POLITECNICO DI TORINO

Master of Science’s Degree in ICT for Smart Societies

Master of Science’s Degree Thesis

COMPARISON BETWEEN TWO
CO-SIMULATION FRAMEWORKS,
MOSAIK AND HELICS

Supervisors Candidate

Prof. LORENZO BOTTACCIOLI JUAN GILBERTO RUEDA VASQUEZ
Prof. CLAUDIA DE VIZIA
Prof. EDOARDO PATTI

December 2022

Abstract

The Energy systems combine physical domains related directly to the processes
of generation, storage, distribution, and consumption, in addition to communication
technologies and software infrastructure for data and control purposes. The com-
plexity of these heterogeneous systems makes it difficult to study them since tools of
different domains must interact. In recent years, emerge a new enabling technique
where global simulation of a complex system can be achieved by composing the
simulations of its parts called Co-simulation.

This research has the purpose of making a comparison between two of these
co-simulation frameworks, MOSAIK and HELICS. To this aim, the comparison is
divided into two components theoretical and performance. The first component
analyze the tools considering their conceptual architectures, giving particular im-
portance to how each framework handles the time synchronization and the data
exchange between all the co-simulation simulators. The second one center the
study on the performance presented by the platforms HELICS and MOSAIK with
two chosen case studies. To allow the configuration and set-up of each case study
can be done in the same way, it uses a flexible system that brings a plug-and-play
integration of models, simulators, and scenarios, independently of the framework.
In this system, one or more models can be easily replaced without affecting the
whole simulation engine, and it is possible to choose the framework you want to
execute.

Each study case is composed of different simulators that are combined in a shared
simulation environment. Case study one represents a simple electrical network
composed of four Python models used to simulate the grid, some photovoltaic
panels, and buildings. Case study two models a greater electrical system where
the performance of the building is simulated with Energyplus, the heat pump with
its control strategy is modeled in Modelica, household occupancy, electrical loads,
photovoltaic production, smart meters, weather, and grid employ Python simulators.

Both frameworks simulate the case studies with a set of predefined scalability
scenarios, i.e., each scenario run has more than one replica for one of its simulators.
During these tests, data on time spent in the simulation and computational resources
required for each case, each scenario, and each framework were obtained and stored.
Finally, these results are presented as well as the analysis of the similarities and
differences between MOSAIK and HELICS by performing the co-simulations.

Table of Contents

List of Tables

List of Figures

1

Introduction
1.1 Problem formulation . .
1.2 Research Objectives . . .

1.2.1 General Objective
1.2.2 Specific Objectives

Research Methodology
State of the art

Theoretical overview
4.1 MOSAIK
4.2 HELICS

Conceptual Comparison

Co-Simulation Cases study

6.1 Cases study description .
6.1.1 Casel
6.1.2 Case2

6.2 Co-simulation setup . . .
6.2.1 Casel
622 Case2

6.3 Results.
6.3.1 Casel
632 Case2

Conclusions

I11

v

12

16

23
23
23
23
24
25
26
27
28
30

33

A Appendix 35

A1l Case1l: YAML filesetup 35
A.2 Case 1: Models YAML filesetup 38
A3 Case 2: YAMLfilesetup 39
A4 Case 2: Models YAML filesetup. 44
A.5 Backend Mosaik simulation 47
A.6 Backend Helics simulation 68
Bibliography 84

11

List of Tables

5.1 Mosaik and Helics: comparison between frameworks.

6.1 Case study 1: Defined scenarios.
6.2 Case study 2: Defined scenarios.

II1

List of Figures

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Mosaik conceptual architecture 9
Helics conceptual architecture 13
Mosaik configuration 17
Helics configuration 19
Tree diagram of Scenario YAML template 24
Block diagram of co-simulation scenario Case 1 26
Block diagram of co-simulation scenario Case 2 27
Simulation time Case 1 29
Memory usage Case 1. 29
Simulation time Case 2 oL 31
Memory usage Case 2.o 31

v

Chapter 1
Introduction

Energy systems are becoming very complex over the last few years. Integrating
different domains such as physical, software, and network components has led to
design, operation, control, analysis, and maintenance challenges.

The buildup of state-of-the-art modeling and simulation tools that capture
this interdisciplinary (cyber and physical domains) of current energy systems has
become a field of research of increasing interest.

Co-simulation is one of the emerging approaches for this type of complex system.
Co-simulation enables to global creation scenario with a set of diverse coupled
simulators, where each one is a black box mock-up of a constituent system developed
and provided by the team that is responsible for that system.

The name of co-simulation frameworks is given since one of the components is a
middleware that is responsible for data exchange and temporal synchronization of
all the models.

MOSAIK and HELICS are two of these called co-simulations frameworks. MOSAIK
has been developed at the Oldenburg Institute for Information Technology and
HELICS at the U.S. Department of Energy. This thesis has the purpose of making
a comparison between these two co-simulation frameworks. The comparison is
made in two sections, the particular architectural concepts of the tools, as well as
results from two simulation studies implemented. The conceptual comparison gives
particular importance to how each framework handles the time synchronization
and the data exchange between all the co-simulation simulators. The implementing
part centers the study on the performance presented by the platforms HELICS and
MOSAIK with two chosen case studies.

The remainder of this thesis is structured as follows: Charter. 2 gives an expla-
nation of the research methodology and each of its phases. Chapter. 3 presents

1

Introduction

the literature review conducted. The theoretical description of MOSAIK and
HELICS is made in Chapter. 4, followed by the conceptual comparison between
both frameworks conducted in Chapter. 5. Chapter 6. describes the two case
studies implemented with the respective analysis of results, and Chapter 6, finally
concludes the thesis.

1.1 Problem formulation

1.2 Research Objectives

1.2.1 General Objective

Make a comparison between MOSAIK and HELICS co-simulation environments
for smart city scenarios.

1.2.2 Specific Objectives

o Identify the conceptual differences and similarities between the co-simulation
frameworks MOSAIK and HELICS.

o Evaluate the performance of each co-simulation framework with two case
studies.

o Propose a co-simulation systems that allows to use both framework MOSAIK
and HELICS from a common setup document.

Chapter 2

Research Methodology

The methodology followed during the development of the present research was
structured in four main phases:

o Phase 1: State of the art: Co-simulation.

e Phase 2: Theoretical overview of the co-simulation frameworks: MOSAIK and
HELICS.

o Phase 3: Conceptual comparison between MOSAIK and HELICS.
o Phase 4: Co-Simulation case studies.

Phase 1: State of the art: Co-simulation: A systematic literature review
was conducted to gain knowledge of the emerging enabling technique called Co-
simulation, the state-of-the-art of the different frameworks used as well as compar-
isons made between them, with particular attention in the frameworks MOSAIK
and HELICS. The results of this first phase are presented in Chapter 3.

Phase 2: Theorethical overview of the co-simulation frameworks: MO-
SAIK and HELICS: An in-depth understanding of the theoretical rationale
behind the MOSAIK and HELICS co-simulation frameworks was conducted in this
phase. Through the available works in the literature, was studied the structure
used by each framework, the approach that each on implements, and was identified
their key features. The results of this second phase are presented in chapter 4.
Phase 3: Conceptual comparison between MOSAIK and HELICS: The
conceptual analysis-oriented to compare the two co-simulation frameworks MO-
SAIK and HELICS was developed in this specific phase. The comparison was made
regarding their architectures and main characteristics as the data exchange and
time management. The description of the differences and similarities between both
frameworks is presented in more detail in Chapter 5.

Phase 4: Co-Simulation case studies: Finally, the last phase corresponds to

3

Research Methodology

comparing the results given by both frameworks from the simulation of represen-
tative tests cases. To this end, it was implemented two case studies. A detailed
analysis was later carried, considering all the characteristics, advantages, and dis-
advantages showed by MOSAIK and HELICS over each scenario. The description
of the case study and the analysis of the results are given in Chapter 6.

Chapter 3

State of the art

Nowadays, the integration of renewable energies into the electric power grid system
have become widely diffused. These new technologies add a further degree of
complexity transforming the whole energy system. The traditional network devel-
oped based on a centric approach with unidirectional power flow, and hierarchical
topologies cannot deal with the challenges and complexity of a more distributed
and flatter grid. The Smart Grid concept appears to replace the previous approach.
It requires integrating Information and communication technologies (ICT), power
electronics, and business applications [1], which lead to understanding the Smart
Grid as a cyber physical energy system (CPES). Aiming to solve the challenges,
industry and researchers jointed efforts developing components and strategies with
the purpose to reach efficiency, sustainability, reliability, security, and stability in
the energy grid [2].

Meanwhile, the integration of cyber-physical systems into the energy grid in-
creases, evaluate new technological developments to guarantee functionality during
the operation is getting quite complex due to the interdisciplinarity face in the
network [3]. Software simulations proves to be valuable as a test stage, as well as
an easily scalable test environment allowing consideration of larger-scale scenarios
without stressing the actual physical infrastructure [4] and [5]. Additionally, to
assess the performance of possible solutions, simulation tools offer a cost-effective
approach. An overview of the tools applicable in Smart Grid research is shown
in the work of Mets et al. [6].The authors identified two main groups containing
most of simulations tools: the power systems that typically adopt a continuous-
time model and communications network simulators that adopt a discrete event
simulation approach. However, each energy system component count with a large
set of simulation applications.

Given the high variety of components belonging to Smart Grids and the increased
linked between elements of diverse nature, it is necessary to use environments that

5

State of the art

allow different combinations among them [7]. This approach is known as co-
simulation or coupled simulation. An integral simulation platform aims to model
multidomain systems connecting the simulations of its parts to solve within their
native environments [8]. In the last years, different solutions have been developed
in this concern [9]. For instance, in the work by Palensky et al. [10], a prototype
platform simulation tests the dynamic interaction of a flexible-demand EV charging
management system. Combining a heterogeneous set of simulation tools regarding
authentic user behavior, realistic battery model, and reliable electric distribution
grid calculations, showed modeling capabilities, scalability, and modularity provided
by this flexible environment.

In the work by Kelley et al.[11], a middleware component called FSKIT was
developed to support large-scale integrated transmission and communications
systems. FSKIT was used to couple a power transmission simulator with dynamic
capabilities GridDyn and the open-source network simulator NS-3 obtaining high
time accuracy.

How to coordinate individual simulators, numerical aspects, and software inter-
faces for both power and ICT domain are discussed by Lépez et al. [12]. Together,
the simulators allow researchers to analyze complex interactions and dynamics in
more detail. The work by Palensky et al. [13] presents the properties of three smart
grid co-simulation tools: Powerfactory, Open Modelica, and OMNET++, belonging
to simulating intelligent power systems. As conclusion, the authors highlight the
need for a unique language, documentation, distributed computing, validation,
complexity, multigranular models, and heterogeneous models as relevant future
research directions inside power systems.

Researchers increasingly link different simulators forming novel co-simulations.
As a consequence, it has been a need to make classifications to have a guideline
for futures works. Studies addressed in this way were found in the literature. For
instance, [14], and [15] present a survey and lessons learned on the topic of CPES
testbeds. Regarding general classifications among the whole set of available and
used co-simulation frameworks, related information is described in [16], [5], and
[3]. They offer classifications between the co-simulation tools, considering both
theoretical differences and similarities.

One of the work environments developed by research teams focused on co-
simulation is MOSAIK. This framework offers a composite simulation environment
where models with varying properties can yield sensible and reliable results. MO-
SAIK is composed of four layers bridging the gap between control strategies,
scenario specification, and simulation models by introducing semantic information
about these [17]. MOSAIK is an attempt toward a Smart Grid specific standard
for co-simulation. A detailed description of the generic interface called SimAPI and
the semantic layer, additionally to a first simulation use case, is presented in [18].

The work by Rohjans et al. [19] shows the integration of a real-time power

6

State of the art

simulator called Aristo with an implemented Multi-Agent-System (MAS) into
MOSAIK. Using load and wind generation profiles is analyze the impact of con-
trol strategies with agent-based decision-making on the voltage and power flow
calculations. In this case study, Mosaik connects the different agents and performs
the coordination mechanism between them. An urban energy modeling system is
developed by Wang et al. [20]. Its modularity design allows integration of different
urban energy simulation tools encapsulated in Functional Mockup Units (FMU). A
coupled simulation environment compose by EnergyPlus simulating a building’s
energy flows. Nottingham Multi-Agent Stochastic Simulation (No-MASS) generates
synthetic populations of buildings’ occupants and their energy-related behaviors.
And Mosaik as master orchestrator managing the different simulation scenarios
and data flow between the individual components, evaluated two study cases: a
show box office and multiple buildings.

An extended CPES test environment is presented in [4]. It uses a virtual power
plant with three wind turbines and two industrial loads located in a grid with
some distributed households and industrial load. Additionally, units forecast the
upcoming power consumption and the tool Pandapower to calculate power flow
in the grid. Using the framework MOSAIK the whole scenario is implemented,
looking to perform congestion management to prevent transformer overloads. In
conclusion, MOSAIK shows to be a flexible and usable solution for CPES testing
across multiple domains. The centralized scheduling concept of MOSAIK allows
treating all data exchanged identically without additional configuration. Other
frameworks, especially those based on HLA, require the user to provide more
specification in the interaction between the simulators.

The work by Barbierato et al. [21] proposes a multi-model co- simulation
platform designed for various general-purpose services for smart gird management
following an event-driven approach. With Functional Mock-up Interface (FMI),
the simulation models have been extended. Using MOSAIK as an orchestrator, the
integrated simulators are EnergyPlus for building model, Modelica for Heat Pump
system, photovoltaic system, household electricity behavior model, and weather
model. The platform is tested in a hypothetical and realistic house located at
Turin.

A co-simulation approach using MOSAIK applied on a power system with
grid-forming converters is presented by Farrokhseresht et al. [22]. The power
system modeled in Powerfactory and the controller of the converter-based generator
modeled in Simulink are coupled. The study tests the control’s functionality to
validate their efficacy in a co-simulation setting against a monolithic Powerfactory
simulation and applies it for transient stability analysis.

A new recently co-simulation environment developed is the Hierarchical Engine
for Large-scale Infrastructure co-simulation (HELICS). This framework is built on
the collective experience of multiple national laboratories of Unite State of America.

7

State of the art

HELICS allows leveraging existing off-the-shelf tools for transmission, distribution,
communication, and distributed market. Its layered architecture enables both
high-performance simulations and efficient software development [23]. HELICS
was developed by the same team that in previous years design the framework
called FNCS, as well as FNCS utilizes a federated approach HLICS does. It can
be considered that HELICS is the evolution of FNCS which was discontinued in
2015 [24]. It was found that the framework FNCS is used in research-oriented to
analyze scenarios of cybersecurity attacks and evaluate their consequences [25] and
[26]. These studies integrate the simulation tools GridLAB-D and NS-3 through
the FNCS environment. Since the simulation tools mentioned can be coupled as
well on HELICS, this suggests that the framework could employ in the same study
field. The integration of the Network Simulator 3 (NS-3) into HELICS is described
in the work by Zhang et al. [27]. The authors analyzed the impact of hybrid
communications design on the Distributed Energy Resources (DER), monitoring
network performance metrics of latency and packet loss. The used case study was
a DER grid composed of 51 PV nodes, 275 smart meters, 10 data concentrators,
and one edge router, divided into ten neighborhood areas.

Bharati and Ajjarapu [28] presents a developed Transmission and Distribution
(TD) co-simulation combining the commercial transmission system solvers PSS/E
and the accurate distribution system solver GridLAB-D using HELICS. The study
shows the high-inertia and a low-inertia induction motor response in the distribution
system to a fault in the transmission system.

An implemented market co-simulation in HELICS, analyzing two DER penetra-
tions levels, is described in [29]. Modeling the interactions between a House model,
a House controller, an Energy orders broker, a Grid simulator, and the Market
solver, the economics results are compared to full retail net energy metering. It was
demonstrated the potential for distribution markets to enter into the discussion
regarding post-net metering paradigms.

Chapter 4

Theoretical overview

4.1 MOSAIK

The Smart Grid domain has comprehensive technologies where their specific ex-
pertise must be adequately integrated to provide a sustainable and reliable power
supply. The MOSAIK framework, as a co-simulation approach, provides a flexible
architecture enabling the integration of these existing models and platforms into

large-scale simulation scenarios[17].

A LAYERS

c Control
.0

-

o

o

o

g Composition
2

=

=3

£ Scenario
2
| [——
e emantic
o

o

2 .
‘- Syntactic
©

0

G

£

Technical

COMPONENTS

e

1) 1
,| DataFlow | | Scenario Model |!
1 Graph | | Instance |
- - o e !
\ Y,
7 r——-—————— === =—=c== = N
| Scenario : | Scenario :
I Model) I Metamodel |
\ -0 (=== = /
s T - T —— = N\
| Simulator : | Semantic :
I Description) I Metamodel !
\, e o L /
s 3
[T 3
I SimAPI Implementation |
I
e e i,
Ps N

\

Figure 4.1: Mosaik conceptual architecture

9

Theoretical overview

The MOSAIK conceptual architecture is composed of six layers, as is shown in
figure 4.1, which allows for addressing goals of syntactic semantic interoperability,
as well as scenario modeling and control strategy integration. This architecture
was developed based on two computer science models: Levels of Conceptual
Interoperability (LCIM) and the Architecture for Modeling and Simulation [30].

Each layer fulfills a specific function as well as meets a set of requirements. To
get a better understanding of each one, they will be explained below.

Technical layer:It consists of computational and network hardware. It man-
ages the simulator processes, including initialization, monitoring, and stopping
as required. Additionally, it addresses the distributed simulation infrastructure
meeting the requirement of running on multiple servers.

Syntactic layer:It enables simulators to interact with their models through
a well-defined interface called SImAPI, which must be implemented by each. As
main features of this layer, it can be highlighted:

o It can retrieve relations between the entities of its simulation models.
« It allows the provision of information about the static properties of the entities.
o It supports the transmission of complex data types.

o It enables to have variable entity quantities as well as variable-specific inputs
and outputs.

o It allows the integration of commercial off-the-shelf simulators.

e The SimApi uses a fixed time step to handle the simulator’s process. This
allows integrating simulators with different time paradigms as continuous and
discrete models.

o It enables heterogeneous simulations where simulators implemented with
different languages, tools, and frameworks can be integrated.

Semantic layer:It allows the creation of a reference data model giving a com-
mon understanding of the exchanged data between simulators. The Semantic layer
employs a metamodel called Semantic metamodel, where is placed the information
obtained about the simulation models, their entities, and information flows. Other
relevant aspects of this layer are:

« It gives access about the static data of each entity /model.

o It offers means to handle entities with dynamic data.

10

Theoretical overview

o It addresses the definition of the structure of models with complex data types.

o It provides information regarding the number of entity instances each model
contains.

o It provides in the simulator description what is the step size of each simulator.
o It gives information about the data flows and their connections.

o It offers the mechanism to define the required parameter values of each
simulator.

Scenario layer:It provides the formal description of Smart grid scenarios with
a metamodel named scenario metamodel, where are given the reference elements
describing each simulator. The scenario layer gives responds to the following
requirements:

o It provides the scenario specification mechanism that enables the automatic
composition of simulation models.

« It allows the connection of entities from entity sets, and it defines the rules to
connect and reuse them, enabling the possibility of creating large scenarios.

o It allows the composition of entities based on their attributes.

o It integrates large numbers of different entities in an automated fashion.
It allows for defining the step size of simulators.

« It enables the specification of the parameter value of simulators.

Composition layer:This layer translates the work of each of the layers men-
tioned above into the following set of tasks to be managed.

o It interprets the scenario metamodel.

o [t initializes the simulators and models.

o It establishes the data flows between the simulated entities.

o It is in charge of advancing the simulators in the correct order.

Control layer:It aims to access and control the state of simulated entities using
the interface called ControlAPIL. It meets the above requirements:

o It provides functionalities to get information regarding the physical compo-
nents.

11

Theoretical overview

o It gives access to whole model entities relations.
o It gets information about the static entities” attributes.

o It provides a mechanism for synchronizing control strategies.

4.2 HELICS

Energy systems face a growing of distributed resources into the grid and their
increasingly intertwined with communication (ICT) systems. This interdependency
has prompted the development of advanced modeling and simulation tools that
capture both cyber and physical domains.

The co-simulation enables the global simulation of a coupled system composed
of different simulators. This technique allows a better understanding of each energy
system component and test the reliability, efficiency, and cost-effectiveness.

HELICS (Hierarchical Engine for Large-scale Infrastructure Co-Simulation) is
a new, open-source co-simulation platform that has been developed by the U.S.
Department of Energy in partnership with multiple national laboratories.

HELICS offers a modular, high-performance, scalable, cross-platform co-simulation|
framework for modeling cyber-physical-energy systems. It can support large-scale
(10,000,000+ federates) co-simulations with off-the-shelf power-system, communica-
tion, market, and end-user tools; furthermore, both event-driven and time series
simulation.

The development of HELICS gives response to the following requirements:

» It supports a various range of co-simulation from small-scale interaction to
large-scale interconnection.

o It supports all operating systems.
o It enables commercial tools.
o It allows the easy build-up of wide co-simulation scenarios.

o It enables the integration of diverse, existing simulation tools through an easy
interface. Open-source.

o It supports discrete-event simulation, quasi-steady-state time series, and phasor
dynamics.

o It enables inter-federate convergence.

12

Theoretical overview

o It ensures transmission-distribution power flow convergence.

HELICS provides a rich set of APIs written in Python, C, Java, and Matlab.
Hence, multiple simulation models “federates” from various domains can interact
with high performance and create a larger co-simulation “federation” able to capture
rich interactions.

HELICS employs a layered architecture that enables clean and modular main-
tainability, besides a parallel development of each layer which is possible through
APIs between them, allowing each layer to make internal changes and optimizations
without impacting the others.

7/ \ LAYERS COMPONENTS

User Interface

Users

| 1 1ok (RRe |
: ‘ Scenario GEN. ‘ : : ‘ Configuration | : : ‘ Automation ‘ : : ‘ ‘ E
U e | S IR B L 1
- T D B B Y A
Simulators [+(GRDDVN | . [GRIDLABD || . Ns3 | ., Fesmv | | -
oo 1 L __ s 1 L 1)
st SO0 o [——-—-=-=-=-= (R
Application Federate/Object | | 1| Scheduler/Time : |: |@|:
1 1
1

synchronization

Core

Ir i 1 r f
{ o ___ 1 1 1

< Developers
p
(g

Figure 4.2: Helics conceptual architecture

It consists of the following five layers:

Platform layer: The software associated with this layer is written in cross-
platform C++, using C++14 features. It allows the integration of existing packages
and the use of other co-simulation tools. The platform layer ensures HELICS can
work across multiple operating systems and multiple computational scales. To
achieve this goal, it employs two communications interfaces, Message Passing Inter-
faces (MPI) and ZeroMQ), that will be used depending on the system latency [23][27].

Core layer: The Core layer works like an interface that is supported by either
ZeroMQ or MPI-based backend. It manages two essential mechanisms, the data
exchange and time synchronization of both types of federates: the discrete event
and the time series. It provides the different constructs that allow modeling any
interaction between federates. The HELICS federates can register endpoints, with
which it is possible to do special operations like:

13

Theoretical overview

e Direct pairwise communication.
o Communication latency.
o Complex message interactions.

Therefore, the core layer enables HELICS to work value-based, and message-
based interactions and, joined with the application layer, facilitates model network
communications.

Finally, the core layer is where federates register to the federation, and where
their time management is coordinated. HELICS allows to federates to work with
different time scales and co-iterate at any time step[23][27].

Application layer:The Application layer is a low-level interface that supports
applications federates interacting with the co-simulation framework and the Core
API, making it easier for generic applications of different types of federates (
Value, Message, Message filter, and Programming interface) to interact in a flexible
fashion.

As a low-level interface, this layer enables HELICS to support other low-level
interfaces, such as High-Level Architecture (HLA) and Functional Mockup Inter-
face(FMI)[23][27].

Simulator layer:The Simulator layer provides two key extensions: standardized
data exchange patterns and higher-level API[23][27]. These extensions allow
HELICS to support a variety of off-of-shelt simulators, such as:

 Transmission simulators (e.g., GridDyn, PSS/E).

Distribution simulators (e.g., GridLAB-D, OpenDSS, CYMDIST).

Communication simulators (e.g., NS3).

Market simulators (e.g., FESTIV).

Customized controllers.

User Interface layer:Thanks to the User Interface Layer, co-simulations at
any scale have shown to be easy integration to integrate into HELICS. This layer
provides tools that allow:

o Manage and convert input data,
» Generate scenarios and populate required data,

o Automate simulations execution, and

14

Theoretical overview

o Parse results,

with and standardized approach. [23][27].

15

Chapter 5
Conceptual Comparison

The above Chapter showed the devised in their conceptual architecture of the co-
simulation framework MOSAIK and HELICS. Given a quick and overall overview,
both frameworks show similarities and differences. Thus, this Chapter gives a
deeper theoretical comparison between MOSAIK and HELICS, considering data
exchange and time management as the relevant topics to analyze.

In both setups, the main goal is to use independently existing subsystems called
simulator in MOSAIK or federate in HELICS in a shared context to execute a
coordinated simulation of a given Smart Grid scenario. Therefore, co-simulation
frameworks must synchronize the processes of each subsystem and manage the
exchange of data between them. A co-simulation framework must provide the
following aspects [9]:

o Communication between simulators/federates and framework.

Handlers for different kinds of processes.

To allow using simulators/federates of different natures.
» To manage data-flow and step-wise execution.

Both frameworks develop the above-presented aspects, given a response in their
way.

As is shown in figure 5.1, MOSAIK presents four components: The Interface
(MOSAIK Sim-API), the Scenario-API, the SIM-Manager and the Scheduler.

The Interface (Mosaik Sim-API) defines the syntactic integration between the
available simulator and the framework. This component aims to capture semantics
for the simulators and their models, which is the basis for automatic composition.
It should be implemented for each simulator allowing to map the internal simulator
paradigm to a discrete-time approach.

16

Conceptual Comparison

The Scenario-API provides the means for the creation of co-simulation scenarios.
Making use of different commands is possible to start simulators, instantiate models
from them, and connects them with a pure Python interface that, through a
semantic meta-model, enables the definition of the physical topology[9]. Through
this script, Mosaik provides the means by which the user can:

o Specify the simulators and the model entities.

o To set initial events.

o To parameterize entities and set the time period of the simulation.
o To define interconnection and cyclic data-flows.

o To create user-defined connection rules between model entities.

e To call extra methods of a simulator.

i 1
| Component-API |

I I
O T i i I

: SIM-Manager Interface
- !

MOSAIK CORE ™\

SIMULATOR

)
Scheduler 1 SIM-Code

S

Tin
1

Figure 5.1: Mosaik configuration

Both missing components are part of was is called the Mosaik software core.
In Mosaik, the data exchange is managed by a software core consisting of two
components the SIM-Manager and the Scheduler. The sim manager is responsible
for starting and handling the external simulator processes involved in a simulation
as well as for communication with them. The Scheduler is in charge of organizing
the whole flow of data exchange between the simulators; this is done based on

17

Conceptual Comparison

a common simulation clock that is established. Usually, in its current state, the
scheduler uses discrete time.

Mosaik uses standard TCP sockets. When a simulator starts, it needs to provide
a server socket that Mosaik can connect to. The interaction between the framework
and the simulators is made using a network messages composed of:

1. Four bytes long header: It is an uint32 and stores the number of bytes in the
payload.

2. Payload of arbitrary length: It is an UTF-8 encoded JSON list containing the
message type, a message ID and the actual content.

Every request sent by a party must be responded to by the other party since the
framework uses the request-reply pattern. The type of messages is 0 for request, 1
for reply with success, and 2 for reply with failure. The message ID is an integer
that is unique for every request that a network socket makes.

With information supplied by the user in the two previous components (Scenario-
API and SIM-API), MOSAIK knows which simulators to use, which models it can
instantiate, as well as the parameters and attributes that each one has. All this
allows the SIM-manager to guarantee the correct flow of information. Usually, the
attributes of the models handle units and different types of data; it is important to
highlight that MOSAIK does not take this into account; therefore, it is the user who
must be careful to verify these factors when making connections between simulators.

Finally, the MOSAIK software core making use of the interface calls init, create,
step, and get data is ready to interact with every entity of the simulation scenario.

Once the scenario has been defined and initiated, the Scheduler becomes active.
It aims to ensure that each simulator is running in a synchronized fashion so that
it can properly control the information flow in the co-simulation.

Coordinating the simulator executions to advance the simulation time is the
most essential task of the scheduler in MOSAIK.

At the beginning of a simulation, all simulators are at time 0. The mechanism
employed by MOSAIK makes the scheduler monitor the time step of each simulator
in order to manage its execution. The scheduler will be in charge of informing the
simulator of the time in which it must enter in execution, and in turn, the simulator
must inform the scheduler of the next time step once the current one is finished.
The dynamics used by MOSAIK to perform the time step make it possible to have
simulators with fixed and variable steps, always bearing in mind that a simulator
can only enter execution if and only if it has received the inputs correctly.

Based on the Scenario-API, MOSAIK knows how is the information flow between
all simulators. Therefore, employing the APT call get data() it requests from each

18

Conceptual Comparison

simulator, the information that the other simulators need, together with the time
tag in which it was obtained, , at the instant the simulator ends stepping.

In this way, the scheduler stores the information concerning all the inputs of
the co-simulation components at each time step. Additionally, the scheduler must
provide the respective information at the time when each simulator makes the
step() API call.

Therefore, it should be noted that in MOSAIK, the storage and management of
all the data flowing in the co-simulation are performed by the scheduler and the
sim manager so that the simulators do not really interact with each other at any
time, and the framework always plays the role of an intermediary. At the beginning
of the co-simulation, the maximum simulation time (world.run(until=END)) must
be set. Each simulator enters into execution according to the step time it has
communicated and when other simulators require its data. In the case that the
step time communicated by the simulator is greater than the until time, its work
will be finished.

In resume, a simulator that does not supply data to the other simulators will
perform its processes until it meets the condition t,..; > tuni. And a simulator
that does supply inputs will be active until the other components of the simulation
have stopped.

Figure 5.2: Helics configuration

In figure 5.2 is shown the most common configuration in HELICS. First of all,

19

Conceptual Comparison

it is important to clarify the meaning of three key terms in the HELICS environment.

Federate: This is the name given to instances of simulators that are already
running. In a co-simulation scenario, the set of federates is called a federation.

Core: It is the software provided by the environment and allows the simulator to
become a federate. Normally each federate has a core, but there may be cases where
different federates share a core, as depicted in Figure 5.2. The HELICS environment
offers a set of different core technologies for the user to choose according to his
needs. The type of cores are the following:

o MPI: The message-passing interface is employed in a High performance com-
puting cluster.

o [PC: It is called the interprocess core. It is used when we are simulating with
a single compute node. The key features are that it uses memory-mapped
files to transfer data and leverages Boots’ interprocess communication. It can
not be used with multi-tiered brokers.

o UDP: It is primary use with highly reliable networking. It employs IP messages
without delivery guaranteed.

o TCP:It is an alternative to ZMQ when this core type is not available.

o ZMQ: It is the default core type. It uses the REQ/REP or PUSH/PULL
mechanics for priority and non-priority communications, respectively. It
provides a robust interaction in federation with multiple compute nodes.

Broker:The broker is a key component of HELICS. It is an executable, which
allows maintaining the synchronization of the federates and managing the exchange
of messages, as each data sent by a federate is received by the broker and then
delivered to the destination federate.

Going into detail, HELICS enables to define federates according to the nature
of the messages they are passing to and from the federation:

1. Value federates:Value federates are the best option to model physics of a system.
It interacts with the federation using a publish-and-subscribe mechanism. This
type of federate allows working with different types of data, such as floats,
numbers, integers, strings, complex numbers, and arrays. It provides support
for verifying matching between these as well as unit conversions. Additionally,
it provides several functions that allow one to know if a value has been updated,
the time of this event, and retrieve it. The federated value allows HELICS
to perform co-simulations with FMUs, as it has features similar to those of a
co-simulated FMU.

20

Conceptual Comparison

2. Message federates: The message federates aim to simulate ICT models. Usually,
simulators modeling control signals and measurements suit this message
federate. One of the main characteristics is that this type of federate must
specify the source, destination, and time of the signal transmitted. Message
federates use endpoint interfaces that allow them to interact with the federation.
The endpoints act as an address to send and receive data. It is possible to
define filters in these federates, but there has to be associated with each
endpoint.

3. Combination federates: In HELICS, it is possible for any type of federate
to subscribe to the publications of a valued federate. This means that we
can make connections from message federates to value federates as long as
the endpoint is configured with the respective publication. This type of co-
simulation configuration is performed using the combined federates. It is
important to highlight that in HELICS, filters can be applied to messages but
not to values.

Each federate requires a configuration, which must be done by the user. There
are two options, a JSON file or directly in the code with the API calls available
in HELICS. In general, a basic configuration must have the following parameters
defined: the name of the federate, which must be unique; the type of core, the
subscriptions and publications, endpoints, and the time step size.

The time synchronization in HELICS is handled by each Federate and Core
through different API calls. It is the job of every federate to determine its own
work time and make a request time. This HELICS function blocks the execution
of the federate thread, making the federate wait for an answer within the granted
time, allowing it to continue the execution. During this waiting time, the federate
has nothing to do until the next requesting time. For its part, once a time request
is received, the HELICS core has two values to grant: the requested time (failing
that the next available time) or an early valid time, which represents a particular
case because this would imply awakening the federate mandatory so that it can
make changes in its boundary conditions.

The framework has coordination between all the cores that are part of a federation
to ensure that when a core grants time to a federate, it does not occur in the past.
A HELICS co-simulation under normal conditions ends when all federates have
received the maximum default time from the framework or when all federates notify
the broker that they have finished. By means of the configuration JSON file, it is
possible to establish some time specifications for the federates using a wide variety
of timing parameters enabled by the HELICS framework. The time parameters are
the following:

21

Conceptual Comparison

Period:Defines the resolution of the federate and forces time grants to specific
intervals.
Time delta:The granted time has a minimun interval from the last one.
Offset: Amount of time added to the period.
Uninterruptible: The granted time will be always the requested time, even when
the federate receives new values on any of its inputs.
Wait for current time update: The granted time will be allways the last one
at a given time, making sure that all the other federates have produced outputs for

that time.

Table 5.1: Mosaik and Helics: comparison between frameworks.

Component Category Mosaik Helics
Time man- Handler Scheduler Individually each
agement Federate
Time-domain Discrete Discrete
Step-size Variable Variable
Step-size request After every step After every step,
never, hybrid
Step-size compo- Request time Request time and
nents granted time
Data Ex- Protocol inside TCP sockets ZMQ, UDP, TCP,
change framework MPI
Definition In Scenario-API In Publications,
Subscriptions,
Endpoints
Mesage type Four bytes Value, information
header plus a packet, hybrid
pay-load

Data-type valida-
tion

Made to recep-
tion

Made to sending

22

Chapter 6

Co-Simulation Cases study

6.1 Cases study description

This section presents tests carried out with the frameworks (MOSAIK and HELICS),
with the scope of evaluating the performance of each one in a co-simulation scenario.
In line with Schiera et al. , it is proposed a co-simulation system that allows running
scenarios in both frameworks from one YAML document that describes the whole
composition of the case. Two case studies were used, and their YAML scenario
schemes were made and analyzed the simulation’s time and memory resources
employed for each one during the entire co-simulation case. Finally, this information
was saved and presented in the results section. Since the main objective of this
thesis is to evaluate the comparison in performance between HELICS and MOSAIK
under case studies, further specific analyses of each test concerning particular
results of each context were not done because they are out of the goal of this study.

6.1.1 Case l

This case study represents a small electrical system composed of four elements,
which are the following: 1)The simulator is called "Pypower’; it models an electrical
network consisting of a transformer and thirty-seven nodes. 2)The simulator is
called "Householdsim’; it models the energetic behavior of a house. The simulator
"CSV’; represents a group of photovoltaic panels. 4) The last simulator is '"HDF5’,
a database where all the electrical calculations and scenario information are stored.

6.1.2 Case 2

The scenario consists of two encapsulated simulators in FMUs, the EnergyPlus
building model and a Modelica-based Electric Heat Pump model, plus a control
system model called Scheduler. Furthermore, a photovoltaic system, household

23

Co-Simulation Cases study

behavior, and weather data are provided to the building by standalone Python
simulators, and two virtual Smart Meter models represent buses of the electrical
grid and Smart meters simulators. Based on [31]

6.2 Co-simulation setup

Based on [31], it is proposed a YAML document, the tree diagram of which is shown
in Figure 6.1. It contains all the needed information that defines our simulation
scenario, the simulators we are going to employ, and the specific settings that each
of them is going to use. Additionally, this document must also detail the system
connections, i.e., the simulators that must communicate, the type of communication,
and the parameters that will be exchanged.

SCENARIO SCHEME

+ ORCHESTRATOR: string

RUN PROCESS
’ +MODE _RUN: string
SIMULATOR (+ MODE_RUN_HELICS: string
+HOSTPORT: string
| + SIMULATOR_NAME: string + PORT: string INPUT
+ API_MOSAIK: string
SCENARIO CONFIGURATION + API_HELICS: string
PARAMETERS | +PUBLIC: True/False
+ <input2>: value
+ SCENARIO_NAME: string + <input3>: value
| + START_DATE: string (timestamp) + METADATA: string + <inputd>: value
+ DAYS: integer + STEP_SIZE: integer
+BROKER_HOST: string + <param3>: value
+BROKER_PORT: string + <paramé>: value
+ BROKER_NAME: string MODEL INSTANCE
MODEL | + INSTANCE_NAME: string
SIMULATORS CONFIGURATION + PARAMS_SET: string
‘—< + ATTRS: [string]
— ’—” + MODEL_NAME: string
+NUMBER: integer
PARAMETERS
CONNECTIONS | + PARAMS_SET_NAME: string
+ <param2>: value

+ <param3>: value

CONNECTOR

____| + CONNECTOR_NUMBER: string H

+ TYPE: string
+ FROM: <MODEL_NAME1>
+T0O: <MODEL_NAME2>

ATTRIBUTES

+ATTR: [MODEL_NAMEL1.param, MODEL_NAME2.param]

LEGEND:

UPPERCASE: required data
lowercase: user choice data
<placehold>: user imput/parameter

Figure 6.1: Tree diagram of Scenario YAML template

The YAML document allows, through the parameter ‘'ORCHESTRATOR’, to
choose which framework (MOSAIK or HELICS) will be used in the simulation,
and in an automatic fashion, all the information consigned in the document will
be configured, and the execution will start. Another highlight of this proposal
is the option that is enabled to generate more than one replica of each of the
simulators/federates that are being simulated and thus create scalability. This

24

Co-Simulation Cases study

option is enabled through the 'NUMBER’ parameter that appears in each model
used.

The YAML document has three main sections: The scenario Configuration, the
Simulator Configuration, and the Connections.

Scenario Configuration: Here, the main information of the simulation case
is detailed, such as the name, simulation duration, the framework to be used, and
the IP address of the host computer.

Simulators Configuration:This second part describes in detail the different
simulators that we are going to use, i.e., the simulator name, the MOSATk and
HELICS API, the IP and port of the computer used, the simulation step, parameters
and variables needed to work, name of the model used, etc., must be specified.

Connections:This last component describes which simulators need to commu-
nicate, and for this purpose, it must be specified using the name of the model
who sends information, who receives it, what type of communication they use, and
what are the names of the variables and parameters they exchange. There may
be a special case where there is more than one model with the same name, so the
following must be taken into account: If all my models with the same name must
perform the same communication, in the connection, I must only write the name
of the general model without number and in this way the connection is established
for all. If, on the contrary, there is a specific connection and a model must talk to
another specific model, I must write just the name of the model with the number,
so the connection is not general.

6.2.1 Case 1l

Case 1 consists of a small power grid, some households, and PV systems, as is shown
in figure 6.1. The Household model processes data from an external NumPy .npz
file. The file contains some load profiles for a given period of time. It contains ID
lists that describe which load profile belongs to which node ID in the Pypower grid.
Internally, the model works with minutes and has a time resolution of 15 minutes.
The CSV model also takes data from an external .csv file, given a power value
with a time resolution of 1 minute for a whole year. Each created instance of CSV
represents a PV panel that is associated with different nodes of the Pypower grid in
a random fashion. The Pypower is a bus-branch model to represent power grids. It
is composed of thirty-seven nodes/buses that are connected via branches/lines. The
transformer is just a special kind of branch, and the buses are divided into three
sub-types: the reference bus, PQ buses, and PU buses. For PQ buses, the (re)active
power P and Q are given, and the model will calculate the voltage magnitude
and angle for these nodes. PU buses provide active power and a constant voltage;
thus, the model computes the reactive power for these buses. Finally, the HDF5

25

Co-Simulation Cases study

simulator is a relational database in which are saved all the calculations getting by
the previously described three models.

Household] (P_out)
Simulator J

(P_out)

Y v

Pypower] (F Q, Vi, Vm, Va) ‘(HDF5
Simulator J 'L Simulator

r 3 r 3

(P)

Simulator

‘ PV P (P)
)

Figure 6.2: Block diagram of co-simulation scenario Case 1

6.2.2 Case 2

The scenario of Case 2 is established, as shown in figure 6.1, and consists of the
following simulator blocks.

The building model uses the software EnergyPlus, which is an open-source
detailed building energy modeling engine that allows performing many calculations
regarding energy consumption in buildings. The potential provided by Energy
Plus and its extensions, combined with the possibility of exporting the building
model as an FMU, unlock a perfect integration within the co-simulation platform,
allowing flexibility and composability of building models with different levels
of complexity and design in function of the modelist’s choices and the scenario
objectives. EnergyPlus can perform simulations with a minimum time step of one
minute up to one hour.

The Meteo model gives weather data at the time step required by the other
models. The household model called Home represents household electricity behavior
and thermal gains with a resolution of 10 minutes. The Electric Heat Pump (EHP)

26

Co-Simulation Cases study

(T_dewpoint,

“ Himudity,
CSV Simulator (Press) FMU Adapter T_ext) (CSV Simulator
Home Building L Meteo
-
(P) (TRooMea, Taumb)
A J v
. (Power)
Meter Simulator FMU Adapter
Nodo Heatpump
(Pload, Pprod) (Tset)

Meter Simulator Scheduler
SM Simulator

Figure 6.3: Block diagram of co-simulation scenario Case 2

simulator has been developed using the open-source OpenModelica modeling and
simulation environment. This model computes the sensible heat gain required to
maintain the set-point temperature Tset in rooms. The output of the Heatpum
FMU is the heat requested by the building block through the heating system.
There is a need to use a control system with the Heatpump simulator, and this
function is done by the Scheduler model. The Scheduler goal is to maintain the
desired set-point Tset by implementing a Proportional-Integral-Derivative (PID)
controller that acts on the water mass flow rate of the heating system through
regulation of the control valve actuator CV. Finally, the meter simulator provides
the physical and data interface between the building system and the distribution
network, modeling a Smart meter and the nodes/buses of the grid. The meter
simulator can perform the simulation with whatever time step resolution without
any limitation.

6.3 Results

To analyze how each framework behaves in terms of simulation time and required
computational resources, different scenarios were defined for each case study as

27

Co-Simulation Cases study

shown in table 6.1 and table 6.2, where the replications of the simulators/federates
that compose it vary.

The execution of the co-simulations was performed using two servers (or nodes)
owned by Politecnico di Torino, interconnected through a local network. Each
network node is an Intel® Xeon® Processor (Skylake, IBRS) CPU@2.294Ghz 32
Cores with 128GB RAM.

In case study 1, the simulators/federates were distributed across the two nodes
as follows:

e Node A: Pypower Simulator and HDF5 database.
» Node B: Household Simulator and PV Simulator

In case study 2, the simulators/federates were distributed across the two nodes
as follows:

o Node A: FMU Adapter Building, FMU Adapter Heatpump, Scheduler Simu-
lator and CSV Meteo Simulator.

e« Node B: CSV Home Simulator, Meter Nodo Simulator and Meter SM Simu-
lator.

6.3.1 Case 1

The scenarios that were defined in this case study were:

Table 6.1: Case study 1: Defined scenarios.

Replicas of each simulator in the different scenarios
Simulator Scenario 1 | Scenario 10 | Scenario 100 | Scenario 500 | Scenario 1000
Household || 1 10 100 500 1000
Pypower 1 1 1 1 1
CSV 1 10 100 500 1000
HDF5 1 1 1 1 1

Each scenario was executed with both frameworks MOSAIk and HELICS,
gathering in every co-simulation whole the information regarding the simulation
time and the computational resources required. These results are shown in Figure
6.3 and 6.4.

Figure 6.3 depicts how the simulation time employ by MOSAIK is always higher
than HELICS in each scenario. It is observed that the difference between the curves
appears constant as the scenarios increase, but a small tendency to increase the
time difference in favor of HELICS with larger scenarios should be highlighted.

28

Co-Simulation Cases study

Simulation time [s]

Memory usage [MIB]

Simulation time - Mosaik vs Helics

1D3 4

10° 1

101 -

Helics
— Maosaik

0 200 400 600 800 1000
Scenario #

Figure 6.4: Simulation time Case 1

Memory usage - Mosaik vs Helics

[—
-

=

(=]}
el
i

[—
=

[

=
1}
i

10¢ 5

Helics
— Mosaik

0 200 400 600 800 1000
Scenario #

Figure 6.5: Memory usage Case 1

29

Co-Simulation Cases study

Figure 6.4 depicts the computational resources required by MOSAIK and
HELICS with each scenario. This feature shows as well that MOSAIK is us-
ing more resources than HELICS in every co-simulations. The figure shows how in
scenarios 1 and 10, there is a constant increase in the two curves. From scenario
100 onwards and as the scenarios continue to grow larger, it is clear that MOSAIK
uses much more resources than HELICS and that this difference will increase with
each new co-simulation.

6.3.2 Case 2

The scenarios that were defined in this case study were:

Table 6.2: Case study 2: Defined scenarios.

Replicas of each simulator in the different scenarios
Simulator Scenario 1 | Scenario 10 | Scenario 100 | Scenario 500 | Scenario 1000
Scheduler 1 1 1 1 1
FMU Heatpump || 1 2) 10 20
FMU Building 1 2 5 10 20
CSV Home 1 5 50 250 500
CSV Meteo 1 5 50 250 500
Meter Nodo 1 5 50 250 500
Meter SM 1 5 50 250 500

As in the above case, each scenario was executed with both frameworks MOSAIk
and HELICS, and during the execution was recorded the information regarding
the simulation time and the computational resources required. These results are
shown in Figure 6.5 and 6.6.

In Figure 6.6 is shown the time that was spent during the simulation with
MOSAIK and HELICS. This figure shows that during the different scenarios, the
frameworks spent relatively close time if we compare it with what was observed
in the previous case. Even though, in this case study, the difference between
the curves is smaller, the tendency of HELICS to use less time than MOSAIK is
maintained, and it should also be noted that as the number of simulators/federates
in the co-simulation increases, the time difference starts to increase making the
speed of HELICS more noticeable.

Figure 6.7 depicts the computational resources required in the simulation with
MOSAIK and HELICS. In general terms, it can be said that the result is that
MOSAIK is using more resources than HELICS in every co-simulation.

30

Co-Simulation Cases study

Simulation time [s]

Memory usage [MIB]

Simulation time - Mosaik vs Helics

Helics
10 + —— Mosaik — "
10° 1
1D1 -
0 200 400 600 800 1000
Scenario #
Figure 6.6: Simulation time Case 2
Memory usage - Mosaik vs Helics
Helics
—— Mosaik I
107 —
109 5
1D5 4
104 E 1 I 1 1 I
H 200 400 &00 800 1000
Scenario #

Figure 6.7: Memory usage Case 2

31

Co-Simulation Cases study

In a detailed view, figure 6.7 shows how in scenarios 1 and 10, the resources being
used by both frameworks are very similar, but from scenario 100 onwards, the
difference increases, making MOSAIK heavier. It can be inferred that as the
scenarios continue to increase, so will the difference between the two curves.

32

Chapter 7

Conclusions

This thesis work provides a review of the MOSAIK and HELICS frameworks, with
an emphasis on the differences and similarities that each has conceptually in the
handling of information flow and the mechanism employed to synchronize and time
step. For future research with simulation environments, this research serves as a
reference for deciding which tool can best suit the requirements.

One of the similarities between MOSAIK and HELICS is found in the concep-
tual structure of the frameworks since both present a layered structure. Another
similarity to point out is the methodology to be followed to implement a study
scenario: In both MOSAIK and HELICS, the first step is to start by creating
the API for each simulator/federate, then the configuration of the study case is
defined together with the different interconnections, and finally, the co-simulation
is executed. This process is the same regardless of the framework used.

Although the methodology is the same, its implementation differs from one
framework to another. One of the differences is the interface (APIs) that must
be implemented in each simulator/federate in order to connect the models. The
MOSAIK API has three mandatory interface calls that must be developed for each
one (init, create, step). Depending on whether the simulator supplies information
to other simulators or has different processes to execute, additional calls must be
developed. On the other hand, HELICS has a large set of interface calls that can
be used in a versatile way providing more freedom in its development but at the
same time translating into more work to implement them. Another difference is
in the configuration of the scenario and connections. MOSAIK presents a single
file called scenario script in which the input values of each element are configured,
as well as the connections and data exchange that the scenario presents. on the
contrary, HELICS establishes these configurations in the APIs of the federates.

33

Conclusions

The tests performed with the two case studies clearly showed that HELICS
is faster and requires fewer computational resources than MOSAIK. It is worth
mentioning that during the study, it became evident that the HELICS framework
is still under development by its creators. At the beginning of the research, versions
prior to 3.2 were used, which presented errors that caused the simulations to fail;
with version 3.2, these problems were solved.

It was observed in the simulations that when there are scenarios with large
numbers of simulators/federates, the differences in both time and resources required
by MOSAIK increase significantly compared to the performance of HELICS. It is
inferred that these advantages shown by HELICS are due to the structure it uses to
synchronize federates and handle data flow with different communication protocol
options. In summary, in large and extensive cases, it is more advantageous to use
HELICS, and in small cases, either is a reasonable option.

Finally, the co-simulation system that allows the use of the MOSAIK and
HELICS frameworks was tested in the two case studies. Using a YAML file as
shown in the annexes, each case was configured along with its respective models.
Subsequently, with the developed codes that support the simulations in both
MOSAIK and HELICS, the systems were executed, allowing to validate that the
simulations were executed correctly.

34

Appendix A

Appendix

A.1 Case 1: YAML file setup

code/Scenario_scheme casel.yaml

S o

= Sl S

-~

NN N NN

00

ORCHESTRATOR: "MOSAIK" # Choose between MOSAIK/HELICS
SCENARIO SCHEMA YAML:
SCENARIO CONFIGURATION:
— SCENARIO NAME: "Case_ one"
— START DATE: ’'1388534400°
— DAYS: 7
— BROKER HOST: "192.168.236.69"
— BROKER PORT: "73100"
— BROKFR NAME: broker
— BROKER KEY: "MosaikHelicsTesisJGRV"'
— NUMBER: 1
SIMULATORS CONFIGURATION:
Simulator:
— SIMULATOR, NAME: "HouseholdSim"
API MOSAIK: "mosaik householdsim”'
API_HELICS: "hhsim_ api'"
RUN PROCESS:
— MODE RUN: "connect'
— MODE_RUN_HELICS: "python"
— HOSTPORT: "192.168.236.186"
— PORT : "13200"
PARAMETERS:
— metadata : Full # Must be Empty in case the simulator need to
write the metadata
— stepTime: 60
— timeAdvance: 0
MODELS:
— MODEL NAME: ResidentialLoads
NUMBER: 10

35

Appendix

29 Model instance:

30 — INSTANCE NAME: "ResidentialLoads"

31 — PARAMS NAME: "'

32 — OPT_METHOD: 'children"

33 - S]N[ULATOR_NAl\AE: ! PyPOWGI‘ !

34 API_MOSAIK: "mosaik pypower"

35 API_HELICS: "pypower_api'

36 BROKER KEY: "MosaikHelicsTesisJGRV"

37 RUN PROCESS:

38 — MODE RUN: "connect"

39 — MODE_RUN_HELICS: "python"

40 — HOSTPORT: "192.168.236.186"

41 — PORT : "32300"

42 PARAMETERS:

13 — metadata : Full # Must be Empty in case the simulator need to
write the metadata

44 — step__size: 60

45 — timeAdvance: 60

46 MODELS:

47 — MODEL NAME: Grid

48 NUMBER: 1

19 Model instance:

50 — INSTANCE_NAME: "Grid"

51 — PARAMS NAME: "'

52 — OPT _METHOD: 'children"

53 — SIMULATOR, NAME: "CSV"'

54 API MOSAIK: "mosaik csv"

API _HELICS: "PV_api'

56 BROKER KEY: "MosaikHelicsTesisJGRV"'

57 RUN PROCESS:

58 — MODE _RUN: "python"

59 — MODE_RUN_HELICS: "python'

60 — HOSTPORT: "192.168.236.69"

61 — PORT : "38500"

62 PARAMETERS:

63 — metadata : Full # Must be Empty in case the simulator need to
write the metadata

64 — sim_start: 1388534400

65 — datafile: ’pv_10kw.csv’

66 — stepTime: 60

67 MODELS:

68 — MODEL NAME: "PV'

69 NUMBER: 10

70 Model instance:

71 — INSTANCE NAME: "PV _create"

72 — PARAMS NAME: "PV _ create'

73 — OPT_METHOD: '"create"

74 — SIMULATOR, NAME: "MosaikHdf5" # Esta diferente al YAML de Helics ,
xq? En YAML Helics es DB en YAML Mosaik es MosaikHdf5

36

94
95

96

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

Appendix

API MOSAIK: "mosaik—hdf5"
API_HELICS: "hdf5 api'
BROKER KEY: "MosaikHelicsTesisJGRV"'
RUN PROCESS:
— MODE RUN: "cmd'
— MODE_RUN_HELICS: "python"
— HOSTPORT: "192.168.236.69"
— PORT : "43600"
PARAMETERS:
— metadata : Full # Must be Empty in case the
write the metadata
— step__size: 60
— duration: 2
— timeAdvance: 60
MODELS:
— MODEL NAME: "DB"
NUMBER: 1
Model instance:
— INSTANCE NAME: "Database"
— PARAMS NAME: "'
CONNECTIONS:
— CONECTOR. NUMBER: 1
TYPE: "Many to One'
TOTAL AMOUNT: 1
TOTAL PUB: 1
TOTAL SUB: 1
FROM: ResidentialLoads
TO: DB
ATTRIBUTES:
— ATTR: P out’
— (ONECTOR, NUMBER: 2
TYPE: "Nodes Many to One'’
TOTAL _AMOUNT: 1

TOTAL PUB: 1
TOTAL _SUB: 1
FROM: Grid
TO: DB
ATTRIBUTES:
— ATTR: P’
— ATTR: 'Q’
— ATTR: VI’
— ATTR: 'Vm’
— ATTR: ’Va’

— CONECIOR_NUMBER: 3
TYPE: "Many to One'
TOTAL _AMOUNT: 1
TOTAL PUB: 1
TOTAL_SUB: 1
FROM: PV

37

simulator

need to

0 U)

S S P
W ON NNN NN
S © w N o W«

-
=

146

154
155

156

Appendix

TO: DB
ATTRIBUTES:
— ATTR: 'P°

— CONECTOR,_NUMBER: 4
TYPE: "Branches Many to One'
TOTAL_AMOUNT: 1
TOTAL_PUB: 1
TOTAL _SUB: 1
FROM: Grid
TO: DB
ATTRIBUTES:

— ATTR: ’'P_from’
— ATTR: ’Q_from’
— ATTR: ’'P_to’

— ATTR: ’'P_from’

— CONECTOR,_NUMBER: 5
TYPE: "Nodes Randomly"
TOTAL._AMOUNT: 1

TOTAL PUB: 1
TOTAL SUB: 1
FROM: PV
TO: Grid
ATTRIBUTES:
— ATTR: 'P°

— CONECTIOR._NUMBER: 6
TYPE: "Building to grid"
TOTAL _AMOUNT: 1
TOTAL PUB: 1
TOTAL SUB: 1
FROM: ResidentialLoads
TO: Grid
ATTRIBUTES:

— ATTR: 'P_out’
— ATTR: P’

A.2 Case 1: Models YAML file setup

code/Models_scheme__casel.yaml

MODELS:

— MODEL NAME: ResidentialLoads
INPUT:
— sim_start: 71388534400’
— profile_file: ’profiles.data.gz’
— grid_name: ’demo_lv_grid’
Model instance:
— INSTANCE NAME: "ResidentialLoads"

38

I
N o= O © 00 =

NN N NN
SRS

b W W N NN
= O © ® N O

w
¥

N

Appendix

— PARAMS SET: "'
PARAMETERS:
— PARAMS SET NAME: "'
NUMBER: 1
— MODEL NAME: Grid
INPUT:
— gridfile: 'demo_ lv_grid.json
Model instance:
— INSTANCE _NAME: "Grid"
— PARAMS SET: "'
PARAMETERS:
— PARAMS SET NAME: "'
NUMBER: 2
— MODEL NAME: PV
INPUT:
Model instance:
— INSTANCE _NAME: "PV create"
— PARAMS SET: "PV_ create"
PARAMETERS:
— PARAMS SET NAME: '"PV_ create'
NUMBER: 20
— MODEL NAME: DB
INPUT:
— filename: ’demo.hdf5’
— info: ’yes’
Model instance:
— INSTANCE NAME: "Database"
— PARAMS SET: "Empty"
PARAMETERS:
— PARAMS_SET NAME: "Empty"
NUMBER: 4

)

A.3 Case 2: YAML file setup

code/Scenario_scheme_ case2.yaml

ORCHESTRATOR: "HELICS" # Choose the framework
SCENARIO SCHEMA YAML:

SCENARIO CONFIGURATION:

— SCENARIO NAME: "Case—two"

— START DATE: 14200704007 #'2015—01—01 00:00:00"

— DAYS: 7

— BROKER HOST: "192.168.236.69"

— BROKER PORT: "14800"

— BROKER NAME: broker

— BROKER KEY: "MosaikHelicsTesisJGRV"

— NUMBER: 1

39

13

Appendix

SIMULATORS CONFIGURATION:
Simulator:

— SIMULATOR, NAME: "AgentScheduler"
API MOSAIK: "mk scheduler”
API_HELICS: "hl scheduler_ api"
RUN PROCESS:

— MODE_RUN: "python"
— MODE_RUN_HELICS: "python"
— HOSTPORT: "192.168.236.69"
— PORT : "20200"
PARAMETERS:
— metadata : Empty # Must be Empty in case the
to write the metadata

— days: 7
— start_date: ’2015—01—01 00:00:00"
MODELS:
— MODEL NAME: "Scheduler"
NUMBER: 1

Model instance:
— INSTANCE _NAME: "Schedule"
— PARAMS NAME: "schedule"

— SIMULATOR,_NAME: "FMUAdapter"
API_MOSAIK: "mk_ fmu_ pyfmi"
API_HELICS: "hl fmu_ pyfmi api"
RUN PROCESS:

— MODE _RUN: "python"
— MODE_RUN_HELICS: "python"
— HOSTPORT: "192.168.236.69"
— PORT : "22200"
PARAMETERS:
— metadata : Empty # Must be Empty in case the
to write the metadata
— step_size: 600
MODELS:
— MODEL._NAME: "HeatPump'
NUMBER: 1
Model instance:
— INSTANCE _NAME: "HeatPump"
— PARAMS NAME: "heatpump"
— SIMULATOR, NAME: "FMUAdapter"
API _MOSAIK: "mk fmu pyfmi"
API_HELICS: "hl fmu_pyfmi_ api"
RUN PROCESS:
— MODE_RUN: "python"
— MODE_RUN_HELICS: "python"
— HOSTPORT: "192.168.236.69"
— PORT : "23200"

PARAMETERS:

40

simulator

simulator

need

need

63

92

93

94

95
96
97
98
99
100
101
102

103

Appendix

— metadata : Empty # Must be Empty in case the
to write the metadata
— step_size: 600 #
— stop__time: 31536000 #
MODELS:
— MODEL _NAME: "Building"
NUMBER: 1
Model instance:
— INSTANCE_NAME: "Building"
— PARAMS NAME: '"building"
— SIMULATOR, NAME: "PVSim"
API MOSAIK: "mk pvsim'
API_HELICS: "hl pv_api'
RUN PROCESS:
— MODE _RUN: "connect"
— MODE_RUN_HELICS: "python"
— HOSTPORT: "192.168.236.186"
— PORT : "24200"
PARAMETERS:
— metadata : Empty # Must be Empty in case the
to write the metadata
— step_size: 600 #
— start_date: '2015—01—01 00:00:00"
MODELS:
— MODEL NAME: PV
NUMBER: 1
Model instance:
— INSTANCE_NAME: '"PV'"
— PARAMS NAME: "pv'
— SIMULATOR NAME: "Meter"
API MOSAIK: "mk metersim"
API_HELICS: "hl meter api"
RUN PROCESS:
— MODE RUN: "connect"
— MODE_RUN_HELICS: "python"
— HOSTPORT: "192.168.236.186"
— PORT : "25200"
PARAMETERS:
— metadata : Empty # Must be Empty in case the
to write the metadata
— step_size: 600
— collect data: false
MODELS:
— MODEL NAME: Nodo
NUMBER: 1
Model instance:
— INSTANCE_NAME: "Nodo"
— PARAMS NAME: "nodo'
— SIMULATOR._NAME: "Meter"

41

simulator

simulator

simulator

need

need

need

Appendix

104 API MOSAIK: "mk metersim"

105 API_HELICS: "hl meter api'

106 RUN PROCESS:

107 — MODE _RUN: "connect"

108 — MODE_RUN_HELICS: "python"

109 — HOSTPORT: "192.168.236.186"

110 — PORT : "26200"

111 PARAMETERS:

112 — metadata : Empty # Must be Empty in case the simulator need
to write the metadata

113 — step_size: 600

114 — collect data: false

115 MODELS:

116 — MODEL NAME: SM

117 NUMBER: 1

118 Model instance:

119 — INSTANCE_NAME: "SM"

120 — PARAMS NAME: "sm"

121 — SIMULATOR _NAME: "CSV'

122 API MOSAIK: "mk csvsim'

123 API_HELICS: "hl_ csv_api"

124 RUN PROCESS:

125 — MODE RUN: "connect"

126 — MODE_RUN_HELICS: "python"

127 — HOSTPORT: "192.168.236.186"

128 — PORT : "27200"

129 PARAMETERS:

130 — metadata : Empty # Must be Empty in case the simulator need
to write the metadata

131 — start_date: ’'2015—01—01 00:00:00"

132 — datafile: ’timeseries/famiglia.csv’

133 MODEIS.

134 — MODEL NAME: Home

135 NUMBER: 1

136 Model instance:

137 — INSTANCE_NAME: "Home"

138 — PARAMS NAME: "Home create"

139 — OPT METHOD: '"create"

140 — SIMULATOR._NAME: "CSV'

141 API MOSAIK: "mk csvsim"

142 API_HELICS: "hl csv_api'

143 RUN PROCESS

144 — MODE_RUN: "python"

145 — MODE_RUN_HELICS: "python"

146 — HOSTPORT: "192.168.236.69"

147 — PORT : "28200"

148 PARAMETERS:

149 — metadata : Empty # Must be Empty in case the simulator need
to write the metadata

42

Appendix

150 — start__date: ’'2015—01—01 00:00:00"
151 — datafile: ’timeseries/meteo_mosaik.csv’
152 MODELS:

153 — MODEL NAME: Meteo

154 NUMBER: 1

155 Model instance:

156 — INSTANCE NAME: "Meteo"

157 — PARAMS NAME: "Meteo create"

158 — OPT _METHOD: '"create"

150 CONNECTIONS:

160 — CONECTOR_NUMBER: 1

161 TYPE: "Direct"

162 TOTAL AMOUNT: 1
163 TOTAL PUB: 1

164 TOTAL SUB: 1

165 FROM: Building

166 TO: HeatPump

167 ATTRIBUTES:

168 — ATTR: [’TRooMea’, ’'TroomSens’]
169 — ATTR: ’Tamb’

170 — (CONECTOR_NUMBER: 2

171 TYPE: "Direct'

172 TOTAL AMOUNT: 1
173 TOTAL PUB: 1
174 TOTAL SUB: 1

175 FROM: HeatPump

176 TO: Nodo

177 ATTRIBUTES:

178 — ATTR: [’Power’, ’Load’]
179 — (CONECTOR_NUMBER: 3

180 TYPE: "Many to One"

181 TOTAL_AMOUNT: 1

182 TOTAL PUB: 1
183 TOTAL SUB: 1

184 FROM: Home

185 TO: Nodo

186 ATTRIBUTES:

187 — ATTR: [’P’, ’Load’]

188 — CONECTOR._NUMBER: 4

189 TYPE: "Direct'

190 TOTAL AMOUNT: 1

191 TOTAL PUB: 1

192 TOTAL SUB: 1

193 FROM: Nodo

194 TO: SM

195 ATTRIBUTES:

196 — ATTR: [’Pload’, ’Load’]
197 — ATTR: [’Pprod’, ’'Prod’]

108 — (CONECTOR,_NUMBER: 5

43

Appendix

199 TYPE: "Direct'
200 TOTAL_AMOUNT: 1
201 TOTAL PUB: 1
202 TOTAL SUB: 1
203 FROM: Schedule

TO: HeatPump
ATTRIBUTES:
— ATTR: ’'Tset’

204

205

206

A.4 Case 2: Models YAML file setup

code/Models_scheme case2.yaml

1| MODELS:
2| — MODEL_NAME:
3 INPUT:
4 — PUBLIC: True
5 — ATTRS:
6 — start_ date:
7 Model instance:
8 — INSTANCE NAME: "Schedule"
9 — PARAMS SET: "schedule"

— ATTRS: [Tset]
PARAMETERS:
12 — PARAMS_SET NAME: "schedule"

schedule: [70:167,76:207,722:16 " |#

[70:167,74:187,77:207,"19:18" ,722:16 "]
— MODELL_NAME: "Battery"

INPUT:
16 — PUBLIC: True
ATTRS: "'
fmu_ class: "battery"
solver: "matlab"
params: " [LoadINW,PnetBatt]"
step_size: 600
Model instance:

— INSTANCE_NAME: "Battery"

— PARAMS SET: "battery"

— ATTRS: [LoadINW, GenINW, I, V, SOC, PnetBatt]
PARAMETERS:

— PARAMS SET NAME: "battery'

fmu_name: battery3
instance_name: [’0]

30 start__vrs: []
31 start_in_vrs: []
— MODEL _NAME: "HeatPump'
INPUT:

"Scheduler"

non

"1420070400"

NN N
I S

> O

-~

NN NN N NN
8 © [=

44

Appendix

— PUBLIC: True

— ATTRS: "'
— fmu_ class: "heatpump"
— solver: "empty'

— step_size: 600

Model instance:

— INSTANCE_NAME: "HeatPump"

— PARAMS SET: "heatpump'

— ATTRS: [Ttank, Tr,Tm, Tset, Tamb, Power, COP,

Td, TroomSens]
PARAMETERS:

— PARAMS SET NAME: "heatpump"
fmu_name: HeatPump08112021 #HeatPumpvl2aw
instance_name: [HP]
start_vrs: {contr_type: "PID",
AW: 1.5,

Td: 3000,

Ti: 1500,

k: 0.003,

Lp: 1200,

DiamTubes: 1,

Ufloor: 2,

G__water_nominal: 2,

yMax: 1,

QHPmax: 12000,

GHP: 0.05,

V: 300}

start_in_vrs: {Tset: 16,Ttank: 30}
— MODEL _NAME: "Building"

INPUT:
— PUBLIC: True
— ATTRS: "'
— fmu_class: "building"
— solver: "empty"

— step__size: 600

Model instance:

— INSTANCE_NAME: "Building"
— PARAMS SET: "building"

Qsensible , MV,

— ATTRS: [Q, Peo, TRooMea, Tamb, Tdew, Tbulb, RH]

PARAMETERS:

— PARAMS SET NAME: "building"
fmu_ name: building_ tia
instance_name: [Home| # in brackets
start__vrs: {}
start_in_vrs: {}

— MODEL NAME: "PV'

INPUT:

— PUBLIC: True

— ATTRS: "'

45

Appendix

82 — start_date: "1420070400"
83 — step_size: 600

84 Model instance:

85 — INSTANCE_NAME: "PV"'

86 — PARAMS SET: "pv'

87 — ATTRS: [power_dc, ghi, T_ext]
88 PARAMETERS:

89 — PARAMS SET NAME: 'pv_ sim'
90 P_system: 5000

91 slope: 35

92 aspect: 0

93 latitude: 45.7

94 longitude: 7.6

95 elevation: 230

96| — MODEL NAME: "Nodo"

97 INPUT:

98 — PUBLIC: True

99 — ATTRS: "'

100 — step__size: 600

101 Model instance:

102 — H\ISTANCE_NANJE: "Nodo"

103 — PARAMS SET: "nodo'

104 — ATTRS: [Load, Prod, NetBatt, Pnet, Pprod, Pload, Pnetbatt,
Pexport, Pinport]

105 PARAMETERS:

106 — PARAMS SET NAME: "nodo'

107 # empty: []

08| — MODEL NAME: '"SM'

109 INPUT:

110 — PUBLIC: True

111 — ATTRS: "

112 — step__size: 600

113 Model instance:

114 — INSTANCE NAME: "SM'

115 — PARAMS SET: "sm"

116 — ATTRS: [Load, Prod, NetBatt, Pnet, Pprod, Pload, Pnetbatt,
Pexport, Pinport]

117 PARAMETERS:

118 — PARAMS SET NAME: "sm'

119 # empty: []

120 — MODEL NAME: "Home"

121 INPUT:

122 — PUBLIC: True

123 — ATTRS: "'

124 — step_size: 600

125 — sim_start: ’1388534400°

126 — datafile: ’timeseries/famiglia.csv’

127 Model instance:

128 — INSTANCE NAME: "Home"

46

Appendix

129 — PARAMS SET: "Home create"

130 — ATTRS: [Pres, P]

131 PARAMETERS:

132 — PARAMS SET NAME: "Home create”

133 NU].\/.IBER,.].

134 — MODEL NAME: "Meteo"

135 INPUT:

136 — PUBLIC: True

137 — ATTRS: "'

138 — step_size: 600

139 — sim_start: 1388534400

140 — datafile: ’timeseries/meteo_mosaik.csv’
141 Model instance:

142 — INSTANCE_NAME: "Meteo"

143 — PARAMS SET: "Meteo create'

144 — ATTRS: [ghi, T_ext, T_dewPoint, humidity]
145 PARAMETERS:

146 — PARAMS SET NAME: "Meteo create’

147 NUMBER: 1

A.5 Backend Mosaik simulation

code/opt_ scenario mosaik.py

—x— coding: utf—8 —x—

nnon

Created on Mon Jun 27 10:00:18 2022

W o =

@author: Juan

oo

ot

7|# —x— coding: utf—8 —x—

[l

ol Created on Wed Aug 18 18:10:05 2021

11| @author: Juan

13| import json

14| import yaml

15| import time

16| import copy

17| import os

18| import sys

19| import random

20 import mosaik

21| from mosaik. util import connect_randomly, connect_ many_to_one
22 from datetime import datetime
23| from pathlib import Path

47

Appendix

24| import socket

25| import subprocess
2

2

27| hostname=socket . gethostname ()
2s| ref=socket . gethostbyname (hostname)

31| #

32|# Loading YAML files
33| #

34)/main_ Path = os.path.normpath(os.getcwd () + os.sep + os.pardir).

replace ("\\ ", /")
35| dirs = os.listdir (main_Path)
36| 0s . chdir (main_ Path)

ss| for file in dirs:

39 check = file.split(".")

10 if len(check) = 1:

a1 pass

42 else:

43 if check[l] = ’yaml’:

a4 if file.split("' ")[0] = ’scenario’

15 scenario = str(file)

16 if file.split (" _")[0] = ’'Models’:

a7 modelos = str(file)

48 else :pass

49

50| #

s1|# Opening YAML files

52| #

53| with open(scenario) as file:

54 data = yaml.load (file , Loader=yaml. FullLoader)
56| with open(modelos) as file:

57 models = yaml.load(file , Loader=yaml.FullLoader)

60|# Back to main path

61| current_ Path = os.getcwd().replace(’\\’, /")
62| main_ Path = current_Path+’/Mosaik’

63| 0s . chdir (main_ Path)

48

64

65

66

68

69

70

71
72
73
74
75
76
77
78
80
81
82
83
8¢

85
86

87
88

8¢

90
91
92
93
94
95
96
97
98

99

100

Appendix

#

Starting scenario configration

#

n = len (data ['SCENARIO SCHEMA YAML’ | [’SIMULATORS CONFIGURATION’][’
Simulator’])

sim = data ['SCENARIO SCHEMA YAML’ | ["SIMULATORS CONFIGURATION’][’
Simulator ’]

sce = data ['SCENARIO SCHEMA YAML’ | [’'SCENARIO CONFIGURATION" |

num_sce = 1

for i in range(len(sce)):
for k,v in sce[i].items():
if k = ’DAYS’:
END = int (v)*24%3600
else:
END = 1%24%3600
for k,v in sce[i].items():

if k = ’'NUMBER'’:
num_sce = int (v)
print(’los escenarios son:’, num_sce)
#
Importando todas las APIs de Mosaik

#

sys.path.append(os.getcwd () .replace(’\\’, ’/’)+’/Api Mosaik ")

for i in range(len(sim)):
var = str(sim[i][APL_MOSAIK’].split(’:")[0])
if var == ’'mosaik—hdf5’:
pass
else:
exec(import ’+var)
print (var)

#

Agregando a las sim las cantidades de simuladores solictados

49

101

102
103
104
105
106
107
108
109

110

125

126

127
128
129

130
131
132

133

13¢

Appendix

#

mydata = copy.deepcopy (sim)
for s in range(len(mydata)):
num = mydata[s]['MODELS’ | [0] ['NUMBER'’]
if num > 1:
for z in range(int (num)—1):
mydata . append (sim [s])

#

Escribiendo el archivo sim_config que contiene la informacién de
los simuladores a usar

#

2| ot_sim = []
sim_ip = []

1| sim__config = {}

for i in range(len(mydata)):
s num = 0
sim__ip.append (str (mydata[i]['/RUN PROCESS’][3]['PORT’]))
for tr in ot_sim:
if tr.split (" ")[0] = mydata[i][SIMULATOR NAME’ |:
S num += 1
new_nombre = str (mydata[i]['SIMULATOR_ NAME’])+’_’+str (s_num)
ot_sim.append (new_nombre)
if mydata[i][RUN PROCESS’][0][MODE RUN’] = ’python’:

sim_ config [new_nombre| = {mydata[i]['RUN PROCESS’][0]["’
MODE RUN’|: str(mydata[i][APL MOSAIK’])+’: +str (mydata[i][’
SIMULATOR, NAME’]) }
elif mydata[i][RUN PROCESS’][0][MODE RUN’] = ’cmd’:
sim__config [new_nombre] = {mydata[i]['RUN PROCESS’][0]["’
MODE RUN’|: str(mydata[i][APL MOSAIK’])+’ %(addr)s’}
elif mydata[i][RUN PROCESS’|[0][MODE RUN’] = ’connect ’:
nw_port = int (mydata[i]['RUN PROCESS’][3]['PORT’])+int (s _num)
sim__config [new_nombre] = {mydata[i]['RUN PROCESS’][0]["’
MODE_RUN’ | : (str (mydata[i]['RUN PROCESS’ |[2]['"HOSTPORT’])+": "+str (
nw_port))}
print ('line 97 — sim_config es:’, sim_ config)
#

Taking into account IP and Port

50

Appendix

135 | #

136| for q in sce:

137 if ’BROKER HOST’ in (q.keys()):

138 central__addres = q['BROKER_HOST'’]

139

110/ total info = []

11| for g in range(len(sim)):

142 for nu in range(sim[g]['MODELS’][0][NUMBER’]) :

143 add_info = {’api’:’",

144 ipT: 7,

145 7pOI“t’:”}

146 add_info[’api’] = sim[g][API MOSAIK"]

147 for j in sim[g]['RUN PROCESS’]:

148 if "HOSTPORT’ in list (j.keys()):

149 add_info [ip’] = j[HOSTPORT" |

150 if 'PORT’ in list (j.keys()):

151 num_port = int (j['PORT’])+int (nu)

152 add__info [’port’] = str(num_ port)

153 total info.append(add_info)

154

155) def main () :

156 random . seed (23)

157 world = mosaik . World (sim__config)

158 for n_sce in range(num_sce):

159 create_scenario(world)

160 world .run (until=END) # As fast as possilbe

161

162| def create_scenario(world):

163 """ ACA ESTOY INICIANDO EL CREATE SCENARIO'""

164

165 for s in range(len(sim)):

166 num = sim[s]['MODELS’ | [0] ["NUMBER’ |

167 if num > 1:

168 for z in range(int (num)—1):

169 sim .append (sim[s])

170

171 sim_name = []

172 for i in range(len(sim)):

173 sim_ param = {}

174 key param = []

175 value param = []

176 for m in range(len (sim[i][MODELS’])):

177 if not sim[i][PARAMETERS’]|: # Condicién no vienen
parametros definidos

178 globals () [sim[i]['SIMULATOR NAME’]] = world.start (sim
[i]['SIMULATOR NAME’])

179 print ('No hay parameters’)

51

180

181

182

183

184

185

186

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205
206

Appendix

else: # Condicién cuando si vienen parametros definidos

for p in range(len(sim[i]["PARAMETERS’])):
for k,v in sim[i]['PARAMETERS’ |[p].items():
if k = ’'metadata’:
if v—= "Empty’: # Condicién para
escribir la variable metadata
metadata = eval(sim[i][’API MOSAIK’].
split (7:7)[0]+ > .META)

) :
if sim[i][MODELS’ | [m][’
MODEL NAME’| = models ['MODELS’] [t] | 'MODEL NAME’ | :
if sim[i][MODELS’][m]][”’
Model _instance’][0][INSTANCE NAME’] = models ['MODELS’ | [t][*Model
instance ’]|[0]['INSTANCE _NAME’ | :

for t in range (len(models[MODELS’])

metadata ['models’] = {
models ['MODELS’ | [t]["Model instance’][0][INSTANCE NAME’]:{ ’public
": True,
‘params ’:
Tattrs T

models ['MODELS’ | [t][’Model instance’][2]]["ATTRS’]}}
if sim[i][MODELS’ | [m]][”’
Model instance’][1]['PARAMS NAME’] = models ['MODELS’ | [t][*Model
instance ’][1]['PARAMS SET’|:
params = []
for k,v in models ['MODELS
"1[t]['PARAMETERS’ | [0]. items () :

if k="
PARAMS SET NAME' :
pass
elif k = ’step_size’
pass
elif k =
timeAdvance ’:
pass
else:

params . append (k)
Guardar los parametros a incluir en el metadata
metadata ["models”’
] [models ['MODELS’ | [t]["Model instance’][0]['INSTANCE NAME’ |][’
params’| = params
print (metadata) # Verificando si la
variable metadata se escribié bien o no
sim__param [’sim_meta’] = metadata
for key,value in sim[i]['PARAMETERS’ |[p].items():

52

NONON NN N
NN N NN NN
N4 o o R @ - o

NONN NN
@w NN N
23

243
244

245

246
247

248

249
250

251

Appendix

if key = ’timeAdvance’:
pass

elif key = ’stepTime :
pass

elif key = ’metadata’:
pass

elif key = ’sim_ start ’:

key__param.append (key)
value_param.append(str (datetime.
fromtimestamp (int (value))))
sim_ param [key] = str(datetime.
fromtimestamp (int (value)))

elif key = ’duration’:
key__param.append (key)
value_param.append (int (value)*24x3600)
sim_ param [key]| = int (value)=*24x3600

elif key = ’days’:
key__param.append (key)
value__param.append (int (value))
sim_ param [key] = int (value)

elif key = ’start_date’:
key__param.append (key)
value__param .append (str (value))
sim_ param [key| = str(value)

elif key = ’step_size’:
key_param.append (key)
value_param.append(int (value))
sim_ param [key| = int (value)

else:
key__param.append (key)
value_param.append (value)

sim_ param [key| = value
name = sim [i][SIMULATOR_NAME’ |.replace("_","")
n _name = 0
for s in sim_ name:
if s.split(" ")[0] = name:
n_ name += 1
sim_nombre = str (name)+’_ '+str (n_name)

sim_ name . append (siminombre)
print ('name’ ,sim_nombre)
body = "world.start ("%s",xxsim_param) '%str (sim_ nombre

print (’line ’ body)
print (’line 189: los sim param son:’, sim_ param)
print ('linea Betto INTERES:’,sim[i]['MODELS’|[0][’
NUMBER’ |)
globals () [sim_nombre| = eval(body)
for k,v in sim_param.items():
if k = ’solver’

53

253
254
255
256
257
258
259

260

261

262

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

293

294

Appendix

body = sim_nombre+’.solver_call ('+str (k)+'="+
"%s ", nu=%i) "%(str (v),int (sim[i]['MODELS’][0]['NUMBER']))
print (’solver call’ body)
eval (body)
battery.solver_ call(solver="matlab’)
else:
pass

##

Version nueva del cdédigo

#

Creando los models

sim_name_dos = []

mod_name = []

for i in range(len(sim)):
method_opt = False

var_method_opt = 'nothing’
model = 7’
name_dos = sim[i]['SIMULATOR,_NAME’ |. replace("_","")

n_name_dos = 0
for s in sim name dos:

if s.split("_")[0] = name_dos:
n_name_dos += 1
sim_nombre dos = str (name_ dos)+’ ’+str (n_name_dos)

sim_name_dos.append (sim_nombre_dos)
for m in range(len (sim[i][MODELS’])):
model = sim [i]['"MODELS’] [m] ["MODEL_NAME’]
if model != ’'ResidentialLoads’ and model != 'Grid *:
for t in range(len(models[MODELS’])):
Revisar si el nombre del Modelo es el mismo
if models [MODELS’][t]['"MODEL NAME’] = model:
print ("el model aqui esta ———————— 7, model)
n_mod name = 0
for r in mod name:
if r.split("'"_")[0] = model:
n_mod name += 1
mod_nombre = str (model)+’ '+str (n_mod_name)
mod_name. append (mod__nombre)
print (el model aqui esta ——————’, mod_nombre)
print (models ['MODELS "] [t]['"MODEL _NAME’] , model)
new_name = sim[i]['MODELS’ | [m][*Model instance’
]10]["INSTANCE NAME’]
num = 1

o0

54

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

313

314

315

316

319

327

Appendix

follow = False
instan = False
Revisar si el nombre de la Instancia es la misma
for n in range(len(models['MODELS’][t][Model
instance’])):
for k,v in models['MODELS’ | [t][*Model
instance’][n].items () :
if k = ’INSTANCE_NAME’ :
for z in range(len(sim[i]['MODELS’|[m
][’Model_instance’])):
for key,val in sim[i][MODELS’|[m
]["Model__instance’][z].items () :

if key =— ’INSTANCE_NAME’ :
if val =— v:
print (val)
follow = True

Revisando cual es
el valor de la variable OPT METHOD

for p in sim[i][’

MODELS’ | [m] [’Model _instance’]:

if w="
OPT METHOD’ :
if plw]
!= ’"nothing’:
method_opt = True
var__method_opt = p[w]
print (p

[(w])
Revisar si el nombre de los Pardmetros es
el mismo
for k,v in models['MODELS’ | [t][*Model
instance’][n].items():
if follow =— True and k =— ’'PARAMS SET’:
for z in range(len(sim[i]['"MODELS’ | [m
][’Model_instance’])):
for key,val in sim[i]['MODELS’ | [m
]["Model __instance’][z].items () :

if key = 'PARAMS NAME’ :
if val =— v:
name = v
instan = True
if method opt =— False or var_method opt — ’
create :
if instan =— False and follow =— True:

if not models['MODELS’][t]['INPUT’ |:
print ("Aqui estoy’)

55

328
329
330

331

332
333
334
335
336

337

338

339

340

341

342

343

344

345

346

347
348

349

352

353

355

356

359

360

361

Appendix

else:
inp = models ['MODELS’ | [t]["INPUT]
for r in range(len(inp)):
if list (inp[r].keys())[0] =~
info ’:
pass
else:
inp__param = inp|[r]
print (inp_ param)
inp_param = inp|i]
for n in range(len(models| 'MODELS’ | [t
][’Model instance’])):
for k,v in models['MODELS’ |[t][’
Model instance’][n].items():
if k = ’INSTANCE NAME’ :
print(’i es:’,i)
print ('m es:’ m)
for z in range(len (sim[i
]['MODELS’ | [m] [*"Model instance’])):
print ('numero’ ,z)
print (’variable’ sim |
i]['MODELS’ | [m] ["Model_instance’][z])
for key,val in sim[i
]['MODELS’ | [m] [’Model _instance’][z].items():
if key ="~
INSTANCE_NAME" :
name_ inst = v
beto = str (sim_nombre_dos)+ . +str (
name__inst)4+’ ('+ #*inp_param)’
print (’los inp_ param son:
)

" ,beto)

)

, Inp_ param
print ('linea 260— body no Grid—Resid:

print (’linea 261 — Name model no Grid
—Resid:’ ;mod_nombre)
globals () [mod_nombre] = eval(beto)

if instan == True:
new_param = {}
for z in range(len(models['MODELS’ J[t][’
PARAMETERS’])) :
if models[MODELS’ |[t]]"
PARAMETERS’ | [z | ['PARAMS SET' NAME’| == name:
for k,v in models['MODELS’ | [t
]['PARAMETERS’ | [z] . items () :
if k = ’PARAMS SET NAME’

pass
elif k = ’'NUMBER’:

56

379
380
381

382

383
384
385

386

387
388

389

390

391
392
393
394

395

Appendix

new_param = int (v)
else:
new_param[k] = v

if type(new_param) is dict:
body = str (sim_nombre_dos) + *. 7 +
str (new_name) + ’(x#new_param)’
print ('line 289 — body:’, body)
print ('linea 290 — model es:’,
mod_ nombre)
globals () [mod_nombre] = eval(body)
globals () [sim[i]["MODELS] [m][’
Model instance '][0]["INSTANCE NAME]| = eval(body)
elif type(new_param) is int:
var_global = str(sim[i][MODELS’][m
]["MODEL NAME'])
var__global = mod_nombre
print (’line 294 — var global:’,
var__global)
body = str(sim[i][MODELS’][m][’
MODEL NAME’]) + °.° + str(sim[i][MODELS] [m][MODEL NAME']) +
.74+ str(new_name.split (’_7)[0]).lower () + ’(new_param)’
body = str (sim_nombre_dos) + ’.7 +
str(sim[i]['MODELS’ | [m]['MODEL NAME’]) + ’.’'+ str(var_method opt).
lower () + ’(new_param)’
print ('line 297 — Model no Grid—Resid
: 7 ,mod_ nombre)
print ('line 298 — body is:’,body)
print ('linea 299:’, new_param)
globals () [mod_nombre] = eval(body)
globals () [sim[i]["MODELS’|[m][’
MODEL NAME']] = eval (body)
print (’estamos aqui’)
else:
for n in range(len(models| MODELS’])) :
if models ['MODELS’ | [n]['MODEL NAME’ | =
model:
if not models|['MODELS’] [n]["INPUT’ |:
mod_inst = ""
for w in range(len (models ['"MODELS
"][n]["Model instance’])):
for k,v in models['MODELS’ | [n
]['Model instance’][w].items():
if k = ’INSTANCE_NAME" :
if v="":
mod_inst =
else:
mod__inst= str(v).

"o

lower ()

57

396

397

398

399

400

401

402

404

405

406

407

408

409

410
411

413

414

416

417

418

419

421
422

423

Appendix

if k = 'PARAMS SET’:
if vI= 77:
mode__met_ param =
str(v)
print (
mode_met_ param)
else:

mode__met__param =
print (’Vacio
betto 7)
if mode_ met_param != "":
param = []
for p in range(len(models|[’
MODELS’ | [n] ['"PARAMETERS’ |)) :
if models|['MODELS’ | [n] [’
PARAMETERS’ | [p] ['PARAMS_SET NAME’] == mode_met_ param :
for key, val in
models ['MODELS’ | [n] ['"PARAMETERS’ | [p]. items () :
if key =~
PARAMS SET NAME’ :
pass
else:
param . append (
val)
beto = str(sim[i][’
SIMULATOR, NAME ']) 4+’."+str (model [t]) +’."+ str (mod__inst)+'(%d) %param
[0]
beto = str (sim_nombre_dos)+’ .
+str (model)+’ . '+str (var_method_opt)+’ (%d) %param [0]
print ("body model:’ |, beto) #
Acd debo definir la linea de python a ejecutar de la instancia
print ("Model no Grid—Resid:’,
mod_ nombre)
globals () [mod_nombre] = eval(
beto)
globals () [models ['MODELS "] |
n][MODEL NAME ’]] = eval(beto)
else:
beto = str(sim[i][’
SIMULATOR, NAME ’]) +’."+ str (model [t]) +’.”+ str (mod__inst)+ ()’
beto = str(sim_nombre_dos)+’.
"+str (model)+’ . "+str (var_method_opt)+’ ()’
print ("body model:’, beto)
print (’"Model no Grid—Resid: ",
mod_ nombre)
globals () [mod_nombre] = eval(
beto)

58

428

429

430

431
432
433
434

435

436

437

438
439
440
441
442

443

445

446

447

448

449

450

451

452

453

455

Appendix

globals () [models ["MODELS "] |
n][MODEL NAME ’]] = eval(beto)
else:
mod_ param = {}
for p in range(len (models|['MODELS
"1[n][INPUT’])) :
for key,value in models[’
MODELS’ | [n] ["INPUT’] [p] . items () :
if key = ’sim_start’:
mod_ param [key] = str (
datetime . fromtimestamp (int (value)))
elif key = ’info’
pass
else:
mod_ param [key | =
value
mod_inst = ""
for w in range(len (models ['"MODELS
"][n]["Model instance’])):
for k,v in models['MODELS’ | [n
]['Model instance’][w].items():
if k = ’INSTANCE NAME’:

if v—="":
mod_inst = ""
else:
mod__inst= str(v).
lower ()
if k = 'PARAMS SET’:
if vI= 77:
mode__met__param =
str(v)
print (
mode_met_param)
else:

mode__met_ param =
print (’Vacio
betto 7)
if mod_ inst != "":
if mode met param !=
param = []
for p in range(len (models

"o,

['MODELS’ | [n] ['"PARAMETERS’])) :
if models ['MODELS’ | [n
] ['PARAMETERS’ | [p] ['PARAMS SET NAME’] = mode met param:
for key, wval in
models ['MODELS’ | [n] ['"PARAMETERS | [p]. items () :
if key =~
PARAMS SET NAME’ :

59

457

458

459

460

461

462

463

464

465

466

467

468
469

470

474

475

476

478

479

480

481

482

483

484

485

Appendix

pass
else:
param .

append (val)

print (param)

print (str (param[0]))

beto = str(sim[i][’
SIMULATOR, NAME]) +’."+ str (model [t]) + (**mod_param).’+ str (mod__inst)
+"(%s) %str (param[0])

beto = str (sim_nombre_dos
)+ . +str (model)+’ (s*mod_param) . +str (var_method_opt)+ (%s) %str (
param [0])

print ("body model:’, beto
)#Ac4d debo definir la linea de python a ejecutar de la instancia
print (’linea 383 — ins es

)

,mod_ nombre)
globals () [mod_nombre] =

eval (beto)

globals () [models [’
MODELS "] [n] ['MODEL NAME ']] = eval(beto)

else:

beto = str(sim[i][’

SIMULATOR, NAME]) +’."+ str (model [t]) +’(#+mod_param).’+ str (mod__inst)

beto = str (sim_nombre_dos
)+ . +str (model)+’ (¥+mod_param) . +str (var_method_opt)

print ("body model:’, beto
)

print (’linea 388 — ins es

: 7 ,mod_ nombre)

globals () [mod_nombre] =
eval (beto)
globals () [models [’
MODELS ’] [n]['"MODEL NAME'|] = eval(beto)
else:
beto = str(sim[i][’
SIMULATOR, NAME ']) 4+’."+ str (model [t]) 4+’ (**mod_param)’
beto = str (sim_nombre_dos)+’.
'+str (model)+’ (x+xmod_param) ’
print (’body model:’, beto)
print (’linea 395 — ins es:’,
mod_ nombre)
globals () [mod_nombre] = eval(
beto)
globals () [models ["MODELS "] |
n][MODEL NAME ’]] = eval(beto)

print (method opt, var_ method opt)

60

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

517

519

520

529

530

Appendix

Connections
if data[SCENARIO SCHEMA YAML’]["CONNECTIONS’] is not None:
base data = mod name
con = data [’SCENARIO SCHEMA YAML’ | ["CONNECTIONS]
for i in range(len(con)):
if con[i][’TYPE’] = ’'Many to One’:
hacia = con[i]['TO’]
desde = con[i][FROM’]
Cheking the FROM model
if len(desde.split(’ 7)) > 1:
desde__data = [desde]
print ('Estd especificado)
else:
desde_data = []
for sa in base data:
if desde = sa.split(’ 7)[0]:
desde__data.append (sa)
Cheking the TO models
if len(hacia.split(’ 7)) > 1:
hacia_data = [hacia]
print ("Estd especificado)
else:
hacia_data = []
for fa in base data:
if hacia = fa.split(’_7)[0]:
hacia_data.append(fa)
Writing the connections
data__connections = []
for se in desde data:
for ta in hacia data:
data_connections.append(' connect many to_ one(
world , +str (se)+’, +str(ta)+",")
print (data_connections)
for wa in range(len(data_connections)):
con_run = str(data connections[wal)
con_run = ’connect_many to_one(world,’ +str (con]
i][’FROM’])+’,’+str(con[i][’TO’]) +","
for a in range(len(con[i][ATTRIBUTES’])):
for k,v in con[i][ATTRIBUTES’ |[a]. items () :

if type(v) = list:
con_run = con_run+" ("
for t in range(len(v)):
con_run = con_run+""%s’, "%str (v[t

1)

Itima coma

con_run = con_run[:—1] # Eliminar 1

con_run = con_run+t’),’
else:

61

531

532

533
534
535
536
537
538
539
540

541

Appendix

[I

if con_run[—1] = ’,
con_run = con_run|[:—1] # Eliminar
dltima coma
con_run = con_run+", %s’ "%v
else:
con run = con_run+", %s’ "%v
if con_run[—1] = .’
con_run = con_run[:—1] # Eliminar ultima coma
con_run = con_run+’)’
print (’conexién many—to—many :
eval (con_run)
if con[i][’TYPE’] = ’Direct :
hacia = con[i]['TO’]
desde = con[i][FROM’]
Cheking the FROM model
if len(desde.split(’ 7)) > 1:
desde__data = [desde]
print ('Estd especificado)
else:
desde_data = []
for sa in base data:
if desde = sa.split(’ 7)[0]:
desde__data.append (sa)
Cheking the TO models
if len(hacia.split(’_ ")) > 1:
hacia_data = [hacia]
print ("Estd especificado)
else:
hacia_data = []
for fa in base data:
if hacia == fa.split(’_ ") [0]:
hacia_ data.append(fa)
Writing the connections
data__connections = []
for se in desde_ data:
for ta in hacia data:
data_ connections.append(’world.connect ('+str (
se)+’, +str(ta)+",")
print (data__connections)
for wa in range(len(data_connections)):
con_run = str(data_connections|[wa])
con_run = ’world.connect('+str (con[i]['FROM’])
+’,+str(con[i][’TO’])+","
for a in range(len(con[i][’ATTRIBUTES’])):
for k,v in con[i][ATTRIBUTES’ |[a]. items () :
if type(v) = list:
con_run = con_run+" ("
for t in range(len(v)):

’,con_run)

62

599
600
601

602

603
604
605
606
607
608
609
610
611
612
613
614

615

Appendix

con_run = con_run+""%s’,"%str (v[t
])
con_run = con_run[:—1] # Eliminar 1
Itima coma
con_run = con_run+t’),’
else:
if con_run[—1] = 7,
con_run = con_run[:—1] # Eliminar
ultima coma
con_run = con_run+t+', %s’ "%v
else:
con_run = con_run+",' %s’ "%v
if con_run[—1] = 7,
con_run = con_run[:—1] # Eliminar tltima coma
con_run = con_run+’)’

print (’conexion direct:’,con_run)
eval (con_run)
if con[i][’TYPE’] = ’Cyeclic’:
con_run = ’'world.connect (’+str (con[i][FROM |)+", '+
str(con[i]['TO’])+","
for a in range(len(con[i][ATTRIBUTES’])):
for k,v in con[i][ATTRIBUTES’ |[a]. items():

if type(v) = list:
con_run = con_run+" ("
for t in range(len(v)):
con_run = con_runt+""%s’, "%str (v[t])
con_run = con_run|:—1] # Eliminar tltima
coma
con_run = con_run+t’),’
else:
if con_run[—1] = 7, ":
con_run = con_run[:—1] # Eliminar u
Itima coma
con_run = con_run+", %s’"%v
else:
con_run = con_run+",’ %s’ "%v
if con_run[—1] = 7, :
con_run = con_run[:—1] # Eliminar dltima coma
con_run = con_runt’ ,async_requests=True)’

’,con_run)

print (’conexién cyclic:
eval(con_run)
if con[i]['TYPE’] = ’Nodes Many to One’:

hacia = con[i]['TO"]

desde = con[i][FROM’]

Cheking the FROM model

if len(desde.split(’ 7)) > 1:
desde_data = [desde]
print ('Estd especificado)

else:

63

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

637

638

639
640

641

642

643

644

645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661

Appendix

desde__data = []
for sa in base data:
if desde = sa.split(’_")[0]:
desde__data.append(sa)
Cheking the TO models
if len(hacia.split(’ 7)) > 1:
hacia_data = [hacia]
print ('Estd especificado)
else:
hacia_data = []
for fa in base data:
if hacia = fa.split(’_")[0]:
hacia__data.append(fa)
Writing the connections
data_ connections = []
string_ data = []
for se in desde data:
for ta in hacia data:

string_data.append(’connect_ many_to_one(world

, Fstr(se)+’, +str(ta))

data_ connections.append (' connect many_ to_one(

world ,Nodes '+, "+str (ta))
print (data_connections)
for wa in range(len(data_connections)):
Nodes = eval ("[e for e in %s if e.type in (
RefBus, PQBus’)|"%con[i][’FROM’])
Nodes = eval('"[e for e in %s if e.type in (
RefBus, PQBus’)] "%str (string data[wa].split(",")[1]))
print ("los nodes son:’, Nodes)
con_run = ’'connect many to_ omne(world,Nodes,’ +
str(con[i][’TO’])
con_run = str(data_connections|[wa])
for a in range(len(con[i][’ATTRIBUTES’])):
for k,v in con[i][ATTRIBUTES’ |[a]. items () :
con_run = con_runt", %s’"%v
con_run = con_run+’)’
print (’conexién nodes—many—to—one:’,con_run)
eval (con_run)
if con[i][’TYPE’] = ’Branches Many to One’:
hacia = con[i]['TO’]
desde = con[i][FROM’]
Cheking the FROM model
if len(desde.split(’ 7)) > 1:
desde__data = [desde]
print ('Estd especificado)
else:
desde_data = []
for sa in base data:
if desde = sa.split(’ 7)[0]:

)

9

64

663
664
665
666
667
669
670
671
672
673
674
675
676
677

678

679

680
681

682

683

684

685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705

706

Appendix

desde__data.append (sa)
Cheking the TO models
if len(hacia.split(’_")) > 1:
hacia_data = [hacia]
print ("Estd especificado)
else:
hacia_data = []
for fa in base data:
if hacia = fa.split(’_7)[0]:
hacia_ data.append(fa)
Writing the connections
data__connections = []
string_ data = []
for se in desde_ data:
for ta in hacia data:
string_data.append(’connect many to one(world
, Fstr(se)+, +str(ta)+",")
data_connections. append("connect__many_to_one(
world , Branches '+, +str (ta))
print (data_connections)
for wa in range(len(data_connections)):

Branches = eval ("[e for e in %s if e.type in (’
Transformer ’, ’Branch’)]|"%con[i]['FROM’])
Branches = eval('[e for e in %s if e.type in (’

Transformer ', ’Branch’)]'"%str (string_data[wa].split(",")[1]))
print (’los branches son:’,Branches)

con_run = ’connect_many to_ omne(world,Branches
,J+str(con[i][’TO’])
con_run = str(data_connections|[wa])

for a in range(len(con[i][ATTRIBUTES’])):
for k,v in con[i]['ATTRIBUTES’ |[a]. items () :

con run = con_ run+", %s’"%v
con_run = con_run+’)’
print (’conexién branches—many—to—one:’ ,con_run)

eval (con_run)
if con[i][TYPE’] "Nodes Randomly " :
hacia = con[i]['TO"]
desde = con[i][FROM’]
Cheking the FROM model
if len(desde.split(’ 7)) > 1:
desde__data = [desde]
print ("Estd especificado)
else:
desde__data = []
for sa in base data:
if desde = sa.split(’_7)[0]:
desde__data.append(sa)
Cheking the TO models
if len(hacia.split(’ 7)) > 1:

65

709
710
711
712
713
714
715
716
717
718

719

725
726

727

728
729
730
731
732
733
734
735
736
737
738
739

740

742
743
744
745
746
747
748
749

750

Appendix

hacia_data = [hacia]
print ('Estd especificado)
else:
hacia_data = []
for fa in base data:
if hacia = fa.split(’ 7)[0]:
hacia__data.append(fa)
Writing the connections
data__connections = []
string__data = []
for se in desde data:
for ta in hacia_ data:
string_ data.append(’connect_randomly (world , "+
str(se)+’, +str(ta)+",")
data_connections.append(’connect randomly (
world , "+str (se)+’,Nodes grid’)
print (data_connections)
for wa in range(len(data connections)):

Nodes_ grid = eval ("[e for e in %s if ’node’ in
e.eid]"%con[i]['TO’])
Nodes_grid = eval("[e for e in %s if ’node’ in e.

eid]| "%str (string data[wa].split(".,")[2]))
print (’los nodes—random son:’ Nodes grid)
con_run = str(data_connections[wa])
con_run = ’connect_randomly (world,’+ str (con|i
][’FROM’]) 4+’,Nodes_ grid’
for a in range(len(con[i][ATTRIBUTES’])):
for k,v in con[i][ATTRIBUTES’ |[a]. items () :
con_run = con_run+", %s’ "%v
con_run = con_run+’)’
print (’conexién nodes—randomly:’ con_run)
eval (con_run)
if con[i][TYPE’'] = ’Building to grid’:

hacia = con[i]['TO’]
desde = con[i][FROM’]
Cheking the FROM model
if len(desde.split(’ 7)) > 1:
desde__data = [desde]
print ('Estd especificado’)
else:
desde_data = []
for sa in base data:
if desde = sa.split(’_7)[0]:
desde__data.append (sa)
Cheking the TO models
if len(hacia.split(’ 7)) > 1:
hacia_data = [hacia]
print ('Estd especificado”)

66

763

765
766

767

768

784
785
786
787
788

789

Appendix

else:
hacia_data = []
for fa in base_ data:
if hacia == fa.split(’_ ") [0]:
hacia_ data.append(fa)
Writing the connections
data__connections = []
buses_data = []
string_data = []
for se in desde data:
for ta in hacia data:
buses__data.append(’connect (world,’+str (se)
+7,)+str(ta)+",")
string_data.append(’connect (world , "+str (se)+’
,str(ta)+" ")
data_connections.append(’connect (world, +str (
se)+’ ,Nodes_grid’)
print (data_connections)
for wa in range(len(data_connections)):
Nodes_ grid = eval ("[e for e in %s if ’node’ in
e.eid]|"%con[i][’TO’])
Nodes_grid = eval ("[e for e in %s if ’node’ in
e.eid]|"%str (string_data[wa].split (",")[2]))
print (’los nodes—random son:’ Nodes grid)

buses = eval("filter (lambda e: e.type = ’PQBus’,
%s) "%str (string data[wa].split(",")[2]))
buses = {b.eid.split(’—’)[1]: b for b in buses}
print (buses)
house_data = eval("world.get data(%s, ’'node id’)"
%str (string__data [wa].split(",")[1]))
houses = eval (string_data[wa].split(",")[1])
for house in houses:
print (’la casa:’, house)
node_id = house_data[house]['node_id’]
print (’el nodo id:’,node id)
print (’el bus:’,buses[node_id])
con_run = "world.connect (house, buses|[node_id

for a in range(len(con[i][ATTRIBUTES’])):
for k,v in con[i]['ATTRIBUTES’ |[a]. items

con_run = con_run+'"'%s ', "%v
con_run = con_run[:—1] # Eliminar dltima coma
con_run = con_run+’))’
print (’conexién building—to—grid:’,con_run)
eval (con_run)
world . connect (house, buses[node id], (’

P_out’, 'P’))

67

Appendix

790

701l 1f name == ' main ’:

792 print ('central addres:’, central_addres)

793 print ('ref’ ref)

794 if central addres = ref:

795 main ()

796 else:

797 totVal = "'

798 for we in total info:

799 if we[’ip’] = ref:

800 val = ’python3 ’+we[api’]+’ .py ’'+we[ip ']+ : +wel[’
port ']+’ —remote —t 60 &’

801 print (val)

802 totVal = totVal+val

803 else:

804 print (7 sssxsxxxxNO ES ACA’)

805 lastVal = totVal[: —1]

806 subprocess. call (lastVal, shell=True)

A.6 Backend Helics simulation

code/opt__scenario_ helics.py

—*— coding: utf—8 —x—

"o

Created on Fri Sep 16 10:48:16 2022

B W N e

5| @author: Juan

7| from making Json import JsonConfig
s/ import json

ol import yaml

10| import arrow

11| import gzip

12| import os

13| import copy

14| import numpy as np

16| #

17|# Loading YAML files
18| #

1ol main_ Path = os.path.normpath(os.getcwd() + os.sep + os.pardir).

replace ("\\', /")

68

ot

Appendix

)| dirs = os.listdir (main_Path)
os.chdir (main Path)
for file in dirs:
check = file.split(".")
if len(check) = 1:
pass
else:
if check[l] = ’yaml’:
if file.split(' ")[0] = ’scenario’:
scenario = str(file
if file.split("_")[0] = 'Models’:
modelos = str(file)
else :pass
#

;|# Opening YAML files

#

with open(scenario) as file:
data = yaml.load (file , Loader=yaml. FullLoader)

with open(modelos) as file:
models = yaml.load(file , Loader=yaml.FullLoader)

#

Removing previous json files

5|7

current_Path = os.getcwd () .replace(’\\’, /)
json_Path = current_Path+’/Helics '+’ /Jsons/’

dirs = os.listdir (json_Path)
team = []
for file in dirs:
check = file.split(".")
if len(check) = 1:
pass
else:
if check[l] = ’json’:
os.remove (str (json_Path)+’/ '+str(file))

Back to main path

69

61
62
63

64

66

67

68

69

7(

71
72
73
74

75

82
83

84
85
86
87
88

89

90
91

92
93
94

Appendix

)

current__Path = os.getcwd().replace(’\\’', /)
main__Path = current_Path+’/Helics’
os.chdir (main_ Path)

#

Here, I am generating all the JSON file for federates and the
scenario config

#

config = {}

federates = []

configFederates = []

current_Path = os.getcwd () .replace(’\\’, /)
json__Path = current_Path+’/Jsons’

n = len (data [SCENARIO SCHEMA YAML’][*SIMULATORS CONFIGURATION’][’
Simulator ’])

rueda = data [’SCENARIO SCHEMA YAML’]["'SCENARIO CONFIGURATION |

sim = data ['SCENARIO SCHEMA YAML’ | [’SIMULATORS CONFIGURATION’][’
Simulator’]

db_data = data[’SCENARIO SCHEMA YAML’] ["CONNECTIONS]

num_sce = 1

#

Knowing the number of scenarios

#

for i in range(len(rueda)):
for k,v in rueda[i].items():
if k = ’'NUMBER'’:
num_sce = int (v)

#

Creando info para la base de datos

#

for i in range(len(sim)):
val = sim[i][API HELICS’].split (" ")
if val[0] = ’hdf5’:

70

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120

121

122
123
124
125

126

127
128

129

130
131

132
133
134

Appendix

db_name = sim[i]['MODELS’] [0] ['"MODEL _NAME’ |
print (db_name)
break
else:
db_name = ’Nothing’

info = []
print (type(db_data))
if db_name = ’Nothing:
pass
else:
if db_data is None:
pass
else:
for i in range(len(db_data)):
if db_data[i][TO’] = db_name:
for 1 in range(len(db_data[i][ATTRIBUTES])):
for k,v in db_data[i][TATTRIBUTES’ |[1]. items () :
x = {db_data[i]['FROM’]:v}
x = {db_data[i]['FROM’]}
info .append (x)
else:
pass
#

Generating info for publications and subscriptions

#

pub_sub_info = []

for

#

ct in range(len (sim)):

for mn in range(int (sim[ct][MODELS’|[0][NUMBER’])):
pub_sub_info.append(str (sim[ct]['MODELS’ | [0]['MODEL NAME’]+’

+str (mn)))

Getting info about IP addres and port

#

broker host = "'

broker_ port =

for

non

q in range(len(rueda)):

71

Appendix

135 for qy,vu in rueda[q].items():

136 if qy = 'BROKER_HOST’:

137 broker host = vu

138 if qy = ’'BROKER,_PORT :

139 broker_port = vu

140

141 |#

142|# Starting the config information

143|

144

15| for 1 in range(n):

146 if broker host = ’localhost ’:

147 Simulator = {'Simulator Name': "",

148 "Model Name": "",

149 "key":"",

150 "Federate host": "",

151 "Model instance":{"nameFederate": "",

152 "namePubs": {},

153 "nameSubs": {},

154 "startDate":"",

155 "amount':1,

156 "num_fed":1,

157 "num_inst":1},

158 "Inputs":{}}

159 else:

160 Simulator = {'Simulator Name"': "",

161 "Model_Name": "" |

162 "broker address": "tcp://"+str(broker_ host)+":"+str(
broker_port),

163 "key":"",

164 "Federate host": "",

165 "Model instance":{"nameFederate": "',

166 "namePubs": {},

167 "nameSubs": {},

168 "startDate":"",

169 "amount":1,

170 "num_fed":1,

171 "num_inst":1},

172 "Inputs":{}}

173

174 for a in range(len(sim[i][RUN PROCESS’])):

175 for k,v in sim[i]['RUN PROCESS’|[a].items():

176 if k = ’MODE_RUN_HELICS’ :

177 if v = ’python’:

72

179
180
181

182
183
184
185
186
187

188

189

190

191

192
193
194

195

196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

Appendix

Simulator [’Simulator Name’'] = sim[i][API HELICS’
]+ Y . py7
if k = ’HOSTPORT’:
Simulator ['Federate host’] = v

Simulator ["Model Name’] = sim[i]['SIMULATOR NAME’]
Adding model name and inputs

for m in range(len (models|['MODELS’])):
for t in range(len(sim[i][MODELS’])):
if models | MODELS’] [m] [MODEL NAME’] = sim [i]["MODELS’ | [
£]["MODEL_NAME’] :

midx = t

Simulator ["Model instance’]['nameFederate’] = sim[i]]
"MODELS"] [t] ["MODEL_NAME’]

Simulator ["Model instance’|['num_fed’] = sim[i][’

MODELS’ | [t]['NUMBER’] # Taking how many federates I want to create
if not models['MODELS’ | [m] ['INPUT" |:
pass
else:

for r in range(len (models['MODELS’ | [m]["INPUT"]))
for key, value in models['MODELS’ | [m]["INPUT’
J[r].items():
Simulator ["Inputs’|[key] = value

Adding parameters

if not sim[i]['PARAMETERS’ |:

pass
else:
for p in range(len(sim[i][PARAMETERS’])):
for k,v in sim[i]['PARAMETERS |[p].items ()
if k = ’timeAdvance’ and v != 0:
Simulator [’Model instance’|[k] = v
elif k = ’stepTime’ and v != 0:
Simulator ["Model instance’]|[k] = v
elif k = ’sim_ start’:
Simulator ["Model instance’][k] = v
elif k = ’datafile ":
Simulator ["Model instance’|[k] = v
else:
pass
"""Begining new version""'

if not data| SCENARIO SCHEMA YAML®][*CONNECTIONS’ | :
for s in range(Simulator [’ Model instance’]['num fed’]):
configFederates.append(Simulator)

73

N
o

NN NN
C w

0N N N NN
y Ot

233

235
236
237
238
239
240
241
242

243

244
245
246

247

248

249

250
251
252
253
254

255

256

258
259
260

261

Appendix

print ("Hola)
pass
else:
con = data ['SCENARIO SCHEMA YAML’][*CONNECTIONS]
from base = "'
to_ _base = ""
var Federates = False
newSimulator = copy.deepcopy(Simulator)
for ¢ in range(len(con)):
from_base = "'
to_base = ""
if con[c][FROM’].split(’_’)[0] = sim[i]['MODELS’][midx
] ["MODEL_NAME’ | :
if len(con[c][FROM].split(’_ ")) > 1:
print (’primero ————— ', con[c][’FROM])
from base = str(con[c][FROM].split(’ 7)[0])
if int(con[c][FROM].split(’_’)[1]) = int(s):
print (’primero——— s)
if from base — ’ResidentialLoads ’:
print (len (con|[c][’ATTRIBUTES ']))
if len(con[c][ATTRIBUTES’]) = 1:
pass
else:
con[c|[’ATTRIBUTES’] = [con[c][’
ATTRIBUTES | [0]]
nuevo_data = newSimulator [Inputs’]
pf = nuevo_data| profile file’]
archivo = gzip.open(pf, ’'rt’)
assert next(archivo).startswith ('#
meta)
meta = json.loads (next(archivo))
assert next(archivo).startswith ('#
id list’)
id_list_lines = []
for line in archivo:
if line.startswith(’# attrs’):

break
id_list_lines.append(line)
id_lists = json.loads(’’.join

id_list_lines))

houses__quantity = len(list (id_lists.
values ())[0])

con[c]['TOTAL PUB’] = houses_ quantity

con[c]['TOTAL_SUB’] = houses_ quantity

if from base — ’'PV’:
for w in range(len (models|['MODELS’])) :
if models | MODELS’] [w] ["MODEL NAME’]

= conc]|[FROM’]:

74

262

263

264

265

266

267

268

269

282

284
285

286

287
288
289

290

291

292

293
294
295
296

297

Appendix

con[c]|['TOTAL PUB’] = models|’
MODELS" | [w] ["PARAMETERS] [0] ["NUMBER' |
con[c|['TOTAL_SUB’] = models[’
MODELS’ | [w] ["PARAMETERS’ | [0] ['NUMBER’ |
for a in range(len(con[c][ATTRIBUTES’])):
for k,v in con[c]|[’ATTRIBUTES |[a]. items

if k = ’ATTR FROM’ or k == ’ATTIR TO’

print ('este es el valor de V:’|

newSimulator ["Model _instance’][’
namePubs’][str (con[c]['FROM’])4str(v)] = con[c][TOTAL PUB’]

print (“kxxxxx’ Simulator [’ Model instance
]["namePubs '])

var Federates = True

configFederates.append(newSimulator)
else:

print (7...... T s)

var_ Federates = False

configFederates.append(Simulator)
print ("sxxxxx’ Simulator [’ Model instance
][’ namePubs ’])

else:
print (’segundo ——————)
for mn in range(len (pub_sub_info)):
if pub_sub_info[mm].split(’ 7)[0] = con[c][’
FROM | :
from__base = pub_sub_info[mn].split(’_")
[0]
if from_ base =— ’ResidentialLoads ’:
if len(con[c][ATTRIBUTES’]) = 1:
pass
else:

con[c|[’ATTRIBUTES’] = [con[c][’
ATTRIBUTES | [0]]
nuevo_data = newSimulator [Inputs’]
pf = nuevo_data| profile file’]
archivo = gzip.open(pf, ’'rt’)
assert next(archivo).startswith ('#
meta ’)
meta = json.loads (next(archivo))
assert next(archivo).startswith ('#
id list ")
id_list_lines = []
for line in archivo:
if line.startswith('# attrs’):
break
id_list_lines.append(line)

75

298

299

300

301

302

303
304

305

306

307

308

309

310

311

312

313

314
315
316
317
318

319

320

321

324

326
327

328

Appendix

id_lists = json.loads(’’.join(
id_list_lines))

houses__quantity = len(list (id_lists.
values ())[0])

con[c]['TOTAL PUB’| = houses_ quantity

con[c|['TOTAL_SUB’] = houses_ quantity

print (’estas son las total pub’, con
[¢]] "TOTAL_PUB’|)

if from_ base — ’'PV’:
for w in range(len (models|['MODELS’]))

if models ['MODELS’ | [w] [’
MODEL NAME’] == con|[c][FROM’ |:
con[c]['TOTAL PUB’] = models]
"MODELS’] [w] ['PARAMETERS’ | [0] ['NUMBER’]
con[c]['TOTAL SUB’] = models|
"MODELS”] [w] ["PARAMETERS’] [0] ['NUMBER'’ |
for a in range(len(con[c][ATTRIBUTES’]))

for k,v in con[c]|['ATTRIBUTES’ |[a].
items () :
if k = ’ATTR FROM’ or k =~
ATTR TO’ or k = ’ATTR’:
newSimulator [’"Model _instance’
]['namePubs’][str (pub_sub_info[mn])+str(v)] = con[c][TOTAL PUB’]
configFederates.append(Simulator)
if con[c]['TO’].split(’ ") [0] = sim[i]['MODELS’ |[midx][’
MODEL NAME' | :

if len(con[c][’TO’].spllt(")) >
to_base = str(con|c][1. Spllt(_7)[0])
if int(con[c][TO’].split (')[]) = int(s):
if con[c][’FROM’} = PV’

for w in range(len (models['MODELS’])) :
if models [MODELS’ | [w] ["MODEL NAME’]
= con[c]|[FROM’]:
con[c]['TOTAL PUB’] = models[’
MODELS’ | [w] ['PARAMETERS’ | [0] ['NUMBER’]
con[c|['TOTAL SUB’] = models|[’
MODELS’ | [w] ["PARAMETERS’ | [0] ['NUMBER’ |
for b in range(len(con[c][ATTRIBUTES’])):
for k,v in con[c][ATTRIBUTES’][b]. items

()

or k = ’ATTR:

it k = ’ATTR FROM’ or k == ’ATIR TO’

newSimulator ["Model _instance’][’
nameSubs’][str (mn)+str(v)] = con[c][TOTAL SUB’|]
else:
print (’segundo ——————)
if len(con[c][FROM’].split(’ 7)) > 1:

76

329

330

331

332

333

334

336

337

338

339

340

341

342

343
344

345

346

347

348

349

350

352

354
355

356

Appendix

for tn in range(len (pub_sub_info)):
if pub_sub_info[tn] = con[c][FROM’]:
if con[c][’FROM’'] = 'PV’:
for w in range(len (models|['MODELS
D)

MODEL _NAME’] == con|[c]['FROM’ |:

if models | MODELS’ | [w] [’

con[c]['TOTAL PUB’]
models ['MODELS’ | [w] ['PARAMETERS’ | [0] ['NUMBER" |
con|c]['TOTAL SUB’] =
models ['MODELS’ | [w] ["PARAMETERS’] [0] ['NUMBER’ |
for b in range(len(con[c]["ATTRIBUTES
1))

b].items():

for k,v in con[c]|[’ATTRIBUTES’] [

if k = ’ATIR FROM’ or k ="~
ATTR TO’ or k = ’ATIR’:
newSimulator [’
Model _instance’]['nameSubs’][str (con[c]['FROM’])+str(v)] = con[c]]
"TOTAL_SUB’]

else:
for tn in range(len (pub_sub_info)):
if pub_sub_info[tn].split(’_")[0] = con]|
c]["FROM’] :
if con[c][’FROM’'] = 'PV’:
for w in range(len (models ["MODELS
1))

if models | MODELS’ | [w] [’
MODEL NAME’] == con|[c]['FROM’ |:

con[c]['TOTAL PUB’]
models | "MODELS’ | [w] ["PARAMETERS] [0] ['NUMBER'’ |
confc]['TOTAL SUB’] =
models ["MODELS’] [w] ["PARAMETERS] [0] ['NUMBER’]
for b in range(len(con[c]["ATTRIBUTES
1))

b].items () :

for k,v in con[c]|[’ATTRIBUTES’] [

if k = ’ATIR FROM’ or k ="~
ATTR TO’ or k = ’ATTR’:
newSimulator [’
Model instance’][’nameSubs’][str (pub_sub_info[tn])+str(v)] = con|c
]["TOTAL SUB’]

if con[c][’TO’] = ’Database’ and sim[i]['MODELS’ | [midx] [
'MODEL._NAME’] = ’'DB’:
for d in range(len(con[c][ATTRIBUTES’])):
for k,v in con[c]['ATTRIBUTES’ |[d]. items () :
if k = ’ATTR FROM’ or k = ’ATIR TO’ or k ==
"ATTR :

7

Appendix

357 newSimulator ["Model __instance’]['nameSubs’
J[str(confc][FROM’])+str(v)] = con[c]['TOTAL_SUB’]

358

359 configFederates.append (newSimulator)

360 # """End new version""'

ss1| newConfigFederates = []

s63| for 1 in configFederates:
364 for k in range (int(i[’Model instance’][' num_ fed’])):
365 newConfigFederates.append (copy.deepcopy(i))

s67|# Renaming confiFederates
300 sim__name_dos = []

s70|# copy_new_Federates = copy.deepcopy (new_Federates)
for g in range(len(newConfigFederates)):

71
372 name_dos = newConfigFederates[g]["Model Name’]
373 n_name_dos = 0
374 for s in sim_ name_ dos:
375 if s.split(" ")[0] = name_dos:
376 n_name_dos += 1
377 sim_nombre_dos = str (name_dos)+’_ ’+str (n_name_dos)
378 sim_name_ dos. append (sim__nombre__dos)
379 newConfigFederates [g]["Model _name’] = sim_nombre_dos

3s1|# Checking numPubs

ss2| new__info_ federates = copy.deepcopy (newConfigFederates)

ss3| for nt in range(len (newConfigFederates)):

384 var_elim = []

385 myvarl = newConfigFederates[nt][’Model name’].split(’_7)[1]

386 myvar2 = newConfigFederates[nt][’Model instance’][nameFederate’]

387 myvar3d = myvar2+’_ ’4myvarl

388 for k,v in newConfigFederates[nt][Model instance’][namePubs’].
items () :

389 if len(k.split(myvar3)) > 1 and k.split (myvar3)[0] = ’’ and
k.split (myvar3) [1][0].isnumeric() != True:

390 print (k)

391 else:

392 var__elim .append (k)

393 for kl in range(len(var_elim)):

394 del newConfigFederates[nt][’Model instance’][namePubs’]]
var_elim [kl]]

395

so6|# Making JSON config for each federate

so7| names = []

sos| for f in range(len(newConfigFederates)):

399 jsonfile = newConfigFederates[f]

400 # print ()

401 # jsonfile ["Model_name’] = sim_name_dos|f]

78

Appendix

1402 # print (sim_name_dos|[f])
403 gen = JsonConfig(jsonfile)
404 jsonname = gen.run()

405 names . append (jsonname)

406

a07|# Taking number of days from YAML

1w0s| days = 0

a0l for q in range(len(rueda)):

410 for k,v in rueda[q].items():
411 if k = 'DAYS’:

412 days = v

413 else:

414 pass

as5|# """ Writen Scenario info """

at6|# "exec": "helics_broker —f "4str(len(data[’SCENARIO SCHEMA YAML][’
SIMULATORS CONFIGURATION ’|[’ Simulator ’]))+" —key="""4+" —Iloglevel

=1",

w7l if broker_port = "":

418 scenario = {"directory": "./",

419 "exec": "helics_broker —f "+str(len(newConfigFederates))+
" —all —loglevel=IRACE" ,

420 "host": data[’SCENARIO SCHEMA YAML’][’SCENARIO
CONFIGURATION’] [3] ['"BROKER, HOST’ | ,

421 "name": data [’SCENARIO SCHEMA YAML’][’SCENARIO
CONFIGURATION’] [5] ['BROKER_NAME’ | }

422 federates .append(scenario)

123 else:

424 scenario = {"directory": "./",

425 "exec": "helics_broker —f "+str(len

newConfigFederates))+" —all —loglevel=TRACE —port="+str (data |’
SCENARIO SCHEMA YAML’ | [’SCENARIO CONFIGURATION’][4]['BROKER,_PORT"’

1)

126 "host": data[’SCENARIO SCHEMA YAML’][’SCENARIO
CONFIGURATION] [3] ["BROKER HOST"],

a1 "name" : data [SCENARIO SCHEMA YAML’]['SCENARIO
CONFIGURATION " | [5] ["BROKER_NAME'] }

428 federates .append(scenario)

429

a30|# """ Writen Simulators info """

a1l for 1 in range(len(newConfigFederates)):

432 ## Espacio para insertar pasar META info

433 for n in range(len(sim)):

434 name_model = ""

435 if newConfigFederates[i][Model instance’][nameFederate’] =

sim [n] ['MODELS’ | [0] ['MODEL_NAME’ | :

436 # if newConfigFederates[i]|[Model Name’'] = sim[n][’
SIMULATOR, NAME ' | :

437 name_model = sim [n]['"MODELS’ | [0] ['"MODEL NAME’ |

438 for m in range(len(models|['MODELS’])) :

79

439

440

441

442

443

445

446

447
449

450

451
452
453
454
455
456
457

458

459
460

461

463

464

465
466

467

468
469

470

471
472

473

Appendix

if name_model = models ['MODELS’ | [m] ['MODEL_NAME’ | :
for 1 in range (len(models[MODELS’|[m][Model
instance’])):
for k,v in models['MODELS’ | [m] [*Model
instance’][1].items () :
if k = ’ATTRS’:
meta_attr = v # Tomando los
attributos del simulador
meta_parm = []
parm__input = {}
for ke,va in models|['MODELS’ | [m] ['"PARAMETERS’
][0].items():
if ke = 'PARAMS SET NAME’ or ke = ’NUMBER’:
pass
else:
meta_parm.append (ke) # Tomando los para
metros del simulador
parm__input [ke] = va
parm_input = str(parm_input).replace(" ", "").replace("’", 'x7)
print ("Meta es:’, meta parm)
print ("’Otro meta es:’,parm_input)
Espacio para insertar pasar META info
if not meta_parm:
if len(newConfigFederates[i]['Inputs’]) != 0:
for k,v in newConfigFederates[i]|[Model instance’].items
()
if k I= ’timeAdvance’:
simulator = {"directory": "./",
"exec": "python —u "+ newConfigFederates]|
][’Simulator Name’]+" "+ ’days: '+str(days)+" "+’ name: +str (names]|i

1)

"host": newConfigFederates[i][’
Federate__host’],
"name": sim_name_dos|[i]}
for key, value in newConfigFederates[i][Inputs’
|.items():
if key = ’info’ and value = ’yes’:
x = simulator | exec’]

simulator [’exec’] = x+" "4str(key)+":"+
str(info).replace(" ", "")
else:
x = simulator | exec’]
simulator [’exec’] = x+" "4str(key)+": "+
str(value)
federates.append(simulator)
else:
simulator = {"directory": "./",

80

478
479

480

481
482

483

484
485
486

487

488

489

490

491

492
493
494
495
496
497
498
499
500

501

502

503

Appendix

"exec": "python —u "+ newConfigFederates|
i][’Simulator_Name’]+" "+str (newConfigFederates[i]['Model instance
"] 7timeAdvance ’])+" "+’ days: +str (days)+" "+’'name: '+str(names[i])
i
"host": newConfigFederates[i][’
Federate__host’],
"name": sim_name_dos|[i]}
for key, value in newConfigFederates[i][Inputs’
|.items():
if key = ’info’ and value = ’yes’:
x = simulator | exec’]
simulator [’exec’] = x+" "4str(key)+": "+
str(info).replace(" ", "")
else:
x = simulator [’ exec’]
simulator ["exec’] = x+" "4str(key)+": "+
str(value)
federates.append(simulator)
else:
simulator = {"directory": "./",
"exec": "python —u "+ newConfigFederates|
][’Simulator_Name’]|+" "+’ days: '+str(days)+" "+’ name: +str (names|i

1)

Federate__host’],

b

"host": newConfigFederates[i]]

"name": sim_name_dos|[i]}
for k,v in newConfigFederates[i][Model instance’].items
()

if k != ’nameFederate’ and k != ’namePubs’ and k !=

nameSubs’ and k != ’startDate’ and k != ’amount’ and k != "’
metadata’ and k != ’‘stepTime’ and k != ’num_ fed’:
if k = ’“timeAdvance’:
x = simulator | exec’]
simulator ["exec’] = x+" "+str(v)
else:
x = simulator|’exec’]
simulator ["exec’] = x+" "+str(k)+": "+str(v)
else:
pass
simulator = {"directory": "./",
"exec": "python —u "+

newConfigFederates [i][’ Simulator Name’'|4+" "+str (newConfigFederates
[i][’Model instance '|[’timeAdvance '|)+" "+’days:’+str(days)+" "+’
name:’+ str (names[i]) ,

"host ": newConfigFederates|[i][’
Federate host '],

"name": newConfigFederates[i]]

)

Model Name ’] }
federates.append(simulator)

81

505
506

507

508
509

510

514
515

516

519

Appendix

else:
if len(newConfigFederates[i]['Inputs’]) != 0:
for k,v in newConfigFederates[i][’Model instance’].items
0:
if k '= ’timeAdvance’:
simulator = {"directory": "./",

"exec": "python —u "+ newConfigFederates]|
i][’Simulator Name’]+" "+’days: ’+str(days)+" "+’name: ’+str(names]|i
+" "+ meta_attr: '+str (meta_attr).replace(" ", "")+" "+’ meta_ parm
: '+str (meta_parm).replace(" ", "")+" "+’parm_input: 4+parm_ input,

"host": newConfigFederates[i][’
Federate__host’],

"name": sim_name_dos|[i]}
for key, value in newConfigFederates[i][Inputs’
|.items () :
if key = ’info’ and value = ’yes’:
x = simulator | exec’]

simulator ["exec’] = x+" "4str(key)+":"+
str(info).replace(" ", "")
else:
x = simulator [’ exec’]
simulator ["exec’] = x+" "4str(key)+": "+
str(value)
federates.append(simulator)
else:
simulator = {"directory": "./",
"exec": "python —u "+ newConfigFederates|
i][’Simulator_Name’]+" "+str (newConfigFederates[i]["Model instance
"]] 7timeAdvance '])+" "+’ days: +str (days)+" "+’'name: '+str (names[i])
+" "+’meta_attr: +str (meta_attr).replace(" ", "")+" "+ meta_ parm:’
+str (meta_parm).replace(" ", "")+" "+’parm_input: ’+parm_input,

"host": newConfigFederates[i][’
Federate__host’],
"name": sim_name_dos|[i]}
for key, value in newConfigFederates[i][Inputs’
|.items () :
if key = ’info’ and value = ’yes’:
x = simulator | exec’]

simulator [’exec’] = x+" "4str(key)+":"+
str(info).replace(" ", "")
else:
x = simulator [’ exec’]
simulator [’exec’] = x+" "4str(key)+": "+
str(value)
federates .append(simulator)
else:
simulator = {"directory": "./",

82

536

537

539

540

541
542
543
544
545
546
547
549

550

559
560
561
562

563

Appendix

"exec": "python —u "+ newConfigFederates|
][’Simulator_Name’]+" "+ ’days: '+str(days)+" "+ name: +str (names]|i

1)

Federate_ host’],

"host": newConfigFederates[i][’

"name": sim_name_dos|[i]}
for k,v in newConfigFederates[i][Model instance’].items
()

if k != ’nameFederate’ and k != ’namePubs’ and k != ~’

nameSubs’ and k != ’startDate’ and k != ’amount’ and k != "’
metadata’ and k != ’‘stepTime’ and k != ’num_fed’:
if k = ’timeAdvance ’:
x = simulator | exec’]
simulator ["exec’] = x+" "+str(v)
else:
x = simulator [’ ’exec’]
simulator ["exec’] = x+" "+str(k)+": "+str(v)
else:
pass
simulator = {"directory": "./",
"exec": "python —u "+

newConfigFederates[i][’Simulator Name’]+" "+str (newConfigFederates
[i][’Model instance ’][’timeAdvance '])+" "+’days:’+str (days)+" "+’
name:’+ str (names[i]) ,

"host ": newConfigFederates[i][’
Federate host '],

"name": newConfigFederates[i][’
Model _Name] }

federates .append(simulator)

""" Generating config JSON file """

config|["federates"] = federates

config["name"] = data['SCENARIO SCHEMA YAML’ | ['SCENARIO CONFIGURATION
"1[0] ['SCENARIO_NAME |

"""Saving JSON file """
for i in range(int(num_sce)):
with open(’config_ ’+str(i)+ .json’, 'w’) as fp:
json .dump(config , fp, indent=1)

83

Bibliography

V Cagri Gungor, Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina Buccella,
Carlo Cecati, and Gerhard P Hancke. «A survey on smart grid potential
applications and communication requirementsy». In: IEEE Transactions on
industrial informatics 9.1 (2012), pp. 28-42 (cit. on p. 5).

Carlos Andrés Macana, Nicanor Quijano, and Eduardo Mojica-Nava. «A
survey on cyber physical energy systems and their applications on smart
gridsy». In: 2011 IEEE PES conference on innovative smart grid technologies
Latin America (ISGT LA). IEEE. 2011, pp. 1-7 (cit. on p. 5).

RICARDO M CZEKSTER. «Analysis of selected frameworks in Smart Grid
co-simulation». In: () (cit. on pp. 5, 6).

Cornelius Steinbrink et al. «Cpes testing with mosaik: Co-simulation planning,
execution and analysisy». In: Applied Sciences 9.5 (2019), p. 923 (cit. on pp. 5,
7).

Ricardo M Czekster. «Tools for modelling and simulating the Smart Grid».
In: arXiv preprint arXiv:2011.07968 (2020) (cit. on pp. 5, 6).

Kevin Mets, Juan Aparicio Ojea, and Chris Develder. « Combining power
and communication network simulation for cost-effective smart grid analysis».
In: IEEE Communications Surveys & Tutorials 16.3 (2014), pp. 1771-1796
(cit. on p. 5).

Peter Palensky, Edmund Widl, and Atiyah Elsheikh. «Simulating cyber-
physical energy systems: Challenges, tools and methods». In: IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems 44.3 (2013), pp. 318-326
(cit. on p. 6).

Claudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans

Vangheluwe. «Co-simulation: a surveyy. In: ACM Computing Surveys (CSUR)
51.3 (2018), pp. 1-33 (cit. on p. 6).

84

BIBLIOGRAPHY

[10]

[12]

[13]

[14]

[15]

[18]

Cornelius Steinbrink, Arjen A van der Meer, Milos Cvetkovic, Davood
Babazadeh, Sebastian Rohjans, Peter Palensky, and Sebastian Lehnhoff.
«Smart grid co-simulation with MOSAIK and HLA: a comparison study».
In: Computer Science-Research and Development 33.1 (2018), pp. 135-143
(cit. on pp. 6, 16, 17).

Peter Palensky, Edmund Widl, Matthias Stifter, and Atiyah Elsheikh. «Mod-
eling intelligent energy systems: Co-simulation platform for validating flexible-
demand EV charging management». In: IEEE Transactions on Smart Grid
4.4 (2013), pp. 1939-1947 (cit. on p. 6).

Brian M Kelley, Philip Top, Steven G Smith, Carol S Woodward, and Liang
Min. «A federated simulation toolkit for electric power grid and communica-
tion network co-simulation». In: 2015 Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems (MSCPES). IEEE. 2015, pp. 1-6 (cit. on

p. 6).

Claudio David Lépez, Milo§ Cvetkovié, Arjen van der Meer, and Peter Palen-
sky. «Co-simulation of Intelligent Power Systems». In: Intelligent Integrated
Energy Systems. Springer, 2019, pp. 99-119 (cit. on p. 6).

Peter Palensky, Arjen van der Meer, Claudio Lopez, Arun Joseph, and Kaikai
Pan. «Applied cosimulation of intelligent power systems: Implementing hybrid
simulators for complex power systems». In: IEEE Industrial Electronics
Magazine 11.2 (2017), pp. 6-21 (cit. on p. 6).

Mehmet Hazar Cintuglu, Osama A Mohammed, Kemal Akkaya, and A Selcuk
Uluagac. «A survey on smart grid cyber-physical system testbeds». In: IEEFE
Communications Surveys € Tutorials 19.1 (2016), pp. 446-464 (cit. on p. 6).

Cornelius Steinbrink, Christian Kohler, Marius Siemonsmeier, and Thorsten
van Ellen. «Lessons learned from CPES co-simulation with distributed, het-
erogeneous systemsy. In: Energy Informatics 1.1 (2018), pp. 327-335 (cit. on

p. 6).

Mike Vogt, Frank Marten, and Martin Braun. «A survey and statistical
analysis of smart grid co-simulations». In: Applied energy 222 (2018), pp. 67—
78 (cit. on p. 6).

Steffen Schitte, Stefan Scherfke, and Martin Troschel. « Mosaik: A frame-
work for modular simulation of active components in smart grids». In: 2011

IEEE First International Workshop on Smart Grid Modeling and Simulation
(SGMS). IEEE. 2011, pp. 55-60 (cit. on pp. 6, 9).

Steffen Schiitte, Stefan Scherfke, and Michael Sonnenschein. «Mosaik-smart
grid simulation api». In: Proceedings of SMARTGREENS (2012), pp. 14-24
(cit. on p. 6).

85

BIBLIOGRAPHY

[19]

[22]

23]

Sebastian Rohjans, Sebastian Lehnhoff, Steffen Schiitte, Stefan Scherfke, and
Shahid Hussain. «mosaik-A modular platform for the evaluation of agent-
based Smart Grid control». In: IEEE PES ISGT Furope 2013. IEEE. 2013,
pp. 1-5 (cit. on p. 6).

Kunpeng Wang, Peer-Olaf Siebers, and Darren Robinson. « Towards gener-
alized co-simulation of urban energy systems». In: Procedia engineering 198
(2017), pp. 366-374 (cit. on p. 7).

Luca Barbierato, Abouzar Estebsari, Lorenzo Bottaccioli, Enrico Macii, and
Edoardo Patti. «A Distributed Multimodel Cosimulation Platform to Assess
General Purpose Services in Smart Grids». In: IEEE Transactions on Industry
Applications 56.5 (2020), pp. 5613-5624 (cit. on p. 7).

Nakisa Farrokhseresht, Arjen A van der Meer, José Rueda Torres, and Mart
AMM van der Meijden. « MOSAIK and FMI-Based Co-Simulation Applied
to Transient Stability Analysis of Grid-Forming Converter Modulated Wind
Power Plants». In: Applied Sciences 11.5 (2021), p. 2410 (cit. on p. 7).

Bryan Palmintier, Dheepak Krishnamurthy, Philip Top, Steve Smith, Jeff
Daily, and Jason Fuller. «Design of the HELICS high-performance transmissiont
distribution-communication-market co-simulation framework». In: 2017 Work-
shop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
IEEE. 2017, pp. 1-6 (cit. on pp. 8, 13-15).

Welin Zhong, Muyang Liu, and Federico Milano. «A co-simulation framework
for power systems and communication networks». In: 2019 IEEE Milan
PowerTech. IEEE. 2019, pp. 1-6 (cit. on p. 8).

Tan Duy Le, Adnan Anwar, Razvan Beuran, and Seng W Loke. «Smart Grid
Co-Simulation Tools: Review and Cybersecurity Case Study». In: 2019 7th
International Conference on Smart Grid (icSmartGrid). IEEE. 2019, pp. 39—
45 (cit. on p. 8).

Tan Duy Le, Adnan Anwar, Seng W Loke, Razvan Beuran, and Yasuo Tan.
«GridAttackSim: A Cyber Attack Simulation Framework for Smart Gridsy.
In: Electronics 9.8 (2020), p. 1218 (cit. on p. 8).

Jianhua Zhang, Jeff Daily, Ryan A Mast, Bryan Palmintier, Dheepak Krish-
namurthy, Tarek Elgindy, Anthony Florita, and Bri-Mathias Hodge. «Devel-
opment of HELICS-based High-Performance Cyber-Physical Co-simulation
Framework for Distributed Energy Resources Applicationsy. In: 2020 IEEE
International Conference on Communications, Control, and Computing Tech-
nologies for Smart Grids (SmartGridComm). IEEE. 2020, pp. 1-5 (cit. on
pp- 8, 13-15).

86

BIBLIOGRAPHY

[28] Alok Kumar Bharati and Venkataramana Ajjarapu. «A Scalable Multi-
Timescale T&D Co-Simulation Framework using HELICS». In: 2021 IEFEE
Texas Power and Energy Conference (TPEC). IEEE. 2021, pp. 1-6 (cit. on
p. 8).

[29] Dylan Cutler, Ted Kwasnik, Sivasathya Balamurugan, Tarek Elgindy, Sid-
dharth Swaminathan, Jeff Maguire, and Dane Christensen. «Co-simulation of
transactive energy markets: A framework for market testing and evaluationy.
In: International Journal of Electrical Power € Energy Systems 128 (2021),
p. 106664 (cit. on p. 8).

[30] Steffen Schiitte. «Simulation model composition for the large-scale analysis
of smart grid control mechanisms». PhD thesis. Universitat Oldenburg, 2013
(cit. on p. 10).

[31] Daniele Salvatore Schiera, Luca Barbierato, Andrea Lanzini, Romano Borchiellini)
Enrico Pons, Ettore Bompard, Edoardo Patti, Enrico Macii, and Lorenzo
Bottaccioli. «A distributed multimodel platform to cosimulate multienergy
systems in smart buildingsy». In: IEEE Transactions on Industry Applications
57.5 (2021), pp. 4428-4440 (cit. on pp. 23, 24).

87

	List of Tables
	List of Figures
	Introduction
	Problem formulation
	Research Objectives
	General Objective
	Specific Objectives

	Research Methodology
	State of the art
	Theoretical overview
	MOSAIK
	HELICS

	Conceptual Comparison
	Co-Simulation Cases study
	Cases study description
	Case 1
	Case 2

	Co-simulation setup
	Case 1
	Case 2

	Results
	Case 1
	Case 2

	Conclusions
	Appendix
	Case 1: YAML file setup
	Case 1: Models YAML file setup
	Case 2: YAML file setup
	Case 2: Models YAML file setup
	Backend Mosaik simulation
	Backend Helics simulation

	Bibliography

