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Abstract

The goal of Text-to-Speech (TTS) is to synthesize human-like speech from
texts. Over the last decade, this research field has seen incredible improve-
ments, thanks to the significant advances in deep learning and its extensive
development. TTS models based on neural networks have been able to
achieve results that are almost indistinguishable from human speech. Con-
sequently, this technology has become more and more popular, drastically
improving the way people interact with machines. Despite its current
progress, neural TTS is far from a solved problem and still presents sev-
eral criticalities. Both training and inference require heavy computational
resources, and models tend to make mistakes when dealing with corner
cases or text which belongs to a different domain with respect to the
training set. This thesis will examine the development of a pipeline for
the generation of podcasts, by using a Text-to-Speech model to read news
articles. Since there are many different neural TTS architectures, there
will be a discussion on the motivations that lead to the choice of the final
model. This was trained on a high performance computing cluster, using
an Italian public domain dataset. In order to adapt it to the synthesis of
long news text, an additional preprocessing step has been introduced in
the pipeline. Care has been taken to implement a normalizer that could
correctly handle technical text, which is crucial when dealing with eco-
nomic or scientific articles. The thesis will also explain how the model
has been finetuned on a smaller dataset of a different speaker, success-
fully converting the synthesized voice in a short amount of time, thanks
to transfer learning. As of today, there is a lack of high quality open
source TTS models, outside of commercial services offered by big tech
companies. The main reason is that creating a TTS dataset is an expen-
sive process that requires the alignment of transcripts to tens of hours of
recorded speech. In order to generate the dataset used for finetuning, a
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different approach was followed. Leveraging the recent improvements in
the Speech-to-Text field, it was possible to automate the dataset genera-
tion process without the need for transcribed text. Hopefully, the same
technique can be applied to generate datasets for low resource languages,
which are plagued by a scarcity of training data. In the end, it will be
described how the model has been deployed as a microservice, exploring
the strategies used to mitigate the long inference times.
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Chapter 1

Introduction

Humans have been trying to build speaking machines for a long time, long
before the advent of digital revolution [7].
Many techniques have since been developed to synthesize intelligible speech.
However, the results always sounded unnatural, despite being intelligible.
Natural speech synthesis has been possible only in recent years, when re-
searchers started using neural networks to tackle this challenge. The field
of study is known as Text-To-Speech (TTS), and its objective is to gen-
erate human-like speech from text. In particular, neural TTS started in
2016, with Google’s WaveNet [8], which was a revolution in the TTS field.
In May 2022, the first model to achieve human-level quality speech has
been published [9].
During the same time period, digital audio consumption and podcast lis-
tening in the US showed a steady growth [10]. A podcast is a digital
recording that is available on the internet [11]. Although this definition
is rather generic, podcasts are generally produced by recording speech
of physical people through a microphone, usually in a dedicated studio.
Thanks to the great improvements in neural TTS, it would be interesting
to explore whether it’s possible to generate podcasts automatically, with-
out human intervention, by training a model on a pre-recorded speech
dataset.
In the context of this work, the goal is to produce a podcast that is able
to perform a press review, by reading articles selected by the user. This
requires the generated speech to be not only intelligible, but also natural
and robust. A robust synthesis can generalize well with different domains
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Introduction

and it doesn’t make mistakes when dealing with corner cases. This is espe-
cially crucial with news articles that span over a wide variety of domains
and contain technical terms which are not present in the training dataset.
In order to deal with this aspect, it’s important to build a normalizer that
can correctly handle numbers, abbreviations, symbols and units of mea-
surement, translating them into spoken form.
In the following chapters, the foundational theory behind the TTS domain
will be presented, followed by a brief historical background. Over the last
decade, many different neural TTS architectures have been developed and
it would be unfeasible to cover them all. Instead, the focus will be on the
models that had a significant impact in the research domain. Then, there
will be an analysis of the dataset used and it will be emphasized how chal-
lenging it is to find high quality speech datasets. A possible mitigation of
this problem will be presented as well, which is based on one of the most
recently released automatic speech recognition models. Afterwards, I will
discuss the models that I trained, motivating why I chose them, describing
the mathematical theory behind them and explaining how they have been
trained and then fine-tuned on a new speaker’s dataset. This allows the
user to select between a male and a female voice. Finally, more practical
aspects will be analyzed, such as the implementation of an Italian text
normalizer and the deployment of the trained model as a microservice.
The order of the chapters roughly follows the chronological order of the
thesis work, showing the entire development process, from the research to
the deployment.
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Chapter 2

Background and related
work

2.1 Analysis of audio signals
At a high level, a Text-To-Speech system converts an input text into a
waveform. As it will be discussed later, a common pipeline is to generate
some acoustic features starting from text, then convert the acoustic fea-
tures into a waveform. One of the most used acoustic representations in
neural TTS is the Mel spectrogram. This section will briefly describe how
a Mel spectrogram is computed, starting from a speech signal.

2.1.1 Waveform
A signal is a physical quantity that varies over one or more independent
variables, such as time or space [12]. An audio signal is a mechanical
wave that propagates through a medium, like air. It can be visualized by
plotting the changes in air pressure over time.
The variation in the air pressure is represented by the signal’s amplitude.
The higher the amplitude, the louder the audio signal is.

2.1.2 AD conversion
An audio signal in the physical world is analog, which means that it’s
continuous both on the time axis as well as the amplitude. In order to be
understood by a computer, an analog signal needs to be converted into
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Background and related work

Figure 2.1: The sound wave. Image from [1].

a digital one. This process is called analog-to-digital conversion and it
consists of two stages: sampling and quantization.

Sampling

A signal s(t) is discretized over the time axis by taking amplitude points
at equidistant time intervals T , where T is the sampling period and fs =
1
T is the sampling frequency. If fB is the bandwidth of the continuous
signal, then it’s possible to sample it without loss of information if fs >
2fB. This is known as the Nyquist-Shannon sampling theorem [13]. If the
bandwidth fB of the signal is above the Nyquist frequency fN = fs

2 , then
the reconstructed signal is corrupted and contains artifacts with respect
to the original signal; this phenomenon is called aliasing. In practice, all
the frequencies above the Nyquist frequency are shifted down to a lower
frequency.

Figure 2.2: A lower frequency emerges in the reconstruction, due to un-
dersampling. Image from [2].
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2.1 – Analysis of audio signals

Audio is typically sampled at 44.1 kHz; in fact, this is the sampling rate
used by CDs. This is compliant with the Nyquist theorem, considering
that the highest frequency that humans can hear is about 20 kHz [14]. In
the TTS field though, the most common sampling rate is 22050 Hz. This is
the sampling rate of the LJ Speech [15] dataset, which is a public domain
dataset commonly used by researchers to compare the performances of
TTS models.

Quantization

In this step, the same idea of sampling is applied to the amplitude axis.
The continuous amplitude values are mapped to a smaller set with a finite
number of elements, since computers don’t have an infinite precision. This
can be done by either truncating or rounding the amplitudes [3]. The
difference with respect to sampling is that this operation is irreversible,
since it introduces a quantization error; it’s not possible to reconstruct
the original signal starting from the quantized signal.

Figure 2.3: Rounding has a lower maximum quantization error w.r.t. trun-
cation. [3]

2.1.3 The Fourier transform
The major mathematical tool to perform signal analysis is the Fourier
transform. The goal is to take any signal and decompose it into the
individual frequencies that make it up. The continuous Fourier transform
is defined as

X(f) =
Ú +∞

−∞
x(t)e−i2πft dt (2.1)

The transform takes as input a frequency, and returns a complex number
that represents the strength of that given frequency in the original signal.
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Discrete Fourier transform

The Fourier transform is used for analyzing analog signals; however, as
described before, computers deal with digital signals. For this reason, in
the digital domain the Discrete Fourier Transform (DFT) is used [3]:

X(k) =
N−1Ø
n=0

x(n)e−i2πnk/N (2.2)

where
• x(n) is the nth discrete input sample;
• N is the total number of input samples as well as the number of output

frequencies;
• X(k) is the kth output frequency component.

Given N input samples, the DFT computes the magnitude of N frequency
components f(k) = kfs

N , where fs is the sampling frequency. It’s important
to note that when the DFT inputs are real numbers, which is always the
case with audio signals, the magnitude of the DFT output is symmetric,
since X(N−k) is the complex conjugate of X(k). Consequently, to obtain
the spectrum of the signal x(n) only the computation of the first N/2 + 1
values of X(k) is needed.

The DFT algorithm has a complexity of O(N2), which is quite expensive.
Therefore, it’s never computed in practical applications. What is com-
monly used is a fast implementation of this algorithm, called fast Fourier
transform (FFT). There are many variations of the FFT, and the details
on how it works are out of the scope of this thesis. However, it’s inter-
esting to note that it allows to reduce the complexity of the DFT from
O(N2) to O(N logN).

Short-time Fourier transform

Despite its importance, the DFT alone is not very useful to analyze audio
signals with frequencies that change over time, such as speech signals.
This is because the DFT is computed across the entire time interval of
the signal, and it returns the frequency components averaged over all the
duration. When dealing with a speech signal, it’s crucial to know at what
time a particular frequency component is present. The Short-time Fourier
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2.1 – Analysis of audio signals

transform (STFT) is the solution to this problem. The main idea is to
divide the signal into time chunks, called frames, and then apply the DFT
(in practice, the FFT) to each one of them. The mathematical formulation
is [16]

S(m, k) =
N−1Ø
n=0

x(n+mH) · w(n) · e−i2πnk/N (2.3)

where
• w(n) is a window function, which multiplied by the original signal

returns a fixed time chunk of that signal;
• m is the frame index;
• N is the total number of samples in a frame;
• H is the hop size.

The hop size represents the number of samples that correspond to a win-
dow slide. Intuitively, one might think that the hop size is equivalent to
the frame size. In reality, the frames overlap, thus the hop size is smaller
than the frame size. This is because the commonly used window func-
tion is not a rectangular one, but a bell shaped curve. An example is the
Hann function, formulated as 1

2 − 1
2 cos (2πn

N ) [16]. This window function
smoothly tapers the signal at the beginning and end of a frame, in order
to avoid discontinuities that could lead to spectral leakage [17]. This phe-
nomenon occurs when the processed signal is not an integer number of
periods. After applying the Fourier transform, the discontinuities appear
as high frequency components which are not present in the original signal.
The STFT process is illustrated in Fig. 2.4.

2.1.4 The Mel spectrogram
As it’s been discussed, the STFT is a function S(m, k) of both time,
represented by the frame index m, and frequency, where k represents a
frequency bin. Therefore, the computation of the STFT returns a matrix
of complex numbers. Taking the square magnitude of the STFT results in
a matrix of real numbers that can be plotted using a heatmap; this plot
is called spectrogram. Each point on the plot represents the intensity of
a given frequency at a particular time. According to the Weber–Fechner
law, the human ear interprets the intensity of sound logarithmically rather
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Figure 2.4: FFT applied to overlapping frames of a signal. Image adapted
from [4].

than linearly. Hence, when plotting a spectrogram, a logarithmic scale is
used for the amplitude, commonly represented in decibels (dB). However,
this is not the full story. In fact, also the frequencies are perceived in
a logarithmic way. Humans are better at detecting differences in lower
frequencies rather than in higher frequencies. For this reason, after con-
ducting a series of experiments on human listeners, the Mel scale has been
developed [18] with the following formulation:

m = 2595 log10

A
1 + f

700

B
(2.4)

This formula converts a frequency from Hertz to the Mel scale. Frequencies
that are equidistant on the Mel scale sound equidistant to us. To generate
the Mel spectrogram, the lowest and the highest frequencies are converted
to the Mel scale, using the formula above. Then, this range is separated
into n evenly spaced point, called Mel bands [19]. Those points are then
converted back from Mel to Hertz and rounded to the nearest frequency
bin. A triangle filter is created for each Mel band; the lower end of the
filter corresponds to the center of the previous Mel band, and the higher
end is on the center of the next Mel band. This process generates the
entire Mel filter bank, represented in Fig. 2.5.
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2.2 – History of TTS

Figure 2.5: The Mel filter bank visualized. It’s possible to see how the
filters are more spread out as the frequencies get higher, similar to the
way humans perceive them.

Finally, the Mel filter bank is applied to the spectrogram, by matrix mul-
tiplication of the Mel filter bank matrix and the spectrogram matrix. The
end result of these transformations is the Mel spectrogram, which allows
to visualize sound as it’s perceived by the human ear. This representa-
tion is a central point in many of the Text-to-Speech models that will be
presented in the following chapters.

Figure 2.6: A plot of the Mel spectrogram. Image from [5].

2.2 History of TTS
Today, neural networks are the predominant technology for speech syn-
thesis, since they achieve state-of-the-art results that are unmatched by
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any other technique. Previously, there were different approaches that can
be summarized into four main categories: articulatory synthesis, formant
synthesis, concatenative synthesis and statistical parametric speech syn-
thesis. An overview of these techniques is useful to understand what are
the main stumbling blocks in TTS, some of which are still not completely
resolved. Most of the information presented in this section is gathered
from the remarkable paper: "A Survey on Neural Speech Synthesis", by
Microsoft Research Asia [6].

2.2.1 Articulatory synthesis
This is the oldest approach to speech synthesis, which consists in a simula-
tion of the human vocal tract. The first example in history is Wolfgang von
Kempelen’s speaking machine [20]. It was a mechanical machine, played
by a person, that could produce vowels and some consonants. Trying to
imitate the way humans generate speech doesn’t work well in practice,
therefore this technique was replaced by formant and concatenative syn-
thesis.

2.2.2 Formant synthesis
This is a rule-based type of synthesis that generates an artificial wave-
form using additive synthesis, which works by adding sine waves together,
and an acoustic model that varies parameters like fundamental frequency,
noise and voicing over time. [6]. Formant synthesis produces intelligible
speech, even though it doesn’t sound natural. The main advantage is that
it doesn’t require a lot of computational resources, hence it works well in
embedded environments that are often limited in terms of memory, pro-
cessing and power. A popular example is DECtalk, the speech synthesizer
used by Stephen Hawking [21], based on Dennis Klatt’s research [22].

2.2.3 Concatenative synthesis
Concatenative synthesis uses a database of pre-recorded voice segments
and the final sentence is generated by concatenation of those segments.
The segments can be phonemes, diphonemes (pair of phonemes), tri-
phonemes, syllables, words or even sentences. This approach should result
in a natural sounding speech, since it makes direct use of unmodified pieces
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of speech recorded from a speaker. However, the concatenation process is
problematic since the discontinuities between the fragments can lead to
artifacts [23]. Moreover, it requires a large database of recordings.

2.2.4 Statistical parametric speech synthesis
In statistical parametric speech synthesis (SPSS), the waveform is not gen-
erated by concatenation of speech segments, but it comes from acoustic
parameters learned from the training data. The common pipeline consists
of three components [6]: a text analysis module, which performs prepro-
cessing on the input text data, like normalization, grapheme-to-phoneme
conversion and tokenization; an acoustic model, usually a Hidden Markov
Model (HMM); a vocoder, that synthesizes a waveform starting from the
acoustic model parameters. The database, in this case, is used only for
training. During synthesis, the acoustic parameters are generated from a
statistical model, like a HMM. Those parameters can be modified in order
to change speaking style and voice characteristics. The advantages are
that it doesn’t require a database as big as the one used for concatenative
synthesis and the generated audio sounds more natural. The problems
are the low intelligibility and the fact that it’s still clearly different from
natural human speech [6].

2.2.5 Neural synthesis
As the name suggests, neural synthesis employs neural networks to gener-
ate linguistic and acoustic features. Over the last decade, this has become
the standard for speech synthesis, since it’s able to generate natural sound-
ing voices which are almost indistinguishable from human samples. The
disadvantage is the cost: training requires big annotated datasets and ex-
pensive computational resources; also, the process of generating a dataset
is slow and manual, since it requires many hours of audio with the cor-
responding transcriptions. This is a problem for low resource languages,
considering that the dataset samples need to have a high audio quality.
A noisy dataset makes training harder and also generates poor sounding
speech during inference. These issues make it hard for neural TTS model
to be deployed for embedded or IoT devices.
Figure 2.7 shows an overview of the main neural TTS models developed
in the latest years. The next section will cover the high level pipeline of
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neural TTS systems.

Figure 2.7: "The evolution of neural TTS models." [6]
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2.3 Neural TTS
Modern TTS architectures are composed of several modules. The most
common pipeline is the following:

• Text normalization: the first component in a TTS pipeline performs
text preprocessing, converting the raw input text into a representation
which is understandable by the model. For example, it converts num-
bers, symbols and currency into words and it expands abbreviations.
It’s usually implemented as a rule based system, using, for example,
weighted finite-state transducers [24]. The implementation is different
for every language.

• Grapheme to phoneme conversion: this step is not always per-
formed, but it usually facilitates the learning process, especially for
words that are written the same but pronounced differently (for ex-
ample, in Italian, "ancora" is pronounced with a different accent and
has a different meaning depending on the context). The characters
(graphemes) are converted into phonemes, the smallest units of sound
in a particular language. Today, this step is done using neural net-
works.

• Spectrogram synthesis: an acoustic model synthesizes a Mel spec-
trogram from the input graphemes/phonemes. This is a sequence-to-
sequence problem where inputs and outputs have different lengths,
since there are more output spectrogram frames than input charac-
ters. Usually, the first module of an acoustic model converts the in-
put graphemes/phonemes into numbers (or vectors of numbers) that
are understandable by the neural networks, by generating a character
embedding for each character of the alphabet. There are two main
families of acoustic models: autoregressive models and parallel mod-
els. Autoregressive models, such as Tacotron [25], were the first really
good neural TTS models. In autoregressive generation, the output
at the current step depends on the outputs generated at the previ-
ous steps. This type of sequential generation is usually modeled with
recurrent neural networks (RNNs). The downsides of autoregressive
models are:
1. slow training and inference speed, since they can’t fully take ad-

vantage of parallel GPU architectures;
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2. RNNs can’t model long term dependencies, due to vanishing gra-
dients;

3. they suffer from robustness issues. Due to their sequential nature,
errors tend to propagate in subsequent steps.

Tacotron uses an encoder-decoder architecture with attention. The
attention is used by the decoder to determine which characters to con-
sider when generating spectrogram frames. Tacotron predicts a linear
spectrogram and then it uses the Griffin-Lim algorithm followed by
an inverse short-time Fourier Transform to generate the waveform.
Tacotron 2 [26] uses a recurrent sequence-to-sequence feature predic-
tion network with attention to predict a sequence of Mel spectrogram
frames, and a modified WaveNet (neural vocoder, see next point) that
generates a waveform starting from the Mel spectrogram. Many im-
proved models have since been realeased, starting from the Tacotron
architecture, as it can be seen in Fig. 2.7.
Parallel models use an explicit duration predictor, instead of relying
on the attention mechanism to implicitly determine the duration, in
order to predict spectrogram frames in parallel. An example is the
FastSpeech [27] series, based on Transformers. This type of architec-
ture will be analyzed in detail in chapter 3.

• Waveform generation: models that generate a waveform starting
from acoustic features are called vocoders. There are many differ-
ent categories, such as autoregressive vocoders, Flow-based vocoders,
GAN-based vocoders, VAE-based vocoders and Diffusion-based vocoders
[6]. The first neural vocoder was WaveNet [8], based on an autore-
gressive CNN. The original WaveNet was conditioned on linguistic fea-
tures, however it can be adapted to condition on Mel spectrograms,
as it was done in Tacotron 2 [26]. It was inspired by the PixelCNN
architecture [28]. Each audio sample xt of the waveform x = x1, ..., xT

is conditioned on the samples at all previous timesteps:

p(x) =
TÙ

t=1
p(xt|x1, ..., xt−1) (2.5)

The conditional probability distribution is modeled by a stack of con-
volutional layers followed by a softmax. It uses dilated causal con-
volutions to increase the receptive field of the filter. It uses residual
blocks [29] and skip connection to allow the training of much deeper
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models. When it was released, it achieved the highest Mean Opinion
Score (see chapter 5) in the history of TTS, however it suffers from
slow inference speed. In chapter 3 I will present a GAN-based vocoder
used in the architecture of the final model.

To conclude this section, it’s worth mentioning that the most recent trend
in neural TTS is to move towards end-to-end architectures. Instead of
the two-stage pipeline described above, the goal is to have a single model
that can generate a waveform starting from input text. The most popular
examples are FastSpeech 2s [30], EATS [31] and VITS [32].
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Chapter 3

Approach and
methodology

3.1 Dataset
Dataset quality is one of the most important aspects for a neural speech
synthesizer. Feeding noisy samples during training would make the model
pick up the noise and reproduce it during synthesis, in the best case. In
the worst case, it would make it almost impossible for the network to learn
anything at all.
Finding a high quality dataset turned out to be a hard process, due to the
lack of available options. The main source comes from the LibriVox [33]
project, which is a catalogue of free public domain audiobooks, read by vol-
unteers. The major downsides are that the audio quality of those record-
ings is often inadequate and the vocabulary is somewhat anachronistic,
since public domain books are at least 70 years old [34].
The most popular dataset in TTS research is the LJ Speech [15] dataset,
which is derived from LibriVox’s catalogue. It’s composed of 13100 English
audio clips ranging between 1 and 10 seconds, split up based on the silences
in the recordings. The sampling rate of the audios is 22050 Hz. Each
audio clip has a corresponding transcription, and all the transcriptions
are gathered into a file, one record per line, with the following format:

<path_to_audio_clip>|<text>|<normalized_text>

The normalized text is obtained by expanding abbreviations, as well as
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writing numbers and symbols as full words. The normalization process
will be examined in depth in chapter 4. Since LJ Speech has become a
standard, it can be used as a baseline for comparison, in order to assess
the quality of other TTS datasets. It’s important to note that even though
the LJ Speech is a research standard, it doesn’t imply that it’s suitable
for training a high quality TTS model for a commercial service. Its main
advantage, besides being of public domain, is the amount of hours of
noise-free speech; moreover, a sampling rate of 22050 Hz provides a good
balance between audio quality and training speed. However, if training
speed was not a concern, using a sampling rate of 44100 Hz would result
in higher quality speech synthesis.
The goal of this work was to generate podcasts in Italian, hence a dataset
in the Italian language was needed. There were only two available options:
Mozilla Common Voice [35] or the M-AILABS Speech Dataset [36]. The
former contained very noisy and low quality audio clips, so it was imme-
diately discarded; the only choice left was the M-AILABS dataset. This
is a large multilingual dataset derived from LibriVox, which includes the
Italian language. The Italian dataset is divided in three: a multi-speaker
dataset, a single-speaker male dataset and a single-speaker female dataset.
The male dataset sounded the best, therefore it ended up being the one
used for training the TTS models. The recordings are from 5 different au-
diobooks, and the transcriptions follow the LJ Speech format. However,
the sampling rate is 16000 Hz, which means faster training, but also less
information.

One useful metric for speech datasets analysis is the signal-to-noise ratio
(SNR) of the audio recordings. It’s defined as [37]

SNRdB = 10 log10
Ps

Pn
(3.1)

where Ps is the power of the signal and Pn is the power of the noise. As
explained before, it’s important to make sure that the data has as little
background noise as possible. Calculating SNR for each recording can be
helpful to identify noisy samples and remove them from the dataset. In
addition, it’s possible to compare the datasets by comparing the average
SNR of the worst samples. In order to do so, I used a tool [38] that
implements the WADA-SNR [39] algorithm, which is used to determine
the SNR of speech signals. The values are presented in table 3.1.
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Dataset SNR100(dB)

LJ Speech 16.20
Common Voice -2.79
M-AILABS 20.23

Table 3.1: Comparing the average of the 100 worst SNRs, for each dataset.

I computed the average SNR of the worst 100 samples and not of all the
samples because I found that, with this algorithm, only low values of SNR
were an actual indication of the presence of noise in the recordings. In
fact, there are no noisy samples in LJ Speech and M-AILABS, but they
have SNRs ranging from 16 dB to 100 dB. However, it correctly detected
the noise in the Common Voice recordings, which present a negative value,
meaning that the power of the noise is higher than the power of the speech
signal.

Mozilla’s TTS library [40] offers a notebook for the analysis of speech
datasets, which I used to visualize some interesting statistics. In the next
figures LJ Speech will be compared with M-AILABS.

(a) LJ Speech (b) M-AILABS

Figure 3.1: Plots of the character length (x axis) against the average
duration in seconds (y axis).

In order to synthesize speech at a consistent speed, there needs to be a
linear correlation between the number of characters and the mean audio
duration. In figure 3.1b, M-AILABS shows an almost perfectly linear
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pattern until 150 characters, which correspond to about 10 seconds of
audio. However, it becomes inconsistent with longer sequences. This plot
highlighted the presence of a small subset of outliers that were longer than
10 seconds. Consequently, they have been removed from the dataset, in
order to reduce the duration inconsistencies and possibly avoid out of
memory errors during training.

(a) LJ Speech (b) M-AILABS

Figure 3.2: Plots of the character length (x axis) against the std of the
duration in seconds (y axis).

To ensure consistent speech, it’s also necessary to have a low standard
deviation for the duration of the samples. In Fig. 3.2b there is a glaring
issue: the point on the top has a length of 168 characters and a standard
deviation of 2.8 seconds. Upon further investigation, there are only two
samples with 168 characters; one is 9.2 seconds long and the other one is
14.9 seconds. LJ Speech plot looks better in this case, having most of of
the points with a standard deviation below 1.0.
Figure 3.3 compares the number of samples for each character length.
While the LJ Speech plot follows a smooth Gaussian distribution, the M-
AILABS shows the same issue as before with longer characters. Here the
outliers are clearly distinguishable, since the plot shows that there are very
few samples above 175 characters for the Italian dataset. This was also
visible in the previous plot, where those points have a standard deviation
of 0, suggesting that there is only one instance of them at that character
length.
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(a) LJ Speech (b) M-AILABS

Figure 3.3: Plots of the character length (x axis) against the number of
corresponding samples (y axis).

3.2 VITS
As discussed previously, training a neural TTS model requires a lot of
computational resources. Therefore, I couldn’t just take every possible
state-of-the-art model and train it until I found the perfect one for the
task. I had to make some prior assumptions, excluding some architectures
based on the knowledge acquired during the research. I decided to exclude
autoregressive models based on RNNs, such as Tacotron 2, because of the
slow training and inference speed. Today’s GPUs are meant for parallel
generation, while autoregressive models are based on sequential generation
of the spectrograms, one frame at a time. Since the final objective is to
build a TTS API for podcast synthesis, inference speed is one of the
priorities. Another problem of autoregressive models is error propagation:
due to the sequential nature, an error at a certain step can disrupt the
synthesis of the subsequent steps, given that, during inference, the inputs
are the previously predicted values.
Traditional neural TTS systems are composed of two main stages: the
first one generates a spectrogram from input phonemes/graphemes, the
second one generates a waveform starting from the spectrogram. That’s
done by two separate models. In the last two years, research has started
to move towards an end-to-end approach, where a waveform is generated
directly from text. The first model that I trained is a parallel end-to-end
system, called VITS (Variational Inference with adversarial learning for
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end-to-end Text-to-Speech) [32].

3.2.1 Architecture

Overview of Variational Autoencoders

The architecture, as described by its authors [32], is fairly complex. How-
ever, at its core it uses a variational autoencoder (VAE). Autoencoders
are neural networks that present an encoder-decoder architecture and their
objective is to learn a low dimension latent space that can retain as much
information about the input data as possible. The encoder is a block that
takes an input and compresses it into a latent space; the decoder has to
reconstruct the original input starting from the compressed representa-
tion. During training, the reconstruction loss between the original input
and the decoder output is computed, then the error is backpropagated to
the previous layers. In a variational autoencoder, instead of encoding the
inputs as points in a latent space, they are encoded as a Normal distri-
bution. The encoder predicts two separate vectors, one representing the
mean and the other one the standard deviation. Then, a random point is
sampled from this distribution and fed to the decoder. The training loss
function of a VAE is described as

L(θ, ϕ) = −Eqϕ(z|x) [log pθ(x|z)] +DKL(qϕ(z|x) ∥ p(z)) (3.2)

The first term is the reconstruction loss, while the second term is the
Kullback-Leibler divergence between qϕ(z|x), which is the encoder distri-
bution, and p(z), which is a standard Gaussian. This is a regularisation
term that forces the encoder distribution to be as similar as possible to
N(0, 1), thus preventing the neural network from turning the standard
deviation towards 0 and becoming a standard autoencoder. The KL di-
vergence is a measure of the divergence between two probability distribu-
tions; the smaller it is, the more similar the distributions are. Thanks to
this term, similar input points end up close to each other in the latent
space. The negative of this loss is called Evidence Lower Bound (ELBO);
minimizing the loss corresponds to the maximization of the ELBO.
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VITS

The final loss of the model is a combination of a VAE and a GAN (Gen-
erative Adversarial Network) [41], defined as [32]

Lvae = Lrecon + Lkl + Ldur + Ladv(G) + Lfm(G) (3.3)

The first term is the reconstruction loss between the predicted spectrogram
and the ground truth: Lrecon = ∥xmel−x̂mel∥1. The predicted spectrogram
x̂mel is obtained by upsampling the latent variables z to the waveform ŷ,
through a decoder, then ŷ is transformed to x̂mel.
The second term is the KL divergence, computed as

Lkl = log qϕ(z|xlin) − log pθ(z|ctext, A) (3.4)

The symbol ctext expresses the phonemes extracted from the text, while A
is the alignment. The alignment is a monotonic matrix with dimensions
|ctext| × |z| that represents how long each phoneme is pronounced. The
duration di of each input token is calculated by summing all the columns
in each row of the estimated alignment qj Ai,j. This is used to train a
stochastic duration predictor, whose loss is represented by Ldur. During
inference, the stochastic duration predictor samples the durations for each
phoneme from random noise, then it converts them to integers. This will
make the model synthesize speech with different rhythms from the same
input text. The last two terms of equation (3.3) pertain the adversarial
training process. GANs, in a nutshell, use a neural network as a loss func-
tion. During training, a discriminator network has to distinguish when the
input comes from the ground truth waveform, as opposed to when it comes
from the output generated by the decoder G. The loss of the discriminator
is Ladv(D) = E(y,z)

è
(D(y) − 1)2 + (D(G(z)))2

é
; the loss of the generator

is Ladv(G) = Ez

è
(D(G(z)) − 1)2

é
. The discriminator is used only during

the training process and dropped when performing inference. Lfm(G) is
the feature matching loss, which, as written by the authors, "can be seen
as reconstruction loss that is measured in the hidden layers of the discrim-
inator suggested as an alternative to the element-wise reconstruction loss
of VAEs".

I voluntarily skipped some details, such as how the alignment matrix is
estimated and how each module is implemented, in order to avoid going
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out of scope and to make this presentation less burdensome. For the
interested reader, I suggest referring to the original paper.

3.2.2 Training
I used the PyTorch implementation provided by the authors of the model
[42]. The dataset has been splitted into 13775 samples for training, 3444
for validation and 3444 for testing. The grapheme-to-phoneme conversion
wasn’t embedded into the model, so I used an open source library [43] to
convert the transcriptions into phonemes following the IPA (International
Phonetic Alphabet) [44] convention. I used the AdamW optimizer with
β1 = 0.8, β2 = 0.999 and ϵ = 10−9, a batch size of 32, and for the FFT I
used a standard window size of 1024, hop size of 256 and 80 Mel frequency
bins. The learning rate starts at 10−3 and is decayed exponentially by a
factor of 0.9991/8 every epoch. The authors trained their model for 800K
steps, using 4 NVIDIA V100 GPUs. However, I didn’t have access to
such resources. I trained this model on Google Colab , which provides a
NVIDIA Tesla T4 for free for a maximum of 12 hours. Initially, I wanted
to train it for a number of steps comparable to the paper, however, it
took around 20 days just to get to 260K steps. To be fair, they were not
continuous, since Colab locks GPU access to an account for some hours
after using it for a large chunk of time. Nevertheless, by looking at the
validation loss and listening to the audio samples generated by the model,
most of the learning occurred in the first 50K steps. Afterwards, the loss
went down very slowly with minimal improvements on the perceived audio
quality. I will analyze the results and discuss the evaluation metrics in
chapter 5.

3.3 FastPitch
While VITS (3.2) was training on Google Colab, I decided to experiment
with a completely different model. I needed something that was on par
with the state-of-the-art, while providing a fast inference time and possibly
a faster training speed with respect to VITS. FastSpeech [27] was one of
the first models that allowed both parallel training and inference, and,
as it can be seen in Figure 2.7, several models based on FastSpeech have
been subsequently developed. In the end, I chose FastPitch [45], since it’s
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well integrated in the NeMo framework [46]. NVIDIA NeMo is an open
source framework that allows to easily build speech AI models for Natural
Language Processing, Automatic Speech Recognition and Text-to-Speech.
It also provides pre-trained models, even though they are only available
in the English language. FastPitch is not an end-to-end model, like VITS,
but it’s an acoustic model. It synthesizes Mel spectrograms from input
text, so it takes care only of a part of the pipeline. Another model, a
vocoder, will be used to convert FastPitch’s output to the final waveform.
This model is described in section 3.4. Below, a high level representation
of the full pipeline.

Figure 3.4: Pipeline for converting input text into a waveform.

3.3.1 Architecture
The most important component of the architecture is the Feed-Forward
Transformer block (FFT). Transformer models were first introduced in
the paper "Attention is all you need" [47] and they have replaced LSTM-
based models for most applications. Nowadays, they are extensively used
in natural language processing models, like BERT [48] and GPT [49]. The
Transformer is an encoder-decoder network based on the attention mech-
anism, which allows the neural network to understand relationships in the
input data. The main advantages of Tranformers over Recurrent Neural
Networks and LSTMs are their parallel nature and the self-attention mech-
anism. The fact that they are not sequential means that they can process
entire sentences in parallel, making them faster to train, while RNNs and
LTSMs process input sentences word by word. The self-attention mech-
anism allows Transformers to understand the relationships in the inputs
and what parts of the sentence to focus on, by using score matrices. Since
they don’t rely on a hidden state to capture the dependencies with previ-
ous words, they don’t forget past context like RNNs do.
Coming back to FastPitch, a Feed-Forward Transformer block contains a
Multi-Head attention module and a 1D convolution. The Multi-Head at-
tention consists of a stack of parallel self-attention layers, called "heads".
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There are two FFT stacks. The first stack is composed of N FFT blocks
that operate on the input tokens, while the second stack contains T FFT
blocks that operate on the output spectrogram frames. The first FFT
stack produces a hidden representation h, used to make predictions about
the average duration and pitch of each input phoneme. The hidden repre-
sentation is fed into the duration predictor and the pitch predictor mod-
ules:

d̂ = DurationPredictor(h), d ∈ Nn

p̂ = PitchPredictor(h), p ∈ Rn (3.5)

Then, the pitch is projected to match the dimensionality of the hidden
representation h ∈ Rn×d and added to h. The resulting sum g is discretely
upsampled according to the duration values coming out of the duration
predictor and passed to the last FFT stack, which produces the output
Mel spectrogram sequence ŷ:

g = h+ PitchEmbedding(p)
ŷ = FFT ([g1, ..., g1ü ûú ý

d1

, g2, ..., g2ü ûú ý
d2

, ..., gn, ..., gnü ûú ý
dn

]) (3.6)

During training, ground truth p and d are used, while the predicted p̂ and
d̂ are used during inference. The final loss is simply a Mean Squared Error
between the ground truth values and the predictions:

L = ∥ŷ − y∥2
2 + α∥p̂− p∥2

2 + γ∥d̂− d∥2
2 (3.7)

According to the paper, ground truth durations are estimated from the
training dataset using a pre-trained Tacotron 2 model, while the ground
truth pitch values are obtained through acoustic periodicity detection [50].
Figure 3.5 illustrates the high level architecture of FastPitch and the FFT
block.

3.3.2 Training
As previously mentioned, I used the open source NVIDIA NeMo [46] repos-
itory, which has an implementation of FastPitch. This model required a
different format (JSON) compared to the standard LJ Speech one, so I
had to reformat the dataset accordingly. The model also required the
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(a) FastPitch [45]. (b) FFT block [27].

Figure 3.5: Architecture of FastPitch.

ground truth duration of each transcript, so I iterated over the entire
dataset once and I computed the durations using librosa [51], a popular
audio processing library. The final format of each transcript is

{
"audio_path": "<audio_path>", "text": "<text>",
"normalized_text": "<normalized_text>",
"duration": <duration>, "is_phoneme": <0/1>

}

The model was trained on HPC@POLITO [52], a high performance com-
puting cluster of Politecnico di Torino. The cluster utilizes the SLURM
[53] scheduler to manage the requests coming from different users. A user
can submit a job by means of a sbatch script, where he has to specify how
long the job will run and the hardware resources required, such as number
of CPU cores, amount of memory, how many GPUs and what partition
to run the job in. Furthermore, one can also specify a log file and an
email in order to receive notifications from SLURM about the status of
the submitted job. After the submission, the job is added to a queue with
a priority value assigned. When the hardware resources become avail-
able and there are no higher priority jobs, the submitted job is finally run.
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The cluster uses Intel Xeon Gold 6130 2.10 GHz CPUs and NVIDIA Tesla
V100 GPUs. Even though multi-GPU training is supported, I avoided it
in order to reduce the queue waiting times. The standard configuration I
used was 1 GPU and 12 CPU cores, in order to speed up the data loading
by parallelizing it in multiple processes, as supported by PyTorch’s Dat-
aLoader. Since the NeMo library required some sotware packages that
were not installed in the cluster, I had to run my jobs inside a Singular-
ity [54] container. First, I built a Singularity image that encapsulate the
OS environment and all the packages required by NeMo. Then, given that
an image consists just of a single file, it was sufficient to copy it to my
home folder inside the cluster and specify in the sbatch script to run my
job inside a container, generated from an instance of that image.
As for the training hyperparameters, I’ve used the AdamW optimizer with
β1 = 0.9, β2 = 0.999 and ϵ= 10−8, a batch size of 32 and the Noam learning
rate scheduler, with a starting learning rate of 10−3. The Noam scheduler
increases the learning rate linearly for a number of warm-up steps (1000
in this case) and then decreases it proportionally to the inverse square
root of the step number [47]. The FFT parameters consisted of a window
size of 1024, hop size of 256 and 80 Mel bands. I trained it for more than
4M steps, stopping when the validation loss got stale. Figure 3.6 shows
the Tensorboard plot of the total validation loss. Unfortunately, the logs
of the first training run have been accidentally deleted, hence the plot
starts at around 400K steps. The loss curve has different colors, where
each colored segment represents a different run of the training job in the
cluster. Since it wasn’t possible to know in advance how long the training
would have taken, I scheduled most of the jobs to last from 24 to 48 hours.
Training checkpoints were saved every 5 epochs if there was an improve-
ment in the validation loss, in order not to lose training progress at the
end of each job.

3.4 HiFi-GAN

The model that I’ve chosen for the vocoder, which takes care of the last
stage of the pipeline, is HiFi-GAN [55].
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Figure 3.6: Validation loss of FastPitch at each training step.

3.4.1 Architecture
HiFi-GAN is a Generative Adversarial Network that consists of one gen-
erator and two discriminators. The generator is a convolutional neural
network that takes a Mel spectrogram as input and upsamples it until
the length of the output sequence matches the temporal resolution of the
raw waveform. The upsampling is done through transposed convolutions.
After the convolutional layer, there is a module that the authors called
Multi-Receptive Field Fusion (MRF), which contains a stack of paral-
lel residual blocks with different kernel sizes and dilation rates, in order
to capture different patterns in the inputs coming from the transposed
convolution layer. The MRF module returns the sum of the outputs of
the residual blocks. The two discriminators used are called Multi-Period
Discriminator (MPD) and Multi-Scale Discriminator (MSD). The Multi-
Period Discriminator is composed of several sub-discriminators, each ac-
cepting samples of input audio spaced with period p. The periods are
set to [2, 3, 5, 7, 11], so that each sub-discriminator captures different
implicit structures. The 1D shaped input audio of length T is reshaped
into a 2D array of size (T/p, p), to which 2D convolutions are applied.
The sub-discriminators are convolutional neural networks with a leaky
ReLU activation function. While MPD operates on disjoint samples of
raw waveforms, MSD operates on smooth waveforms. The Multi-Scale
Discriminator has three sub-discriminators operating on different input
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scales: raw audio, x2 average-pooled audio and x4 average-pooled audio.
Average pooling is an operation used to downsample the input data; a fil-
ter slides over the inputs and computes the average of the values contained
in the region covered by the filter. Each sub-discriminator is composed of
a stack of strided and grouped convolutional layers with leaky ReLU ac-
tivation. An illustrations of the sub-discriminators, taken by the original
paper, is provided in Figure 3.7.

Figure 3.7: MSD on the left, MPD on the right.

The losses for the discriminators and the generator are

Ladv(D;G) = E(y,z)
è
(D(y) − 1)2 + (D(G(z)))2é

Ladv(G;D) = Ez

è
(D(G(z)) − 1)2é (3.8)

where z is the Mel spectrogram and y is the ground truth waveform. The
discriminators are trained to classify with 0 the samples coming from the
generator, and with 1 the ground truth samples. The generator is trained
to trick the discriminator by making it classify its outputs to be close to
1. In addition, a Mel spectrogram loss and a feature matching loss are
added to the generator loss. The Mel spectrogram loss is the L1 distance
between the Mel spectrogram of a waveform synthesized by the generator
and the spectrogram of the ground truth waveform:

LMel(G) = E(y,z) [∥ϕ(y) − ϕ(G(z))∥1] (3.9)
where ψ is the function that transforms a waveform into a Mel spectro-
gram. This loss helps the generator to synthesize more realistic waveforms.
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The feature matching loss is the L1 distance between the hidden features
of the discriminator when the input is the outcome of the generator as
opposed to when it’s the ground truth waveform:

LF M(G;D) = E(y,z)

 TØ
i=1

1
Ni

∥Di(y) −Di(G(z))∥1

 (3.10)

where T is the number of hidden layers and Ni the number of features in
the i-th layer of the discriminator. The final losses for the generator and
the discriminator are written as a summation of the contributions of all
the K sub-discriminators:

LG =
KØ

k=1
[Ladv(G;Dk) + λfmLF M(G;Dk)] + λmelLMel(G)

LD =
KØ

k=1
Ladv(Dk;G)

(3.11)

3.4.2 Fine-tuning
Since the inputs of a vocoder are Mel spectrograms, it’s not necessary to
train it from scratch in the target language. I started from a pre-trained
checkpoint, provided by NeMo, that was trained on the LJ Speech dataset
and I re-trained it on the M-AILABS dataset, with a low learning rate.
This process is called fine-tuning. The low learning rate is needed to avoid
too large changes in the weights of the pre-trained model. Otherwise, the
features learned from the original training would be disrupted.
Before launching the fine-tuning, I had to generate the input Mel spectro-
grams. That was accomplished by taking the last FastPitch checkpoint
and using it to predict synthetic Mel spectrograms for each record in the
dataset. However, the FastPitch checkpoint uses ground truth alignment
and durations calculated from the dataset records instead of the predicted
ones, to make sure that the Mel spectrograms used by Hifi-GAN have the
same duration of the true spectrograms. The transcriptions were modified
too, so that each one pointed to its corresponding Mel spectrogram:

{
"audio_path": "<audio_path>", "text": "<text>",
"normalized_text": "<normalized_text>",
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"duration": <duration>,
"mel_filepath": "<path_to_mel_spectrogram>"

}

The hyperparameters were similar to those used for training FastPitch,
except that in this case there was no learning rate scheduler, and the
learning rate was set to 10−5. In Figure 3.8 I plotted the total validation
loss of the generator (3.11).

Figure 3.8: Total validation loss of the generator.

I fine-tuned it for around 650K steps. By looking at the plot of the val-
idation loss, it may look like stopping at around 200K would have been
enough. However, from a subjective evaluation, the output waveform
sounded cleaner after 600K steps, despite the tiny improvements in the
loss, while the previous checkpoints had some noticeable artifacts.
In chapter 5 I will compare the results coming out of this pipeline against
the end-to-end VITS model (3.2). Before that, I will explain how I fine-
tuned FastPitch to a new voice.

3.5 Transfer learning on an automatically
generated dataset

Once the models were trained, it was possible to exploit a very powerful
concept: transfer learning. It consists of taking a model, pre-trained on a
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particular dataset, and re-train it on a new dataset, with the goal of trans-
ferring the knowledge learned by that model and apply it to a slightly dif-
ferent task. It’s particularly useful when dealing with small datasets, since
training a complex network from scratch with very few samples usually
leads to severe overfitting. This phenomenon occurs when the network be-
comes very good at predicting training samples, but performs poorly with
unseen data, like a student that has learned a subject by heart, without
understanding its actual meaning. Instead, by using a pre-trained model
and by lowering the learning rate, the original weights are changed just
slightly, or "tuned", thus allowing the network not to lose its generaliza-
tion capabilities. Another advantage is the decreased training cost, since
it usually takes way less steps to fine-tune a pre-trained network on a new
dataset rather than training it from scratch.
Unfortunately, in the TTS domain, pre-trained models are rare, with the
exception of the English language. This scarcity of pre-trained models
stems from a scarcity of datasets. Big tech companies have the resources
to build high quality proprietary datasets, and they offer commercial
TTS services in almost every language. However, public domain datasets
mostly come from public domain audiobooks, sourced by LibriVox. This
leads to, at least, three significant disadvantages:

1. absence of high quality datasets for most languages;
2. absence of any kind of dataset for the least common languages, the

so-called "low-resource" languages;
3. archaic language of the public domain audiobooks.

By looking at the structure of the LJ Speech dataset, it’s possible to see
why datasets are such a rare resource. Building them is an expensive
procedure. The first step, which can be done automatically, is to split
the original audio file into segments of length ranging from 1 to 10 sec-
onds. Then, if the audio file comes from an audiobook, the text has to
be segmented into transcripts and aligned to the corresponding audio seg-
ments. According to the LJ Speech website [15], the text was matched to
the audio manually, which means it was done by humans. Given that it
contains 13100 clips, that’s a very laborious task that not only requires a
team of people and a considerable amount of time, but it’s also prone to
fatigue errors. An alternative is to start from the transcripts, then use a
forced alignment tool [56] in order to determine, for each transcript, the
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corresponding time interval of where it occurs in the audio. Once that
the beginning timestamp and the end timestamp have been computed for
each transcript, one could generate the clips by splitting the original au-
dio according to the timestamps. This approach is certainly better than
the manual one, but it requires a prior existence of the transcripts. In
case one wanted to generate a dataset from a public speech or a podcast,
he would still need to manually transcribe the entire recording. Instead,
it would be ideal if we could automatically generate transcripts from the
recordings.
At this point, I could fill two needs with one deed: the main goal was to
fine-tune the models on a female speaker, but I also wanted to do it on an
automatically generated dataset. During my research, I came across an au-
tomatic speech recognition model that had just been released in September
2022 by OpenAI, called Whisper [57]. It’s based on an encoder-decoder
Transformer architecture and it was trained on a large (680,000 hours)
multilingual dataset. According to the paper, it achieves a human-level
transcription accuracy and it’s incredibly robust, even in the case of noisy
data. OpenAI publicly released the code as well as pre-trained models of
five different sizes. The only thing missing was the dataset. I couldn’t find
recordings of female speakers with decent quality on LibriVox, so I looked
for other resources, until I found this [58] audiobook on the Liber Liber
portal. In order to test Whisper’s capabilities, I tried to generate some
transcriptions of the first chapter, using the large model, and I compared
them with the actual book. The results were utterly impressive, given that
the model was even able to match correct punctuation and capitalization,
with minimal mistakes. Finally, I wrote a small script to implement the
following pipeline:

1. split the input audio into sentences below 10 seconds, where silences
are detected. This was done using an audio manipulation library [59];

2. feed each sentence into Whisper to generate the corresponding tran-
scription;

3. generate the normalized transcriptions, using the text normalizer de-
scribed in chapter 4;

4. write the results into a file with the LJ Speech format.

I applied the above procedure to the first 10 chapters of the audiobook
and I was able to automatically generate a dataset in a matter of minutes,
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without any manual intervention; I just did a quality check of the tran-
scriptions.
I fine-tuned the FastPitch model, previously trained on the M-AILABS
dataset, on the new dataset using a learning rate of 2×10−4. As it can be
seen in Fig. 3.9a, the validation loss stabilized after around 300K train-
ing steps. I managed to fine-tune FastPitch on the new voice in a single
18-hour run on the hpc cluster. This clearly shows the benefits of transfer
learning, especially when comparing this graph to the 4+ million steps
required to train FastPitch from scratch (Fig. 3.6). For fine-tuning the
Hifi-Gan model, I followed the exact same approach described in 3.4.2. I
let it run for 24 hours, and the trend of the loss ended up looking similar
to Fig. 3.8. After fine-tuning both models I was able to successfully gen-
erate speech with the new speaker’s voice. I will show the comparison of
the fine-tuned speech against the original in chapter 5.

(a) FastPitch. (b) Hifi-Gan.

Figure 3.9: Validation losses of FastPitch and Hifi-Gan during fine-tuning.

In this last section I explored the powerful results that can be obtained
by combining cutting edge speech AI technologies. I also did some local
testing on YouTube videos, and I was able to effortlessly generate datasets
out of them. This shows how, as of today, it’s possible to clone the voice
of anyone who has recordings of their talks available on the internet. Con-
sidering that state-of-the-art TTS models generate speech which is almost
comparable to human quality, this may raise some ethical issues. One
with malicious intents could generate fake conversations of public figures,
making them say words that were never actually spoken. Even if the
technology itself is neither good nor bad, but the moral is in the way peo-
ple use it, it’s important to remember that with great power comes great
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responsibility. A good use of this technique would be to make it easier
for low-resource languages to build their own TTS datasets, effectively
needing only some hours of recordings since the transcriptions can now be
generated automatically, without human intervention.
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Chapter 4

Text Normalization
So far I’ve examined the core elements of a TTS pipeline. After the long
training procedure described before I had two models that were able to
synthesize small sentences with fairly good results. However, as soon as
I tried to fed them some news articles, I quickly realized there was still
a lot of work to be done. One of the major issues was the inability to
pronounce numbers in the Italian language. The model was using the
default normalizer of the NeMo library, which is implemented in English.
This led to weird pronunciation issues, since the model was trying to read
numbers expanded into English words (e.g. 357 -> "three hundred and fifty
seven") with an Italian accent. The only solution was to build a custom
Italian text normalizer.
In this chapter, I will present the basic theory and a high level explanation
of how the text normalizer works.

4.1 Weighted finite-state transducers
The text normalizer that I implemented is based on weighted finite-state
transducers (WFSTs). WFSTs are a special case of finite state machines
[60]. A finite state machine is a model described by a finite number of
states connected by arcs. The machine can be only in one state at a given
time. Arcs represents the transitions between the states. Each transition is
associated with an input; when the input matches, the machine transitions
into a new state. An example is presented in Figure 4.1. The notation is
input : output and the letter ϵ stands for NULL.
One of the many applications of finite state machines is to use them to
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Figure 4.1: Vending machine represented as a finite state machine. Until
a user inserts money, the machine is in state 0 and returns nothing.

represent regular expressions. We can build a FSM that is able to accept
or reject a given string. Such a machine has no outputs, hence it’s usually
called finite state acceptor (FSA) [60]. An FSA accepts a given string if
there exists a path from a starting state to an end state, and the labels of
the arcs traversed by that path correspond to that string [60]. In Figure
4.2 I illustrate a FSA that matches the regex "ˆt(ts|o+p)$".

A weighted finite-state transducer (WFST) is formally defined [60, p. 14]
as a seven-tuple consisting of:

1. a finite set of states Q,
2. a start state s ∈ Q,
3. a semiring (K,m,o, 0, 1),
4. a final weight function ω ⊆ Q× K,
5. an input alphabet Σ,
6. an output alphabet Φ,
7. a transition relation δ ⊆ Q× (Σ ∪ {ϵ}) × (Φ ∪ {ϵ}) × K ×Q.

A WFST maps from an input string x ∈ Σ∗ to an output string y ∈ Φ∗

with weight k ∈ K as long as complete path with weight k, input x and
output y exists.
The superscripted asterisk ∗, called Kleene star, is the set defined by the
infinite union of zero or more concatenation of a string with itself. A
complete path begins with a transition from the initial state s to a new
state q1, with input label x1, output label y1 and weight k1 and it ends in
a final state.
WFSTs are a generalization of FSTs, and FSTs are a generalization of
FSAs. In fact, a FST is a WFST that only has weights of 0 and 1,
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Figure 4.2: FSA for "ˆt(ts|o+p)$". It accepts {tts, top, toop, ...}.

while a FSA is a FST that always returns ϵ. An example of a WFST is
depicted in Fig. 4.3. The convention is to use a bold circle to represent the
starting state, a double circle to represent the final state, and the syntax
is input : output/weight.

Figure 4.3: Trivial example of a WFST verbalizing "good morning" as
"buongiorno" with P = 0.8 and as "buon giorno" with P = 0.2.

4.2 Implementation
In order to integrate my normalizer in the NeMo framework [61], I had to
build two WFSTs:

1. a classifier that assigns a semiotic class to each token;
2. a verbalizer that renders the output of the classifier in a conventional

written form.

For example, considering the sentence: "l’inflazione acquisita è pari al
+8,0%", the classifier splits it into the following tokens:

["l’inflazione", "acquisita", "è", "pari", "al", "+8,0%"].

then, it labels each token with a class:
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tokens { name: "l’inflazione" }
tokens { name: "acquisita" }
tokens { name: "è" }
tokens { name: "pari" }
tokens { name: "al" }
tokens { measure { positive: "true" \

decimal { integer_part: "otto" \
fractional_part: "zero" } \

units: "percento" } }

The verbalizer renders each token in written form:

tokens { name: "l’inflazione" } -> l’inflazione
tokens { name: "acquisita" } -> acquisita
tokens { name: "è" } -> è
tokens { name: "pari" } -> pari
tokens { name: "al" } -> al
tokens { measure { positive: "true" \

decimal { integer_part: "otto" \
fractional_part: "zero" } \

units: "percento" \
} } -> più otto virgola zero percento

finally, the results are combined into the sentence: "l’inflazione acquisita
è pari al più otto virgola zero percento".
For the implementation of the WFSTs, the Python library Pynini [62] is
used. The class "name" is the default one; in the next sections, I will cover
the rest of the classes.

4.2.1 Cardinal
The first class to consider is the "cardinal" class. This one is also the foun-
dation for the following classes; therefore, being able to translate numbers
into words is the number one priority. The approach (derived from [63])
is to divide the problem into two tasks: factorization and verbalization.
First, the digit string is re-written as a sum of products of powers of 10
(factorization); then, each component of the factorization is verbalized.
For example, the digit 357 is factorized as 3 × 102 + 5 × 101 + 7; then,
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the verbalizer maps 3 to "tre", 102 to "cento", 5 × 101 to "cinquanta", 7 to
"sette".
Implementing this in Pynini is fairly straightforward, but there are a few
special cases to handle. The first step is to write the factorizer. With
Pynini, it’s possible to insert a power of 10 after each input digit. The
following example will explain it better than my words:

2002100324 -> 2[E9]0[E2]0[E1]2[E6]1[E2]0[E1]0[E3]3[E2]2[E1]4

I decided to support numbers up to 10 digits. A string longer than 10 is
simply read digit by digit. Shorter digit strings are padded with zeros at
the beginning, in order to match the length of 10 digits expected by the fac-
torizer. After the factorization, each power of 10 preceded by a 0 (0[E*])
is deleted. However, 0[E3] is deleted only if it’s preceded by E[6], and
0E[6] is deleted only if preceded by [E9]. Then, all the instances of "0" are
deleted. So, the string above becomes: 2[E9]2[E6]1[E2][E3]3[E2]2[E1]4.
To verbalize the string, it’s necessary to build a mapping for all the units
and the powers of 10:

1 -> uno
2 -> due
3 -> tre
...
1[E1] -> dieci
2[E1] -> venti
3[E1] -> trenta
...
1[E1*]1 -> undici
1[E1*]2 -> dodici
1[E1*]3 -> tredici
...
[E2] -> cento
[E3] -> mila
[E6] -> milioni
[E9] -> miliardi

The -> can be read as "is transduced into". All the occurrences of [E1]
that are preceded by "1" and followed by a digit are converted into E[1*],
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since numbers between 11 and 19 have a unique verbalization. Besides
that, the language gets redundant, since every number is read as factor
+ digit. There is an exception for the [E1] factors followed by 1 and 8,
being the only digits that, in Italian, begin with a vowel. They are read
without the desinence of the factor; for example, 21 should be written as
"ventuno" and not as "ventiuno". Other exceptions to take care of are the
translations from plural to singular of "mila", "milioni" and "miliardi" when
they are preceded by "uno", but not when "uno" is preceded by "cento",
like in "centouno mila". All of these corner cases can be handled in Pynini
by adding rewrite rules. It’s possible to write a series of rules and then
compose them together. The output coming out of each rewrite rule is
the input of the next rule.
If the cardinal number is preceded by a sign, the classifier takes care of
it by adding "negative: ’true’" or "positive: ’true’", depending on the sign
("-" or "+"). The verbalizer transduces "negative: ’true’" into "meno" and
"positive: ’true’" into "più". To summarize, here is an example of the
entire process:

1. input: -128;

2. classifier: cardinal { negative: "true" integer: "centoventotto" };

3. verbalizer: meno centoventotto.

4.2.2 Ordinal
The classifier of ordinal numbers is derived from the cardinal classifier.
Ordinal numbers are used to represent positions. In Italian, with the ex-
pection of the first 10 digits, which have unique names, to turn a cardinal
number into an ordinal the desinence of the cardinal is removed, then
"esimo" is appended to the end (it can be also "esima", "esimi" or "esime"
depending on the context). It’s sufficient to append this rule to the cardi-
nal classifier and to correctly map the first ten digits to the corresponding
ordinal names. For example:

1. input: 1º;

2. classifier: ordinal { integer: "primo" };

3. verbalizer: primo.
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4.2.3 Decimal
Just like the ordinal class, also the decimal class derives from cardinal.
When the classifier sees a number containing a comma, it uses the cardinal
classifier to classify the number before the comma as "integer_part", and
the number after the comma as "fractional_part". The verbalizer inserts "
virgola " between the verbalization of the integer and the fractional part.
Example:

1. input: 12,1;
2. classifier: decimal { integer_part: "dodici" fractional_part: "uno" };
3. verbalizer: dodici virgola uno.

4.2.4 Electronic
This class handles URLs and email addresses. If the input is an email,
it’s split into a "username" and a "domain" class. If it’s an URL, only the
"domain" class is used. If the email or URL contains numbers, those are
read digit by digit. The URLs require additional care; for example "http"
and "www" are converted to "acca ti ti pi" and "vu vu vu". The verbalizer
takes care of expanding punctuation marks into words, as well as inserting
"chiocciola" (@) between the username and the domain. Example:

1. input: nome@email.it;
2. classifier: electronic { username: "nome" domain: "email.it" };
3. verbalizer: nome chiocciola email punto it.

4.2.5 Measure
This class makes direct use of the cardinal and decimal classes as sub-
classes. The mappings between the units of measurement and the ex-
panded words are written in a TSV (tab-separated values) file that is
loaded as a FST. Example:

1. input: 12,1m;
2. classifier: measure { decimal { integer_part: "dodici" fractional_part:

"uno" } units: "metri" };
3. verbalizer: dodici virgola uno metri.
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4.2.6 Money
This class handles currency. If the value is a decimal number, the integer
part is associated to the major currency (e.g., dollars) while the fractional
part is associated to the minor currency (e.g., cents). The major and minor
currencies are written in TSV files loaded at runtime. If the fractional part
contains a single digit, it has to be padded with a 0 in order to be correctly
transduced. If the integer part is "1" or the fractional part is "01" it’s also
necessary to use the singular version of the currency. If the integer part
is "0", it shouldn’t be read. Example:

1. input: 12,1€;
2. classifier: money { integer_part: "dodici" currency_maj: "euro" frac-

tional_part: "dieci" currency_min: "centesimi" };
3. verbalizer: dodici euro e dieci centesimi.

4.2.7 Time
This class could be implemented in a number of different ways, since the
way we prefer to read time is subjective. Some prefer a 12 or 24 hour
base, or use the convention of counting backwards from the hour. For
the sake of clarity, I avoided this convention and I chose a 24 hour base.
Common patterns, such as "un quarto" to mean "15" and "mezzogiorno"
have been properly handled. The classifier uses the cardinal class to read
the numbers before ":" as hours and the numbers after ":" as minutes. The
verbalizer takes care of translating the numbers into the common patterns
mentioned above, as well as inserting "e" between hours and minutes.
Example:

1. input: 12:30;
2. classifier: time { hours: "dodici" minutes: "trenta" };
3. verbalizer: mezzogiorno e mezza.

4.2.8 Whitelist
This class handles all the special cases that don’t have a standard cate-
gory. These are written in a big TSV file, used by the classifier to map
an input string into its corresponding expansion. Basically, it works as a
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dictionary. Since they have no category, the tokens are assigned to the
class "name". In the TSV file I also added some loanwords, which are com-
mon words borrowed from the English language, with their corresponding
pronunciation (e.g., "computer" -> "compiuter"). Example:

1. input: sr.;
2. classifier: name: "signor";
3. verbalizer: signor.

The whitelist dictionary is still incomplete, since there are probably many
corner cases I didn’t think about. The only way to improve it is to find
new words that need to be normalized through extensive testing.

The final classifier is built by performing a union operation over all the
classifiers (WFSTs) described above. A weight is assigned to each clas-
sifier, and the shortest path policy is followed. Hence, the more general
classes, such as cardinal, have a larger weight than the more specific classes
which should have the priority. Similarly, the final verbalizer is obtained
from a union of all the verbalizers.
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Chapter 5

Evaluation

5.1 MOS
The most common metric to evaluate Text-to-Speech models is the Mean
Opinion Score (MOS) [64]. It’s a subjective metric that comes from the
telecommunications field. A group of subjects has to rate the quality of
the synthesized speech on a scale ranging from 1 to 5, where 1 is bad and
5 is excellent. The MOS is just the arithmetic mean of all people’s ratings:

MOS = 1
N

N−1Ø
i=0

Ri (5.1)

where Ri is the i-th rating and N is the number of total ratings.

5.2 Method
In order to compare the models that I had previously trained, I created a
survey with the following structure:

• 6 ground truth sentences;
• 6 sentences generated from the VITS model;
• 6 sentences from FastPitch + Hifi-GAN;
• 6 sentences from FastPitch + Hifi-GAN fine-tuned on the female speaker.

The sentences were taken from the test dataset and randomized. Each
subject had to evaluate the quality of each sentence independently. All
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the audios have been normalized in order to make the volume even. I also
collected age, gender and audio source (PC speakers, smartphone speakers,
headphones, earbuds) in order to see if there were some factors influencing
the ratings. I sent the survey to my acquaintances and I received a total
of 40 answers.

5.3 Results
Since each sentence has 40 ratings and there are 6 sentences for each
model, there are a total of 240 ratings per model. The MOSs are showed
in table 5.1.

Model (dataset) MOS

Ground Truth (M-AILABS) 4.38 ± 0.09
VITS (M-AILABS) 3.03 ± 0.14
FastPitch + Hifi-GAN (M-AILABS) 3.98 ± 0.12
FastPitch + Hifi-GAN (woman [58]) 3.09 ± 0.13
Ground Truth (LJ Speech) [32] 4.46 ± 0.06
VITS (LJ Speech) [32] 4.43 ± 0.06
FastPitch (LJ Speech) [45] 4.08 ± 0.13
Hifi-GAN (LJ Speech) [55] 4.36 ± 0.07

Table 5.1: MOS computed with 95% confidence interval.

In the upper half of the table there are the models that I trained, while in
the lower half there are the MOSs taken from the original papers. First,
by comparing the datasets, it appears that M-AILABS has a lower per-
ceived quality with respect to LJ Speech. This could be due to an issue
present in some clips of M-AILABS, where the final part of the audio is
sometimes cut off too early, resulting in a truncation of the last spoken
word. Another reason is the presence of two outliers, as shown in Fig. 5.1,
that are pulling down the MOS.
The VITS model received the lowest score with the M-AILABS dataset,
while its paper reported the highest score among all the models. By listen-
ing to some sentences synthesized by VITS, the voice sounds very natural
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but it has a tendency to mispronounce some phonemes, lowering its intel-
ligibility. To be fair, I trained it for 260K steps (3.2.2), while the paper
trained it for 800K steps, so it’s possible that training it for longer would
have fixed that issue; however, the validation loss was already stalling af-
ter around 50K steps.
FastPitch and Hifi-GAN achieved the best results on M-AILABS, ending
up very close to the score of the FastPitch paper. To be precise, the Fast-
Pitch paper calculated its score using WaveGlow for the vocoder [45]. Hifi-
GAN, instead, was tested with ground truth spectrograms as inputs [55].
The model fine-tuned on the female speaker scored higher than VITS, but
lower than the original. The reason could be due to the voice sounding not
as natural as the M-AILABS model. Since there were no mispronuncia-
tions, I believe that the issue was in the vocoder. Since the fine-tuning was
done on a smaller dataset, adding more data would probably be enough
to improve the results and make the voice sound smoother.
Given this results, I decided to use FastPitch and Hifi-GAN as the final
models for the podcast generation task. However, as explained in the De-
ployment chapter (6), I still made sure to support different models as well
as different voices, in order to simplify future changes in the architecture.

Figure 5.1: Boxplots of the scores of each model.

It’s also possible to find out if there is any correlation between factors
(age, gender, audio source) and ratings by plotting the distribution of the
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ratings for each factor.

(a) Men. (b) Women.

Figure 5.2: Boxplots for each gender.

By comparing men and women ratings (Fig. 5.2), it appears that women
gave higher scores on average, independently of the model. Before drawing
any strong conclusion, it’s important to specify that only 5 surveys out of
40 were from women, so this might just be a coincidence.

(a) 18-24. (b) 25-44. (c) 45-64.

Figure 5.3: Boxplots for each age group.

In Fig. 5.3 there are the plots for the different age groups. Apparently,
the group 25-44 has stricter scores, with a lower spread. The oldest group
(45-64) has the highest medians, suggesting a difference in the way speech
is perceived compared to younger people.

Finally, looking at the ratings from different audio sources (Fig. 5.4), it
seems that people who listened to the audios using headphones or earbuds
gave higher scores compared to people that used PC or smartphone speak-
ers. This could just mean that using headphones or earbuds improved the
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listening experience, increasing the perceived quality of the synthesized
speech.

(a) PC speakers. (b) Mobile speakers.

(c) Headphones. (d) Earbuds.

Figure 5.4: Boxplots for each audio source.
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Chapter 6

Deployment

Once the models had been trained and evaluated, the last task was to
wrap them inside a microservice. As explained in the introduction (1),
the end goal is to create podcasts. At this moment, though, the models
are only able to synthesize short sentences of around 10 seconds; hence,
an additional infrastructure is needed.
At a high level, the microservice should manage the following workflow:

1. a user selects a list of articles he wants to listen to;

2. the unique identifiers of the articles are sent to the microservice;

3. given the article ids, the service grabs the full text of each article from
the database;

4. the full text is split into sentences that are sent to the ML models to
perform inference;

5. the resulting audios are concatenated to obtain the full spoken version
of the article;

6. the audios of the articles are joined together to form the final podcast,
with a jingle played in between each article;

7. the podcast is sent to the user.

Obviously, it would be undesirable to hang the user while performing
inference, therefore the service will return a podcast identifier that the
client can poll to check the request status.
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6.1 Technologies
The service is composed of a total of 4 Docker containers, managed by
Docker Compose. A Docker [65] container is a process isolated from the
rest of the system. A container is an instance of an image, which is a
file that packages everything needed to run the application, including the
environment and the dependencies. The main advantage is portability,
since a docker container is going to run in the same way on every ma-
chine, provided that the host kernel is compatible. An image is built from
a file containing a set of instructions, called Dockerfile. Docker Compose
is an orchestration tool that allows to easily run multi-container appli-
cations and it creates a network that enables containers to communicate
with each other. It uses a YAML configuration file to setup and configure
the containers.
The first container runs a FastAPI application. FastAPI [66] is a web
framework for building Python APIs. The FastAPI container interacts
with two other containers. One container runs mongod, which is the
MongoDB server. The other container runs RabbitMQ. RabbitMQ [67]
is a message broker based on the Advanced Message Queuing Protocol
(AMQP), responsible of managing the communication between FastAPI
and the service that performs inference. Its role will be explained more
clearly in the next section. The last container runs the Python application
that performs inference using the trained models.
In the Docker Compose configuration file I added options to tune the
number of inference processes and to allow the selection of different TTS
models. Since we currently perform inference on the CPU and not on the
GPU, I relied on a multi-processing solution. Each process is a consumer
waiting for RabbitMQ messages. A high level schema of the full archi-
tecture and the interactions between the containers is illustrated in Fig.
6.1.

6.2 Functionality
The FastAPI service exposes 3 endpoints:

1. The first endpoint allows the client to submit the list of articles that
will constitute the podcast and the voice of the speaker he prefers.
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Then, a new document is added to the Podcast collection, contain-
ing the podcast identifier, the request status (NotStarted, Running,
Succeeded, Failed), the list of article identifiers submitted and some
other minor information. Afterwards, the FastAPI service (producer)
forwards the podcast id to the task queue managed by RabbitMQ
and returns the podcast identifier to the client. RabbitMQ pushes the
message to the first available consumer. The inference process that
receives the message updates the podcast status to "Running", queries
MongoDB to retrieve the list of article identifiers given the podcast
id and it retrieves the body of the corresponding articles. Each arti-
cle is sent to the synthesizer, which is a wrapper that splits the full
text into sentences, runs inference on each sentence using the TTS
model specified in the Docker Compose configuration file, and returns
the audio resulting from the concatenation of all the synthesized sen-
tences. Finally, the podcast is composed by concatenating the audio
of each article with a jingle and it’s saved on the disk as a mp3 file.
In the end, the podcast file path is updated and the status is set to
"Succeeded". If everything goes as described, the consumer sends an
acknowledge to RabbitMQ to signal that the message can be deleted.
Otherwise, if the inference process fails before sending the acknowl-
edge, RabbitMQ re-queues the message. Since the inference process
is expensive and the number of articles is finite, a small optimization
that was implemented is the caching of the audios of the articles. In
this way, if more users request the same article, it won’t be generated
from scratch every time, but only for the first user that requests it.

2. The second endpoint is used by the client to retrieve information about
his podcast request, such as the inference status, by using the pod-
cast identifier retrieved from the response of the first endpoint. This
endpoint can be polled until the status is "Succeeded", which indicates
that the podcast file is ready to be downloaded.

3. The third endpoint allows the client to download a podcast, given the
podcast id.

As a last note, there was an interesting issue with the synthesis of the
sentences. The model had the tendency to sometimes skip the last word
of a sentence. This was resolved by adding some extra padding text at
the end of each sentence and then cutting the padding part from the
synthesized audio. By listening to some ground truth samples from the
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training dataset, I noticed that in some of them the audio was cut off
too early, while the speaker was still pronouncing the last word. My
hypothesis is that the model learned to mimic a similar behaviour during
training. This could be an example of how defects on the training data
can be picked up by a neural network, sometimes in unpredictable ways.

Figure 6.1: The TTS microservice.
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Conclusions and future
work
In this work I presented a novel application of Text-to-Speech systems to
the task of automated generation of podcasts of news articles. I discussed
the current state of the TTS field and the criteria that I followed to select
which models were worth training. Then, I described in detail the training
process, as well as my attempt to fine-tune the trained models on a new
speaker’s dataset. This allowed me to highlight one of the biggest prob-
lems for open source TTS, which is the lack of public domain datasets.
In fact, there are many languages which don’t have any public datasets
and are forced to use commercial TTS services, built with proprietary
datasets. I presented a way to mitigate this problem, thanks to the recent
progresses in the automatic speech recognition field, which enabled me
to automate the creation of the transcriptions of the speech recordings;
with this technique I built the dataset used for fine-tuning. Afterwards,
I explained in detail how I implemented an Italian text normalizer that
could handle most of the corner cases presented in news articles, such as
numbers, units of measure, currencies and loanwords. Then, I discussed
the evaluation method, based on the MOS, and I compared the results of
my trained models against the state-of-the-art. Despite the limitations,
both in terms of dataset quality and computational resources, the models
achieved decent results on short sentences, with one model not too far
from the state-of-the-art. In the end, I presented the architecture of the
microservice that was built around the TTS models, discussing the com-
plete pipeline for synthesizing news articles and combining them into a
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podcast.
I believe that there are several areas of improvement. The first issue is
that, even if I chose parallel TTS models, the training and inference cost
is still significant. This prevented me from experimenting with custom
architectures or comparing the performances of more models, since that
would have required an extensive amount of time. There is a need for
more lightweight neural TTS models.
Another critical aspect concerns the robustness and generalization capa-
bilities. I trained the models on a public domain dataset which made ex-
tensive use of words that today would be considered archaic. The domain
of the training dataset is very different from the domain of the articles,
hence there are some combination of phonemes and words which result
in a poor synthesis. This is especially true for loanwords. The approach
of handling them in the text normalizer, hard coding their pronunciation
in a dictionary, works most of the times. However, it’s not perfect, since
the pronunciation of some English words is impossible to get right. In the
future, it would be interesting to experiment with a multilingual model,
trained on a dataset composed of different languages. This might also
improve the generalization capabilities of the model.
To conclude, I hope that I’ve shed some light on the current state of TTS
research, exposing some of the problems that are still unsolved. I think
that, in the near future, it will be possible to generate podcasts which will
be indistinguishable from human speech, or maybe even better, seeing how
quickly the machine learning world is progressing. My wish is that some
of the aspects discussed in this work will be helpful for future research.
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