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Abstract

In the last decades, the rising Big Data revolution together with the consolida-
tion of High Computing capacity led to the evolution of computer systems, able
now to perceive their environment thanks to the extraction of meaningful infor-
mation, developing learning capacities to be self-adaptable.
The depicted context has laid the perfect foundations of "Machine Learning", a
subfield of Artificial Intelligence, considered at the forefront for the construction
of a smart society. Its spreading is being affected all domains, finding application
in medicine, transport, environment, and all industrial sectors, with the objective
not only of automatizing static activities performed by human beings but also
supporting them in taking decisions for more complex and dynamic challenges,
capturing valuable knowledge in some cases not directly human-accessible.
In such digital enhancement, neural networks are becoming more and more pop-
ular as an ML technique since, in case of a sufficient amount of information and
computation capacities, they result effective whichever the field. Characterized
by a simple implementation phase, they ensure flexibility in structure and config-
uration, adopting a suited version according to the peculiarities of the problem.
Furthermore, their learning process does not require physical knowledge about the
phenomenon of interest.
A challenging task for these algorithms is represented by the Forecasting of spe-
cific events: the ML tool may leverage the previous history characterizing a phe-
nomenon with the purpose of predicting its future behaviors. Mostly used in the
weather and market domain, this implementation may result very useful also in
the space weather field, as the prediction of specific geomagnetic events affecting
the Earth may help in preventing harmful consequences.
The goal of this thesis work is that of implementing neural networks for a specific
class of geomagnetic events, called Coronal Mass Ejection, trying to predict future
trends and classify their severity based on a time series dataset containing mea-
surements taken in situ L1 1. The project has been carried out in collaboration
with the Osservatorio Astronomico di Torino (OATo), here interested in obtaining
in advance future information about the strength of the ring current around Earth
caused by solar protons and electrons (DST).

1"The L1 point is perhaps the most immediately significant of the Lagrangian points, which
were discovered by mathematician Joseph Louis Lagrange. It lies 1.5 million kilometres inside
the Earth’s orbit, partway between the Sun and the Earth. Lagrangian points are where all the
gravitational forces acting between two objects cancel each other out and therefore can be used
by spacecraft to ‘hover’." [1]



In the following work two main phases may be distinguished: at the beginning,
analysis and manipulation of the dataset have been performed, trying to catch
its characteristics and adopting augmentation techniques to transform it to be
ready for the prediction step. Then the implementation of ML techniques has
been deployed, where multiple NN architectures and settings were tested for dif-
ferent prediction tasks, so to prove the effectiveness of deep learning algorithms in
reaching the desired goal.
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Chapter 1

Introduction

Modern society is being invested in a digital revolution that is reshaping the daily
routine. Such transformation mostly relies on the abundance of data, massively
generated by sensors and electronic devices and whose manipulation allows the cre-
ation of tailored applications, according to the customer’s needs. However, dealing
with a huge amount of data requires computing systems to be high performing,
so that during their processing they can extract relevant information about the
phenomenon of interest in a reasonable amount of time.
On these premises, machines are acquiring a new type of "artificial intelligence",
nowadays known as Machine Learning” or "Deep Learning", allowing them to ex-
ecute more challenging tasks and solve dynamic problems, offering valid support
to humans for whichever domain of application.
The achieved smartness recently caught the attention of the space weather com-
munity, interested in studying phenomena related to the sun and their interaction
with the Earth. In particular, scientists are concerned about geomagnetic dis-
turbances -like solar flares and Coronal Mass Ejection- and their possibility of
impacting the terrestrial surface, causing potentially severe consequences. Here
Machine Learning enters the picture, allowing the forecast of future geomagnetic
disturbances by analyzing its previous trends, basing the learning process upon
past experiences.
A crucial advantage given by some ML tools is the unnecessity of physically de-
scribing the phenomena, an aspect considered of paramount importance in the
space weather due to the intrinsic difficulty in explaining behaviors and interac-
tions through physics-based models.
Given those circumstances, neural networks appear particularly suited for the pre-
diction task, putting in place their ability to recognize correlations in raw data,
and classify it, constructing mathematical formulas not necessarily meaningful
from the physical point of view.
The following sections illustrate a general overview of the context, acknowledging
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Introduction

the statement of the problem, together with the consequences and risks derived
from the solar activities of interest.
The most popular forecasting methods are presented, analyzing differences and
limitations. Finally, the contribution offered by Deep learning is illustrated, show-
ing how recent studies implemented those tools, many of which with a similar
intention to the one set for this thesis work.

1.1 Space weather
Earth’s atmosphere is constantly interacting with factors of various natures, many
of which may alter the equilibrium of the terrestrial surface under different aspects.
Among all possible perturbations, the ones derived from solar activities have been
so relevant to come to the attention of the scientific community, interested in un-
derstanding and analyzing their possible effects.
Space weather field includes all these complex Sun-Earth interactions, whose phe-
nomena are studied by scientists [10]" aiming to forecast potential geo-effective
events occurring in the geo-space and caused by the release of solar energy into the
Earth’s magnetosphere during geomagnetic storms, and all related phenomena".
This means that the Sun influences conditions in the near-Earth environment, in-
cluding the magnetosphere, ionosphere, and thermosphere, and its radiation can
pose a persistent hazard to space or ground-based stations and human health.
More deeply, D.Telloni [10] exposes the hypothetical harms caused by solar activ-
ities, mentioning "potential slowdown and orbital decay of the low-Earth-orbiting
satellites (due to an additional aerodynamic drag force induced by solar activ-
ity), induction of very harmful electric currents in power transmission grids and
pipelines, disruption of satellite signal propagation with severe implications for
positioning systems, and unrecoverable failures of electronics onboard spacecraft".
The ionosphere reflectivity can also be altered by the arrival of solar energetic
particles, impairing radio communication systems. Finally, Space Weather deals
with radiation produced by solar storms that can endanger the astronauts’ health.

1.1.1 Coronal Mass Ejection
Coronal Mass Ejections are the largest expressions of solar activity, defined as
large eruptions of magnetized plasma from the sun’s atmosphere -the corona- into
interplanetary space [11], which occur much more frequently at solar maximum
than at minimum.
Their origin is similar to solar flares -bursts of electromagnetic radiation- deriving
from the twisting and realignment of the sun’s magnetic field.
In the case of tangling, they produce strong localized magnetic fields which can
break through the surface of the sun at active regions, generating CMEs.
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1.1 – Space weather

Figure 1.1: CME phenomena illustration [2]

Mentioning [12], " these interplanetary structures can be seen as propagat-
ing regions of space of enhanced density and magnetic field strength. They are
characterized by an intense and long-lasting South-directed magnetic field, which
magnetically reconnects with the oppositely oriented Earth’s magnetic field. This
process allows a net transfer of energy from the solar wind to Earth, triggering the
most severe geomagnetic disturbances."
The magnetic field is not the only crucial parameter for these phenomena char-
acterization, since also the transported kinetic/magnetic energy [13], the dynamic
pressure [14], and turbulence [15] give a relevant contribution in driving the geo-
magnetic activity.
Compared to solar flares, whose travel occurs at the speed of light and reaches
Earth in just over 8 minutes, CMEs travel at a more leisurely gait. Mentioning
[2], "at their highest speeds of almost 1,900 miles per second (3,000 kilometers
per second), CMEs can reach Earth in about 15 to 18 hours whilst slower CMEs
traveling around 155 mi/s (250 km/s) can take several days to arrive". Contin-
uing [2], "larger CMEs can reach a size comprising nearly a quarter of the space
between Earth and the sun by the time it reaches our planet. If a CME is large
enough and travels faster than the solar wind it generates a shock wave whereby
accelerated charged particles travel ahead of the CME further disturbing space
weather conditions and intensifying geomagnetic storms."
CMEs usually take place around sunspot agglomeration and are often accompa-
nied by a solar flare, though the two do not always occur in tandem.
In this regard, scientists are still not entirely sure how the two events are related,
with the University Corporation for Atmospheric Research’s Center for Science
Education (UCAR) [16] stating that "CMEs -like solar flares- are more common
during solar maximum, a period in the sun’s 11-year cycle of activity when the
star is at its most active". After CMEs are released, they swell in dimensions as
they travel away from the sun.
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Although CMEs are positively welcomed by skywatchers worldwide, given the ex-
ceptional aurorae visible at latitudes beyond their normal polar range, in some
cases they lead to significant damages, wreaking havoc with power grids, telecom-
munication networks, orbiting satellites, and exposing astronauts to harmful doses
of radiation.

1.1.2 Adversarial effects
In recent centuries, solar storms caused several malfunctions, affecting electronic
devices or structures.
The Carrington Event in 1859 provoked worldwide telegraph system failures. Ac-
cording to some historical reports, operators were receiving electric shocks and
sparks showering from telegraph machines, setting papers ablaze.
"In 1989, a CME accompanied a solar flare that hit Earth, plunging the entire
province of Quebec, Canada, into an electrical blackout that lasted 12 hours" state
NASA [17]. The event cost Quebec’s utility company Hydro-Quebec at least $ 10
million in damages.
CMEs can cause swells in electrical currents, overloading power grids and causing
widespread blackouts. Also, CMEs can jostle Earth’s magnetic field and impair
radio transmissions, increasing radio static in Earth’s ionosphere.
GPS systems are particularly vulnerable to disturbances in the ionosphere, with
coordinates strayed by tens of feet during a CME event. The disruption occurs be-
cause GPS uses radio signals to relay information between a satellite and a ground
receiver. The radio signal passes through the ionosphere layer containing charged
plasma that bends the path of the GPS signal similarly to lens-bending light.
Normally, GPS systems can compensate for this bending of the radio signal, leaving
the accuracy of GPS unaffected. However, during a CME event, the ionosphere can
be so severely disturbed that the GPS models cannot keep track of such changes,
disenabling receivers to evaluate an accurate position.
Earth-orbiting satellites are vulnerable to CMEs, particularly those in high geosyn-
chronous orbits, where most communications satellites are found. When a CME
triggers a geomagnetic storm, satellites can be struck by a high current discharged
or damaged when high-energy particles penetrate them. As such, vulnerable satel-
lites can be placed in "safe mode" to prevent damage to electronics.
A direct hit of a colossal geomagnetic storm like the one observed in 1859 -the
Carrington Event- could take a heavy toll on our satellite fleet according to the
research described in [18].
"There are more than 900 working satellites with an estimated replacement value
of $170 billion to $230 billion, supporting a $90 billion-per-year industry. One sce-
nario showed a ’superstorm’ costing as much as $70 billion due to a combination
of lost satellites, service loss, and profit loss" [18]. "A worst-case solar storm could
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1.1 – Space weather

have an economic impact similar to a category 5 hurricane or a tsunami," said
Steigerwald et al. [19].
SpaceX has already witnessed firsthand the damage space weather can create when
a geomagnetic storm destroyed up to 40 Starlink satellites worth over $50 million,
in Feb. 2022.
"In low-Earth orbit, astronauts receive higher doses of radiation than in case of
Earth surface but they are still mostly protected by the magnetosphere" according
to S. Frazier [20]. Furthermore [20], "the real danger to astronauts comes if they
roam from the safety of the magnetosphere, for example, to explore the surface of
the moon or Mars. Upon such an expedition -outside Earth’s "protective shields"-
they are vulnerable to dangerous space weather events such as CMEs." According
to B. Mendez [21], if a CME-driven shock wave were to hit an unprepared astronaut
exploring the lunar or martian surface, they would be hit with as much radiation
as 300,000 simultaneous chest X-rays. This would have lethal consequences as it
would only take 45,000 simultaneous chest X-rays to be considered lethal.
Luckily, CMEs take several hours or even days to reach Earth, thus giving the com-
munity some time to prepare for their arrival. Various organizations keep relevant
attention to the sun and report any changes in surface characteristics that could
imply a CME ejection such as an increase in solar activity and solar flare ejections.
If a strong M or X-class solar flare is detected it will likely be accompanied by a
CME, but not always as already outlined.
Forecasters use various parameters -size, speed, and direction- inferred by orbital
satellites’ measurements or coronograph images to determine the likelihood of a
CME hitting Earth.
For the latter, scientists are equipped with a specific instrument -the coronagraph-
which can block out the light of the sun, allowing the display of the outermost
layer (the corona). It mimics the natural phenomenon of a solar eclipse when the
moon’s shadow covers the bright center allowing the corona to be observed.
On the CME detection frontline is the Deep Space Climate Observatory (DSCOVR)
satellite that is stationed at the first Lagrange point L1 between Earth and the sun
at about 1 million miles (1.6 million km) from the terrestrial surface. DSCOVR
[22] monitors any changes in the interplanetary magnetic field (IMF) strength and
solar wind speed which are vital to the accuracy and responsiveness of NOAA’s
space weather alerts and forecasts.
From its parking spot at L1, the DSCOVR [22] satellite can provide between
15 to 60 minutes of advanced warning before a CME reaches Earth. When an
Earth-bound CME is detected, the SWPC alerts vulnerable groups such as power
companies, satellite companies, and airlines to take appropriate measures. With
advanced warning, utility companies can redirect power loads to protect the grids
from being overloaded when the CME hits, satellites can be placed into "safe"
mode and planes can be redirected.
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Yet, "Vigil" ESA mission [23] is going to monitor the sun from Lagrange 5, approx-
imately 93 million miles (150 million kilometers) from Earth. The spacecraft will
be positioned in a way to keep an eye on the "side" of the sun. It will observe solar
conditions before they rotate around to face Earth in a bid to give us advanced
warning of possibly hazardous solar activity.

1.1.3 Forecasting methods
As previously highlighted 1.1.2, Solar weather can have drastic consequences; thus,
monitoring, understanding, and forecasting such events become crucial. A benefi-
cial factor is given by the relatively slower travel time of such ejections, useful to
give those concerned more time to prepare for such an arrival.
In this sense, adopting a statistical approach for forecasting Space Weather phe-
nomena could result in effective, giving particular consideration to predicting the
geomagnetic response to the impact of geo-effective solar structures, the relativis-
tic electron flux, the occurrence of solar flares, the propagation time of CMEs, the
transit of high-speed streams to Earth, and the crossing of the heliospheric current
sheet.
Forecasting methods used so far are based on remote-sensing observations of so-
lar phenomena, like CMEs, causing geomagnetic storms, providing expectations
of CME arrival times. Those models are generally categorized into three classes:
physics-based, event-based, and drag-based.
Physics-based models rely on photospheric magnetic field observations to initiate
numerical MagnetoHydroDynamic (MHD) simulations of the eruption of the CME
and its propagation from the Sun to Earth. These numerical codes require the use
of supercomputers to run efficiently. In addition, their reliability depends on a
correct representation of the physical processes within the models, i.e., the under-
standing of the physics of the corona and the solar wind, which is unfortunately
not yet total.
The most used MHD models for such predictions are the WSA-Enlil [24], the pre-
diction model of the heliosphere, able to provide warnings of solar wind structures
and Earth-directed CMEs 1-4 days in advance, and the EUropean Heliospheric
FORecasting Information Asset -EUHFORIA- [25], consisting of two major com-
ponents like a coronal model and a heliosphere model including coronal mass ejec-
tions.
in the last 30 years, different studies have been carried out [26], [27], [28],[29], [30],
[31], [32], [33], [34], [35].
Simpler and less computationally expensive, yet equally reliable, event-based mod-
els count on statistical studies of past CMEs, so resulting in empirical nature, and
essentially relate the CME Sun-Earth transit times to their propagation speeds,
as inferred from coronagraphic images. Such models allow the establishment of
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empirical laws, say analytical functions, which, assuming that past observations
are analogous to future ones, allow prediction of the impact time on Earth of a
new CME.
This category’s most popular works are related to the analysis of coronagraphic
speed measurements, like in [36], [37], and [38].
Another example is highlighted in [39], where a probability distribution of the
geomagnetic Dst index as a function of the CME and solar flare parameters is
determined. Other empirical works are given by [40], [41], [42], [43], [44], [45].
Observational evidence for an adjustment of the CME propagation speed to the
background solar wind and its interpretation in terms of aerodynamic drag en-
couraged the development of the so-called drag-based models, which assume that
the CME propagation in the heliosphere is governed by aerodynamic drag, as pre-
sented in Gopalswamy et al.[46] and Vršnak et al. [47].
Among the others, the 3D COronal Rope Ejection (3DCORE) model introduced
by Möstl et al. [48] is one of the most accurate: it analytically describes the dy-
namics of the CME through an easy equation of motion, thus providing real-time
prediction of the CME arrival time and impact speed with the terrestrial surface,
at the cost of considering intrinsic approximations.
The three-class methods can forecast geomagnetic disorders 1–4 days in advance;
however, the predictions are significantly model-dependent and affected by large
uncertainties.
One of the biggest deficiencies characterizing these approaches is the negligible
usage of in-situ solar wind data measured at the Lagrangian point L1, whose
deployment could potentially provide more accurate warnings concerning CME
arrival and storminess degree. This deficit is essentially due to the challenging
work of locally identifying CMEs within in-situ observations.
In this regard, in [10], where Telloni summarizes results of previous works, statis-
tically based, a technological readiness in implementing Machine Learning tools
for real-time prediction of geomagnetic events is highlighted. Even E. Camporeale
[49] gives a significant boost, remarking how "the numerous recent breakthroughs
in Machine Learning make imperative to carefully ponder how the scientific com-
munity can benefit from a technology that, although not necessarily new, is today
living its golden age".

1.2 The role of Deep learning in space weather
forecasting

As previously outlined 1.1.3, Deep Learning tools can be deployed for different use
cases, with an increase in the usage of these techniques for forecasting purposes
mainly based on the massive amount of observations collected at an impressive
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frequency, helping forecasters to predict more accurately.
Citing again [49], "Today, machine learning poses both a challenge and an oppor-
tunity for the space weather community. The challenge is that the current data
science revolution has not been fully embraced, possibly because space physicists
remain skeptical of the gains achievable with Machine Learning.
The clearest opportunity lies in creating space weather forecasting models that
can respond in real-time, built both on physics predictions and observed data".
In the last years, multiple works have been presented, applying Deep Learning tools
on various nature datasets to predict specific geomagnetic disturbances, mainly so-
lar flares, and CMEs.
In their work, Dhuri et al. [50] use ML to understand the underlying mechanisms
governing flares.
Li Rong and Zhu [51] use sequential sunspot data to implement solar active re-
gions information and give them as input to a Multi-Layer Perceptron and learning
vector quantization to predict the flare level within 48 hours. Pandey et al. [52]
present a solution to full-disk flare prediction using compressed magnetogram im-
ages, performed by training a set of Convolutional Neural Networks to perform
operations-ready flare forecast.
Again, starting from a solar flare magnetic map data, Jun Chen et al. [53] de-
fine a two-stage solar flare early warning system: in the first phase, unsupervised
clustering algorithm implementations like k-means detect sunspot group in which
positive sample account for the majority, furthermore for these groups, an ensem-
ble model integrating boosting and CNN predict whether solar flares will occur in
the next 48 hours.
D. Sudar et al. [54] analyze transit times of coronal mass ejection using a simple
feed-forward NN, providing as input only the CME velocity V and the CMD of
its associated flare, and observing that transit time dependence on V is showing a
typical drag-like pattern in the solar wind. Delouille et al. [55] demonstrate that
coronal holes and filaments could be distinguished in solar EUV images through
the usage of an ML algorithm combined with segmentation techniques.
A new approach is proposed in [56], with B. Dhuri et al. building a prediction
engine for CME arrival time forecasting, equipped with an SVM algorithm and
based on partial-/full halo CME.
Yimin Wang et al. [57] make use of a CNN regression model, giving as input only
the instances of the white-light observation (images) of CMEs to predict their ar-
rival time, while Yurong Shi et al. [58] utilize logistic regression on a set of CME
parameters like central position angle, angular width and linear velocity derived
from LASCO coronagraph images, to predict whether a CME will hit or miss the
Earth surface, and in case of a hit, their expected arrival time.
A new tool for CME detection and tracking is presented in [59], composed of three
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modules. Firstly, a LeNEt solves a supervised image classification problem, con-
sidering images illustrating CME structures. CME regions are then spotted using
a deep descriptor transforming. In the end, a graph-cut technique is applied to
finely tune the detected CME region.
In [60], Yanru Sun et al. propose a multimodality solar wind prediction method
that jointly learns vision and sequence information in a unified end-to-end frame-
work. Specifically, their prediction tool consists of three modules: Vmodule, Tmod-
ule, and Fusion module. Vmodule uses pre-trained GoogLeNet to learn visual
representation from the extreme ultraviolet (EUV) images, Tmodule applies a
combination of a one-dimensional CNN and a BLSTM for learning sequence rep-
resentation on a multivariate time series, and a Fusion module to improve the
overall performance.

1.3 Purposes of Thesis
The goal of this thesis work is that of using Deep Learning tools like Neural Net-
works for the prediction of geomagnetic events. The solar phenomena are described
by a dataset composed of solar wind and geomagnetic index observations, collected
in situ L1 over multiple years. By leveraging this data, the networks should be
able to forecast future evolution related to solar ejections, to alert in advance in
case critical events might result harmful to the Earth.
Different prediction tasks have been proposed, from a Machine Learning point of
view treated as classification problems, and disclosing information concerning the
criticality degree of such CME and their temporal extension.
Such thesis work has been deployed in collaboration with the Osservatorio Astoron-
ico di Torino -interested in developing Deep Learning techniques able to predict
geomagnetic events- that provided the dataset for the study.
Moreover, the High computation capacities have been provided by the hpc@polito,
Academic Computing project of Dipartimento di Automatica e Informatica at Po-
litecnico di Torino [61].
The thesis structure is the following:

• In chapter 2, the Deep Learning world has been briefly explained, here in-
tended as a milestone in the evolution of artificial intelligence. Then, the
characteristics of modern learning systems have been highlighted, followed by
their general use cases. An introduction of the most popular DL tools -the
Neural Network- took place, providing basic concepts and characteristics be-
hind their working principle.
All the steps aiming to correctly implement a Neural Network algorithm are
exposed, offering a direct linkage with the ongoing study. The background
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behind each architecture category has been briefly explained, examining the
pros and cons, and their hypothetic suitability for the desired goals.

• In chapter 3, the offered dataset is explored, understanding from different
perspectives its composition and the feature contribution in geomagnetic dis-
turbances.
A readiness examination of the dataset has been carried out, explaining the
reason for its direct unusability, then introducing the sequential data prepro-
cessing steps aiming to transform it and achieve readiness.

• Chapter 4 presented the neural network architectures proposed for the study,
examining their strengths and limitations. The original intention of adopting
a heterogeneous set of networks led to the construction of structures with
different complexity levels, multiple subblock configurations, and the imple-
mentation of extra solutions.

• In chapter 5, an analysis of the conducted experiments is performed, outlin-
ing network performances concerning different challenges. Multiple scenarios
have been defined, each consisting of a classification type.
The multiple assignments deliver the possibility to obtain specific CME in-
formation concerning the desired degree of severity and the (future) temporal
extension to investigate.

• Finally, conclusions are given in chapter 6, remarking on the great support
Deep Learning can offer for such complex problems the space weather field
is constantly dealing with. Suggestions for future enhancements of the work
are offered, making up for the main limitations the project faced.
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Chapter 2

Deep Learning

As introduced in 1, the ongoing digital transformation is enhancing the technolo-
gies helpful in guaranteeing modern society better life conditions.
Multiple solutions are reshaping the job environment and daily routine, with a
relevant breakthrough given by the capabilities of computing systems, nowadays
more capable of performing intellectual tasks as human beings. As David Petersson
[62] claims, their developed smartness -commonly known as Artificial Intelligence-
started becoming more fascinating when they stopped taking rule-based decisions,
moving to a different approach, oriented to the examination of data and surround-
ings, to solve or foresee problems without any explicit programming, but only
relying on a learning process being self-teaching. In this way, AI can not only
relieve humans of various repetitive tasks but also support them when it comes to
facing more challenging and dynamic tasks.
Over the years, different milestones have been achieved in AI’s evolution, princi-
pally due to the increased computing capabilities and the growth of data availabil-
ity.
The following chapter intends to go through such evolution, analyzing the peculiar-
ities of each chequered flag. The developed techniques are then examined, defining
their suitability concerning future challenges.

2.1 From Artificial Intelligence to Deep Learning
As previously claimed, Machine and Deep Learning refers to the ability of a com-
puter system to learn without being explicitly programmed but completely relying
on its computing capabilities to infer information from data.
Over the years, multiple learning algorithms have been developed, each with its
mathematical expression; yet the high-level process through which the model un-
dergoes is the same, conceivable as composed of the following three main elements:
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1. The decision process, where the system receives input variables and try to
estimate the output. A decision rule consists of an analytical function, com-
pletely different among algorithms and based on the nature of data and their
expected outcome.

2. The error function, so an analytical function used to evaluate the goodness of a
machine in estimating outcomes. Again, the implementation of the function
may vary according to the problem and data nature. On its base, a re-
adjustment of the model is executed.

3. A model optimization process, concerning the learning model re-assessment,
to understand if data are better fitted. Considering the model as described
by parameters, the objective is to update them to decrease inconsistencies
between the known instances and the model’s evaluation. This optimization
procedure has an iterative nature, meaning that as more data incomes, it
autonomously repeats so to improve the overall performances.

Algorithms differently implement these sequential steps, according to the given
task and data available; however, the data nature and expected estimations lead
to the definition of three main learning categories: supervised, unsupervised, and
reinforcement learning. There are also other techniques in literature, here out of
the discussion due to their irrelevance for the work.
Supervised algorithms consist in using learning techniques supervision-oriented,
implying in the training process the usage of labeled data so to estimate the out-
put. The term "labeled" means that, during the training, the input given to the
algorithm is provided together with its expected output. In this way, the estima-
tion generated by the model can be straight compared with the true one, so to
acknowledge the degree of correctness the machine is operating, and as a conse-
quence the direction in which estimation could be further improved.
An example of this type of problem is the recognition of an object in a set of
photos, here forming the dataset. Given an image representing just one object
for sake of simplicity, the corresponding label will be the description of the object
contained. The role of the algorithm is that of coming up with features illustrated
in the images, which could be simply graphical ones like colors, shapes, etc to infer
the represented object. The level of success of the training process will be then
evaluated by the algorithm’s correctness in categorizing images according to their
objects.
Supervised learning algorithms may be further divided, distinguishing classification
and regression tools. The difference is given by the output information provided
with the data, which is a class label in the first case, or a continuous value in
the other. Such characterization has consequences on the working principle of the
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algorithm for all the three steps beforementioned. In particular, the decision of the
error function is strictly related to this problem property: while the continuous-
ness nature of the output implies different mistake severity that may be committed
by the algorithm (in forecasting a temperature value equal to 15 ◦C, estimating
30 ◦C is much worse than 16 ◦C), a wrong label classification has generally the
same incorrectness level, whichever has been the class provided by the model as
the outcome.
Even if out of this work’s scope to describe and analyze the different model struc-
tures and characteristics, it is worth mentioning at least the famous ones and their
classical use cases. Most typical classification problems refer to the prediction of
data sample categorization and for them, algorithms like the Decision Tree, Logis-
tic regression, random forest, and Support vector machine are exploited.
For regression, classical use cases are the prediction of values like in the weather
or market field, generally, via techniques like linear or simple Regression, o again
decision tree. In the end, applications carried out thanks to supervised Learning
are Fraud Detection, Image segmentation, medical diagnosis, and Spam detection.
Unlike supervised, unsupervised learning algorithms lack supervision while train-
ing, meaning that data here are unlabeled, in most cases for the absence of such
prior knowledge. Therefore, the machine is exposed to a kind of input that needs
to be recognized to be then associated with a specific cluster of estimations. Asso-
ciation and clustering are the two types of unsupervised ML existing. As regards
the first, the goal is to find relations between variables in a large dataset, discov-
ering data dependent on the other, to maximize returns. Here, the most notable
algorithms are the Apriori, Eclat, and FP-growth algorithms.
Clustering is used instead as a method for grouping similar objects into a cluster,
so to derive groups from the original dataset. The most common algorithms are
the K-means, BSCAN, ICA, FCA, and Mean-shift.
Typical unsupervised applications are Anomaly detection, Network analysis, Singular-
Value decomposition, and Recommendation Systems. Those kinds of learning
techniques find applications in robotics, video games, and self-driving cars.
The last learning category is represented by reinforcement learning, most similar
in terms of the learning process if compared to humans; this is based on a trial and
error approach. Reinforcement learning is played by three factors: the agent, the
environment, and the actions. The agent is the one learning by communicating
with its environment through actions, getting a reward in return, either positive
or negative.
In such a scenario, no data labeling is present, and the agent only learns from
interactions with the environment. Reinforcement learning is based on feedback,
with the agent performing multiple actions to maximize the positive rewards. In
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this case, positive and negative reinforcement learning represent the classical ap-
proaches. The first refers to an event that occurs as a result of a particular be-
havior. This type of reinforcement strengthens the behavior and increases its
frequency, positively affecting the actions taken by the agent. Positive reinforce-
ment maximizes the performance and sustainability of change over an extended
period.
In the opposite direction, the negative reinforcement decreases the frequency of
the occurrence of a behavior.

2.2 The complete Machine Learning procedure
Previous sections provided a high-level description of the learning algorithm proce-
dure, bringing out similarities with the same human behavior. However, the given
explanation refers only to a phase of a wider scheme, where data input has been
already transformed to become usable by the machine, and where the respective
output will be analyzed for evaluating the algorithm’s performance. Inspired by
the work carried out by Iniesta et al [63] and Haque et al. [64], the entire process
can be displayed through a scheme -conceived as a sequential set of steps- visible
in 2.1:

Problem definition refers to the formulation of the study to perform, defining
the set of tools to be deployed for achieving the designed goals; Data collection
regards the act of collecting data information for composing the dataset; Data
preprocessing represents the set of techniques implemented to make the dataset
ready for the algorithm; Model training and validation consists in the train-
ing procedure previously explained; Model testing test the created model onto
a new set of data, unknown by the machine; finally, Performance evaluation
evaluates the performances of the algorithm on top of the outcomes returned by
the previous block, implementing evaluation metric.
For the project under study, the next section will define different aspects related
to scheme steps, highlighting for the correct work deployment the negligibility of
some and the rigid necessity of others.
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Figure 2.1: Machine Learning schematic process
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2.3 Neural Network
The achieved technological maturity in the artificial intelligence field has allowed
the deployment of several ML techniques, each more suitable for a specific appli-
cation domain, dataset nature, and prediction outcomes.
Recently, neural networks showed the most incredible outbreak, justifying their
spreading as a direct consequence of the Deep Learning boom. Working with com-
plex algorithms like NNs requires necessarily a huge amount of data and computing
capacity, aspects equally crucial in the deep learning paradigm.
Their structure appears intrinsically inclined for a deep learning approach, thus
giving the possibility to learn complex patterns that in comparison other tools
would struggle with.
Neural Networks are very versatile, adopting different architectures and configu-
rations according to the peculiarities of the problem. Moreover, neural networks
are famous for their not-necessity to dispose of knowledge about the phenomena
of interest, as their analytical implementation consists in constructing mathemat-
ical relationships not necessarily meaningful from the physical perspective. Such
aspects may result beneficial for the proposed study, since establishing physical
relationships in space weather fields may result challenging. Such premises moti-
vated the Neural Network choice for the task proposed in the following work.
The next section will investigate the main aspects of such deep learning tool archi-
tecture, explaining the overall functioning and the appropriate deployment, high-
lighting the analytical procedure behind the learning process, and the proper way
to construct and set all its parameters. Afterward, a description will explain the
general performance evaluation step, highlighting which metrics should be more
suited for such work.
Analyzing exhaustively the network architecture and behavior is out of this study’s
scope; however, recalling the main elements is beneficial for expressing a critical
judgment and extracting meaningful considerations from the results.

2.3.1 Definition
As the name suggests, Neural networks were born attempting to imitate the hu-
man being’s brain network, where biological neurons are connected through links,
establishing a distinctive architecture. In the Artificial domain, these neurons, also
called perceptrons, create "weighted" connections, giving each of them a different
relevance.
From the mathematical point of view, neural networks implement a huge mul-
tidimensional nonlinear function, whose final expression will be the result of an
iterative procedure during which an adjustment fit more and more the input com-
position with the expected outcome. As said, the primary element of a neural
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network is the perceptron, the unit in charge of weighing the incoming input and
giving a combination of them as output. Fig. 2.2 shows the main working principle:

Figure 2.2: Perceptron working principle [3]

The input-output connection is formally expressed with the mathematical for-
mula,

y =

1 if w · x + b > 0
0 ifw · x + b < 0

(2.1)

where w and x are vectors representing respectively the weights and incoming
inputs to the neuron, while the operation is a dot product, defined as:

w · x =
Ø

j

wjxj (2.2)

The neuron compares the product with a threshold to return as output either
1 or 0. The architecture of a neural network is structured over layers, describable
as a set of neurons. A fundamental requirement demands the first layer match
the shape of the input data point. Differently, the last layer shape is designed
according to the task. In the middle, different layers may be present, defining the
specific network structure.
Different structure types may be implemented, each with proper characteristics
and a certain level of fittingness for a specific task. The most famous categories
comprise the feedforward, the convolutional, and the recurrent networks.
In the first class of networks, data moves in one direction between the input and
output node, going potentially through multiple layers, and without cycling back-
ward in the crossed ones. Although the complexity of such networks may vary
a lot, with structure presenting different layers of multiple nodes, the one-way
movement of data makes Feedforward neural networks relatively simple. For these
reasons, Feedforward models are mainly used for simplistic classification problems.

27



Deep Learning

Convolutional networks correspond to a class designed to automatically and adap-
tively learn spatial hierarchies of features through backpropagation by using multi-
ple building blocks, such as convolution layers, pooling layers, and fully connected
layers. It has become dominant in various computer vision tasks, where the spatial
correlations among pixels are well interpreted and extracted to recognize objects
or actions.
Finally, recurrent networks are powerful when a model is designed to process se-
quential data. The model will move data forward and loop it back to previous
steps to best achieve tasks and improve predictions. Looping back dataflow helps
in retaining relevant information, acting as a cell of memory, and improving the
process for the next input. In this way, models can relate the context of input with
already processed ones, inspecting if any dependencies among them are present.
For example, a predictive text system may use the memory of a previous word in a
string of words to better predict the outcome of the next word. A recurrent neural
network would be better suited to understand the belief behind a whole sentence
compared to more traditional machine learning models.
In general, the learning process of a network is mathematically expressed by the
correct tuning of weights and bias parameters: starting from an initial value, these
parameters are refined with a ∆w proportional to the delta present between the
generated and the actual final output. Such an update is defined according to the
decision rule used by the neuron. However, the activation function described in 2.1
is not able to guarantee this educated upgrade, due to a lack of continuity in the
codomain function. A different activation function should be implemented, more
capable of "smoothing out", intended as the capability of generating slightly differ-
ent output for slightly different inputs. This is the case of the "sigmoid" function,
defined as in the formula 2.3:

y =
Ø

σ(w · x + b) = 1
1 + e−z

(2.3)

Multiple activation functions exist, each with a different behavior according to
the criteria needed to choose the output. In regard of this study, working with
classification problems leads to the implementation of a Softmax function in the
output layer. Defined as in the formula 2.4:

y =
Ø

σ(w · x + b) = eziq
j ezj

(2.4)

While a graphical representation is offered in fig. 2.3:
Its usage lies in the interpretation given to such function: Softmax assigns dec-

imal values to each class, visible as the belonging probability for a multi-class
problem. The summation of such probabilities is surely equal to 1, resulting in an
additional constraint for the network, which helps the training procedure converge
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Figure 2.3: Softmax trend [4]

more quickly than it otherwise would.
A further important choice concerns the decision rule to be implemented for up-
dating weights, aiming to have the outcome of the network as much as possible
equal to the real one for each input. Considering the differences between the two
quantities, an intuitive criterion is represented by the minimization of their sum-
mation. In literature, this concept is expressed as a cost function, and the objective
would be minimizing it. A cost function type is represented by the quadratic one,
defined as follows:

C(w, b) = 1
2n

Ø
x

||y(x) − a(x, w, b)||2 (2.5)

At this point, it seems reasonable to update the cost function value following
each weight’s update. This approach is deployed by the gradient descent algorithm,
whose idea is to take repeated steps in the opposite direction of the gradient (or
approximate gradient) of the function at the current point because this is the direc-
tion of the steepest descent. Conversely, stepping in the direction of the gradient
will lead to a local maximum of that function, characterizing the procedure known
as gradient ascent. According to this algorithm, to minimize the cost function
(by definition positive quantity), the needed negative ∆c is proportional to the
gradient of C for all the weights and their ∆, thus expressed as:

∆c ≈ ∇C · ∆v (2.6)

Supposing ∆v = −η∇C, with η defined as the learning rate, the 2.6 becomes:

∆c ≈ −η||∇C||2 (2.7)

To minimize C(v), the update will be v = v − η∇C, converging eventually to a
local minimum of the cost function. The algorithm may be applied with a batch
approach, estimating ∇C only on a random set of training inputs and not on all of
them, so to speed up the cost gradient evaluation. Exhausted the training input,

29



Deep Learning

an epoch is completed; the network will be considered trained once it has gone
through a sufficient number of epochs. Defined the criteria for minimizing the loss
function, the absence of an algorithm performing the procedure for all the weights
of each layer neuron is still present. Here the Backpropagation algorithm comes
into help, computing the gradient of the loss function for a single weight by the
chain rule.
The algorithm computes how the final neuron’s output would have been affected
by a small change in each input value, and whether the change would have pushed
the result closer to the right answer, or away from it.
The result is a set of error values for each neuron in the second-to-last layer; es-
sentially, a signal estimating whether each neuron’s value was too high or too low.
The algorithm then repeats the adjustment process for these new neurons in the
second layer. For each neuron, it makes small changes to the input weights to
encourage the network to get closer to the correct answer.
Then, once again, the algorithm uses partial derivatives to compute how the value
of each input to the second-to-last layer contributed to the errors in that layer’s
output—and propagates the errors back to the third-to-last layer, where the pro-
cess repeats once more.
The strategy strength is given by the property of efficiently treating one layer at
a time, unlike a native direct computation. The algorithm computes the gradient,
but it does not define how the gradient is used. It generalizes the computation in
the delta rule. A high-level explanation of the algorithm is the following:

30



2.3 – Neural Network

1. Inputs X, arrive through the preconnected path.

2. X is modeled using real weights W. The weights are usually randomly selected.

3. Calculate the output for every neuron from the input layer, to the hidden
layers, to the output layer.

4. Calculate the error in the outputs.

5. Travel back from the output layer to the hidden layer to adjust the weights
such that the error is decreased.

This procedure is supposed to be iterative, so repeated until the desired output
is achieved. Backpropagation is claimed to be the most implemented algorithm
for adjusting network parameters due to its velocity, simplicity, and ease of pro-
gramming. Moreover, it has no parameters to tune apart from the numbers of
input, and it is a flexible method as it does not require prior knowledge about
the network. It is a standard form that generally works well, not needing any
special mention of the features of the function to be learned. As a drawback, the
algorithm is input-dependent and suffers from noisy data.

2.3.2 Tuning a Neural Network
As pointed out in 2.2, the neural network architecture will be subject to the train-
ing process first, and the model testing then. In this regard, there is a need of
defining how the whole dataset will be employed for these two stages.
When working with ML algorithms, the dataset is split into different parts, called
Train, Validation and Test: first two represent respectively the 70% and 20% of
the overall dataset and are implemented during the Model training and vali-
dation; Test composes the 10% and is used in Model testing.
Train and Validation sets are necessary to train the model and verify the level of
success of such training stage, suggesting ongoing modifications; Test is instead
referring to data that will be employed after the training procedure to test the
algorithm’s effectiveness.
While the samples composing the Test set are fixed at the beginnig of the study,
Train and Validation compositions can be subject to modifications along the train-
ing procedure.
In this regard, the most famous techniques are the Fixed split ratio, also known as
Hold Out, and the cross-validation. In the first case, a fixed partitioning is applied,
meaning that before starting the training procedure deployed by the backpropaga-
tion algorithm, both the portion and the samples of the dataset devoted to train
and validation are decided. Along all the epochs, the two sets will be always con-
stituted by the same samples. The static choice of train and validation is generally
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appropriate for large datasets, as the generalization is more likely to be guaran-
teed.
Conversely, the other approach proposes training the model multiple times, at
each turn with a different train-validation combo. In the specific, the k-fold cross-
validation consists in partitioning the dataset into k sets and devoting k-1 for the
training and one for the validation. In this way, the procedure can be repeated K
times, each time using different samples for the training and validation step. Such
a method is mostly used when working with a very small dataset, as the obtained
dynamicity makes the model more robust, accounting for more variance between
possible splits in training and validation points.

Figure 2.4: K-folds cross validation scheme [5]

Proceeding with the training model discussion, the next decision concerns the
choice of its optimal hyperparameters, used to update weights and biases compos-
ing the analytical function. Given a specific architecture, it is not apriori clear
which configuration could let the model express at its best; therefore, the network
has to go through a tuning process to discover the parameter values for the highest
learning capability.
The approach used is the classical "trial and error", training the network several
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times -with a different set of hyperparameters at each turn- so treating the tuning
procedure as a grid search.
During this process, a simplification appears unavoidable, otherwise, the attempts
to take would be exponentially growing. In practice, decisions about parameters
to fix are taken, delineating then in which direction is worth making further at-
tempts.
Among all the NN parameters, the most important to be tuned are two -the Learn-
ing Rate and the Batch Size- both referring to the model training and validation
step mentioned in 2.2.
Learning rate, encountered in section 2.3.1 gives a measure of the step size taken
by the optimizer to descend the error curve. Looking at its correction tuning,
when a slow convergence toward the minimum is present, the LR is considered too
small; on the other hand, if an oscillation around the minimum value is present,
the LR is considered too big.
Batch size is a gradient descent parameter controlling instead the number of train-
ing samples to work through before the model’s internal parameters are updated.
In general, using smaller batch size values shows faster convergence to a "good"
solution, as the model start learning "immediately". However, using those values
doe not guarantee convergence to the global minima. On the other hand, using a
bigger batch size may guarantee the convergence to the local minima, but paying
with lower convergence or poor generalization.
Other parameters related to the training procedure worth to be mentioned are the
number of epochs and the momentum.
Moreover, when constructing a network structure there are other decisions to take:
the number of neurons within a layer, the activation function used in each of it,
the weight initialization, and the weight for each class, etc.
Other techniques are then implemented to prevent the most common problems
affecting neural networks, like overfitting. Again, the most popular concerns the
usage of early stopping conditions, or the implementation of dropout or regular-
ization.

2.3.3 Model performance evaluation
Another important step for an ML tool -and so a neural network- is represented
by the performance evaluation. Evaluating a model construction means examining
its efficiency, analyzing the model building time or the classification time, or yet
the scalability, or the robustness, intended as the capacity to deal with noisy or
missing data.
However, the most important analysis is generally oriented toward to quality of the
prediction. As stated before 2.3.1 , at the end of a prediction problem, the output

33



Deep Learning

should be as much as possible equal to the real one. Once the model training
terminates, the focus moves to understand its behavior when new data income,
evaluating the level of success of its estimation, and the achieved reliability.
To do so, different techniques are put in place, taking into consideration various
factors like the composition of the dataset or the type of the problem, here of a
classification nature.
For sake of simplicity, the following discussion will treat the problem as a binary
classification; however, the explanation could be easily generalized to whichever
number of classes.
By definition, in a binary classification, each data point is associated with one
out of two possible classes, with the ML in charge of estimating the correct one.
Therefore, the situations that could occur at each prediction attempt are four.
Supposing for example that the classes are represented by 1 and 0, the classifier
could get right, guessing the correct class in two cases, when the actual and the
estimated class are both 1 or 0, or it could get wrong in the other two where
estimated and actual labels do not coincide. The four combinations create the
so-called Confusion Matrix, shown in fig. 2.5:

Figure 2.5: Confusion Matrix composition [6]

The diagonal of the such matrix refers to the cases in which the classifier gets
right -indicated with the textbfTrue annotation- while the off-diagonal elements
characterize the error taken by it ( so textbfFalse estimation ). textbfPositive and
textbfNegative are simply referring the two classes.
Looking at the classifier indices inside the matrix, the goal is to have TP and TN
as high as possible and vice versa for FP and FN. This leads to the definition of
the most widely-used metric for model evaluation, i. e. the Accuracy, expressed
by the mathematical formula in 2.8:
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Accuracy = Number of correctly classified samples
Total number of samples = TP + TN

TP + FN + TN + FP (2.8)

However, accuracy is not always able to reflect the total correctness of classifi-
cation estimations. There are phenomena described by the dataset whose compo-
sition represents a limitation for the usage of this index.
The classical example is represented by a highly unbalanced dataset. Supposing
to work with a binary problem with 99% of the overall Test samples belonging to
class 1. Disregarding the goodness of the training procedure it went through, the
classifier is prone to return prediction labels as if all samples are belonging to the
overwhelming class, obtaining around 99% of accuracy. In this scenario, accuracy
is a strongly misleading metric, as the model presents a very high value even if it
will not detect any class 0 at all.
Another limitation is generally represented by datasets whose classes have differ-
ent relevance, perhaps because the misclassification of the object of a given class
is more important than the other, as often occurs in the medical field (ill patients
classified as a healthy result more dangerous than vice-versa). Therefore, there
are scenarios where other evaluation metrics should be taken into consideration,
perhaps providing assessments separately for each class. In this sense, Precision
and Recall are the most popular, mainly in case of ill-conditioned accuracy. Their
analytical definition is expresses in 2.9 and 2.10:

PrecisionC = Number of samples correctly assigned to C
Number of samples belonging to C = TP

TP + FP (2.9)

RecallC = Number of samples correctly assigned to C
Number of samples assigned to C = TP

TP + FN (2.10)

Given a class C, Precision measures the level of correctness of the predictions the
classifier associated with C, while Recall returns the level of success concerning all
the actual samples belonging to C.
The two metrics present an inverse relationship: considering a class C, the classifier
may increase its precision score by reducing the number of predictions related to
that class (changing the labels to the ones most "debatable"), thus assuming a
more conservative behavior but at the cost of finding out fewer samples belonging
to that class, resulting in a lower recall score. It is up to the problem nature to
understand whether a higher precision or recall will pay off.
In case the objective is instead that of maximizing on average their contributions,
a solution could be represented by combining somehow the two into one metric
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and maximizing it. This is what occurs for the F1 score, defined as the harmonic
mean of precision and recall. Its expression is given in 2.11:

F1C = 2 PrecisionC RecallC
PrecisionC + RecallC

(2.11)

The next chapter 3 will point out a high imbalance characterizing the dataset
provided for this study, therefore, standing out the necessity of using these last
three scores for the performance evaluation.
Moreover, a new metric will be considered, representing a variant of the classical
accuracy here useless for the before mentioned reasons: the "balanced" accuracy.
Defined in the equation 2.12, such an index has been just devised for situations
characterized by a target class that strongly overwhelms the other. Its measure
intends to give the same relevance to the two contributions, despite their different
composition on the overall dataset.

Accuracybalanced = Specificity + Sensitivity
2 = 1

2 ∗
3 TP

TP + TN + TN
TN + FP

4
(2.12)
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Chapter 3

Dataset

The dataset represents the most important element for an algorithm, in charge of
describing the phenomena it intends to learn about.
The perfect scenario has been depicted in the last years, thanks to the exponen-
tial growth of collected data (asserted as the BigData era), allowing those tools
-considered data hungry- to perform at their best.
It is then straightforward to imagine that the higher the amount of data, the better
the description of the environment where the algorithm will take place.
On the other hand, the creation of an appropriate dataset is strictly linked to the
quality of the collected data, whose nature must be in accordance with the desired
use case.
Working with a high dataset cardinality appears a necessary step, yet not suf-
ficient for the correct algorithm training: collected data are raw, thus, often not
immediately usable. In most cases, they have to go through a preprocessing phase,
during which they are analyzed, to catch their peculiarities and strengths, then
transformed to results suitable for the training process. With a more formal def-
inition given by [65], "Data preprocessing for Machine Learning is a crucial step
that helps enhance the quality of data to promote the extraction of meaningful
insights from the data. It refers to the application of techniques (cleaning and
organizing) to the raw data to make it suitable for building and training Machine
Learning models."
For this study, the forecasting purposes suppose the implementation of a multivari-
ate time series, leading to the application of specific techniques. In the following
sections, a brief explanation of the feature composing the set is provided, analyzing
the given features their relationships with the targeted label.
Statistical properties of those characteristics are then inspected, to infer which
of them could be more informative for the ultimate prediction. A discussion re-
lated to the dataset readiness is then provided, highlighting the reason behind the
implemented transformation techniques, which are finally illustrated.
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3.1 Dataset of this work

Forecasting future events leveraging on the previous history requires an indispens-
able characteristic for the given dataset: each sample needs to be timestamped, so
associated with a time instant representing when the collection occurred. In this
way, respecting the sequence order offered by the timestamp, a temporal series
of samples is determined: fixing any data point, all the others preceding it will
constitute the past, and the subsequent ones the future. Datasets equipped with
this property are called time series.
Generally, the examination of a dataset consists of two main aspects. To kick off,
the comprehension of its technical composition, to achieve an understanding of the
features’ meaning, and their contribution to the geomagnetic event.
Then, a statistical investigation to show analytical properties, which is sometimes
useful for inferring the most appropriate transformation technique. Next subsec-
tions will present respectively the technical and the statistical analysis.

Index Name Measure unit
0 Time [s]
1 Time shift [s]
2 Magnetic intensity B [nT]
3 Bx [nT]
4 By [nT]
5 Bz [nT]
6 Solar wind bulk speed [km/s]
7 Vx [km/s]
8 Vy [km/s]
9 Vz [km/s]
10 Proton density [cm−3]
11 Proton temperature [K]
12 Flow pressure [nPa]
13 Plasma pressure [nPa]
14 Magnetic pressure [nPa]
15 Total pressure [nPa]
16 Plasma beta A-dimentional
17 Alfvenicvity [s]
18 AE [nT]
19 SYM-H [nT]

Table 3.1: Features composing the dataset
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3.1.1 Technical analysis

As expressed also by ESA [66], most of the datasets are mainly composed of solar
measurements - forming a time series- or of coronographic and solar magnetogram
photos (imageset).
For this work, the dataset consists of a collection of solar wind and geomagnetic
indices measured from the 1st of January 2005 up to the 31st of December 2019
in situ L1. The total number of observations is 7.888.320, taken with a 1-minute
resolution, resulting in a collection of 20 features, depicted in Table 3.1.
A particular that stands out immediately is the presence of two temporal vari-
ables: Time is the time taken by the terrestrial magnetosphere to react to the
Coronal Mass Ejection disturbance, while Time shift is the time needed by the
CME disturbance to cover the L1-Earth surface distance, thus dependent from the
CME velocity. The reason behind this distinction is promptly explained. Time
represents the instant at which the spacecraft situ in L1 measured the CME quan-
tities, so highlighting when the event impacted the Lagrangian point, far from the
Earth about 1.6 million km. Differently, the SYM-H quantity is measured on the
terrestrial surface, thus leading to potential inconsistencies given by the different
spacial places where collections occurred. In this sense, combining the two offers
the possibility to "relate" measurements to the same spatial point. For example,
subtracting Time shift to Time can be seen as a translation of measurements
from L1 to the Earth. However, no combination of those quantities has been con-
sidered, supposing that the Machine Learning tool can catch the correlation even
in those circumstances. To conclude, the used time instants are given by Time.
Going on, Magnetic intensity B refers to the magnetic field intensity expressed
by the CME, with Bx, By, and Bz representing respectively the x, y, and z co-
ordinate. Solar Wind Bulk Speed represents the ejection travelling speed and
Vx, Vy and Vz its x, y and z coordinate. Proton density indicates the pro-
ton number density, while Proton temperature its temperature. Again, Flow
pressure considers the solar wind flux pressure, Magnetic pressure refers to
the magnetic one, while Plasma pressure concerns the thermal pressure of the
plasma ejection. As highlighted by Burlaga and Ogilvie in [67], an increase of the
Plasma pressure generally corresponds to a decrease of Magnetic pressure
and vice versa. The sum of the thermal and magnetic pressure returns Total
pressure, while their ratio results in Plasma beta. Alfvenicity aims at offering
a correlation measure between magnetic field and speed vector, while in the end
AE and SYM-H are respectively the expressions of the geomagnetic disturbance
severity at low and high latitudes.
Notice that in the provided dataset there are no Magnetohydrodynamics (MHD)
parameters: even if those quantities would be really helpful, they are reflecting phe-
nomena characteristics that are not occurring "punctually", but also to previous
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and subsequent periods. This counteracts the spirit of the prediction task, where
punctual measurements are used to forecast future values, with any possibility to
exploit parameters containing information related to other periods.

3.1.2 Statistical analysis

As anticipated, the understanding of a dataset passes also for statistical analysis:
this may highlight relationships among variables on one hand, and reveal infor-
mation for future decisions on the other hand. As highlighted, the dataset here
corresponds to a time series, formally defined as "a sequential set of data points,
measured typically over successive times", whose analysis "comprises methods for
analyzing time series data to extract meaningful statistics." In particular, the time
series here is multivariate -multiple features composing the set- and discrete, this
latter referring to the fact that measurements are taken at a discrete point in time
(1 minute).
A general characterization consists of treating the quantities as random variables,
thus evaluating their statistical properties, resumed in Table 3.2:

Name mean std min max
Time [s] 6.350841e+10 1.366297e+08 6.327176e+10 6.374506e+10

Time shift[s] 3.457890e+03 1.233186e+03 -4.010000e+03 1.079400e+04
Magn field [nT] 5.191268e+00 2.729287e+00 1.300000e-01 5.889000e+01

Bx [nT] 3.394247e-02 3.267459e+00 -4.452000e+01 2.819000e+01
By [nT] -1.076916e-02 3.673980e+00 -3.435000e+01 5.730000e+01
Bz [nT] 1.698139e-02 2.926935e+00 -5.251000e+01 4.376000e+01

SWB speed [Km/s] 4.218924e+02 9.897865e+01 2.308000e+02 1.114800e+03
Vx [Km/s] -4.207202e+02 9.855801e+01 -1.104900e+03 -2.308000e+02
Vy [Km/s] 1.073117e+00 2.346353e+01 -2.613000e+02 5.834000e+02
Vz [Km/s] -5.559315e+00 2.112286e+01 -2.293000e+02 2.017000e+02

Proton density [cm−3] 6.037258e+00 4.783631e+00 1.4000e-01 8.095000e+01
Proton temperature [k] 8.642249e+04 8.593112e+04 9.200000e+02 4.831295e+06

Flow pressure [nPA] 1.960801e+12 1.505612e+12 3.122123e+10 9.620146e+13
Plasma pressure [nPA] 1.264986e-10 1.867450e-10 2.398771e-13 1.726334e-08

Magnetic pressure [nPA] 1.368664e-10 2.171831e-10 6.724296e-14 1.379886e-08
Total pressure [nPA] 1.960801e+20 1.505612e+20 3.122123e+18 9.620146e+21

Plasma beta 1.425756e+00 2.767306e+00 7.781150e-04 7.430067e+02
Alfvenicity 6.295395e-03 6.784865e-01 -1.000000e+00 1.000000e+00
AE [nT] 3.552084e+05 1.116324e+06 1.000000e+00 5.797498e+06

SYM-H [nT] -9.645804e+00 1.527413e+01 -3.050000e+02 1.510000e+02

Table 3.2: Statistical properties
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Three main observations stand out by looking at those outcomes. First, the
count value should be equal to the dataset cardinality whichever the feature. This
is not the case, as Alfvenicity presents 1545 samples less, thus suggesting treat-
ing this feature carefully, as missing values present in the dataset can impact the
model performance by creating a bias in the dataset. This bias can create a lack
of relatability and trustworthiness in the dataset. In this regard, the next section
will inspect different solutions to tackle the problem.
Going on, an interesting element is outlined by the Standard Deviation: de-
fined as the index of dispersion of a set of values, it somehow expresses how much
information may potentially be extracted from a characteristic. In general, the
higher the value, the higher the amount of information. In this sense, it may offer
a preliminary evaluation for choosing a subset of features that most affect the tar-
geted value. However, such analysis is just preliminary, with a better counterproof
offered by a correlation assessment.

Figure 3.1: Correlation matrix

41



Dataset

The last emerging aspect points out the need for normalization before imple-
menting the ML models: the high magnitude of features like pressures, proton
temperature, and AE may lead to the exploding gradient problem, a phenomenon
often occurring when working with Neural Networks. Moreover, having features
with similar scales helps to stabilize the gradient descent step, allowing the adop-
tion of bigger learning rates or helping models converge faster for a given learning
rate.
A further interesting analysis is offered by a correlation study, aiming at exam-
ining the relationship among each couple of features. As mentioned before, the
significant ones could be those influencing the targeted value, SYM-H, suggesting
a dependence degree, thus their potential forecasting support. In fig. 3.1, the
complete correlation matrix is presented:
Generally, autocorrelation is useful to explain relationships among variables, sup-
porting physical expression also applicable in this case. However, it is out of this
work’s scope to highlight those dependencies for strengthening such relationships;
on the contrary, catching the ones presenting a high correlation with SYM-H could
be more meaningful. A better overview of this is offered in fig. 3.2

Figure 3.2: Features correlating with SYM-H
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Here, a relevant contribution seems to derive from features whose absolute
correlation value is higher than 0.2 -proton density, speed, and magnetic field-
finding similitudes with different studies offered in 1.1.
The next chapter will treat a detailed discussion regarding the most pertinent
features; however, keeping in mind those correlations may help in case of a feature
selection step.
The last examination consists in evaluating the distribution of the occurrences
of the targeted variable. The such examination helps in understanding whether
the given dataset presents disturbances with heterogeneous properties, visible from
the ML perspective as a sufficient number of samples describing the different event
severities. In this case, dealing with a classification problem leads to the disposal
of a balanced-class dataset, meaning that the number of samples belonging to
the different classes should be equivalent, or at least none of the classes should
overwhelm the others.
The distribution is illustrated in Fig. 3.3, underlining that the property is not
respected at all, with a substantial imbalance leaning in favor of Not Critical
events. In the specific, the number of events classifiable as Critical (presenting an

Figure 3.3: SYM-H distribution
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SYM-H value lower than -50nT [10]) is 159249, corresponding to the 2,019% of the
overall dataset. Thus, a transformation of the dataset for rebalancing it appears
indispensable.
Such investigation will be performed in the next section, describing the problem
exhaustively and employing the solutions to tackle it.

3.2 Dataset transformations
The analysis previously executed highlighted something already anticipated in 2.2:
the need for a preprocessing step, whit the purpose of transforming the dataset to
make it ready for the prediction step. The following subsections will go through
the entire manipulation, aimed at cleaning, reshaping, and augmenting the original
dataset to obtain in the end a more appropriate version for the neural network
architectures.

3.2.1 Data cleaning
The first operation consists of a normalization: one of the most popular formulas
expects each sample to be subtracted from the mean value (centering) and divided
by the standard deviation (standardizing the scale).
The next problem regards the missing values which affect Alfvenicity. In this
regard, different techniques may be implemented, generally categorized into two:
Drop the record with the missing value and Impute the missing information. Drop-
ping the missing value is however an inappropriate solution, as the correlation of
adjacent observations could be lost. On the contrary, estimating or imputing the
missing values can be an excellent approach to facing the problem.
The most common solutions for filling are "Last Observation Carried Forward
(LOCF)", "Next Observation Carried Backward (NOCB)", "Rolling Statistics" and
"Interpolation". In LOCF and NOCB, the replacement is performed by consider-
ing respectively the previous or the next non-missing value. In Rolling statistics,
statistical properties can be used to impute missing values by aggregating the pre-
vious non-missing ones. An example is given by considering the type of averaging
of previous samples, like the simplex or the moving one. Finally, the interpolation
technique estimates the missing value by using past and future known data points.
However, a simpler decision could be that of removing completely this feature,
as excluding an ill-conditioned quantity -characterized also by a weak correlation
with the targeted value- does not seem so despicable.
For this case study, the choice of interpolating seemed to be the best one; however,
in case of a filtering step for the features to be provided as input, Alfvenicity will
likely be discarded.
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3.2.2 Data windowing

The next step consists of a reorganization of the time series measurements, forming
a more suitable dataset for the neural network. Reshaping the data structure is
generally an operation performed before the algorithm training; however, the need
of compensating for the unbalance leads to taking the decision as soon as possible.
In this case, reorganizing the dataset means rearranging the input samples present
in the whole time series. As the algorithm will leverage the previous history for
forecasting future behavior, a first decision concerns the number of samples it
should look back at to perform then the estimation. Given the whole dataset, the
neural network should be provided with a set of consecutive samples representing
the trend of the phenomena of interest and then return a forecasting estimation.
To be more precise, the definition of a window is necessary, where a bigger fraction
of samples will contribute to the input values, on top of which the network will
train and adjust the belief, while a smaller part will represent the output, so the
value(s) for which to estimate the class severity.
The parameters which should be defined for a window are essentially 3, which
are the size, the resolution among adjacent samples, and the fraction to devote as
input (and as output). The size is generally chosen according to some periodicity
encountered in the time series; however, no significant trend, seasonal or daily be-
havior was detected for this study. As a consequence, an informative contribution
could be provided by the nature of such ejection: their traveling speed, which al-
lows them to cover the distance with the lagrangian point at most in some hours,
allow them to give importance only to the most recent history of the phenomena.
Thus, an educated guess corresponding to a daily period seems to be adequate.
Regarding the time resolution between adjacent samples, the dataset resolution of
1 minute gives total freedom for this decision; however, choosing a too-low resolu-
tion among samples would lead to having windows composed of too many samples.
Again, a ponderate choice could be based on the time taken by the disturbance
to cover the L1-earth distance, suggesting to consider as adjacent window samples
those for which the occurrence differs of 1 hour. In the end, the decision could
be that of fixing 24 samples for the input -1 hour spaced- and plugging then a
variable part representing the prediction output, consisting of just one sample for
the SSM or multiple ones for MSM.
All of the features will be inserted in the windows input, while the output will
be composed only of SYM-H, taking the role of the label to be predicted. The
creation of a set of windows from the time series is then performed, obtaining at
the end (7888296 - output_length) elements. In the case of SSM, there will be
7888296 windows, while in MSM, if i.e. output_length = 8, then there will be
7888288.
Notice that such reshaping served only for reorganizing the samples of the time
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series dataset, without impacting its composition. This means that the dataset
still presents high imbalances, which will be tackled in the next section.

3.2.3 Data Augmentation
Facing the imbalance of this dataset’s work represented the main task required in
the data preprocessing step, involving techniques aiming to change its composition,
yet respecting the correct description of the phenomena under study. However, a
necessary remark has to be pointed out before the deployment of such a transfor-
mation. As anticipated in 2.3.2, the overall dataset is divided into three different
subsets -Train, validation, and test- each with a different role in the ML prediction
step: first two are implemented in the Model training and validation stage to
train the network and verify the level of success of the such process, suggesting
appropriate adjustment; the test is treated as data that will be revealed after the
training procedure and will be employed for testing the effectiveness of the algo-
rithm, so useful for the Model testing step.
Since altering the dataset composition helps the model become more robust and
able to generalize during the training process, the only subsets which have to be
subject to modifications are the training and validation. On the contrary, there
is no reason in modifying the test component, which should preserve the original
composition to properly reproduce the ejection occurrences. Since the only Train
and Validation sets have been subject to changes, the following discussion will
involve only these two sets’ contributions.
Given the high dataset cardinality, in the beginning, an undersampling procedure
to "thin out" the dataset has been performed, removing random windows associ-
ated with non-critical events.
On the other side, the minority of the relevant events suggested increasing the
dataset by adding samples belonging to the interested classes.
One of the most popular oversampling options is the acquisition of new data by
generating synthetic samples. Such a solution is called Data Augmentation: this
expression refers to the implementation of a set of techniques aiming to increase
the amount of data by generating new points starting from the existing ones.
Citing [7], "data augmentation is a universal model-independent data side solution
attempting to increase the generalization ability of trained models by reducing
overfitting and expanding the decision boundary of the model [68]. The need
for generalization is essential for real-world data and can help networks overcome
small datasets or datasets with imbalanced classes [69], [70]."

Continuing [7], data augmentation techniques can be divided in four main cat-
egories, as summarized in fig. 3.4:

Disregarding the explanation of these technique classes, out of scope for this
work, the evaluation done here consisted in choosing which of those techniques
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Figure 3.4: Time Series Data Augmentation Techniques [7]

could have guaranteed acceptable results, in agreement with the series nature,
avoiding the implementation of complex solutions which may have impacted the
structure of such events. For those reasons, a particular focus has been first given
to the first two categories, considered easier to be implemented and making fewer
modifications to the overall data property. Then, other options would have been
taken into consideration if necessary. Looking at the random transformation and
pattern mixing families and considering the nature of the time series, transforma-
tions in the Magnitude and Time domain seem to be the more suited, while those
in frequency should not, given the non-periodicity of those events.
In particular, transformation methods like Jittering, Scaling, Magnitude, and Time
Warping have been implemented. Defining the expression of time series may be
beneficial for the explanation of those techniques. The general characterization is
the following:

x =
è
x1, x2, x3, ... xN

é
(3.1)

The series x can be seen as a vector containing N elements, with N equal to
the window input size. A transformation of such series will be indicated as x′.
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A time series window representation is shown in Fig. 3.5:

Figure 3.5: Time Series window [7]

Jittering refers to the act of adding noise to the time series. It can be mathe-
matically defined as:

x′ =
è
x1 + ϵ1, x2 + ϵ2, x3 + ϵ3, ... xN + ϵN

é
(3.2)

where ϵi is typically Gaussian noise added to the i-th element. Its expression is

ϵ ∼ N (µ, σ2)

, with µ equal to 0 and σ2 equal to a random variable, proportionally set to each
feature’s magnitude.
A jittered version of the signal previously shown is displayed in Fig. 3.6:

Figure 3.6: Jittered Time Series window [7]

Scaling changes the global window magnitude, or intensity, by applying a scalar
factor to each element. It is defined as:

x′ =
è
α x1, α x2, α x3, ... α xN

é
(3.3)
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Figure 3.7: Scaled Time Series window [7]

Again, to avoid dramatic changes, a random scalar value belonging to [0.9, 1.1]
has been chosen. A scaled version of the same signal is displayed in Fig. 3.7:

Magnitude warping aims at warping signal’s magnitude by using a smoothed
curve. Practically, it consists of dynamic scaling, in the sense that for each element,
a different factor α is applied.

x′ =
è
α1 x1, α2 x2, α3 x3, ... αN xN

é
(3.4)

The warping version is shown in Fig. 3.8:

Figure 3.8: Magnitude warping applied to Time Series window [7]

Finally, Time warping adopts a different distortion approach, perturbing the
trend in the temporal domain. In a sense, the act can be seen as a dynamic shrink
or stretch of the given time window. The application of this method is analytically
defined through the application of a smooth warping function; then expressed as:

x′ =
è
xτ1 , xτ2 , xτ3 , ... xτN

é
(3.5)
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where τ is the function that warps the time steps based on a smooth curve. Again,
the temporal warping version is illustrated in Fig. 3.9:

Figure 3.9: Time warping applied to Time Series window [7]

Regarding the mixing procedure, the one proposed for this work is the SMOTE
(Synthetic Minority Oversampling TEchnique). Designed to combat data with
an imbalanced nature, it interpolates patterns belonging to the under-represented
class. In particular, for a given sample x, another sample xNN is selected from its
nearest neighbors. Next, the difference between the two samples is multiplied by
a random value λ in a range of [0, 1]. The analytical result is the following:

x′ = x + λ|x − xNN| (3.6)

This work examined two SMOTE alternatives, being different in the type of dis-
tance used for evaluating neighbors: the Euclidean distance and a DTW-based
distance. First, theoretical research has been performed, aiming to understand
which of them could result more appropriate. In particular, citing [71], "the Eu-
clidean distance is a widely used measure of similarity between two vectors which,
by definition, enforces a lock-step one-to-one mapping between corresponding ob-
servations in any two-time series samples.
Yet, the similarity between two time series measured by the Euclidean distance can
be severely distorted when minor misalignments along the time axis, for example,
due to instrument measurement error, are present between the two-time series".
This means that in the case of signals whose trend is similar but are misaligned in
time, the euclidean approach would not be able to catch their similarity.
In those cases, DTW offers a solution to overcome the misalignment problem. It
shrinks or stretches the region of one time series to best suit the other. Again
[71], DTW allows a non-linear alignment between observations and is, therefore,
invariant to misaligned data, as also displayed in 3.10. Since the ejection under
study is characterized by a variable speed, the SMOTE augmentation DTW-based
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might result more suited for identifying the most similar samples.

Figure 3.10: Graphical comparison between Euclidean and DTW Distance [8]
.

All the explained techniques have been equally used: for each sample within
the dataset, one of them has been randomly chosen and implemented, giving a
similar contribution to the augmented dataset construction.
In the end, starting with a dataset of 7888296 measurements, including about 2%
of critical events, its augmented version contains 4589519, whose 32% are critical
events.
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Chapter 4

Neural Network

The neural network description offered in the section 2.3 highlighted the work-
ing principle behind their structures, with each generally more suited for specific
assignments. Classic feedforward architectures work well with classification or
regression problems; convolutional models are mostly implemented in computer
vision tasks, while recurrent approaches are the favorite ones in the case of tem-
poral data analysis.
The latter technique seems more appropriate for the nature of the problem under
study, where temporal reliance among consecutive measurements represents a key
aspect for forecasting purposes.
RNNs constitute a subset of neural networks whose working principle is based
on the explicit handling of the order of the observations. Such capability implies
that the recurrent approach can acknowledge the chronological context of input
sequences, leveraging their temporal dependencies to provide better predictions.
That said, the nature of the problem could expect greater outcomes from this class
of networks; however, embracing a set of diversified networks may result in more
benefits, since the forecasting nature of the problem is faced as a classification
challenge.
In addition, the continuous evolution of those architectures avoids the total supremacy
of a structure for a specific use case.
As a consequence, the ultimate choice consisted of a heterogeneous set of networks,
basing the decision both on the works presented in 1.2, but also on the composition
of the dataset and some expert advice.
The next section will provide an explanation of the proposed architectures, de-
scribing both their structural composition and the reasons behind some solutions
adopted to enhance performances.
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4.1 Choice of Neural Network Architectures
The architectures proposed for the study are 7, constructed with different com-
plexities and equipped with multiple solutions. The first architecture is used as a
baseline reference, followed by three basic models with a similar number of param-
eters, each belonging to the previously mentioned different categories, and three
hybrid and more complex structures.
The choice of those networks allows working on one hand with some basic archi-
tectures, to investigate the suitability of each category with the objective, and on
the other hand with more complex structures, obtained by mixing basic ones or
implementing additional solutions.
All the networks adopt the same input layer, whose shape is given by (batch size,
number of samples, number of features), and the same output shape, defined ac-
cording to the task to fulfill.
The targeted feature has been represented by SYM-H, but rather than predicting
its continuous value, architectures estimate a class consisting of the belonging crit-
icality range. By doing so, multiple classification problems have been designed,
aiming to infer a different piece of information about the CME arrival time and its
degree of severity. In this regard, the next chapter will explain the SCENARIOs in-
vestigated, providing from the network perspective the various output dimensions.
What is left immutable regards all the middle layers, which have been constructed
to let different networks have similar complexity.
Some architecture dimensions coincide with the previously mentioned parameters,
strictly related to the subtask. For this reason, their structural representations
will include them as well.
A list of such quantities is provided 4.1:

• B represents the batch size;

• W represents the input window size, so the number of consecutive samples
describing the event behavior;

• F represents the number of features;

• C represent the number of classes, which are 2 in the binary tasks and 4 in
the categorical one;

• O represents the number of forecasted time istants, equal to 1 in the SSM
approach and up to 8 in the MSM ;
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4.1.1 Linear
The Linear model is the simplest network architecture, as its composition com-
prises only the input shape, a "flatten" layer, and the output shape.
As the term suggests, the flatten layer flattens the previous layer’s output, in this
case corresponding to the input itself.
In particular, giving a 3-dimensional input (batch size, number of samples, number
of features), the layer will convert it to a bi-dimensional one, with shape (batch size,
number of samples*number of features). Linear is viewed as a baseline structure,
acting as a reference in the project, useful to contextualize the results of trained
models, although the lack of complexity may result in little predictive power.
A representation of the architecture is offered in 4.1:

Figure 4.1: Linear model architecture

4.1.2 MLP
An immediate increase in the Linear model complexity is achievable by adding
further layers, making the overall structure deeper. In literature, those types of
models are called Multi-Layer Perceptron (MLP), basing their strength on the
"depth" factor, following the deep learning paradigm 2.
A multilayer architecture could have a higher capacity for extracting knowledge
from more complex phenomena, increasing network performances. In general,
adding "depth" boosts a network’s representational capability and aids in learn-
ing increasingly abstract characteristics, preventing in some cases the underfitting
problem.
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Taking inspiration from Wang et al.[72], an MLP has been devised by adding to
the Linear model three dense middle layers, obtaining the overall the feedforward
architecture proposed in fig. 4.2:

Figure 4.2: MLP model architecture

4.1.3 CNN

A convolutional architecture has the intrinsic ability to learn the position and
scale patterns inside data, thus suggesting their implementation principally when
dealing with image datasets, where the structure composing the data sample -a
photo- contains spatial relationships.
Recently, CNN has shown a certain suitability when employed for time series
forecasting tasks too. Citing [73], "CNN offers dilated convolutions, in which filters
are used to compute dilations between cells. Continuing [73], "the size of the space
between each cell allows the neural network to understand better the relationships
between the different observations in the time series". Therefore, such work has
been enlarged with a basic convolutional architecture, eager to find out whether
those capacities may be put at the service of the given time series challenges.
The proposed structure is presented in fig. 4.3:
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Figure 4.3: CNN model architecture

4.1.4 LSTM

For the last network categories, an LSTM structure has been taken into considera-
tion. In general, the RNNs are considered more suited to time series tasks thanks
to their structure layout, as the recurrent connections constitute an effective mem-
ory for the network, with the capacity of "storing" past trends to better estimate
future ones.
As a consequence, recurring networks are used for pattern processing of variables
whose length will be treated as sequences, divided into pieces, and displayed on
the network at a different time step [74].
On the other hand, RNNs suffers from vanishing gradient and short-memory prob-
lem, leading to a loss of information, caused by the repeated use of the recurrent
weight matrix in RNN.
Differently, in LSTM networks, the recurrent weight matrix is replaced by an iden-
tify function in the carousel and controlled by a series of gates [75]. The input
gate, output gate, and forget gate act like a switch that controls the weights and
creates long-term memory function.
The LSTM model presented in the work shows the following architecture:
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Figure 4.4: LSTM model architecture

4.1.5 Deep CNN
The three previously proposed models comprise a structure for each of the pre-
sented network categories. Despite other studies putting in place their deployment
for similar use cases, it is not said that those basic models will perform well for
the described challenge. Having already mentioned some of the MLP and CNN
limitations, it should be noted that LSTM may arise problems as well.
Famous for their ability to learn temporal dependencies in sequences, they have
difficulty with long-term dependencies in long sequences. Moreover, a critical as-
pect highlighted by Karim et al. [76] indicates that in some cases LSTMs by
themselves cannot isolate the data into linear separable classes.
Therefore, constructing more complex architectures by combining these basic ones
might lead to more appropriate structures.
In spirit with the Deep Learning paradigm 2, an immediate solution could be ob-
tained just by replicating a basic model multiple times. As already pointed out,
increasing the number of layers may lead to a better understanding of data pat-
terns with a higher degree of complexity. Such replication is often applied for the
convolutional networks, as the stacking of CNN models might lead to a better
decomposition of the input. By doing so, the overall extraction is "fragmented",
inferring at each step low-level features, to come up in the end with a sequential
procedure potentially able to acquire more complex information.
The proposed architecture consists in replicating four times the beforementioned
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CNN, leading to the structure presented in fig.4.5, called for sake of simplicity
Deep CNN:

Figure 4.5: Deep CNN model architecture

4.1.6 LSTMFCN

Another solution consists in implementing multiple architectures, with each infer-
ring its knowledge, and then combining their extraction output. In general, merg-
ing different models guarantees a better generalization, as the mixing of features
extracted according to different criteria may enhance the overall understanding.
In this regard, citing again [76], Karim states that the combination of an LSTM
and an FCN block may transform the data into separable classes, thus leading to
a construction of an LSTMFCN, with the features of recurrent and convolutional
extractor converging in one model, obtaining a more robust set of features. In-
spired by those researches, an LSTMFCN model has been considered, constructed
by combining the previous Deep CNN with an LSTM block. The architecture is
shown in the following fig 4.6:
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Figure 4.6: LSTMFCN model architecture

4.1.7 DEEPCNN WITH A SKIP CONNECTION

The last model implements a solution that might be beneficial for the prediction
task: the skip connection. Skip connection consists of a path in charge of feeding
a layer with the original input or the output of a previous layer.
Skip connections were introduced to mitigate the vanishing gradient problem and
ensure reusability. One of the most popular networks equipped with this solution is
the ResNet, where the output of each layer feeds both the next and the successive
layer, here summed to the intended input.
As pointed out by Hao Li et al. [9], the benefits deriving from this element are
reflected in the loss function, which in the case of skip connection implementation
is characterized by a smoother surface, as visible in fig. 4.7, leading to an easier
local minimum finding, speeding up the convergence.
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Figure 4.7: Loss Function surfance with and without skip connection [9]

Among the various existing skip connections, the one employed in this work rep-
resents the easiest solution, creating a new model by simply connecting through
a link the input data with the output of the network extraction block. The out-
come of these two factors is given by their summation, avoiding the introduction
of further parameters and the growth of model complexity. Looking at the archi-
tectures so far proposed, such a strategy makes sense on a multi-stage model like
the DEEPCNN or LSTM-FCN. However, the choice quickly fell on the first, on
one hand, to slightly emulate the ResNet architecture, on the other hand, to avoid
making the model unnecessarily too complex like it would happen in selecting the
LSTMFCN. A diagram of the proposed model is visible in fig. 4.8:

Figure 4.8: Deep CNN with a Skip Connection model architecture

Despite the differences in their structural composition, neural network classi-
fiers present some common working principles. The main property concerns the
role given to each layer/subset of layers within an architecture. In general, the
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first piece corresponds to a feature extractor, in charge of extracting high-level fea-
tures belonging to a low-dimensional space and not necessarily meaningful from
the scientific perspective.
Such extraction feeds one or more fully connected layers, useful to learn potential
non-linear combinations of these features. At the end of the stack, a classification
layer receives the flow and maps it to all different classes, assigning to each of them
a value corresponding to the belonging probability.
In general, the extraction step is performed by receiving in a unique block all input
features; however, in some circumstances treating each input quantity disjointly
may be beneficial for describing phenomena where the different contributions may
conflict with each other. In this regard, supposing N input indices, the features
extractor block will be then composed of N "sub_blocks", each of them in charge
of extracting knowledge of only one feature. The other network layers are left im-
mutable; therefore, the N outputs will converge to a unique fully connected block
followed by a classifier layer.
This solution has been pursued in the given study, as the first attempts with all
features highlighted some ill-conditioned problems, perhaps related to conflicts
among them.
For all the proposed networks, two different configurations have been deployed,
considering the features extractor bloc as a unique piece, treating all input to-
gether, and as a set of the subblock, each dealing with a single feature. An example
in the different extraction deployment is shown in figs

Figure 4.9: LSTM model architecture
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Figure 4.10: LSTM model architecture implementing single-feature extractor
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Chapter 5

Experiments

As remarked multiple times, the goal of this work is predicting geomagnetic events,
described through time series observations, to acknowledge whether future behav-
ior may lead to harmful consequences.
Such forecasting has been treated as a classification, with the neural network as-
signing a label according to the expected degree of criticality, in single or multiple
future time instants.
Dealing with a relevant number of parameters would lead to analyzing an ex-
ponential number of configurations, requiring an unfeasible amount of effort and
resources. For this reason, at the end of each examined scenario, some choices
have been taken, in view of the next cases to study.
The next section will present which scenarios have been investigated, explaining
their peculiarities. Following, a description will provide all the parameters and set
of alternatives tested along such scenarios. In the end, the experimental procedure
examines the tests carried out in each scenario, the outcomes, and the decisions
made for subsequent ones.

5.1 Setting the scene
Implementing neural network classifiers requires several choices, related to differ-
ent factors affecting the classification construction for forecasting purposes. The
definition of multiple prediction tasks supposes the continuous readaptation of the
NN architecture, to properly match the input shape and to provide the outcome
compliant with the challenge.
Moreover, the learning procedure of a network involves different decisions to take,
aiming to optimally all those hyperparameters and additional solutions to let the
model perform at its best. In this regard, this section delineates all the designed
challenges -each defined as a distinct SCENARIO offering a different knowledge
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shade- and the factors experimented with along those scenarios.

5.1.1 Choice of the scenarios
As mentioned in the previous chapter, the targeted feature is represented by SYM-
H, but rather than predicting its continuous value, architectures estimate a class
consisting of the belonging criticality range. By doing so, multiple classification
problems have been designed, whose definition has been affected by the level of
understanding the study intends to return.
Two aspects have been considered crucial for the event characterization: its degree
of severity, and its temporal extension.
As regards the first, the definitions of multiple gravity levels coincided with the
number of classes assigned. Therefore, two different cases have been inspected,
supposing 2 classes first, then enlarging up to 4.
Moreover, given the variability of the CME arrival time, the same binary and
classification tasks have been performed considering two different time horizons.
The number of classes choice reflects the type of information to reveal: a binary
classifier may alert whether the future event measurement will be critical or not;
the categorical instead may return more details, pointing out the severity nuance.
For the temporal extension, the model has been set to provide punctual information
first, with the label reflecting the behavior in a single future point; then estimating
multiple time instant labels as if to inspect the phenomena over a longer period
and quantize its gravity. The first type belongs to the Single Step Model (SSM),
while the second to the Multi Step Model (MSM).
The choice led to the evaluation of three situations: predicting the class 1 hour
ahead, then 8 hours ahead, and finally estimating the severity up to 8 hours.
Combining different values of these two allows the creation of six scenarios, here
listed:

• SCENARIO 1: The number of classes is 2, while the number of predicted
steps is 1, one hour ahead. This results in a Single Step Binary classification
model;

• SCENARIO 2: The number of classes is 4, while the number of predicted
steps is 1, one hour ahead. This results in a Single Step Categorical classifi-
cation model;

• SCENARIO 3: The number of classes is 2, while the number of predicted
steps is 1, eight hours ahead. This results in a Single Step Binary classification
model;

• SCENARIO 4: The number of classes is 4, while the number of predicted
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steps is 1, eight hours ahead. This results in a Single Step Categorical classi-
fication model;

• SCENARIO 5: The number of classes is 2, while the number of predicted
steps is 8. This results in a Multi Step Binary classification model;

From the Network perspective, such scenarios reflect the implementations of
five distinct output layers.
Again, to avoid the exponential growth of the number of tests, the experimental
procedure followed a pyramidal approach, finding the best configurations of each
architecture in the Single Step SCENARIO 1 and 2, then repeating the classi-
fications with a longer time horizon, and finally evaluating their suitability for
Multi-Step challenges.

5.1.2 Choice of the parameters
Different architecture settings have been tested within each scenario; taking into
consideration factors of various nature: the different network architectures, with
the double feature extractor block; the provided set of input features, the hy-
perparameters characterizing the training procedure, etc. The following list 5.1.2
illustrates the parameters and options taken into consideration:

• Number of input features: At the beginning of the prediction step, the
optimal set of features -potentially returning the best performances- is un-
known. Useful information may be retrieved from the technical and statistical
analysis carried out in 3.1.2, whose description of relationships among the fea-
tures highlighted the one more correlated to the targeted SYM-H.
That said, the first trials were performed with all features as input; however,
results pointed out an ill-conditioned problem, with all classifiers trivially as-
signing the class label "Not Critical" -the majority- to all the samples. Such
a situation may be caused by conflicts arising among features.
The next attempt has been diametrally opposed, first feeding all models with
only SYM-H as input, and then redoing the execution considering as input
the targeted label coupled with each of the 19 features. The purpose was
bifold: on one hand, understanding which quantity conflicts with the label;
on the other hand inferring which could enhance performances compared to
the initial univariate classification.
The test highlighted that AE was creating conflict, thus demanding its ex-
clusion. Conversely, the features offering the greater support were: Magnetic
Intensity B, Bz, Solar Wind Bulk Speed, Vx, Proton Density, Proton Tem-
perature, Total Pressure, SYM-H.
Unfortunately, poor results came out even with the 18 features left, as all
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models showed a Critical class’ precision/recall value lower than 50%. In a
sense, models classify as if they randomly choose the label for each sample;
therefore, better results are achievable only if picking a smaller set of features.
In this regard, two different feature subsets have been considered, whose com-
position has been inspired by both the correlation knowledge provided in 3.1.2
and support outlined from the previous executions. The subsets are :

– SET A = (Magnetic Intensity B, Bz, Solar Wind Bulk Speed, Proton
Density, Total Pressure, SYM-H);

– SET B = (Magnetic Intensity B, Bx, By, Vy, Vz, Proton Density, Flow
pressure, plasma pressure, magnetic pressure, plasma beta, SYM-H).

SET A composition considered which correlations among the 12 features pre-
viously mentioned count the most. SET B considered also the relevance
declared by other studies analyzed for this work 1.1.3.

• Batch size and learning rate tuning: As for the input features, the best
set of batch size values is apriori unknown. However, other studies suggested
working with values considered "standard" for a tuning procedure. These are
Batch size: (64, 128, 256); Learning rate: (0.001, 0.0001, 0.00001).

• Deployment of adaptive LR and class weight solutions: Further solu-
tions have been investigated, leveraging mainly the phenomena’ nature.
First, the usage of a class weight approach has been considered, as suggested
by the different relevance of the two classes of events. Next regarded the
implementation of a variable Learning Rate during the network training: in
case of a specific number of epochs elapsed without any improvement, the
value would be decreased.

5.2 Experimental procedure
The conducted experimental procedure went through the presented SCENARIOs,
investigating in each of them multiple model configurations composed of different
parameter choices.
SCENARIO 1 and 2 were the ones in which the previously mentioned preliminary
attempts took place, while the next SCENARIOs characterization can be consid-
ered as the natural consequences of results achieved in the first two.
In SCENARIO 1, the investigation involved all 7 architectures, each with two
different feature extraction approaches. Every network has been tested giving as
input both SET A and SET B, and performing a grid search over the batch size
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and learning rate values.
A first analysis provided the best combo of BS and LR for each model equipped
with each extractor block type and receiving each SET of inputs. The Comparison
of the outcomes obtained with the different hyperparameter combinations does not
allow the inference of meaningful information, justifying also similarity shown by
the results, with the best combo better of some decimals.
Defined the best combo for each network, the next step proposed a comparison of
the model performances equipped with the two different feature extractor blocks.
Both in the case of SET A and SET B, simpler models return better results if
adopting a feature extractor for every single input, thus confirming the sensation
of conflicts presence considered before; conversely, complex models work slightly
better with the JOINT approach.
The next comparison regarded the best version of each model structure in the case
of SET A and SET B received as input, clearly highlighting that the smaller set
returned better performances. The unknown conflicts among features do not allow
the inference of any clear justification. However, the confirmation of an adversarial
dataset suggests working with fewer, more relevant inputs. An additional test con-
sisted in equipping each of the 7 best configurations with the solutions proposed in
5.1.2, showing that the adoption of different weights for the two classes improved
performances; on the contrary, the variable LR did not lead to any enhancement.
At the end of this batch of tests, the seven best model configurations are given in
5.1:

NETWORK FEATURE SET EXTRACTION (BS, LR) CLASS WEIGHT ADAPTIVE LR
LINEAR SET A DISJOINT (128, 0.0001) YES NO

MULTIDENSE SET A DISJOINT (128, 0.00001) YES NO
CNN SET A DISJOINT (256, 0.0001) YES NO

LSTM1 SET A DISJOINT (256, 0.0001) YES NO
DEEPCNN SET A JOINT (256, 0.001) YES NO
LSTMFCN SET A JOINT (128, 0.00001) YES NO

DEEPCNNSKIP SET A JOINT (64, 0.00001) YES NO

Table 5.1: Scenario1: best model configurations
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Such configurations returned the results visible in Table 5.2.

NETWORK [PNC , PC ] [RNC , RC ] [F1NC , F1C ] AccBalanced

LINEAR [0.99916031, 0.64144372] [0.99718376, 0.85738468] [0.99817106, 0.73385855] 0.927284222274384
MLP [0.99893408, 0.6523938 ] [0.99743617, 0.81887431] [0.99818456, 0.72621505] 0.9081552403709636
CNN [0.99907578, 0.64769956] [0.99730561, 0.84299619] [0.99818991, 0.73255493] 0.9201509028626345

LSTM [0.99926837, 0.62007491] [0.99684681, 0.87579348] [0.99805612, 0.73607666] 0.9363201466513011
DEEPCNN [0.99865784, 0.62809917] [0.99731432, 0.77190013] [0.99798563, 0.69261439] 0.8846072224995983
LSTMFCN [0.99885897, 0.61402095] [0.99702213, 0.80617859] [0.9979397, 0.69709999] 0.9016003561672015

DEEPCNNSKIP [0.99895988, 0.62788446] [0.99713279, 0.82331782] [0.9980455, 0.71244164] 0.9102253152471837

Table 5.2: Scenario1: model results

What immediately stands out is the highest suitability of simpler models, with
metrics related to the Critical classes always better, suggesting that SCENARIO
1 has very low complexity, so complex models are not needed.
The such supposition is backed by the incredible LINEAR model result, which
performs as well as the others, despite the little complexity. In general, all mod-
els present a Recall value higher than the Precision ones, highlighting their not-
conservative behavior in predicting critical events. Such an outcome is in spirit
with the different weight given to the two classes of events: obtaining a false alarm
may result in less harm than missing a criticality. LSTM is the model that slightly
outperforms all the others, reaching a Recall value of 0.733, reflected in a balanced
accuracy of 0.936.
Conversely, MULTIDENSE is the model among the simpler ones which performs
the worst; DEEPCNN performs the worst at all, highlighting that for the given
task the only stacking of multiple CNN does not give benefits. However, the
DEEPCNNSKIP seems to be the only complex one performing as well as the sim-
pler models, thus suggesting a certain utility given by the connection skip, even
better than combining the multistage CNN with an LSTM block.
Looking ahead, the first exclusion regards the input features, as SET B always
returned the worst results, thus justifying its rejection.
As a consequence, the same amount of experiments took place in SCENARIO 2,
but only considering SET A as input features.
Again, simpler models confirm their higher expediency towards the Single Step
challenge, with LSTM1 showing the highest performances.
A particular standing out from all architecture results is the highest capacity in
detecting INTENSE events, and the complete inability in spotting those SUPERs.
Fortunately, the latter perturbance class represents not even 1% of the overall
events, so downsizing the gravity derived from their total misdetection. Examining
the feature extractor block alternatives, simpler models showed again better func-
tioning than the one treating the quantities disjointly. This aspect may represent
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a paramount outcome for the study, declaring that future network implementa-
tions should adopt such an approach. Moreover, the input features set might be
widened with greater ease, as the independent extractor can straight outline the
contribution of a newly inserted feature.
MLP offers again the worst metrics among the simpler structures, suggesting its
exclusion for the next scenario.
As for SCENARIO 1, the most complex model shows worse results, displaying a
particular deficiency in detecting MODERATE events, with DEEPCNN appearing
inadequate, so suggesting its exclusion.
LSTMFCN and DEEPCNN with skip show a similar result, with the single-feature
extractor block working slightly better. For the incoming Multi-Step scenarios,
making an effort on both seems reasonable.
In the overall, models Combinations offering the highest performances for each
model are given in 5.3:

NETWORK FEATURE SET EXTRACTION (BS, LR) CLASS WEIGHT ADAPTIVE LR
LINEAR SET A DISJOINT (64, 0.001) YES NO

MLP SET A DISJOINT (256, 0.00001) YES NO
CNN SET A DISJOINT (128, 0.00001) YES NO

LSTM SET A DISJOINT (64, 0.00001) YES NO
DEEPCNN SET A JOINT (128, 0.001 ) YES NO
LSTMFCN SET A DISJOINT (256, 0.00001) YES NO

DEEPCNNSKIP SET A DISJOINT (128, 0.001) YES NO

Table 5.3: Scenario2: best model configurations

The such configurations returns the metrics results shown in tab. 5.4

NETWORK [PNC , PModerate, PIntense, PSuper] [RNC , RModerate, RIntense, RSuper] [F1NC , F1Moderate, F1Intense, F1Super] AccBalanced

LINEAR [0.999, 0.534, 0.943, 0] [0.996, 0.861, 0.943, 0] [0.998, 0.659, 0.943, 0] 0.7005
MLP [0.999, 0.534, 0.921, 0] [0.997, 0.796, 0.878, 0] [0.998, 0.639, 0.899, 0] 0.6674
CNN [0.999 0.533 0.989, 0] [0.996, 0.824, 0.920, 0] [0.998, 0.647, 0.954, 0] 0.6852

LSTM [0.999, 0.509, 0.932, 0] [0.996, 0.878, 0.943, 0] [0.998, 0.645, 0.938, 0] 0.7043
DEEPCNN [0.998, 0.603, 0.952, 0] [0.998, 0.646, 0.865, 0] [0.998, 0.624, 0.906, 0] 0.6272
LSTMFCN [0.999, 0.557, 1, 0] [0.997, 0.752, 0.866, 0] [0.998, 0.640, 0.928, 0] 0.6538

DEEPCNNSKIP [0.999, 0.548, 0.962, 0] [0.997, 0.708, 0.871, 0] [0.997, 0.618, 0.914, 0] 0.6440

Table 5.4: Scenario2: model results

As previously anticipated, the tuning procedure will not take place in the next
scenarios, working only with the best configurations highlighted in SCENARIO 1
and 2, using SET A as input features.
MLP and DEEPCNN will be discarded, given their poor suitability for those sim-
pler scenarios, leading to the implementation of the other five models, whose best
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configurations are exploiting for the extraction approaches for the binary classifica-
tion, while for the categorical one they are all based on the single-feature extractor
block.
SCENARIO 3 and 4 are a sort of repetition of the previous tasks, this time con-
sidering a longer time horizon. In the specific, the label associated to each test
sample refers to the event criticality in corresponde of 8 hour ahead. Such choice
is justified by the fact that CMEs present a variable speed, resulting in a different
arrival time on the Earth ( up to some hours at most). Same configuration models
have been considered for these two more challenging estimations. For SCENARIO
3 and 4, results are visible in Fig. 5.5 and 5.6:

NETWORK [PNC , PC ] [RNC , RC ] [F1NC , F1C ] AccBalanced

LINEAR [0.99450097, 0.54977778] [0.99756969, 0.31122732] [0.9972429, 0.39746193] 0.52561366
CNN [0.99592926, 0.39661972] [0.99733542, 0.30053362] [0.99663185, 0.34195507] 0.64893452

LSTM [0.99520552, 0.58802309] [0.99928969, 0.32395945] [0.99724342, 0.41776159] 0.66162457
LSTMFCN [0.9964612, 0.69431818] [0.99899612, 0.39124867] [0.99772705, 0.50047782] 0.69512239

DEEPCNNSKIP [0.99583608, 0.70795515] [0.99931955, 0.28303095] [0.99757477, 0.40439158] 0.64117525

Table 5.5: Scenario3: model results

NETWORK [PNC , PModerate, PIntense, PSuper] [RNC , RModerate, RIntense, RSuper] [F1NC , F1Moderate, F1Intense, F1Super] AccBalanced

LINEAR [0.996, 0.571, 0, 0] [0.999, 0.252, 0, 0] [0.998, 0.369, 0, 0] 0.4039
CNN [0.996, 0.130, 0, 0] [0.993, 0.227, 0, 0] [0.994, 0.166, 0, 0] 0.4065

LSTM [0.995, 0.406, 0, 0] [0.999, 0.201, 0, 0] [0.997, 0.269, 0, 0] 0.3999
LSTMFCN [0.995, 0.253, 0.290, 0] [0.997, 0.300, 0.015, 0] [0.996, 0.223, 0.028, 0] 0.4400

DEEPCNNSKIP [0.996, 0.282, 0, 0] [0.997, 0.232, 0, 0] [0.996, 0.255, 0, 0] 0.4099

Table 5.6: Scenario4: model results

As expected, the higher complexity stands out performances that are worse
than in SCENARIO 1. Again, the recurrent approach shows the best results, with
LSTMFCN outperforming all other models, so expressing its effectiveness for long-
dependent relationships.
For SCENARIO 3, It expresses a balanced accuracy of about 69%, which drops
to 44% in SCENARIO 4. The higher time horizon shows also the necessity of a
higher number of INTENSE events, as none of the models has been able to detect
them with such a long time leg in SCENARIO 4. Also, DeepCNN with the Skip
connection offers good outcomes, showing the same effectiveness as the LSTM. A
last piece of information pointed out is represented by the precision values, which,
unlike the previous SCENARIOs, are higher than the recall ones, thus expressing
a more conservative approach adopted by the models; however, resulting in less
predictive capacities for the critical events.

SCENARIO 5 introduces a new level of complexity, requiring the models to
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predict several labels corresponding to the event class at i-hour ahead, with i
= 1,2, ....,8. Completed the training for the five architectures, the test step is
performed, resulting in the outcomes displayed in fig. 5.1.

Figure 5.1: Graph showing balanced accuracy over time

As expected, all the model presents an accuracy trend going down as time goes
by. The Deep CNN with the connection Skip presents the best result, maintaining
an accuracy value higher than 0.7 for all eight predictions. On the contrary, LSTM
does not appear as performant as in the Single Step challenges, resulting even worse
than the Linear model, despite the good prediction capabilities shown for the very
first value ahead. In this regard, the LSTMFCN offers an improvement for the
hours in the middle of the period considered, but again not performing as good as
the Deep CNN with the connection Skip.
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Chapter 6

Conclusiosn

The presented work shows the implementation of Deep Learning techniques for
the prediction of disturbances linked to the space weather field. Leveraging a time
series dataset provided by the Osservatorio astronomico di Torino, multiple Neu-
ral Network architectures were deployed (through the HPC servers of HPC@Polito
Research Team), aiming to classify the criticality of future disturbances.
Following the Machine Learning procedure, the dataset has been first analyzed,
then preprocessed according to the conditions required by a NN classifier. The
main challenge regarded the data augmentation, highly needed given the strong
imbalance nature of such measurements. Different techniques have been executed,
like jittering, scaling, time and magnitude warping, and SMOTE. By doing so, the
portion of the dataset devoted to the training and validation step moved from the
2% up to the 32% of critical events. For the prediction step, multiple architectures
have been proposed, choosing networks differing in composition and complexity.
Simpler models consisted in creating structures like the Linear, MLP, CNN, and
LSTM, while more complex compositions have been developed by combining pre-
vious structures - like Deep CNN or LSTMFCN- or adopting further solutions,
like the Deep CNN with a connection skip.
Multiple classification problems have been designed, aiming to infer a different
piece of information about the CME arrival time and its degree of severity. Each
problem consisted of a SCENARIO, with the first 2 representing a Single Step
challenge for forecasting the event criticality 1 hour ahead, adopting respectively a
binary and categorical classification. In the first case, the classifier only estimates
whether the event will be critical or not, in the second it may distinguish among
different critical ranges. SCENARIO 3 and 4 repeated the previous two tasks, this
time providing an estimation with a longer time horizon, equal to 8 hours. In the
end, SCENARIO 5 represented a multi-step estimation, establishing for multiple
time instants whether the event will be critical. Other choices influencing the clas-
sification tasks were given by the features to be provided as input, the composition
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of the feature extraction block, the hyperparameters for the training procedure,
and other options like the implementation of a class weight and adaptive LR strat-
egy.
SCENARIO 1 highlighted the high difficulty in detecting the optimal set of in-
put features, choosing in the end the one containing fever but more relevant ones.
Considering also SCENARIO 2, the single-feature extraction block seems to offer
high performances: given the conflict among the set of features, treating each of
them independently at the extraction stage guaranteed high knowledge. Looking
at the results of these two scenarios, LSTM slightly performed better than other
models, while the MLP and Deep CNN showed a complete inadequacy, thus being
excluded for the next challenges. On the other side, a high criticism is shown
in the categorical classifications, as the scarcity of SUPER events, even after the
augmentation, did not allow the models to classify them. SCENARIOs 3 and 4
remarked on the higher effectiveness of the recurrent approach for Single Step pre-
diction, this time led by the LSTMFCN which outperformed all the others.
Again, the necessity of increasing the events characterized by higher intensity stood
out, involving also the INTENSE ones, as fulfilling a categorical task requires a
greater balancing among the multiple disturbances of gravity. Scenario 5 stood
out the poor multi-prediction capabilities of the LSTM model -slightly enhanced
by the implementation of the LSTMFCN- and the good performances of the Deep
CNN with the skip connection, which outperformed all the others guaranteeing a
balanced accuracy for the detection of criticality in at least the 70% of cases.
Further enhancement of this study could be oriented toward a deeper understand-
ing of the features to be used for the prediction, analyzing one-by-one the features
excluded and testing whether their single contribution could be constructive or
disruptive.
Other augmentation techniques like generative models could be taken into consid-
eration, mainly to increase the diversity of INTENSE and SUPER events, in case
of cateogircal challenges to face.
Also, the integration different datasets could be taken into consideration, perhaps
combining the constructed time series windows with coronagraph images. In the
end, Deep learning tools have shown a valid alternative to the classical physics-
based models, pointing out how the exponential growth of data and computing
capacity asserted in society 4.0 offers valid support for very complex problems as
the one studied, even in absence of meaningful knowledge regarding the phenomena
of interest.
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