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Abstract

In recent years, Cloud Computing has become an increasingly widespread paradigm within ICT
infrastructures, introducing lots of benefits such as cost savings and higher performances. On the
other hand, however, this new paradigm introduced new threats and vulnerabilities menacing the
reliability of Cloud Computing. To mitigate these kinds of risks, such as possible attacks on the
software integrity of a node, different techniques were proposed in literature over the years. The
concept of Remote Attestation (RA), in particular, allows the hardware and software of a host
(called Attester or Prover) to be authenticated through another remote host (called Verifier),
allowing the definition of the state of integrity of the node. In the literature, there are several
studies and proposals for RA techniques based on secure hardware, such as Trusted Platform Mod-
ule or Trusted Execution Environments (TEEs) or software. However, the TEE ’s world is still at
an early stage, and still has several problems, such as the difficulty of customization. The thesis
work, therefore, started from an analysis of the principals TEEs on the market, highlighting their
strengths, and weaknesses. The analysis included the study of Keystone Enclave, the first frame-
work for creating customizable TEEs. This technology heavily relies on hardware with support to
RISC-V, an Instruction Set Architecture (ISA) becoming very popular in the commercial world.
Therefore, the final purpose of this thesis work is to present a first design and implementation
of an RA Framework for RISC-V-based nodes over the Cloud. The solution proposed allows the
registration and the attestation of nodes whose only constraint is to support Keystone Enclave,
a still young technology, but which has already revolutionized the world of TEEs.



Summary

The proposed thesis work is inserted in the field of Cloud Computing, a paradigm that has brought
many advantages to ITC systems, such as cost savings and higher performances. Despite the Cloud
Computing paradigm having these advantages, it introduced also several security threats such as
possible attacks on the software integrity of a node. For that reason, during the last few years,
a new kind of technology arise, the Trusted Computing (TC). The thesis work starts with an
analysis of this concept, studying the TC history, and the TC core concepts such as the Root of
Trust, the Trusted Platform Module (TPM), and the Remote Attestation (RA).

The RA is a mechanism used for node integrity checking, allowing a third party to verify the
integrity of the software running on a specific node over the cloud. This technique requires a
chain of trust which can be achieved by using software solutions or hardware solutions, such as
the TPM or a Trusted Execution Environment (TEE), a secure area of the main processor where
a Trusted Application can run isolated from the rest of the untrusted system.

The thesis work continues exactly with the analysis of the TEE technology, describing its
architecture and security requirements, and analyzing the most famous TEEs currently available
on the market: Intel SGX, ARM TrustZone, and AMD SEV. This analysis highlighted several
weaknesses in the world of commercial TEEs.

A solution to these problems was presented in 2020 with the publication of Keystone Enclave,
the first framework open-source to build customizable TEEs. This technology has been analyzed
and described in this thesis work, focusing on its architecture, and concentrating on the offered
features, and weaknesses. Since this technology is based on RISC-V, an open source Instruction
Set Architecture (ISA), a chapter of the thesis work describes this ISA, focusing on the RISC-V
Privileged Architecture and the Physical Memory Protection (PMP), heavily used by Keystone
Enclave.

All these technologies have been used to propose a new design and implementation of the first
centralized framework for RA on RISC-V-based nodes. Finally, functional and performance tests
have been performed on the proposed solution to verify that the system works as expected and
to evaluate its performance.
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Chapter 1

Introduction

During the last few years, the ICT infrastructures saw a rapid change in the availability of com-
puter system resources, thanks to the introduction of Cloud Computing. With this evolution,
applications and data do not live anymore on a single node, but multiple distributed elements
store and process them. Thanks to the numerous advantages introduced by this paradigm, such as
cost savings, global scalability, higher performances, and better system accessibility, Cloud Com-
puting is spreading rapidly, making it crucial to analyze its threats and security requirements.
Multiple threats and vulnerabilities in the cloud come from the deletion and changes of data,
modifications of the cloud software, or non-updated versions of it, threatening the reliability of
the environment itself [1].

Over the years some security solutions emerged to guarantee the integrity of the software of
nodes over the cloud. One of these solutions is the concept of Remote Attestation (RA), which
allows the hardware and software of a host (called Attester or Prover) to be authenticated through
another remote host (called Verifier), allowing the definition of the state of integrity of the node.
Even if in the literature RA has not a standard definition, an important proposal is made by the
Trusted Computing Group (TCG). The TCG RA protocol is based on a secure chip, the Trusted
Platform Module (TPM) which, over the year, has been used as the trust anchor for multiple RA
solutions.

A second major problem in cloud security, that the TPM cannot solve, is the protection of
data in use. In particular, data exists in three forms, data in transit and data at rest which
can be protected through cryptographic operations, and data in use for which these functions
are not sufficient. For this reason, was introduced the concept of Trusted Execution Environment
(TEE), firstly defined in 2009 by the Open Mobile Terminal Platform (OMTP). Like RA, TEE
does not have a single definition, but several have appeared in the literature over the years. One
of the most important and shared was made by GlobalPlatform, a non-profit organization that
became the leader of TEE standardization, which defines a TEE as “an execution environment
that runs alongside but isolated from the device’s main operating system and which protects its
assets against general software attacks” [2].

The work proposed in the thesis comes from the need to analyze the TEE technology and
exploit it to replace the TPM as a trust anchor in a RA process. In particular, the work in-
volved the analysis of the main TEE commercial technologies currently available such as Software
Guard Extensions (SGX) by Intel, SEV by AMD, andTrustZone by ARM. The analysis of these
technologies highlighted several problems and limitations including their closed-source design and
their specific threat model and well-defined set of features that cannot be easily extended.

In April 2020 a new technology was introduced in the TEEs world, Keystone Enclave. Key-
stone was presented as the first framework for creating customizable TEEs [3] and arises with
the goal of solving various problems of the TEEs currently on the market, being completely open
source and not needing to change the underlying hardware as the threat model changes. In
particular, the only hardware requirement for using the Keystone framework is that it supports
RISC-V, an open-source Instruction Set Architecture (ISA). The RISC-V project started in May
2010 based on the main idea of creating a fully open ISA that is freely available to academia
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and industry. The RISC-V ISA offers two important security features, Physical Memory Protec-
tion (PMP) and Privileged Architecture, which are strongly exploited by Keystone to guarantee
memory isolation.

The final purpose of this work is to propose and implement a new RA Framework design and
implementation that would allow the attestation of nodes over the cloud that adopt a RISC-V ISA
and support PMP and Privileged Architecture. In particular, the RISC-V ISA is becoming more
and more popular not only in the academic world but also in the commercial one [4]. Thus, it is
important to design a centralized RA solution for this kind of ISA, and, even though some solution
exists (e.g. the LIRA-V project [5]), there are no frameworks that centralize the attestation of a
node using Keystone.
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Chapter 2

Trusted Computing

2.1 Trusted Computing Overview

The first definition of a Trusted Computing System appears in 1981, presented by the Department
of Defense (DoD) in a paper [6], which describes trusted systems as systems that “employ sufficient
hardware and software integrity measures to allow its use in processing multiple levels of classified
or sensitive information.”

Four years later, in 1985, the DoD published the Trusted Computer System Evaluation Criteria
(TCSEC), commonly known as the Orange Book [7], a standard that sets basic requirements for
assessing the effectiveness of computer security controls built into a computer system. In that
publication, the first formal definition of Trusted Computing Base (TCB) appears, described as
the totality of protection mechanisms in computer systems, including hardware, software, and
firmware.

The birth of Trusted Computing as it is known today is due to the Trusted Computing
Platform Alliance (TCPA), formed in October 1999 by Microsoft, Intel, IBM, Hewlett Packard
(HP), and Compaq. The declared goal of that alliance was to give hardware manufacturers
control over what software could run on a system by refusing to execute unsigned software.
TCPA developed and standardized technologies to achieve this goal by relying on hardware and
software implementations.

In 2001 TCPA published the first specification of the Trusted Platform Module (TPM) [8],
a hardware anchor designed to protect PC through integrated cryptographic keys. In February
2002, TPM 1.1b was published, this version included some basic functions [9]:

• key generation (limited to RSA keys);

• secure storage;

• secure authorization;

• device-health attestation;

The use of Attestation Identity Keys (AIKs), associated with the TPM certificate was intro-
duced as well as a new network entity called privacy Certificate Authority (CA). The CA was
designed to guarantee that an AIK generated in the TPM came from a real TPM without identify-
ing it, guaranteeing privacy. The TPM 1.1b introduced a set of dynamic memory registers called
Platform Configuration Registers (PCRs), reserved to record the integrity of the platform. PCRs,
together with identity keys, can be used to attest to the health of the system’s boot sequence,
performing the so-called measured boot [10]. IBM PCs were the first to use TPMs and HP and
Dell soon followed suit in their PCs, and by 2005 almost every commercial PC was equipped with
the TPM.
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In 2003, the TCPA work was inherited from the Trusted Computing Group (TCG), formed
by an initiative of AMD, Hewlett Packard, IBM, Intel, Microsoft, Sony, Sun Microsystems, and
other companies. The TCG aimed to improve the TPM, designing a hardware anchor for PC
system security that wasn’t too expensive, allowing widespread use of it.

TPM 1.2 was developed from 2005 to 2009 and went through several releases that included
[9][11]:

• a standard software interface;

• a mostly standard package pinout;

• a protection against dictionary attacks;

• the introduction of a new method for anonymizing keys, Direct Anonymous Attestation
(DAA);

• a small nonvolatile RAM (usually about 2 kB) for storing the certificate of the TPM’s
Endorsement Key (EK);

In 2005 the first significant attack against the SHA-1 digest algorithm was published, which
was heavily used in the TPM 1.2 architecture. Although the TPM was not compromised by the
attack, the TCG decided to turn to a more agile type of architecture regarding the algorithms
used. The TPM 2.0 was designed with this aim and, in addition, other features were added [9]:

• the Enhanced Authorization (EA), which provides a rich authorization model for specifying
flexible access control policies for TPM-resident objects [12].

• support for the Elliptic Curve Cryptography (ECC) algorithms;

• multiple key hierarchies to accommodate different user roles;

• dedicated BIOS support;

• simplified control model;

Digital data exists in three different states. Data “in transit” is that data that traverses
the network, data “at rest” is stored, and data “in use” is data while it is processed. Security
of data “in transit” and “at rest” is guaranteed by cryptographic functions like encryption and
hash calculation, assuring confidentiality, availability, and integrity of that data. For data in
use, instead, those cryptographic functions were not sufficient. Thus arose the need to design a
solution to protect that type of data. Initially, they tried to exploit the TPM, measuring the hash
of all software loaded since BIOS, and the operating system performing isolation from untrusted
applications. This was attempted by Microsoft with the Next-Generation Secure Computing Base
(a.k.a. Palladium) project [13], but it was not well received and didn’t solve many problems.

In 2009 The Open Mobile Terminal Platform (OMTP) described for the first time the concept
of Trusted Execution Environment (TEE) as a technology that can “resists against a set of defined
threats and satisfies several requirements related to isolation properties, lifecycle management,
secure storage, cryptographic keys and protection of applications code” [14].

The following year, GlobalPlatform, a non-profit member-led organization, formed by multiple
companies, including Apple, Cisco, Samsung, Huawei, and Oracle, became the leader of TEE
standardization. GlobalPlatform defined TEE as “an execution environment that runs alongside
but isolated from the device’s main operating system and which protects its assets against general
software attacks” [2]. In the same year, GlobalPlatform published the first TEE client API,
version 1.0, which defines the communication between trusted applications that are executed in
TEE, and applications executed by the main operating system [15]. In 2012, GlobalPlatform and
TCG announced the founding of a joint working group focusing on security topics.

In September 2019, Alibaba, ARM, Baidu, IBM, Intel, Google, Microsoft, Red Hat, Swisscom,
and Tencent formed the Confidential Computing Consortium (CCC), entering the TEE market.
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CCC was founded to define confidential computing and accelerate the adoption of TEE technolo-
gies and standards. In October 2020, the CCC published its first definition of a TEE as “an
environment that provides a level of assurance of three properties, such as data confidentiality,
data integrity, and code integrity” [16].

During these years various hardware technologies have been published that can be used to
support TEE implementations such as AMD Platform Security Processor (PSP), published in
2013, Arm Trustzone, launched in 2004, and Intel SGX, introduced in 2015.

2.2 Root of Trust (RoT)

In the context of TCG specifications, an entity is considered “trusted” if it behaves as expected.
The concept of trust has several properties [17]:

• Trust relation is a binary relationship;

• Trust is not always symmetrical (if A trusts B, B cannot always trust A);

• Trust can be measured;

• Trust degree can be measured into different levels;

• Trust is dynamic (related to context and time factor);

Thanks to the definition of trust, TCG in the TCG Glossary, defines the concept of Root of
Trust (RoT) as a component that is trusted always to behave expectedly because its misbehavior
cannot be detected by attestation or observation. It’s the minimum set of system elements on
which the trustworthiness of the platform is based. TCG specifications allow that an RoT can be
built-in hardware, firmware, or software. Since RoTs must be inherently trusted, they need to be
secure by design and for that reason, many RoTs are implemented in hardware so that malware
cannot tamper with the functions they provide [18].

The TCG requires that a Trusted Platform (TP) provides at minimum three types of RoT
[19]:

1. Root of Trust for Storage (RTS );

2. Root of Trust for Measurement (RTM );

3. Root of Trust for Reporting (RTR);

Root of Trust for Storage (RTS)

The RTS provides shielded and secure storage of data that is accessible only by the TP. The RTS
can contain:

• Non-sensitive information (e.g. digest of a part of memory): the access for reading is never
denied;

• Sensitive information (e.g. private keys): authorization is needed to read data;

The TP can use one secret securely stored in the RTS to protect other secrets that may be outside,
creating a chain of trust.

Root of Trust for Measurement (RTM)

The RTM is responsible for integrity measurement, performing the digest of configuration data and
program binary code, and sending integrity-relevant information to RTS. The RTM is typically
the normal computing engine for the platform (generally the CPU in the case of a PC), while
it is controlled by the Core Root of Trust for Measurement (CRTM), which is the first piece of
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BIOS code executed on the main processor during the boot process. The CRTM sends values
that indicate its identity to the RTS, establishing the starting point for a chain of trust.

Root of Trust for Reporting (RTR)

The RTR reports on the contents of the RTS. Generally, an RTR report is a digitally signed digest
of all usefull data to verify the TP.

Since the TPM can be trusted to prevent inappropriate access to its memory, and because it
has the cryptographic capabilities to create an RTR report, it can be used to implement both the
RTS and the RTR.

2.3 TPM 2.0 Overview

Since the TPM is the basis of the state of the art in the Trusted Computing Group, it is important
to analyze it and discuss it. For that reason, it’s now given an overview of the TPM, describing its
architecture (referring to version 2.0) and discussing two of its basic feature: attestation hierarchy
and measured boot.

2.3.1 TPM 2.0 Architecture

The architectural components of TPM 2.0 are represented in Figure 2.1.

Figure 2.1. TPM 2.0 Architecture (source: [19])
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I/O Buffer

The I/O buffer is an area that allows communication between a TPM and the host system. The
system places input commands to the TPM in the I/O buffer and waits for the TPM response
from the buffer. According to the TCG specification [19], the I/O buffer of a TPM 2.0 does not
need to be physically isolated from other parts of the system but can be shared memory. However,
when the TPM executes a command, the implementation must ensure that the TPM values are
correct, and commands data must therefore be in a Shieldel Location.

Cryptographic Subsystem

The cryptography subsystem implements the TPM’s cryptographic functions, which are [19]:

• Hash functions: the TPM uses hash functions to perform integrity checking, authentication,
and one-way functions, such as key derivation functions (KDF). According to TCG speci-
fications, a TPM should use an approved hash algorithm that has about the same security
strength as its strongest asymmetric algorithm.

• Asymmetric encryption and decryption: the TPM performs asymmetric algorithms for at-
testation, identification, and secret sharing. Currently, the only supported asymmetric
algorithms are RSA and ECC. A TPM is required to implement at least one asymmetric
algorithm.

• Symmetric encryption and decryption: the TPM performs symmetric encryption to encrypt
some command parameters and some data that need to be protected outside it. The only
block cipher mode required by the TCG specification is the Cipher Feedback mode (CFB).
For command parameters encryption, any symmetric block cipher supported by a TPM may
be used, but weak keys are not permitted to be used.

• Asymmetric and symmetric signing : the TPMmay sign using an asymmetric or a symmetric
algorithm depending on the type of the key. For an asymmetric algorithm, the methods
of signing are dependent on the algorithm (RSA or ECC). For symmetric signatures, TCG
specifications define HMAC and SMAC schemes.

• Signature verification: the TPM can validate any signature over a digest that it could have
produced. If the signature is valid, the TPM produces a ticket. The TPM uses tickets for
two purposes: re-signing data and expanding state memory. In the first case, after the check
of an asymmetric signature, the TPM re-signs the digest with a symmetric key so that the
TPM can later re-verify a signature without having to load the asymmetric key. In the
second case, when hashing an external message, a ticket allows storing off of the TPM some
state data, making it easier for the TPM to validate it.

• Key generation: key generation produces two different kinds of keys. An ordinary key
is produced using the random number generator (RNG) to seed the computation which
produces a secret key value stored in a Shielded Location. The second one is a Primary
Key, derived from a seed value, not the RNG directly. The generation of a Primary Key is
based on a key derivation function (KDF).

Authorization Subsystem

At the beginning and end of command execution, the Command Dispatch module calls the Au-
thorization Subsystem. Its role is to check the proper authorization for the use of each of the
Shielded Locations. The only cryptographic functions required by the Authorization Subsystem
are hash and HMAC [19].

Random Access Memory

Random access memory (RAM) holds TPM transient data, which can be lost when TPM power
is removed. Typically, all data in TPM RAM is in Shielded Locations, except for the portion
of RAM containing the I/O buffer. According to TCG specifications [19], the TPM RAM holds
keys and data that are loaded into the TPM from external memory (object store), data to control
sequences of operations (session store), and may keep a PCR bank, a collection of PCRs extended
with the same hash algorithm.

12



Trusted Computing

Non-Volatile (NV) Memory

To store TPM’s persistent state, the TPM offers a Non-Volatile (NV) memory module, which
contains only Shielded Locations. According to TCG specifications [19], the NV memory module
can be used to store two different kinds of data: structured data and unstructured data. The first
one includes TPM’s private data, such as authorization values, seeds, or keys, the second one is
data defined by a user or a platform specification.

Power Detection Module

The Power Detection module manages TPM power states accordingly to the platform power
states. The TCG specifications require that the TPM is notified of all power state changes. The
TPM supports only two power states: ON and OFF. If a power transition requires the reset of
the RTM, then also the TPM will be reset, and if a power transition causes the reset of the TPM,
then also the RTM will be reset.

2.3.2 Attestation Hierarchy

TPMs employ a hierarchy of attestations, as described in Figure 2.2:

Figure 2.2. Attestation Hierarchy

1. An external entity attests to a TPM to guarantee that the TPM is genuine and meets
TPM specifications. This attestation takes place thanks to an asymmetric key, called En-
dorsement Key (EK) embedded in a genuine TPM, with the relative certificate, called
Endorsement Certificate, that vouch for the key.
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2. An external entity certifies that the platform contains an RTM, a genuine TPM, and a
trusted path between them. This attestation takes the form of a certificate called Platform
Certificate.

3. An external entity called an Attestation CA attests to an asymmetric key pair, calledAttes-
tation Key (AK), to vouch that the key is protected by a genuine TPM. An Attestation
CA is usually based on attestations of types 1 and 2 to produce this kind of certificate,
called Attestation Key Certificate.

4. The platform’s TPM uses a certified AK to sign other asymmetric keys to certify them and
vouch that they are resident in the same genuine TPM.

5. A trusted platform attests to a particular software/firmware state in the platform. This
attestation, called Quote, takes place thanks to a signature over a software/firmware mea-
surement in a PCR using an attestation key attested before by attestation of type 3 or
4.

6. An external entity attests to a software/firmware measurement. This attestation takes place
thanks to a credential based on the value of a measurement and the state it represents. This
is commonly called Third-Party Certification.

2.3.3 TPM Measured Boot

One of the declared design goals of TCG is to ascertain at boot time that a booted operating
system has not been compromised. To achieve this goal, the TPM offers the “measured boot”.
The measure boot has to establish if the entire boot chain, including boot loader, kernel, drivers,
and all files executed during boot, has not been modified in any way. The “measure” is the result
of a hash computation on anything of meaning to evaluate the trusted state of a platform, such as
executable code, configuration data, and other system state information. During measured boot,
the measures are stored in the PCRs of the TPM, whose value can be only changed through two
commands:

• Reset : sets the PCR value to all-zero and is performed when the platform is turned on;

• Extend : stores a cumulative hash in a PCR, concatenates an input value with the current
value of PCR, calculates the hash on the concatenation, and then stores the output in the
PCR:

PCRnew = HhashAlg(PCRold || measure)

In the measured boot, all trust starts with a fixed or immutable piece of trusted code in the
BIOS, the CRTM, that is measured and stored in a PCR. The CRTM measures the next piece of
code that is going to be executed, and extends the PCR, performing the cumulative hash. Then,
control is passed to the next piece of code to be executed that will extend the PCR with the
measure of the next piece of code. In this way, every new piece of code measures the next one
before transferring control, establishing a chain of trust. This measurement can be done for the
entire boot sequence, so that, at the end of the boot process, the resultant PCR values reflect the
measurement of all files used[20].

If an attacker can successfully compromise one of the pieces of software in the boot chain, then
during the boot process, this compromised piece of code will be measured before it is executed, and
it will affect the final content of PCR. The attacker cannot avoid the malicious code measurement
if it is part of the boot chain, and once it is executed, it cannot roll back its measurement, as
the PCR extension operation can only hash in additional measurements. If the malicious code is
executed, it can fake all the following measures, but there is no way to reset the PCR or to go
back to the value that had before the execution of the malicious code.

A measured can be of two different types, as shown in Figure 2.3:

• Secure Boot : each step of the boot process checks the digital signature of the executable of
the next step before it’s launched. If any of the pieces of code in the boot chain have been
modified, then the signatures won’t match, and the device won’t boot the image.
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Figure 2.3. Trusted Boot (a) and Secure Boot (b)

• Trusted Boot : the measurements stored in PCR are not used to stop the boot process, but,
at the end of the boot process, they can be used to report the state of the platform to an
independent entity, that can verify if the system booted securely.

2.4 Remote Attestation

Remote Attestation(RA) is “a distinct security service allowing a trusted party, called Verifier, to
validate or reason about the internal state (including memory and storage) of a remote untrusted
party, possibly infected with malware, called the Prover” [21].

The goal of remote attestation is to allow a remote system (Verifier) to define the level of trust
in the integrity of the platform of another system (Prover).

Based on the implementation, it’s possible to define three different kinds of RA. The first type
is the hardware-based remote attestation, which requires the use of physical chips and modules
(including TPM) to achieve remote attestation. On the contrary, the software-based remote
attestation does not rely on any hardware to perform attestation. The third type is the hybrid
remote attestation, a hardware/software protocol based on a minimal trust anchor. Its purpose
is to combine the security of the hardware attestation and the lower cost of software attestation.

The remote attestation protocol is based on several properties [22]:

• Fresh information: the result of attestation should reflect the state of the Prover at the
time of attestation;

• Comprehensive information: attestation delivered information should allow the Verifier to
reason about the state of the Prover;

• Trustworthy mechanism: the Verifier should be able to receive correct information from
Prover even in the presence of an active adversary;
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• Exclusive access: only the Prover’s attestation process should have read access to the shared
secret between Prover and Verifier;

• No leaks: the attestation mechanism should not leak any information that allows an adver-
sary to reason about the shared secret;

• Immutability : the attestation mechanism cannot be modified by an adversary with local or
remote access to the device;

• Atomic execution: execution of the attestation mechanism cannot be interrupted by any
action invoked on the device;

Typically, RA is based on a challenge-response protocol, that can be realized in five steps as
can be seen in Figure 2.4:

1. The Verifier generates a challenge (e.g. a nonce);

2. The Verifier sends the challenge to the Prover;

3. The Prover calculates a proof of its local state;

4. The Prover sends to the Verifier a report containing:

• the proof of the internal state;

• the response to the challenge received at the beginning;

5. The Verifier verify the received report, validating:

• the response to the challenge;

• the proof of the local state of the Prover;

Figure 2.4. Remote Attestation Protocol

At step 3 of the attestation, the Prover will compute a digest of the memory region being
attested. In step 4, during the validation of this hash, the Verifier must know the possible memory
states of the Prover. This data, called Golden Values (G-Values), must be securely stored by the
Verifier.

Based on this general definition of RA protocol, the TCG presented a work [23], still in
progress, to define a set of protocols for determining whether a device is launched with untampered
software, starting from RoT. This set of procedures, called Remote Integrity Verification (RIV),
aims to become the TCG standard to accomplish RA.

The RIV workflow, shown in Figure 2.5, is based on 4 steps:

Step 0: Reference Integrity Measurements (RIMs) (i.e. golden values) are created and signed
by the device manufacturer and sent to the device as part of its software image. This step is
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defined by the TCG as not essential since a verifier could obtain RIMs in other ways (direct from
the manufacturer, from a third party, etc.).

Step 1: the Verifier starts an attestation session by opening a TLS connection. In this phase,
the verifier must verify the device’s identity. According to TCG specifications, platform identity
can be based on IEEE 802.1AR Device Identity (DevID) [24], which acts as a statement by the
manufacturer about the authenticity of the device.

Step 2: using the Trusted Attestation Protocol (TAP) [25], Attestor sends back to the Verifier
the nonce with the measurements log, and the TPM quote signed using a TPM key. A quote is
defined by the TCG as a hashed and signed structure containing [26]:

• TPM GENERATED : a 4-byte magic value that claims that it is a TPM quote;

• Qualified name of the signing key : a key could appear strong, but can be protected by a
parent with a weak algorithm. This field contains the entire ancestry of the key;

• Extra data provided by the caller : typically a nonce to avoid reply attacks, and to prove
that the quote is current;

• TPM firmware version: used by the Verifier to decide whether to trust a particular TPM
code version;

• TPM clock state;

• The selection of PCRs that are included in the quote;

• A digest of selected PCRs: if the quote is generated and sent after the boot, the PCRs will
contain the result of the measured boot previously discussed;

Step 3: Through the TPM signed attestation quote, a Relying Party can communicate with
the Verifier and know Attestor’s platform state. The Relying Party matches the quote’s measure-
ment hashes against RIMs, potentially requiring cooperation from third-party software providers.
Interaction between the Relying Party and the Verifier is considered out of scope for RIV.

Figure 2.5. Remote Integrity Verification Protocol (source: [23])

17



Chapter 3

Trusted Execution Environment
(TEE)

3.1 TEE Architecture

In May 2018, GlobalPlatform published an important technical document [27] about TEEs func-
tionality and how GlobalPlatform supports it. In that document, the TEE is defined as a secure
area of the main processor of a device that ensures sensitive data is stored, processed, and pro-
tected in an isolated and trusted environment. According to GlobalPlatform, the defined envi-
ronment runs alongside the Rich Operating System (Rich OS) and must offer protection against
software attacks generated in it.

Figure 3.1 shows a general TEE architecture, in which the main blocks are:

• Trusted Application (TA) or Secure Application (SA): is an authorized security software ex-
ecuted by a TEE, authenticating its code and providing confidentiality, authenticity, privacy,
and system integrity.

• Hardware Platform: a TEE must be built on secure trusted hardware. It can be used as
secure storage for keys or can act as RoT building a chain of trust to perform Secure Boot;

• Trusted Drivers: if the TEE is connected to secure I/O hardware, it must offer secure drivers
to communicate with the hardware;

• TEE Communication Agent : is an entity that allows, calling TEE Client API, secure and
trusted communication between a TA and a Rich OS application;

• Trusted Core Framework : is the code (firmware or microcode) that manages all the TEE
architecture;

The TEE must support two kinds of isolation. It must be isolated by the Rich OS so that
the Rich environment is separated from all TAs and their data. The TEE must also be isolated
from other TAs, which must be separated within the TEE, and from the TEE itself. One foun-
dation component of the TEE, used to assure that property of isolation, is the separation kernel.
The separation kernel divides the system into different partitions, and guarantees strong isolation
between them, except for a controlled interface that allows the communication between different
partitions. The security requirements for separation kernels are described in the Separation Ker-
nel Protection Profile (SKPP) [28], which defines separation kernel as “hardware and/or firmware
and/or software mechanisms whose primary function is to establish, isolate and control informa-
tion flow between those partitions”. According to that security requirements, separation kernels
must provide [2]:

• Spatial separation: data of one partition cannot be accessed by other partitions;
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Figure 3.1. TEE Architecture (source: [27])

• Temporal separation: shared resources cannot be used to leak information into other parti-
tions;

• Control of information flow : communication between partitions cannot occur unless explic-
itly permitted;

• Fault isolation: security breach in one partition cannot spread to other partitions.

3.2 TEE Security Requirements

The general architecture described in the previous section introduces several threats and security
issues that need to be discussed and analyzed to guarantee the TEE security properties. During
the design and building of a TEE, several security requirements, shown in Figure 3.2, must be
guaranteed [2].

Secure Boot

As already discussed in the previous chapter, secure boot assures that only the code of a certain
property can be loaded and executed. If a modification is detected, the bootstrap process is
interrupted. Since the TEE architecture is based on a Trusted Core Framework, it’s mandatory
to check its integrity before running it.

Secure Scheduling

The TEE scheduler must assure coordination between the TEE and the Rich OS that is efficient
and balanced. A task executed in the TEE must not affect the responsiveness of the rest of the
system. For that reason, the scheduler is often designed with the TEE architecture design, to
enhance the responsiveness of the main OS without compromising the real-time performance of
the system.

Secure Inter-Environment Communication

As seen in the architecture overview, a TEE requires an interface to communicate with the Rich
OS. This communication introduces new important threats to study and analyze during the design
phase of the TEE. The introduction of a communication system can allow, if it is not well-designed,
to perform message overload attacks, user and control data corruption attacks, memory faults
caused by shared pages being removed, or unbound waits caused by the non-cooperation of the
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Figure 3.2. TEE Security Requirements (source: [2])

untrusted part of the system. An inter-environment method and implementation should satisfy
three key attributes [2]: reliability (memory/time isolation), minimum overhead (unnecessary data
copies and context switches), and protection of communication structures. An example of secure
inter-environment model of communication that satisfy those properties is the GlobalPlatform
TEE Client API [15].

Secure Storage

When data is stored, a TEE must continue to guarantee its confidentiality, integrity, and freshness
(e.g., protection against reply attacks). Data must be stored where access can be controlled so
that only authorized entities can access the data. The main method of implementation of Secure
Storage is using Sealed Storage. Sealed Storage is “a cryptographic data protection mechanism
typically implemented using a pair of operations, Seal (used to protect data) and Unseal (used
to unprotect data)” [29]. It differs from other symmetric and asymmetric encryption functions
in that the sealer can specify limitations on the software environments that can access the data.
With Sealed Storage the identity of the requesting software is checked, and, if it meets the policy
specified in a Seal operation, the protected data is revealed.

Trusted I/O Path

As seen in the architecture section, a TEE can communicate with I/O peripherals (e.g., keyboard
or sensors). It’s crucial to make this communication secure and trusted. A trusted I/O path
must protect authenticity, and optionally confidentiality, of communication between TEE and
peripherals. In particular, a trusted I/O path protects against four classes of attacks: screen-
capture attack, key-logging attack, overlaying attack, and phishing attack.

3.3 TEE use cases

Mobile Payments

Mobile payments are an arising technology, which is becoming more popular and convenient,
making it crucial to increase security requirements to prevent malware attacks. For consumers,
the use of payments through mobile devices can take place at a merchant’s point of sale (POS)
through NFC or QR code, through a peer-to-peer app, or the mobile browser. All these scenarios
need that sensible data (i.e. payment credentials) is stored and transmitted between two entities.
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The introduction of the TEE can improve the security since the payment application is executed
on the same hardware and OS layer as that of other untrusted applications, which can contain
malware and malicious code. The TEE allows isolating the execution of payment applications and
securing payment credentials at rest and during the presentment of this data. An example of a use
case is the mobile point-of-sale (mPOS) solution, which enables to receive customers’ payments
through mobile devices, transmitting the payment transaction and managing sensitive payment
data. In mPOS devices, a platform can be provided by the TEE, managing TAs generated
specifically for each payment and isolated from each other. A popular technology that introduced
the TEE for mobile payments is Samsung Pay, a digital wallet and payment service by Samsung
that supports contactless payments through NFC and which utilizes TrustZone-based hardware
isolation [30].

Mobile Identity

Mobile identity is used to develop an authentication system easy and secure. Nowadays, it can
be used in many different ways [30]: in the financial world, a user’s identity may be credentials
associated with a PIN or fingerprint; to authenticate employees, government employees may
accept credentials stored on mobile devices; mobile passports or driver’s license can be used to
authenticate citizens; for corporations, a login-password combination, a one-time password, or
biometrics may be required to access to applications; finally, mobile identity can also be used to
access a building or unlock or control a car. In all these scenarios, the mobile identity solution
must securely handle user credentials and, since more and more operations occur in a mobile
environment, it’s critical to authenticate the device from which the user is authenticating.

The TEE can be introduced to protect the application during lifecycle management and execu-
tion and to protect user credentials with hardware isolation. Moreover, the TEE should be used to
protect communication with remote entities, securing credentials used for mutual authentication.
Considering biometric ID methods (e.g. facial recognition, fingerprint sensor, voice authorization),
the TEE is a suitable technology to support them. In particular, the authentication process based
on ID methods is divided into three main steps. Firstly, a reference “template” must be securely
stored, that will be used as an identifier on the device. Then, an “image” is extracted, for example
scanning the fingerprint or capturing a voice sample. Lastly, the “template” and the “image” are
compared using a matching engine. Inside a mobile device, a TEE is a perfect area where to
execute the matching engine, protecting data and establishing a buffer against non-secure apps
located in the RichOS.

Internet of Things (IoT)

With the spread of IoT technology, more and more devices are connected, sharing and processing
sensitive data, and it becomes crucial to protect the integrity and origin of that data. Nowa-
days, IoT implementations cover different sectors including smart cities (e.g. public safety, trans-
portation), smart homes (e.g. surveillance, smart locks), and automotive (e.g. driverless cars,
telematics). The introduction of a TEE in these fields can help to build secure solutions in many
areas, including software management, user and device enrollment, data analytics and transmis-
sion, device communication and authentication, payments, and user authentication. With IoT,
new connected devices require different processing power, amount of memory, and communication
speed. New devices don’t need to have just a TEE, but they may provide multiple TEE envi-
ronments. A multi-trust TEE is a technology that enables multiple TEEs to co-exist on a single
system [30]. Each TEE environment is dedicated to specific applications or services, and each TA
can have its own trusted environment. Additionally, a multi-trust TEE allows it to be started
and stopped dynamically. One use of this technology is to implement multiple secure data paths
for different tasks, a well-suitable feature to manage IoT technologies.
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3.4 Industrial TEEs Overview

In the 2000s, the implementation of TEE began to become a standard-based approach for internet-
connected devices. In 2006, ARM developed a commercialized product for TEE called TrustZone.
In 2013 AMD entered in TEE market, incorporating in its microprocessor AMD Platform Security
Processor (PSP), officially known as AMD Secure Technology. Three years later, AMD introduced
a new technology, AMD Secure Encrypted Virtualization (SEV), which can be used to support
a TEE implementation. In 2015, Intel introduced Intel Software Guard Extensions (SGX), a
technology based on Intel microprocessors that can be used to implement isolated execution. The
TEE market is growing up faster and all the technologies available are very different. This section
describes an overview of the three main TEE technologies available: SGX by Intel, Trustzone by
ARM, and SEV by AMD.

3.4.1 Intel Software Guard Extensions

Intel’s Software Guard Extensions (SGX) is a set of extensions to the Intel architecture introduced
in 2015 with the sixth-generation Intel Core processors. This technology aims to meet the needs
of the Trusted Computing industry for desktop and server platforms, that is to provide integrity
and confidentiality to sensitive computation performed on a machine where all the privileged
software (kernel, hypervisor, etc) is potentially malicious [31]. Intel SGX is based on the concept
of enclaves, private memory regions which are isolated from other processes running at the same
or higher privilege levels. The code executing inside an enclave is isolated from other enclaves,
other applications, the operating system, and the hypervisor.

Figure 3.3. Intel SGX physical memory organization (source: [31])

As shown in Figure 3.3, Intel SGX is based on a Processor Reserved Memory (PRM), where
enclave code and data are stored. The PRM is a region of DRAM unaccessible by other software
than the enclave, including system software. Intel CPU’s memory controllers also refuse DMA
operations targeting the PRM, protecting it from the access of external peripherals. An important
component of the PRM is the Enclave Page Cache (EPC), which stores the enclaves’ contents
and the associated data structures.

The Intel SGX design supports the creation of multiple enclaves at the same time thanks to
the EPC, which is split into 4KB pages assignable to different enclaves. The software controlling
the EPC is the system software that manages the other PC’s physical memory, which can be a
hypervisor or an OS kernel. This software uses SGX instructions to allocate and deallocate EPC
pages to the enclave but is not trusted. For that reason, the SGX CPUs check the validity of
the page management, refusing to perform any compromisable action. Those security checks are
based on the Enclave Page Cache Map (EPCM), an array with as many entries as EPC pages,
which contains information about the system software’s allocation decisions for each EPC page.
Every enclave is associated with an SGX Enclave Control Structure (SECS), which is stored on
a special EPC page and contains enclaves metadata identifying it.

As shown in Figure 3.4, the life-cycle of an enclave is based on five steps [31]:
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Figure 3.4. Intel SGX enclave life-cycle (source: [31])

1. Creation: the life of the enclave begins when the system software calls the ECREATE
instruction, which creates a unique instance of an enclave and turns a free EPC page into
the SECS, marking it as uninitialized.

2. Loading : if an enclave’s SECS is uninitialized, the system can use the EADD instruction,
which loads the initial code and data structures to the enclave. This instruction checks its
inputs before modifying the allocated EPC page or its EPCM entry and triggers another
instruction, the EEXTEND, which update and finalizes the enclave measurement.

3. Initialization: in this step, the system software uses a Launch Enclave (LE) to obtain an
EINIT Token Structure, which is used by the EINIT instruction to mark the enclave’s SECS
as initialized. The LE is an SGX-privileged enclave cryptographically signed with a special
key provided by Intel and hardcoded into the SGX implementation.

4. Enter/Exit : after initialization, any process that has the enclave’s EPC pages mapped into
its virtual address space can execute the enclave’s code, making the logical processor enter
enclave mode. In this mode, the code in execution can access the EPC pages belonging
to the current enclave. To execute the enclave’s code, the host process calls the EENTER
instruction, and then, when the code finishes performing its task, it uses the EEXIT in-
struction, returning the execution control to the host process and exiting from the enclave
mode.

5. Teardown: after the enclave’s code computation, the system software calls the EREMOVE
instruction, which deallocates all the enclave’s resources, including the EPC pages. An
enclave is destroyed when the EPC page holding its SECS is freed.

The initial aim of the Intel SGX design was to offer a solution for secure microservices and
small applications that interact with very security-sensitive data (e.g. a log-in process to a banking
account) [32]. These initial design intentions can be verified considering the limited amount of
EPC memory resources available and given that this technology is mainly featured in desktop
or mobile processor families. Moreover, running in ring 3, the Intel SGX is not a suitable TEE
for applications that require many system calls and its limited EPC memory space degrades the
execution performance significantly when larger trusted space is needed. On the other hand, Intel
SGX provides robust security protections, making it a suitable TEE for applications that require
an enhanced degree of security protection.
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3.4.2 ARM TrustZone

TrustZone is an optional hardware security extension of the ARM processor architecture. It bases
its security on the partition of the hardware and software of the System on Chip (SoC) into two
worlds: the secure world, and the normal world. The secure world is the execution environment
when the processor state is secure, while the normal world, which cannot access the secure world,
is the execution environment when the processor is in a non-secure state. Both worlds have their
own user space and kernel space, together with cache, memory, and other resources. The normal
world is used to run the RichOS, which provides a Rich Execution Environment (REE), while the
secure world uses a secure small kernel (TEEkernel). To switch from one world to another is sent
a special instruction, called “secure monitor call” (smc) to the Security Monitor, which runs at
Privilege Level 1 in monitor mode.

The following architectural description of ARM TrustZone [33][34], illustrated in Figure 3.5, is
based on an ARM Cortex-A architecture, which is different from TrustZone on an ARM Cortex-M
architecture, not discussed here.

Figure 3.5. ARM TrustZone Architecture (source: [34])

In TrustZone, the CPU Core can securely communicate with all the peripherals through the
Advanced eXtensble Interface (AXI) bus, the main bus. The AXI bus knows if a read/write
operation is directed to secure or non-secure memory, thanks to the non-secure bit (NS), which
indicates whether the access is secure or not. The AXI bus is connected to the Advanced Peripheral
Bus (APB) via a bridge, that checks for proper permission and stops unauthorized requests to the
system peripherals. Thanks to this method, TrustZone splits system peripherals into two worlds,
using the TrustZone Protection Controller (TZPC). TZPC is a signal-control unit that sets up
system peripherals as secure or non-secure. An I/O device, for example, can be assigned to one
specific world and TrustZone ensures the correct access thanks to the NS bit. The same concept
is used to handle interrupts: for each interrupt, TrustZone can designate the world to handle it.
In that case, the check is performed by the Generic Interrupt Controller (GIC), which handles
secure and non-secure prioritized interrupts preventing non-secure interrupts from unauthorized
access.

Similar to peripheral partitioning, TrustZone splits the memory into the normal part and the
secure part, which are allocated into the normal world and the secure world. That operation is
possible thanks to the TrustZone Address Space Controller (TZASC) which, controlled by the
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secure world, partitions external memory in secure and non-secure regions. The TZASC allows
the partitioning of a single memory unit rather than requiring separate secure and non-secure
units and allows an arbitrary number of partitions to be created. In that way, TrustZone ensures
that the normal world cannot access the secure part of memory while the secure world can access
the entire memory. The two worlds can communicate with each other thanks to the TrustZone
Memory Adapter (TZMA) which enables a single physical memory cell of up to 2MB to be shared
between a secure and a non-secure partition, allocating a piece of shared memory.

Since TrustZone is a feature that can host both user and system logic and can dynamically
control peripheral partitions, it is a suitable way to protect the I/O path from the device to the
user, by partitioning both the input and output devices to the secure world. Most of the current
research is on the use of TrustZone for the mobile phone platform, but new works are targeting
IoT platforms, cloud servers, virtualization, and many other use cases [34].

3.4.3 AMD Secure Encrypted Virtualization

In April 2016, AMD published a white paper [35] to introduce AMD Secure Encrypted Virtual-
ization (SEV). AMD SEV is a security feature offered by AMD processors that allows a virtual
machine (VM) to run with encrypted memory, performing confidential computing even with an
untrusted hypervisor. SEV combines two AMD features: AMD virtualization (AMD-V) and
Secure Memory Encryption (SME).

AMD-V is a set of hardware extensions for the x86 processor architecture, designed by AMD
to improve resource use and VM performance. This technology, introduced by AMD in 2004,
uses hardware to do the job that VM managers do via software by incorporating virtualization
extensions in a CPU’s instruction set. Typically, virtualization allows guest programs to run on
a simulated system that emulates the hardware itself, which is done with the help of a software
manager. For that reason, the system does not have proper access to the processor, and every
operation has to go through software, effectively limiting the power of the system to be emulated.
With AMD-V, providing hardware virtualization, the emulated system can have more processing
power, allowing more virtual machines to run at the same time. SME defines an x86 extension for
real-time main memory encryption, aiming to defeat cold boot attacks [36] and DRAM interface
snooping. Main memory encryption is performed via dedicated hardware which includes an Ad-
vanced Encryption Standard (AES) engine. When data is written to DRAM, the engine performs
an AES encryption and it decrypts data when read. The encryption is based on a 128-bit key
which is randomly generated each time the machine is booted and is not visible to any software
running on the CPU cores. The management of the key is delegated to a 32-bit microcontroller,
the AMD Secure Processor (AMD-SP), that stores it securely.

Traditional computing systems are based on a ring-based security model, in which high-
privileged code has access to all resources of lower privilege levels. On the contrary, the SEV
model introduces code executed at different levels (hypervisor and guest) which is isolated and
unaccessible from the other level. The separation is guaranteed through cryptographic isolation,
allowing however a tightly controlled communication between hypervisor and guest.

Figure 3.6 shows the SEV architecture, which combines AMD-V architecture and SME to
allow every VM to have its own VM encryption key. The key is generated by the CPU and
assigned to a SEV VM when the hypervisor launches it. Every VM encryption key is securely
stored in the AMD-SP and is never exposed to DRAM. In particular, when SEV is enabled, the
SEV hardware creates an identifying tag, which is applied to all code and data. This tag is unique
for every VM and indicates which VM originated the data or for which VM data was intended.
When data are inside the SoC, the tag is used to prevent that data from being used by anyone
other than the owner. Otherwise, when data are outside the SoC (e.g. in DRAM), it is protected
by the SME by its AES with 128-bit encryption. Based on the tag, the SEV hardware generates
a key, which is used to encrypt or decrypt data when it leaves or enters the SoC. Since a tag is
unique for every VM as well as for the hypervisor, every encryption key is unique so that data is
restricted to only the VM using that tag. If VM’s data are accessible by any other VM or by the
hypervisor, they can see data only in its encrypted form, providing strong isolation between the
VMs, as well as between the VMs and the hypervisor.
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Figure 3.6. SEV Architecture (source: [35])

AMD SEV was initially designed for the public cloud where cross-VM and hypervisor-based
attacks are major troubles [32]. Also, SEV transparency to the user application software makes
it a convenient TEE for securing unmodified and legacy software applications. Since it supports
a large size for trusted memory, AMD SEV is suitable for securing sophisticated applications
and services with a large amount of code. However, since SEV TCB includes the underlying
OS and hypervisor, it is exposed to a broader class of attacks, weakening its security protection
capabilities. For that reason, SEV is not appropriate as a TEE for applications that need an
enhanced degree of security protection.

3.5 TEE Problems

Even if the TEE technology is constantly rising and becoming much more present in all devices,
it is important to analyze deeply this technology. Since more and more papers in the literature
are proposing TEEs as part of security solutions, it is crucial to discuss the problems of execution
environments. As previously presented, all major CPU vendors have their TEE (e.g., ARM Trust-
Zone, Intel SGX, and AMD SEV), which can be used for many different use cases (e.g. cloud
servers, mobile phones, IoT devices). However, each vendor’s TEE is not enabled to support
every use case, but it enables only a small part of the possible design space across threat models,
hardware requirements, resource management, porting effort, and feature compatibility. Analyz-
ing different vendors’ TEEs, this issue is obvious: an Intel SGX-based solution is optimized for
desktop apps and server partitions, an AMD SEV-based solution isolates a full VM with a large
TCB, and a TrustZone-based solution, even if more flexible than SGX or SEV, supports only a
single hardware-enforced isolated domain, and it is optimized for mobile applications. Also, since
these TEEs are based on proprietary hardware and a closed source code, it is hard to analyze
and study them, due to the difficulty of experimenting with them. For that reason, there is a
lack of good open-source research infrastructure, but the spread of the TEE technology is led
by companies and organizations. Another consequence of the current closed-source design in the
TEE world is the current difficulty in customization. Current TEEs have a specific threat model
and a well-defined set of features which is difficult to work around. If a TEE-based project needs
different features from what the TEE can offer, is needed a significant workaround to add them,
or can be even required to build new TEE hardware from scratch. In that case, the project
becomes very expensive, since the building of TEE hardware must include a design from scratch,
the framework development, testing, adding an RoT, etc. An example of this issue was present in
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the first version of Intel SGX (v1), which required statically sized enclaves, had a lack of secure
I/O, low syscall support, and was vulnerable to significant side-channels attacks [31]. Since only
Intel can modify the design in SGX, users had to wait for changes like dynamic resizing of enclave
virtual memory in SGXv2.

Another important challenge for TEEs is related to this technology security. An important
issue in discussing TEEs is the resistance to side-channel and physical attacks. A side-channel
attack is a security exploit that aims to gather information from a running program by measuring
indirect effects of the system or its hardware. Most commonly, these attacks aim to extract
sensitive information, including cryptographic keys. On May 14, 2019, for example, Intel shared
details and information about a new group of vulnerabilities collectively called Microarchitectural
Data Sampling (MDS). MDS is a speculative execution side-channel vulnerability that allows a
malicious program to read data that the program otherwise would not be able to see. MDS
techniques are based on sampling data leaked from small structures within the CPU using a
locally executed speculative execution side channel.

Moreover, during the last years, multiple vulnerabilities were founded and exploited, mining
the security of TEEs. A popular attack that was discovered and published in 2018 is Fore-
shadow. Foreshadow is a software-only microarchitectural attack against SGX implementations.
The importance of this attack is that, unlike the previous SGX attacks, it does not require any
assumptions on the enclave’s code and does not need kernel-level access. Foreshadow exploits a
speculative execution bug in newer Intel processors, that may result in the disclosure of plaintext
enclave secrets from the CPU cache. In the presentation paper [37], Foreshadow is used to extract
full cryptographic keys from Intel’s enclaves and to create arbitrary local and remote attestation
responses.

Another vulnerability example, this time against AMD SEV, is SEVered, an attack presented
in May 2018 where a malicious hypervisor can extract the full contents of main memory in plaintext
from SEV-encrypted virtual machines. The importance of this attack is that it does not need
physical access or colluding virtual machines, but it is only based on a remote communication
service, such as a web server, running in the victim’s virtual machine [38].

In April 2020, in the paper [3] of presentation of Keystone Enclave, the first definition of
Customizable TEEs takes place. A customizable TEE is defined as a model that “uses a common
software framework to assemble a specialized TEE specific to the use case with multiple stake-
holders’ inputs.” This model starts from the problems previously discussed, realizing a specific
TEE concerns the platform provider’s choice of the hardware interface, the trust model, and the
enclave programmer’s features. Since the threat model in building a TEE may differ depending on
the use case, even on the same platform with different applications, the customizable TEE allows
each enclave to define its own configuration of security features. The existing vendor TEEs, offer
inflexible threat models linked to the respective hardware platform: Intel SGX offers no support
for the configuration of its memory protection systems, ARM Trustzone offers only two security
worlds limiting what operations enclaves can be allowed to perform. Keystone, on the contrary, is
the first open-source framework for building customized TEEs, and provides security primitives
to construct highly customizable TEEs. Keystone works with RISC-V and does not require any
changes to CPU cores o memory controllers, but a secure hardware platform supporting Keystone
requires only a device-specific secret key visible only to the trusted boot process, a hardware
source of randomness, and a trusted boot process.
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RISC-V

4.1 RISC-V Instruction Set Architecture

An Instruction Set Architecture (ISA) is a portion of the abstract model of a computer that defines
how the CPU is controlled by the software. In general, an ISA defines the supported instructions,
data types, registers, the hardware support for managing main memory, fundamental features
(such as memory consistency, addressing modes, virtual memory), and the input/output model of
a family of implementations of the ISA. RISC-V is an open-source implementation of a reduced
instruction set computing (RISC) based instruction set architecture (ISA). The project began
in May 2010 at the University of California, Berkeley, but now many current contributors are
volunteers not affiliated with the university. The next year, two big milestones were reached: the
first project’s paper [39] and the first tape-out of a RISC-V chip. In 2015 the RISC-V Foundation
was founded with 36 founding members to build an open, collaborative community of software
and hardware innovators based on the RISC-V ISA. Three years later, in November, the RISC-V
Foundation announced a collaboration with the Linux Foundation, which help the project by
providing operational, technical, and strategic support for RISC-V.

When the RISC-V project started, several other commercial ISAs were in popular use, and
their reuse would avoid significant costs and efforts. However, all of these ISAs had some problems,
which the RISC-V project was born to solve [40]. The main issue is that almost all of the popular
commercial ISAs are proprietary, precluding free academic computer architecture research using
these ISAs and building a barrier to the commercialization of successful research ideas. The other
important issue is that most of the popular commercial instruction sets are complex and difficult
to fully implement in hardware. Moreover, there is little incentive to create simpler subset ISAs
and often, without a complete hardware implementation, unmodified software cannot run.

Table 4.1 shows a list of popular ISAs already existing before the RISC-V project and their
relative supported features. Except for SPARC and OpenRISC, they are not free and open ISAs.
Oracle’s SPARC architecture, originally developed by Sun Microsystems, traces its origin to the
Berkeley RISC-I and RISC-II projects. However, in the first RISC-V paper [39] several issues of
SPARC were described, such as the performance limitation due to the memory system used as an
intermediary during moves between the floating-point and integer registers, or the impossibility
to implement many wait-free data structures due to the lack of atom memory operations. On the
other hand, the OpenRISC project is an open-source processor design that is suitable for use in
academic, research, and industrial implementations. Like SPARC, though, it has several technical
drawbacks that restrict its relevance.

Due to these issues, the RISC-V project began with the following declared goals [40]:

• Create a fully open ISA that is freely available to academia and industry;
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MIPS SPARC Alpha ARMv7 ARMv8 OpenRISC 80x86

Free and Open

64-bitAddresses

Compressed Instructions Partial

Separate Privileged ISA

Position-Indep. Code Partial

IEEE 754-2008

Classically Virtualizable

Table 4.1. Summary of several ISAs’ support for desirable architectural features (source [40])

• Build a real ISA suitable for direct native hardware implementation;

• Avoid an over-architecture, allowing efficient implementation in different technologies;

• Separate the ISA into a small base integer ISA, suitable itself as a base for customized
accelerators or educational purposes, and optional standard extensions, to support general-
purpose software development;

• Support extensive user-level ISA extensions and specialized variants;

• Support for the revised 2008 IEEE-754 floating-point standard;

• Create 32-bit, 64-bit, and 128 -bit address space variants for applications, kernels, and
hardware implementations;

• Support for highly parallel multicore;

• Build a fully virtualizable ISA to ease hypervisor development;

4.2 RISC-V Design

4.2.1 ISA Base

According to declared goals, RISC-V has a modular design, consisting of alternative base parts,
with added optional extensions. The three base ISAs (RV32I, RV32E, and RV64I) are different,
but with a similar design. RV32I and RV64I differ mainly in the width of the registers and the
size of the memory address space. RV32E is a variant of RV32I with fewer registers, suitable for
embedded systems.

RV32I is the base 32-bit integer ISA that includes 47 instructions: 8 system instructions
(system calls and performance counters) and the other 39 divided into computation, control flow,
and memory access instructions. RV32I is based on 31 general-purpose integer registers (x1-x31),
each 32 bits wide, and on the register called x0 that names the constant zero. The only additional
register is the program counter, pc, which holds the byte address of the current instruction.

Figure 4.1 shows the six instruction formats available in RV32I, the four main formats (R, I, S,
and U), and two variants (SB and UJ), which are equivalent to S and U excluding the immediate
operand encoding. These types of instructions have up to two input register operands, called rs1
and rs2, and one output register result called rd. All these register specifiers, if present in an
instruction, always occupy the same position, allowing register fetching in parallel, and amelio-
rating performances. Another quality of this encoding scheme is that generating the immediate
operand from the instruction word is inexpensive. All the instructions have the first 7 bits that
include opcodes to specify the operation to be performed, and a sign bit. In the base ISAs, the
2 LSBs are set to 11, so that only 5 bits of the opcode are used. RV32I consumes 11 of the 32
opcodes that remain, while the other base ISAs use 16. Nine major opcodes remain available for
ISA extensions.
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Figure 4.1. RV32I instruction formats (source [40])

RV32I has 21 computational instructions, including arithmetic, logic, and comparisons. These
instructions operate on the integer registers, and on both signed and unsigned integers. The
arithmetic operations are addition, subtraction, and bitwise shifts. RV32I has five instructions
that load a value from memory into an integer register and three that store a value in a register
to memory. All of these instructions use byte addresses to name memory locations forming the
address by adding the value in register rs1 to the 12-bit sign-extended immediate. RV32I offers
six instructions to conditionally change the flow of control, which use the SB-type instruction
format and perform arithmetic comparisons between two registers. The new address is formed by
adding the sign-extended 12-bit immediate to the current pc.

4.2.2 ISA Extensions

One of the declared goals in defining RISC-V was to make it suitable for resource-constrained low-
end implementations, for which the base ISA is required, and high-performance implementations.
For that reason, RISC-V offers the so-called ISA extensions. In particular, the main standard
extensions in RISC-V are five [40]: M, for integer multiplication and division; A, for atomic
memory operations; F, for single precision floating point operations; D, for double precision
floating point operations; and C, for compressed instructions.

In many applications, integer multiplication and division are frequent operations. The RISC-V
M extension offers this kind of instruction, without adding special architectural registers for the
operands, but operating directly on the integer registers. According to the RISC-V specification
document [40], this kind of approach reduces count and latency, eliminating instructions that
move to and from the special registers, enabling superior compile code scheduling, and reducing
the size of the thread context.

The RISC-V project was born recognizing the importance of parallel computing. For that
reason, RISC-V provides load-reserved (LR) and store-conditional (SC) instructions, which splits
atomic operations into a load, compute, and store phases. This kind of scheme is general enough
to be used to construct any single-word atomic operation. However, this approach is combined
in RISC-V with several atomic memory operations, allowing performing simple arithmetic and
logic operations on a memory word. These operations include addition, maximum and minimum,
bitwise AND, OR, and XOR, and swap and they represent an important optimization for highly
parallel systems. The A extension includes different instructions with additional features that
enable the implementation of the release consistency (RC) memory model, which allows a great
degree of concurrency.

RISC-V’s F extension adds single-precision floating-point support, thanks to a new set of
floating-point registers, which, according to the RISC-V design paper, leads to several advantages.
Since most floating-point operations round the results, RISC-V provides four rounding modes:
to the nearest number, towards zero, towards -∞ and towards +∞. The F extension introduces
30 new instructions, divided into data movement instructions, conversions, comparisons, and
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arithmetic instructions. The D extension is very similar to the F extension and requires the
presence of the F extension. The 32 floating-point registers are doubled in width to 64 bits, and
new instructions are added that operate on double-precision values.

The briefly described extensions, together with the base RISC-V ISAs, form the G ISA [40],
which is considered by the presentation paper on RISC-V a sufficient basis for general-purpose
scalar computation. The main limit of G is the fixed 32-bit encoding which is not particularly
compact. For that reason, RISC-V ISA offers another standard extension, called C, which aims
to improve the density of the G ISA by providing a compressed 16-bit encoding for the most
common instructions.

4.3 RISC-V Privileged Architecture

The RISC-V paper introduces a new type of architecture, called RISC-V Privileged Architecture
(RPA), which is orthogonalized to the RISC-V user ISA [41]. According to this paper, this
architecture allows different types of systems to share the user ISA, because, since the user and
privileged architectures are separated, the same user ISA can be used for different features. RPA
can also facilitate experimentation in privileged architectures, allowing researchers to implement
new protection technologies without the need to rewrite application code.

Typically, in a general-purpose system, applications can use system calls defined in an appli-
cation binary interface (ABI) to interact with the OS. With this approach, the user application
may don’t know the identity of the application execution environment (AEE) and may just see
the interface. For that reason, in this kind of system, the OS interact directly with the hardware
platform, complicating and decelerating full virtualization. As shown in Figure 4.2, RPA proposes
a new approach by outlining the supervisor execution environment (SEE), which can communi-
cate with the above OS thanks to a supervisor binary interface (SBI). Similarly, under the SEE, a
hypervisor can interact with the hypervisor execution environment (HEE) via a hypervisor binary
interface (HBI). Then, the lowest-level execution environment interacts with the below hardware
thanks to a hardware abstraction layer (HAL) that isolates the execution environment from the
hardware platform implementation details.

Figure 4.2. Different implementation stacks supporting various forms of privi-
leged execution (source [41])

Furthermore, RPA introduces four modes to define four different levels of privilege. The User
mode (U) is the least privileged mode, where the application code normally executes. Then
there is the Supervisor mode (S), where exception processing and virtual memory support are
provided, and where OS code is commonly executed. Above, there is the Hypervisor mode (H),
which is designed to host a virtual machine monitor. Finally, the Machine mode (M) can access
all hardware features. This privilege architecture is based on a group of particular registers, called
control and status registers (CSRs). To these registers, a 12-bit address space is given, which is
divided into privilege regions. The two MSB indicate whether a CSR is read-only, and the next
two bits give the minimum privilege mode at which the register may be accessed.
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4.4 Physical Memory Protection (PMP)

Another fundamental feature introduced by RISC-V ISA is the Physical Memory Protection
(PMP), which is designed to limit the physical addresses accessible by software running on a hart
(hardware thread [39]). This feature is based on an optional PMP unit that provides per-hart
machine-mode control registers to allow physical memory access privileges (read, write, execute)
to be specified for each physical memory region. Every time that a hart is running in S or U mode,
before accessing memory there is a PMP check to the specific memory region. The same checks are
applied to page-table accesses for virtual-address translation and, optionally, to M-mode accesses.
The PMP can give permissions to S and U modes, which by default have none, and can cancel
permissions from M-mode, which by default has full permissions. Allowing to RISC-V paper [41]
PMP violations are always trapped precisely at the processor.

In RISC-V up to 16 PMP entries (pmp0cfg-pmp15cfg) are supported, which are, as shown in
Figure 4.3, 8-bit long. The R, W, and X bits, when set, indicate that the PMP entry permits read,
write, and instruction execution. When one of these bits is clear, the corresponding access type is
denied. The A bits represent the address-matching mode of the associated PMP address register,
and the L bit means that the PMP entry is locked, so that writes to the configuration register
and associated address registers are ignored. These entries are associated with two other types of
registers, the PMP configuration registers, and the PMP address registers. In the case of RISC-V
RV32 ISA, four CSRs (pmpcfg0-pmpcfg3) represent the configuration for the 16 PMP entries and
are only accessible in M-mode. The PMP address registers are CSRs named pmpaddr0-pmpaddr15
and contain the address of the memory region of the corresponding PMP entries.

Figure 4.3. RV32 PMP configuration CSR layout and PMP configuration register format (source [41])

PMP entries are statically prioritized so that the lowest-numbered PMP entry has the maxi-
mum priority. So, if a memory region has multiple PMP entries, the lowest-numbered PMP entry
determines whether that access succeeds or fails. If a PMP entry matches all bytes of access, then
the L, R, W, and X bits determine whether the access succeeds or fails, and, if the L bit is not
set and the privilege mode of the access is M, the access succeeds.
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Keystone Enclave

5.1 Keystone Enclave

As already described, the TEE’s world has still several problems and issues to solve. The Keystone
project started with the declared goal of solving part of the previously described issues. The
project started as an academic project at UC Berkeley in 2018. In 2020, EuroSys’20, the paper of
description of the project was published [3], in which the first definition of customizable TEE took
place. A customizable TEE uses a common software framework to build a TEE specific to the
defined use case and threat model. This approach allows the hardware manufacturer to simply
provide basic primitives, without the need to make the platform provider’s choice of the hardware
interface, the trust model, and the enclave programmer’s feature requirements. The choices are
delegated to a framework that composes the required modules to instantiate a specialized TEE.

Keystone Enclave is the first open-source project for building customizable TEEs and allows
the creation of a secure and trustworthy open-source secure hardware enclave, which can be used
for a wide range of applications and devices [3]. The enclave design of Keystone Enclave is based
on RISC-V and supports memory isolation with standard RISC-V primitives. In particular, it
requires the RISC-V Privileged Modes (U, S, and M modes), and the RISC-V Physical Memory
Protection (PMP) feature. The project took the Sanctum project [42] as inspiration and shared
with it many good practices from prior experiences. However, Keystone Enclave was built from
scratch and, in opposition to Sanctum, the main goal was to make an open end-to-end framework,
not a TEE for RISC-V ISA.

In particular, summing up, the declared goals of Keystone Enclave were [3]:

• Enable TEE on (almost) all RISC-V processors;

• Make TEE easy to customize depending on the needs, with the possibility to reuse the
implementation across multiple platforms;

• Reduce TEE building costs, reducing hardware integration costs, verification and testing
costs, and integrating with existing software tools;

Guided by these goals, the customizable TEEs were designed based on the following four
principles that allow maximum degrees of freedom and minimum effort.

1. Keystone exploits programmable layer and isolation primitives below the untrusted code.
The project is based on a Security Monitor (SM), designed to enforce TEE promises on
the platform which runs in M-mode. Running in M-mode, the SM can be programmed by
the platform providers, can control hardware delegation of the interrupts and exceptions in
the system, and can control the RISC-V’s PMP, allowing the isolation of memory-mapped
control features at runtime.
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2. It allows for decoupling the security checks and resource management. The SM has few
non-security duties and, since it has maximum privilege mode, it can implement security
features with minimal code, keeping the TCB low. The two other important modules of
Keystone are the Runtime (RT), which runs in S-mode, and the enclave application (eapp),
which runs in U-mode. Both stay in the enclave address space so that they are isolated from
the untrusted world. The RT has to manage the lifecycle of the code running in the enclave,
managing memory, service syscalls, and all other resources. As shown in Table 5.1 it can
communicate with the SM using a set of API functions via the RISC-V supervisor binary
interface (SBI) to exit or pause the enclave, to get an attestation report of the eapp, or to
get a random generated value. Additionally, depending on the platform, SM can provide
additional functions like dynamic resizing.

3. Keystone has a modular layers based-design. SM, RT, and eapp allow having three different
modules that help to support different workloads. They are independent layers, a feature
that provides a security-aware abstraction to other modules.

4. It allows fine-grained TCB configuration. The TEEs that Keystone Enclave can instantiate
can have minimal TCB for specific use cases. In particular, the TCB can be optimized via
RT or eapp libraries choices, using existing user/kernel privilege separation. If an eapp does
not require a library, Keystone will not include it in the enclave.

Caller SM SBI Description

OS create
run
resume
destroy

Validate and measure the enclave
Start enclave and boot RT
Resume enclave execution
Clean and release enclave memory

RT stop
exit
attest
random

Pause enclave execution
Terminate the enclave
Get a signed attestation report
Get secure random values

OS and RT extension Platform-specific functions

Table 5.1. The SBI functions provided by the SM (source [3])

5.2 Keystone Blocks

5.2.1 Security Monitor

The Keystone Security Monitor (SM), which is the core of the Keystone TEE, is portable to
different RISC-V platforms using only standard RISC-V features. In particular, the SM can
guarantee memory isolation if the below hardware supports RISC-V PMP and Privileged Archi-
tecture. PMP allows Keystone memory isolation to have not a unique large memory region shared
by different enclaves, but to have multiple discontiguous enclave memory regions that can coexist.
Furthermore, since PMP entries can cover regions from 4 bytes to all the DRAM, Keystone allows
enclaves with arbitrary sizes. Finally, another advantage of using the PMP feature is that PMP
entries can be reconfigured during execution so that the memory can dynamically be managed to
create new regions or to release a region to the OS.

Figure 5.1 shows how Keystone exploits PMP to perform memory isolation, creation, execu-
tion, and destruction of an enclave, and allocation of a shared buffer.

a) Memory Isolation. The first operation done by Keystone, at the SM boot, is the configura-
tion of the first PMP entry (pmp0cfg), which has maximum priority and is reserved for the
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SM. The correspondent PMP address register (pmpaddr0) is set to cover all the SM memory
region which include code, stack, and data such as enclave metadata and keys. This opera-
tion does not allow any kind of access from U-mode and S-mode. Then, Keystone configures
the last PMP entry (pmpNcfg), which has minimum priority, with all permissions enabled
and the correspondent PMP address register (pmpaddrN) is set to cover all the DRAM.
This operation allows the OS to have default access to all the memory not covered by a
PMP entry.

b) Creation of an enclave. A host application, running on the untrusted system can ask the
OS to create an enclave. The duty of the OS when this request occurs is to find a contiguous
physical region with enough space for the future enclave and then to pass the request to
the SM. The SM validates the request, assuring that the space found by the OS is enough
without overlapping other enclaves already allocated or the SM space. If valid, the SM
manages the PMP entries by adding one new entry (if still available) with all permission
disabled. The new PMP entry has a higher priority than the OS PMP entry, so the OS
cannot access the enclave memory region.

c) Execution of an enclave. When an enclave needs to be executed, the SM manages the PMP
entries for the current core only, allowing other cores to execute normally. In particular,
the SM edits the PMP entry for the current memory region enabling permission bits and
it disallows all OS PMP entry permissions to protect all the other memory from the en-
clave. With those operations, the core executing the enclave has complete access only to his
memory region, and cannot access the OS’ and other enclaves’ memory. If the CPU needs
to execute a non-enclave region, then the SM performs the contrary operations: it disables
permissions for the enclave regions and manages the OS PMP entry to re-enable access to
the OS.

d) Destruction of an enclave. When the execution of an enclave is finished, the SM needs to
destroy the enclave. In order to do that, the SM deallocates the PMP entry correspondent
to the enclave to destroy and frees out the pages previously allocated so that the OS cannot
access that information.

e) Allocation of a shared buffer. Keystone offers the possibility to allocate a special memory
region, called the shared buffer. This buffer allows communication between different en-
claves, sharing unconfident data in a part of memory, clearly untrusted, and accessible by
multiple enclaves. To enable the shared buffer the OS allocates a portion of memory in the
DRAM and gives the address to the SM at the enclave creation. The SM gives the address
to the enclave so that the RT can access it. For this memory region, the SM uses a differ-
ent PMP entry to enable OS access to this shared buffer. Since in a RISC-V architecture
there is a set of PMP entries for each core, is necessary to propagate the PMP changes to
all the cores during enclave creation. This communication from one core to all the others
is done using inter-processor interrupts (IPIs). When a core is executed, the SM removes
access of other cores to the enclave, handling the IPIs, so that, during enclave execution,
PMP entry changes are local to the core executing it and they don’t need to be shared with
other cores. PMP synchronization IPIs are only transmitted during enclave creation and
destruction. Since each allocated enclave requires its own PMP entry, Keystone supports
N-2 simultaneously created enclaves, with N as the number of PMP entries available. The
two entries not available for enclave allocation are reserved for the SM and the OS.

During the lifecycle of an enclave, exceptions and interrupts can occur, and, in that case, they
trap directly to the SM. The SM can choose to safely delegate the exceptions to the RT, which can
decide to handle or forward them to the untrusted OS via the SM. To avoid DoS by the enclave
that can hold a core for no limited time, SM sets a machine timer before the enclave execution,
and, when it regains control, it may return control to the host OS or request that the enclave
cleanly exit.
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Figure 5.1. How Keystone uses RISC-V PMP for memory isolation (a), creation of an
enclave (b), execution of an enclave (c), destruction of an enclave (d), and allocation of a
shared buffer (e). (source [3])

5.2.2 Enclave Application and Runtime

The presented SM has the role of physically isolating the enclaves from each other and the OS.
Since the SM runs in M-mode, is allowed for the enclave to be executed in S-mode, without having
security troubles in memory isolation. For that reason, in Keystone, the enclave is split into two
modules: the enclave application (eapp), which runs in U-mode, and the Runtime (RT), which
runs in S-mode.

The main goals of the RT are two, to allow Keystone to have a modular system-level abstraction
for eapps, and to delegate all security features to the SM so that the RT can implement other
functionalities. This kind of design allows having a slim SM with few lines of code that can be
tested and verified with high-security assurance. The RT represents a code that offers kernel-
like functionalities to the above eapp, allowing communication between the eapp and the SM.
Although the RT is equal in functionality to a kernel inside an enclave, it does not require most
kernel functionality.

In the paper of presentation of Keystone [3], a modular examplar RT was presented called
Eyrie. Eyrie allows enclave developers to include only necessary functionalities reducing TCB.
One of the advantages of having a part of the enclave running in supervisor mode is that kernel
functionalities can be developed without modifying the user application. Furthermore, only the
RT can access the shared buffer allowing a defensive design. Finally, this kind of modularity
enables easy porting of a off-the-shelf microkernel such as seL4 [43] in an enclave.
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In the paper presentation of Keystone [3], three modules built for Eyrie RT to enable flexible
enclave memory management were presented:

• Free memory. This module allows Eyrie RT to perform page table management, after the
enclave reserves unmapped physical memory. In opposition to what typically happens in
Keystone, with this module the page mappings don’t need to be pre-defined at creation
time. In particular, the memory region is not part of the enclave measurement and is zeroed
before beginning the eapp execution.

• In-Enclave Self Paging. It is a generic in-enclave page swapping module that handles the
enclave page faults. Working with the Free Page module for virtual memory management,
this module helps to solve the memory restrictions an enclave may have due to the limited
DRAM or the on-chip memory size.

• Protection of the Page Content Leaving the Enclave. When an enclave needs to copy out
of the secure physical memory some pages (e.g., after a page fault), their content must be
protected. For that reason, this module includes page encryption and integrity protection
to allow for the secure content to be paged out to the insecure storage (DRAM regions or
disk).

Other important responsibilities of the RT are to manage the Edge Call Interface and the
Multi-Threading when running multi-threaded eapps. The need to have an Edge Call Interface
is due to the impossibility of the eapp to access the non-enclave memory. So, if the eapp needs
to read or write data outside the Eyrie RT executes edge calls. When the Eyrie RT wants to
perform an edge call, it specifies an index to a function implemented in the untrusted host and
the parameters to be passed. In order to do that, Eyrie RT tunnels the edge call to the untrusted
host and copies the return values to the enclave, sending them to the eapp. This copy is possible
thanks to the previously described shared buffer, which address is passed by the SM to the RT
after the buffer creation.

5.2.3 Keystone Primitives and Extensions

Keystone offers three main primitives: the secure boot primitive, a secure source of randomness,
and a remote attestation primitive. To use the secure boot in Keystone, an RoT must be added to
the hardware. Then, at each CPU reset, the RoT performs several operations for the secure boot.
Firstly, it calculates the hash function of the SM image, then generates an attestation key based
on a secure source of randomness saving it into the SM’s private memory. Finally, it’s important
that the RoT signs the measurement and the public key with a secret based on the hardware.

The secure source of randomness primitive is offered by Keystone based on a secure SM SBI
call, which returns a 64-bit random value. This primitive, as the precedent, should be based
on secure tamperproof hardware (e.g., RoT), which is used by the Keystone SBI to generate a
random value.

Finally, Keystone offers a primitive for Remote Attestation. In particular, the SM, which can
measure and attest based on the provisioned key, may be contacted during runtime by the enclave
requiring a signed attestation. However, remote attestation has multiple challenges considered
orthogonal, such as key distribution, revocation, attestation service, and anonymous attestation
[3].

In order to make Keystone more secure and to guarantee more security features to the enclave,
the presentation paper [3] presented three extensions. In particular, the following customization
of the SM for a specific platform can help Keystone to have a defense against a physical attacker
or cache side-channel attacks.

Secure On-chip Memory

This extension was born to guarantee protection against a physical attacker with the possibility
of access to the DRAM and permits the enclave to run without the code or data exiting the chip
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package. In particular, this extension is based on a RAM scratchpad memory which is allocated
only for the requesting enclave for its entire lifetime. In opposition to what typically happens in
Keystone, if an enclave requests to run with this extension, then the host loads the enclave to the
OS memory region with the page tables that refer to the scratchpad address. Then, the SM copies
the enclave memory region into the scratchpad before the measurement. After those operations,
any context switch results in an execution in the scratchpad memory, without the need to change
the eapps or the Eyrie RT.

Cache Partitioning

Since the enclaves have a shared cache, the untrusted OS or other applications can perform a cache
side-channel attack. For that reason, this extension, based on a cache way masking primitive,
allows having the SM that implements non-interference between the partitioned memory regions.
In particular, when a context switch to the enclave is performed, the cache lines in the partition
are flushed and, during the execution of the enclave, only the cache lines from the enclave are
available and protected by PMP.

Dynamic Resizing

Typically, in Keystone, the size of an enclave is static and pre-defined. This involves a static
physical or virtual memory pre-allocation, which makes problems in porting different applications
to the eapps and does not allow a dynamic scale of the enclave based on workload. For these
reasons, Keystone introduced this extension that allows the SM to modify the memory boundaries
of the enclave. In particular, if the Eyrie RT sends an SBI request to the SM, it asks the OS for
new space and, if the OS succeeds in allocating, the SM changes the enclave size managing the
correspondent PMP entry and notifying the RT.

5.3 Security Analysis

Since the Keystone project is based on PMP and RISC-V hardware, according to the threat model
presented in the paper presentation [3], both the PMP and RISC-V hardware implementation are
considered to be bug-free. Furthermore, the SM is considered to be trusted by a Keystone user
after its measurement validation, verifying that the hash is signed by trusted hardware and it’s
the expected version. Keystone is based on a chain of trust: the SM needs only to trust the below
hardware, the host to trust the SM, the SM to trust the RT, and, finally, the eapp to trust the
SM and the RT.

The Keystone Enclave attacker’s model highlighted in the threat model study are four: a
physical attacker, which can intercept, edit, or replay signals that leave the chip package, a
software attacker, which can control host applications, the untrusted OS, or other untrusted
services, a side-channel attacker, which can steal information by observing interactions between
the trusted and the untrusted world, and a denial-of-service attacker, which can take down the
enclave or the host OS. Based on this threat model, the security analysis of Keystone is based on
the protection of the enclave, the host OS, and the SM.

5.3.1 Protection of the Enclave

Keystone can always be sure about the integrity of the SM and the enclave (RT and eapp),
thanks to the Keystone attestation primitive which makes any modification visible. For a software
attacker is impossible to access the enclave memory while it is running thanks to the PMP, and
all its data structures can be modified only by the SM or the enclave itself. A particular set of
attacks that are analyzed in the paper are the mapping attacks. According to the documentation,
the physical address mappings are managed by the RT, which is trusted by the eapp ensuring
the validity of mappings. In particular, if the enclave needs to update the mappings, the RT can
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check if they are corrupted, can tell if new empty pages are safe before mapping them, and can
clean the pages’ content before removing them. Keystone enclave is exposed to Iago attacks [44]
and system call tampering attacks when the RT calls untrusted functions implemented in the host
process or invokes the OS syscalls. Finally, since only the SM can detect enclave events such as
interrupts, the host cannot perform a side-channel attack seeing this information.

5.3.2 Protecting the Host OS

In Keystone, an enclave is very limited and cannot perform several dangerous operations. Firstly,
a Keystone enclave cannot in any way edit a page table not belonging to him, but to the host
application, running in U-mode, or to the OS, running in S-mode. Then the enclave has no
reference to any address memory region outside its own allocated portion thanks to the PMP
controlled by the SM, running in M-mode. Furthermore, a DoS attack by an enclave is not possible
in Keystone thanks to the timer set by the SM, which will interrupt the enclave execution giving
back control to the SM, which can return the execution to the OS. Finally, an enclave cannot
corrupt the host state, since the SM executes a full context switch when the execution pass from
the enclave to the OS and vice versa. All these limitations of the enclave guarantee that the host
OS is not exposed to new attacks from the enclave.

5.3.3 Protection of the SM

The Keystone’s SM protections are based on the Privileged Architecture of RISC-V. Since the
SM runs in M-mode, it has no trust in any other component such as eapps, RT, or host OS, since
they run with a lower privilege. All the SM memory is isolated using PMP and for that reason
is inaccessible to any software running in S-mode or U-mode, protecting the SM from software
attackers. A potential vulnerability can come from the SM SBIs, which allow Keystone RT to
communicate with the SM. The SBIs presented by Keystone are limited, well defined, and run in
S-mode making the SM not complex and small enough to be formally verified.

5.4 Keystone Weaknesses

As presented in this chapter, the Keystone framework can be a valid alternative to the current
TEEs. The advantages of Keystone are multiple, such as the size flexibility of the enclaves, its high
portability, the fact that the SM is minimal enough to be formally verified, the small RT that offers
kernel-like functionalities, and, finally, the fact that Keystone is completely open source. Despite
these strengths, Keystone is still a young project which has multiple weaknesses and limitations.
Firstly, Keystone is supported only by RISC-V hardware and it is very dependent on the PMP
and Privileged Architecture features. Even if the hardware can support these features, currently
PMP registers are limited (RISC-V maximum number of entries is 16) and this is reflected in
the limited number of possible enclaves to be created at the same time. Then, a limitation of
the project comes from the strong assumptions that the presentation paper contains about the
implementation and design of RT and SM. The paper assumes ”that the SM, RT, and eapp are
bug-free” [3]. If the SM is small enough to be formally verified, the RT is not, and this assumption
can be a serious security issue. Furthermore, the Eyrie RT is now small, but if more kernel features
will be added it risks becoming bigger and evolving into a small kernel, with a high chance of
bugs and vulnerabilities. At a security level, Keystone cannot still guarantee protections against
multiple attacks such as speculative execution attacks or side-channel attacks, in which case the
protection is completely delegated to programmers. Another kind of attack from which Keystone
has no defense is the side-channel attacks with off-chip components, which can just be mitigated
using oblivious RAM. Finally, there is no non-interference guarantee for the SBI that the SM
exposes and the RT can invoke untrusted system calls from the OS. In these cases, there is a
risk of Iago attacks via the untrusted interface, which protection is delegated to the RT and eapp
developer.
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Chapter 6

Remote Attestation Framework
for RISC-V nodes

6.1 Problem Statement

The analysis of the state of the art and the different technologies proposed in the previous chapters
has shown the importance and the increasingly frequent use of TEEs. In particular, this technology
can be useful as a trust anchor from which to start to guarantee Remote Attestation. However, as
already discussed in previous chapters, TEEs still have several problems and include many different
solutions. In the analysis of TEEs as trust anchors, we can divide the technologies currently on
the market into two blocks: RISC-V-based technologies and non-RISC-V-based technologies.

The most popular non-RISC-V-based TEEs discussed in previous chapters are Intel SGX,
ARM TrustZone, and AMD SEV. Intel SGX bases its Remote Attestation on the generation and
signing of a report that includes proof of the TCB, the Message Authentication Code of the node,
and other additional information [45]. This quote can be forwarded to a trusted verifier to perform
Remote Attestation. In particular, Intel designed its remote attestation protocol based on the
SIGMA protocol [45] and extended it to the Enhanced Privacy ID which was extended by MAGE
[46] by offering mutual attestation for a group of enclaves without trusted third parties. On the
other hand, ARM TrustZone lacks attestation mechanisms, preventing a remote trusted verifier
from validating the state of a TrustZone-based node. Despite this, many different protocols in
literature have been proposed to perform both mutual and simple RA [47][48], but they all require
extra hardware. Finally, AMD SEV only supports RA during the launch of the guest OS.

The analysis of remote attestation with these technologies highlighted several limitations.
While many features are satisfied with Intel SGX, this is not the case with TrustZone and SEV. In
particular, ARM TrustZone does not guarantee support for RA by default, but existing protocols
were extended by the literature. AMD SEV has minimal support for RA but has no APIs for
attestation so there is no interface available by trusted applications to interact with the process of
RA. Furthermore, these technologies continue to suffer from the problems described in previous
chapters, creating numerous problems in the design and implementation of remote attestation.
Despite this, several solutions exist in the literature [45], able to exploit these technologies to
attest to nodes on the cloud.

Since RISC-V is an open-source ISA, it has allowed some RISC-V-based node RA protocols
to be proposed in the literature. In particular, the technologies on which an analysis was carried
out were three: LIRA-V, Sanctum, and Keystone. Sanctum was the predecessor of Keystone and
was the first proposal with support for the attestation of a trusted application. Similarly to SGX,
Sanctum owns a dedicated signing enclave, that receives a derived private key from the secure
monitor to generate evidence. LIRA-V introduced a comprehensive RA mechanism, adding the
mutual RA feature not supported by Sanctum nor Keystone by default. Finally, Keystone which
has been described in previous chapters supports RA. In particular, Keystone utilizes a secure
boot mechanism that measures the SM binary, generates an attestation key, and signs them using
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a hardware-visible secret. The Keystone paper [3] does not describe the protocol in depth, but
it just explains how the SBIs for RA work. As can be seen from the analysis of these RISC-V-
based technologies, the RA feature is not in-depth and is still very embryonic for RISC-V nodes.
LIRA-V, for example, was one of the first RA mechanism proposed on RISC-V, but it is not a
true centralized attestation framework.

This slowness in defining and proposing an RA design for RISC-V is opposite to the speed
with which RISC-V is making its way into the commercial world. In recent years RISC-V is
increasingly at the center of major technological products. For example, Samsung has announced
that it will use RISC-V cores in its 2020 5G smartphones and that it will leverage RISC-V cores
for artificial intelligence (AI) image sensors, security management, AI processing, and machine
control systems. Western Digital, NVIDIA, and Qualcomm also announced they will use RISC-V
for applications ranging from solid state drives (SSDs) and hard disk drives (HDDs) to graphics
processing units (GPUs) used for smartphones and machine learning. A November 2019 report
from Semico Research Corp. predicts that the RISC-V CPU core market will reach 62.4 billion by
2025, or about 6% of the overall CPU core business [4]. These numbers highlight a need to deepen
the security of nodes based on this ISA and in particular to propose an attestation mechanism
for the increasingly numerous RISC-V nodes.

In summary, commercial TEEs technologies have several problems and not all of them support
RA. However, as these technologies are very widespread, several solutions in the literature guaran-
tee attestation mechanisms of nodes not based on RISC-V. In contrast, the literature is limited on
RA for RISC-V-based nodes which are increasingly widespread. In particular, the few proposals
in the literature offer some tools to implement RA, but there is no centralized framework for the
RA of RISC-V-based nodes.

6.2 Proposed Solution

In light of the analysis carried out, the need for a centralized framework for the RA of RISC-
V-based nodes was highlighted. As previously discussed, the design and implementation choices
included several technologies including LIRA-V, Sanctum, and Keystone. It was chosen to base
the proposed solution on Keystone, being a successor to Sanctum. LIRA-V represents an excellent
proposal for an attestation mechanism, but it is not a true centralized attestation framework. Fur-
thermore, since Keystone was created to solve various problems of commercial TEEs, it is a very
flexible framework, favoring the development of trusted applications that are very different from
each other and with different threat models. As previously discussed, Keystone in its presentation
paper [3] does not delve into the concept of RA, but only claims to support it. In particular, the
Keystone SM exposes an SBI that can be called by the RT called attest, which allows having a
signed attestation report. Given the limited information about RA with Keystone, it is essential
to analyze the life cycle of a Keystone-based TEE and identify all the entities involved.

As shown in Figure 6.1 describing the life cycle of a customizable TEE, we identify four main
logical entities that are involved. First of all, there is the Hardware Manufacturer who has the
role of proceeding with the design and construction of RISC-V hardware that is compatible with
Keystone, including the RoT for secure boot. The Keystone Platform Provider (KPP), on the
other hand, has the role of purchasing the hardware from the manufacturer, making it available
for use by its customers, configuring the platform, and above all configuring the SM. Once the
SM is configured, Keystone compiles and generates the SM image that will be used to boot the
SM. This phase is very delicate because the hash of the SM is finalized and it will then be used
to verify its secure boot and for the RA. However, as can be seen from the image presented in
the Keystone paper, this phase is not fully described, but only suggests that it is the KPP’s task
to generate SM hash and send it in some way to a Remote Verifier. The Keystone life cycle then
continues with the KPP having the final task of deploying the SM on the untrusted machine that
represents the RISC-V-based node to be certified. Then it is the role of the Keystone Developer
or Keystone User to develop an enclave application and configure the enclave according to its
requirements. The Keystone User uses keystone to generate the untrusted host binary and the
developed application binary and measures the image which is based on both the enclave binary
and the RT binary. Again, Keystone does not give us more information, only showing us how
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Figure 6.1. Keystone Lifecycle. 1. Platform Provider configures the SM; 2. Keystone compiles
and generates the SM boot image; 3. Platform provider deploys the SM; 4. Developer writes an
eapp, configures the enclave; 5.Keystone builds the binaries, computes measurements; 6.Untrusted
host binary is deployed to the machine; 7.Host deploys the RT, the eapp, and initiates the en-
clave creation; 8. Remote Verifier can attest based on known platform specifications, keys, and
SM/enclave measurements; (source [3])

it is the role of the Keystone User to generate and somehow send the hash of the enclave to
the Remote Verifier. The lifecycle continues with the deployment of the untrusted host on the
untrusted machine which then has the role of deploying the RT, the app, and initializing the
creation of the enclave. Finally, the Keystone paper mentions the Remote Verifier that can attest
the untrusted machine based on the information received during the previous phases.

The proposed solution wants to expand this scheme presented by Keystone, deepening the
figure of the Remote Verifier. In particular, what we want to propose is a centralized framework
that allows the RA of nodes based on RISC-V and which therefore is not limited to a client-server
claim. The proposed solution is therefore a framework that includes a Registration phase where
it is detailed how the KPP and the Keystone User send the golden values securely to the Remote
Verifier and an Attestation phase where the Remote Verifier can be contacted to attest one or
multiple nodes on which one or more trusted applications have been deployed. The following
chapters will therefore propose a framework that is composed of a Verifier, an Attester, and a
Registrar where the only requirement is that the Attester supports PMP and RISC-V Privileged
Architecture to be able to use the Keystone framework. It is important, however, that the other
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players involved can be based on any other technology (such as x86, RISC-V, or ARM), making
the system cross-platform and integrable with existing solutions.
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Chapter 7

Remote Attestation Framework
Design

7.1 Framework Architecture

Figure 7.1. RA Framework Architecture

Figure 7.1 shows the architecture of the framework, underlining the three main logical entities
that will be described later: Registrar, Attester, and Verifier. The design idea behind this archi-
tecture is to divide the registration functions of a node (supported by the Registrar), the request
and the verification of the attestation report (supported by the Verifier), and the generation of
the report (supported by the Attester). As previously mentioned, one of the design goals was to
create a framework that was not dependent on any particular hardware, other than the Attester
representing a RISC-V-based node. For this reason, the design of the Verifier and Registrar has
been thought of so that the basic hardware can support any type of ISA.

The framework interfaces with the outside world through a set of APIs exposed by the Registrar
and the Verifier. In particular, the API provided by the Registrar is designed to be called by
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Keystone Platform Providers and Keystone Users to start a phase of registration of nodes and
trusted applications. The API exposed by the verifier, on the other hand, can be called from the
outside to start the actual attestation phase of a node. The number of Attesters present within
the framework is dynamic and depends on how many nodes have been registered.

This architecture clearly shows the presence of four communication channels inside the frame-
work, around which the attestation framework revolves. The first represents the registration
phase of a node and its trusted applications and begins when a Keystone Platform Provider or
a Keystone User contacts the registrar through the API. Then, the second communication is ac-
tivated between the Registrar and the Verifier where the golden values received by the Registrar
are transmitted. A third communication is that which occurs by calling the API exposed by the
Verifier to request the attestation of a previously registered node. Following this call, a fourth
communication channel is created between Verifier and Attester in which information is exchanged
to attest the node.

Finally, other fundamental elements within the proposed architecture are the Databases with
their connectors. The databases are necessary for the registration phase to be able to save the
golden values received and in the attestation phase to be able to read the values and save the
result of the attestation. Even if not yet implemented, the connectors, on the other hand, are an
interface that allows Verifier and Registrar to operate and interact with the Database. The idea
behind this design choice is the fact that thanks to the connectors, the framework does not need to
know which technology was used for the databases. This flexibility also makes it possible to make
the project easier and scalable for any future changes so that if the structure or implementation
of the Databases were to change, both the Verifier and the Registrar would not require changes.

7.2 Framework Components

7.2.1 Registrar

The Registrar is the first component that is contacted in the framework. Its purpose is to allow the
registration of a new node in the framework and its related trusted applications. As analyzed in the
previous chapter, Keystone in its documentation does not elaborate on how the Keystone Platform
Providers (KPP) and the Keystone Users (KU) can send the data useful for the attestation to the
Remote Verifier. The Registrar’s design wants to fill that lack of information by defining a way
for how KPPs and KUs can interact with the framework. In particular, the Registrar exposes a
set of APIs, designed to be called by the KPPs, known a priori from the framework, and by the
KU, also known a priori. First, the registrar exposes an API that allows callers external to the
framework to have an updated list of all the KPPs and all the KUs known by the framework.

When a KPP wants to register a node, it can do so through a second API which includes two
phases, one for registering the node and one for accepting it. The first phase includes sending all
the data relating to the node to the Registrar who will contact its database and save the respective
values. To this API, the Registrar responds with a Challenge-Response mechanism to verify the
identity of the caller so as not to allow entities unknown to the framework to register any nodes.
The node acceptance phase, on the other hand, consists of the response to the challenge previously
received by the Registrar and, if the identification of the KPP is successful, the Registrar saves
the result on its database and correctly concludes the registration of a new node, initially without
any trusted application to attest.

As reported by Keystone in its presentation paper [3], it is the KU’s task to send the values
of the trusted applications to the Remote Verifier which will then be deployed on the node. The
framework design wants to analyze this phase by proposing APIs that make this exchange possible.
As in the previous case, the Registrar has APIs that can be called by the KU. In particular, all
the data useful for the attestation relating to the trusted application are sent to the Registrar,
also specifying the identity of the node on which the deployment is made. This first phase of
registration of the trusted application is then followed by an acceptance phase where the registrar
sets up a communication based on a Challenge-Response protocol. If the identification of the KU
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is successful, the registrar saves the correct result of the registration of the trusted application in
the respective database.

The tables and relative columns of the Registrar database are shown below:

• platform providers: it is the table that contains the list of all the Keystone platform
providers that are authorized to register a new node. This table, in addition to an id,
contains the public key of each KPP. This table is already populated before the registration
and attestation phases, and the framework does not modify the table in any way;

• developers: this is the table that contains the list of all the Keystone Users who are enabled
to register a new trusted application. This table, in addition to an id, contains the public
key of each KU. Also, this table, like the previous one, is already populated before the
registration and attestation phases and the framework does not modify the table in any
way;

• nodes: it is the table containing all the nodes for which registration is requested. In partic-
ular, the columns containing within this table are:

– pp id: it is a foreign key deriving from the platform providers table and it is neces-
sary to know which platform provider has requested the registration of the node;

– uuid: it is the universally unique identifier of the node, data used within the framework
to uniquely identify the nodes. Therefore, two nodes with the same uuid cannot exist
within the framework;

– sm hash: it represents the hash value calculated on the keystone SM image, which is
then deployed on the node. This value will then become part of the golden values of
the Verifier;

– dev pub key: it is the public key of the node device. This key is important because it
allows, in the verification phase, to be able to guarantee the origin of the attestation
report;

– ip: it is the address at which the node can be reached for the attestation phase;

– port: it is the port at which the node is reachable for the attestation phase;

– status: it is a field that summarizes the operations carried out by the Registrar and
their outcome;

– timestamp: it is a field containing the log of the date and time when the last operation
on the node was performed;

– challenge:it contains the challenge generated by the Registrar which is verified in the
acceptance phase;

• eapps: it is the table containing all the trusted applications for which registration is re-
quested. In particular, the columns containing within this table are:

– developer id: it is a foreign key deriving from the developers table and it is necessary
to know which developer has requested the registration of the application;

– eapp hash: it represents the hash value calculated on the trusted application image,
which is then deployed on the node. This value will then become part of the golden
values of the Verifier.

– eapp path: it represents the path of the trusted application file on the node’s untrusted
machine;

– node uuid: it is the universally unique identifier of the node, which is used to know
which node the application belongs to;

– ip: it is the address at which the node can be reached for the attestation phase;

– port: it is the port at which the node is reachable for the attestation phase;

– status: it is a field that summarizes the operations carried out by the Registrar and
their outcome;
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– timestamp: it is a field containing the log of the date and time when the last operation
relating to the trusted application was performed;

– challenge:it contains the challenge generated by the Registrar which is verified in the
acceptance phase;

– uuid and hash: it is a field formed by the previous node uuid and eapp hash fields. It
is used to uniquely identify an application: two applications cannot exist on the same
node with the same hash;

7.2.2 Verifier

The Verifier is the center of the attestation framework. He participated in two communications
which will be explained better later. On one hand, it manages communication with the Registrar
to save the golden values of the nodes and their related trusted applications, on the other hand, it
manages the attestation phase where it communicates with the Attester. The registration phase
can be of two types: registration of a node, and registration of an application. In the first case,
the Verifier receives the golden values related to a new node from the Registrar. The Verifier,
after verifying that the node is different from those already active in the framework, contacts its
database to create a new instance of a node, temporarily without any associated application. In
the case of registration of an application, on the other hand, after having received the relative
data, the Verifier checks the presence of the node in the database and verifies that the application
has not already been registered. If these checks are successful, the Verifier saves the values that
will then be used during the attestation phase.

The attestation phase starts when a call arrives from the related Verifier API with informa-
tion on the node to be contacted and its applications. Once the presence of the node and the
applications has been verified in the database, the Verifier starts communication with the node,
requesting the attestation report and generating a nonce to avoid replay attacks. Once the report
is received, the Verifier uses the Keystone SDK [49] to verify the accuracy and integrity of the
report. Finally, the verifier updates the database with the result of the attestation and notifies
the result as a response to the API that triggered the entire attestation phase.

The tables and relative columns of the Verifier database are shown below:

• attesters: it is the table containing the list of all registered nodes and to which the Verifier
can request the attestation report to verify it. In particular, the table contains the following
columns:

– pubkey: it is the public key of the node device and is unique for each attester. This
key will then be used by the Verifier to be able to evaluate the origin of the attestation
report;

– hostname: it is the IP address of the corresponding node. When the verifier starts the
attester phase it will use this field to know at which address to contact the attester;

– port: it is the port of the corresponding node. When the verifier starts the attester
phase it will use this field to know which port to contact the attester;

– status: it is a field that summarizes the operations carried out by the Verifier during
the attestation phase. In particular, this field records the outcome of the connec-
tion with the Attester, without saving any information regarding the outcome of the
attestation;

– timestamp: it is a field containing the log of the date and time when the last operation
relating to the Attestor was performed;

– uuid: it is the universally unique identifier of the node, which is used to identify the
Attestor;

• eapps: it is the table containing the list of all the trusted applications registered in the
framework and of which the Verifier can request an attestation report to verify it. In
particular, this table contains the following columns:
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– path: it is the path of the trusted application file on the file system of the attorney.
When the Verifier requests the attestation report of a specific trusted application it
must specify the path to make it identifiable to the Attestor;

– attester: it is a foreign key deriving from the attesters table and is used to associate
one or more trusted applications to a specific node;

– status: it is a field that summarizes the operations carried out by the Verifier during
the attestation phase. In particular, this field records the result of the attestation phase
for the specific trusted application of the node, saving the validity or invalidity of the
attestation report received;

– timestamp: it is a field containing the log of the date and time when the last operation
relating to the attestation of the trusted application was performed;

– path and attester: it is a joint field of the previous path and attester tables. The
function of this field is to uniquely identify an instance of this table so that no two
trusted applications deployed on the same Attester with the same path can exist.

• gvalues: it is the table that contains all the reference values that the Verifier must use
during the attestation phase. In particular, this table contains the following columns:

– attester: it is a foreign key derived from the attesters table. This field is used to
identify the node to which the table instance values refer;

– eapp: it is a foreign key derived from the eapps table. This field is used to identify
the trusted application to which the table instance values refer;

– enclave hash: it is a field that contains the binary measurement of the respective
trusted application. The Verifier draws on this field to verify the hash of the application
received in the report;

– sm hash: it is a field that contains the binary measurement of the SM deployed on the
respective node. The Verifier draws on this field to verify the hash of the SM received
in the report;

– eapp and attester: it is a joint field of the previous eapp and attester tables. The
function of this field is to uniquely identify an instance of this table so that two golden
values relating to the same application cannot exist on the same node;

7.2.3 Attester

The Attester is the third and final entity of the framework. Unlike the Verifier and Registrar, the
Attester is untrusted and dependent on a specific ISA. It is based on RISC-V and in particular, its
hardware must support the PMP and the privileged architecture of RISC-V. Once these require-
ments are met, the first phase that has been analyzed in the design of the Attester is the boot
phase. Being a framework based on Keystone, the boot phase follows the one proposed by Key-
stone and discussed in the previous chapters. A second fundamental requirement of the Attester
is to have, in addition to RISC-V hardware, an RoT necessary for the first phase of Secure Boot.
The RoT must be a CRTM, the first piece of code that is executed at boot and there must also be
an RTS necessary to safely save the private key of the device that identifies the node. During the
boot phase, in addition to the Secure Boot phase, it is important that the boot code generates
a keypair and saves the private part in the memory space dedicated to the SM. This key pair,
called attestation keypair, is needed by the Attester to generate the report. The Attester will also
send the public part of this key to the Verifier right inside the report. Once the boot phase is
finished, the Attester will have the SM running in M-mode, with a PMP entry that allows it to
have access to all the memory, the OS running in S-mode with access to all the memory except
the region occupied by the MS. In U-mode there will be, instead, all the applications and system
processes managed by the OS. This part of the framework design is heavily dependent on the
Keystone report design which deserves to be described.

Figure 7.2 shows the format of the report that is generated by Keystone and that the Attester
then sends to the Verifier within the framework. As shown, the complete report consists of two
reports, one for the enclave and one for the SM. The report of the SM contains the hash of the
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Figure 7.2. Keystone Attestation Report Structure

SM and the attestation public key, generated during the boot phase, all signed with the device
private key, to guarantee the origin of the report by the node. The enclave report, on the other
hand, contains the hash of the enclave at its initialization and a block of data from the enclave of
a maximum size of 1KB, all signed with the attestation private key, to guarantee the origin of the
report by of the SM. Furthermore, the public key of the device that identifies the node is added
to the report. This report generation operation can only take place inside the enclave because, as
shown in the previous chapters, the SBI exposed by the SM to generate the attestation report is
visible only from the RT and not from the OS.

The design phase of the Attester included an analysis of the current RA model proposed by
Keystone. The results of this analysis showed the need to propose multiple design solutions for
the Attester. In particular, three main versions of the Attester were highlighted:

1. Attester v1 : it is the first version of the Attester and it is the only one that has been
completely implemented. This version started from the RA model of Keystone, which does
not provide a periodic RA, but allows only a single Attestation. In particular, in this version,
the Attestation is performed only once at the launch of the enclave. When the Verifier asks
the Attester v1 for the report, the untrusted host launches the enclave to attest which,
through the Keystone SBI, generates a signed attestation report.

2. Attester v2 : it is an evolution of the previous version and, even if it has not been im-
plemented, in the next chapter an implementation proposal of this version is given. The
Attester v2 design started from the need to have not just a single attestation, but a periodic
attestation. To achieve this goal, it was important to create a communication channel be-
tween the enclave application and the untrusted host. Using this design model, the enclave
is not launched when the Verifier contacts the Attester, but it is already running. When
the Verifier contacts the Attester, the untrusted host asks the enclave for a signed report.
Then, the enclave application exploits the communication channel to send to the host the
requested report.

3. Attester v3 : it is an evolution of the previous version and, even if it has not been im-
plemented, in the next chapter an implementation proposal of this version is given. The
Attester v3 design started changing radically the current Keystone RA model. Currently,
the Keystone SM offers a single SBI to generate the attestation report. This SBI, however,
can be called only by the RT, making it crucial that the host cannot ask for a report of a
specific enclave. This version wants to solve this big limitation and propose a new model.
The new model includes a new SM SBI callable by the untrusted host to get back a signed
report for a specific enclave. This solution solves many problems that the current model
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still have, such as the need to implement both the untrusted host and the enclave, and
the management of the communication between them. This new Attester design, on the
contrary, is sufficient to implement the host, which can manage the attestation phase alone.

7.3 Framework Communications

After describing the components of the framework it is necessary to describe how they commu-
nicate with each other. In particular, four communications will be analyzed, distinguishing them
according to the protagonists:

• Communication between Keystone Platform Provider and Registrar (node acceptance);

• Communication between Keystone User and Registrar (trusted application acceptance);

• Communication between Registrar and Verifier (registration phase);

• Communication between Verifier and Attester (attestation phase);

7.3.1 Node Acceptance

Figure 7.3. Framework node acceptance sequence diagram

Node acceptance begins when a Keystone Platform Provider (KPP) contacts the Registrar via
the exposed APIs. As shown in the sequence diagram shown in Figure 7.3, the communication
begins with the sending of the fundamental data for the future attestation phase. In particular,
it is the responsibility of the KPP to send the following data:
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• The public key of the KPP;

• The hash of the SM that was deployed on the node;

• The Public Key device of the node on which the SM has been deployed;

• The IP address at which the node wants to be contacted;

• The port at which the node wants to be contacted;

• The universally unique identifier needed to uniquely identify the node;

The Registrar, having verified the correctness of the fields received, generates a random chal-
lenge that will be different for each communication of this type. The challenge will then be
asymmetrically encrypted using the public key of the KPP it just received. The key is then sent
back to the KPP which must now send the response. To do this, the Registrar exposes a second
API, where he receives the response to the challenge and verifies that it is correct. If successful,
the Registrar begins the registration phase, described below, otherwise, it closes the connection
with the KPP. All the APIs have been designed to create a TLS communication with the caller.
Furthermore, since a date and time log is present in the Registrar database, it is possible to
configure the framework to set a timer on the challenge to guarantee its freshness.

7.3.2 Trusted Application Acceptance

Figure 7.4. Framework Trusted Application acceptance sequence diagram
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Trusted Application acceptance begins when a Keystone Developer (KD) contacts the Reg-
istrar via the exposed APIs. As shown in the sequence diagram shown in Figure 7.4, the com-
munication begins with the sending of the fundamental data for the future attestation phase. In
particular, it is the responsibility of the KD to send the following data:

• The public key of the KD;

• The hash of the trusted application that was deployed on the node;

• The path of the trusted application that was deployed on the node;

• The universally unique identifier of the node needed to uniquely identify the node;

The Registrar, having verified the correctness of the fields received, generates a random chal-
lenge that will be different for each communication of this type. The challenge will then be
asymmetrically encrypted using the public key of the KD it just received. The key is then sent
back to the KD which must now send the response. To do this, the Registrar exposes a second
API, where he receives the response to the challenge and verifies that it is correct. If successful,
the Registrar begins the registration phase, described below, otherwise, it closes the connection
with the KD. All the APIs have been designed to create a TLS communication with the caller.
Furthermore, since a date and time log is present in the Registrar database, it is possible to
configure the framework to set a timer on the challenge to guarantee its freshness.

7.3.3 Registration Phase

The registration phase, shown in Figure 7.5 begins in case of a positive outcome of the two
previous communications just described. This phase includes two phases that are very similar to
each other and have the same goal: to send the golden values to the Verifier. In one case this
phase can take place after node acceptance and the values that are sent to the Verifier are:

• Device Public Key;

• IP address;

• Port;

• Universal unique identifier;

• SM hash;

In the second case this communication can take place after a trusted application acceptance
and in this case, the values sent to the verifier are the following:

• Trusted application hash;

• Trusted application path;

• Node Universal unique identifier;

In both cases, the communication is very simple and includes only a sending of the data from
the Registrar and the response of the Verifier which will contain the outcome of the operations.
What is fundamental about this communication is the safety it includes. In fact, in a real scenario,
the Verifier has no way of knowing if the registration request for a node or a trusted application
comes from a known Registrar. For this reason, the design phase included a study of a solution
to guarantee the identity of the Registrar to the Verifier and vice versa. The final choice was
to expose APIs by the Verifier that required a TLS protocol set with the obligation of client
and server authentication. This type of choice requires that the Registrar (client) at the time
of the API call must present its certificate to the Verifier (server) and will wait for the Verifier
certificate. Once the certificate of the other is received, an external Certificate Authority (CA) will
be contacted to verify them. This design choice allows for mutual authentication and guarantees
both Registrar and Verifier their mutual identity, preventing anyone who does not have a valid
certificate from calling the APIs exposed by the Verifier.
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Figure 7.5. Framework Registration phase sequence diagram

7.3.4 Attestation Phase

The attestation phase, shown in Figure 7.6, begins when a user external to the framework contacts
the Verifier via the exposed APIs. In this case, the APIs were not designed to require certificate-
based authentication, but the Verifier will accept all requests. Once contacted, the Verifier con-
tacts the Attester and begins the focus of the attestation. The design phase highlighted how the
Verifier’s management of all possible authentication requests that can arrive simultaneously needs
to be deepened. In particular, a solution that has not been formalized, but which wants to be a
proposal for a future extension of the framework, is to create queues managed by the Verifier that
manages all incoming attestation requests. In this way, one could easily steer the Verifier design
towards a multithreading process where each different thread takes care of a queue request and
its attestation. However, as the thesis work including design and implementation did not include
sufficient focus to formalize this redesign, this proposal is not included in either the actual design
or the implementation.

Once the information necessary to contact the Attester has been received, the Verifier connects
with a TLS communication with mutual authentication as in the previous communication. In
this way, both the Attester and the Verifier can be sure of the identity of the other. In the
communication, the Attester sends the following information to the Verifier:

• The path of the trusted application that you want to certify;

• A newly generated nonce;
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Figure 7.6. Framework Attestation phase sequence diagram

The presence of the nonce was a design choice in line with the proposed definitions of RA. Its
function is to avoid replay attacks. Once data is received and the request to produce an attestation
report, thanks to the SBI exposed by the SM, the Attester can send back an attestation report
signed directly by the SM. At this point, the Verifier verifies the report.

Verifying the report includes three main steps. First, the Verifier extracts the Device Public
Key from the report and contacts the Verifier Database to verify that it is present among the
accepted and registered nodes. If the result is negative, the attestation phase stops immediately,
closing the connection with the Attester and sending the failure as a response to the API. If,
on the other hand, the result is positive, the Verifier contacts its database to extract the golden
values relating to the application of the node. Finally, the last step is to validate the report, using
the Keystone SDKs, the implementation of which is explained in the next chapter. In particular,
what you want to validate from the report is:

1. The correctness of the hash of the SM received in the SM report;

2. The correctness of the hash of the enclave received in the enclave report;

3. The validity of the signatures of the SM report and the enclave report;

4. The validity of the nonce received in the data section of the enclave report which must be
the same sent by the Verifier;

In particular, step 3 is very important to ensure the correct origin of the attestation report.
By verifying the signature of the SM report, we guarantee that the source of the report is exactly
the node that contains the correct Device Private Key. By verifying the signature of the report
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enclave, on the other hand, we guarantee that the source of the report is exactly the SM that has
been deployed on the node.
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Chapter 8

Remote Attestation Framework
Implementation

The following chapter aims to describe the implementation of the design described above. As
seen in the previous chapters, the Remote Attestation Framework for ISA RISC-V-based nodes
consists of three entities: Verifier, Registrar, and Attester. This chapter will first describe the
general implementation choices that have been applied in general to the whole project and then
focus on the description of each component.

8.1 Implementation Choices

The main implementation choices revolve around the entity of the Attester which is the only
component bound by technology. In particular, since the Attester is based on an ISA RISC-V
and made up of hardware with guaranteed support to the PMP and the Privileged Architecture
of RISC-V, it was necessary to think of an implementation that was consistent with these require-
ments. The starting point, therefore, was a demo presented in the official repository of Keystone
Enclave [50] with minimal documentation on a possible implementation of the Attester. This
project, mainly developed in C++, meant that the choice of language also fell for the Framework
itself. One of the reasons why Keystone was born is to be able to create a community where
developers who use Keystone can help each other. The choice of keeping the same language and
starting from a project already developed by Keystone has allowed us to become part of this com-
munity by having the opportunity to compare the problems encountered with those of other users,
through forums and Q&A. The choice of language was then also adapted to the other components,
the Registrar and the Verifier, also written mainly in C++. The only implementation files that
are written in another language are those containing the APIs manager code of the Verifier and
Registrar which will be described later.

A second reason why Keystone was born is the possibility of guaranteeing a completely open-
source framework. Similarly, the technology on which Keystone relies, namely RISC-V, was
born with the same declared goal, that of being open source. For this reason, an obligatory
implementation choice was to exploit these technologies while maintaining the framework proposed
in this paper as open source. All the libraries, which will be discussed later, have therefore been
chosen according to this principle of complete availability and open source code. Furthermore,
being Keystone’s goal to create a community that can document the proper work and interacts in
case of errors or problems, we wanted to embrace this philosophy by trying to create a framework
that was well documented. For this reason, one of the choices that were made on libraries was
that of choosing well-known, well-documented libraries, of which it is possible to find a lot of
material online.
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8.1.1 APIs Manager Implementation

As previously mentioned, the implementation of the Registrar and Verifier manager API was done
in Python. The decision to break away from C++ in this case is due to the greater ease of writing
the API code in Python and the greater online documentation. For this reason, if you wanted
to add one or more APIs in the future, it would be very convenient and easy to write based
on Python. Similarly, if in the future you wanted to add some kind of functionality to the API
manager (such as asynchronous request handling) it would be easier to read and modify the code in
Python, thanks to the better readability and simplicity of the supported libraries. In particular,
the library that has been exploited to implement the API manager is Flask [51], considered a
“micro-framework” because it has a simple but extensible core. The choice of this library, in
addition to its simplicity, is due to the ease with which it can be extended by implementing new
features. Figure 8.1 shows how easy it is to create a web service using Flask.

Figure 8.1. Flask Example

However, it is important to clarify that only the manager API is in Python, while the actual
implementations of the Registrar and Verifier APIs are in C++. This programming language
difference has led to a communication problem between the API manager and the API code. The
solution to this problem was found in a Python library called pybind [52]. This library allows you
to create a bridge between a C++ code and a Python code allowing one to call the functions of
the other ensuring to have a readable return value, even if custom. The snippet code in Figure
8.2 shows how this library was used together with its extension, pybind11 json [53], which allows
you to bind a C++ JSON object to a Python JSON object and vice versa.

As the snippet code shows, first we need to use the pybind library in the C++ file, defining one
or more methods to expose. In the Python file shown in Figure 8.3, after that, it will be sufficient
to import an object with the same name as the C++ file that will be exploited to invoke the
methods exposed. Obviously, before you can run the program in Python you must first compile
the C++ file which will generate a shared library with extension dependent on the compiler used.

8.1.2 Database Implementation

As discussed in the previous chapters, there are two databases within the framework, one for the
Registrar useful during the registration and acceptance phase of a node or a trusted application,
and one for the Verifier useful for saving the golden values. As mentioned in the previous chapter
of the design, the general architecture of the framework does not include database connectors for
now, but it is an excellent proposal for the design and future implementation. For this reason, the
implementation of databases in their current state is considered temporary and deserves future
work implementing a new version. In particular, since data storage is not the main focus of the
framework and the thesis project, the implementation line adopted was to keep the databases and
the interaction code with them as simple as possible. In this way, any future work of modifying
the design or implementation of the databases will be easy and should not require too many
modifications.
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Figure 8.2. C++ Pybind Code Example

Figure 8.3. Python Pybind code Example

Given the announced changes, and the need to have a simple but secure database, the choice
of implementation fell on SQLite [54], a small, fast, self-contained, high-reliability, full-featured,
SQL database engine. Moreover, being, according to the documentation, the most used database
engine in the world, the documentation about it is vast and allows simple development, and is
aided by a large community. The future implementation that follows is to add connectors to the
database that allow the Registrar or Verifier to interact without knowing the technology used to
implement the database. Once this additional layer is created, the database technology can be
SQL or NoSQL depending on the type of use. In particular, we recommend the implementation
technologies of PostgreSQL for relational databases which can be very useful in this context since
it offers the JSON type, widely used within the framework and MongoDB for NoSQL databases
for its performances and because it is well documented.

8.1.3 Communications Implementation

An important part of the framework is the communication between the different entities. In
particular, the framework can communicate externally both through the APIs exposed by the
Registrar and by the APIs exposed by the Verifier. Furthermore, within the Registrar framework,
Verifier and Attester have a communication channel available which they use to communicate.
For this reason, it is important to evaluate how to implement these communication channels
so that the security of the framework is guaranteed. In general, all communications have been
implemented using a TLS version 1.2 channel which requires suitable certificates. In the case
of communication within the framework (i.e. between Registrar and Verifier or between Verifier
and Attester) TLS is used to guarantee mutual authentication, verifying the client and server
certificate. For this reason, the OpenSSl library [55] was used for the implementation to generate
the required certificates. In particular, a CA certificate was generated, which was then used for
the certificates of all the components of the framework.
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Two main libraries were used for the TLS connection: the Python SSL library, used for the
Registrar and Verifier API, and the wolfSSL library [56] for communication between the Attester
and Registrar. The reason for choosing wolfSSL is that the Attester does not expose APIs, but
has been implemented as a stand-alone application that waits for a connection from the Verifier.
This choice, which will be better described later, stems from the idea of not making the Attester
too complex to make it easy to deploy on a RISC-V node. Choosing to add APIs in Python with
the related libraries would have made the compilation and subsequent deployment on a physical
node or virtual machine more complex. The compilation of the Attester has always been done
using a RISC-V C and C++ compiler [57] which required different studies that anticipated the
actual implementation. Including Python in this type of compilation would have been not easy
and would have taken time away from studying the functionalities of the framework, the real focus
of the thesis work.

For the above APIs, implemented by the Registrar and the Verifier, the data exchanged are
in JSON format. To handle this type of data structure quickly and easily, it was decided to take
advantage of the nlohman C++ library [58] which allows you to create, read and modify JSON
quickly without writing extra code. The replies to the APIs, of course, are also in JSON format.
However, although the possible errors during a call to an API are multiple, we have chosen to
summarize the responses to the calls to only two outcomes: success or error. In the first case,
the JSON that will be returned will contain the status code set to 200 and the response body
will contain the response to the API. In the case of any other type of error during the execution
of the APIs code, the response JSON will contain status code 500 and the response body will
contain an error that communicates an “Internal Server Error”. The choice not to give too much
information about the error that occurred is that of not wanting to share information outside the
framework so as not to allow the information to be analyzed for a malicious purpose. Figure 8.4
shows the creation of the described JSON possible responses using the nlohman C++ library.

Figure 8.4. C++ nlohmann Code Example

Finally, the communication between Attester and Verifier is not an API, but a socket on which
a TLS tunnel is created, the information exchanged is not in JSON format, but is read by both as a
stream of bytes. This choice was made because in this particular case of communication the steps
to follow for the attestation are well-defined and therefore it is well-known which data must be
exchanged and in what order. Furthermore, the information exchanged during this communication
are not numerous and therefore a data structure that is too complex is not necessary.

8.2 Components Implementation

The following section will describe the implementation of each component of the Framework. In
particular, the implementation choices behind the APIs exposed by the Verifier and the Registrar
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will be described. For the Attester that does not expose any API, the implementation steps will
be retraced, focusing on the most important and useful functions for the attestation.

8.2.1 Registrar

The structure of the Registrar project is shown below:

registrar

db

registrar.db

extern

pybind11

pybind11 json binding

Makefile

registrar/api.py

registrar.cpp

openssl op.cpp/.hpp

pp api.cpp/.hpp

developer api.cpp/.hpp

As you can see, the project is divided into two folders, nine implementation files, and a
Makefile. The db folder contains only the database file in SQLite format. As already mentioned,
the implementation of the database requires a future focus that this thesis has not covered. In
fact, in a future scenario, in addition to the presence of database connectors, it is conceivable
that the database is not located on the same physical machine as the Registrar, but that it can
be contacted remotely. Since the focus of the thesis is attestation, it was decided to keep the
structure of the Registrar simple to have a single file containing the databases locally. The second
folder, extern, contains the external libraries used by Python. In particular, the two libraries
present, already described previously, are useful for creating a binding between the Python file
and the implementations in C++. The Makefile present in the project structure contains the
instructions for compiling all the Registrar’s C++ files. This version of the file is editable and
can be overwritten in case the compiler is different from the one used. Moving on to the actual
implementation files, the registrar api.py file is the file that exposes the APIs supported by the
Registrar. In particular, the APIs are the following:

• /platform providers: is an API implemented only with a GET request. Its function is to
contact the database and return all the platform providers present within the database and
known a priori by the framework;

• /developers: is an API implemented only with a GET request. Its function is to contact
the database and return all the developers present in the database and known a priori by
the framework;

• /provider register: is an API implemented only with a POST request.

Once the JSON Request Body has been received, the API will call the register node

function implemented in the C++ files to save the received values and respond with a
challenge.

• /provider accept: is an API implemented only with a POST request. In particular, the
correct request body for a correct call must be a JSON containing only the field named
“challenge”. Once the JSON has been received, the API will call the accept node function
implemented in the C++ files to verify the challenge and eventually contact the Verifier;

• /developer register: is an API implemented only with a POST request.

Once the JSON has been received, the API will call the register eapp function imple-
mented in the C++ files to save the received values and respond with a challenge.
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• /developer accept: is an API implemented only with a POST request. In particular, the
correct request body for a correct call must be a JSON containing only the field named
“challenge”. Once the JSON has been received, the API will call the accept eapp function
implemented in the C++ files to verify the challenge and possibly contact the Verifier;

The remaining C++ files are divided according to the features offered. Firstly the
registrar.cpp file is the file that exposes all the .cpp functions and thanks to the binding library
show them to the Python file. Then, the pp api.cpp files with the relative header file and the
developer api.cpp file with the relative header file contain the implementations of the APIs
relating to the Keystone Platform Provider and the Keystone Developer respectively. Finally, the
openssl op.cpp file and its header contain the implementation of some cryptographic functions
exploited by the other files. In particular, as the name suggests, we have chosen to implement
these functions based on the OpenSSL library [55] as it is simple, well-documented, and open
source.

The only implementation particularities of the proposed APIs revolve around the generation
and encryption of the challenge by the Registrar and the communication between the Registrar and
Verifier. As for the challenge, the OpenSSL library has been exploited to use the RAND bytes()

function to generate random bytes. Then, the challenge is encoded with Base64 using the BIO

data structure exposed by OpenSSL. The need for this last operation arises from the need to
have a challenge with printable characters to be able to integrate it into the JSON and to be
able to save it on the database. To verify the correctness of the challenge, it is necessary to
asymmetrically encrypt the challenge received with the caller’s public key. This was done using
OpenSSL’s RSA public encrypt() function, which was followed by encoding with Base64.For the
communication between Verifier and Registrar, on the other hand, the C++ libcurl library [59]
has been used, which allows you to make API calls by specifying all the communication options. In
particular, with the curl easy setopt() function, it was possible to specify the type of protocol,
the method of the HTTPS request, the URL to contact, the format of the certificate, the file
containing the Registrar’s certificate and the API Request Body.

8.2.2 Verifier

The structure of the Verifier project is shown below:

verifier

db

gvalues.db

extern

pybind11

pybind11 json binding

Makefile

verifier/api.py

verifier.cpp

registration.cpp/.hpp

attestation.cpp/.hpp

trusted verifier.cpp/.hpp

As shown by the project tree, the Verifier is divided into two folders, a Makefile, and nine
implementation files. The structure is very similar to the previous Registrar but offers different
functionalities. As in the case of the Registrar, also in this project, the extern folder contains all
the external libraries used by python to be able to create the binding with the functions in C++.
The db folder, on the other hand, contains the SQLite file of the database whose structure has
been explained in the previous chapters As for the Registrar, also, in this case, it is conceivable
in a real case that the Verifier database is not saved locally, but that it is reached remotely. The
Makefile contains all the compile options of the .cpp files that contain the API implementations.
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The verifier api.py file is a file containing the definition of the APIs exposed by the Verifier
which are:

• /node register: is an API implemented only with the POST method. Its function is to
start the registration phase of a node. In particular, when this API is called by the Registrar,
after verifying the certificates, the Verifier saves all the values relating to the node to be
registered.

• /eapp register: is an API implemented only with the POST method. Its function is to
start the registration phase of a Trusted Application. In particular, when this API is called
by the Registrar, after verifying the certificates, the Verifier saves all the values relating to
the application to be registered.

• /attest node?uuid=data: is an API implemented only with the GET method. Its function
is to start the attestation phase of a node. In particular, when this API is called from the
outside, the Verifier uses the UUID of the node received via URL to access the database
and obtain the IP address and port of the node to be contacted. Once contacted via socket,
the Verifier opens a TLS connection and asks the Attester to respond with a report of each
node’s trusted applications.

All remaining implementation files are divided according to their functionality. In particular,
verifier.cpp contains the exposure of the modules using the pybind library and in turn calls
the other .cpp files for the actual implementation of the API. The registration.cpp file and
its header contain all the functions useful for the implementation of the first two APIs described,
relating to the registration of a node or a Trusted Application. The attestation.cpp file and its
header, on the other hand, implement the API related to the attestation of a node or a Trusted
Application. Finally, the trusted verifier.cpp file and its header contain the code useful for
communication between Attester and Verifier once the attestation phase has begun.

In particular, a fundamental role of the Verifier after receiving the report is to verify it. To do
this, the Keystone SDK were used and in particular, the Report::verify() method was used.
Figure 8.5 shows the code for this method. As you can see, the verification of the Report follows
three phases.

Figure 8.5. Keystone SDK Report validation implementation

First, the hash of the enclave is validated, using the memcpm() function which compares two
memory regions. The second step is the validation of the hash of the SM with the same method.
Finally, the checkSignaturesOnly() function is used to verify that the report signatures are
valid. This function, shown in Figure 8.6, uses the ed25519 verify() function which uses the
EdDSA algorithm to verify the signatures present in both the enclave report and the SM report.
The Verifier implementation had to add two phases to these functions to avoid possible replay
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attacks. The first is generating and sending a fresh nonce. The second is the verification of the
same nonce that is received by the Verifier as a block of data within the report enclave.

Figure 8.6. Keystone SDK Signatures validation implementation

8.2.3 Attester

The Attester is the last component of the framework. As already discussed, this component is
the only one to be technology dependent, having hardware with support to RISC-V ISA. The
implementation of the Attester started from the Keystone SDK and from the RA model that
Keystone described in the presentation paper [3]. However, the model proposed by Keystone is
not perfect and, as described in the design chapter, it has several weaknesses. For that reason,
the proposed implementation of the Attester is not a single one. Will be presented three versions
of the Attester, describing their purpose and their limitations. Even with three different Attester
implementations, the structure of the Attester during the boot phase is the same. For that reason,
it will be presented the boot phase implementation, including a Secure Boot phase and a hash
calculation phase.

Boot Phase

As already discussed in the Keystone chapter, when an untrusted machine based on Keystone
is booted several steps must be followed. In particular, the boot phase starts from an RoT, the
CRTM which contains the first portion of code to be executed. In the presented thesis work,
the CRTM was implemented by modifying the bootloader.c file, offered by Keystone. In a real
situation, this part of the code should be executed from tamper-proof hardware which represents
the starting point of a Chain of Trust during the boot phase. This file was implemented to support
two important steps. Firstly, the secure boot was implemented, which guarantees the correctness
of the SM binary code that will be executed. Then, if the hash of the SM binary is the same as
expected, the bootloader has to save several secret data into the SM memory, signing them with
a secret known only by the SM.

Figure 8.7 shows how Secure Boot was implemented on the Attester node by editing Keystone’s
bootloader.c file. As shown in the code, the basic startup operations are different. First, the
functions sha3 init(), sha3 update(), and sha3 final() are used to calculate the hash of
the SM. It is important to note how the hash is calculated starting from the DRAM memory base
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(DRAM BASE) and how the size of the SM (sanctum sm size) is known a priori. These choices
coincide with the theory explained in the previous chapters, with the SM occupying the first part
of available memory. The second phase is the actual implementation of Secure boot, where the
expected value of the SM hash is read and compared byte by byte. In a real situation, this phase
must be implemented using an RoT, in particular an RTS where to safely save the expected hash
of the SM and the private key of the device and extract its value during the Boot phase. In case
the reference value and the calculated value do not coincide, the stop boot() function is called
which blocks the node from starting.

If, on the other hand, the two values match, we are sure that the expected SM will be loaded in
memory and the start-up phase can proceed. Then the hash value calculated as a seed is exploited
to generate an asymmetric key pair. In particular, part of the hash is combined with the private
key of the device and with random values calculated during the boot phase to generate two SM
attestation keys that are always different at each boot. The hash of the SM and the private
attestation key just generated are then encrypted with the private key of the device, accessible
only by the SM, and saved in the memory area intended for the SM. Moreover, a real platform
must provide a high-quality entropy source available in hardware. Platforms that do not provide
such a source must gather their own entropy.

Attester v1

The first version of the Attester started from the Keystone-proposed RA model. This model is
heavily bound to the SBI offered by the Keystone SM and how the SM is implemented. As already
shown, after the boot phase on a machine using Keystone, the SM is executed in M-mode and the
OS and the untrusted host are executed with lower privileges. Once the untrusted host wants to
execute a new enclave, it can ask through an SBI for the creation of it at the SM. Once executed,
the Keystone application is divided into an untrusted host, and a trusted application, including
an enclave application and RT. According to the current implementation of the Keystone SM,
when the Verifier contacts the Attester, it communicates with the untrusted host which cannot
ask the SM for a signed attestation report. The attestation SBI, in fact, is callable only from
the RT, making mandatory a communication channel between the untrusted host and the enclave
application. This communication, however, is not completely supplied by Keystone. According
to the documentation, is it possible to communicate easily from the enclave app to the host, but
is not given easy communication on the other side, from the host to the enclave app.

All those implementation choices of Keystone made the need to create a first version that was
based on a simple principle: the first version does not need a communication channel from the
host to the enclave, since it is unavailable in Keystone. However, the only way to receive a signed
attestation report from the SM is by calling the SBI attest, which is available only from the RT.
Thus, communication between the host and the enclave must be present. The solution adopted
in the first version of the Attester is the solution proposed by the Keystone mode, based on 4
main steps. Firstly, the Attester is booted by implementing the Secure Boot, then the verifier
contacts the host asking for a signed report. During the third step, the untrusted host initializes
and launches the enclave which is implemented so that at the launch it can send the report to
the untrusted host.

This first version of the Attester represents a good starting point but has several weaknesses
to be fixed. First of all, this version provides the attestation only at the beginning of the life
cycle of an enclave. Thus, this version is not a good proposal in a real-case scenario, where
the enclaves are not launched when the attestation occurs, but they are already running on the
machine. Despite the impossibility to attest the enclave during its lifecycle, the Keystone RA
model is considered secure due to the PMP. Thanks to the PMP offered by RISC-V, Keystone
can assume that the code of the enclave cannot be changed during its entire lifecycle. This strong
assumption opens several discussions over the security of PMP but allows starting from a model
in which the attestation is done only once when the lifecycle of the enclave begins.
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Figure 8.7. bootlader.c Secure Boot implementation

Attester v2

Even if this second version of the Attester has not been implemented, the final work included
planning a possible solution for the Attester v2 design, proposed in the previous chapter, and
implementation, here discussed. This version started to solve the weaknesses of the previous
version. In particular, with this version is possible to have a periodic attestation, since the
report is not available only at the enclave launch, but during its lifecycle. The first big change
to the previous version is that the enclave is already running on the Attester machine when the
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attestation phase starts. To achieve this feature, the proposed solution includes an untrusted host
based on multithreading. In particular, every launch of a new enclave is done by the host exploiting
a new thread so that the host can still wait for a Verifier request. Once the Verifier asks for the
attestation report of a particular enclave running on the node, the Attester opens a communication
with the specific enclave. This communication channel is not currently available on Keystone
which, in its documentation, proposes a workaround that includes continuous polling from the
enclave to the host checking for new messages. However, this solution is clearly inefficient, since
it stops the enclave execution by waiting for a host message. Thus, the proposed implementation
is based on multithreading enclaves which, when executed, launch a thread waiting for host
messages.

The weaknesses of this type of solution are still several such as the complexity of having
two multithreading implementations on the same machine, and the need to change the RT. The
current RT used, Eyrie, does not support multithreading making it impossible to use different
threads on a single enclave. The simplest solution to that problem is to use a different RT, such
as sel4 [43], which supports multithreading.

Attester v3

Even if this third version of the Attester has not been implemented, the final work included
planning a possible solution for the Attester v3 design, proposed in the previous chapter, and
implementation, here discussed. This version started to make the Attester much more suitable
for a real-case scenario, simplifying the structure of the Attester itself. However, to achieve this
goal, this model required a complete revision of the current Keystone RA model. The idea of this
version is based on the concept of making the host the main figure of the attestation phase. As
in the previous version, the starting scenario includes an untrusted host which launched different
enclaves on different threads. In this case, however, the Keystone SM was modified to offer a new
SBI call. The proposed implementation of this SBI is callable directly from the untrusted host to
the Keystone SM. The untrusted host must use this SBI specifying an identifier of the enclave to
attest (which is not available in the current version of Keystone) to receive an attestation report
of the enclave directly from the SM. This version also includes a new way of calculating and
generating the attestation report by the SM. In the current version of Keystone, the hash of each
enclave is calculated and finalized only at its launch. In this proposed version, the SM calculates
the hash of the enclave at runtime by measuring all the read-only pages present in the memory
portion of the enclave.

Figure 8.8 shows the six steps of the Attester v3 when it is contacted by the Verifier:

1. the Verifier asks for an attestation report to the untrusted host specifying the path of the
eapp to attest;

2. the untrusted host translates the received path with identification data;

3. the untrusted host contacts the SM through an SBI specifying the identification data and
asking for a freshly generated report;

4. the SM measures all the read-only pages in the memory region of the specified enclave and
generates a signed report;

5. the SM sends the generated report to the untrusted host as a response to the SBI call;

6. the host sends the received report to the Verifier as a response to the attestation request.

This solution simplifies the structure of the Attester and avoids the use of multithreading in
the enclave implementation, allowing to use of the Eyrie RT. Furthermore, having the possibility
of generating the report at runtime and not only at the launch of the enclave, it is also possi-
ble to think of a periodic attestation scenario. On the other side, this solution includes a code
modification of the Keystone SM, which has been formally verified and tested to guarantee en-
clave isolation, and framework security. For that reason, if this proposed implementation will be
followed, it will be mandatory to perform security tests and verifications before it can be used.
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Figure 8.8. Attester v3 operations after an attestation report request from the Verifier
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Chapter 9

Test and Validation

The final work of the thesis is now presented. This chapter aims to present and discuss the
test performed on the proposed solution. In particular, the tests are divided into two types:
functional tests, to validate the behavior of the proposed solution, and performance tests to
evaluate it depending on time.

9.1 Testbed

The whole framework was tested including the registration phases and the attestation phase. To
complete these tests was then necessary to have three different machines to execute the Verifier,
the Attester, and the Registrar. In the case of the Attester, in particular, the required hardware
must support RISC-V. The three machines are:

• The Verifier Machine: it is an ASUS VivoBook Pro equipped with an Intel Core i7-7700HQ
processor, 16 GB of RAM, and the used OS is Ubuntu 20.04.4 LTS on 64-bit. This machine
runs the Verifier code, including the external libraries and the Keystone SDK which are
installed on the system.

• The Registrar Machine: it is an ASUS VivoBook Pro equipped with an Intel Core i7-7700HQ
processor, 16 GB of RAM, and the used OS is Ubuntu 20.04.4 LTS on 64-bit. This machine
runs the Registrar code, including the external libraries, but it is the only component that
does not require the Keystone SDK.

• The Attester Machine: it is a virtual machine built thanks to qemu [60], to emulate processor,
and peripherals, KVM [61], to accelerate it, and libvirt [62] which allows manipulating the
current Virtual Machine. Figure 9.1 shows the XML libvirt configuration of the Attester
VM. As the XML code shows, the <type> tag has an architecture of type riscv64, the
<loader>, which specifies the bootloader, uses the path of the bootrom file of Keystone,
modified to support secure boot. The <nvram>, the <kernel>, and the <emulator> tags
point to the Keystone SDK to use a specific patched version of qemu.

9.2 Functional tests

The proposed functional tests include a validation of the behavior of the framework phases pro-
posed in the implementation chapter. In particular, the current tests want to validate four sce-
narios:

1. node registration: an external Keystone Platform Provider asks the Registrar through the
exposed API for the registration of a node. Then, the Registrar sends the values to the
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Figure 9.1. libvirt XML configuration file for the Attester machine

Verifier. This test is considered passed if at the end of these operations the Verifier DB
contains the correct node values.

2. eapp registration: an external Keystone developer asks the Registrar through the exposed
API for the registration of a trusted application. This test is considered passed if at the end
of these operations the Verifier DB contains the correct eapp values.

3. valid node attestation: an external framework user asks the Verifer through the exposed
API for the attestation of a valid registered node. This test is considered passed if at the
end of these operations the Verifier DB contains the “VALID” status to the current node.

4. invalid node attestation: an external framework user asks the Verifer through the exposed
API for the attestation of an invalid registered node. This test is considered passed if at
the end of these operations the Verifier DB contains the “INVALID” status to the current
node.

9.2.1 Node Registration

The node registration starts from an external Keystone Platform Provider that, through the API,
contacts the Registrar specifying the required data. The test has been performed calling the
POST /provider register with the body request shown in Figure 9.2.

Figure 9.2. JSON Request body of /provider register POST API
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The registrar correctly replies to the POST API through the response body, sending a challenge
back to the Keystone Platform Provider. The challenge is a nonce signed with the public key of
the Keystone Platform Provider, so it must be solved before sending back the response to the
Registrar. To solve the challenge, openssl has been used to decode the challenge from Base64
format, then to decrypt it with the private key, and finally, encode the result in Base64 format.
Another proof of the correctness of the behavior of the called API is given by the database of the
Registrar, which now contains all the received information about the node, and the status field
set to “not active”.

Once sent the request body with the solved challenge the Keystone Platform Provider receives
the response body with the correct outcome of the operation, shown in Figure 9.3.

Figure 9.3. JSON Response body of /provider accept POST API

Finally, to consider this test completely passed, the Registrar and Verifier database must have
registered the changes. The nodes table in Registrar database, represented in Figure 9.4, shows
that the new node has the correct values and correct status, meaning that the node has been
correctly registered and accepted. The Verifier database confirms that the new attester has been
inserted with the correct values, and correct status, meaning that the registrar has correctly
forwarded the golden values.

Figure 9.4. nodes table in Registrar database in JSON format after the test

9.2.2 Eapp Registration

The node registration starts from an external Keystone Developer that, through the API, con-
tacts the Registrar specifying the required data. The test has been performed calling the POST
/developer register with the body request shown in Figure 9.5.

The registrar correctly replies to the POST API through the response body, sending a challenge
back to the Keystone Developer. The challenge is a nonce signed with the public key of the
Keystone Developer, so it must be solved before sending back the response to the Registrar. To
solve the challenge, openssl has been used to decode the challenge from Base64 format, then to
decrypt it with the private key, and finally, encode the result in Base64 format. Another proof of
the correctness of the behavior of the called API is given by the database of the Registrar, which
now contains all the received information about the node, and the status field set to “not active”.
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Figure 9.5. JSON Request body of /developer register POST API

Once sent the request body with the solved challenge the Keystone Developer receives the
response body with the correct outcome of the operation, shown in Figure 9.6.

Figure 9.6. JSON Response body of /developer accept POST API

Finally, to consider this test completely passed, the Registrar and Verifier database must have
registered the changes. The eapps table in Registrar database, represented in Figure 9.7, shows
that the new eapp has the correct values and correct status, meaning that the eapp has been
correctly registered and accepted. The Verifier database confirms that the new eapp has been
inserted with the correct values, and correct status, meaning that the registrar has correctly
forwarded the golden values.

9.2.3 Valid Node Attestation

The next step is to test and validate the behavior of the Attestation phase. Differently from the
previous tests, this phase involves the Verifier and the Attester. To perform the test of a valid node,
the golden values registered in the previous tests were used. The Attester VM, based on a RISC-V
ISA has been started and, since the boot phase is not interrupted, the SM code is correct and valid.
Once booted, the compiled file has been launched, waiting for an attestation request from the
Verifier. To trigger this request, the GET API attest node has been used, specifying in the URL
the UUID of the node, which, in the test case is 4dc7a180-36a9-4b22-a6c9-87a8cd29de4d. For
testing purposes, the attestation report coming from the Attester to the Verifier has been printed
to validate its structure and it is shown in Figure 9.8.

To consider this test completely passed, we have to check two major things. Firstly, the API
response body should contain an outcome of the attestation operations, and then the Verifier
database should have saved the status changes with the correct timestamp. Figure 9.9 and Figure
9.10 show the results of the attestation operations of a valid node.

As shown, the API response is valid and has the correct message, and the Verifier database
has correctly registered the eapp as valid, updating the timestamp. Finally, the Verifier database
has also updated the Attester status, communicating that the Verifier was able to set up a TLS
communication with the Attester.

9.2.4 Invalid Node Attestation

Finally, the last test wants to validate the behavior of the framework when an attestation of an
invalid node is performed. A node inside the framework is considered invalid in two different
cases: when the hash of the SM is different from the one saved, and when the enclave hash is
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Figure 9.7. eapps table in Registrar database in JSON format after the test

Figure 9.8. Attestation report received by the Attester

different from the one saved. For the first case, the invalidity of the node should be highlighted
from the boot phase of the invalid node. Thanks to the Secure Boot, a node with an invalid SM
should not be able to boot. To test this first invalidity, the code of the SM has been modified,
compiled, and deployed on the node, without modifying the Secure Boot code. The result of the
operations is working as expected: at the boot phase, the Attester is stuck, and cannot finish the
boot phase.

To test the enclave hash invalidity, the attest node GET API must be called, after setting
up the test. To invalidate an eapp of the node the enclave code has been modified, compiled, and
deployed to the Attester after the registration of the eapp. To consider this test completely passed,
we have to check two major things. Firstly, the API response body should contain an outcome of
the attestation operations, and then the Verifier database should have saved the status changes
with the correct timestamp. Figure 9.11 and Figure 9.12 show the results of the attestation
operations of an invalid node.

As shown, the API response is not valid and has the correct message, and the Verifier database
has correctly registered the eapp as invalid, updating the timestamp. Finally, the Verifier database
has also updated the Attester status, communicating that the Verifier was able to set up a TLS
communication with the Attester.
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Figure 9.9. node attest API response for a valid node

Figure 9.10. Verifier database after the attestation of a valid node

9.3 Performance tests

The performance test here discussed has been performed over the three entities of the framework.
In particular, for every phase (node registration, eapp registration, and node attestation) three
metrics were calculated for every API. Firstly, the execution time has been calculated by subtract-
ing the time at the end of the execution from the time in the beginning. Then, the CPU usage
percentage has been calculated by subtracting the amount of CPU time taken between the start
and the end of the execution and then dividing the total CPU time by the number of logical cores
that the OS sees, and finally dividing by the total wall-clock time. In particular, the expression
used is:

∆clock ticks = clock ticksend − clock ticksstart

CPUtime =
∆clock ticks

clocks per second

CPU% =
CPUtime

cores number · wall time elapsed

The last metric calculated was the used RAM during the execution, calculated with the python
program memoryprofiler which records memory usage over the running process.

9.3.1 Node Registration

The node registration phase involves the API exposed by the Registrar and the Verifier. The first
API involved is the /provider register which allows a Keystone Platform Provider to send the
node data receiving back the challenge. Then, the /provider accept API is called, which, after
validating the challenge, calls the /node register API of the Verifier.

The same calculation has been performed over the percentage of used RAM and CPU. For the
RAM, the calculated data has shown a constant use of memory, similar to every API involved.
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Figure 9.11. node attest API response for an invalid node

Figure 9.12. Verifier database after the attestation of an invalid node

For all three APIs, the used RAM was between 35 MiB and 40 MiB which is approximable to the
0.2% of RAM used. Figure 9.13 shows a histogram with the average execution time calculated
and the CPU percentage usage for each involved API.

9.3.2 Eapp Registration

The trusted application registration phase involves the API exposed by the Registrar and the
Verifier. The first API involved is the /developer register which allows a Keystone Developer
to send the eapp data receiving back the challenge. Then, the /developer accept API is called,
which, after validating the challenge, calls the /eapp register API of the Verifier.

The same calculation has been performed over the percentage of used RAM and CPU. For the
RAM, the calculated data has shown a constant use of memory, similar to every API involved.
For all three APIs, the used RAM was between 35 MiB and 40 MiB which is approximable to the
0.2% of RAM used. Figure 9.14 shows a histogram with the average execution time calculated
and the CPU percentage usage for each involved API.

As the measures demonstrate, the calculated values between the node registration phase and
the eapp registration phase are pretty similar. This result was expected since the two phases are
very comparable and perform similar operations.

9.3.3 Node Attestation

The performance test performed over the attestation phase has two purposes. First, the goal of
the tests is to calculate time, CPU usage, and RAM usage for the involved entities. In particular,
the calculated metrics concern the Verifier, which exposes the attest node API, and the Attester,
which generates and sends the attestation report. Then, the second goal of the presented test is
to verify the limit of the possible enclave that Keystone and RISC-V can support simultaneously.
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Figure 9.13. Execution time and CPU percentage usage of the involved API in node registration

Figure 9.14. Execution time and CPU percentage usage of the involved API in eapp registration

In particular, the attest node API exposed by the Verifier includes 4 steps, for which the
metrics have been calculated:

1. the Verifier tries to connect to the Attester and establish a TLS connection;

2. the Verifier generates and sends a nonce over the created connection;

3. the Attester generates and sends to the Verifier an attestation report;

4. the Verifier validates the report and update the result into the database;

For Steps 1, 2, and 4 the Verifier machine was involved. These three steps are the steps
performed by the Verifier during the attestation phase. Therefore, the calculated times allow for
getting the total time of the API execution by adding all of them. As shown in Figure 9.15, the
TLS connection phase and the report validation phase require a similar time of execution. On
the other hand, the nonce-generation phase is very fast, with a calculated time approximable to
zero. The CPU percentage results highlight an inverse trend: the nonce-generation phase requires
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much more CPU than the other phases. The RAM usage is constant over the execution of the
process, staying among the 0.2% of the RAM.

Figure 9.15. Execution time and CPU percentage usage of the involved phases in node
attestation on the Verifier machine

Figure 9.16. Execution time and CPU percentage usage of the involved phases in node
attestation on the Attester machine

In Step 3, on the other hand, the Attester machine is involved. In particular, this Step can be
split into two more phases. The first one is the setup of a TLS connection with the Verifier and
the second one is the generation of the attestation report by the enclave of the node. Figure 9.16
shows the measures of the execution time and the CPU percentage usage for the two steps. As
shown, the TLS connection phase requires much more time than the generation of the report.

The CPU used for the report generation, on the other hand, is higher than the TLS connection.
Furthermore, we can see a completely different CPU usage in creating a TLS connection between
the Verifier and the Attester. This measure is coherent since the Attester machine has only one
core, and the Verifier has 4 cores.

As the tests performed on the Attester machine have shown, there are no heavy resource
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limitations on the creation of multiple enclaves simultaneously. However, a limitation in the
number of enclaves exists and the purpose of the last test is to confirm it. In the Keystone
Enclave paper [3], the enclave limitation is declared as the number of available PMP entries. In
particular, if we consider N PMP entries and that at the boot of Keystone Enclave two PMP
entries are used for the SM memory region, and the OS memory region, the remaining number of
PMP entries is N-2.

In the case of the Attester machine, the used RISC-V ISA uploaded in the virtual machine has
declared 8 PMP entries. Therefore, to consider this last test passed, we expect that the Attester
can support a maximum of 6 enclaves simultaneously. The test result, shown in Figure 9.17, is co-
herent with the expected result. The shown error explains that after a keystone create enclave

SBI call from the host, the SM has not found an available PMP, making it unable to start a new
enclave.

Figure 9.17. Attester error message after testing the launch of 7 enclaves
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Chapter 10

Conclusions and future work

The main goal of the proposed thesis work included an analysis of the Trusted Execution En-
vironment (TEE) technologies currently available on the market. In particular, the study was
conducted with a focus on the possibility to use this kind of technology as a trust anchor for a
Remote Attestation (RA) protocol. The TEE technology research highlighted several problems of
the most famous TEEs currently available on the market.

All major CPU vendors’ TEEs (e.g., ARM TrustZone, Intel SGX, and AMD SEV) are not
enabled to support many different use cases and threat models, but they allow only a small part
of the possible design space across threat models, hardware requirements, resource management,
porting effort, and feature compatibility. Also, since these TEEs are based on proprietary hard-
ware and a closed source code, it is hard to fully analyze them and customize them. The analysis
showed up that if a TEE-based project needs different features from what the TEE can offer, is
needed a significant workaround to add them, or can be even required to build new TEE hardware
from scratch. All these issues reflect the use of TEEs as trust anchors, which can be easy only
with specific hardware and threat model. Intel SGX, ARM TrustZone, and AMD SEV could be
acceptable trust anchors only if the node over the cloud supports specific hardware, does not need
many changes in the future, and does not require customization.

These weaknesses do not make them suitable for the second goal of the thesis: to design
and implement a centralized framework for RA, which can be customizable, easy to modify, and
does not rely heavily on specific hardware. The proposed solution is based on Keystone Enclave,
the first framework to build customizable TEEs, which was born from the need to solve part
of the analyzed TEEs problems. Thanks to Keystone, which is completely open-source, the RA
framework could be easily customized depending on the needs, it can be effortlessly modified
in the future, and it only needs RISC-V-based hardware. This last point makes the proposed
framework particularly suitable and interesting for the current market. The RISC-V Instruction
Set Architecture (ISA) is completely open-source and it is growing up rapidly not only in the
academic world but also in the commercial one. Despite this growth in the market, the literature
has not yet proposed many centralized solutions to attest to RISC-V-based nodes and, even
though some proposal has been published (e.g., LIRA-V), this is the first centralized framework
using Keystone Enclave.

The proposed solution is based on three components, Registrar, Verifier, and Attester and
they allow to perform three operations: node registration, trusted application registration, and
node attestation. The Registrar is designed so that it does not rely on any specific hardware and
its main goal is to interact with the Keystone Platform Providers and Keystone Developers. The
Registrar allows them to send the golden values of a specific node or trusted application and it
forwards them to the Verifier. The Verifier does not rely on any specific technology as well, but
it only needs the installation of the Keystone SDK. Its main goal is to expose API allowing the
attestation of a specific registered node. Finally, the Attester is the only component that relies
on specific hardware, needing complete support for RISC-V Physical Memory Protection (PMP)
and Privileged Architecture. These components have been tested in the final work of the thesis to
validate the functionalities of the proposed framework, and to analyze its performances attesting
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to different RISC-V nodes.

The proposed framework represents the first prototype to attest RISC-V nodes using Key-
stone, and so it could need some future work. Firstly, both the Registrar and the Verifier could
be improved by creating queues that can manage multiple simultaneous APIs calls. Then, the
Attester could be improved as well. In particular, the analysis of Keystone has shown up all its
limitations in a RA contest. The Keystone framework only exposes a single SBI to support attes-
tation only callable from the enclave, which cannot easily communicate with the untrusted host.
Therefore, the RA flow proposed by Keystone should be improved and extended. The Keystone
framework, however, turned out to be a good choice in this sense being completely open-source
and easily customizable. In particular, future works on the Attester should include a redesign of
the Keystone RA flow so that the untrusted host can directly call the Security Monitor (SM) SBI
to have a signed attestation report, a mechanism to allow the untrusted host to uniquely identify
the running enclaves (now available only to the SM), and a different hash calculation by the SM.
Currently, the Keystone SM performs the hash calculation of an enclave only at the beginning of
its lifecycle, but an ideal solution should include the calculation at runtime of all the non-writable
enclave pages.
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Appendix A

User’s Manual

The following manual wants to list the steps for a complete deployment of the framework and
to be able to use it. In particular, the commands to use the framework as it has been tested,
i.e. building a RISC-V-based virtual machine, will be described. This section will tell you all the
necessary dependencies and how to install them. Since Keystone Enclave requires a version of
Ubuntu 20.04 or earlier, the framework also has this limitation.

A.1 System requirements

A.1.1 Keystone Enclave

The Keystone framework is mandatory for both the Attester and the Verifier and, to install it the
steps to follow are the followings:

1. Install dependencies:

$ sudo apt update

$ sudo apt install autoconf automake autotools-dev bc \
bison build-essential curl expat libexpat1-dev flex gawk gcc git \
gperf libgmp-dev libmpc-dev libmpfr-dev libtool texinfo tmux \
patchutils zlib1g-dev wget bzip2 patch vim-common lbzip2 python \
pkg-config libglib2.0-dev libpixman-1-dev libssl-dev screen \
device-tree-compiler expect makeself unzip cpio rsync cmake p7zip-full

2. Setup the edited version of Keystone (install RISC-V toolchain, checkout git submodules,
and Install Keystone SDK):

$ cd keystone edit

$ ./fast setup.sh

$ source ./source.sh

3. Build Keystone components:

$ mkdir build

$ cd build

$ cmake ..

$ make

4. Open /path/to/keystone edit/source.h

5. Copy the SDK PATH into ∼/.bashrc
Then, restart the terminal. This will make the environment variables permanent.
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A.1.2 RISC-V-based Virtual Machine

This part of the manual is about the creation of the Attester VM, necessary to run the frame-
work. This step requires other technologies such as libvirt, KVM, qemu, and , Virtual Machine

Manager to edit the VM.

Install dependencies

1. Check if CPU supports virtualization. The command output must be different from 0:

$ egrep -c ’(vmx|svm)’ /proc/cpuinfo

2. Install KVM packages:

$ sudo apt update

$ sudo apt install qemukvm libvirtdaemonsystem libvirtclients

$ bridgeutils qemusystemmisc

3. Authorize users. The “username” word should be changed with your username:

$ sudo adduser ’username’ libvirt

$ sudo adduser ’username’ kvm

4. Install Virtual Machine Manager

$ sudo apt install virtmanager

VM Creation

1. Open VMM:

$ sudo virtmanager

Then, click on File →New Virtual Machine

2. Select “Use an existing virtual machine”:

• Architecture options →riscv64virt

• Storage path →path/to/keystone edit/build/buildroot.build/images/rootfs.ext2

• Kernel path →path/to/keystone edit/build/sm.build/platform/generic/firmware/
/fw payload.elf

• Kernel arguments →console=ttyS0 ro root=/dev/vda

• OS →Generic Default

VM Edit

1. Disable apparmor services to edit the emulator in libvirt:

$ sudo systemctl stop apparmor.service

$ sudo systemctl disable apparmor.service

Then, reboot the system and perform:

$ systemctl status apparmor.service

The status should be inactive.

2. Enable the libvirt XML edit:

• Open VMM

• Click on Edit →Preferences;

• Tick the “Enable XML editing” option;

• Close the preferences;
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3. Edit the libvirt XML:

• Open the VM before created (Right Click + Open)

• Click on “Show virtual hardware details”

• Click on the XML view

• Add, after the “kernel” closing tag, the following tags:

<loader type=’rom’>

/path/to/keystone edit/build/bootrom.build/bootrom.bin

</loader>

<nvram>

/path/to/keystone edit/qemu/pcbios/efivirtio.rom

</nvram>

• Replace the “emulator” tag with the following:

<emulator>

/path/to/keystone edit/qemu/riscv64softmmu/qemusystemriscv644

</emulator>

4. Try to run the edited VM, the login credentials are:

• buildroot login: root

• password: sifive

A.2 System deployment

A.2.1 Attester deployment

1. Install WolfSSL dependencies:

$ sudo git clone https://github.com/wolfSSL/wolfssl.git wolfssl

$ cd wolfssl

$ ./autogen.sh

$ ./configure --host=riscv64-unknown-linux-gnu --enable-harden

$ make

$ cd src/.libs

$ ls

The file libwolfssl.so.34 file should be listed.

$ cp libwolfssl.so.34 /path/to/keystone edit/riscv64/sysroot/lib

$ ../..

$ -R ./wolfssl /path/to/keystone edit/riscv64/sysroot/usr/include/

2. Build the attester code on the RISC-V VM:

$ cd attester

$ ./start server.h

$ cd build

$ cp demo-attester.ke /path/to/keystone edit/build/overlay/root rm -r \
/path/to/keystone edit/build/buildroot.build/target/root/*

$ cd /path/to/keystone edit/build

$ make image

3. Run the VM and load the WolfSSL libraries:

After running the VM, using the command $ ls, the file demo-attester.ke should be
listed.

85



User’s Manual

Then, from the Host machine perform:

$ ssh-keygen -R VM IP address

$ scp /attester/wolfssl/src/.libs/libwolfssl.so.34 root@VM IP address

A.2.2 Verifier deployment

1. Install SQLite dependencies:

$ sudo apt update

$ sudo apt install sqlite3

$ sudo apt-get install libsqlite3-dev

2. Compile Keystone Enclave library:

$ cd /verifier/keystone build

$ make

$ make keystone-verifier-lib

$ sudo cp libkeystone.so /usr/lib

3. Install WolfSSL dependencies:

$ sudo git clone https://github.com/wolfSSL/wolfssl.git wolfssl

$ cd wolfssl

$ ./autogen.sh

$ ./configure

$ make

$ make install

4. Install Verifier dependencies:

$ sudo apt update

$ sudo apt install python3-pip

$ sudo apt install python3-venv

$ pip install Flask

$ pip install pyOpenSSL

$ git submodule update --init --recursive

$ cd verifier/extern/pybind11/build

$ cmake ..

$ make

$ sudo apt-get install nlohmann-json3-dev

$ sudo apt-get install libssl-dev

5. Compile and launch Verifier

$ cd verifier

$ make

$ python3 -m venv venv

$ source venv/bin/activate

$ python verifier registration api.py

$ python verifier attestation api.py

A.2.3 Registrar deployment

1. Install SQLite dependencies:

$ sudo apt update

$ sudo apt install sqlite3

$ sudo apt-get install libsqlite3-dev

2. Install Registrar dependencies:

$ sudo apt update

$ sudo apt install python3-pip
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$ sudo apt install python3-venv

$ pip install Flask

$ git submodule update --init --recursive

$ cd registrar/extern/pybind11/build

$ cmake ..

$ make

$ sudo apt-get install nlohmann-json3-dev

$ apt-get install libcurl4-openssl-dev

3. Compile and launch Registrar

$ cd registrar

$ make

$ python3 -m venv venv

$ source venv/bin/activate

$ python registrar api.py
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B.1 Framework APIs

B.1.1 Verifier APIs

1. POST /node register: when this API is called by the Registrar, the Verifier saves all the
values related to the node to be registered. The correct request body for a correct call must
be a JSON composed as shown in Figure B.1, and it must contain the following fields:

• node uuid : it is the Universally unique identifier of the node;

• ip: it is the IPv4 address of the node;

• port : it is the port number to contact the node;

• sm hash: it is the measurement of the SM encoded in Base64 and it could be calculated
using the compute expected sm hash function offered by the Keystone SDK;

• dev pub key : it is the device public key of the node. It is the public part of an ed25519

keypair encoded in Base64;

After the validation of certificates between the Registrar and Verifier, the Verifier saves all
the received values into its database and communicates the outcome of this operation back
to the Registrar.

Figure B.1. JSON Structure for /node register API

2. POST /eapp register: when this API is called by the Registrar, the Verifier saves all the
values relating to the application to be registered. The correct request body for a correct
call must be a JSON composed as shown in Figure B.2, and must contain the following
fields:

• uuid : it is the Universally unique identifier of the node;

• eapp hash: it is the measurement of the Enclave encoded in Base64;

• eapp path: it is the path on the Attester machine of the application;
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After the validation of certificates between the Registrar and Verifier, the Verifier saves all
the received values into its database and communicates the outcome of this operation back
to the Registrar.

{
    "uuid":"4dc7a180-36a9-4b22-a6c9-87a8cd29de4d",
    "eapp_hash":"6RdJEwn+zH9p1l...RRLLElgP0LbOg==
    "eapp_path":"my_trusted_application.riscv",
}

Figure B.2. JSON Structure for /eapp register API

3. GET /attest node?uuid=data: when this API is called from outside, the Verifier uses the
UUID of the node received via URL to access the database and obtain the IP address and
port of the node to be contacted. With this information, the Verifier creates a socket and
tries to contact the Attester. If the Attester is not reachable, the communication is repeated
5 times and if after that it is not yet available to open a communication, the Verifier updates
the status in the database. If the Attester accepts the communication, it expects to receive
the path of the eapp to Verify. Once received, the host app of the Attester contacts the
enclave, which waits for a nonce from the Verifier. Once received, the eapp generates the
attestation report exploiting the Keystone SDK and sends it back to the Verifier. Finally,
the Verifier accesses the database to check if the received report is valid according to the
saved golden values.

B.1.2 Registrar APIs

1. GET /platform providers: when this API is called the Registrar contacts the database
and returns all the platform providers present within the database.

2. GET /developers: when this API is called, the Registrar contacts the database and returns
all developers present in the database.

3. POST /provider register: when this API is called, the provider’s registration phase
starts. The correct request body for a correct call must be a JSON composed as shown in
Figure B.3, and must contain the following fields:

• node uuid : it is the Universally unique identifier of the node;

• ip: it is the IPv4 address of the node;

• port : it is the port number to contact the node;

• sm hash: it is the measurement of the SM encoded in Base64 and it could be calculated
using the compute expected sm hash function offered by the Keystone SDK;

• dev pub key : it is the device public key of the node. It is the public part of an ed25519

keypair encoded in Base64;

• pp pub key : it is the public key of the Keystone Platform Provider. It is the public
part of an RSA keypair encoded in PEM format, without the “-----BEGIN KEY-----”
and the “-----END KEY-----” standard strings;

Once the JSON Request Body has been received, the API will call the register node

function implemented in the C++ files. In particular, the Registrar generates a nonce
exploiting the openssl library and sends it back encoded in Base64.

4. POST /provider accept: when this API is called, if the challenge response is correct, the
registration phase of the node is completed. The correct request body for a correct call must
be a JSON that contains only the field named “challenge” as shown in Figure B.4. Once the
JSON has been received, the API will call the accept node function implemented in the
C++ files to verify the challenge and eventually contact the Verifier. In particular, the field
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{
    "node_uuid":"4dc7a180-36a9-4b22-a6c9-87a8cd29de4d",
    "ip":"192.168.122.68",
    "port":"1111",
    "pp_pub_key":"MIGdy51GlcrFWO2/Aor2Mj3...q0QIDAQAB",
    "sm_hash":"5RdJEwtgNv6H9p1l1gRXK8RRLL...gP0LbOg==",
    "dev_pub_key": "D6rU/wEXhYO6pYiWCoSmk...nC0w=" 
}

Figure B.3. JSON Structure for /provider register API

“challenge” must be the encoded in Base64 solution of the previously received challenge.
Once the solution has been received, the registrar checks the validity of the received data
in the database.

    {
      "challenge" : "YXNkaGpnYXNkdWp5YWd...Xlhc2dkN3U2cXc="
    }

Figure B.4. JSON Structure for /provider accept API

5. POST /developer register: when this API is called, the registration phase starts for the
developer. The correct request body for a correct call must be a JSON composed as shown
in Figure B.5 and must contain the following fields:

• uuid : it is the Universally unique identifier of the node;

• eapp hash: it is the measurement of the Enclave encoded in Base64;

• eapp path: it is the path on the Attester machine of the application;

• developer pub key : it is the public key of the Keystone Developer. It is the public part
of an RSA keypair encoded in PEM format, without the “-----BEGIN KEY-----” and
the “-----END KEY-----” standard strings;

Once the JSON Request Body has been received, the API will call the register eapp

function implemented in the C++ files. In particular, the Registrar generates a nonce
exploiting the openssl library and sends it back encoded in Base64.

6. POST /developer accept: when this API is called, if the challenge response is correct, the
registration phase of the eapp is completed. The correct request body for a correct call must
be a JSON that contains only the field named “challenge” as shown in Figure B.6. Once the
JSON has been received, the API will call the accept eapp function implemented in the
C++ files to verify the challenge and possibly contact the Verifier. In particular, the field
“challenge” must be the encoded in Base64 solution of the previously received challenge.
Once the solution has been received, the registrar checks the validity of the received data
in the database.

B.2 Attester eapp development

This section presents the guide to be able to write an eapp using Keystone Enclave. In particular,
an example of hosting an Attester and its related eapp will be described. The purpose of this
guide is to present the information to be able to create an Attester that takes advantage of the
framework attestation.
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    {
        "uuid":"4dc7a180-36a9-4b22-a6c9-87a8cd29de4d",
        "eapp_hash":"6Rdn+zH9p1l1gRXK8RR...lgP0LbOg==",
        "eapp_path":"my_trusted_application.riscv",
        "developer_pub_key": "MIGfMA0GCSqMj3DQ8ztq0QIDAQAB"
    }

Figure B.5. JSON Structure for /developer register API

    {
      "challenge" : "YXNkaGpnYXNkdWp5YWd...Xlhc2dkN3U2cXc="
    }

Figure B.6. JSON Structure for /developer accept API

B.2.1 Host example code

An example code for an untrusted host of an Attester is shown in Figure B.7. The functions used
are all included in the project files described in the implementation chapter.

The operations that the host performs in this example are:

1. init network wait: the host creates a socket and waits for the Verifier to contact it.

2. init wolfSSL: the Verifier has contacted the host and creates a TLS connection over the
socket.

3. recv buffer: the host waits for a message from the Verifier to know the eapp path.

4. enclave.init: the host asks the SM for the allocation of a new enclave.

5. enclave.run: the host runs the enclave passing to it the execution control.

B.2.2 Eapp example code

Example code for a trusted eapp of an Attester is shown in Figure B.8. The functions used are
all included in the project files described in the implementation chapter.

The operations that the host performs in this example are:

1. edge init: is an edge call-wrapper function by Keystone. The first operation performed by
the eapp is here.

2. ocall print buffer: is an edge call example. The print function is not directly callable by
the eapp which must use an edge call to ask the host for printing a message.

3. read nonce: the eapp asks the host through an edge call to receive the nonce sent by the
Verifier.

4. generate and send attestation report: the eapp, once received the nonce, exploits the
Keystone SDK to generate the report. Then, through an edge call it sends it to the Verifier.

5. handle messages(): it is an example function performed by the eapp. The attestation
phase is completed, and the eapp can perform any operation before giving back control to
the host.
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   {
      init_network_wait();
      init_wolfSSL();
      size_t len;
      char *eapp_path = (char *)recv_buffer(&len);
    
      Keystone::Enclave enclave;
      Keystone::Params params;
    
      if (enclave.init(eapp_path, runtime_path, params) != 
          Keystone::Error::Success)
      {
        return 1;
      }
      edge_init(&enclave);
    
      Keystone::Error rval = enclave.run();
      return rval;
    }

Figure B.7. Host code example

    {
      edge_init();
      ocall_print_buffer("Enclave correctly started\n");
      read_nonce(); 
      generate_and_send_attestation_report(); 
      handle_messages();  

      EAPP_RETURN(0);
    }

Figure B.8. Eapp code example
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