake" sample).

Figure 3.3: Architecture of a AAE

In the specific case of AAEs, the generative model is built as an autoencoder. The
crucial aspect of these architectures is how the training procedure is led in several
steps for each data batch:

13

Background

• the AE is trained in a "traditional" fashion, in order to minimize the recon-
struction error on the data samples.

• the discriminator is trained on a mixture of true and generated latent space
vectors, so as to learn to discriminate the positives from the negatives.

• the encoder portion of the AE is trained to produce latent space vectors that
the discriminator can classify as positives.

3.2 Explainable Artificial Intelligence

3.2.1 Saliency Maps
Saliency Maps were first introduced in [30], as a way to visualize convolutional
classification models’ spatial support for a given class in an image. The idea behind
vanilla saliency is to rank the influence of single pixels of an image over the score
function (of a class for classifiers, or, in the regression case, for value variation) of
the output layer of a neural network. In further detail, the saliency values for each
pixel are computed by differentiating the score function of choice with respect to
the input image. The result is a map having the very same size as the image, where
each cell constitutes the degree to which the corresponding pixel of the image is
influential in defining the score value.

3.2.2 Occlusion Sensitivity Analysis
Much like saliency maps, occlusion sensitivity analysis lies in the category of post-
hoc, local interpretation methods. This approach consists in perturbing parts of
the input (“occluding” them) to be fed to the model, by replacing them with non-
informative values, and measuring how much the prediction score corresponding
to the occluded input distances itself from the original prediction relative to the
unmodified matrix. This distance is interpreted as the importance score of the
occluded part of the image with respect to the prediction: the higher the difference,
the more influential is that portion of the input. These importance scores are
ultimately compiled into an importance score matrix, of the same size as the input
matrices, which is the result of the analysis. The occlusion process may be carried
out on an arbitrary granularity: masks may cover portions of an image sizing
from even a single pixel up to large portions of the input, and should aim to
occlude significant portions of the sample (e.g. the set of pixels showing a class’s
peculiar feature) to achieve useful results. Although this methodology was taken
into consideration, no consistent, indicative information about the models could be
derived from it, therefore its results have been omitted.

14

Background

3.2.3 Activation Maximization
The purpose of Activation Maximization, as thoroughly described in [44], is to
visualize the "behaviour" of hidden layers inside of deep models. This is achieved
by solving (locally, see [44]) the optimization problem of finding the input which
maximizes the activation of the units of the model. In other words it is a matter
of artificially building an input sample that the network will, with the utmost
confidence, translate to a particular output class or value. Although very interesting
insight may be deduced when applying this sort of technique to particular fields
(i.e. computer vision, image classification), in our case the results were not intuitive
and as such have been omitted as well.

15

Chapter 4

Solution

The traditional formal definition for the problem of Traffic Matrix estimation was
pioneered by Y. Vardi in [45]; we will use this definition, known as the tomography
model, as a reference to frame our case. The statement of the problem is as follows:
given a set of directed traffic flow volumes, measured from the L links of a network
with N nodes, sampled in a given time interval, we intend to compute the amount
of traffic running between the C = N(N − 1) Origin-Destination (OD) couples
of the network. We work under the assumption that the network is a strongly
connected directed graph, meaning that for any pair of nodes i, j ∈ N , there
exist two paths pi−→j and pj−→i that connect said nodes in both directions. At a
particular sampling time t, we identify three main components in our formulation:

• Xt, a column vector sized Cx1 containing the measurements of the OD flows
between each pair of nodes; essentially, this is a traffic matrix.

• Yt, column vector sized Lx1 containing the directed flow volumes traversing
each link of the network.

• the routing matrix A, sized LxC, containing information about the network
routing configuration, and defined as follows:Alc = 0 if link l /∈ pi−→j

Alc = 1 if link l ∈ pi−→j

where i and j are the indices of the nodes constituting the directed pair c.

Starting from the aforementioned components, a linear relationship between the
the OD traffic flows and the the volume of data going through the links of the
network can be defined in these terms:

Yt = AXt (4.1)

16

Solution

Our objective is finding Xt, for a given Yt and A, hence we aim to solve the inverse
of the linear problem 4.1. Unfortunately, in most real networks, the number of
links L is way smaller than the number of OD pairs C, therefore:

• matrix A is not invertible.

• the inverse problem is severely underconstrained.

Several solutions have been devised in order to solve this issue (see [45], [18]), for
example consisting in posing additional constraints to the equation in order to turn
it into a determined system, or by using approximations models.
Our approach, while sharing the same objective of estimating the OD flows in Xt,
does not involve using either the routing information contained in A or the link
loads information from Xt; instead, we assume partial information about the OD
flows to be available, and we seek to fill the gaps in the data by leveraging the
capabilities of several algorithms to "understand" the spatial relationships which
run among the flows themselves. We can recognize three pieces in the formalization
of this new problem:

• matrix X̃t, sized NxN , containing the partially measured information about
the OD traffic flows.

• matrix Xt, sized NxN , containing the full information about the OD traffic
flows.

• function f(.), representing the non-linear function describing the matrix
completion algorithm.

By putting all the pieces together, we obtain:

Xt = f(X̃t) (4.2)

In essence, rather than avoiding the measurement of traffic flow data directly from
the network, and instead computing it by exploiting its relationships with other
easy to obtain information, we accept to sample a subset of that data, and estimate
the missing flow volumes through regression techniques.

17

Chapter 5

Results

The following chapter provides some details about the data used in our tests, the
preprocessing operations and successively expands upon the used architectures
in terms of training and prediction time, prediction performance and prediction
visualization using the aforementioned XAI techniques.

5.1 Datasets
Three different datasets were chosen for this study:

• the Abilene (2004) dataset, featuring 48386 samples, sized 12 by 12, measured
in five minutes intervals.

• the commonly used Geant (2005), sporting a total of 11460, 22 by 22 matrices
representing traffic demand spanning over four months, with a granularity of
fifteen minutes.

• a set of matrices derived from the network traffic traces recorded from the
WIDE network and made publicly available by the MAWI group. Ten consec-
utive traces, spanning over two hours and thirty minutes from samplepoint-F
were considered, dated 2020. Traffic matrices were generated by aggregating
traffic by address prefix, with a one second granularity, and by filtering smaller
flows to keep the matrices’ size at a reasonable level. The result is a collection
of 9010, 24 by 24 matrices.

5.2 Metrics
Two different metrics were chosen for comparison and evaluation purposes:

18

Results

• Normalized Root Mean Squared Error defined as:

NRMSE = NqN−1
i=0 yti

óqN−1
i=0 (yti

− ypi
)2

N
(5.1)

• Normalized Mean Absolute Error defined as:

NMAE =
N−1Ø
i=0

|yti
− ypi

|
|yti

|
(5.2)

where:

• yti
and ypi

represent respectively the i-th observed value and i-th corresponding
predicted value.

• N represents the number of considered matrix samples.

NMAE represents an immediately intuitive representation of the magnitude of the
average estimation error, NRMSE instead puts more emphasis on the occurrence
of large errors, allowing to evaluate performance from a different standpoint.
Normalized metrics were preferred in order to take into account differences in the
normalization schemata and make the measured values inter-comparable.

5.3 Benchmark Algorithms
In order to properly evaluate the performances of the proposed AI models, tests
and measurements were additionally made on a set of other techniques fit to solve
the problem of matrix completion. Observations including some practical remarks
about the usage of all the benchmarked models follow in the next subsections.

5.3.1 Convolutional Autoencoder
Although somewhat redundant with 5.3.3, we explored this option via tuning so as
to better understand how details in the architecture influenced the end results and
whether using a shallower, simpler model could bring any benefit. In details, mixed
deep and convolutional autoencoders and fully-convolutional autoencoders were the
object of study, and they mostly yielded similar results, with the fully-convolutional
implementations pulling slightly ahead. The implementation of these architectures
substantially constitute de-noisers for the input matrices, where noise is to be
considered to be the (set of) missing values. These models produce whole matrices
as output and require no further pre-processing of inputs (no shifting), unlike
the proposed implementation of CNN, because they are intrinsically capable of

19

Results

estimating more than one value at a time for a single input, also meaning that a
single trained model can be used to estimate values a different positions at the
same time.

5.3.2 Adversarial Autoencoder
The proposed implementation of AAE, very similar on the autoencoder side to
5.3.1, was analysed in order to determine whether adding an adversarial component
to the simpler architecture could improve its performance in the case study.

5.3.3 Cascaded Convolutional Autoencoder
A (partial) implementation of the CCAE architecture proposed in [46] was tested,
only missing the tail end of the model, namely the reshaping and de-normalizing
layers, which are unneeded in our case. All the parameters and the rest of the
overall architecture of the network were kept as described, except for the input
layer of the network, which was changed to fit the case of the chosen datasets.
The metrics were calculated by extracting the predicted value(s) from the output
matrices and comparing them with the corresponding truth.

5.3.4 Convolutional Neural Network
Among the AI solutions presented in this section, the employed CNN implementa-
tion is the simplest, having the smallest number of trainable parameters.

5.3.5 Convolutional Long Short-Term Memory Network
ConvLSTM models are generally employed when capturing correlations of data
over time is of essence. The presented case study, however, pertains the capturing
of the sole spatial features of matrix data, therefore the tested implementation may
be considered a degenerate version of a ConvLSTM, where only a single input time
step is considered when producing an output.

5.3.6 k-Nearest Neighbours
Several values were tested for k, ranging from 5 to 20, but performance differences
were marginal at best so we settled for using 5 uniformly; distances were computed
as Euclidean distances. The model was fed with full, normalized matrices, reshaped
into mono-dimensional arrays in order to be fed to the regressor.

20

Results

5.3.7 LMAFit
The approach described in [11] was taken into consideration. Because the algorithm
requires an estimation of matrix rank as input (k), for each coordinate we empirically
determined the k value which minimizes NMAE, and proceeded to observe that
in almost all cases such value also minimizes NRMSE. Because of this approach,
all the reported metrics correspond to the model working in the best condition
possible, for each coordinate.

5.3.8 Smooth Low Rank Tensor Tree Completion
Another tested solution was STTC, an algorithm based on low tensor tree rank and
total variation minimization, as described in [6]. Since this approach was originally
conceived as an RGB image completion technique, some additional pre-processing
to the normalized traffic matrices was applied, in order to be compliant with the
required input format. In particular, because traffic matrices only span over two
dimensions, rendering them akin to single-channel (grayscale) images, each matrix
was artificially expanded by adding two additional channels, each one an exact copy
of the original matrix. Estimated values were ultimately extracted from the output
structure, corresponding to the completed input tensor (therefore, at each missing
values coordinate, three identical predicted values are found along the channels
axis). A value of 0.0005 was used for the ρ factor.

5.3.9 Smooth Low Rank Tensor Completion
The last model we introduce in this comparison is the one presented in [10], we
refer to it as LRTC. Like STTC (see 5.3.8), this is natively meant to work on
images, therefore the same steps for adding two more modes to the traffic matrices
were taken. Also similarly to LMAFit, an initial rank estimation is needed, so we
opted for the same empirical approach of determining the best estimation for each
case with respect to NMAE and NRMSE.

5.4 Preprocessing
Different data normalization schemata were used, in order to accommodate the
peculiarities of each model. Table 5.1 provides an overview on the ranges the data
was scaled into and the numerical values representing missing data points in the
matrix.

In this regard, CCAE follows the guidelines from [46], LMAFit and STTC are
tested as if working on an image completion problem (no missing data values are
reported, since both algorithms rely on different masking approaches, rather than

21

Results

interval missing data value
AAE [1,10] -1
CAE [1,10] -1

CCAE [0.01,1] 0
CNN [1,10] -1

ConvLSTM [0,1] -1
k-NN [1,10] -1

LMAFit [0,1] /
LRTC [0,1] /
STTC [0,1] /

Table 5.1: Data normalization and masking schemata

placeholder values, to detect missing entries), ConvLSTM uses a very common
normalization schema for the problem at hand, while AAE, CAE, CNN and kNN
adopt a completely different scale. The reason for this choice is the distribution
of values in the dataset affecting the performance of those models when using a
[0,1] normalization; rescaling the matrices in the [1,10] range instead, led to better
training stability for the neural networks (both training and validation loss kept a
mostly monotonic trend, with less oscillation with reference to [0,1] normalization)
and yielded improved performance metrics (better NMAE across the board). Table
5.2 reports the per-dataset maximum, minimum, and average NMAE values of
models using [0,1] and [1,10] intervals. It is worth mentioning that the largest gaps
in terms of metrics’ manifest when models work with the Geant and Mawi datasets,
whose data distributions are less uniform than Abilene’s, and whose spectrum of
values is a lot wider.

[0,1] [1,10]
Min Max Avg Min Max Avg

Abilene 9.75% 41.29% 23.25% 3.12% 15.23% 9.58%
Geant 7.44% 103.79% 82.39% 0.19% 12.13% 5.81%
Mawi 32.01% 149.72% 88.22% 3.02% 26.84% 12.25%

Table 5.2: NMAE comparison between normalization schemes

In addition to data normalization, CNN and ConvLSTM in particular also require
another step for the data to take before inference: since the models only output a
single value for each input matrix, and not full matrices like the tested autoencoders,
we aimed to provide the networks with different inputs for each coordinate of the
same matrix to predict; this is necessary because feeding the networks with a

22

Results

particular sample missing several values as-is, would always necessarily bring the
models to return the same exact prediction. This issue was solved by rearranging
the matrices, in order to place the inference target in the center, thus differentiating
the input according to which position we are trying to fill.

5.5 Performance
The results of our benchmarks are shown in tables 5.3 to 5.14, and in figures 5.1
to 5.6. All tests were led by referring to the same trios of coordinates (i.e. the
position of the value to predict inside a traffic matrix), namely (1,3), (8,9), (11,7)
for Geant, (3,4), (2,8), (7,9) for Abilene and (1,8), (11,2), (19,14) for Mawi, which
were chosen randomly.
Metrics in 5.3, 5.5, 5.7, 5.4, 5.6, 5.8 refer to models producing predictions when
only the value of the indicated coordinate is missing.
Charts 5.1, 5.3, 5.5 and 5.2, 5.4, 5.6 represent the performance trends of the models
when predicting the value of a given coordinate, for increasing percentages of
missing matrix data. The values were obtained by computing NMAE and NRMSE
over the predictions of the test sets, for each percentage of values in the matrix
missing, and for each of the considered coordinates. The set of missing coordinates
for each percentage was obtained via random sampling. The measuring process was
repeated for up to 20 times for each model, and finally the displayed values were
produced by computing the mean of the values over the 20 iterations and among the
three coordinate of each dataset. From the same process, 90%-confidence intervals
for each percentage were also derived. Because we decided to set the upper limit of
NMAE and NRMSE to 1 in these charts, models that yielded poor performances
in some of the tested conditions may not be represented.
The values in 5.9, 5.10 and 5.11 show the training time for each of the trainable
models along with the number of epochs, and how the number of parameters of
neural networks heavily impacts fitting times.
The measurements in 5.12, 5.13 and 5.14 were computed by averaging the predic-
tion time of the models over a subset of the Geant, Abilene and Mawi datasets,
respectively. Details about the relative performances of each model are listed in
the following subsections.

5.5.1 Results - Geant Dataset
Table 5.3 and chart 5.1 display the NRMSE values computed under different
conditions for each model; from these, we can identify the disparities in performance
between the solutions:

23

Results

(1,3) (8,9) (11,7)
AAE 8.0476e-03 3.0087e-02 1.0232e-01
CAE 5.4832e-03 2.6196e-02 8.4371e-02

CCAE 1.9334e-01 3.4919e-03 7.8917e-01
CNN 1.5464e-02 8.9110e-05 5.5814e-02

ConvLSTM 9.0470e-01 5.7056 9.4017e-01
k-NN 3.0486e-04 5.1705e-08 8.4772e-02

LMAFit 9.5433e-01 3.0438e-01 9.9954e-01
LRTC 4.1810e-01 1.8572e-01 4.1864e-01
STTC 2.6795 9.3372e-01 1.7522

Table 5.3: Normalized Root Mean Squared Error values (Geant)

Figure 5.1: NRMSE for increasing noise ratios (Geant)

• kNN, CAE and AAE present similar NRMSE values for lower noise ratios
(NR), but they diverge for higher numbers of missing values; in particular,
AAE and CAE, which follow an almost identical progression up to NR = 10%,
start performing worse than kNN for NR ≥ 20%; on the other hand, kNN has
stable performance even for high NR (∼ 50%)

• CNN performs remarkably well for low noise conditions (≤5%), matching the
AI/kNN group, but undergoes a substantial decline for NR ≥ 10%, becom-
ing one of the worst overall performers, denoting lack of robustness against
perturbations in the input conditions.

24

Results

• CCAE, although producing on average more large (or larger in magnitude)
errors than the models described so far (bar CNN with high NR), is almost
unaffected by growing NR.

• ConvLSTM produces by far the worst performance out of the batch, and as
such is not displayed in the y-axis range.

• LRTC, LMAFit, STTC all fall behind the AI/kNN group, to different degrees;
in further detail, LRTC has the best NRMSE performance in absence of noise,
but follows the sharpest fall-off when even the slightest amount of perturbation
is added, LMAFit is on average the best and stablest performer of the three,
and conversely STTC is the worst.

(1,3) (8,9) (11,7)
AAE 0.0648 0.1020 0.1164
CAE 0.0580 0.1438 0.1098

CCAE 0.3248 0.0451 0.5159
CNN 0.0073 0.0078 0.1221

ConvLSTM 1.5227 1.7935 1.2675
k-NN 0.0075 0.0010 0.0817

LMAFit 0.8022 0.6643 0.9975
LRTC 0.6680 0.4584 1.7429
STTC 0.8140 0.9507 0.9657

Table 5.4: Normalized Mean Absolute Error values (Geant)

Chart 5.2 show values of NMAE only up to 100%, which we deemed a reasonable
threshold of acceptable performance. At a glance, the progressions follow the same
course seen in 5.1, with some differences:

• kNN undisputedly produces the best predictions under any condition.

• CCAE actually performs closer to AAE and CAE for NR ≥ 20%.

• LMAFit is the best out of the three low rank optimization based algorithms,
overtaking (on average) LRTC under zero noise conditions; this is due to
LRTC yielding consistently inaccurate estimations for the coordinate (11,7).

25

Results

Figure 5.2: NMAE for increasing noise ratios (Geant)

5.5.2 Results - Abilene Dataset

(3,4) (2,8) (7,9)
AAE 2.4687e-02 4.7033e-02 3.3800e-02
CAE 2.5791e-02 3.7324e-02 2.1194e-02

CCAE 4.4652e-02 1.5951e-01 6.7021e-02
CNN 1.6813e-02 1.2987e-02 1.0694e-02

ConvLSTM 2.0497e-01 5.5820e-01 5.3280e-01
k-NN 2.4597e-02 2.7391e-02 1.6710e-02

LMAFit 5.1509e-01 9.5634e-01 5.4320e-01
LRTC 2.2056e-01 2.0070e-01 2.2213e-01
STTC 1.7374e-01 3.2477e-01 2.5423e-01

Table 5.5: Normalized Root Mean Squared Error values (Abilene)

Table 5.5 and Chart 5.3 tell how the differences in performance among the
models are diminished for the Abilene dataset, when compared to Geant and Mawi,
although, some of the tendencies observed in 5.1 still persist:

• kNN, AAE and CNN are the best performers, with the latter demonstrating
a higher stability as the NR grows, with relation to the Geant case.

• CCAE places only slightly behind the previous three algorithms.

• out of the models using [1,10] normalization, CAE struggles the most in the

26

Results

Figure 5.3: NRMSE for increasing noise ratios (Abilene)

Abilene case, having not only higher NRMSE values than the others, but
also higher performance variability for differing sets of randomly perturbed
coordinates of the matrices as noise is introduced.

• ConvLSTM is yet again the worst average performer, but sees a large improve-
ment for low NR when compared to the Geant case.

• STTC appears to be more compatible with Abilene than it is with Geant
and Mawi, most likely because the algorithm works closer to optimally with
the "smoother" data of the dataset; the result is that the solution is generally
superior to LMAFit and LRTC, and for high NR (≥ 20%) is better than CAE
and comparable with CCAE, AAE.

Table 5.6 and chart 5.4 corroborate the points made about the NRMSE perfor-
mance of the models with Abilene, by reproducing the smaller performance gap
among the algorithms with respect to the Geant case; all the trends already encoun-
tered in the NRMSE case are replicated with NMAE, with a minor discrepancy:
the tendency of LMAFit is less stable than the NRMSE case, showing that while
the magnitude of errors and/or the frequency of errors woth high magnitude do not
increase substantially for increasing NR, as shown by the NRMSE measurements,
the average error still increases noticeably, especially from the zero noise case
onward, in a similar fashion to LRTC; another peculiarity of LMAFit is how the
average error unintuitively seems to decrease when going from NR = 20% to 50%.

27

Results

(3,4) (2,8) (7,9)
AAE 0.1212 0.1551 0.1287
CAE 0.1313 0.1295 0.1126

CCAE 0.1635 0.2504 0.2025
CNN 0.0977 0.0966 0.0768

ConvLSTM 0.3417 0.6624 0.4227
k-NN 0.0591 0.0417 0.0384

LMAFit 0.6359 0.6941 0.7166
LRTC 0.4497 0.4885 0.4631
STTC 0.3289 0.5101 0.5206

Table 5.6: Normalized Mean Absolute Error values (Abilene)

Figure 5.4: NMAE for increasing noise ratios (Abilene)

5.5.3 Results - Mawi Dataset
Table 5.7 and chart 5.5 confirm the superiority of kNN/AI models using the [1,10]
normalization schema in all cases, with a glaring disparity; more specifically:

• kNN, CAE, AAE are consistent with the Geant and Abilene cases.

• CNN reports better performance with Mawi, especially for high NR, for which
it does not decline as harshly with relation to the instances of the other two
datasets.

• CCAE, despite its trademark noise tolerance, distances itself the most from
the the other AI models in this particular case, being closer in performance to

28

Results

(1,8) (11,2) (19,14)
AAE 1.0915e-01 2.6857e-01 4.6037e-02
CAE 1.2137e-01 2.0914e-01 1.0975e-02

CCAE 7.8098e-01 8.4875e-01 4.1693e-01
CNN 3.6130e-02 1.2510e-01 2.3376e-03

ConvLSTM 8.7972e-01 9.2567e-01 1.7987e-01
k-NN 9.7873e-02 1.7987e-01 4.8726e-03

LMAFit 1.4659 1.0001 1.1202
LRTC 4.1322e-01 6.0398e-01 4.8981e-01
STTC 9.4162e-01 1.0069 7.9512e-01

Table 5.7: Normalized Root Mean Squared Error values (Mawi)

Figure 5.5: NRMSE for increasing noise ratios (Mawi)

the low rank optimization algorithms.

• ConvLSTM displays performance on average close to the LMAFit/STTC/L-
RTC group, but lacks the noise tolerance of the latter.

• STTC, LMAFit and LRTC produce very close results to one another, partic-
ularly for 1% ≤ NR ≤ 20%; instead, in absence of noise, LRTC once again
outperforms the other two, and for NR > 20% the estimations of STTC worsen
outstandingly more.

Table 5.8 and chart 5.6 validate the same observations made for NRMSE;
the sole dissimilarity, although not too prominent, is found with the low rank

29

Results

(1,8) (11,2) (19,14)
AAE 0.1358 0.2506 0.0622
CAE 0.1146 0.2622 0.0418

CCAE 0.4883 0.6581 0.4958
CNN 0.0909 0.2002 0.0329

ConvLSTM 1.1882 1.3908 0.3878
k-NN 0.0702 0.1931 0.0428

LMAFit 1.0325 1.000 1.1243
LRTC 0.6259 0.6340 0.5993
STTC 1.0402 1.3833 0.8584

Table 5.8: Normalized Mean Absolute Error values (Mawi)

Figure 5.6: NMAE for increasing noise ratios (Mawi)

optimization algorithms relative performance: according to our measurements,
LRTC universally yields better NMAE than STTC and LMAFit, meaning the
former is more pronouncedly prone to predict with large errors than the latter two,
despite the average error being lower.

30

Results

5.5.4 Training and Prediction Times

time (seconds) epochs
AAE 4857.32 50
CAE 1086.93 100

CCAE 9513.83 50
CNN 336.75 50

ConvLSTM 1522.94 50
k-NN 0.0030434132 /

Table 5.9: Training Times (Geant)

time (seconds) epochs
AAE 6669.86 50
CAE 1777.52 100

CCAE 8545.44 50
CNN 678,43 50

ConvLSTM 2259.75 50
k-NN 0.0034039021 /

Table 5.10: Training Times (Abilene)

time (seconds) epochs
AAE 1673.19 50
CAE 864.77 100

CCAE 12150.23 50
CNN 297.80 50

ConvLSTM 2272.37 50
k-NN 0.0045638084 /

Table 5.11: Training Times (Mawi)

The values in 5.9, 5.10 and 5.11 represent total training times and epochs for
the model, and come as no suprise:

• AAE and CAE, despite the comparable performances, have way different
training times, with the first needing times-per-epoch from ∼3.9 to ∼9 higher
than the second, given the more complex learning process.

31

Results

• CCAE, possessing the highest count of trainable parameters, is the slowest
model to train.

• vice-versa, CNN is the fastest.

• kNN, while included, does not undergo training in the same sense as neural
networks, but rather the times reported refer to the time taken to store the
training data in memory; hence, the way lower values.

• ConvLSTM places itself in the middle of the pack.

time (seconds)
AAE 1.3671e-04
CAE 2.7903e-04

CCAE 2.8152e-04
CNN 1.8614e-04

ConvLSTM 8.9529e-04
k-NN 1.2067e-04

LMAFit 3.3232e-04
LRTC 8.8121e-03
STTC 2.4552e-01

Table 5.12: Average Prediction Times (Geant)

time (seconds)
AAE 7.5961e-05
CAE 1.1945e-04

CCAE 1.1139e-03
CNN 1.0714e-04

ConvLSTM 2.5503e-04
k-NN 2.7166e-04

LMAFit 4.3060e-04
LRTC 3.4409e-03
STTC 3.1745e-01

Table 5.13: Average Prediction Times (Abilene)

The statistics in tables 5.12, 5.13 and 5.14 can be summarized as follows:

• AAE, CAE, CNN, kNN can be placed in the same bracket of average prediction
times.

32

Results

time (seconds)
AAE 4.4790e-04
CAE 4,5784e-04

CCAE 7.4157e-03
CNN 1.5564e-04

ConvLSTM 1.8944e-03
k-NN 2.7014e-04

LMAFit 6.2203e-03
LRTC 8.0102e-03
STTC 2.0548e-01

Table 5.14: Average Prediction Times (Mawi)

• ConvLSTM and CCAE are the slowest AI solutions.

• LMAFit is, on average, considerably faster than the other low rank optimization
based algorithms.

• LRTC is slower than LMAFit, but much quicker than STTC, which is the
slowest overall by circa two orders of magnitude at best.

5.6 XAI Results
Following the study of performance, the focus now shifts to the behavioural
interpretation of the neural networks used in this scope. The analysis revolves
around three of the models: CNN, CAE and AAE.

5.6.1 Saliency Maps
Saliency maps were the primary tool for explanation in this work, being an intuitive
and efficient method for visualizing the rationale behind the estimations of the
convolutional models. All the presented maps refer to the same color palette,
with brighter (e.g. yellow) colors indicating higher saliency values, and darker
colors(e.g. dark blue/green) conversely indicate lower saliency. For the sake of a
more immediate visual comparability between different models, the maps generated
by AAE and CAE were shuffled and centered around the target coordinate, in
order to conform to the CNN configuration. Two types of maps are presented:

• single prediction saliency maps, computed for single, randomly sampled ma-
trices.

33

Results

• average prediction saliency maps, computed by averaging the saliency values
over the test sets.

The choice of computing an average saliency over a large amount of data is due
to the intent of providing a global understanding of how the model interacts with
the dataset, and not only explain the reasons for a single prediction. Starting
from the single prediction saliency maps, it appears sometimes possible to find a
common pattern among the three models, in which the most influential data flows
for the prediction fall within the same region of the matrix (Figures 5.14 (a), (c),
(e)) or even coincide (Figures 5.10 (a), (c), (e)), while there are cases in which
the attention of the three models focuses on completely different flows (Figures
5.15 (a), (c), (e)). This result provides some interesting insight, meaning that
despite their comparable performances, the three models do not always weigh the
information they are fed with in the same manner, and possess specific nuances
in their operation that depend not only on the patterns of the data they were
trained with, but also on the structural details of the architectures (e.g the size
and number of convolutional filters). On the other hand, average saliency maps
display a more consistent pattern: despite the models focusing on variably large
sections of the matrices, all three of them are, on average, more heavily influenced
by OD flows in close proximity to the inference target, and gradually exhibit less
attention as the distance from the position of said target grows. This behaviour is
symptomatic of a potential issue with these architectures, when dealing with this
type of data: flows placed in neighboring positions inside a traffic matrix might in
reality be weakly related to one another, since the reason they occupy adjacent
cells might simply be due to how the algorithms of collection and compilation into
the bi-dimensional structure process the data. For these reasons, it might be worth
exploring whether finding a criterion to distribute traffic flows inside the matrix in
a such a way that their positional distance reflects their actual mutual correlation
can be beneficial to the performances of these models.

34

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.7: Saliency Maps (Geant, coordinate 1,3)

35

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.8: Saliency Maps (Geant, coordinate 8,9)

36

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.9: Saliency Maps (Geant, coordinate 11,7)

37

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.10: Saliency Maps (Abilene, coordinate 3,4)

38

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.11: Saliency Maps (Abilene, coordinate 2,8)

39

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.12: Saliency Maps (Abilene, coordinate 7,9)

40

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.13: Saliency Maps (Mawi, coordinate 1,8)

41

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.14: Saliency Maps (Mawi, coordinate 11,2)

42

Results

(a) CNN (sample) (b) CNN (average)

(c) CAE (sample) (d) CAE (average)

(e) AAE (sample) (f) AAE (average)

Figure 5.15: Saliency Maps (Mawi, coordinate 19,14)

43

Chapter 6

Conclusion

The work reported in this thesis was led with the overarching goal of verifying the
applicability of the techniques for AI explanation found in literature, to the cases
of neural networks trained to solve the problem of Traffic Matrix Completion. The
study was carried in three steps:

• first, we focused on the problem of completion itself, aiming to grasp its
nature and the technical challenges it derives from, surveying the landscape
of existing algorithms and finally mounting a comparison among a selection of
these algorithms by a number of different metrics, observing how in our case
the AI based approaches generally outperform their competitors.

• secondly, after scrutinizing a set of XAI methods and the intuitive value of the
information they provided about the algorithms we tested, we chose to present
the application of saliency computation to three different AI architectures
under different conditions.

• Finally, we discussed the patterns observed in the behaviour of the networks
through the saliency maps, the extent of the insight they provided about both
single predictions and on average, and, based on this information, speculated
about how mindfully arranging the information inside of traffic matrices, given
prerequisite knowledge about the network flows and their correlations, could
lead to an improvement of performances.

44

Bibliography

[1] Matthias Grossglauser and Jennifer Rexford. «Passive Traffic Measurement
for IP Operations». In: (Apr. 2002) (cit. on p. 1).

[2] Huibin Zhou, Dafang Zhang, and Kun Xie. «Accurate traffic matrix completion
based on multi-Gaussian models». In: Computer Communications 102 (2017),
pp. 165–176. issn: 0140-3664. doi: https://doi.org/10.1016/j.comcom.
2016.11.011. url: https://www.sciencedirect.com/science/article/
pii/S0140366416306223 (cit. on pp. 1, 5).

[3] Daniel Zhang et al. The AI Index 2022 Annual Report. Mar. 2022 (cit. on
p. 2).

[4] AI HLEG. Ethics Guidelines for Trustworthy AI. 2019 (cit. on p. 2).
[5] Helena Webb. «A governance framework for algorithmic accountability and

transparency». In: 2019 (cit. on p. 2).
[6] Yipeng Liu, Zhen Long, and Ce Zhu. «Image Completion Using Low Tensor

Tree Rank and Total Variation Minimization». In: IEEE Transactions on
Multimedia 21.2 (2019), pp. 338–350. doi: 10.1109/TMM.2018.2859026
(cit. on pp. 4, 21).

[7] Emmanuel J. Candes and Benjamin Recht. Exact Matrix Completion via
Convex Optimization. 2008. doi: 10.48550/ARXIV.0805.4471. url: https:
//arxiv.org/abs/0805.4471 (cit. on p. 5).

[8] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. «Nonlinear total variation
based noise removal algorithms». In: Physica D: Nonlinear Phenomena 60.1
(1992), pp. 259–268. issn: 0167-2789. doi: https://doi.org/10.1016/0167-
2789(92)90242- F. url: https://www.sciencedirect.com/science/
article/pii/016727899290242F (cit. on p. 5).

[9] Shangqi Gao and Xiahai Zhuang. «Robust approximations of low-rank min-
imization for tensor completion». In: Neurocomputing 379 (2020), pp. 319–
333. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2019.
10.086. url: https://www.sciencedirect.com/science/article/pii/
S0925231219315280 (cit. on p. 5).

45

https://doi.org/https://doi.org/10.1016/j.comcom.2016.11.011
https://doi.org/https://doi.org/10.1016/j.comcom.2016.11.011
https://www.sciencedirect.com/science/article/pii/S0140366416306223
https://www.sciencedirect.com/science/article/pii/S0140366416306223
https://doi.org/10.1109/TMM.2018.2859026
https://doi.org/10.48550/ARXIV.0805.4471
https://arxiv.org/abs/0805.4471
https://arxiv.org/abs/0805.4471
https://doi.org/https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/https://doi.org/10.1016/0167-2789(92)90242-F
https://www.sciencedirect.com/science/article/pii/016727899290242F
https://www.sciencedirect.com/science/article/pii/016727899290242F
https://doi.org/https://doi.org/10.1016/j.neucom.2019.10.086
https://doi.org/https://doi.org/10.1016/j.neucom.2019.10.086
https://www.sciencedirect.com/science/article/pii/S0925231219315280
https://www.sciencedirect.com/science/article/pii/S0925231219315280

BIBLIOGRAPHY

[10] Shangqi Gao and Qibin Fan. «A Mixture of Nuclear Norm and Matrix
Factorization for Tensor Completion». In: Journal of Scientific Computing
75.1 (Apr. 2018), pp. 43–64. issn: 1573-7691. doi: 10.1007/s10915-017-
0521-9. url: https://doi.org/10.1007/s10915-017-0521-9 (cit. on
pp. 5, 21).

[11] Zaiwen Wen, Wotao Yin, and Yin Zhang. «Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relaxation al-
gorithm». In: Mathematical Programming Computation 4 (Dec. 2012). doi:
10.1007/s12532-012-0044-1 (cit. on pp. 5, 21).

[12] Huibin Zhou, Dafang Zhang, Kun Xie, and Yuxiang Chen. «Spatio-temporal
tensor completion for imputing missing internet traffic data». In: 2015 IEEE
34th International Performance Computing and Communications Conference
(IPCCC). 2015, pp. 1–7. doi: 10.1109/PCCC.2015.7410315 (cit. on p. 5).

[13] J. Douglas Carroll and Jih-Jie Chang. «Analysis of individual differences
in multidimensional scaling via an n-way generalization of “Eckart-Young”
decomposition». In: Psychometrika 35.3 (Sept. 1970), pp. 283–319. issn:
1860-0980. doi: 10.1007/BF02310791. url: https://doi.org/10.1007/
BF02310791 (cit. on p. 5).

[14] Richard A. Harshman. «Foundations of the PARAFAC procedure: Models
and conditions for an "explanatory" multi-model factor analysis». In: 1970
(cit. on p. 5).

[15] Fu Xiao, Lei Chen, Hai Zhu, Richang Hong, and Ruchuan Wang. «Anomaly-
Tolerant Network Traffic Estimation via Noise-Immune Temporal Matrix
Completion Model». In: IEEE Journal on Selected Areas in Communications
37.6 (2019), pp. 1192–1204. doi: 10.1109/JSAC.2019.2904347 (cit. on p. 5).

[16] Matthew Roughan, Mikkel Thorup, and Yin Zhang. «Traffic Engineering
with Estimated Traffic Matrices». In: Proceedings of the 3rd ACM SIGCOMM
Conference on Internet Measurement. IMC ’03. Miami Beach, FL, USA:
Association for Computing Machinery, 2003, pp. 248–258. isbn: 1581137737.
doi: 10.1145/948205.948237. url: https://doi.org/10.1145/948205.
948237 (cit. on p. 6).

[17] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael Rumsewicz,
Jennifer Yates, and Yin Zhang. «Experience in Measuring Backbone Traffic
Variability: Models, Metrics, Measurements and Meaning». In: Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet Measurment. IMW ’02.
Marseille, France: Association for Computing Machinery, 2002, pp. 91–92.
isbn: 158113603X. doi: 10.1145/637201.637213. url: https://doi.org/
10.1145/637201.637213 (cit. on p. 6).

46

https://doi.org/10.1007/s10915-017-0521-9
https://doi.org/10.1007/s10915-017-0521-9
https://doi.org/10.1007/s10915-017-0521-9
https://doi.org/10.1007/s12532-012-0044-1
https://doi.org/10.1109/PCCC.2015.7410315
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02310791
https://doi.org/10.1109/JSAC.2019.2904347
https://doi.org/10.1145/948205.948237
https://doi.org/10.1145/948205.948237
https://doi.org/10.1145/948205.948237
https://doi.org/10.1145/637201.637213
https://doi.org/10.1145/637201.637213
https://doi.org/10.1145/637201.637213

BIBLIOGRAPHY

[18] Yin Zhang, Matthew Roughan, Nick Duffield, and Albert Greenberg. «Fast
Accurate Computation of Large-Scale IP Traffic Matrices from Link Loads».
In: Proceedings of the 2003 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems. SIGMETRICS ’03. San
Diego, CA, USA: Association for Computing Machinery, 2003, pp. 206–217.
isbn: 1581136641. doi: 10.1145/781027.781053. url: https://doi.org/
10.1145/781027.781053 (cit. on pp. 6, 17).

[19] Rashida Ali Memon, Sameer Qazi, and Bilal Muhammad Khan. «Design and
Implementation of a Robust Convolutional Neural Network-Based Traffic
Matrix Estimator for Cloud Networks». In: Wireless Communications and
Mobile Computing 2021 (June 2021), p. 1039613. issn: 1530-8669. doi: 10.
1155/2021/1039613. url: https://doi.org/10.1155/2021/1039613
(cit. on p. 6).

[20] Xin Wang, Yuanyi Chen, Wei Ruan, Qiang Gao, Guode Ying, and Li Dong.
«Intelligent Detection and Recovery of Missing Electric Load Data Based
on Cascaded Convolutional Autoencoders». In: Scientific Programming 2020
(Dec. 2020), p. 8828745. issn: 1058-9244. doi: 10.1155/2020/8828745. url:
https://doi.org/10.1155/2020/8828745 (cit. on p. 6).

[21] Van An Le, Phi Le Nguyen, and Yusheng Ji. «Deep Convolutional LSTM
Network-based Traffic Matrix Prediction with Partial Information». In: 2019
IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
2019, pp. 261–269 (cit. on p. 6).

[22] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong,
and Wang-chun Woo. Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting. 2015. doi: 10.48550/ARXIV.1506.
04214. url: https://arxiv.org/abs/1506.04214 (cit. on p. 6).

[23] Alejandro Barredo Arrieta et al. «Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI».
In: Information Fusion 58 (2020), pp. 82–115. issn: 1566-2535. doi: https:
//doi.org/10.1016/j.inffus.2019.12.012. url: https://www.science
direct.com/science/article/pii/S1566253519308103 (cit. on pp. 6, 7).

[24] Kasun Amarasinghe, Kevin Kenney, and Milos Manic. «Toward Explainable
Deep Neural Network Based Anomaly Detection». In: 2018 11th International
Conference on Human System Interaction (HSI). 2018, pp. 311–317. doi:
10.1109/HSI.2018.8430788 (cit. on p. 7).

[25] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. «On Pixel-Wise Explanations
for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation».
In: PLOS ONE 10.7 (July 2015), pp. 1–46. doi: 10.1371/journal.pone.

47

https://doi.org/10.1145/781027.781053
https://doi.org/10.1145/781027.781053
https://doi.org/10.1145/781027.781053
https://doi.org/10.1155/2021/1039613
https://doi.org/10.1155/2021/1039613
https://doi.org/10.1155/2021/1039613
https://doi.org/10.1155/2020/8828745
https://doi.org/10.1155/2020/8828745
https://doi.org/10.48550/ARXIV.1506.04214
https://doi.org/10.48550/ARXIV.1506.04214
https://arxiv.org/abs/1506.04214
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://doi.org/10.1109/HSI.2018.8430788
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140

BIBLIOGRAPHY

0130140. url: https://doi.org/10.1371/journal.pone.0130140 (cit. on
p. 7).

[26] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. «Grad-CAM: Visual Explanations
from Deep Networks via Gradient-Based Localization». In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV). 2017, pp. 618–626. doi:
10.1109/ICCV.2017.74 (cit. on p. 7).

[27] Han-Yun Chen and Ching-Hung Lee. «Vibration Signals Analysis by Explain-
able Artificial Intelligence (XAI) Approach: Application on Bearing Faults
Diagnosis». In: IEEE Access 8 (2020), pp. 134246–134256. doi: 10.1109/
ACCESS.2020.3006491 (cit. on p. 8).

[28] Igor Cherepanov, Alex Ulmer, Jonathan Geraldi Joewono, and Jörn Kohlham-
mer. Visualization Of Class Activation Maps To Explain AI Classification
Of Network Packet Captures. 2022. doi: 10.48550/ARXIV.2209.02045. url:
https://arxiv.org/abs/2209.02045 (cit. on p. 8).

[29] Ying Zheng, Ziyu Liu, Xinyu You, Yuedong Xu, and Junchen Jiang. «Demys-
tifying Deep Learning in Networking». In: Proceedings of the 2nd Asia-Pacific
Workshop on Networking. APNet ’18. Beijing, China: Association for Comput-
ing Machinery, 2018, pp. 1–7. isbn: 9781450363952. doi: 10.1145/3232565.
3232569. url: https://doi.org/10.1145/3232565.3232569 (cit. on p. 8).

[30] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Con-
volutional Networks: Visualising Image Classification Models and Saliency
Maps. 2013. doi: 10.48550/ARXIV.1312.6034. url: https://arxiv.org/
abs/1312.6034 (cit. on pp. 8, 14).

[31] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convo-
lutional Networks. 2013. doi: 10.48550/ARXIV.1311.2901. url: https:
//arxiv.org/abs/1311.2901 (cit. on p. 8).

[32] Tomoki Uchiyama, Naoya Sogi, Koichiro Niinuma, and Kazuhiro Fukui. Visu-
ally explaining 3D-CNN predictions for video classification with an adaptive
occlusion sensitivity analysis. 2022. doi: 10.48550/ARXIV.2207.12859. url:
https://arxiv.org/abs/2207.12859 (cit. on p. 8).

[33] Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model
Predictions. 2017. doi: 10.48550/ARXIV.1705.07874. url: https://arxiv.
org/abs/1705.07874 (cit. on p. 9).

[34] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. «Learning Impor-
tant Features Through Propagating Activation Differences». In: (2017). doi:
10.48550/ARXIV.1704.02685. url: https://arxiv.org/abs/1704.02685
(cit. on p. 9).

48

https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ACCESS.2020.3006491
https://doi.org/10.1109/ACCESS.2020.3006491
https://doi.org/10.48550/ARXIV.2209.02045
https://arxiv.org/abs/2209.02045
https://doi.org/10.1145/3232565.3232569
https://doi.org/10.1145/3232565.3232569
https://doi.org/10.1145/3232565.3232569
https://doi.org/10.48550/ARXIV.1312.6034
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://doi.org/10.48550/ARXIV.1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://doi.org/10.48550/ARXIV.2207.12859
https://arxiv.org/abs/2207.12859
https://doi.org/10.48550/ARXIV.1705.07874
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://doi.org/10.48550/ARXIV.1704.02685
https://arxiv.org/abs/1704.02685

BIBLIOGRAPHY

[35] Alfredo Nascita, Antonio Montieri, Giuseppe Aceto, Domenico Ciuonzo, Vale-
rio Persico, and Antonio Pescapé. «XAI Meets Mobile Traffic Classification:
Understanding and Improving Multimodal Deep Learning Architectures».
In: IEEE Transactions on Network and Service Management 18.4 (2021),
pp. 4225–4246. doi: 10.1109/TNSM.2021.3098157 (cit. on p. 9).

[36] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust
You?": Explaining the Predictions of Any Classifier. 2016. doi: 10.48550/
ARXIV.1602.04938. url: https://arxiv.org/abs/1602.04938 (cit. on
p. 9).

[37] Andrea Morichetta, Pedro Casas, and Marco Mellia. «EXPLAIN-IT». In:
Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine
Learning and Artificial Intelligence for Data Communication Networks. ACM,
Dec. 2019. doi: 10.1145/3359992.3366639. url: https://doi.org/10.
11452F3359992.3366639 (cit. on p. 9).

[38] Cecilia Panigutti, Alan Perotti, and Dino Pedreschi. «Doctor XAI: An
Ontology-Based Approach to Black-Box Sequential Data Classification Expla-
nations». In: Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency. FAT* ’20. Barcelona, Spain: Association for Computing
Machinery, 2020, pp. 629–639. isbn: 9781450369367. doi: 10.1145/3351095.
3372855. url: https://doi.org/10.1145/3351095.3372855 (cit. on p. 9).

[39] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F. Stewart,
and Jimeng Sun. Doctor AI: Predicting Clinical Events via Recurrent Neural
Networks. 2015. doi: 10.48550/ARXIV.1511.05942. url: https://arxiv.
org/abs/1511.05942 (cit. on p. 9).

[40] Dulari Bhatt, Chirag Patel, Hardik Talsania, Jigar Patel, Rasmika Vaghela,
Sharnil Pandya, Kirit Modi, and Hemant Ghayvat. «CNN Variants for
Computer Vision: History, Architecture, Application, Challenges and Fu-
ture Scope». In: Electronics 10.20 (2021). issn: 2079-9292. doi: 10.3390/
electronics10202470. url: https://www.mdpi.com/2079-9292/10/20/
2470 (cit. on p. 11).

[41] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural
Networks. 2015. arXiv: 1511.08458 [cs.NE] (cit. on p. 11).

[42] Ademola E. Ilesanmi and Taiwo O. Ilesanmi. «Methods for image denoising
using convolutional neural network: a review». In: Complex & Intelligent
Systems 7.5 (Sept. 2021), pp. 2179–2198. issn: 2198-6053. doi: 10.1007/
s40747- 021- 00428- 4. url: https://doi.org/10.1007/s40747- 021-
00428-4 (cit. on p. 12).

49

https://doi.org/10.1109/TNSM.2021.3098157
https://doi.org/10.48550/ARXIV.1602.04938
https://doi.org/10.48550/ARXIV.1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.1145/3359992.3366639
https://doi.org/10.11452F3359992.3366639
https://doi.org/10.11452F3359992.3366639
https://doi.org/10.1145/3351095.3372855
https://doi.org/10.1145/3351095.3372855
https://doi.org/10.1145/3351095.3372855
https://doi.org/10.48550/ARXIV.1511.05942
https://arxiv.org/abs/1511.05942
https://arxiv.org/abs/1511.05942
https://doi.org/10.3390/electronics10202470
https://doi.org/10.3390/electronics10202470
https://www.mdpi.com/2079-9292/10/20/2470
https://www.mdpi.com/2079-9292/10/20/2470
https://arxiv.org/abs/1511.08458
https://doi.org/10.1007/s40747-021-00428-4
https://doi.org/10.1007/s40747-021-00428-4
https://doi.org/10.1007/s40747-021-00428-4
https://doi.org/10.1007/s40747-021-00428-4

BIBLIOGRAPHY

[43] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. Adversarial Autoencoders. 2016. arXiv: 1511.05644 [cs.LG]
(cit. on p. 13).

[44] Dumitru Erhan, Y. Bengio, Aaron Courville, and Pascal Vincent. «Visualizing
Higher-Layer Features of a Deep Network». In: Technical Report, Univeristé
de Montréal (Jan. 2009) (cit. on p. 15).

[45] Y. Vardi. «Network Tomography: Estimating Source-Destination Traffic In-
tensities from Link Data». In: Journal of the American Statistical Association
91.433 (1996), pp. 365–377. issn: 01621459. url: http://www.jstor.org/
stable/2291416 (visited on 11/22/2022) (cit. on pp. 16, 17).

[46] Xin Wang, Yuanyi Chen, Wei Ruan, Qiang Gao, Guode Ying, and Li Dong.
«Intelligent Detection and Recovery of Missing Electric Load Data Based
on Cascaded Convolutional Autoencoders». In: Scientific Programming 2020
(Dec. 2020), pp. 1–20. doi: 10.1155/2020/8828745 (cit. on pp. 20, 21).

50

https://arxiv.org/abs/1511.05644
http://www.jstor.org/stable/2291416
http://www.jstor.org/stable/2291416
https://doi.org/10.1155/2020/8828745

	List of Tables
	List of Figures
	Introduction
	Related Work
	Matrix Completion
	eXplainable Artificial Intelligence

	Background
	Artificial Intelligence Architectures
	Convolutional Neural Network
	Convolutional Autoencoder
	Adversarial Autoencoder

	Explainable Artificial Intelligence
	Saliency Maps
	Occlusion Sensitivity Analysis
	Activation Maximization

	Solution
	Results
	Datasets
	Metrics
	Benchmark Algorithms
	Convolutional Autoencoder
	Adversarial Autoencoder
	Cascaded Convolutional Autoencoder
	Convolutional Neural Network
	Convolutional Long Short-Term Memory Network
	k-Nearest Neighbours
	LMAFit
	Smooth Low Rank Tensor Tree Completion
	Smooth Low Rank Tensor Completion

	Preprocessing
	Performance
	Results - Geant Dataset
	Results - Abilene Dataset
	Results - Mawi Dataset
	Training and Prediction Times

	XAI Results
	Saliency Maps

	Conclusion

