
Politecnico di Torino
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis
In collaboration with California State University Los Angeles

System Integration, Localization and
Control Implementation for an

Autonomous Mobile Service Robot

Supervisors
Prof. Marcello CHIABERGE
Prof. Marina MONDIN

Candidate
Lorenzo SEGHESIO

December 2021

Abstract

Autonomous mobile robots are a technology extensively used in many different
industrial and home applications. The ability to move towards a desired location
without human intervention is one of their fundamental features as well as the
final goal of this thesis work. The project is part of a larger one carried out
by InnoTech System L.L.C. together with the California State University, Los
Angeles. The development of this service robot has different purposes such as
escorting people in airports and hospitals as well as food delivery in university
campuses. After a theoretical introduction on the autonomous mobile robots
and the background material, the document focuses on the main topics of the
work: the system integration between different robot components (using I2C and
UART communications), the LIDAR localization using Scan Matching and AMCL
algorithms and the path planning using the A* search algorithm, implemented with
a path tracking and a control logic in order to reach a goal position on a mapped
environment. The thesis concludes with the description of the robot hardware
structure, of the test phase and of the obtained results.

Summary

The thesis work regards the implementation of the autonomous motion on a service
mobile robot. The project carried out at the California State University Los Angeles
in collaboration with InnoTech Systems has the goal of building a fully autonomous
mobile machine for different applications with the general aim of helping people
in professional and everyday tasks. The robot is designed for assistive purposes
like escorting people in environments such as hospitals and airports, medicines
and food delivery for healthcare and on university campuses, assisting visitors’ or
helping schoolchildren cross the street once the school bus has driven them to their
destination.
The thesis focuses on three main aspects of the robot development: system integra-
tion, LiDAR mapping and localization, and the final path planning and tracking
algorithms implemented through a MicroController Unit (MCU) control logic. The
work described in this thesis is the continuation of a previous one done by different
students and professionals that built the robotic platform and started implementing
the robot localization and the path planning algorithms. More precisely the robot’s
autonomous reaching of a desired location in a mapped environment is the final
contribution of this thesis to the project.

Autonomous Mobile Robots, AMRs, are machines that move unbounded and
without human intervention throughout known or unknown environments. These
systems are able to detect their surroundings through sensors, to extract informa-
tion from the obtained data such as the map in which they are navigating, their
localization, and the presence of obstacles. Then, once they receive a target location,
they are able to plan a path and execute a motion till the final destination has
been reached. Furthermore, these robots can have many extra features that make
them suitable for a wide range of different applications. In the thesis, the essential
navigation functionality of the machine is studied, implemented, and tested, since
the first step to make an autonomous robot useful and usable is obviously to make
it move by its own.

The first part of the work regards the system integration between different robot

ii

components, in particular the communication between the onboard computer, the
Nvidia Jetson Nano, and the MCU, the Texas Instruments C2000 Piccolo MCU
LAUNCHXL-F28069M. The computer operates all the main logic of the robot,
metaphorically it is its brain. The sensor data collection and elaboration, the map
building and localization, the path planning and path tracking are all implemented
thanks to the Jetson Nano codes. The ROS framework has been used, coding all
the source files in C++ and a minority in Python, on the Ubuntu software of the
device. The MCU, instead, is used for the motion implementation of the robot,
the one-by-one path points reaching. Its role can be compared to the one of a
cerebellum for a human. Thanks to a negative feedback, it is able to control the
motion and make the robot behave as precisely as possible and desired. Its logic is
developed as a Matlab Simulink model that thanks to the Code Generation of the
used program was transformed into a C/C++ code, deployed inside the MCU.
The communication between these two system components is clearly essential. The
MCU actuates the motors for making the robot move according to a proportional
logic to the feedback error between the actual robot position and the desired one
(the path point to be reached). The MCU needs to receive from the Jetson Nano
the computed robot position in the map and the coordinates of the desired goal
point. The other important signals sent from the computer to the MCU are the
enable signals that activate the MCU control logic only once the path points and
the localization are correctly and reliably computed and sent and the keyboard
commands for the keyboard motion of the robot. The transmission of this infor-
mation is done using the Inter Integrated Circuit (I2C). This serial, synchronous
communication method has been chosen since, thanks to its clock signal, it allows
synchronization between master and target that leads to a more precise message
comprehension. The I2C message structure helps increase the complexity of the
transmitted information (a byte is used in order to identify the kind of message sent
and the other ones for the main information, which could also be an unstructured
float number). The CAN communication is not used since it is not supported by
the Jetson Nano device. The message creation is coded in the master device (the
computer) while the unpacking and data reconstruction are implemented on the
target device (the MCU).
A second communication channel is used in order to check the goodness of the first
one and in general of the MCU control logic. This is done because the live simulation
on Simulink is too slow for a good debug comprehension of the inner behavior of
the device. This additional communication is the Serial Communication Interface,
SCI, protocol (also known as Universal Asynchronous Receiver-Transmitter, UART,
communication). This serial and asynchronous communication method allows us
to retrieve the inner signals of the MCU checking and debugging its functionality.
Thanks to the second communication channel a series of wrong data reception was
noticed in the transmission of the different information, probably due to the high

iii

traffic of transmitted messages. As a consequence, for the localization coordinates,
an outlier rejection logic has been implemented in the MCU in order to reject the
wrong receptions that could prevent the robot from a good motion. While for
the other messages sent through I2C a feedback control of the reception has been
developed in order to make the computer publish such messages till they are not
correctly received.

The second part of the work focuses on the environment mapping and robot lo-
calization using a LiDAR sensor (Laser Imaging Detection And Ranging), the
Slamtech Rplidar A3. The mapping phase is done by exploiting the Hector Slam
package. Thanks to a Simultaneous Localization and Mapping, SLAM, logic the
robot is able to obtain a good map of the environment, saving it in a PGM image
file and a YAML file containing the map information.
After this mapping phase, an Adaptive Monte Carlo Localization (AMCL), is used
for localizing the robot in the mapped environment in which the robot is navigating.
This algorithm needs to be used together with odometry localization of the robot,
since the AMCL is a discrete localization method and so it is used as a powerful
correction to the continuous localization methods (such as the odometry), that
usually became less and less accurate as the total movement increases, due to
integrative errors. In our case, instead of the odometry, we decided to use a scan
matching logic as a continuous source of robot localization, that can be shown to
lead to better localization performances (reducing the integrative errors).

The last part of the project is about the path planning implementation over the
pre-obtained map and the subsequent path tracking point by point. After the
decision of the objective position in the known environment, the path is computed
using the A* search algorithm. In order to avoid unwanted obstacles and wall
crushes, before the path logic is launched, the map undergoes a process of obstacle
boundary increase. Once the path is obtained a specific tracking node has the
role of deciding the closest path point to be reached by the robot according to
its actual position in the map, publishing this point over the I2C channel for the
MCU actuation of the motion. The various goal point coordinates published on the
communication channel are formerly expressed in a useful reference frame, aligning
the path with the map and the robot localization.
As previously reported the final motion actuation is a MCU prerogative. This
allows the robot to reach the single path point given by the tracking node. Once
this localization is reached the goal position is updated with the following path
node. This keeps it going till the final localization is reached by the robot.
The motion control done by the MCU is based on a negative feedback in which
the robot linear and rotational speeds, and so the motor speeds control (done by
tuning the Duty Cycle of the motor control square wave), are proportional to the

iv

error between the actual robot localization and the desired position, weighted on
suitably tuned gains.

In conclusion, the different designed features’ functioning has been checked. The
communication between the two devices is reliable enough thanks to the developed
outlier rejection and feedback transmission check technologies leading to a low
number of incorrect data receptions. The system is also able to correctly map and
localize itself in the environment with an average accuracy of 10 cm during the
motion. Even the path planning logic correctly computes a good obstacle-free path.
Furthermore, the MCU control logic is proven to be able to lead the machine to
the desired location in simulation.
In the end, a final test has been run, checking the overall robot behavior during the
autonomous motion till the desired location. Unfortunately, the control logic had
to be moved from the MCU to the on-board computer, due to the microcontroller’s
low computational speed. Anyway, the used control logic is the same, so its nice
functioning attests to the goodness of its logic. From the test, it has been evinced
that the robot is able to autonomously move following the path and reaching the
final destination with a good proximity to the path points. This path closeness
can be tuned by changing the path point reaching parameter Threshold (T), which
defines when a single path point is considered reached. Varying this T parameter
also changes the qualitative goodness of the robot motion (expressed as smoothness
and rapidity of the navigation). A lower T leads to a better following of the ideal
path, but a slower and less smooth and harmonious motion, while a higher T gives
a more approximate path tracking but also a faster reach of the final destination
with smoother navigation at a constant speed. So this T parameter can be tuned in
order to obtain a trade-off between the closeness of the obstacle-free path tracking
and the qualitative goodness of the motion.

To summarize, the thesis’ aim was to make a robot able to autonomously move to
a required location. This goal was achieved. The work remains open to future im-
provements, such as the design of a more robust control logic, a local path planning
avoidance of unexpected obstacles, and the addition of more sensors (integrated
through a sensor fusion algorithm) for improving the robot localization performance.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Thesis motivations and context . 1
1.2 Objective and methodologies . 4
1.3 Original contribution . 5
1.4 Thesis outline . 6

2 Background Material 7
2.1 I2C and UART communications . 7

2.1.1 I2C communication protocol 7
2.1.2 UART communication protocol 11

2.2 Simultaneous Localization And Mapping 14
2.2.1 Hector SLAM and Scan Matching algorithm 16

2.3 Adaptive Monte Carlo Localization 19
2.4 Path Planning using A* algorithm search 23

3 System Integration 27
3.1 On-board computer and microcontroller connection using I2C com-

munication . 27
3.1.1 Data sent from the on-board computer to the MCU 28
3.1.2 I2C communication protocol for data sending 29

3.2 UART communication for microcontroller check, debug and signals
feedback . 33
3.2.1 UART extracted signals . 34
3.2.2 UART Message creation logic 35

3.3 Outlier rejection logic for the localization coordinates 37
3.4 Feedback sending control for the I2C messages 42

vii

4 Laser Mapping and Localization 44
4.1 Laser mapping of the environment using Hector SLAM 44
4.2 Hector SLAM pose used as virtual odometry 47
4.3 AMCL implementation in the obtained map 48

5 Path Planning and Control Logic 51
5.1 Map processing through boundary increase 51
5.2 A* search algorithm for path planning 53
5.3 Reference frames alignment . 54
5.4 Path Tracking logic . 56
5.5 MCU data sending . 56
5.6 Robot autonomous navigation control logic 57

6 Tests and Results 62
6.1 Robot hardware . 62
6.2 Project final test . 64
6.3 Results . 70

6.3.1 Considerations . 75

7 Conclusions and Future Developments 78
7.1 Conclusions . 78
7.2 Future developments . 79

A A* pseudo-algorithm 81

Bibliography 83

viii

List of Tables

3.1 Data organization according to the I2C message structure 31
3.2 UART messages structures . 36

5.1 Control gain tuned values . 61

6.1 T values in the different tests . 69
6.2 RMSE values comparison. 73
6.3 Results summary table . 75

ix

List of Figures

1.1 InnoTech robot picture . 3

2.1 Example of I2C application . 9
2.2 A complete data transfer . 10
2.3 Two UART devices connected to each other with data bus 12
2.4 The UART packet . 13
2.5 The UART transmission between transmitter and receiver devices . 14
2.6 Front-end and back-end SLAM system division. The back-end can

provide feedback to the front end for loop closure detection and
verification. 15

2.7 Hector SLAM on RViz desktop view. On the left the beginning of
the motion, on the right the motion end with the final map and the
robot path . 17

2.8 Hector SLAM ’ghosting’ error. 18
2.9 Monte Carlo Localization phases . 21
2.10 Adaptive Monte Carlo Localization algorithm 22
2.11 Series of images of AMCL for a mobile robot. From top-left to

bottom-right the number of updates increases and so the localization
accuracy . 23

2.12 A* algorithm path computed example. 26

3.1 Simulink scheme representing the outlier rejection logic for x and y
signals . 39

3.2 Simulink scheme representing the outlier rejection logic for angle signal 40

4.1 standard frames for mobile robots in the ROS environment 46
4.2 Frames and transformations published during the AMCL localization

using Hector SLAM as virtual odometry. 48
4.3 Two different robot localization tests. 50
4.4 Frames tree in ROS during the robot localization. 50

5.1 Map with added boundaries in dark grey. 53

x

5.2 Map with computed path using A* algorithm. 54
5.3 Image and Map frames and coordinates. 55
5.4 Static gain negative feedback control system conceptual scheme. . . 57
5.5 Differential drive robot scheme. 58
5.6 DC versus linear speed plot. 59
5.7 Simulated robot motion using Simulink. 61

6.1 Top view of the InnoTech robotic platform 63
6.2 Robot devices scheme with the connections. 64
6.3 Final test map. On the left the real environment, on the right the

corresponding occupancy grid map 66
6.4 RViz display of the different topics and frames 67
6.5 Occupancy grid map with the A* computed path 68
6.6 Graph showing the nodes (as ellipses) and the topics (as arrows) of

the entire ROS control logic . 69
6.7 Ideal, measured and AMCL paths plot (T = 0.15 m) 71
6.8 Ideal, measured and AMCL paths plot (T = 0.25 m) 72
6.9 Ideal, measured and AMCL paths plot (T = 0.35 m) 72
6.10 Ideal, measured and AMCL paths plot (T = 0.45 m) 73
6.11 The euclidean error values between each couple of paths, point by

point, in the four different tests. (Planned = Ideal path) 74

xi

Acronyms

AMCL Adaptive Monte Carlo Localization.

AMR Autonomous Mobile Robot.

CAN Controller Area Network.

DC Duty Cycle.

FIFO First-In-First-Out.

GNSS Global Navigation Satellite System.

I2C Inter Integrated Circuit.

IC Integrated Circuit.

IMU Inertial Measurement Unit.

KLD Kullback-Leibler Distance.

LiDAR Light Detection and Ranging.

LRB Localization Ready Bit.

MCL Monte Carlo Localization.

MCU MicroController Unit.

PGM Portable Gray Map.

PRB Path Ready Bit.

PWM Pulse Width Modulation.

xiii

RCU Robot Control Unit.

RMSE Root Mean Square Error.

ROS Robot Operating System.

RX Receiver.

SCI Serial Communication Interface.

SCL Serial Clock line.

SDA Serial Data line.

SLAM Simultaneous Localization and Mapping.

SPI Serial Peripheral Interface.

T Threshold.

TX Transmitter.

UART Universal Asynchronous Receiver - Transmitter.

xiv

Chapter 1

Introduction

The following thesis deals with the design, physical development and testing of
different parts of an Autonomous Mobile Robot (AMR). The robot was already
assembled and its inner logic partially coded by previous years’ students and
professionals that worked for Innotech Systems LLC, the company for which the
project has been developed. My part of the work was mainly focused on the System
Integration, LiDAR mapping with robot localization and Path Planning together
with control logic for reaching a desired position in a known environment. These
different parts lead to final tests in order to check the accuracy of the autonomous
motion of the robot.

1.1 Thesis motivations and context
AMRs represent a class of machines that are able to achieve complex tasks moving
autonomously from human intervention. They perceive their surroundings and are
able to make decisions and interact with the environment according to the received
stimulus and the goal for which they move [1].

Nowadays, the utility of AMRs has become crucial for many different applications.
From home cleaning and management to industrial material movement and orga-
nization [2]. They are used in different contexts assisting human workers helping
them with accessory tasks, making their jobs easier. Another important application
is substituting humans in dangerous environments or for dangerous tasks, thus
reducing the risks for some specific jobs [3].

The basic features of the AMRs can be reduced to four main fields:

1

Introduction

• Perception - the ability to correctly interpret the sensors’ data. It makes the
robot able to extract information from the surroundings.

• Localization and cognition - they consist in the interpreted data computation
in order to obtain a correct robot localization and the consequent robot logic
deciding the actions to take to complete a required task.

• Locomotion - the ability of the robot to move itself. It relies both on the
mechanical features of the machine, but also on other technical criteria such
as maneuverability, controllability, terrain condition, efficiency and stability.

• Navigation - the ability of the robot to move unbounded throughout a real-
world environment reaching a specific location and task. This field implies all
the previous ones for its development.

InnoTech Systems LLC is a company founded in 2018 to provide solutions and
services for a vast array of problems using AI-based systems. Since their foundation,
they have cooperated with the California State University Los Angeles on a wide
number of different projects. This gave the possibility to students like me, to take
part in an actual company reality and work on concrete projects, applying, exploit-
ing, and enlarging the knowledge acquired in the previous years of studies. The
different fields in which InnoTech Systems operates are all linked by the utilization
of robotics and AI solutions for improving the quality of the results. In particular,
their work finds applications in contexts like airports and hospitals for which utility
devices for customers are developed. Also, traffic management systems and retail
stores’ visitors flow analysis are covered by a specific company branch dealing with
Artificial Intelligence.

One of the main works on which they are focusing their research is the realization
of an autonomous motion robotic platform. Its development has different and
heterogeneous applications in more than one field:

• The robot is projected in order to be a good service robot for Hospitals. In
such a context its key role would be to escort and assist people inside of
the building helping them find the right department. It could also deliver
medicines, take care of the patient greetings and assist nurses in their different
tasks. It could also be equipped with some diagnostic equipment taking them
where they are needed.

• The same robot could have applications in airports, for luggage carriage
for passengers and staff, for food delivery during the take-off waiting, for

2

Introduction

escorting travelers till the required terminal and for providing security services
monitoring some specific areas.

• Another useful application is in the university campuses where the robot
can deliver food and goods to Professors and Students in order to ease their
studies.

• Finally, a recent task for which the robot could be useful is helping schoolboys
crossing the street once the school bus has drove them to their destination,
making this action much safer for the children.

The built AMR can be seen in Figure 1.1. As can be seen the robot is constructed
in order to have a touch display on its front part, used for interacting with humans
in order to help them or receive tasks. Then there’s also a basket closed by an
automated door for depositing or taking objects from the robot, so that it can
deliver them where they are needed. In the lower part the entire robot logic is
implemented. The on-board computer, the MicroController Unit (MCU), the
battery, and all the sensors are placed there.

Figure 1.1: InnoTech robot picture

3

Introduction

The work, exposed in this thesis, consisted in developing a portion of this Au-
tonomous Service Robot and testing its behavior as discussed in the following
sections.

1.2 Objective and methodologies
My thesis work is the continuation of a bigger project started by other Politecnico di
Torino students, researchers and professionals for InnoTech Systems collaborating
with California State University, Los Angeles. The main project goal is to create
an Autonomous Service Motion Robot from scratch. The robot will have different
functionalities according to its different applications, as exposed in the previous
section. Its essential feature is to be able to autonomously navigate in a known
or unknown environment, reaching a desired location. This is possible only if the
robot has good sensors for identifying the surroundings and localizing itself on a
pre-obtained map, or, if it is moving in an unknown environment, it is able to map
it and avoid obstacles, localizing itself.
Once this main feature is implemented other additional ones can be added to the
machine in order to make it able to accomplish a wider number of tasks, even more
complex ones.
My objective was to add to the robot this fundamental feature, making it able
to reach a desired location inside a mapped environment. This was implemented
throughout different work parts: a system integration between the MicroController
Unit (MCU), the Texas Instruments C2000 Piccolo MCU in the LAUNCHXL-
F28069M development kit, also addressed as Robot Control Unit (RCU) and the
on-board computer, the Jetson Nano from Nvidia. The LiDAR mapping of the
environment and the consequent Adaptive Monte Carlo Localization (AMCL) of
the machine. The path planning computation using the A* search algorithm, the
path tracking and the MCU control logic development.

The entire work was directly implemented on the InnoTech robotic platform. Every
part of the work coded on the Jetson Nano was written in the C++ code and some
files in Python, the entire logic is developed under the Robot Operating System
(ROS) environment (which is a set of software libraries and tools that help the
designer build robot applications [4]). As regards the MCU logic design, it was
first build as a model on Matlab Simulink from Mathworks, then transformed in
code and deployed to the device thanks to the Code Composer Studio from Texas
Instruments. During the test phase also other programs were used for elaborate the
obtained data (Excel from Microsoft and Matlab from Mathworks) and for remotely
connect and control the on-board computer during the motion (NoMachine software

4

Introduction

from NoMachine)

The method used for the project development consisted in first subdividing the
work in smaller and easier sub-parts, like the first division in the three main exposed
parts. Then the different problems were analyzed one-by-one, studying the neces-
sary theory and thinking of a suitable solution/implementation. After this, a design
part was implemented, together with a simulation of the proposed development
if needed. Then, if the solution seemed correct, a physical implementation of the
studied technology was done on the robot hardware and tested directly on the final
machine.
These general methodology lines helped in organizing in an efficient way the job
and obtaining good results on many different tasks. Once all the different sub-
requirements were faced, a final test of the robot working was done and a series of
measurements were collected in order to check the goodness of the overall obtained
system.

1.3 Original contribution
This thesis is not a theoretical research work, even if obviously the used theory has
been studied and analyzed. It is more a design development of different technologies
on a functioning robotic machine for a company. As a consequence, the aim was
more on applying consolidated technologies and theories to a physical device in
order to make it behave as well as possible for real-world applications. For these
reasons the personal original contribution that I’ve produced for this thesis is more
based on improvements and bug-fixing strategies of the used technologies together
with some integrative developments of the robot logic that contributed to the
overall reaching of the main project goal. These elements are:

• The feedback transmission control for the I2C messages sent to the MCU. It
is implemented thanks to the UART communication. The computer is able to
recognize if the MCU has correctly received the I2C messages, if not it keeps
publishing them till the correct value is present on the receiving device.

• The outlier rejection logic for the MCU localization coordinate messages. For
the localization coordinates that are sent with a high frequency, the previous
control logic is not suitable. A different one was implemented, based on
the rejection of the coordinates too different from the previous received ones
for being physically admissible. The logic starts with a tuning phase of the
localization transmission.

5

Introduction

• The use of the scan matching technology as virtual odometry for the robot
localization, improved by the AMCL one. The Hector Slam package scan
matching algorithm was adapted and used for the purpose.

• The reference system alignment, implemented to express all the different used
coordinates in the same frame. Starting from the Map information contained
in its YAML file the path is transformed from pixels to meters and expressed
in the correct map frame, the same of the localization coordinates.

• The map processing through boundary increase. In order to avoid unwanted
obstacles impact.

• Finally the overall control logic implementation for make the robot moves.
Including the integration between path planning, path tracking and microcon-
troller control logic.

1.4 Thesis outline
After this first introduction to the AMRs, their main features, and applications,
together with the InnoTech Systems’ robot presentation. I will start introducing
the fundamental concepts for my work in a background material chapter. The main
topics will be the two communications used for the system integration between the
robot onboard computer, the Nvidia Jetson Nano and the robot microprocessor.
These two communication methods are the I2C and the UART ones.
After this, the main work of the project is exposed in three different chapters. The
first one deal with the system integration between on-board computer in which the
robot intelligence is set (the localization is computed as well as the path planning
and its tracking) and the robot microprocessor whose goal is to implement the
local motion till the next path goal point with the corrects motor control.
The second part of the project is focused on the LiDAR mapping of a closed
environment and the localization of the robot in such a location. In particular the
AMCL and the scan matching logics were exploited for this goal.
The third topic shown in the document regards the path planning using the A*
algorithm search to reach a desired location in the obtained map and the robot
motion execution thanks to the MCU control logic.
After these parts, a chapter is dedicated to the robot hardware presentation and to
the tests that have been run to check the functioning of the machine. Then the
results are exposed.
Finally, a conclusion chapter resumes the main key points and results of the work
stating also which will be the future developments of the project.

6

Chapter 2

Background Material

In this chapter a theoretical presentation of the main thesis topics is exposed. Only
starting from a consolidated knowledge of the different arguments the design and
development of the various robotic systems was possible. The first section shows the
different communications protocols used in the project for the system integration
part. Then focusing on the robot mapping and localization the SLAM problem is
presented and the Hector SLAM is presented as a possible solution adopted in the
project. Then for the robot localization on a pre-obtained map, the AMCL has
been used and so a chapter is devoted to its theoretical working principles. At the
chapter end regarding the path planning a section is devoted to its development
using the A* algorithm search.

2.1 I2C and UART communications
Communication protocols play an essential role in the organization of the data
exchange between electronic devices. I2C and UART communication protocols
are two serial computer buses used for data transmission. Both technologies have
a quite long history from their invention. During this time of development and
different applications their functionality and reliability have been consolidated,
making them as good choices for Integrated Circuit (IC)s communication, as it is
in our study.

2.1.1 I2C communication protocol
I2C, read as I-two-C or I-squared-C, acronym for Inter-IC, is a multi-master, multi-
target, single-ended serial computer bus [5]. This protocol was invented by Philips

7

Background Material

Semiconductors (today NPX Semiconductors) in the 1982.
In the 2021 this communication protocol was implemented in over 1000 different
ICs manufactured by more than 50 companies. This makes the I2C-bus being
considered a world standard. Additionally, the versatile I2C-bus is used in various
control architectures such as System Management Bus (SMBus), Power Manage-
ment Bus (PMBus), Intelligent Platform Management Interface (IPMI), Display
Data Channel (DDC) and Advanced Telecom Computing Architecture (ATCA) [6].

Since it’s creation the protocol has greatly developed during the years. The original
specification that it was made for was only 100 kHz communications in which only
7-bit addresses could be used. Thus, limiting the number of devices connected
on the bus to 112. Then, in 1992, the first public specification was published,
communication speed was increased to 400 kHz fast-mode offering 10-bit addresses.
Later three additional modes were specified; fast-mode plus at 1MHz, high-speed
mode at 3.4MHz and ultra-fast mode at 5MHz [7].
Most modern microcontroller (MCU) support I2C communication at 400 kHz. The
I2C bus was designed to ease both systems designers and equipment manufacturers
but also to maximize hardware efficiency and circuit simplicity. All I2C-compatible
devices incorporate an on-chip interface that allows them to communicate directly
with each other via a simple two-wire bus [5]. Figure 2.1, illustrates a typical I2C
Bus Connection.

I2C communication uses two bidirectional open-drain lines, Serial Data Line (SDA)
and Serial Clock Line (SCL), pulled up with resistors, typical voltages used are +5
V or +3.3 V. [6]
The clock signal is used to define the bits on the data line. The SDA data bits are
defined during the high state of the clock, while they can change only during the
low SCL state.
Every device connected to the bus is identified by a unique address and can operate
either as transmitter or receiver depending if they send or receive the transmitted
data. A second distinction of the bus connected devices is between controllers
or targets (in the past known as master and slave). The former initiate the data
transfer and generates the clock signal, while the second ones send or receive the
data when addressed according to the controllers requirements. It has to be noted
that these two distinctions are not permanent but related to the single data transfer.

I2C is a multi-controller bus, this means that more than one controller can drive
the transmission. In order to avoid conflicts in the lines control the arbitration
and clock synchronization are implemented. The procedure relies on a AND-wired
connection of the devices on the bus. As regards the SDA line thanks to the
arbitration the first controller to produce a logic one when the other produces a

8

Background Material

Figure 2.1: Example of I2C application

zero losses the arbitration. While for the SCL line the clock is given by the logic
’and’ between all the controllers clocks that are trying to send data, this is the
clock synchronization.

Another important optional feature of the I2C bus is the clock stretching for which
the target can hold down the clock line making the controller adapts to its slower
speed. The target can slow down the entire communication speed holding down
the line every single clock beat or just after a whole byte reception.

The data transfer proceed accordingly to the following steps:

1. If microcontroller A wants to send information to microcontroller B:

• A (controller) starts the communication and addresses B (target)
• A (controller-transmitter) sends data to B (target-receiver)
• A terminates the transfer.

2. If microcontroller A wants to receive information from microcontroller B:

• A (controller) starts the communication and addresses B (target)
• A (controller-receiver) receives data from B (target-transmitter)

9

Background Material

• A terminates the transfer.

In both cases, the controller (A) generates the timing and terminates the transfer.

The data message is built as follows (see Figure 2.2):

• A starting condition. That is a pull down of the SDA line while the SCL is
high.

• The 7 (or 10) bits address that identifies the target to which the controller
want to communicate.

• A Read or Write (R/W) bit that sets if the controller want to send or receive
information form the transmitter. It is followed by an Acknowledge/Not-
Acknowledge (ACK/NACK) bit sent from the target for tell the controller if
it has correctly read the first 8 bits.

• The different data bytes followed each one by an ACK/NACK bit sent by the
receiver as check of the successful reception. The number of bytes per message
is unrestricted. The byte is sent starting from its most significant bit.

• An end condition. a ’low’ to ’high’ transition of the SDA line while the SCL
is ’high’.

Figure 2.2: A complete data transfer

Are summarized now the most noticeable features of the I2C bus protocol that
make this way of communicate a good design choice:

• Only a serial data line (SDA) and a serial clock line (SCL). So only two bus
lines are required; This allows a big material saving.

• Assigning to each connected device an address, each one is uniquely soft-
ware addressable and simple controller/target relationships exist at all times;
controllers can operate as controller-transmitters or as controller-receivers.

10

Background Material

• It is a real multi-controller bus including collision detection and arbitration
avoiding data corruption if two or more controllers simultaneously initiate
data transfer.

• Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100
kbit/s in the Standard-mode, up to 400 kbit/s in the Fast-mode, up to 1
Mbit/s in Fast-mode Plus, or up to 3.4 Mbit/s in the High-speed mode.

• In the fastest Ultra Fast-mode the communication is still serial, 8-bit oriented,
but the data transfer is unidirectional and it works up to 5 Mbit/s.

• An integrated filtering on the chip rejects spikes on the bus data line to
preserve data integrity.

• The number of ICs that can be connected to the same bus is limited only
by a maximum bus capacitance. More capacitance may be allowed under
specific conditions. This can be done increasing the number of bits dedicated
to the addresses. Anyway, to date, with a 10-bit address a maximum of 1008
devices can be connected to the network (some addresses are reserved by the
protocol).

• A large number of devices have a I2C-bus interface already integrated on chip,
like the devices used in our study.

• Except for the physical wiring between the system elements. The communica-
tion is completely software defined and implemented.

• Devices can be added or removed from a system without affecting the other
circuits on the bus.

• The CMOS ICs in the I2C-bus compatible range offer some useful features:

– Extremely low current consumption
– High noise immunity
– Wide supply voltage range
– Wide operating temperature range. [6]

2.1.2 UART communication protocol
The Universal Asynchronous Receiver - Transmitter (UART) is a serial data trans-
mission protocol used to communicate devices serially and asynchronously. UART
is mostly used for short distance and low speed applications [8]. UART identifies
also the IC (embedded in more complex devices or created as a stand-alone ele-
ment) used for implementing the homonym transmission protocol. It contains a

11

Background Material

parallel-to-serial converter for data transmitted from the computer and a serial-to
parallel converter for data coming in via the serial line. The UART also has a
buffer for temporarily storing data from high-speed transmissions [9] implementing
a First-In-First-Out (FIFO) logic.

The UART protocol is serial, which means that the bits are sent one after the
other on a single line, and asynchronous, indicating that the bus has not a clock
synchronizing the communicating devices, which are a-priori tuned to work at the
same baud rate. The allowable difference of baud rate is up to 10% before the
timing of bits gets too far off [10]. The possible baud rates are: 9600 bps, 19200 bps,
38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, 921600 bps, 1000000
bps, 1500000 bps. Some experiments were done reaching 20 Mbps baud rate [11]
but the most commonly used speed is 9600 bps

The bus for the UART is composed of only two wires: the Transmitter (TX) and
the Receiver (RX). The two lines allow a double way communication between
the two connected devices, both can receive and transmit mutually. The wiring
has to be crossed as shown in Figure 2.3. This transmission protocol allows a
communication only between two devices.

Figure 2.3: Two UART devices connected to each other with data bus

The data transmission is operated in the form of packets, Figure 2.4. Their creation
and reading is directly implemented by the UART IC. The packet is composed of
a start bit, the data frame (long form 5 to 9 bits), a parity bit and stop bits [10].

• The start condition: the transmission line is usually kept at a high voltage,
to start the transmission the transmitter pulls down the line to a low voltage
level for one sample time.

12

Background Material

Figure 2.4: The UART packet

• The data frame: it is composed of 5 to 8 bits (9 if the parity bit is not used),
this number is a-priori decided. It contains the data to be transmitted that
are usually sent with the least significant bit first.

• The parity bit: it is sometimes used and it is a way to check the correct data
transmission. If the data to be sent has an even number of ones the parity
bit is set to 1, if the ones are even the bit is set to 0. The receiver counts the
number of ones received in the data frame and if the parity coincides with the
parity bit then the transmission should be free of errors. If, instead, the parity
bit doesn’t coincide, then the receiver knows that something went wrong in
the communication.

• The stop bits: to notice the receiver of the end of the transmission the
transmitter holds to a high voltage level the line for one or two bits duration.

Are presented now the different steps of the UART data transmission between
two connected devices. In this case the component that sends the data is called
transmitter (the transmission line is connected to its TX pin) while the one who
receives it is the receiver (the line is connected to its RX pin), anyway in this
communication protocol allows also the opposite data flow on the other connection
line.

1. The transmitter IC receives data in parallel from a data bus.

2. The transmitter IC creates the packet, adding the start bit, the parity bit and
the stop bit(s) to the data frame.

3. The transmitter sends via the TX pin the packet serially starting from the
start bit. The receiver samples the communication line at the preconfigured
baud rate. The transmission is shown in Figure 2.5.

4. The receiver IC extracts the data frame from the packet and checks the parity
of the message.

5. If the parity is respected, the receiver IC convert the serial message into a
parallel one and send it to other parts of the device.

The UART communication is a simpler protocol than the I2C that doesn’t allows
communication between more than two devices and works usually slower than the

13

Background Material

Figure 2.5: The UART transmission between transmitter and receiver devices

I2C; for these reasons the main communication channel in the system integration
was the I2C one, while the UART was only used for debug and feedback purposes.
Nevertheless this protocol requires to use only two wires, there’s no need for a clock
signal generation (that can sometimes be seen as a drawback), has a parity bit
for the correct transmission check and it is widely used and documented. These
reasons lead us to choose this method for our study as the communication bus
for extracting information from the MCU, together with the fact that both our
devices were predisposed for this protocol and testing the connection worked in a
very good way.

2.2 Simultaneous Localization And Mapping
Simultaneous Localization and Mapping (SLAM) is the computational problem of
mapping an unknown environment while, at the same time, localizing the vehicle
itself in the obtained map [12]. It is one of the main and more essential issues of
autonomous motion robots. For years this problem was considered to be a "chicken
or the egg" issue. Nowadays, thanks to advanced and reliable visual and laser
sensors together with a great development in mathematical and computational
research different approximate solutions have been proposed as possible solution of
this complex problem.

The SLAM is a wide technological system, implemented in various and different
ways. Anyway every SLAM system has two main parts [13] (as shown in Figure
2.6):

• The frontend - The robot always needs some sort of sensor that allows it to

14

Background Material

observe and measure the surrounding environment. Different sensors can be
used as laser ones, stereo camera or sonar sensors, together with odometry
sensors. The frontend takes those measurements and transforms them into
intermediate data such as constraints for optimization problems.

• The backend - The backend takes the intermediate data and uses them to
solve the optimization or state estimation problem. It can localizes landmarks
and understands the map in which the robot is navigating and at the same
time it localizes the robot itself. Even in this case different solutions are
possible such as interlacing algorithms, complex scan-matching algorithms,
extended Kalman filters or particle filters.

Figure 2.6: Front-end and back-end SLAM system division. The back-end can
provide feedback to the front end for loop closure detection and verification.

In a simple description the basic resolutions of the SLAM problem relies on
landmarks or occupancy grid map identifications (these are two possible approaches)
from the sensor data together with the computation of the robot’s own position
in relation to those landmarks or in the grid map (also the landmarks are used
for creating a landmark map of the environment). Then the robot explores the
surroundings. During the motion the robot keeps track of its motion continuously
localizing itself with respect to the landmarks or aligning the senors data with the
gird map. Usually it exploits also odometry data and the control inputs for the
robot motion (but this is not always required). When it has stored enough data of
the surroundings it is able to save a complete map of the location.
The SLAM problem can be reduced to suitably find an expression for the equation
2.1 .

P (xt,mt|Z0:t, U0:t−1) (2.1)

15

Background Material

This is a probabilistic equation, since so are the variables forming it, and describes
the probability at the discrete time t of estimating the robot pose (xt) together
with the landmarks coordinates or grid map values (mt), given a series of robot
control inputs (ut is the single input at time t) and sensors data observations (zt).

A main distinction between different SLAM technologies is due to the main sensor
used for scanning the environment. The two main techniques are [14]:

• Laser SLAM - mainly a LiDAR sensor is used. This sensors have a wide
range of measurement allowing the system to map bigger environments with
smaller motions and the robot position is estimated as accurately as the laser
measurements are (to date the sensors have reached a quite good accuracy).
The problem of this technique is that if the environment has few obstacles and
is pretty simple, the robot easily loses itself. This technology is usually used
in warehouse robots, drones, mining operation robots and self-driving cars.

• Visual SLAM - it is done usually using Stereocameras or Time of Flight
cameras. These sensors better localize the robot in obstacle-free environments,
but have a shorter scan range and are sensitive to illumination changes.

In our study the laser SLAM for the environment mapping, since the robot has
to move in differently illuminated environments and need wider range sensors for
bigger environments such as universities or hospitals. In particular the SLAM
implementation was the Hector SLAM.

2.2.1 Hector SLAM and Scan Matching algorithm
The Hector SLAM software was developed by Kohlbrecher, von Stryk, Meyer and
Klingauf at the Technical University of Darmstadt. It is based on a scan matching
algorithm for a 2D-SLAM resolution using a LiDAR sensor [15]. Hector SLAM
returns a 2D estimate pose of the robot in the mapped environment, setting as the
origin of the frame the motion starting point. The pose is returned at the laser
scan frequency.
The software does not provide a loop closure detection but is anyway accurate
enough for many real-world applications. The scan matching SLAM algorithm
works computing the robot translation and rotation between two following laser
scans according to the closest possible scan matching. In this software the Gaussian-
Newton method is used to solve the scan matching problem by rigidly transforming
the laser points on the existing map that is updated each time. This transformation
is the same used for updating the robot position.
The environment is represented as an occupancy grid map. The laser scans are

16

Background Material

processed in order to use only the ones inside two threshold planes eliminating the
robot’s 6 degrees of freedom and suitably operate on a bidimensional environment.
Since the discrete nature of occupancy grids limit the occupancy probability and
derivatives estimation, an interpolation scheme allowing sub-grid cell accuracy is
employed using a bilinear filtering technique. The last technique used for improve
the software is the one of using multi-resolution maps, in order to avoid local
minima in the scan matching resolution.

Figure 2.7: Hector SLAM on RViz desktop view. On the left the beginning of
the motion, on the right the motion end with the final map and the robot path

This software works in good way with modern twodimensional LiDAR having a
high scan frequency, updating the robot pose and map very frequently (in our case
the Rplidar A3 from SLamtec is used, that has a maximum scan frequency of 20
Hz, that’s not the highest possible value present on the market, but is enough for
our purposes) and operating in a not too big environments (in our cases the inner
rooms of universities and hospital are good sized environments).
Another important feature of this software is that it doesn’t need odometry sensors,
since the motion computed by the scan matching algorithm results very dense
in time and accurate, even more than the one returned by odometry in different
scenarios [15]. This allows the robot to save computational effort. The computed
localization can be used as virtual laser odometry, as discussed in future chapters.
This is a very good property of this technology, since in our robot the wheel
encoders were not available. As a result of these considerations the Hector SLAM
turned out to be a very good choice for our project.
The only drawback of the software is that the robot shouldn’t move too rapidly,
otherwise it is not able to compute the scan matching leading to a ’ghosting’ effect
of the map and of the localization [16], as can be seen in Figure 2.8 Anyway this is
not a big problem for us since the robot won’t move too fast and this software will

17

Background Material

be improved by the use of the AMCL algorithm.

Figure 2.8: Hector SLAM ’ghosting’ error.

It is now reported a more accurate description of the scan matching algorithm
implementation [15]. As previously said the algorithm works aligning the laser scans
with the previously obtained map, so the goal is to find the rigid transformation
(that are the robot pose in world coordinates)

ξ = (px, py, θ)T

In order to minimize

ξ∗ = argmin
ξ

nØ
i=1

[1 −M(Si(ξ))]2 (2.2)

Where we have

• Si(ξ) are the world coordinates of the scan endpoints si = (si,x, si,y)T expressed
as a function of the robot pose:

Si(ξ) =
A
cos(θ) −sin(θ)
sin(θ) cos(θ)

BA
si,x

si,y

B
+
A
px

py

B
(2.3)

• M(Si(ξ)) returns the map occupancy value at the S(ξ) coordinates.

• n is the number of laser scan endpoints.

So 2.2 search for a transformation that gives the best laser scans alignment with
the map.
Given some starting ξ, we have to estimate the best ∆ξ that optimizes the error
measure:

nØ
i=1

[1 −M(Si(ξ + ∆ξ))]2 → 0 (2.4)

18

Background Material

So the first order Taylor expansion of M(Si(ξ + ∆ξ)) is used and the minimum is
found by setting to zero the partial derivative with respect to ∆ξ. The solution for
∆ξ leads to the following Gauss-Newton equation for minimization problem:

∆ξ = H−1
nØ

i=1

C
∇M(Si(ξ))

∂Si(ξ)
∂ξ

DT

[1 −M(Si(ξ))] (2.5)

with

H =
C
∇M(Si(ξ))

∂Si(ξ)
∂ξ

DT C
∇M(Si(ξ))

∂Si(ξ)
∂ξ

D
(2.6)

So an approximation for the gradient of the map (∇M(Si(ξ))) is available, since,
as previously said, a bilinear filtering technique is used to allowing a sub-grid cell
accuracy for the occupancy grid map. While from 2.3 we obtain:

∂Si(ξ)
∂ξ

=
A

1 0 −sin(θ)si,x −cos(θ)si,y

0 1 cos(θ)si,x −sin(θ)si,y

B
(2.7)

Thus, thanks to the (∇M(Si(ξ))) and ∂Si(ξ)
∂ξ

expressions the Gauss-Newton equation
2.5 can be solved giving the ∆ξ the toward the minimum. Repeating the procedure
the algorithm can converge to a minimum, even if this is not guaranteed, due to
the non-smooth linear approximation of the map gradient. Anyway the procedure
works with a sufficiently high accuracy in practice.

2.3 Adaptive Monte Carlo Localization
Adaptive Monte Carlo Localization (AMCL) is an non-Gaussian algorithm that
implements a robot localization on a known map using a particle filter. This
algorithm is the evolution of the previous Monte Carlo Localization (MCL) one
using an additional Kullback-Leibler Distance (KLD) Sampling technique [17].
This software usually use laser sensors for obtain environment information such as
obstacles distance.

AMCL algorithm gives a sampling-based representation of the localization, this
gives different advantages with respect to other techniques [18] [19]:

1. It doesn’t require Gaussian noise distribution assumptions in the model. It
can accommodate almost every noise distribution and motion dynamics.

2. It can process raw sensor measurements, also negative ones. Without the need
of extra processing of the sensor values. It can also elaborate these data at
higher frequencies with respect to the Markov localization.

19

Background Material

3. It is able to globally localize a robot (which means that it is able to localize
the robot without knowing its starting position). Kalman filtering techniques
are not able to do so.

4. In some instances it is also able to solve the kidnapped robot problem (which
means that during the motion the localization fails and the robot is teleported
to a wrong location, thinking to know where it is).

5. It greatly reduces the memory required for its implementation as the one
required by the grid-based Markov localization. It focuses the computation in
the most relevant areas and adapts to the computational hardware resources.

6. Since there’s not a discretization of the state represented by the samples it is
more accurate than the Markov localization using fixed cell size. Finally it is
easy to implement.

The MCL algorithm is a statistical and probabilistic localization algorithm [20] that
estimates the brief belief bel(xt) of the localization by particles. The algorithm starts
from the initial pose bel(x0) iteratively combining it with sensor measurements and
control sequence estimating the posterior robot’s location distribution bel(xt). The
single iteration of the MCL can be divided in the following steps:

1. The initial step is to draw sample M particles (Xt = {x[1]
t , x

[2]
t , ..., x

[M]
t }) on

the map starting from the initial pose belief.

2. The robot moves and odometry and control input data are collected.

3. A prediction of the robot movement is done making the different particles
move, according to the previously stored data. The i-th particle pose belief is
expressed by [17]:

belp(x[i]
t) =

Ú
p(x[i]

k |ut, x
[i]
t−1)bel(x

[i]
t−1)dx

[i]
t−1 (2.8)

where ut is the control input data.

4. Environment data sensors are collected in the robot position. Usually laser
scans.

5. The weight of the single particles is updated according to the measurements
data. The algorithm estimates which would be the data returned from each
particle and gives higher weights to the particles whose data are more similar
to the measured ones. The i-th particle pose is now described by the equation:

bel(x[i]
t) = η p(x[i]

t |yt)belp(x[i]
t) (2.9)

where p(x[i]
t |yt) represents the belief of the i-th particle location according to

the sensor’s data η is a normalization constant [21].

20

Background Material

6. The weight of the particles are normalized to 1.

7. Then the final phase consists in the resampling of the M particles that are
re-organized on the map according to the weighted probability of the singles
previous particles. This procedure is necessary in order to avoid degeneration.

At each time t the robot pose belief can be computed according to the different
particles as in Equation 2.10, where µ[i]

t is the i-th particle weight at time t and
δ (·) is the Dirac delta.

bel(xt) ≈
MØ

i=1
µ

[i]
t δ
1
xt − x

[i]
t

2
(2.10)

The shown MCL phases can be seen in the Figure 2.9.

Figure 2.9: Monte Carlo Localization phases

The AMCL algorithm starts from MCL and optimizes the resampling phase ex-
ploiting the Kullback-Leibler Distance (KLD) sampling technique. In a few words
it decides in a probabilistic way which particles are to maintain and which one
to eliminate suitably tuning the total number M of particles. This makes the
computation faster and the localization more accurate. Another improvement of

21

Background Material

the AMCL is the possibility to solve the kidnapped robot problem. Since, if some
conditions are met, in the resampling phase some extra poses are added into the
map in different places with respect to the robot estimated pose, always according
to KLD theory. This allows the robot to recover from bad localization convergence
and to localize the robot even if the pose changes in a not continuous way.

The AMCL logic is presented as an algorithm in Figure 2.10 . It has to be noticed
that ωavg is the particles weight, ωslow is the Long-term Likelihood Estimates
while ωfast is Short-term Likelihood Estimates. The parameters αslow and αfast

(0 ≤ αslow << αfast) tune the attenuation rates of the exponential filters with
long-term and short-term weights [20].

Figure 2.10: Adaptive Monte Carlo Localization algorithm

Finally is shown a series of images of a AMCL localization implementation in
Figure 2.11 where we can see that the algorithm needs more updates to converge
to a good and robot localization, close to the true one.

22

Background Material

Figure 2.11: Series of images of AMCL for a mobile robot. From top-left to
bottom-right the number of updates increases and so the localization accuracy

2.4 Path Planning using A* algorithm search
Path planning can be considered one of the key features of the AMR. It consists in
finding the optimal or near-optimal from a starting to an end position avoiding
obstacles. The optimality for the path is evaluated according to some indicators
such as the lowest working cost, the shortest walking route, the shortest walking
time, etc. [22]. In general simply the shortest path is chosen.

The path planning can be divided into two different types:

• Global path planning - in this technique the environment is considered
completely known. The obstacles are known in shape and position. So the
algorithm can compute the optimal path offline, before the robot motion.
This technique obviously requires a preliminary phase, the environment map
building. The global path can be computed using two different algorithm
kinds:

23

Background Material

– Heuristic search methods such as Dijkstra algorithm and the A* algorithm
(derived from the Dijkstra one)

– Intelligent algorithm which examples are: bee colony, particle swarm,
genetic, simulated annealing, and so forth.

• Local path planning - differently from the previous type, the local path
planning assumes that the obstacles are unknown. They are recognized during
the motion so the path is computed real-time in order to reach the goal
position. Commonly used techniques are: rolling window, artificial potential
field, and other intelligent algorithms.

In our study we decided to map the environment before leaving the robot to move
autonomously. This is because in the real-world application of the developed robot
the map will be known. So the path planning choice was among the different global
planning techniques. We selected the A* algorithm since it’s one of the most used
algorithms, it allows to obtain the optimal path in many different cases and it is
also very efficient [23].

The A* algorithm was first implemented by Peter Hart, Nils Nilsson, and Bertram
Raphael in 1968 [24]. A* algorithm is an heuristic graph search for state space
algorithm for graph traversal and path search. It is an extension of the Dijkstra
algorithm.
It works according to the following steps:

1. A map is uploaded and so are the start and end points

2. The map is treated as a series of nodes which are divided into pathable and
unpathable nodes according to the obstacles presence in such map points. The
pathable nodes are the ones upon which the logic acts.

3. The logic starts from the start node that is set as the current node.

4. The neighbor nodes to the current one are discovered according to a suitable
neighbor search logic.

5. Each of the neighbor nodes is analyzed computing its distance from the starting
point

6. If the neighbor node has never been considered or if in this analysis the distance
is shorter than the previous time in which the node has been considered, the
neighbor node is added to a priority queue (open_set in A) and its cost
function (f) is updated as the sum of the distance traveled from the start
point (g) and a suitably chosen heuristic function (h) that evaluates the
distance between the actual point and the goal one (as shown in 2.11). At

24

Background Material

the same time a path map is updated in order to be able to reconstruct the
optimal path once the goal has been reached (came_from in A).

f(x) = g(x) + h(x) (2.11)

7. The procedure is repeated from point 4 selecting as the current node the one
in the priority queue that has the lower cost function.

8. The iterations stop when the final node has been reached, so the path that
has led to it is obtained from the camefrom map. Or, otherwise, it ends if all
the possible nodes have been evaluated and the search hasn’t led to the goal
position.

The shown logic can be found in the presented pseudo-algorithm in the appendix
A .
In the A* algorithm two functions can be changed in different applications. The
one that selects the neighbor nodes from the current one and the heuristic function
(that is usually the straight-line distance or the Manhattan one).
In our study the neighbor set construction has been done expanding lines radially
from the current point up to a chosen distance in every direction. The endpoint
of the ray is stored as neighbor node but if the ray collides with an obstacle, the
farthest pathable node from the current point in the ray direction is selected as
neighbor.
As regards the heuristic function we chose the simple euclidean (or straight line)
distance between the current and the end nodes, shown in 2.12 . This function
gives a good computation cost together with good path results.

Distance(a, b) =
ñ

(ax − bx)2 + (ay − by)2 (2.12)

In Figure 2.12 is shown an example of a path computed thanks to the A* algorithm.
In the image can be noted the red thin path and also the radial neighbor set
selection (shown by the green lines).

25

Background Material

Figure 2.12: A* algorithm path computed example.

26

Chapter 3

System Integration

The first problem to be solved in this project was on how to make communicate
in a fast and reliable way the on-board computer and the microcontroller. In
this chapter the solution to this problem is exposed explaining why and how the
I2C communication has been adopted. Then a section is devoted to how the
communication and in general the microcontroller logic has been checked using
a second communication channel, the UART transmission. Finally, the last two
parts expose two different logics used to improve the communication reliability.

3.1 On-board computer and microcontroller con-
nection using I2C communication

The robot logic is implemented in two main devices: the on-board computer, a
Jetson Nano by Nvidia, and the microcontroller unit (MCU), a C2000 Piccolo
MCU in the LAUNCHXL-F28069M development kit from Texas Instruments.
Many different tasks are assigned to the computer, in particular it is required to
retrieve and elaborate the sensor’s data. It has to implement the indoor localization
logic in a known environment, starting from the sensor’s data and computing the
most probable location of the robot in a defined frame. The path planning is
another task that it is required to do, knowing the starting and end position it
elaborates a path on a previously obtained map avoiding the obstacles. It has also
to implement the tracking of the obtained path, sending to the microcontroller the
robot localization and the actual path point to be reached. Meanwhile, it has to
check the feedback data coming from the MCU. Finally it receives the keyboard
movement input, interprets them, and sends them to the MCU. In the future it will
also be required to integrate the data from different sensors and fuse them in order
to obtain a more precise robot localization in different environments. Summarizing

27

System Integration

the computer is where most of the robot logic takes part, like a human brain.
The MCU, instead, has less tasks, but it is not not less relevant. It’s main work
is to compute the required speeds, transformed as Duty Cycles (DCs) of a square
wave to drive the motor wheels (by mean of two suitable motor drivers) to make
the robot reach point by point the entire path till the final destination. This is
done using a suitably designed control logic. It also performs the motion required
from direct keyboard robot control. So the MCU is the device that actuate the
robot motion, like a human cerebellum.

So, both the devices have different and important tasks for the robot autonomous
motion and they require a good mutual communication channel. As mentioned it
is the computer that sends data to the microcontroller that actuates the motion.
In particular the data that the Jetson Nano needs to send to the MCU are the
robot localization, the path point to be reached, the enables signals that starts the
motion when everything is ready and finally the keyboard input when the robot
moves from direct keyboard signals.
It has to be pointed out that at the end of the work, during the overall testing
phase, the MCU turned out to be not performing enough, slowing down the re-
quired computation. So the same control logic that had to be carried out by the
microcontroller was then implemented directly on the on-board computer and the
final DCs were directly sent to the MCU.
Are now presented more in detail the different data to be sent.

3.1.1 Data sent from the on-board computer to the MCU
The data that the Jetson Nano computer needs to send to the MCU are:

1. The robot Localization: It is composed of three floating point numbers, the
X coordinate, the Y coordinate and the Z angle orientation. These coordinates
are expressed in the map frame of the robot logic (these aspects will be
explained in deeper later on).

2. The next path point: It is composed of just two floating point numbers,
the X coordinate and the Y one. It is expressed in the same reference frame of
the localization (the map one), this is important for making operations with
the two data together. It is the actual path point that the robot has to arrive
at, when it is reached the next one is published till the final destination is
achieved.

3. The enable signals: A couple of bit values, the Localization Ready Bit
(LRB) and the Path Ready Bit (PRB). They are used to communicate to the

28

System Integration

MCU that the localization and the next path point are correctly sent and so
the control logic can start and the robot can move.

4. The speed keyboard commands: a couple of numbers that can be 1, 0
or -1 that inform the MCU, with a suitable embedded code, the direction in
which the robot has to move. The first number drives the linear speed: the
value 0 means no motion, 1 moves straight for 1 second at a predefined speed
and -1 makes the same linear motion but backwards. The second number
drives the steering angular speed: 0 means no steering, 1 steer for 1 sec at
a predefined speed counter-clockwise and -1 execute the same motion but
clockwise.

5. The Duty Cycles values: It is a message composed by two floating point
numbers the left DC (DCl) and the right DC (DCr). These values are directly
sent to the MCU to make it execute them as rotational speed of the wheel
motors.

As can be noticed, the data that need to be sent are of different sizes and different
types. This led to the creation of data messages, composed by different bytes
to send more complex and different information, identifying them by an address
number in a way that they can be recognized and treated differently as they require.

3.1.2 I2C communication protocol for data sending
The Inter Integrated Circuit (I2C) protocol is a multi-slave, multi-master, single-
ended serial computer bus. This standard uses only two bidirectional open-drain
lines, the Serial Data line (SDA), for the data transmission, and the Serial Clock
line (SCL), for the clock sending. The I2C is a widely used and reliable bus
as exposed in the dedicated section in the Chapter 2, where also more detailed
technical information can be found.
This communication protocol was chosen as the best way to make the on-board
computer and the MCU communicate, since:

• It is a well known and widespread, fast enough and reliable communication
protocol.

• With respect to other protocols, thanks to the clock synchronization, the
master-target communication data are more easily comprehensible.

• It is organized in messages, as we need in order to send the different data
kinds.

29

System Integration

• Thanks to the devices addressing logic of the protocol, only two lines are
required to make a communication between many controllers and targets. A
new device just needs to be attached to the two bus lines (SDA and SCL)
saving cable for complex wirings.

• Last but not least, this protocol is compatible with the two devices that
we need to make communicate. They already have an integrated circuit for
the I2C signals handling and built-in software resources for dealing with the
communication. (the Jetson Nano is not CAN protocol compatible unless the
use of some additional extension, while for the SPI protocol it requires some
kernel modification)

So, in our case, the Jetson Nano computer is the controller that leads the commu-
nications and sends data to the target MCU. The data to be sent are organized
according to the protocol of the chosen communication bus. The messages in the
I2C are composed of a starting condition, 7 or 10 addresses to recognize the target
to which the controller wants to communicate (in our case 7 is more than enough
having till now just one target and one controller). Then there are the data bytes,
followed each one by an acknowledge bit (we choose to use 4 data bytes that are
enough for our usage) and a final end condition.
The previously exposed data that needs to be sent are then organized in such a
message structure as follows in Table 3.1.

30

System Integration

I2C Message organization

Data Target address Byte 1 Byte 2 Byte 3 Byte 4

Localization - X 0x08 Data address 0x01 Sign Integer part Fractional part

Localization - Y 0x08 Data address 0x02 Sign Integer part Fractional part

Localization - Z 0x08 Data address 0x03 Sign Integer part Fractional part

Next path point - X 0x08 Data address 0x05 Sign Integer part Fractional part

Next path point - Y 0x08 Data address 0x06 Sign Integer part Fractional part

Keyboard motion commands 0x08 Data address 0x0A Linear command Angular command (Not used)

Enable signal 0x08 Data address 0x0B LRB PRB (Not used)

DCr 0x08 Data address 0x10 Sign Integer part Fractional part

DCl 0x08 Data address 0x11 Sign Integer part Fractional part

Table 3.1: Data organization according to the I2C message structure

As can be seen from the Table 3.1 the first byte of each message is the data address
that uniquely identifies the kind of message. The correspondence between address
and message type is known both by the controller and by the target.

The data sent as sign, integer and fractional parts are originally floating point
numbers that are unstructured in order to be sent via single bytes.
The logic is to divide the floating point number in its sign, the integer part and
the fractional part multiplied by one hundred and send these three values as three
different bytes coding the numbers as data type int8 (int8 represents a signed
integer number stored in 8 bits). The type int8 is able to store numbers from -127
to 128. In this way the sign is sent as -1 if the number is negative and 1 if it is
positive. The integer part is extracted from the floating point number and the
fractional one too and then multiplied by 100, rounded to the closer integer number
and saved as int8 byte. In this way the maximum and minimum numbers that can
be sent are + 128.99 and - 128.99, with an accuracy of 0.01. These limitations are
not restrictive for anyone of the floating point data numbers. The localization and
next path points numbers are expressed in meters, so for our applications we won’t
have values higher than ± 128.99 m with respect to the map frame in which the
coordinates are expressed and also the accuracy of 1 cm is good enough for our
actual applications. As regards the DCs values they are sent in percentage, so they

31

System Integration

can go from -100 to + 100 and an accuracy of 0.01 percent is more than enough.
If in future applications higher coordinates values will be required simply using
the uint8 (uint8 represents an unsigned integer number stored in 8 bits) type
instead of the int8 one could enable the values to reach ± 255.99 m. If even higher
values coordinates will need to be sent, a similar logic to the fractional part but
applied to the thousands and hundreds can be implemented by adding an extra
byte to the message and sending after the sign the thousands and the hundreds
divided by 100 and then the tens and units. Doing this we can send numbers from
- 9999.99 to + 9999.99. Another possible thing to do is to increase the accuracy of
the sending, adding an extra final byte to the message using the exact same logic
used for increase the integer part value but applied to the fractional one reaching
an accuracy of 0.0001.

This messages are then received by the MCU which first first check the data address
in order to understand which data kind it has received and then processed to build
up again the original data values.
For the keyboard motion and the enable signal messages, since the bytes are already
the final data values, no operations are done and they are directly used as they
arrive. Just for the enable signals a check of the signal is done: if the value is
not 0 or 1 it is reject and the old value maintained, in order to exclude wrong
transmissions that could affect the robot working.
Instead the floating point numbers data that are unstructured in the three bytes
are then reconstructed in the original values, by multiplying the integer part by
the sign and adding to the resulting number the fractional part divided by one
hundred.

Finally, the I2C communication and the related message creation/reading were
directly implemented on the two software. This was done by setting the suitable
Simulink block for the I2C reception on the model used for create the C code to
be deployed inside the MCU and calling the kernel functions for the Jetson Nano
computer on the C++ codes of the ROS logic nodes to send data through the
I2C bus pins of the device (In the ROS logic a node is a process that performs
computation [25], it is the basic operating part of the system). Then the physical
wiring was done between the corresponding SDA and Serial Clock line (SCL) pins
of the MCU and on the on-board computer.
The obtained communication system was tested and debugged.

32

System Integration

3.2 UART communication for microcontroller
check, debug and signals feedback

After different tests in the final part of the study, trying to check the autonomous
motion logic, a need for a real time view of the MicroController Unit inner signals
was noticed. The real time simulation of the microcontroller using Simulink wasn’t
useful since it requires too much elaborations to the MCU and so all the logic is
slowed down and not real.
A good way to know in real time what is happening inside the Texas Instruments
Launchpad was to use a second communication channel in order to extract from it
some relevant signals in order to check the functioning of the device.
A second communication channel was used since on the I2C a good amount of data
was already sent from the on-board computer to the MCU, so adding data exchange
in the reverse way could have overloaded the channel, but more importantly a
second channel was used since also the I2C communication logic needed to be
verified.

The second communication channel chosen was the Universal Asynchronous Receiver
- Transmitter (UART). This protocol was chosen since it is easily implementable. It
requires only two wires and both the devices were already predisposed for implement
such a communication (the Jetson Nano is not CAN protocol compatible unless
the use of some additional extension, while for the SPI protocol it requires some
kernel modification). This bus protocol is less articulated than the I2C since it
enables communication only between two devices and the bytes are not organized
in messages but only in simpler packets that go from 5 to 9 bits (In our case 8
bits are used). But these elements are not a problem since this channel is used
to exclusively extract information from the MCU so no other devices should be
connected to the network. While for the fact that the communication sends just
single bytes, this thing can be overcome, allowing the sending of more complex
data, by virtually creating messages as in the I2C and send them bytes by bytes
one after the other and use a logic that recognize the received message on the
receiving device.
A more detailed description of the UARTcommunication protocol can be found in
the dedicated section in the Chapter 2.
The receiver device is obviously the on-board computer, being the only device that
can receive such kind of data and is always on the robot close to the MCU making
the wiring possible also during the autonomous motion tests.

The signals extracted from the MicroController Unit are many and of different
types, in order to check the logic in different parts and have a more complete

33

System Integration

debug. Then, after the implementation of this second communication channel,
it was noticed a need of increasing the quality of the I2C transmissions, so this
extracted MCU signals were also used as feedback of the I2C sendings for implement
a computer logic that improves the communication (as discussed in last section of
this chapter).

3.2.1 UART extracted signals
Are now listed the different signals extracted from the MCU and their data type:

• Identification number 01: X coordinate localization (floating point number).

• Identification number 02: Y coordinate localization (floating point number).

• Identification number 03: Z coordinate localization (floating point number).

• Identification number 05: X coordinate next path point (floating point num-
ber).

• Identification number 06: Y coordinate next path point (floating point num-
ber).

• Identification number 10: Drive commands (from the keyboard command logic),
this data are five different boolean signals: the enable keyboard movement,
the forward command, the reverse command, the left turn command and the
right turn command.

• Identification number 11: Enable signals, that are the two boolean bits: LRB
and PRB

• Identification number 12: Omega wheels, two floating point values (the right
omega wheel and the left one)

• Identification number 13: Duty Cycle wheels and Motor Enable, these signals
are two floating point ones, the DCs, but rounded and treated as integer, while
the motor enable signal is a boolean one.

• Identification number 14: Motor Enable and Motor Direction Right and Left.
These signals are all of them boolean.

• Identification number 15: Bytes directly arrived from i2c. Three integer
numbers.

• Identification number 16: DCr (floating point one) - for direct DC sending
from Jetson Nano.

34

System Integration

• Identification number 17: DCl (float one) - for direct DC sending from Jetson
Nano.

These are all the signals that for different debug and feedback purposes were
retrieved from the MCU. Are listed here already grouped as they compose the
different messages and also the message identification number is exposed. In the
following section the message creation logic will be discussed.

3.2.2 UART Message creation logic
As previously anticipated in order to increase the complexity of the information
sent via UART the single packets sent (decided to be 8 bits long) are organized in
messages, similarly to the I2C messages. This allows to send different kind of data,
even more complex than a simple 8 bits information, and make them be recog-
nizable by the receiver so that it can treat them differently, accordingly to their need.

The basic idea for the message creation is to exploit the seriality of the transmission,
in a sense that the packets are sent on the channel one by one, one after the other,
so thanks to the order of the sendings a message can be created. The message
starts with a starting number or sequence (one or more bytes) that makes the
receiver understand that a message is starting. The following byte is then the
message identification number, it uniquely identifies the kind of message sent (both
the transmitter and the receiver should know the numbers associated to which
messages), these are the numbers presented in the previous list. Then the data
bytes are sent, their number depends on the type of message, the receiver already
knows how many bytes he has to receive according to the message identification
number. Once terminated the information bytes sending no ending condition are
sent and another message can be sent. In this way the communication is faster
and testing it directly on the devices it works in a good way also without ending
number and without any kind of byte sending check.

The data bytes are organized in the message as exposed in the Table 3.2 .

35

System Integration

UART Message organization

Kind of message Message ident. number Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Coordinates 01, 02, 03, 05, 06 Sign Integer part Fractional part - - -

Drive commands 10 Enable keyb. movement Forward cmd. reverse cmd. Left cmd. Right cmd. -

Enable signals 11 LRBt PRB - - - -

Omega wheels 12 Sign (R. wheel) Integer part (R.) Fract. part (R.) Sign (L.) Integer part (L.) Fract. part (L.)

DCs and Motor enable 13 DCr (as integer) DCr (as integer) Motor Enable - - -

Motor enable and Motor directions 14 Motor Enable Motor Direction R. Motor Direction L. - - -

Arrived bytes 15 First byte Second byte Third byte - - -

DCr and DCl 16 and 17 Sign Integer part Fractional part - - -

Table 3.2: UART messages structures

The message bytes are all coded as uint8 in order to have numbers that goes from
0 to 255 for each byte.
For the floating point values the same logic as for the I2C is implemented, dividing
the number in its sign, integer and fractional parts and sending them as different
bytes and then reconstructing the number in the receiver device. The only difference
is that here the bytes are uint8 so the sign is coded as 0 for positive values and 1
for negative ones.
The last thing to be noticed is that the empty cells means that those bytes doesn’t
exist, so each message has a different size and the receiver is aware of that, it knows
how each message is long and how to process the different messages, if they already
are the required signal or if they require a floating number reconstruction.

The last thing to be pointed out is that the UART communication works at a
lower speed than the I2C, but since the sample time of the microcontroller is set to
0.001s, the communication is enough fast to send between each clock every data
required. Obviously not all the messages were sent during each test, but just the
ones that were required for the specific debug or feedback, sending a maximum of
5 messages.
The presented communication logic was then implemented in the two devices using
the suitable UART transmitter block in the Simulink model deployed in the RCU
(the microcontroller) and the suitable Python kernel functions for receive the UART
signals on the Jetson Nano computer.
The physical crossed wiring between the RX and TX pins of the two devices was
done.
Finally the communication channel was tested sending the inner MCU signals to
the on-board computer in a good and precise way.

36

System Integration

3.3 Outlier rejection logic for the localization
coordinates

During the test phase of the overall autonomous motion some problems were
encountered. In particular it was noticed that the I2C sendings weren’t so precise
every time and sometimes even very far from the real values sent from the computer.
The data were wrongly received by the MCU and so the control logic was wrongly
implemented. This was probably due to some hardware problems in the devices
that weren’t easy to fix. Alternatively two different logic were implemented to
improve the quality of the I2C transmission. The first one is the outlier rejection
for the localization coordinates that are sent at high frequency and are related to
continuous values. The second one is the UART feedback of the sendings for the
next path point and enable signals that are sent with lower frequency and each
sending is not so easily relatable to the previous ones. The first logic is presented
in this section, while the second one in the following one.
The I2C bus wasn’t changed in favor to the UART one, since this second channel
is slower and doesn’t allow adding other devices to be connected (both controllers
and targets).

The idea behind the outlier rejection logic for the localization coordinates is that
these messages are sent at high frequency and they refer to a value that is contin-
uous in time, the position. Since the frequency is high there’s no time to check
every single sending with a feedback and correct it, also because the following
transmission will be different to the previous one. Instead, the idea was to exploit
the continuity of the robot position.
The logic is to reject the new localization values, x, y and theta arriving from
the I2C channel that differ more than a suitably tuned threshold to the previous
localization values.

To suitably select the rejection thresholds I run a test to check the robot localization
lowest frequency availability, since the SLAM doesn’t return a localization with a
constant frequency, but after different observations, the higher delta time between
two localizations was 0.1 s. So during this time it was computed the maximum
distance and turn that the robot can do. The maximum linear speed of the robot is
around vmax ≃ 1.1m/s (this value came from a test with the robot exposed further
on in this thesis, the test consisted in running the robot straight in order to create
a direct relation between DC and the robot speed). The related maximum wheel
angular speed can be easily computed knowing that both the wheels turned at
their maximum speed, so using the kinematic equations that describes a differential
robot (as our robot) we obtained:

37

System Integration

v = r(ωr + ωl)
2 (3.1)

With r = 0.08m that is the robot wheel’s radius. In our case ωl = ωr = ωwheels so
the equation became:

v = r · ωwheels

ωwheels = v/r

So the maximum omega wheel is

ωmax
wheel = 1.1/0.08 = 13.75 rad/s (3.2)

For the robot rotational speed (ω) the differential robot equation is:

ω = r(ωr − ωl)
d

(3.3)

Where d = 0.39m is the axis length between the two wheels.
So the maximum rotational speed is when the two wheels spin at their maximum
speed in opposite directions, so ωr = 13.75 rad/s and ωl = −13.75 rad/s, according
to a reference system with z axis orthogonal to the robot and pointing upwards.

ωmax = 0.08 · 2 · 13.75/0.39 = 5.64 rad/s (3.4)

So the maximum linear and rotational distances that the robot can run in the
maximum delta time between two localization are:

distancemax = vmax · ∆tmax = 0.11m
anglemax = ωmax · ∆tmax = 0.564 rad

(3.5)

As thresholds for the rejection logic we could use for the linear coordinates x and y
the distancemax and for the angular one the anglemax values, since they are the
maximum displacement that physically the robot can do between two localization
reception, so higher values makes no physical sense and can be eliminated.
The problem was that during the test sometimes happens that the robot localization
in the ROS environment in the computer is not suitably transformed in the correct
reference frame (the map one, since the used localization is the SLAM one, corrected
by the AMCL and is originally expressed in the odom frame, this part will be
discussed in more details later on). In these cases the position value is not updated
and so the MCU receives the same previous robot localization even if the robot has
actually moved. This error lead to an higher delta time in which the RCU doesn’t
receive an updated value of the robot position and so this can lead, using low

38

System Integration

thresholds for the outlier rejection, to a right localization rejection only because the
robot has moved too much in the time between two correct localization sendings.
As a consequence the MCU localization remains stuck in a fixed value and the logic
works no more.
So the threshold has to be tuned higher than the computed maximum distance
and angles. After several tests the right values to use were:

Linear Threshold (x and y) = 0.5m
Angular Threshold (θ) = 1.5 rad

(3.6)

These values seems a little high but they are tuned in a way that no correct
localization are rejected while almost all of the wrong ones are refused.

The implementation of this logic was done on the Simulink model used to deploy
the code inside the MCU. The schemes are shown in Figure 3.1 and 3.2.

Figure 3.1: Simulink scheme representing the outlier rejection logic for x and y
signals

39

System Integration

For the linear coordinates the implementation was easier. As shown in Figure
3.1 the previous signal value is obtained using a unit sample delay block (the
discrete-time operator z−1). then the new and old values are subtracted, if the
absolute value of the difference is greater than the threshold the previous value is
hold (accordingly to the equation 3.7, where the value k stands for the discrete
sample time T = k∆t and Tx and Ty are respectively the x and y thresholds), if
not the new received value updates the localization signal.

|x(k) − x(k − 1)| < Tx

|y(k) − y(k − 1)| < Ty

(3.7)

If the value has crossed the zero and changed sign the logic works anyway but
becomes more strict. It is no more the difference but the sum of the two values that
should be less than the threshold. Since the values around zero have by definition
low absolute values and since the threshold has been chosen a little bigger on
purpose, this doesn’t affect the functioning of the logic.

Figure 3.2: Simulink scheme representing the outlier rejection logic for angle
signal

For the angular coordinate there was the need of an extra reasoning for the logic
implementation, since the angles (in our system) goes from −πrad to πrad and
when the value correctly passes from the two extremes it has a difference gap of

40

System Integration

2πrad. In order to not reject the values when passing from a limit of the angle
range to the other the first thing to do is to effectively check if the previous and the
actual coordinate have changed sign (as shown in Figure 3.2). If not, simply the
absolute value of the difference between the old and new values is compared with
the threshold, as for the linear coordinates (equation 3.8, where Tθ is the angle
threshold value) and if the difference is less than the threshold than the value is
updated, otherwise the old value is kept.

|θ(k) − θ(k − 1)| < Tθ (3.8)

If, instead, the coordinate has changed sign, two cases are possible, that we have
jumped from one angle range limit to the other or that we are crossing the zero.
In both cases a second logic is activated and checks if, also taking into account
the limit jump, the old and new values are anyway not more far then the wanted
threshold, this is done by checking the following condition:

|θ(k)| + |θ(k − 1)| − 2π + T > 0 (3.9)

In the first case if the 3.9 is satisfied then the blocks logic returns a one that
regardless the 3.8 blocks check it returns a one in the OR block and the signal is
updated, if the equation is not satisfied then the value is not updated since it’s
difficult that the 3.8 became true.
If, otherwise, the signals have opposite sign because they are crossing the zero, then
the more strict check became the one of the 3.8 equation, that became a check on
the sum of the old and new signals that have to be less then the threshold. In this
way the control is harder to be satisfied but since the threshold is enough high it
allows the correct updating of the localization even when crossing the zero value.
Finally, all the shown cases in which the signal can be updated lead to a final
signal updating only if the new value is contained inside the acceptability range
[−π; π]. The result of this check enters as input in an AND block (the AND1 block
in the Figure ...) together with the result of the previous logic, so only if both the
signals are 1, and so both the parts of the model consent to update the value, it is
effectively updated.
The final part, in order to make the outlier rejection working in a suitable way, was
the design of a tuning phase at the start of the localization transmission on the
computer.
The tuning part is necessary since the unit discrete-time delay in the Simulink
model is initialized to zero, so with the first localization received the comparison
for the rejection is between the actual received coordinates and a fictitious zero
value, this can leads to a localization stuck to a zero value thanks to the outlier
rejection itself. So once the localization is available on the computer, before starting

41

System Integration

the effective I2C sending, the assigned ROS node sends for each coordinate an
increasing (or decreasing if the localization is negative) value starting from zero till
the real robot localization value. The messages are spaced with a distance slightly
less than the outlier rejection threshold, in order to let the RCU receive one by one
the values and tune the localization to the real value.
Thanks to this the coordinates reach their real value and the outlier logic can follow
the robot motion refusing the wrong transmissions.

The shown logic was then tested by making the robot localize itself, making it
move and check via UART the received MCU localization coordinates values, sent
via I2C. A great increase in the I2C transmission quality was noticed. Almost all
the wrong values were neglected, except for the one more close to the real values,
that anyway doesn’t create so much problem to the control logic, and the RCU
localization follows the real one without remaining stuck at some values rejecting
correct coordinates.

3.4 Feedback sending control for the I2C mes-
sages

The second implemented logic for improve the I2C transmission is the feedback
sending control.
This transmission control works thanks to the second communication channel
between the microcontroller and the computer, the UART bus. This second com-
munication channel was more precise than the first one and so a good source for
reliable feedback in the logic. As previously said the entire transmission wasn’t
moved from the I2C channel to the UART one since the second one doesn’t allow
to add extra devices to the bus and it’s slower.
The simple idea was to use the retrieved signals coming from the MCU in order to
check if they equal to the I2C sent data, if not, they are sent again, till the two
values became the same.
In order to do so the UART received values were published on suitably created
ROS topics (topics are named buses over which nodes exchange messages [26]).
these values are then read by the nodes that have the task to publish over the I2C
the relatives data and so these nodes publish over the bus only if the value between
the feedback and the desired value to be sent, are different.

This simple logic was applied to the path points coordinates and to the enable
signals, that are messages that require to be sent occasionally and it is important
that they are received correctly.
The logic was then implemented on the computer and tested on the robot. It

42

System Integration

greatly increased the quality of the I2C transmission. Quickly correcting the wrong
communications and allowing a great improvement in the autonomous motion
functioning, having on the RCU almost always the right path points coordinates
and enable signal values.

43

Chapter 4

Laser Mapping and
Localization

One of the main problems for autonomous mobile robots is to be able to accurately
localize itself in the environment. Only after they know where they are, they can
identify where their goal location is, and reach it. The second part of the work
treat such a topic. In a first section we deal with the enclosed environment laser
mapping in order to have a precise map in which the robot can localize itself. Then
the robot LiDAR localization methods are shown, the scan matching used as virtual
odometry improved in accuracy by the AMCL algorithm.

4.1 Laser mapping of the environment using Hec-
tor SLAM

Before operate a localization logic the knowledge of the robot environment is needed.
In our project we decided to exploit the laser sensor, the Slamtech Rplidar A3, to
which our robot has been provided, in order to suitably map the environment and
save an occupancy grid map of the surroundings.
We decided to operate in such a way since in the future real-world applications
in which our robot will be employed, it will always work in known environments,
as university campuses, hospitals or airports. Thus, having a map of the place
allows the robot to accurately localize itself and being able to implement a global
path planning from a start to an end point, instead of exploiting just a local path
planning with the risk of remaining stuck in local minima. Moreover knowing the
navigation map is very important in close environments where the GPS doesn’t
work, so thanks to the knowledge of the in-building location and its coordinates in

44

Laser Mapping and Localization

a world reference frame the robot is anyway able to know where globally it is and
autonomously navigate.

The software used for the environment mapping is the Hector SLAM one by Stefan
Kohlbrecher and Johannes Meyer. The Hector SLAM is based on a scan matching
algorithm which continuously compute the robot localization in the map comput-
ing the transformation (x, y, theta) which gives the best matching between the
previously computed map and the actual laser scans. In parallel the laser scans
matched with the map are used to update it. A deeper and more complete analysis
of this technology can be found in the dedicated section in the Chapter 2. The
robot localization is obtained with respect to a frame fixed in the starting position
of the robot motion. This will be also the origin of the frame associated to the
final computed map.
This software doesn’t have an explicit loop closure but anyway works in a good
fashion if the laser sensors has a sufficiently high scan rate. In our case the Rplidar
A3 has a maximum scan rate of 20 Hz, enough for a good SLAM problem solution
in our applications.
The Hector SLAM returns the computed map as an occupancy grid map, together
with a YAML file with the related map informations.
The main feature of the Hector SLAM software is that it could also work without
odometry data, since the scan matching algorithm return a robot localization at the
laser scan frequency and with a enough high accuracy. Using scan matching can
even lead to better results than the ones obtained with the classic odometry [15],
which tends to have an accuracy degeneration during the motion for the integrative
errors. In our study the odometry data from the wheels weren’t available so this
software was a perfect solution to this problem.

A short introduction to the standard navigation robot frames for ROS (according
to the REP 105 conventions [27]) is required. As shown in Figure 4.1 the frames
for the robot motion are: the map frame a world fixed frame, the odom a fixed
frame in which the robot localization is continous in time, the base_footprint frame
is simply the projection of the base_stabilized on the ground if we want to report a
3D robot movement over the plane, the base_stabilized frame which derives from
the horizontal stabilization of the next one but keeping the height (z) information,
the base_link (sometimes called base_frame) is the frame rigidly attached to the
robot including also the roll and pitch angle information and finally the laser_link
(in our study only called laser) which is the frame attached to the laser sensor,
where the senors data are computed.
In our study, since the robot is expected to move only on plane surfaces we can
move the logic to a simpler bi-dimensional system, collapsing the base_footprint
and the base_stabilized frames into the base_link one.

45

Laser Mapping and Localization

Figure 4.1: standard frames for mobile robots in the ROS environment

The procedure for the environment mapping is the following one:

1. The first thing is set the on-board computer for work with the laser sensor
Rplidar A3, configuring the suitable kernel codes and allowing the communi-
cation between the two devices. The sensor is connected to the Jetosn Nano
via USB cable.

2. So the ROS Rplidar A3 launch file is run (which is a ROS tool for easily
launching multiple nodes [28]) in order to make the sensor work and the
computer elaborate the received messages.

3. Then the Hector SLAM launch file is modified for the mapping phase. In
particular hector_mapping package is updated for a suitable mapping phase:

• During the mapping we don’t need odom frame so the package parameters
are set in order to use only the base_link one.

• We use a ROS static transform publisher for statically set the transforma-
tion between the base_link frame and the base_link one.

The other parameters were already correctly tuned for a good and precise
mapping. The software will return the transformation between the map and
the base_link during the mapping phase as the robot localization inside the
map

4. At this point the software is ready for being run. Once the launch file is run
the hector_mapping algorithm is activated and we can visualize on the RViz
program its results. In particular we can observe the laser point cloud, the
computed map and the robot position, represented by the base_link frame.

46

Laser Mapping and Localization

5. Now the robot has to move and discover every part of the environment. This
part is done by manually moving the robot, since it is the most accurate and
precise way in which we can obtain a very precise and detailed map. The
robot has to be moved slowly for better results.

6. Once the entire location has been explored and the map is complete, we can
run the map_saver ROS node in order to save the obtained map. The map is
saved into two files PGM image file with the occupancy grid map and a YAML
file containing the map information as the resolution, the origin position and
other useful information.

Are shown now some results of the previously explained mapping procedure. On
the left is shown the real environment while on the right the obtained occupancy
grid map is shown.

4.2 Hector SLAM pose used as virtual odometry
After the mapping phase, the localization of the robot in the obtained map was
the task to achieve. Before implementing the AMCL robot localization, which
returns the localization with discrete jumps. We have to find a suitable odometry
localization that gives us the robot estimated pose in a continuous fashion (also
between the AMCL time jumps).

The wheel encoders of the robot motors returned data difficult to interpret, and
so their odometry wasn’t reliable. This leads us to think about a different source
of odometry. So the idea was to exploit the Hector SLAM estimated robot pose,
obtained thanks to a scan matching algorithm, as virtual laser odometry. This
localization is returned at the same laser scan frequency, so an enough high rate
for consider it almost continuous. Also literature confirms that using this virtual
odometry can lead to better results than the normal odometry for the mapping
phase [15], this makes us think that this method could be used for the localization
as well.

So, normally the Hector SLAM software publish the robot pose expressed as the
base_link frame pose with respect to the map one. But in the localization logic we
need that the odometry gives us the transformation of the base_link with respect
to the odom one. Then the AMCL correct such localization computing the robot
pose (base_link pose) in the map one, but publishing only the transformation
between the odom and the map knowing the odometry published transformation
and taking it into account for have the final pose of the base_link with respect to
the map exactly as he has computed (correcting the odometry drift). The presented

47

Laser Mapping and Localization

functioning is shown in Figure 4.2.

Figure 4.2: Frames and transformations published during the AMCL localization
using Hector SLAM as virtual odometry.

In order to make the Hector SLAM publish the wanted transformation its mapping
launch file was suitably modified just changing the name of the parameter map
frame to odom while both the odom and base frames were called base_linl so
the software publish the computed pose from the base_link to the odom one as
wanted. Also the RViz configuration file has been modified in order to have a
RViz representation of the ROS topics suitable for the navigation, showing the
right frames and the right map (not the one computed by the Hector SLAM but
the uploaded one from the express node for the localization, as explained in the
next section). Also the static transformation from the base_link to the laser one
is published in that modified launch file, publishing the real measured distance
between the center of the laser sensor (in which its measurements are expressed)
and the center of wheels axis (where the base_link frame is attached).

4.3 AMCL implementation in the obtained map
The final step for the robot localization consisted in the AMCL implementation.
Before that the correct previously obtained map has to be published on a suitable
topic form which the localization algorithm can read it and use it. In order to do
this the standard map_server package by Brian Gerkey and Tony Pratkanis was
modified.
the map server launch file was modified in order to read the map from the PGM
file and its information form the corresponding YAML file, creating a map message
fixing the origin of the map frame in the middle of the PGM file, reading those

48

Laser Mapping and Localization

coordinates from the YAML file. That middle point corresponds to the starting
position of the robot during the mapping phase, so from now on, that would be
our fixed map frame. The map message is then published by the map_server node
on a dedicated topic, the map_loaded topic.

Thus, being the environment map available, the AMCL algorithm can be run. In
particular we decided to use the AMCL package from the navigation stack by
Brian P. Gerkey. The software was adapted for our project making it read the map
on which run the localization from the expressly created map_loaded topic. The
algorithm read from the laser frame the laser data and use them for compute the
robot pose using a particle filter on the map, more details on its functioning are
exposed in the dedicated section in the Chapter 2
Then running different tests the AMCL launch file parameters were suitably tuned
in order to have the best possible robot localization. In particular the laser sen-
sors specifications setting the ’laser_max_range’ to 25 m. The ’use_map_topic’
was set to true, in order to read the map from the wanted topic and also the
’first_map_only’ was enabled, making the software read the map only once (being
a static map). The ’selective_resampling’ was set to true in order to reduce the
resampling rate when not needed and help avoid particle deprivation according to
[29]. Then the number of particles for the filter were set from a minimum of 500 to
a maximum of 5000. The KLD sampling technique was enabled, in order to make
the filter adaptive, and the parameters were set to ’recovery_alpha_slow’ = 0.001
and ’recovery_alpha_fast’ = 0.1 (as suggested by the author). Anyway during the
motion tests, sometimes this parameters were set to zero, since we noticed that they
leads to unwanted recover of the position, even if when it was correct (in the small
maps in which we worked the recover wasn’t so necessary). In the end the most
important parameters that were tuned making the AMCL as precise as possible and
also fast enough to follow the robot during the motion were the ’update_min_d’
and ’update_min_a’ which were the parameters that set the required minimum
translational (d) and rotational (a) movements before performing a filter update.
setting their value high lead to a too big gap in time between two consecutive pose
updates decreasing the localization performance. On the other hand too low values
make the computer computation too heavy. After different tests the best values for
have a good initial localization and then a suitable quickness in the filter update in
order to correctly follow the robot during the motion, were: ’update_min_d’ =
0.01 (m) and ’update_min_a’ = 0.015 (rad).

Finally a launch file was created which ran at the same time the Rplidar launch
file for activate the LiDAR sensor, the Hector SLAM modified launch file for the
virtual odometry and the RViz localization, the modified map_server file for upload
the map and the AMCL launch file computing the robot localizaiton.

49

Laser Mapping and Localization

In a first moment the robot is placed in the origin of the map frame, then mving a
little the robot the AMCL undertsand where the robot is in the map and moving
the odom frame with respect to the map one it locate the robot in its real position.
The results can be seen in Figure 4.3. In the other Figure 4.4 is instead reported
the resulting frames tree (from the tf package [30]) obtained from the developed
localization logic (the scan_matcher frame published by the Hector SLAM software
since it requires it for the computation).

Figure 4.3: Two different robot localization tests.

Figure 4.4: Frames tree in ROS during the robot localization.

50

Chapter 5

Path Planning and Control
Logic

Once the robot knows the environment map and is able to place itself in such a
map, the final steps for making it able to reach a desired location are the ability
to compute an obstacle free path ending in the goal position and execute it point
by point. This final robot development chapter deals with these aspects, in partic-
ular with a first map processing for a safe robot navigation through an obstacle
boundary increase. Then the A* algorithm use for path planning is exposed and so
the subsequent reference frames alignment to express the path points in the same
frame of the map and robot localization coordinates. A section is then focused
on the path tracking development on the on-board computer. Finally, the nega-
tive feedback navigation control logic for reaching the single path points is discussed.

5.1 Map processing through boundary increase
The first thing done before implementing the path planning was find a way for take
into account the robot size during the path creation around the obstacles. The
solution was found in a map processing increasing the obstacles boundaries. The
robot size was then taken into account enhancing the object sizes in order to avoid
a planned path too close to obstacles, leading to unwanted crushes.

The map image was an occupancy grid one, which is an image divided in cells and
each one of them has an assigned number that indicates the likelihood to contain
an object. The number (occupancy) is usually from 0 (0% likely to be occupied)
to 100 (100% likely to be occupied), unknown areas are marked with a -1 number
(usually only 0, 100 and -1 are used). Usually the occupied cell is represented

51

Path Planning and Control Logic

by a black color, the free cell with white and the unknown areas in grey. Our
map is saved as a Portable Gray Map (PGM) image, so every cell has assigned a
byte for store it’s occupancy value, from 0 (black representation) to 255 (white
representation), this values x can be transformed into the occupancy probability p
(slightly different) using the formula

p = 255 − x

255 (5.1)

Thus x = 0 (black) means p = 1 while x = 255 (white) means p = 0. Then the
occupancy probability is usually interpreted in the trinary way, assigning to the
occupancy number only three values: 0, 100 and -1 in the following fashion:

• occupancy = 100 if p > occupiedthreshold, the cell is occupied.

• occupancy = 0 if p < freethreshold, the cell is free.

• occupancy = −1 otherwise, the cell occupancy is unknown.

The two thresholds are suitably selected or given by the map generator.

The PGM processing was implemented through a function inside the path planning
file. In this code logic we doesn’t care about the unknown map parts, we want our
robot to navigate only in the known environment, so only one threshold is used to
distinguish between occupied or free cells. This threshold value was chosen very
close to the occupancy null probability p = 0 that in byte stored value corresponds
to the 255 x value, for safety reasons. So the threshold was set to p = 0.98 which
in the byte value corresponds to x = 250.
The boundary increase function is designed in order to scan the entire map, point
by point, and, if an obstacle is encountered (cell value x < 250, the threshold) and
the cell is not yet marked as boundary, then for B rows up and down and for B
columns on the left and on the right sides of that cell, to the encountered cells, if
free, a x = 100 value is assigned (this value is considered obstacle by the logic and
identify the boundary with its own grey color). The B value is the Boundary size
value, passed to the function as a parameter. This parameter is very important for
taking into account the robot size.
The B value take into account two main robot dimension, the robot lateral width
from the point in which the base_link frame is attached (23 cm), important for
not hit obstacles on the side, and the distance from the same machine point and
the front part of the robot (38 cm), to avoid frontal crushes. These values trans-
formed in pixels (that are the map cells), according to the map resolution, which
can be found in the map YAML file, 0.05 m/px for each obtained map, became
lateral size ≈ 4.6px and front size ≈ 7.6px. The B value has thus been set to 5
px, since using 8px in the small environments in which we made our robot navigate

52

Path Planning and Control Logic

was too conservative and the path planning wasn’t able to find a path. Anyway
this value was enough high to never lead to unwanted crushes due to a too close
movement with respect to the obstacles.

A map processed by the boundary increase function can be seen in Figure 5.1.

Figure 5.1: Map with added boundaries in dark grey.

5.2 A* search algorithm for path planning
So with a suitably processed map, the path planning could be run. The chosen
software for this scope was the A* path search algorithm, implemented by previous
years company workers. The A* algorithm is an heuristic graph search for state
space algorithm. It search the best path according to a cost function evaluated for
each path points composed by the distance traveled from the start to the actual
point summed with an heuristic function taking into account the remaining path
till the destination. In our case a simple euclidean distance was chosen as heuristic
function, which beyond being simple leads also to good path results. More details
can be found in the dedicated section in Chapter 2.

So the path planning node read the map from the PGM and YAML files and the
start and end points from a dedicated topic. The start and end point message is
generated another node used for select the wanted final destination of the motion,
a future improvement of this node could be to receive the destination coordinates
directly from a user interface, and chose as starting point the actual robot position,
instead of a pre-defined one. So once the path planning node has both map and
start and end points it run the A* algorithm searching for the shortest feasible

53

Path Planning and Control Logic

path. If the path is found then the node publish two different things, a BMP image
of the map containing the path and its trial points and it publishes over a topic
the entire computed path. The resulting map containing the path can be seen in
Figure 5.2. The red line is the path, the green pixels the different tried paths, the

Figure 5.2: Map with computed path using A* algorithm.

The problem now is that the algorithm compute and return the path points in
pixels and with respect to the image frame, thus a frame alignement is required.

5.3 Reference frames alignment
Since the computed path was expressed in pixels with respect to the high left corner
of the image, a suitable coordinate and size transformation was required in order
to have a useful path, expressed in meters and with respect to the map frame.
This was done developing a suitable function that transformed the points from the
virtual image frame to the map one. The frame adapter function takes as inputs
different values:

• X0, Y0, ψ - The 2-D pose of the lower-left pixel in the map expressed in meters
and radiants (Ψ is the z-axis rotation, usually 0), this values are automatically
extracted from the YAML file of the map. These parameters are used for
obtain the translation between the image and map frames.

• θ - The z-axis angle rotation from the image frame to the map one in radiants.

• R - The map resolution [m/px].

54

Path Planning and Control Logic

• XS and YS - The x and y sizes of the map, in px (for our images are both
2048 px).

• xp, yp, zp - The point 3D coordinates to be transformed from the image to
the map one, expressed in pixels (obviously in our study z − p is always equal
to zero).

Thus the function implement an algebraic point coordinate transformation from
the image to the map frames, in parallel to a dimension transformation from pixels
to meters. The two frames are located in the image as shown in Figure 5.3.

Figure 5.3: Image and Map frames and coordinates.

The equation to be used on order to transform the coordinates form the two frames
is the following one:

xM
p = RM

I x
I
p + t

M
MI (5.2)

Where RM
I and tMMI represent the rotational matrix and the translation vector

that transforms the map to the image frame. While xI
p = {xI

p, y
I
p, z

I
p} and xM

p =
{xM

p , y
M
p , z

M
p } are the point position coordinates expressed in the two frames M for

the map one and I for the image one. The transformation between the two frames
is composed by a rotation of π radiants around the x axis and a rigid translation.

55

Path Planning and Control Logic

Thus the resulting 5.2 equation became:

xM
p =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

RxI
p +

X0

Y0 +RYS

0

 (5.3)

In the equation is already implemented the meters from pixels unit transformation.
This the path planning node after transforming each path point with the de-
signed function, it publishes them on the path_planning/Path_std topic (as Path
navigation message type).

5.4 Path Tracking logic
At this point we have to design a software that knowing the path and the robot
localization decides which is the actual, closer path point that the robot has to reach
in order to move from the start point till the destination. This was implemented
on tracking node which read the robot position from the slam_out_pose topic and
the path from the path_planning/Path_std topic. The Hector SLAM pose is used,
since it is updated with a enough high frequency and it is anyway corrected by the
AMCL. The only thing is that the SLAM pose is expressed in the odom frame,
while the path it is correctly expressed in the map one. Thus, thanks to the tf
package the localization is transformed and expressed in the map frame.

The tracking node, knowing the robot localization measure its distance from the
first path point, if the value is greater than a specified Threshold (T) distance, the
node publish the first path point coordinates on a specific topic as actual goal point.
From that topic the path point will be then sent via I2C to the MCU. Instead, if
the computed distance is minor than the T value, so the path point is considered
reached and the algorithm moves to the next path point as actual goal point. This
procedure is repeated till the reaching of the final path point.
This node is essential for make the robot follow the computed path. Tuning the T
value the designer can also decide how much the path has to be closely followed,
reducing the motion quickness and smoothness. The effects of the variation of
this parameter on the autonomous navigation will be tested and discussed in the
Chapter 6.

5.5 MCU data sending
During the robot motion, it is the MCU that implement the navigation control
logic. In order to do that it requires the robot localization and the actual goal
path point (selected from the tracking node). Both the data are sent to it via the

56

Path Planning and Control Logic

I2C bus, by two dedicated nodes. In particular the robot localization is the same
used by the tracking node, the Hector SLAM one, suitably transformed in the map
frame, always because an almost continuous robot pose is necessary for have a
good motion control.
Once the first robot localization has been sent to the MCU a signal is sent to a
specific topic, the same happens for the first path point sending. The i2c_enable
node read those signals and send, always via I2C the enable message containing
two bits, the Localization Ready Bit (LRB) and the Path Ready Bit (PRB), which
are true only when both localization and path point have been received. These
two signals are then used by the MCU in order to activate the control logic, and
enable the motor spinning. Once the last path point is reached, the PRB is set to
0, thus stopping the robot motion.

5.6 Robot autonomous navigation control logic

the final step for make the robot able to move autonomously, was the motion
control logic design, in order to make the robot able to reach the single path points
one by one.
We decided to use a static gain controller with a negative feedback loop. This
control technique is simple but allowed us to obtain a in a good way our goals,
so we decided to not make a more complex controller for now. The control logic
can be conceptually represented as in Figure 5.4. Where the G(s) would be the
robotic platform model, H(s) is considered to be unitary in our case, K is the
static gain. While the signals would be vectors, r(t) would be the desired path
point coordinates, y(t) the system output, the robot localization coordinates, e(t)
the error value, to be set to zero, that would be the distance between the robot
and the goal point together with the angle difference between the robot orientation
and the angle connecting robot and goal point, finally u(t) would be the control
input to the machine that in our case would be the PWM signal used for drive the
motors.

Figure 5.4: Static gain negative feedback control system conceptual scheme.

57

Path Planning and Control Logic

Thus, the MCU task for implement such a controller consisted in receiving the
desired path point and the robot localization form the Jetson Nano. Then it had
to compute the euclidean distance between the robot pose and the path point (5.4)
together with the angle difference between the robot orientation in the map frame
θr and the angle drawn by the vector connecting the robot to the goal point θn,
expressed by the formula 5.5.

de =
ñ

(xpp − xr)2 + (ypp − yr)2 (5.4)

θn = atan−1
A
ypp − yr

xpp − xr

B
θe = θn − θr

(5.5)

Where the subscript ’pp’ means path point, while ’r’ means robot. This distance
and angular errors were then multiplied by the control gains leading to the linear
and rotational robot speed control values, as shown in 5.6.

v = Kv · de

ω = Kω · θe

(5.6)

After that the two computed speeds had to be converted in wheel rotational speeds.
That was done exploiting the differential drive robot kinematic model, shown in
Figure 5.5, for which:

v = r(ωr + ωl)
2 ω = r(ωr − ωl)

d
(5.7)

Where r is the wheel radius (0.08 m in our case) and d is the wheels axis length
(0.39 in our case).

Figure 5.5: Differential drive robot scheme.

58

Path Planning and Control Logic

From 5.7 which we can obtain

ωr = 1
r

A
v + ω d

2

B

ωl = 1
r

A
v − ω d

2

B (5.8)

The final step consisted in transforming the wheel rotational speeds into suitable
Duty Cycle (DC) values for the PWM signal generation.
In order to have a suitable relation between these two parameters different test
were run, making the robot move straight, with the same DC value for both the
wheels, exploiting the keyborad control of the machine. Thus different DCs value
were tested. For each one of these motions the robot was required to drive for one
second and for each navigation the travelled distance was measured. The robot
mean speed was computed among the tests with the same DC values and a direct
correlation was found between the linear robot speed and the DC values expressed
by the formula 5.9 and shown in Figure 5.6, it has to be noticed that this relation
is valid only in the tested range, from 15% to 50% DC, for lower values the robot
almost doesn’t move.

DCr and l = m · v + q

m = 37.299
q = 9.855

(5.9)

Figure 5.6: DC versus linear speed plot.

59

Path Planning and Control Logic

From this relation we can, with approximation, deduct that: the two wheel run at
the same speed, so ωr = ωl, thus from 5.7 we can deduct that v = vl = vr = ωrr =
ωlr thus leads to the following equation expressing the direct correlation between
single DC value and related wheel speed:

DCr or l = m · r · ωr or l + q (5.10)

This relation is not a strict real model, since the rotational speed is not taken
into account, better test would require also its measurement, and its use for the
correlation deduction. Anyway the obtained 5.10 has proven in different tests to
be good enough for our purposes.
So the MCU is able to compute the suitable DCs values to send to the motor
drivers in order to act the motion.
We have to make two final considerations on this logic, the first thing is that only
suitably tuning the two speed gains the system is stable and converge to the desired
points (this is done in a system simulation, as discussed after) and the fact that
the logic has a small bad behavior. The fact that for some angular orientations
of the robot with respect to the desired path point, the robot chose the longest
steering direction in order to reach the goal position. This was due to the fact that
for some θn values the control logic returned a control rotational speed ω opposite
to the fastest turning direction for reach the path point. So we noticed that by
default we used the θr and θn values in the [−π; π] range, while in those specific
cases using only positive angles in the [0; 2π] range, would return a robot ω speed
according to the shortest possible path. Thus the resulting code that identified and
corrected such wrong angle cases was the following one:

1 i f (((theta_n < 0) && (theta_r > PI + theta_n)) | | ((theta_n > 0)
&& (theta_r < −PI + theta_n)))

2 {
3 i f (theta_n < 0)
4 theta_n = theta_n + 2∗PI ;
5 i f (theta_r < 0)
6 theta_r = theta_r + 2∗PI ;
7 }

After the design part, the control logic was simulated on Matlab. We made the
assumption that the robot motion between each sample time was constant, so no
acceleration was present in the model. This was done because we had no informa-
tion of the robotic platform dynamic model and its computation was beyond the
purpose of this work. Anyway such a simplified model was good enough for have a
general idea of the control logic functioning, and was used for tune the Kv and Kω

gains, in order to have a stable and smooth motion of the robot till the desired
path point. These gain values were then also proved to be correctly tuned in the

60

Path Planning and Control Logic

Gain Value
Kv 0.3
Kω 0.55

Table 5.1: Control gain tuned values

real autonomous motion tests, discussed in the following Chapter. Their value
is reported in the following Table 5.1. The simulation plot of the robot motion
following the same planned path used in the next chpter tests is reported in Figure
5.7 (the T value was set to 0.25 m).

Figure 5.7: Simulated robot motion using Simulink.

The control logic was developed as Matlab Simulink model and then deployed in
the MCU device thanks to the Code Composer Studio program.

Finally the tests for check the autonomous motion control are reported in the next
Chapter 6. Unfortunately, due to a MCU too slow computational speed the logic
wasn’t directly tested on the microcontroller, which wasn’t able to work in real-time.
Instead, it was moved to the on-board computer. anyway the tests returned good
autonomous motion results which can be used to validate also the MCU navigation
control implementation which was the exact same logic that returned the exact
same DCs values. More details are presented in the next chapter.

61

Chapter 6

Tests and Results

In this chapter the InnoTech robotic machine used during the thesis development
is shown in its different hardware parts and features. Then a section focuses on
the tests made to examine and validate the different thesis developments on the
robotic system. In the last part the test data are elaborated and analyzed and the
results are drawn.

6.1 Robot hardware
The robotic machine used in the entire thesis work, was a differential drive robot
built by Innotech Systems, as a service robot for different purposes such as escorting
people in the hospitals or airports and delivering food in university campuses. It
is shown in Figure 6.1 with respect to Figure 1.1 here the robot is free from the
upper part, used only to support a screen for human interaction and a basket for
delivering objects. Only the platform with all the required devices and sensors for
the motion was used during the work.

The different devices composing the robot were:

• The robot chassis and shell - The robot inner chassis and the shell were
3D-printed, the former part with a more stiff material, to bear the entire robot
weight.

• The on-board computer - The Nvidia Jetson Nano. With the following
specifications. GPU: NVIDIA Maxwell™ architecture with 128 core NVIDIA
CUDA®, CPU: Quad-core processor ARM® Cortex®-A57 MPCore, memory:
LPDDR4 4 GB 64-bit.

62

Tests and Results

Figure 6.1: Top view of the InnoTech robotic platform

• The MCU - The Texas Instruments C2000 Piccolo MCU in the LAUNCHXL-
F28069M development kit. Its specifications are now exposed. CPU: C28x,
CLA with frequency 90 MHz, Flash memory 256 KB.

• The two motor drivers - the devices are MDC151-024031 Series 24V, 3A
Brushless DC Controller.

• The LiDAR sensor - The Rplidar A3 from Slamtec. This sensor has the
following specifications working in an indoor environment: a distance range
from 10 m (dark object) to 25 m (white object), minimum range of 0.2 m,
a sample rate of 16000 times per second, a typical scan rate value of 15 Hz
(adjustable between 10 Hz - 20 Hz), a range resolution ≤ 1% of the range (≤
12 m) and ≤ 2% of the range (12 m ∼ 25 m) and an accuracy of 1% of the
range (≤ 3 m), 2% of the range (3 - 5 m) and 2.5% of the range (5 - 25 m).

• The battery - A LiFePO4 Lithium-IOn Chemistry battery from Haidi, the
Lithium Deep Cycle Adventure model (12.8V,15Ah).

63

Tests and Results

• A power distribution device - Two metal plates form which different cables
take energy to the different devices. Also two DC/DC converters from 12V to
5V-3A maximum were used in order to have a suitable voltage for the devices.

• Wheels and motors - In particular the motors were two BLWSG23 Series -
Brushless DC Spur Gearmotors.

The different robot devices are connected as shown in Figure 6.2. In the image are
also distinguished with colors the different connections channels.

Figure 6.2: Robot devices scheme with the connections.

6.2 Project final test
At the end of the project a suitable final test was run in order to verify the different
parts developed during the work.
The most obvious and at the same time the most validating final test is actually
the ultimate thesis goal itself. Since the aim of this work was to make the vehicle
move autonomously, and every different developed part was functional to this goal,
make the robot reach a desired location in a known environment could evaluate

64

Tests and Results

the goodness of the entire project, as well as of the single subsystems, pointing out
which parts of work in a good way and the ones that need to be improved.
Anyway, the single work parts exposed in the different chapters have already been
individually tested once implemented on the robot, as discussed in each one of the
previous work parts. This is necessary for trace the origin of some possible mal-
functioning of the overall logic, being aware that the single parts individually works.

So in the final test the robot was required to move till a desired position in a known
map, computing and following the shortest possible obstacle free path.
The tests also aimed at evaluating how precisely the robot followed the path and,
at the same time, how fast and harmoniously it moved. This aspect was evaluated
at the variation of a suitably chosen parameter, the Threshold (T) distance for the
next path point reaching in the control logic software.

As previously said, it has to be noticed that due to a MCU problem, the control logic
wasn’t implemented on the microcontroller itself, but on the on-board computer,
which directly sent the DCs for the motor wheel speeds control. So the MCU had
only to drive the motors according to the received data.
The found problem could be attributable to a not enough high computational speed
of the MCU since testing the different microcontroller model parts singularly as the
I2C communication, or the motor driving (through direct keyboard inputs), or the
control logic part for compute the required DCs; they all worked in a good fashion.
But then, during the live robot motion control where all the parts have to run
together at high frequency, the MCU slows down its computational speed. This can
be confirmed by the fact that during the autonomous motion tests implementing
the control logic on the MCU, the computer worked at a suitable speed and sent
via I2C the real time robot localization, which was processed by the microcontroller
(returning corrects but late motor controls) only after different seconds from the
time of the sending. This was noticed thanks to the debug UART communication,
which extracted the inner MCU signals live during the test. This was a clear sign
of a MCU computation overload (we didn’t analyze if this was due to a simple not
enough computational power of the device or to an hardware problem). Different
resolution techniques were tried for this problem, such as making the microcontroller
model as light as possible, also replacing some complex functions with look up
tables, but this didn’t solve the issue. At the end we decided to move the control
to the computer in order to test it in a real application and test the overall robot
autonomous motion. So we renounced to test the logic directly implemented on the
MCU and the developed techniques for improve the I2C communication, the outlier
rejection for the localization coordinates and the UART feedback for the other
message transmissions. Anyway these developments were singularly tested and all
worked in a good way. In particular, with the same inputs, the MCU control logic

65

Tests and Results

returned the same computer control logic outputs that correctly drove the robot
till destination.
The fact the I2C didn’t worked in a perfect way and required improvement tech-
niques, could be a hypothetically a consequence of the MCU bad behavior as well.

Returning to the final test, it was developed as follows. A suitable close environment
was built and mapped, exploiting the Hector SLAM mapping technique, exposed in
the dedicated section 4.1. The real-world environment, together with the obtained
map are shown in Figure 6.3.

Figure 6.3: Final test map. On the left the real environment, on the right the
corresponding occupancy grid map

Then a suitable goal position was decided. choose to place the robot on the bottom
left corner (as shown on the right image in Figure 6.3) and the destination on the
top right corner, behind the central obstacle (the start and end points for the motion
can be seen in Figure ...). Thus trying to create a not too easy environment for
the robot navigation, in order to test its ability in overcoming obstacles in its motion.

The rest of the work to do in order to reach the desired position was the robot task
evaluated in the test. The only remaining things that we did before the motion was
to tune the robot localization on the map and run all the required ROS softwares.
In particular the procedure for run the test was the following one:

• Launch the localization launch file, running the following nodes: the Rplidar
A3 node for activate the sensor, the Hector SLAM file modified for obtain the
laser virtual odometry, the map uploader node and the AMCL software for
the differential robot localization. This, among the other things, returns the
robot localization in a continuous way on the slam_out_pose expressed in

66

Tests and Results

the odom frame and the same localization expressed in the map frame in the
amcl_pose topic, updated each time the AMCL compute the robot pose. At
the same time the RViz program is run and so the different frames and topic
outputs are visually shown on screen, as in Figure 6.4 .

Figure 6.4: RViz display of the different topics and frames

• Launch the path planning software obtaining the path. This launch file runs
the node that publishes the decided goal destination and the path planning
node which computes the path from the start to the end positions in map,
after the map boundary increases. The result is shown in Figure 6.5, the path
is also published on a specific node for the control logic.

• Run the control logic node, which was a modification of the path tracking
node. This node reads the robot localization in a continuous way from the
slam_out_pose topic (transforming such a pose in the map frame) and the
path points from the dedicated topic. It then computes the next path point,
but also implements the control logic computing the required DCs in order to
drive the robot and publish them on the control_logic/DCs topic.

• Then the UART communication node is run, in order to extract the received
DCs values from the MCU, checking the correct reception of the sent informa-
tion.

• Finally the I2C communication software is run in order sent via the I2C bus
the DCs messages. From that moment the robot starts the autonomous motion
till the final location.

67

Tests and Results

Figure 6.5: Occupancy grid map with the A* computed path

• During the motion a rosbag (which is a set of ROS tools for recording from
and playing back to ROS topics [31]) is run in order to store the messages
published on the amcl_pose topic and the control_logic/DCs topic from which
we could extract the robot AMCL localization and the DCs values obtained
from the control logic. During the test also the on-board computer screen is
recorded, in order to have the available information obtained during the test
also afterwards, as the data returned from the UART feedback node and the
RViz representation of the robot motion.

During the tests we exploited a software for remote connection and control of the
on-board computer, the NoMachine software from NoMachine.

The complete nodes and topic graph of the ROS environment is presented in Figure
6.6 . This summarizes the functioning of the computer logic.

This procedure was implemented at different times changing a suitable chosen
parameter, the Threshold (T) distance for the next point reaching in the control
logic. We chose to change this parameter in order to see how the precision of path
tracking changed varying this value, compared with the change of the travel time
and smoothness of the robot movement.
This is because we were interested in obtaining the best possible motion of the
robot in terms of close following of the obstacle free path in order to avoid unwanted
crushes. At the same time, we wanted to have a fast enough destination reaching

68

Tests and Results

Figure 6.6: Graph showing the nodes (as ellipses) and the topics (as arrows) of
the entire ROS control logic

Test name T value [m]

T15 0.15
T25 0.25
T35 0.35
T45 0.45

Table 6.1: T values in the different tests

with a smooth robot motion to have a good service robot that is not too slow
and moves harmoniously. We noticed that the main parameter that changed these
behaviors was the path points distance reaching T, so by tuning such a parameter
we could modify the robot motion as desired. The tests pointed out how in relation
to the parameter numerical values.
The T parameter is the distance to which a path point is considered reached by
robot from the control logic (or the path tracking one) its different values in the
tests are reported in Table 6.1 .

After each test different data were collected, in order to draw suitable considerations
from the robot different behaviors. The data collection can be summarized with

69

Tests and Results

the following steps:

• During the test the robot time of travel is measured, from the start of the
motion till the final stop (precisely from the first DCs transmission to the
MCU till the last non zero value sent, that indicates the destination reaching).
Its value tells us how quickly the robot reaches its destination.

• The second thing done during the test is the visual analysis of the goodness
of the motion. The goodness is evaluated in terms of smoothness of the
navigation focusing on the absence of abrupt motions and stops of the driving.

• Then the collected rosbag file is run to extract the topic recorded values,
in particular the AMCL data are stored in order to know how the robot
localization has worked during the test.

• The robot’s real path is measured by hand. Since the robot was equipped
with a small mechanism, built by me, that makes a narrow powder flow on the
ground under the robot during the motion, precisely the powder is released
at the exact point in which the base_link is attached to the vehicle. The
cartesian map frame is drawn on the environment ground, in order to easily
measure some selected real path points. The measured points are the ones
closer to the ideal path points (that are drawn on the ground as well), this in
order to have a valid measurement of how much the robot has followed the
ideal path.

After the data collection for each one of the tests, the data were elaborated in order
to draw suitable observations of the robot navigation.

6.3 Results
The collected data from the different final tests were elaborated using the programs
Microsoft Excel and MATLAB from MathWorks.
The elaboration mainly consisted in plotting for each test the measured path
together with the AMCL one (which represents the robot localization one) and the
ideal one (obtained from the path planning). The obtained plots are shown in the
Figures 6.7, 6.8, 6.9, 6.10.

The plots also show the AMCL points covariance error ellipses as index of the robot
uncertainty in the estimated localization (a confidence interval of 95% is used).
The AMCL key path points were chosen in order to be as close as possible to the
ideal path (these points also coincides with the closest points to the measured
path), this allowed us to draw qualitatives considerations on the difference between

70

Tests and Results

each two of the three paths.

Figure 6.7: Ideal, measured and AMCL paths plot (T = 0.15 m)

71

Tests and Results

Figure 6.8: Ideal, measured and AMCL paths plot (T = 0.25 m)

Figure 6.9: Ideal, measured and AMCL paths plot (T = 0.35 m)

72

Tests and Results

Figure 6.10: Ideal, measured and AMCL paths plot (T = 0.45 m)

The second data elaboration consisted in computing the Root Mean Square Error
(RMSE) value between each couple of the three paths, considering as error the
euclidean distance between the closest collected points in the two paths. The
euclidean errors point by point are presented in the bar graph in Figure 6.11 while
the resulting RMSE values can be seen in Table 6.2 . This computation expresses
quantitatively how much the paths are close to each other.

RMSE values [m]

Compared paths T = 0.15 m T = 0.25 m T = 0.35 m T = 0.45 m

Measured - Ideal 0.079 0.119 0.135 0.167
Measured - AMCL 0,116 0,110 0,115 0,123

AMCL - Ideal 0,120 0,139 0,145 0,248

Table 6.2: RMSE values comparison.

Thus is presented a list summarizing the qualitative evaluation of the motion
goodness, together with the travel time for the different tests:

• T = 0.15 m

73

Tests and Results

Figure 6.11: The euclidean error values between each couple of paths, point by
point, in the four different tests. (Planned = Ideal path)

– Travel time = 37.6 s.
– Motion goodness evaluation: The robot moves very slowly, scattering at

some points, adjusting its orientation many times in order to reach the
single path points and sometimes also stopping the motion and restarting.
It’s the worst robot motion.

• T = 0.25 m

– Travel time = 26.6 s.
– Motion goodness evaluation: The robot moves quite slow, less scattering

with respect then the previous experiment, but it anyway turns many
times in order to reach the single path points making the motion less
smooth. The speed is not very constant during the entire path.

• T = 0.35 m

– Travel time = 19.4 s.
– Motion goodness evaluation: The robot moves at a good enough speed,

that is more or less constant, without big slow downs till the final stop.
During the navigation the robot doesn’t spend too much time correcting
the orientation toward the single path points but more steering according

74

Tests and Results

to the overall desired path shape. The motion can be considered smooth
enough.

• T = 0.45 m

– Travel time = 16.9 s.
– Motion goodness evaluation: The robot moves fast and smoothly till the

destination, the speed seems also to be quite constant during the test.
It doesn’t reach the single path points but just follows the general path
shape. It’s the best robot motion.

A final Table (6.3) summarizing the previous analysis has been built. For each one
of the different tests are presented the three RMSE values (between the different
paths), the travel time is presented as well and a final qualitative consideration of
the goodness of the robot motion.

Results summary
T value
[m]

RMSE
M.-I. [m]

RMSE
M.-A. [m]

RMSE
A.-I. [m]

Travel
time [s] Motion evaluation

0.15 0.079 0.116 0.120 37.6 Slow and quite scat-
tering

0.25 0.119 0.110 0.139 26.6 Quite slow, less scat-
tering

0.35 0.135 0.115 0.145 19.4
Enough fast, con-
stant speed and quite
smooth

0.45 0.167 0.123 0.284 16.9 Fast, constant speed
and smooth

Table 6.3: Results summary table

6.3.1 Considerations
From the plots (Figures 6.7, 6.8, 6.9, 6.10) the error graph (Figure 6.11), the
resulting RMSE Table 6.2 and the travel time and motion quality evaluation we
can observe different important considerations:

• Measured - ideal paths analysis - the error between the measured and ideal
path has for every T value a fluctuating behavior with a final increase toward
the end of the path, this final peak is probably due to a parallel reduction of
the robot localization accuracy. The RMSE value for the measured - ideal

75

Tests and Results

paths increase with the increase of the T value, as expected, since lower
Threshold (T) means a more strict requirement for the path points reaching.

• AMCL - measured paths analysis - the error between the AMCL and the
measured path has an overall floating behavior for each T value, with more or
less constant values. The important thing to notice are the error ellipses in
the plots. They always start bigger and once the motion starts they become
more narrow around the real robot localization. This happens till the right
turn of the robot around the sixth ideal path point, where the localization
starts to diverge from the real robot position and so the error ellipse enlarges.
This is a clear sign of the AMCL recovery feature for which during a rotation,
in which the robot localization became harder and start diverging from the
real one due to big laser scans shifting (this can also be a consequence of the
fact that in order to ensure a stable control the rotational gain has to be set
higher with respect to the linear one, leading to faster rotational speeds), the
robot correctly enlarge its cloud of estimated poses adding extra particles.
Thus it is able to realign the behaved robot pose to the real one.
Anyway at the end of the motion the robot localization moves from the real
one and the error ellipse doesn’t enlarge including the real robot pose, so the
robot wrongly convinces itself of a wrong pose. This is probably due to a
simple fact, at the end of the motion the robot arrives very close to the end
map wall, the LiDAR sensor takes scans only in the front and side parts of the
robot, so once the robot approaches the wall it has a very limited environment
view, this can easily lead to a wrong AMCL estimation of the robot pose.
Comparing the RMSE values between the different tests, we can notice that
the value doesn’t change that much, except for the higher T value, in which
the robot moves faster and so also the robot localization became harder and
les accurate. As a consequence also the error ellipses are bigger with respect
to the previous tests. The average localization error is around 11 cm. This
leads to an enough satisfying motion in the tests but points out a not very
precise localization during the navigation.

• AMCL - ideal paths analysis - the error between the AMCL and the
ideal planned path has a floating behavior and a peak in the final part of
the navigation, similarly to the measured versus ideal path errors. This final
peak can be explained as the fact that the previous path points are taken
as close as possible to the ideal one. While the last one couldn’t be selected
differently and the control logic was built in order to stop the robot motion
once it reached a minimum T distance from the final point. So it is normal
that the last error distance is higher. It can also be remarked that the final
distance is not always minor then the required T value, this is probably due
to two facts. The first one is the fact that the AMCL localization updates in

76

Tests and Results

a discrete way, so it is possible that the robot has moved a little more after
the last available AMCL robot pose. The second reason is that the control
logic doesn’t directly use the AMCL localization, but the Hector SLAM one,
published in a continuous way (at high frequency) and occasionally corrected
by the AMCL. The SLAM pose is also transformed from the odom frame to
the map one, this value should be equal to the AMCL one, but due to some
computational errors and approximations the two values can became a bit
different.
Finally we can notice that the RMSE values for the AMCL versus ideal paths
analysis increases in parallel to the T value. This is as expected, since, as
previously said, a larger threshold value leads to a less close single ideal path
point reaching and so an overall less accurate path tracking.

• Travel time and quality motion analysis - As reported in the previous
list, the increase of the T parameter value lead to a reduction o the travel
time, so a quicker destination reaching, and a more smooth and harmonious
motion. This is because a higher path point reaching threshold leads to more
frequent update of the next path point to reach during the motion, leaving
the actual goal point always at a suitable distance from the robot. This gives
a more constant robot speed and a smoother navigation, since the machine
doesn’t try to precisely reach the single points correcting the orientation and
slowing down (having a smaller distance to the goal point).

From the previous analysis we can draw some important final considerations. We
can observe a clear direct correlation between the T parameter and the accuracy of
the path tracking, both considering the robot localization and the real robot poses.
The higher the T value is, the higher are the RMSE values of the distance between
the ideal path and the AMCL and measured ones. In parallel we can observe an
increase in the quickness in the destination reaching and a quality enhancement in
the motion smoothness with a T value growing.
So the T parameter has to be tuned, doing a trade-off between the two desired
motion behaviors depending on the applications. A too high T value lead to a
smoother and fast motion but a less accurate robot localization and consequently
to a worse path tracking that can lead to obstacle crushes and a more dangerous
robot navigation. On the other hand a too low T value leads to a closer path
tracking, being sure to not hit obstacles with a slower and safer motion, but, at
the same time, this makes the robot move too slow and in a scattering and not
harmonious way. Obviously safety has to be considered as the most important
index in the T value tuning and secondly also the other wanted navigation behaviors.

77

Chapter 7

Conclusions and Future
Developments

7.1 Conclusions
In this conclusion chapter we are going to summarize the work that has been
completed and the desired and obtained results.
The main thesis goal was to make a robot able to autonomously move to a desired
position in a mapped environment. In order to reach this main objective, different
work parts were developed. The first development regarded the system integration
between the different robot’s devices. In particular, the on-board computer (the
Nvidia Jetson Nano) was connected to the MCU via an I2C bus, enabling a data
flow from the computer to the controller device. This communication channel
was then checked and improved thanks to a second one, the UART bus, used for
retrieving the MCU inner signals. An I2C transmission feedback control logic was
implemented, sending the messages to the microcontroller till a correct reception.
For the localization messages, a different technique was developed to improve the
reception, an outlier rejection logic based on the maximum feasible distance that
the robot can move and rotate. If the received robot position is farther from the
previous one than those thresholds, the message is rejected.
The second part of the work focused on environment mapping and robot localization
in the obtained map. The mapping phase was done using a LiDAR sensor for
exploring the environment, while the SLAM was implemented using the Hector
SLAM software saving an occupancy grid map. Thus the robot localization in such
a map was then assigned to an AMCL algorithm, working together with the Hector
SLAM robot pose computation through a scan matching logic. The Hector SLAM
robot pose was used as a virtual laser odometry since it was published at a high
frequency (the laser scan frequency), and corrected by the AMCL each time the

78

Conclusions and Future Developments

algorithm update the robot localization.
The final part of the project deals with path planning, path tracking, and au-
tonomous robot navigation control logic. The path planning was implemented
using an A* path search algorithm on the previously obtained map, after a bound-
ary increase process for the map, in order to take into account the robot size and
obtain a suitable obstacle-free path. Then the path tracking logic was developed
selecting the correct path point to reach according to the actual robot localization.
In this algorithm, the path points are considered reached once the robot has a
distance from them less than a T value. This parameter was then tuned during
the test phase. At the end of the work, the autonomous navigation control logic
was designed. It is a negative feedback static controller, which returns the wheels’
desired speed according to the robot distance and misalignment from the actual
goal path point multiplied by suitably tuned gains.
Finally, the autonomous navigation tests were run checking the robot’s behavior
according to the variation of the T value for the path points reaching. The robot
proved to be able to suitably move and reach the desired final destination, thus
confirming that the previous work was correctly carried out. It was then noticed
that using a low T parameter value the robot had a close path tracking but at the
same time a slow and scattering motion. On the other hand, a higher T value leads
to a faster destination reaching with a smoother motion, but a less accurate robot
path, with respect to the planned one. A too high T value also gave problems
to the robot localization, thus is not recommended. We can conclude that the
robot was able to correctly autonomously navigate to the desired position, and by
tuning the T parameter we can modify its motion behavior, making a trade-off
between quickness of the task accomplishment and smoothness of the motion with
the correct path tracking, being sure not to hit obstacles.

7.2 Future developments
The thesis goal was reached but this doesn’t mean that the work is completely
done. As said at the beginning of the thesis, this project was part of a larger one
that also at this moment is carried out by other students and researchers for the
Innotech Systems company. Some of the possible future robot developments and
improvements are presented in the following list.

• The robot localization in the map proved to be around 10 cm accurate as
average. This accuracy was enough for the project task accomplishment, but
is not a very low value. Thus the robot localization could be improved by
adding other extra sensors to the machine and combining their measurements,
possibly with a Kalman filter, obtaining a more accurate robot pose. Some
possible sensors could be the IMU, precise wheel encoders and a GNSS sensor

79

Conclusions and Future Developments

that could make the robot localize itself in outdoor environments, not suitable
for mapping.

• A more performing MCU could be used in order to test the overall work
making it implement, as designed, the control logic.

• A more robust control logic could be developed, designing a dynamic controller.

• A local path planning, maybe based on ultrasound sensors, could be imple-
mented, ensuring a safer obstacle avoidance and for dealing with unexpected
and dynamic obstacles.

80

Appendix A

A* pseudo-algorithm

1 // A∗ f i n d s a path from s t a r t to goa l .
2 // h i s the h e u r i s t i c func t i on .
3 f unc t i on A_Star (s ta r t , goal , h)
4 // The s e t o f d i s cove r ed nodes that may need to be (re −)expanded .
5 // I n i t i a l l y , only the s t a r t node i s known .
6 open_set := { s t a r t }
7

8 // For node n , came_from [n] i s the node immediately preced ing i t
on the cheapest path from s t a r t

9 came_from := an empty map
10

11 // For node n , g_score [n] i s the co s t o f the cheapest path from
s t a r t to n c u r r e n t l y known .

12 g_score := map with d e f a u l t va lue o f I n f i n i t y
13 g_score [s t a r t] := 0
14

15 // For node n , f_score [n] := g_score [n] + h(n) . f_score [n]
r e p r e s e n t s our cur rent best guess as to

16 f_score := map with d e f a u l t va lue o f I n f i n i t y
17 f_score [s t a r t] := h(s t a r t)
18

19 whi le open_set i s not empty
20

21 cur rent := the node in open_set with lowest f_score [] va lue
22 i f cu r r ent = goa l
23 re turn reconstruct_path (came_from , cur rent)
24

25 open_set . Remove(cur rent)
26 f o r each neighbor o f cur rent
27 // d(current , ne ighbor) i s the weight o f the edge from

current to ne ighbor

81

A* pseudo-algorithm

28 // tentat ive_g_score i s the d i s t ance from s t a r t to the
ne ighbor through cur rent

29 tentat ive_g_score := g_score [cur r ent] + d(current ,
ne ighbor)

30 i f tentat ive_g_score < g_score [ne ighbor]
31 // This path to ne ighbor i s b e t t e r t i l l now . Record

i t .
32 came_from [neighbor] := cur rent
33 g_score [ne ighbor] := tentat ive_g_score
34 f_score [ne ighbor] := tentat ive_g_score + h(neighbor)
35 i f ne ighbor not in open_set
36 open_set . add (ne ighbor)
37

38 // Open s e t i s empty but goa l was never reached
39 re turn f a i l u r e
40

41 f unc t i on reconstruct_path (came_from , cur rent)
42 total_path := { cur rent }
43 whi le cur rent in came_from . Keys :
44 cur rent := came_from [cur rent]
45 total_path . prepend (cur rent)
46 re turn total_path

82

Bibliography

[1] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. A review of
mobile robots: Concepts, methods, theoretical framework, and applications.
2019. doi: 10.1177/1729881419839596 (cit. on p. 1).

[2] Uwe Jahn, Daniel Heß, Merlin Stampa, Andreas Sutorma, Christof Röhrig,
Peter Schulz, and Carsten Wolff. «A taxonomy for mobile robots: Types,
applications, capabilities, implementations, requirements, and challenges». In:
Robotics 9 (4 2020). issn: 22186581. doi: 10.3390/robotics9040109 (cit. on
p. 1).

[3] Roland Siegwart, Illah R Nourbakhsh, and Davide Scaramuzza. Introduction
to Autonomous Mobile Robots, Second Edition. Vol. 23. 2011 (cit. on p. 1).

[4] Open Robotics. ROS - Robot Operating System. url: https://www.ros.org/.
(accessed: 01.11.2022) (cit. on p. 4).

[5] Alvin Jacob, Wan Nurshazwani Wan Zakaria, and Mohd Razali Bin Md
Tomari. «Evaluation of I2C communication protocol in development of modu-
lar controller boards». In: ARPN Journal of Engineering and Applied Sciences
11 (8 2016). issn: 18196608 (cit. on pp. 7, 8).

[6] NXP Semiconductors. «UM10204 I2C-bus specification and user manual». In:
Semiconductors 3 (Oct. 2021) (cit. on pp. 8, 11).

[7] Peter Corcoran. «Two Wires and 30 Years : A Tribute and Introductory
Tutorial to the I2C Two-Wire Bus». In: IEEE Consumer Electronics Magazine
2 (3 2013). issn: 2162-2248. doi: 10.1109/mce.2013.2257289 (cit. on p. 8).

[8] Ashok Kumar Gupta, Ashish Raman, Naveen Kumar, and Ravi Ranjan.
«Design and implementation of high-speed universal asynchronous receiver
and transmitter (UART)». In: 2020. doi: 10.1109/SPIN48934.2020.9070856
(cit. on p. 11).

[9] J. Norhuzaimin and H.H. Maimun. «The design of high speed UART». In:
2005 Asia-Pacific Conference on Applied Electromagnetics. Dec. 2005. doi:
10.1109/APACE.2005.1607831 (cit. on p. 12).

83

https://doi.org/10.1177/1729881419839596
https://doi.org/10.3390/robotics9040109
https://www.ros.org/
https://doi.org/10.1109/mce.2013.2257289
https://doi.org/10.1109/SPIN48934.2020.9070856
https://doi.org/10.1109/APACE.2005.1607831

BIBLIOGRAPHY

[10] Eric Peña and Mary Grace Legaspi. UART: A Hardware Communication
Protocol Understanding Universal Asynchronous Receiver/Transmitter. 2020
(cit. on p. 12).

[11] Ritesh Kumar Agrawal and Vivek Ranjan Mishra. «The design of high
speed UART». In: 2013 IEEE Conference on Information & Communication
Technologies. Apr. 2013, pp. 388–390. doi: 10.1109/CICT.2013.6558126
(cit. on p. 12).

[12] Shubham Nagla. «2D Hector SLAM of Indoor Mobile Robot using 2D Lidar».
In: 2020 International Conference on Power, Energy, Control and Transmis-
sion Systems (ICPECTS). Dec. 2020, pp. 1–4. doi: 10.1109/ICPECTS49113.
2020.9336995 (cit. on p. 14).

[13] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J. Leonard. «Past, Present, and Future of
Simultaneous Localization and Mapping: Toward the Robust-Perception Age».
In: IEEE Transactions on Robotics 32.6 (Dec. 2016), pp. 1309–1332. issn:
1941-0468. doi: 10.1109/TRO.2016.2624754 (cit. on p. 14).

[14] Shao-Hung Chan, Ping-Tsang Wu, and Li-Chen Fu. «Robust 2D Indoor
Localization Through Laser SLAM and Visual SLAM Fusion». In: 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). Oct.
2018, pp. 1263–1268. doi: 10.1109/SMC.2018.00221 (cit. on p. 16).

[15] Stefan Kohlbrecher, Oskar von Stryk, Johannes Meyer, and Uwe Klingauf. «A
flexible and scalable SLAM system with full 3D motion estimation». In: 2011
IEEE International Symposium on Safety, Security, and Rescue Robotics. Nov.
2011, pp. 155–160. doi: 10.1109/SSRR.2011.6106777 (cit. on pp. 16–18, 45,
47).

[16] Zhang Xuexi, Lu Guokun, Fu Genping, Xu Dongliang, and Liang Shiliu.
«SLAM Algorithm Analysis of Mobile Robot Based on Lidar». In: 2019
Chinese Control Conference (CCC). July 2019, pp. 4739–4745. doi: 10 .
23919/ChiCC.2019.8866200 (cit. on p. 17).

[17] Isro Wasisto, Novera Istiqomah, I Kadek Nuary Trisnawan, and Agung Nu-
groho Jati. «Implementation of Mobile Sensor Navigation System Based on
Adaptive Monte Carlo Localization». In: 2019 International Conference on
Computer, Control, Informatics and its Applications (IC3INA). Oct. 2019,
pp. 187–192. doi: 10.1109/IC3INA48034.2019.8949581 (cit. on pp. 19, 20).

[18] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. «Monte
Carlo localization for mobile robots». In: Proceedings - IEEE International
Conference on Robotics and Automation 2 (1999). issn: 10504729. doi: 10.
1109/robot.1999.772544 (cit. on p. 19).

84

https://doi.org/10.1109/CICT.2013.6558126
https://doi.org/10.1109/ICPECTS49113.2020.9336995
https://doi.org/10.1109/ICPECTS49113.2020.9336995
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/SMC.2018.00221
https://doi.org/10.1109/SSRR.2011.6106777
https://doi.org/10.23919/ChiCC.2019.8866200
https://doi.org/10.23919/ChiCC.2019.8866200
https://doi.org/10.1109/IC3INA48034.2019.8949581
https://doi.org/10.1109/robot.1999.772544
https://doi.org/10.1109/robot.1999.772544

BIBLIOGRAPHY

[19] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. «Robust
Monte Carlo localization for mobile robots». In: Artificial Intelligence 128
(1-2 2001). issn: 00043702. doi: 10.1016/S0004-3702(01)00069-8 (cit. on
p. 19).

[20] Ming-An Chung and Chia-Wei Lin. «An Improved Localization of Mobile
Robotic System Based on AMCL Algorithm». In: IEEE Sensors Journal 22.1
(Jan. 2022), pp. 900–908. issn: 1558-1748. doi: 10.1109/JSEN.2021.3126605
(cit. on pp. 20, 22).

[21] Sun Dihua, Qin Hao, Zhao Min, Cheng Senlin, and Yang Liangyi. «Adaptive
KLD sampling based Monte Carlo localization». In: 2018 Chinese Control
And Decision Conference (CCDC). June 2018, pp. 4154–4159. doi: 10.1109/
CCDC.2018.8407846 (cit. on p. 20).

[22] Hui Liu. Robot Systems for Rail Transit Applications. 2020. doi: 10.1016/
B978-0-12-822968-2.01001-9 (cit. on p. 23).

[23] Ade Candra, Mohammad Andri Budiman, and Kevin Hartanto. «Dijkstra’s
and A-Star in Finding the Shortest Path: a Tutorial». In: 2020 International
Conference on Data Science, Artificial Intelligence, and Business Analytics
(DATABIA). July 2020, pp. 28–32. doi: 10.1109/DATABIA50434.2020.
9190342 (cit. on p. 24).

[24] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. «A Formal Basis for the
Heuristic Determination of Minimum Cost Paths». In: IEEE Transactions on
Systems Science and Cybernetics 4.2 (July 1968), pp. 100–107. issn: 2168-2887.
doi: 10.1109/TSSC.1968.300136 (cit. on p. 24).

[25] Open Robotics. ROS.org - ROS Graph Concepts: Nodes. url: http://wiki.
ros.org/Nodes. (accessed: 25.11.2022) (cit. on p. 32).

[26] Open Robotics. ROS.org - ROS Graph Concepts: Topics. url: http://wiki.
ros.org/Topics. (accessed: 25.11.2022) (cit. on p. 42).

[27] Wim Meeussen. REP 105 - Coordinate Frames for Mobile Platforms (ROS.org).
2010. url: https : / / www . ros . org / reps / rep - 0105 . html. (accessed:
19.11.2022) (cit. on p. 45).

[28] Open Robotics. ROS.org - roslaunch, Package Summary. url: http://wiki.
ros.org/roslaunch. (accessed: 25.11.2022) (cit. on p. 46).

[29] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. «Improved Tech-
niques for Grid Mapping With Rao-Blackwellized Particle Filters». In: IEEE
Transactions on Robotics 23.1 (Feb. 2007), pp. 34–46. issn: 1941-0468. doi:
10.1109/TRO.2006.889486 (cit. on p. 49).

[30] Open Robotics. ROS.org - tf, Package Summary. url: http://wiki.ros.
org/tf. (accessed: 17.11.2022) (cit. on p. 50).

85

https://doi.org/10.1016/S0004-3702(01)00069-8
https://doi.org/10.1109/JSEN.2021.3126605
https://doi.org/10.1109/CCDC.2018.8407846
https://doi.org/10.1109/CCDC.2018.8407846
https://doi.org/10.1016/B978-0-12-822968-2.01001-9
https://doi.org/10.1016/B978-0-12-822968-2.01001-9
https://doi.org/10.1109/DATABIA50434.2020.9190342
https://doi.org/10.1109/DATABIA50434.2020.9190342
https://doi.org/10.1109/TSSC.1968.300136
http://wiki.ros.org/Nodes
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/Topics
https://www.ros.org/reps/rep-0105.html
http://wiki.ros.org/roslaunch
http://wiki.ros.org/roslaunch
https://doi.org/10.1109/TRO.2006.889486
http://wiki.ros.org/tf
http://wiki.ros.org/tf

BIBLIOGRAPHY

[31] Open Robotics. ROS.org - rosbag, Package Summary. url: http://wiki.
ros.org/rosbag. (accessed: 25.11.2022) (cit. on p. 68).

86

http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag

	List of Tables
	List of Figures
	Introduction
	Thesis motivations and context
	Objective and methodologies
	Original contribution
	Thesis outline

	Background Material
	I2C and UART communications
	I2C communication protocol
	UART communication protocol

	Simultaneous Localization And Mapping
	Hector SLAM and Scan Matching algorithm

	Adaptive Monte Carlo Localization
	Path Planning using A* algorithm search

	System Integration
	On-board computer and microcontroller connection using I2C communication
	Data sent from the on-board computer to the MCU
	I2C communication protocol for data sending

	UART communication for microcontroller check, debug and signals feedback
	UART extracted signals
	UART Message creation logic

	Outlier rejection logic for the localization coordinates
	Feedback sending control for the I2C messages

	Laser Mapping and Localization
	Laser mapping of the environment using Hector SLAM
	Hector SLAM pose used as virtual odometry
	AMCL implementation in the obtained map

	Path Planning and Control Logic
	Map processing through boundary increase
	A* search algorithm for path planning
	Reference frames alignment
	Path Tracking logic
	MCU data sending
	Robot autonomous navigation control logic

	Tests and Results
	Robot hardware
	Project final test
	Results
	Considerations

	Conclusions and Future Developments
	Conclusions
	Future developments

	A* pseudo-algorithm
	Bibliography

