
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

PROMET&O: web application for
objective and subjective environmental

comfort data visualization and assessment

Supervisors

Prof. Antonio SERVETTI

Candidate

Martina SAUGO
December 2022

Abstract

For buildings to be managed effectively, gathering information regarding indoor
environmental quality is essential. Sometimes, raw data is not fully representative
of the actual well-being of the of a place’s users, which is why the PROMET&O
portal was developed.
In PROMET&O the chance of filling a survey about Indoor Environmental Quality
combines with a rich dashboard displaying various measures about four comfort
domains: Thermal Comfort, Visual Comfort, Acoustic Comfort and Indoor Air
Quality.
In order to compare the predicted comfort level, defined by the sensors’ data, and
the perceived comfort level, defined by the users’ opinions, statistics regarding the
aforementioned domains are gathered through the survey.
The users are also required to do a brief questionnaire regarding their lifestyle.
This will make it possible to look into the potential connection between certain
behaviours and perception toward the environment in more detail.
Additional knowledge regarding objective comfort indices is presented in order to
benefit the users by educating them about the influence that these measurements
can have on their lives and what they signify.
Users can also find hints on how to undertake common tasks and improve the quality
of their indoor spaces while keeping an eye on both comfort and sustainability.
The additional opportunity for comparing the graphs in different time windows
and among them allows for the creation of insightful correlations that benefit all
users’ quality of life.
The PROMET&O online portal’s major goal is to better understand the correlation
between environmental conditions, comfort and habits and to offer tools that help
the public become more informed, so that buildings can be more efficient and
comfortable.
These features are provided through a Single-Page Application developed in
JavaScript React supported by a serverless backend, implemented through Amazon
Web Services.

Summary

PROMET&O is a web portal designed in order to collect data about the comfort
perception of the occupants of a building. Through the use of a survey, users can
provide insights on the level of comfort of their environment. The collection of
data about the people’s habits, lifestyle and interaction with their environment
helps define interesting correlations between comfort perception and behaviour.
The subjective information can be compared with objective measurements collected
by an infrastructure of multisensors distributed across the involved spaces. The
collected data will be visible in a dashboard, together with notions and hints to
provide value to the users through knowledge about different factors that have
an impact on their environment and how to better interact with them for more
efficient and more comfortable spaces.
An example environment to be taken into consideration could be an office of about
10-12 seats where the users can change from day to day. In each of these offices, a
few tablets are made available as compilation stations in order to allow the users
to answer the questionnaires and visualize the objective data dashboard.
Because of the alternation of people in our target environment, there are two
main ways for the compilation of the questionnaire: a logged way, where the
received answers are linked with the ones to the personal information survey and
an anonymous way, where the user does not identify and is later asked to fill a
set of personal questions or to create an account. In order to achieve all attended
results we are expected to build: two surveys, a dashboard, a data management
system, a users management system and an email system. Moreover, the portal is
expected to be available both in Italian and English language.
Our web application is expected to be deployed over some tablets made available in
the office taken into exam. They would be connected to a SIM-generated wireless
network, together with a set of multisensors, which communicate through MQTT
to their own Objective Data database. This very same database is expected to
receive elaborated data about Indoor Environmental Comfort indices and to display
said data over a Grafana dashboard, which will be queried and referenced through
iFrames in PROMET&O’s dashboard.
PROMET&O is also expected to have a backend composed of a Database, an API

ii

Gateway connected to a set of functions, a deployment service, an authentication
service and its own domain, used both to make the site reachable and for email
communication.
The average approach to the development of a web application is to choose either
a monolithic architecture or a distributed one. In the first case we would have a
simpler but more limiting and less fault-tolerant architecture, while in the second
one we have a much more reliable system but far more expensive and of difficult
implementation. An alternative to these two approaches is to rely on a serverless
solution.
This option was not only taken into consideration because of its reliability, fault
tolerance and ease of implementation, but also because of the availability of some
AWS credit provided by the Politecnico di Torino and because of the interest in
this novel approach to backend deployment.
The serverless backend has been built through the use of AWS.
Amazon provides services to set up an API gateway to invoke functions, imple-
mented through AWS Lambda, in order to access the Amazon DynamoDB used to
store the application data. Amazon Cognito manages authentication and sessions
and AWS Amplify deploys the frontend application, combining it with the previ-
ously described backend structure. Together with this, Route53 is also used in order
to customize the application’s domain and that very same domain is furthermore
used to send email through the usage of Amazon SES.
For the frontend, the React framework has been chosen because of the previous
familiarity with it and for its expressive power. This technology allows creating
Single-Page Applications that ensure great manageability thanks to its structures,
such as states and effects. Moreover, the creation of web pages and code maintain-
ability is ensured by the usage of Components. Finally, the content of the page
can be determined through the usage of React Router, which interprets the url
and takes action accordingly. React is also compatible with a wide set of libraries,
including survey-react-ui, which is used in order to include SurveyJS surveys in a
React project.
This service has been chosen in order to automate the creation of surveys, thanks
to its intuitive Survey Creator, available through a web interface. It allows creating
surveys with several kinds of questions distributed in pages and with tools able to
define a logic path through the questionnaire in order to ask the user all and only
the applicable questions.
The Indoor Environmental Comfort survey covers four aspects of comfort: thermal,
acoustic, visual and indoor air quality.
In order to ensure a quick survey completion, when a user answers positively about
the comfort of his or her environment, the only following question is about which
aspects were particularly satisfying. Otherwise, the user is asked to choose which
aspects brought him or her discomfort and to answer some specific questions about

iii

them in order to evaluate the corresponding comfort indices.
The survey about personal information covers some aspects about the user’s lifestyle
in order to be able to understand whether there can be a correlation between routine
and perception of comfort.
The first few questions collect demographic information, such as the user’s gender,
age, nationality and educational qualification. Then, the survey inquires about the
context, asking what kind of building it is, the person’s role in it and how many
people are in the same environment. Secondarily, the questionnaire collects data
about the person’s lifestyle, asking about impairments, habits and what kind of
impact the lack of comfort has on the user’s well-being and productivity. Later, a
set of questions is presented in order to understand which degree of control the
user has on the facilities’ systems and the importance that the user gives to this
control.
The application’s dashboard has the double task of informing the logged users
about Indoor Environmental Quality and objective measures and providing useful
knowledge for living the environments in a more efficient and conscious way.
In the main page of the dashboard, gauges about Indoor Environmental Quality
indices are displayed and, by clicking on any of them, an explicative text and
relative measures are shown. These punctual measures can also be seen in graphs
representing the piece of data in different time windows and comparisons can
be made between different measures or time windows. The “Hints” and “More”
buttons provide trivia and additional information about a measure of interest in
order to teach the users the impact it has on their lives and how to have a healthier
environment.
To remain on a serverless approach, a EC2 machine-based solution was also ana-
lyzed.
The requirements of the machines, combined with a very irregular expected traffic
and a time-based billing system, makes it so that most of our resources would
remain unused for large portions of time. On the other hand, our AWS services,
with their pay-per-usage billing system, make it so that we are charged only for the
actual usage of systems, resulting in cheaper monthly fees. This analysis has been
carried out for both the current expected use case, which is an office of about a
dozen users, and for a possible future application, represented by the possibility of
deploying the tablets in one of the largest rooms of Politecnico. This would make
it so that about 4000 students every day would have the possibility of accessing
PROMET&O, implying a rise in requirements and billing, but still generating lower
costs than relying on a EC2 machine.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 2
1.1 Context of application . 2
1.2 Requirements . 4
1.3 Surveys . 4
1.4 Backend . 5
1.5 Users and device management . 5
1.6 Emails . 6
1.7 Dashboard . 6
1.8 Localization . 7

2 Architecture analysis 8
2.1 Architecture . 8
2.2 Backend . 9

2.2.1 Comparison between server and serverless solution 10
2.2.2 Comparison between potential serverless environments . . . 12
2.2.3 Conclusions . 15

2.3 Surveys . 15
2.3.1 Survey Creation Tools . 16
2.3.2 Forms Creation Tools . 18
2.3.3 Conclusions . 20

3 AWS Services 22
3.1 Application’s architecture . 23

3.1.1 Amplify CLI . 24
3.1.2 API Gateway . 27
3.1.3 Lambda . 34
3.1.4 DynamoDB . 34

vi

3.1.5 Amazon Cognito . 43
3.1.6 AWS Amplify . 46
3.1.7 Route53 . 48
3.1.8 Amazon SES . 49
3.1.9 Considerations about AWS Services 51

3.2 Reusability of the solution . 52
3.3 Cost analysis . 52

3.3.1 Machine-based solution . 53
3.3.2 Service-based solution . 54

4 Frontend 58
4.1 Auxiliary Tools . 58

4.1.1 SurveyJS . 58
4.1.2 Formik . 60

4.2 React . 61
4.3 CSS . 66

5 User interface 70
5.1 Unregistered device . 71
5.2 Registered device . 80

6 Conclusions 84

Bibliography 86

vii

List of Tables

3.1 Machine-based cost comparison . 54
3.2 Expected AWS services costs in an office context 55
3.3 Expected AWS services costs in a university context 57

viii

List of Figures

2.1 Overview of the architecture . 8
2.2 Example of a monolithic architecture 10
2.3 Example of a distributed architecture 11

3.1 Overview of the AWS architecture 23

5.1 Overview of the routes in the application 70
5.2 Homepage on unregistered device 71
5.3 Login page . 72
5.4 Homepage of a logged user on an unregistered device 73
5.5 User’s profile . 73
5.6 Dashboard . 74
5.7 Dashboard fully activated . 75
5.8 Hints and more . 75
5.9 Graphs visualization . 76
5.10 Graphs comparison . 76
5.11 Personal questions’ survey . 77
5.12 Thank you page . 79
5.13 Homepage of a registered device . 80
5.14 IEC survey structure . 81
5.15 End of questionnaire page for unlogged users 81
5.16 Sign in page . 82
5.17 End of registration page . 83

ix

Chapter 1

Introduction

In current times, the interest in buildings efficiency has increased notably. Lit-
erature and norms have been created in order to be able to define whether an
environment is considered comfortable or not.

The PROMET&O web portal has been born with the goal of building a digi-
tal interface in order to collect data about Indoor Environmental Comfort and
display said data in conjunction with the ones gathered by the sensors and describ-
ing Indoor Environmental Quality.

Indoor Environmental Quality indices alone, in fact, may not be actually rep-
resentative of the comfort of an environment, as comfort is a subjective perception
which varies from person to person. In order to ensure more efficient, healthy
environments, the proactive collaboration of the occupants is of crucial importance.
This is why great attention has been put into granting an engaging and pleasant
user experience.

1.1 Context of application
The PROMET&O web portal is thought to be deployed in a context of reduced
size, such as an office, although some of its characteristics make it fit also for larger
applications.
In particular, we took into consideration offices where the users can change from
day to day and where the amount of simultaneous users is not higher than a dozen
people. These workers can be focused on different kinds of jobs: they can work
on individual tasks, they can be required to listen to videos and conferences and,
sometimes, they’re also required to join in.

2

Introduction

The amount of people in the room can determine not only a change in the tem-
perature, but also on the sound pressure level, on the amount of surfaces that can
cause glare and on the air quality. All these aspects can influence the occupants’
quality of life, their comfort and their productivity and are object of the survey
the users are proposed to answer.
Together with this, another survey is also presented. This second questionnaire
is about the lifestyle of the users and includes information such as the users’ age,
gender, country, the kind of building they’re in and their role in it, their habits and
impairments and also which degree of control they have on the facility’s systems,
including heating, cooling, shading and noise reduction solutions.
All these characteristics are instrumental in having a more complete understanding
of the users’ perception on the environmental conditions and will be analyzed in
correlation with the answers they provided.

A sample environment to be taken into consideration as a use case is an office of
about 10-12 seats where the users can change from day to day. In each of these
offices, a few tablets are made available as compilation stations in order to allow
the users to answer the questionnaires whenever they feel like it and visualize the
objective data dashboard. This makes it so that scalability is not a current issue, as
a limited amount of data will be forwarded at the same time through the tablets.

As previously mentioned, the users in each room may vary even frequently, this is
why it has been deemed fit to introduce two main ways for the compilation of the
questionnaire:

• A logged way, where a user with an account has logged in and fills the survey.
The answers here received will be linked with the answers to the personal
information survey in the name of that user.

• An anonymous way, where the user does not identify himself or herself and will
later be asked to fill the personal information survey or to create an account.

In order to sign in, the users are asked to provide an email address and a unique
token that they will use for identification.
After signing in, the user will receive a verification link in their email. Without
verifying their account, the user won’t be able to log in. By clicking the verification
link sent, the verification process will be completed, allowing the new account to
log in.
The target environment for this application is considered to be a relatively safe
area accessible by a limited amount of people. Moreover, it was considered a top
priority to be able to complete the survey in the quickest possible way. This is
why the login phase has been built more like an identification process than an

3

Introduction

authentication. In this step, the user is only required to insert his or her token.
This kind of operation is considered less complicated than having to insert into the
tablet both email and password each time and sufficient for identifying who is the
user who filled the Indoor Environmental Quality survey in order to associate his
answers with his personal information and habits. It’s not excluded the possibility
to provide a more traditional authentication system, depending on the requirements
provided by the specific context of application.

1.2 Requirements
The application developed had to be able to:

• Host two surveys, one to assess Indoor Environmental Comfort and one to
gather information about the occupants’ habits and lifestyle;

• Forward the collected data both to an internal database to store the whole
received information and to the Objective Data database after being processed;

• Manage the users, allow them to sign in and identify themselves, allowing
Indoor Environmental Comfort survey only through the tablet stations;

• Send email in order to get in touch with the users, not only to verify the
account but also to stimulate a proactive approach to the portal;

• Display the Objective Data dashboard, where measurements about Indoor
Environmental Comfort are displayed and explained. Information about
the values’ compliance to norms is displayed and the users have also the
chance to compare graphs in different time windows or different indices. The
dashboard should also provide additional information and hints about the
Indoor Environmental Quality indices in order to bring value through teaching.

• Be available in both Italian and English

1.3 Surveys
The implementation of a feature like a survey can take possibly a long developement
time.
Among the required features there were closed-ended questions with single or
multiple choices, image pickers, open questions, dropdown menus and, overall
consistent and rich customization, in order to meet also the aesthetic requirements.
In order to quicken the development phase it was thought to rely on online tools

4

Introduction

used in order to generate surveys, but also on form makers, as surveys and forms
are conceptually very similar.
Automated tools to build them both have been analyzed in order to decide which
one could possibly fit best our needs: the simple implementation, combined with a
wide range of customization were imperative aspects.
In particular, among the proposed solutions, our choice fell on SurveyJS. Their
service is built specifically for the automation of surveys, provides a wide set of
pre-built questions and systems to manage the questionnaire’s flow, it is compatible
with React (the environment chosen for the frontend) and allows for thorough
personalization through css classes.

1.4 Backend
Implementing the backend is another time-consuming and complex task.
In this stage, we found ourselves before two possible choices: a monolithic, server
solution or a distributed, serverless one.
The first choice was of simpler implementation, but the nature of our context
made it so that most of our resources would be unused for a very large portion
of time, making our investment somehow inefficient. Moreover, a possible future
modification of context would force an update on the infrastructure in order to
sustain a change in the amount of users.
The latter choice was far more interesting. It was first taken into consideration
because of the existence of some AWS credit, made available by the Politecnico
di Torino. By analyzing this option in more detail, we discovered that it involved
large automation of deployment and part of the development, better resources
management through a pay-per-use policy, often joined with a free tier in services
use. Among the serverless solutions taken into exam, AWS was chosen.

1.5 Users and device management
Inside the system, authentication is split into two different levels:

• device authentication, through Cognito

• user authentication. through our own APIs and Database

Device authentication is necessary in order to make sure that some of PROMET&O’s
functionalities, such as filling the Indoor Environmental Comfort survey, are only
made available through well-known terminals so as to be able to correlate the
subjective data collected with an objective equivalent from the nearest multisensor.
Authentication in this case is managed through Cognito, where credentials are

5

Introduction

created through its graphic interface and forwarded through Cognito’s APIs in
order to authenticate the device. Moreover, Cognito also manages sessions and the
refresh of the jwt tokens used to keep track of said session.

User authentication is instead managed through our own APIs and database,
in conjunction with states, cookies and localStorage.
The user inserts an email and a token in order to sign in. Then a confirmation
email is sent to the user and, until the user proves to be in control of the email
address he or she provided, the account is in a locked state, meaning that the user
can’t log in.
By clicking on the confirmation link the user received by email, the account is
marked as verified and the user can now use it to see his or her personal profile,
answer personal questions just once and visit the dashboard.
Information about the currently logged person is also made available through the
use of cookies, which Grafana requires in order to authorize graphs visualization
for the user.

1.6 Emails
At the moment, PROMET&O uses very few but useful emails.

The first email is sent to the user upon registration: this message has the funda-
mental role of making sure that the user is actually in control of the mail he or she
used to create the account. If it is so, the user shall click on the confirmation link
received, in order to show that he was able to receive, access and read the email.
Doing so, the account is enabled for use.

The second email instead is received upon completion of the user’s first survey. In
this communication, PROMET&O’s team thanks the user for the effort put in
answering the questions and assures support and availability in the future.

Although only a few messages are exchanged, it’s thought that in the future
new communications may be integrated in order to build a stronger bond with the
user, trying to stimulate a more and more proactive approach to the questionnaire
in order to obtain as much meaningful data as possible.

1.7 Dashboard
The dashboard is one of the core elements of PROMET&O.
It displays the objective data over time through the use of Grafana’s iframes and

6

Introduction

queries. Moreover, it compares the Indoor Environmental Quality indices with
their subjective counterpart.

The graphs are generated through Grafana, a software built in order to produce
different formats of data visualization starting from a database. Our dashboard
takes its data from the database managed by professor Montrucchio’s team, where
the multisensor devices store their measures during the day. Their case of applica-
tion is quite different from ours, as the objective data database collects new entries
every few seconds from a multitude of devices through MQTT. Subjective data
is instead collected seldom, with an expected amount of compilations that stands
between one or two survey answers per user, per day and only during weekdays
and working hours.
This makes the two categories of data significantly different because of their amount
and frequency, but being able to put them in correlation allows us to obtain
meaningful insights on how the users actually feel about their environment.

1.8 Localization
PROMET&O is available in both English and Italian.
Language management in the application happens through a state variable called
"ita" that can be toggled in order to choose between the two languages. This state
is then forwarded to all the components in order to let them choose which string
to render between the Italian and English version of texts.
SurveyJS, on the other hand, has its own localization tool which makes it very easy
to translate surveys and their options. Several languages can be made available
and all it takes is to fill the table under the "translation" tab in Survey Creator.
Afterwards, set the survey’s variable "locale" to the desired language at survey
loading and all questions, options and commands will be translated in the chosen
language.

7

Chapter 2

Architecture analysis

2.1 Architecture

Figure 2.1: Overview of the architecture

The full architecture of the PROMET&O’s project includes a wide variety of
services and tools.

The objective data acquisition part has been developed by the electronic team in
combination with professor Bartolomeo Montrucchio’s computer science team.
This includes the multisensors infrastructure, which communicates the perceived

8

Architecture analysis

data through MQTT protocol to the Objective Data database. Here data is col-
lected and analyzed by Grafana, a software used to produce dashboards containing
graphs and other data visualization tools.
Grafana’s iframes and query results are embedded in the PROMET&O web portal
in order to make this information easily available to the users.
The web application also sends some MQTT data to the Objective Data database.
The data sent is about the comfort indices evaluated through the users’ answers to
the Indoor Environmental Comfort survey and is displayed alongside the expected
comfort indices obtained from the corresponding objective data.

The subjective data acquisition part instead is represented by a React appli-
cation supported by an AWS serverless backend. SurveyJS, our surveys automation
tool of choice, has also been chosen because of its compatibility with the React
framework.
SurveyJS is able to represent questionnaires through the usage of a JSON file
embedding all of the survey’s characteristics and its library, where functions can be
found in order to start the questionnaire, customize the css classes of some aspects
of the questions, choose how the survey is supposed to act upon completion and
selecting the language.
This tool has been used twice, the first time to implement the Indoor Environmental
Comfort survey and the second time to implement the questionnaire about the
users’ lifestyle and habits.
The serverless backend, instead, has been built through the use of AWS.
Amazon provides services to set up an API gateway[1] to invoke functions, imple-
mented through AWS Lambda[2], in order to access the Amazon DynamoDB[3]
used to store the application data. Amazon Cognito[4] manages the device authen-
tication and AWS Amplify deploys the frontend application, combining it with
the previously described backend structure. Together with this, Route53[5] is also
used in order to customize the application’s domain and that very same domain is
furthermore used to send email through the usage of Amazon SES[6].

The chosen solutions were not the only available options. In the next few sections,
other possibilities are described, together with the reason of our final choices.

2.2 Backend
The backend architecutre represents an interesting aspect to which we devoted
special attention.
Several options are made available, from a simple, monolith architecture to a
more elaborated distributed infrastructure. The serverless option was particularly

9

Architecture analysis

interesting: it represents an innovative solution, granting also availability, reliability,
automation of some development tasks and, possibly, a scalability which would
allow the infrastructure to adapt if different use cases were to arise.
Several choices have been analyzed and the results of our considerations can be
found in the next subsections.

2.2.1 Comparison between server and serverless solution
One of the most common approaches, when developing your own web application,
is implementing a server architecture containing all services to allow your system
to run properly.
In our specific case we would have required:

• a web server for the application

• a database to store and retrieve data

• a mail server to communicate with our users

• a hosting service to make our application reachable

This architecture can either be monolithic or distributed.

Figure 2.2: Example of a monolithic architecture

The simplest scenario, in terms of implementation, is the monolithic one, which
consists of a single machine where all services are deployed.
In this case we have a simpler deployment at the expense of huge limitations related
to the availability of our application. Our server, in fact, would become a single
point of failure, meaning that if our machine had some issues the entire website

10

Architecture analysis

would become completely unavailable. Also, if our requirements were to change
in the future, the system would be able to accommodate this growth only up to
a certain point, after which the resources of the machine would not satisfy the
application requirements.

Figure 2.3: Example of a distributed architecture

In a distributed architecture, components are deployed on different machines,
which communicate via network in order to achieve their common goal. This makes
this architecture much more flexible, allowing resources to be shared, hence allowing
higher efficiency through concurrency and a higher fault tolerance.
On a negative note, it is much more complex to design, maintain and secure, and
also more expensive since it requires a higher amount of resources and synchroniza-
tion among all devices.

Both these solutions require a large portion of manual configuration and are
not fitting in a scenario with a rapidly changing traffic flow. There could be
moments where the traffic is very low, leaving a great part of our resources unused,
for example at nighttime, but also moments where the requirements are much
higher, for example around lunchtime, with the risk that our infrastructure cannot
accommodate them all.
Moreover, this infrastructure requires security, in order to limit as much as possible
all cases of attacks to the platform and the data in it. Some hazards can be
represented by DoS, SQL injection, Ransomware or Spyware.

11

Architecture analysis

The task is therefore non-trivial, but an alternative solution does exist.
Especially in order to satisfy the varying requirements that our application can have,
several serverless options have been developed. These solutions use servers made
available by companies that manage entire data centers and that, at a price based
on a limited time subscription or a per-usage fee, guarantee a solid infrastructure
able to satisfy varying traffic requirements and which can host one or more of our
services.
The Politecnico di Torino, for example, made available some credit for Amazon
AWS, which provides an extensive pool of services to allow us to build a com-
pletely serverless application. The unity among AWS’ modules makes it so that
an additional level of security can be added, granting protection at service and
application level alike. Each of these services is built in order to scale automatically
based on the received amount of requests, granting availability for every component
regardless of traffic and costs related only to how much was actually consumed. In
the next paragraph, we will examine some potential serverless environments.

2.2.2 Comparison between potential serverless environ-
ments

The diffusion of microservices generated a wide set of options about ready-made
serverless backend. This allows the use of an almost standard infrastructure in
order to be able to immediately support our frontend. In our application’s scenario
data collection is particularly interesting. Non-relational databases fit our needs
very well, since they can store data whose structure can change over time, still
remaining related. A relational option would still be applicable, but would force
some restrictions on data structures.

The usage of Google Sheets[7] as a relational database can seem a bit naive,
but its ease of implementation makes it particularly noteworthy. Through the use
of Google APIs it is possible to transcript data into a worksheet and retrieve them
afterwards as if they were rows in a relational database table. The usage of name
conventions and a small amount of scripting turns any Google Sheet into a small
database. Among its advantages, it’s a completely free solution and it doesn’t
require any cloud management. Its main disadvantage is a much more limited
nature, compared to other databases.

CouchDB[8] is a non-relational, JSON based database. Its main feature is the ease
of use and its replication system, which keeps data in an eventually consistent state,
relying heavily on local data. The lack of locks grants great data accessibility and
is the foundation of the concept of eventual consistency previously mentioned.

12

Architecture analysis

The introduction of a special table to keep track of users and relative authorizations
makes it so that an additional level of security can be added to single requests.
The system is based on a paradigm called cURL, which manages queries in a way
similar to HTTP requests. Another interesting characteristic of CouchDB is its
open source and free nature. A downside of this solution is that deployment has to
be handled manually and at least a virtual machine is required for the database to
run.

NoSQL[9] is a tool offered by Oracle. It’s based on tables and key-value rela-
tions and, also in this case, scalability and speed in managing data in a flexible
way are its strong points.
In its Always Free version NoSQL offers 133 millions reading and an equal number
of writings, with a total space of 25GB per table, up to three tables. This could be
limiting in case of complex data structures. Always Free version, moreover is only
available for the US West (Phoenix) region. For other regions a payment tier is
required, thus the free version is not available in Europe.

IBM Cloudant[10] is an open source implementation of CouchDB offered by IBM.
Together with the advantages of CouchDB’s structure, the company relies on its
long experience in the field, granting reliability, security and consistency, with
particular care for innovation. Their Hybrid Cloud strategy grants the possibility
of administering different levels of the cloud infrastructure from a single point of
contact. The free version of this service provides 1GB of storage and up to 20
readings and 10 writings per second. This could be enough for a context of reduced
size, but upscaling the system might require a payment version.

Couchbase[11] promotes especially its learning curve, supported by its extensive
documentation and the usage of SQL language, saving data in JSON format, which
grants high flexibility. The use of integrated cache, moreover, grants speed in data
interaction.
Its architecture is masterless and based on automated data replication. Its load
distribution across the infrastructure makes it so that no shutdown is required in
case of modifications or updates, making of data availability and response speed
its spearhead.
Couchbase is provided in an implementation called Couchbase Capella, a Database
As A Service which grants a simple and immediate management of the database,
automatically managing its setup, synchronization and replication. These services
are provided in a free trial of 30 days with 50 GB of storage, making it a non-viable
long term solution.

JSON serverless[12] is a github solution oriented to create a serverless system

13

Architecture analysis

for JSON files management through REST API, relying on AWS cloud. Through
the use of appropriate commands, it’s possible to create a folder with an already
deployable serverless configuration. It also allows adding personalized middleware
and authentication systems. Being available on git, the solution seems to be free,
but relying on AWS the costs would stem from the usage of Amazon infrastructure.

Datastrax[13] references the Kubernates environment and provides an open source
solution called AstraDB.
The purpose of AstraDB is drastically reducing deployment time, simplifying the
interactions with Cassandra through a pay-as-you-go serverless service.
The solution is able to operate natively with JSON and GraphQL and provides
API able to query Cassandra’s underlying structure in a transparent way, unrelated
to its query language.
The free version provides 80GB of storage space and 20 millions operations per
second, becoming a very competitive option. The solution can be deployed on
AWS, Google Cloud or Azure. AWS is characterized by the previously mentioned
pricing limits. Azure provides free trials for 750 hours of usage. Google Cloud
provides a 90 days trial.

Restdb.io[14] provides access to data through HTTP requests to a JSON file,
creating schema and its relations directly onto the web browser and allowing access
through REST API.
Access to data is allowed through a huge variety of devices, allowing to read, create
and update data from virtually anywhere. It also provides access control systems
in order to limit interventions on data based on roles, random data generators and
automated creation of forms. In its free version, Restdb.io provides at most three
users, 2.500 records 1 API call per second ad 100MB of storage, resulting in one of
the most limiting plans.

MongoDB Atlas[15] is a NoSQL system compatible with most available host-
ing services, which wants to provide a robust, flexible and scalable service.
It provides a free version which includes 512MB of storage, shared RAM and all
services required to access REST APIs. The free version, in particular, provides
access to three European regions for the same number of deployment platforms:
Frankfurt for AWS, Belgium for GCP, Netherlands for Azure.
Clever Cloud provides 500 MB for free, Object Rocket and Scale Grid have a 30
days trial each while Digital Ocean has a 60 days trial. All of these services support
MongoDB.

The Internet thus provides a wide range of services. The additional function-
alities abound and are distributed in different bundles among different providers.

14

Architecture analysis

About what it takes to manage a simple database, all offers convert towards a
NoSQL distributed model, managed through JSON with particular care to data
availability and consistency, even eventual.
Surprising, in this scenario is the role of Google Sheets, which provides an extremely
simple and free service, although very basic.
These solutions, though, only cover the data management scope, while our interest
is towards a fully serverless solution. Although these options are interesting to
analyze, we could go back to exploring a solution that is represented by DynamoDB
and all AWS services.

2.2.3 Conclusions
Initially, both a server and a serverless approach have been analyzed.
Particular interest has been put in the latter, because of the novelty in the approach
to deployment and because of the availability of some AWS credit.

We took into consideration a wide set of options, such as Google Sheets, CouchDB,
NoSQL, IBM Cloudant, Couchbase, JSON serverless, Datastrax, Restdb.io and
MongoDB Atlas, but ultimately our interest went back to AWS.
AWS, albeit being initially set aside because of the absence of a totally free so-
lution, was in fact not completely excluded, because of the availability of some
university-provided credit.
In our analysis we noticed that deployment is a complex task that might require a
lot of resources. Free applications often still rely on larger infrastructures, like AWS
itself, while the paid versions often provide a free version with huge limitations.
Amazon’s scenario became then newly interesting, since it provides a wide range of
services related to every aspect we’re interested in, granting unmatched integration
among them and thorough documentation.

2.3 Surveys
In order to speed up the development phase as much as possible, one of the initial
steps of research was to automatize the production of some aspects of our code. A
core element which was suitable to be computerized was the surveys structure.
We considered that the most complex and automatable part could be represented by
the survey, so different tools were analyzed in order to produce our questionnaires
in a quick way, without sacrificing the aspects of customization, a requirement
which could not be left out. Another characteristic which would be favourable
is compatibility with the React framework, which has been chosen as a frontend

15

Architecture analysis

substructure because of the previous familiarity with it, together with the efficiency
of the Single-Page Application it produces. Among the possible options for an easy
implementation of our survey, two main ways were taken into consideration: survey
tools and form tools.

2.3.1 Survey Creation Tools
The Internet offers a wide range of possibilities to create and fill surveys with the
most various structures. The greatest part of them allow even the most inexperi-
enced users to operate through the great intuitiveness of their interfaces and high
customization.
Among the existing services, we examined LimeSurveys, SurveyJS and Google
Forms.

LimeSurveys[16] is the most business-oriented among the proposed solutions. The
free version allows users to receive up to 25 answers per month, but provides a
wide range of possible question types, tailoring tools, API access and the possibility
to export data in various formats, such as csv, excel, word or pdf.
Paid tiers, instead, offer a higher amount of answers per month, widened storage
space and the chance to have white-label pages and domains and email support.
Lime allows both the installation of the hosting application on the user’s own
machine or cloud solutions.
The surveys creation is code-based and requires a higher preliminary knowledge
than other solutions, but it also offers a vast variety in questions types (around 30)
and an almost complete customization.
Questions can be gathered in groups, validation functions can be introduced, ques-
tions can be marked as mandatory or optional and relevance points can be assigned
to every question. LimeSurvey also makes it possible, through a scripting language,
to adapt questions and relative options based on the previously answered questions.
Although it’s possible to introduce JavaScripts fragments inside questions, it doesn’t
seem possible to export the questionnaire itself. At most, it’s possible to embed it
inside a page and extract its results.

SurveyJS[17], instead, allows creating surveys with the aim of including them
inside other pages, merging with the destination page’s look. It also allows to store
both the survey and relative answers inside the user’s own servers and to extend it
through the use of third-party widgets.
SurveyJS also allows the survey’s creation in a very intuitive way, thanks to its tool
SuvreyCreator, which provides the possibility of creating questionnaires made of
up to 20 different kinds of questions and, also in this case, the chance of clustering
them in groups (here classified as pages). There is also the possibility of including

16

Architecture analysis

testing-like features, such as a maximum number of errors or time duration, thus
allowing for the creation of quizzes.
The creator produces the survey’s JavaScript and HTML code, also granting the
possibility of modifications on code, making it a good solution for experienced and
newbie developers alike. It’s also provided with a JSON editor which allows it to
represent the survey in that format, too.
SurveyJS is free for non-commercial use, in different cases it requires the purchase
of one or more licenses. For commercial use, in fact, the free version only allows
access to SurveyJS Library, which grants the chance of integrating the survey in
any application able to host JavaScript code. To have access to SurveyCreator,
Analytics and PDF, the corresponding paid bundles are available, together with
one additional cluster which includes them all.

Google Forms[18] is probably the solution with the most intuitive interface. Also
in this case, it’s possible to create forms through the use of a visual interface,
choosing among different kinds of questions, grouping them in sections, defining the
validation details and collecting and analyzing the obtained results. This platform
moreover allows different users to work on the survey collaboratively, coherently
with all other Google services. In this case, the possible question types are only 11
and the customization is more limited. Google, in fact, hides most of the code from
the user granting usability even for the most inexperienced users but limiting the
possibilities of more expert ones. Through settings it’s possible to turn the survey
into a quiz with automatic or manual correction, to manage how many answers
per user can be provided and decide some visualization options. The only way to
integrate said surveys inside a web page is through the HTML tag provided by
Google itself.
Despite the limited customization, Google forms is still a much appreciated choice,
even by companies, due to the fact that it’s available for free even for commercial use
and allows to receive and analyze, also for free, up to 5 million answers distributed
among all questions. This means that in a 10 questions survey it would be able
to collect at most 500 thousands answers. All received responses can be exported
in a Google sheets document, be it existing or created ad-hoc, which will also be
updated as new answers will be received.

Among the analyzed solutions, we could notice a wide range of services. De-
pending on the application context, it’s possible to choose a more professional,
customizable but also pricier and complex service, like LimeSurvey, or turn to a
more simple but also limiting solution like Google Form. SurveyJS seems to be a
good compromise, granting both a simple and intuitive visual interface and the
possibility of intervening in the code for customization. All examined systems allow
to validate answers and export the obtained data, providing also internal analytics

17

Architecture analysis

tools to evaluate the responses’ distribution and obtain an at-a-glance idea on the
participants’ opinions.

2.3.2 Forms Creation Tools

Among the analyzed tools for low-code forms, instead, we analyzed FormFlows.ai,
Form.io, Zoho Forms.

FormFlows.ai[19] is an open source, low-code platform for business-oriented mod-
ules creation. The form is built through an intuitive drag-and-drop interface. It’s
possible to introduce validation conditions for each field and, moreover, there is a
chance to build a BPMN-like graph to drive the user through a customizable path.
This allows creating routes which manage all and only the sections of actual interest.
FormFlows also provides tools for data collection and analysis through the use of
dashboards, in order to transmit the meaning of received information also visually.
Developers promise a perfect level of integration with process-automation tools
and the use of specific frameworks for higher security. It’s possible to implement
said service on cloud servers, but it doesn’t seem possible to do so on own servers.
This solution also introduces aspects of Sentiment Analysis and natural-language
recognition, together with tools for simple and fast development. Being business-
oriented, it also provides a set of additional tools such as Quick Starter Kit for
rapid prototyping, counseling services, formation and technical assistance.

Form.io[20] also has a typically business-oriented imprinting and makes a spearhead
of its serverless nature. It allows creating multi language forms, both starting
from scratch and from a set of templates. Also in this case, modules creation is
assisted by an intuitive drag-and-drop system to locate and define fields and relative
meaning. It grants customization also in terms of module views and the chance to
introduce a potentially unlimited amount of trigger actions for automation. The
created form can then be included in any javascript page thanks to the generated
tag. This also grants the possibility of manipulating it through CSS or accessing
the REST API provided with the module. Compatibility with Angular and React
is also assured, together with the possibility of using webhooks and websockets to
interact with the most common set of online services like Office365 and Google
docs. Data can also be managed through the provided set of API and forms can
also be distributed offline.
The nature of this solution is based on two cornerstones: the chance of using Docker
containers to implement the service also on a private cloud and the concept of
Deploy Anywhere through Cordova, Electron and other services.

18

Architecture analysis

Zoho Forms[21] shares several characteristics with the previously analyzed so-
lutions. It also provides a drag-and-drop system to build multi page forms with a
wide range of possible input fields, validation tools and the possibility of defining
paths through the use of skip logic, which makes only the desired fields visible to
the user based on the previously provided answers, together with the possibility of
saving and resuming the form filling in a later moment.
Tools to communicate the positive outcome to the user are also provided, through
redirection, mail, SMS or even Microsoft teams.
Forms can be shared through links, email or embedded in a web page. Possibility
of aesthetic configuration is also provided, from domains to branding, and respon-
siveness is also granted.
Analytics tools allow the tabular visualization of collected data and the creation of
reports and documents, together with the chance of producing meta-data analysis.
Also in this case, automation is possible, for example to contact users based on
certain answers or further validate the received answers.
A peculiar feature is the chance of integrating payment systems, which allow trans-
ferring money through the form itself in a safe way, producing receipts and giving
the chance of communicating the positive outcome of the operation to the user
through email.
Forms may also be filled offline. Special fields, such as geolocalization, code scans,
signatures are provided, together with the chance of putting the device in kiosk
mode, particularly useful in contexts where the form’s device is accessible to the
public. Also in this case, security features are provided, for example Captcha, SSL
and GDPR compliance.

Other than the previously analyzed solution, on the Internet a wide range of
similar services are available, almost identical except for minor differences due to
the application context.
We can find, for example, extremely data-oriented solutions like Budibase[22],
which make its spearhead off its connectivity to the most common databases, or
Jotform[23], more decisively oriented to payment systems.
Some systems require some coding abilities, such as Alpaca[24], or are new projects
which still require some time to reach its competitors’ level, such as OhMyForm[25].
Alternatives are therefore very diverse also in this sector and each are based on
some cornerstones which are extremely precious in the current context, such as
the chance of developing said modules with little to no code, modes to define the
sequence of questions based on previous answers and tools to analyze the collected
data.
In particular, FormFlows and Form.io stand out in these aspects.
The first one has the advantage of providing a visual dashboard for data distribution
but also has the disadvantage of allowing the deployment to occur only on public,

19

Architecture analysis

on-premise cloud providers. The second one provides a less intuitive, tabular
data visualization, but allows data interaction through an automatically generated
collection of APIs and the possibility of deploying the service in a combination of
servers and containers.
Finally, ZohoForms embeds the ease of use of the first two solutions, tabular data
visualization and a more commercial imprinting, providing tools for payments
management and GDPR compliance.

2.3.3 Conclusions
The usage of forms, such as FormFlows.ai, Form.io and Zoho Forms, was taken
into account as an alternative to survey tools, but ultimately it might as well been
considered as a secondary choice because of the more fitting characteristics of the
first option.
In terms of surveys, we also analyzed LimeSurveys and Google Forms, but the
most appropriate solution was deemed to be SurveyJS, for the specificity of its
application, the large possibilities of customization and the ease of use
In particular, it was taken in high consideration the management of the survey’s
creation through visual interface and customization possibilities, the wide variety
of possible questions to be added and the tools to split the survey in different pages
and browse through them without the need for additional code.
Moreover, the presence of APIs to store the received data in our own database
and libraries to inject additional personalization into our questions was positively
noted.
Finally, the chance to slightly alter the questionnaire’s questions and answers
through its JSON makes it so that SurveyJS represented the ideal candidate for
our context of application.

Our analysis on Forms, nevertheless, was not completely ignored.
The products analyzed were taken into consideration in order to be used for the
implementation of the simple forms which are required throughout the application
in order to allow users to sign in and log in.
The complexity of these new solutions, though, was considered as too much of an
overhead for the simple application cases which were being analyzed.
We chose to use Formik[26], an outsider in this context, but well known for previ-
ously delivered projects. This tool is not as refined as its competitors: it doesn’t
allow for a serverless data collection and requires code, although little, to be manu-
ally written by the user.
The ease of implementation of this library, together with the previously mentioned
familiarity and the lack of costs, were decisive aspects in the choice of this solution.

20

Chapter 3

AWS Services

AWS (Amazon Web Services) is a wide backend serverless environment equipped
with a rich pool of services. The perfect integration among them and the wide
range of covered topics is one of the reasons why we chose this environment. Many
of these services are characterized by free usage thresholds that limit the expense
both for the usage of serverless backend and for the frontend’s deployment.
The usage of these technologies is perfectly integrated with JavaScript and par-
ticularly with React, chosen for the frontend because it grants the possibility of
creating fast, dynamic pages and for the familiarity with it.
Amplify CLI (Command Line Interface) allows to set up all backend functionalities
by command line, from table creations into the database to management of user’s
authentication, going through API’s creation.
Together with command line commands, there is also a web-based console that
allows to perform initialization and maintenance operations, together with moni-
toring costs and resource usage.
All AWS Services are built to dimension the assigned amount of resources based
exclusively on actual usage, granting automatic scalability with increase or decrease
of active user base.

22

AWS Services

3.1 Application’s architecture

Figure 3.1: Overview of the AWS architecture

The image is a high level representation of the architecture in use.
Starting from the bottom, we notice the trio composed of Amazon API Gateway,
AWS Lambda and Amazon DynamoDB.
These three services allow managing HTTP requests in a completely serverless and
mostly automated way. Through the Amplify CLI it’s possible to create a new
API, specifying the path where we want it to be available. Then we can choose
which function has to be invoked at a request reception on that path, selecting it
from the available functions in AWS Lambda or creating a new one.
Amplify CLI also allows to create Lambda functions with a predefined structure, for
example in order to execute CRUD operations (Create, Read, Update, Delete) on a
DynamoDB table. DynamoDB is a non-relational database composed of key-value
pairs grouped in items, which stores and retrieves our application’s data.

Although single users’ sessions get managed through ad hoc API because of the
peculiar mode of user recognition, devices’ sessions are managed through Amazon
Cognito. Cognito provides a set of APIs that manage users, grouped in User Pools,
allowing their creation, the storage of their credentials and management of sessions.
This allows to authenticate devices sending requests to Amazon API Gateway,
granting only to authorized users the possibility of sending requests to specific

23

AWS Services

paths.
API authorization can also be achieved through Lambda functions implementing
the authentication logic.

The Frontend is managed by AWS Amplify, which loads it and makes it visi-
ble through an amazon-provided address. The address can also be substituted, just
like we did, with a dedicated domain. Said domains are created with the use of
Route53 and are also used in order to send email through Amazon Simple Email
Service.
Amplify also builds the backend, making it accessible by frontend calls.

3.1.1 Amplify CLI
The Amplify CLI[27] is a tool of utmost importance to manage the backend envi-
ronment in a simple, intuitive way from the user’s command line.

The installation process starts from the Amazon Website, where it’s required
that the user creates his or her account in the first place. When this step is
completed, we can move to the command line.
Amplify CLI is made available through npm, so in order to download it I typed
the command:

npm install -g @aws-amplify/cli

Then I was required to complete the Amplify CLI configuration, which can be
prompted by the command

amplify configure

Here the command line opens an AWS web page in order to allow the user to log
into the previously created account.
Once done so, I returned to the terminal and I was asked to choose my region of
reference through a menu. I initially chose us-east-1 as it was a default region
and had lower usage costs, but later in development the backend was moved to a
European region for reasons of GDPR compliance. This is why afterwards it was
chosen eu-west-3 (Paris).
Once chosen the region, it is asked to choose a username for a new IAM user. This
kind of user is a so-called service account and is stored in a service called IAM. It
represents a user or application enabled to make AWS requests. In order to be
allowed to do so, the IAM user has associated credentials and permissions.
This prompts the opening of another AWS web page in order to complete the
creation of the IAM credentials. I confirmed the username and left the AWS access
type as the default "Programmatic access" value. Moving on to permissions, I left

24

AWS Services

the default policy for Administrator Access and confirmed the previous settings.
The creation of a user brings to the generation of two credentials strings, Access
Key ID and Secret Access Key, which is wise to annotate, as they can be required
in the future and won’t be displayed again.
Right afterwards, in fact, the command line requires said credentials in order to
bind the terminal to an IAM user and be able to execute commands on AWS.
After inserting Access Key ID and Secret Access Key, I kept following amplify
configure’s instructions and chose a Profile name for the AWS Profile on my local
machine. The user set up is now complete.

Once installed the Amplify CLI and completed its configuration, it’s possible
to create resources deployable in the backend straight from command line, through
a multiple choice path driven by aws.
After accessing my React app’s folder, I start the initialization of the amplify
environment through the command:

amplify init

Here it’s possible to define the project’s characteristics. The command line asks to
define:

• the project’s name: Paris, as it was my first project in the Paris region

• the environment’s name: sampledev

• the default editor: none, as I use webStorm and it wasn’t among the options

• the type of app I’m building: JavaScript

• the framework of choice: React

Then I was asked to choose source directory path, distribution directory path, build
command and start command and for all these settings I kept their default value.
Then the command line asks what kind of authentication to use between Access
keys formerly generated and AWS Profile. I chose the first option and inserted the
previously created credentials.
This initializes the backend cloud part and the command line suggests to create a
new api through the use of the command "amplify add api".
Once completed these operations, it’s required to associate an existing user pool to
the application or create a new one through the command

amplify add auth

As I had already created a UserPool before through Cognito’s web based interface,
I simply bound it using the command

25

AWS Services

amplify import auth

and selecting my User Pool, SurveyAdmin, from the provided list.
At the end of this step, the command

amplify push

allows us to upload all local modifications to the cloud. After displaying the state
of the cloud before the modification, a confirmation is asked and, upon selecting
"yes", the local data is uploaded to the cloud.

Once embedded Cognito to the frontend to manage users’ authentications, it’s
possible to move on to the creation of APIs, which will later be invoked to interact
with the backend.
APIs can be created through the command

amplify add api

This is followed by a set of choices which the user has to take about every aspect
of the resource he’s creating.
For example, in order to create the set of resources used to save the data about
the app’s users, I operated as follows:

• I was asked to select what kind of API I desired, so I chose REST APIs

• then I entered the API name: userTokenAPI

• later I chose a name for the path: /token

• afterwards I was asked if I wanted to use an existing Lambda function or if I
wanted to create a new one. I chose the latter.

• I was asked to provide a friendly name for the function in local: userToken-
Lambda

• I kept the same name for the Lambda as well: userTokenLambda

• I chose NodeJS as the function runtime

• When asked what kind of template I wanted to use for the Lambda, I picked:
CRUD function for DynamoDB (Integration with API Gateway)

• As the previous setting regarded a DynamoDB table, I was also asked whether
to use an existing DynamoDB table or to create a new one. I chose the second
option.

• Once again, I was asked to pick a name for the local resource. I chose userToken

26

AWS Services

• I used the same name, userToken, also for the newly created table

– In the new table, I was asked to name the first column: email
– I chose "string" as its data type
– I chose to add another column and I repeated the two previous steps for

the column "token", which is also a string
– I didn’t add any more columns as these were the only required ones at

the time. It’s still possible to create new columns by specifying them
as attributes of an object stored into the database. These new columns
won’t be mandatory for other objects, while the ones created previously
are.

– I was then asked to choose a partition key for the table, I chose the email
– I was asked if I wanted to have a sort key, I refused
– I also refused the creation of secondary indices and triggers, as they were

not required

• I was asked if the resource was required to access other resources in the same
project and I answered no

• I was also asked if I wanted to invoke the new Lambda on a recurring schedule
and, being this not the case, I answered no as well

• I was offered the possibility of editing the function in local on the spot and I
answered yes, as I required to slightly edit the code in order to filter the data
properly upon specific requests (for example, receiving only the information
about a specific user chosen by email instead of receiving all user data available)

• I was then asked if I wanted to limit the access to the newly created resource.
I refused as I preferred managing this step through the API Gateway web
interface

Later, the user is asked if he wants to create another path and the entire process
repeats in order to create all of the required resources. When all our modifications
are complete, amplify push sends everything to the cloud to make it effective.

3.1.2 API Gateway
Amazon API Gateway is an endpoint that allows any application (React, in our
case) to execute on demand functions present on AWS Lambda.
API Gateway allows to create the desired paths and, for each of them, to deploy re-
sources corresponding to the most common HTTP operations, such as GET, POST,

27

AWS Services

PUT and DELETE. This makes it so that, in response to an HTTP request of a
certain kind, the corresponding Lambda function is invoked. The function will take
the content of the request and elaborate a response that can be returned to the user.

Each of these resources can be protected by individual policies, granting high
granularity in the definition of security requirements for each request kind.
In particular, Amazon API Gateway relies on a tool called Authenticators in order
to enact these security policies.
At the moment we have two Authenticators in use, a Cognito and a Lambda one.
The Cognito one is used on a POST request performed on the path /survey, as we
don’t want that the users are allowed to post answers from devices which have not
been authenticated by Cognito. To enforce this, we select our API, userTokenAPI
and, under the Authorizer tab we selected "Create a new Authorizer". We named
it "Authorization" and we created it as a Cognito Authorizer. We selected "Sur-
veyAdmin" as our reference User Pool and we used "Authorization" as our Token
source, as our token will be stored in the Authorization field of the request.
The Lambda authorizer is used on GETs, especially on /survey on /personal and
on /token, in order to make sure that their content can only be retrieved by authen-
ticated users. In the login phase, in fact, every user receives a JWT token which
gets forwarded during said requests in the Authorization header. The Lambda
Authorizer is a lambda function, in our case "jwt_verify", which performs a check
on the jwt in order to see if the signature is valid and if the issuer is "prometeo.click".
In case of failure it returns an "Unauthorized" error and the request is not inspected
any further. In case of success, a policy document allowing the user to execute the
function is generated, returning a principalId which will later be used to authorize
the execution.
After creating this function, we select the API Gateway resources that we want to
secure. Also in this case, the authorizer is set up under the Authorizer tab of API
Gateway. We selected "Create a new Authorizer", named it "LambdaAuthorization"
and we created it as a Lambda Authorizer, referencing the aforementioned lambda
function "jwt_verify". We used "Authorization" as our Token source, as our token
will be stored in the Authorization field of the request and saved.
After creating the authorizers, we go back to the Resources and select the ones we
want to protect, for example /survey. In our case, ANY method uses the Cognito
authorizer, with the exception of the GET, which uses the LambdaAuthorizer. In
/survey, we click on ANY and from there onto Method Request. Under Authoriza-
tion, we pick the Authorization Cognito user pool authorizer we created previously
and we select the tick mark to confirm our choice. We repeat the same operation
under the GET method, selecting instead the Lambda Authorizer.
Then, under the Actions tab, we select "Deploy API" to make our changes effective.

28

AWS Services

The resources made available in the project are the following:
userTokenAPI:
Invoke URL: https://bp5j5v8p87.execute-api.eu-west-3.amazonaws.com/sampledev

• /personal: the management of the answers provided to the personal questions’
survey. Refers an automatically created CRUD Lambda function "personal-
Lambda" which operates on the "Personal" DynamodDB table

– GET: /personal/personalID?user=[email]
description: obtain all answers provided to the personal question’s survey
by the user with the provided email
Note: this can only be done through the use of the user jwt stored in the
state variable userJwt and generated at login
usage: Personal.js
response header:

{
"Authorization":[userJwt]

}

response body:

[
{"personalID":"response30026644",
"Q1":"Female",
"Q2":"18-25",
"Q3":"Italy",
...
"timestamp":1666879284540,
"user":"[email]",
}, ...

]

– POST: /personal
description: store the provided set of answers into the database
usage: Personal.js
request body:

{"Q1":"Male",
"user":"anon12345678",
"Q2":"65+",
"personalID":"response12345678",
"timestamp":1666019227587}

response body:

29

AWS Services

{"success": "post call succeed!",
"url": "/personal",
"data": {}}

• /survey: the management of the answers provided to the Indoor Environmen-
tal Comfort survey. Refers an automatically created CRUD Lambda function
"surveyLambda" which operates on the "SurveyResult" DynamodDB table

– GET: /survey/user?user=[email]
description: obtain all answers provided to the Indoor Environmental
Comfort survey by the user with the selected email
Note: this can only be done through the use of the user jwt stored in the
state variable userJwt and generated at login
usage: Personal.js
response header:

{
"Authorization":[userJwt]

}

response body:

[
{"Q1":"1",
"resultID":"30e1e2c1-a73f-421f-8c2c-1f4e8c9069d3",
"user":"[email]",
"multisensor":"test",
"timestamp":1666269817279},...

]

– POST: /survey
description: save the answer provided to the Indoor Environmental
Comfort survey
Note: this can only be done through the use of the device jwt stored in the
state variable deviceJwt in authenticated devices
usage: FurtherQuestions.js, Thanks.js
request body:

{"Q1":"1",
"resultID":"30e1e2c1-a73f-421f-8c2c-1f4e8c9069d3",
"user":"[email]",
"multisensor":"test",
"timestamp":1666269817279}

request headers:

30

AWS Services

{
"Authorization":[device jwt]

}

response body:

{"data": {},
"success": "post call succeed!",
"url": "/survey"}

• /token: the management of users’ data. Refers an automatically created
CRUD Lambda function "userTokenLambda" which operates on the "userTo-
ken" DynamodDB table

– GET: /token/email?token=[token]
description: obtain all data about the user with said token
Note: this can only be done through the use of the user jwt stored in the
state variable userJwt and generated at login
usage:
request header:

{
"Authorization":[userJwt]

}

response body:

[
{"active": true,
"code": "ADF6F8",
"email":"reloser232@sopulit.com",
"subscribed": true,
"token": "[token]"}

]

– GET: /token/object
description: obtain all data about all users
Note: this can only be done through the use of the user jwt stored in the
state variable userJwt and generated at login
usage:
request header:

{
"Authorization":[userJwt]

}

31

AWS Services

response body:
[

{"active": true,
"code": "ADF6F8",
"email":"reloser232@sopulit.com",
"subscribed": true,
"token": "[token]"},
...

]

– POST: /token
description: save data about a new user
usage: CreateAccount.js
request body:
{"email":"goham41933@lance7.com",
"token":"goham41933",
"code":"RZ05U6",
"active":false,
"subscribed":true}

response body:
{"success":"post call succeed!",
"url":"/token",
"data":{}}

– POST: /token
description: if the code information is not present, it’s used to perform
the login
usage: Login.js, Verification.js
request body:
{"token":"goham41933"}

response body:
{"email":[user email],
"token":"[user token]",
"jwt":[user jwt]}

– PUT: /token
description:update a user’s information, for example upon email verifi-
cation
usage: Verification.js
request body:

32

AWS Services

{"email":"goham41933@lance7.com",
"token":"goham41933",
"code":"RZ05U6",
"active":true,
"subscribed":true}

response body:
{"success":"put call succeed!",
"url":"/token",
"data":{}}

jwt:
Invoke URL: https://9p2jaausn8.execute-api.eu-west-3.amazonaws.com/sampledev

• /pubkey: manages the public key to verify the signed jwt

– GET: /pubkey
description: obtain the public key to verify the signed jwt
response body:
{"key": "[public key]"}

emailSenderAPI:
Invoke URL: https://822240w7r0.execute-api.eu-west-3.amazonaws.com/sampledev

• /sendEmail: manages the sending of an email message. References the
manually created function "sendEmail"

– POST: /sendEmail
description: sends an email with the provided details
usage: Thanks.js, CreateAccount.js
request body:
{"email":"[email address]",
"object":"[email object]",
"message":"[message]"}

API Gateway allows for several parallel requests to be managed in a completely
transparent way. This service, too, can resize the allocated resources based on their
actual usage. The cost of this service, in fact, is calculated per-usage, based on how
many requests are forwarded and on the amount of inward and outward traffic.
Other than RESTful APIs, API Gateway also allows setting up WebSockets. This
service grants a combination of customization and ease of use, which allows to
manage requests in detail, while resources get managed automatically.

33

AWS Services

3.1.3 Lambda
AWS Lambda allows users to execute code in a completely serverless way. Functions
can be written directly on Lambda’s GUI, uploaded as a .zip file or inside a container
and get invoked as an answer to events which trigger them, such as a request to
AWS API Gateway.
These functions can also be automatically generated, for example if one desires
to have a code to execute CRUD operations on a specific DynamoDB table. The
automatically generated functions are:

• surveyLambda: manages the CRUD operations about Indoor Environmental
Comfort survey’s answers onto the SurveyResult table

• personalLambda: manages the CRUD operations about personal questions’
survey answers onto the Personal table

• userTokenLambda: manages the CRUD operations about users and their
data onto the userToken table

Other Lambda functions have instead been created manually:

• jwt_verify: verifies the signature on the provided jwt and checks if the issuer
matches "prometeo.click". It has been created to be used as an Authorizer.

• sendEmail: sends an email to the email address specified in the body. The
email will have as object and message body the ones specified in the body of
the request.

• getPubKey: returns the public key necessary to verify the generated jwt.
This will be used by Grafana to perform checks on the jwt stored in the
cookies.

Lambda can be applied on large amounts of data and fits several frontend contexts,
from web to mobile, granting good performance also for machine learning.
Just like all other services, Lambda also scales its resources automatically based on
actual usage, making the user pay only for what he uses.
Lambda’s serverless nature absolves the user from the responsibility of infrastructure
management, granting reliability and high availability promised by Amazon in a
service which handles every aspect of the code, from deploy to updates, covering
logs and monitoring, leaving to developers only the logic management aspect.

3.1.4 DynamoDB
DynamoDB is a NoSQL database which makes of scalability its spearhead. It’s
based on key-value pairs, grouped in records furthermore grouped into tables.

34

AWS Services

Data inside of it is organized based on partition keys, which have about the same
role as primary keys inside relational databases.
Partition keys can also be paired with sorting keys, used to optimize order-based
queries (such as begins with, intervals, greater than, lesser than. . .)
The tables used in this project include:

• surveyResult: stores data about the answers provided to the Indoor Envi-
ronmental Comfort survey

– resultID: string, partition key, represents a unique identificator for a set
of answers

– multisensor: string, the multisensor identificator corresponding to the
closest measurement station

– Q1: string, answer to the question "Are you satisfied with the thermal,
acoustic, visual, and air quality conditions in your environment?". Possible
values are:

∗ 1: very satisfied
∗ 2: slightly satisfied
∗ 3: slightly unsatisfied
∗ 4: very unsatisfied

– Q2: array of strings, answer to the question "Your evaluation is negative,
can you tell us which environmental quality aspects are you dissatisfied
with?". Possible values are:

∗ THERMAL COMFORT
∗ ACOUSTIC COMFORT
∗ VISUAL COMFORT
∗ INDOOR AIR QUALITY

– Q2.5: array of strings, answer to the question "Your evaluation is pos-
itive, can you tell us which environmental quality aspects you consider
particularly satisfying?". Possible values are:

∗ THERMAL COMFORT
∗ ACOUSTIC COMFORT
∗ VISUAL COMFORT
∗ INDOOR AIR QUALITY

– Q3: string, answer to the question "Please indicate on the following scale
how YOU feel NOW.". Possible values are:

∗ 3:Hot
∗ 2:Warm

35

AWS Services

∗ 1:Slightly warm
∗ 0:Neutral
∗ -1:Slightly cool
∗ -2:Cool
∗ -3:Cold

– Q4: string, answer to the question "Please indicate on the following scale
how YOU find the AIR VELOCITY in your environment NOW.". Possible
values are:

∗ 4:Very draughty
∗ 3:Draughty
∗ 2:Slightly draughty
∗ 1:Not draughty

– Q5: string, answer to the question "Please indicate on the following scale
how YOU find the NOISE in your environment NOW.". Possible values
are:

∗ 4:Very annoying
∗ 3:Annoying
∗ 2:Slightly annoying
∗ 1:Not annoying

– Q6: array of strings, answer to the question "Please indicate any sources
of noise YOU can hear in your environment NOW.". Possible values are:

∗ Building systems
∗ Computer, printer, other office equipments
∗ People chatting
∗ Road traffic
∗ Other noises from the outside
∗ Other
∗ None

– Q7: string, answer to the question "Please indicate on the following scale
how YOU find your VISUAL environment NOW.". Possible values are:

∗ 4:Very uncomfortable
∗ 3:Uncomfortable
∗ 2:Slightly uncomfortable
∗ 1:Not uncomfortable

36

AWS Services

– Q8: array of strings, answer to the question "Please indicate any sources
of glare YOU can see in your VISUAL environment NOW.". Possible
values are:

∗ Windows
∗ Lamps
∗ Glass surfaces
∗ Computer screens
∗ Reflective surfaces
∗ Other
∗ None

– Q9: string, answer to the question "Please rate on the following scale how
YOU would like your visual environment to be NOW.". Possible values
are:

∗ 3:Much lighter
∗ 2:Lighter
∗ 1:Slightly lighter
∗ 0:No change
∗ -1:Slightly darker
∗ -2:Darker
∗ -3:Much darker

– Q10: string, answer to the question "Please indicate on the following
scale how YOU find the AIR QUALITY in your environment NOW.".
Possible values are:

∗ 4:Very smelly
∗ 3:Smelly
∗ 2:Slightly smelly
∗ 1:Not smelly

– Q11: array of strings, answer to the question "Please indicate any sources
of pollution that contribute to the AIR QUALITY in your environment
NOW.". Possible values are:

∗ Tobacco smoke
∗ Human odours
∗ Chemical odours
∗ Other
∗ None

37

AWS Services

– Q12: string, answer to the question "If you want, you can leave other
comments".

– timestamp: number, milliseconds since the Unix Epoch when the survey
was completed

– user: string, email of the logged user who answered the survey or string
in the format of "anon[number]" for anonymous users

• Personal

– personalID: string, partition key, represents a unique identificator for a
set of personal answers

– Q1: string, answer to the question "Gender". Possible answers:
∗ Male
∗ Female

– Q2: string, answer to the question "Age". Possible answers:
∗ 18-25
∗ 26-35
∗ 36-50
∗ 51-65
∗ 65+

– Q3: string, answer to the question "Country of Birth".
– Q4: string, answer to the question "Educational qualification". Possible

answers:
∗ Ph.D
∗ Master’s Degree
∗ Bachelor’s degree
∗ High School
∗ None

– Q5: string, answer to the question "Intended use of the building". Possible
answers:

∗ Office
∗ School
∗ Museum
∗ Hotel
∗ Hospital
∗ House

38

AWS Services

– Q6: string, answer to the question "Ambit/role". Possible answers:
∗ Engineering
∗ Management
∗ Administration
∗ Creative, design and architecture
∗ Sales and public affairs
∗ Teaching and research
∗ Services
∗ Head Teacher
∗ Teacher
∗ Administrative staff
∗ Technical staff
∗ Auxiliary staff
∗ Student
∗ Manager
∗ Research, care and management of collections staff
∗ Services and relations with public staff
∗ Administrative, financial, management and public relations

staff
∗ Facilities and safety staff
∗ Tourist Guide
∗ Tourist
∗ Receptionist
∗ Chambermaid
∗ Waiter
∗ Chef
∗ Barman
∗ Customer
∗ Medical director
∗ Hospital secretary
∗ Doctor
∗ Nurse
∗ Social health operator
∗ Patient
∗ Inhabitant
∗ Guest

39

AWS Services

∗ Other
– Q7: string, answer to the question "Number of people in the environment".

Possible answers:
∗ 1
∗ 2 to 5
∗ 6 to 10
∗ 10+

– Q8: string, answer to the question "Visual impariments". Possible answers:
∗ Yes
∗ No

– Q9: string, answer to the question "Hearing impariments". Possible
answers:

∗ Yes
∗ No

– Q10: string, answer to the question "Do you smoke?". Possible answers:
∗ Yes
∗ No

– Q11: string, answer to the question "Do you conduct a healthy lifestyle?".
Possible answers:

∗ Yes
∗ No

– Q12: string, answer to the question "Does an unsatisfactory Indoor
Environmental Quality significantly reduce your work productivity?".
Possible answers:

∗ Yes
∗ No

– question2: string, answer to the question "Does an unsatisfactory Indoor
Environmental Quality significantly reduce your well-being?". Possible
answers:

∗ Yes
∗ No

– Q13: string, answer to the question "Do you have control on widows
opening and closing?". Possible answers:

∗ Yes

40

AWS Services

∗ No
– Q14: string, answer to the question "Do you have control on solar shad-

ing?". Possible answers:
∗ Yes
∗ No

– Q15: string, answer to the question "Do you have control on electric
lightings?". Possible answers:

∗ Yes
∗ No

– Q16: string, answer to the question "Do you have control on heating
system?". Possible answers:

∗ Yes
∗ No

– Q17: string, answer to the question "Do you have control on cooling
system?". Possible answers:

∗ Yes
∗ No

– Q18: string, answer to the question "Do you have control on reducing
annoyance from noise?". Possible answers:

∗ Yes
∗ No

– Q19: string, answer to the question "Do you think it’s important to have
control on widows opening and closing?". Possible answers:

∗ Yes
∗ No

– Q20: string, answer to the question "Do you think it’s important to have
control on solar shading?". Possible answers:

∗ Yes
∗ No

– Q21: string, answer to the question "Do you think it’s important to have
control on electric lightings?". Possible answers:

∗ Yes
∗ No

– Q22: string, answer to the question "Do you think it’s important to have
control on heating system?". Possible answers:

41

AWS Services

∗ Yes
∗ No

– Q23: string, answer to the question "Do you think it’s important to have
control on cooling system?". Possible answers:

∗ Yes
∗ No

– Q24: string, answer to the question "Do you think it’s important to have
control on reducing annoyance from noise?". Possible answers:

∗ Yes
∗ No

– timestamp: number, milliseconds since the Unix Epoch when the survey
was completed

– user: string, email of the logged user who answered the survey or string
in the format of "anon[number]" for anonymous users

• userToken: stores data about the users’ accounts

– email: string, partition key, unique email of the user
– active: boolean, whether the account has been verified (and is therefore

active) or not
– code: string, 6 letters code used to activate the account
– subscribed: boolean, not in use yet, whether the user wants to receive

emails or not
– token: string, token the user uses to log in

DynamoDB grants encryption for data at rest and its scalability is based on usage,
so that a user doesn’t have to intervene in order to change database settings
to use all and only the required resources. The great automation in database
management operation makes it a fitting solution even for beginner deployers.
It is, moreover, perfectly integrated with other AWS services, not only for data
manipulation, but also for metadata. Through the monitoring tools provided by
AWS it’s possible to analyze the current functioning status and make forecasts
about future developments.
The first 25GB are stored in the database for free and 200 million reads and writes
are granted for free each month.
Writing data into DynamoDB is managed through AWS APIs, which allow to
access AWS Lambda functions through AWS API Gateway.
At table creation, an option is provided to generate code able to perform CRUD
operations. Data is provided and retrieved in JSON format, which makes them

42

AWS Services

easy to write, interpret and manipulate.
One of the limits imposed by this solution is that performance is not as favorable
in case of time series. AWS documentation suggests taking special care in settings
if one desires to work with time series, in order not to affect the system’s efficiency.

3.1.5 Amazon Cognito
Amazon Cognito is an essential tool to manage in an almost automatic way the
authentication and authorization part, together with sessions. It grants data en-
cryption both in transit and at rest and allows authentication to access Amazon
resources through Authorizers, which can look directly into their reference User
Pool or can be based on Lambda Functions for users’ authentication.
Through the creation of a User Pool, one can keep track of the users registered in
an application.

To create a User Pool, a user could either rely on Amplify CLI, through the
command "amplify add auth" or through the use of Cognito’s web interface.
To create the SurveyAdmin User Pool we chose the second option. First I opened
Cognito’s User Pool list and I selected "Create user pool".
Between the Authentication Providers, I chose "Cognito user pool", as the context
didn’t call for Federated Identities providers.
AWS APIs allow to memorize the registration of a user based on customizable
authentication criteria, which can include email, username, address or phone num-
ber. These info can then be used to verify users and, once the account has been
activated, for login. As these accounts had the only goal to authenticate our devices,
I simply selected "User name" as the only sign-in option and I ticked the option to
make the username not case sensitive.
In the password policy settings, I set that our passwords had to be at least 8
characters long and with the only requirement of having 1 lowercase letter.
I didn’t enable MFA nor password recovery, as it’s thought to be managed directly
by the administration side.
I disabled Cognito’s self registration and automatic delivery of messages for verifica-
tion, as they are not required in this context. No attribute is required for creation,
as well as no custom attributes.
Emails, although it’s not expected to send them, would be managed by Amazon’s
SES service. All other default settings for the Email have been accepted.
We’re then asked to choose a name for our user pool, which in this case would be
"SurveyAdmin" and we’re asked to define our app clients. We need one for each
version of our application we have deployed. In this case, we have two, with the
same settings: surveyWebApp and NS01_webapp.
Ours, in particular, are public clients. We’re asked to choose a name for the

43

AWS Services

app client of reference, we choose not to generate a client secret in order to
directly access the server-side of our app. Our authentication flow includes
ALLOW_CUSTOM_AUTH, ALLOW_REFRESH_TOKEN_AUTH and AL-
LOW_USER_SRP_AUTH. The authentication flow duration is kept to the default
value of 3 minutes, the refresh token expiration is set to 3650 days while Access
token and ID token expirations are set to 1 day. Advanced authentication settings
are kept to their default values. Once the review of these settings is complete, our
Client Web App and our User Pool has been configured.

Cognito provides prebuilt, customizable templates for registration and login, based
on the previous settings. These forms already include references to the previously
cited APIs.
In our case, we chose to manually embed these APIs in our code.
Application integration happens through the creation of a configuration file con-
taining the User Pool’s details. This configuration file is used for the so-called
Account Context, which contains not only info about active users, but also functions
required for their management, such as authentication or getting data about the
current session.
We created a file called UserPool.js where the user pool identificator and web app
client identificator have been stored and became parameters for a CognitoUserPool
object. This file has then been imported in another file called Account.js. In that
file, through the use of the amazon-cognito-identity-js library and CreateContext
by React we can create a context and functions to get the current session and
authenticate the user.
In particular, the session is obtained through user.getSession, where user is the
current active user according to the User Pool, and authentication can be achieved
through user.authenticateUser, where two callback functions are taken as parame-
ters, one with the actions in case of success and one in case of failure.
These functions are then used in App.js in order to keep track of the AccountCon-
text, through the use of react’s useContext, which takes Cognito’s AccountContext
as its parameter. Then authentication is performed taking username and password
from the website’s query string and inserting them into the "authenticate" function
provided by Account.js.
A check on the current active user through useContext and getSession is performed
every time the URL changes.

As aforementioned, in this User pool accounts are created by the administra-
tion through Cognito’s user interface.
To do so, it’s also required a terminal where AWS is installed. From Cognito’s
dashboard, select the desired User Pool, in our case SurveyAdmin. Under the Users
tab, click on "Create user". Tick "Don’t send an invitation", select a username and

44

AWS Services

set a password, then click on "Create user".
This will create an account whose state is "Force change password". In order to
exit this state and obtain a confirmed account, access the terminal and install aws
cli. Once the aws cli is installed, configure it through the command:

aws configure

This will ask the user to insert his or her credentials and information about his
region and default output format. In our case:

• AWS Access Key ID: the previously created AWS Access Key ID

• AWS Secret Access Key: the previously creates AWS Secret Access Key

• Default region name: eu-west-3, as we created our Cognito User Pool in
this region

• Default output format: json

Then, from here we can insert the following command, which will prompt a change
of the password and, consequently, turn the newly created user into a Confirmed
state.

aws cognito-idp admin-set-user-password
--user-pool-id [User Pool ID] --username [username]
--password [password] --permanent

Where [User Pool ID] is the Identificator of our User Pool, [username] is the user-
name of the account we created previously and [password] is the password we want
to have for that user.
Now the account will be in a Confirmed state and, therefore, it will be possible to
use said credentials to log in.

Together with credentials, Cognito also provides a Federated Authentication mode,
which allows access through other public user pools such as google, facebook,
OpenID Connect and SAML.
Cognito applies the authentication standard OAuth2.0, granting the users’ identities
through the use of an access token in the form of a JWT, which gets periodically
renewed through a Refresh Token, as long as the session is active. These tokens
are generated by Cognito based on an asymmetric key.
Cognito also provides a free usage tier which allows up to 50.000 active users
simultaneously, largely satisfying the expected requirements.

45

AWS Services

3.1.6 AWS Amplify
After setting up out backend, it’s possible to upload our frontend to make it publicly
accessible. This result can be obtained through the use of Amplify, which promotes
its ease of use, granting the possibility of deploying a web or mobile application in
minutes, with all its Amazon services perfectly integrated.
Managing both backend and frontend publication, it generates and manages a
CI/CD pipeline which allows to release updated code frequently and easily.

Our deployment, particularly, has already been done through the use of Am-
plify CLI, which deploys our frontend and the backend we created through the use
of "amplify add api".
One missing step is to save Cognito’s references into Amplify’s Environment Vari-
ables, in order to grant a seamless deployment.
To do so, select the created app from the Amplify’s console, in our case it would
be ECS_v0. Under "App Settngs" choose the tab "Environment Variables" and the
following variables should be added to the list:

• AMPLIFY_WEBCLIENT_ID: the ID of the App Client to be used by web
application, available from Cognito’s console, inside the User Pool’s settings,
under the "App integration" tab

• AMPLIFY_NATIVECLIENT_ID: the ID of the App client to be used by na-
tive applications, which in our case matches the AMPLIFY_WEBCLIENT_ID

• AMPLIFY_USERPOOL_ID: the ID of our User Pool, available from Cognito’s
console, next to the reference User Pool

Amplify accepts code from different sources, which can be Github, Gitlab, AWS
CodeCommit (Amazon’s Version Control System) or without using a Git provider.
In our case, we chose to use GitHub.
As previously stated, our first version of the application was deployed in us-east-1.
The local files include both the frontend and information able to reconstruct the
backend inside a folder named "amplify".
We split our git repository into another branch called "Paris" and cloned it.
Inside the newly cloned folder, we opened a terminal and executed the commands
previously described in Amplify CLI, except for "amplify add api", as information
about our API was already available.
This created a new environment for our application, meaning that although it
worked exactly like the American version, their data was completely separated and
the two could evolve independently.
Some functions, such as getPubKey and sendEmail, had not been saved in the
application’s local files, therefore had to be manually copied from the N.Virginia

46

AWS Services

environment to the Paris one, by creating the relative Lambda functions and API
gateway resources through the use of the web interface.
For example, to do so, I went into the N.Virginia page of the Lambda console and
selected "getPubKey". In its page, under the "Actions" menu, I selected "Export
function" and later "Download deployment package". This resulted in the download
of a zip file.
Moving to the Paris version of the Lambda console, I selected "Create function",
chose "getPubKey" as its name and chose "Create function", leaving the other
settings at their default value. From the new function page, under Code source, I
selected "Upload from" and chose ".zip file". I then uploaded the code from the zip
file I had previously downloaded.
To make this function accessible, I also had to create a API resource, therefore I
opened the API Gateway console, still in Paris region.
I chose "Create API" and clicked "Build" on "REST API". In its settings, I chose
the REST protocol, to create a "New API", I named it "jwt" and chose a Regional
Endpoint type.
Being brought to the new API page, I selected "Create Resource" under the actions
menu. I named the path and the resource as "pubkey" and I ticked "Enable API
Gateway CORS". I then selected the newly created resource and, still under the
"Action" menu I chose "Create Method" and chose the "ANY" method. I chose
"Lambda function" as integration type, I ticked "Use Lambda Proxy integration"
and entered the name of the previously created Lambda function as "getPubKey"
and saved.
Afterwards, under the "Actions" menu I selected "Deploy API". I was asked to
choose a deployment stage name and I chose "sampledev". Then I clicked on
"deploy" to make the API available.

Amplify is connected to the branch and it automatically deploys our app upon
every new commit on its reference branch, always ensuring the most recent version
without interruptions during updates.
Together with the frontend, in this phase we also deploy the backend previously
developed, making our website usable in minutes.
On Amplify there’s also the chance to define one or more URLs where to make the
application reachable, based upon a Route53 domain or a third party one. In our
case, we chose Route53 for the perfect integration with the environment and for its
ease of configuration.

After creating our Route53 domain, in our application’s page of Amplify con-
sole, under App Settings, I choose "Domain management". From here, I selected
"Add domain" and entered the domain we had just bought, "prometeo.click", then
I clicked "save". From the newly created domain, I clicked "manage subdomains"

47

AWS Services

and clicked on "add", inserting a new subdomain called "paris", meaning that our
website will be reachable from "paris.prometeo.click".
I also disabled the master "prometeo.click" domain, so that the application is only
reachable from "paris.prometeo.click". After clicking update, the website will be
available in a matter of minutes.
This process has also been repeated for the second version of our application,
ECS_NS01, in order to make it available on "ns01.prometeo.click". This makes
it so that different versions of our application are available on different addresses,
still under the same domain.

3.1.7 Route53
Route53 is a DNS service which allows for the creation of domains and rules to
determine the routing towards the user’s own resources, both inside and outside
AWS’ ecosystem.
The system is moreover integratable with a variety of services such as Load Balancer
and Traffic Flow’s routing rules, which makes it so that traffic is automatically
redirected towards the correct resources to grant efficient operation for the network.
In our case, the service has been used for the creation of a domain to deploy the
application for collection of subjective data about environmental comfort and to
assign an alias for the application about objective data visualization, placing them
under the same domain.

To register a new domain, we accessed Route53’s dashboard, selected “Regis-
ter domains” and typed the domain to register, checking for its availability. In
our case, it was chosen "prometeo.click". At this point, the domain was added to
the cart and purchased, making it available for the customer for the amount of
time defined when buying it. It’s also possible to activate the automatic domain
renewal at expiration time. After the purchase phase, an email is sent to the buyer
to certify the correct domain acquisition.
Other than for domain acquisition it’s also possible to use Route53 to create routing
specifications. This was also required in order to prove we were in control of the
domain we proposed when registering our Amazon SES mail domain.
In particular, some entries have been automatically added:

• CNAME records are automatically inserted as we register a new subdomain
in Amplify, as previously described

• a NS record to correlate the newly created domain, in our case "prometeo.click",
to their corresponding nameservers. This has also been done for a previously
created subdomain, "dev.prometeo.click"

• a SOA entry to return authoritative information about the DNS zone

48

AWS Services

Other entries, which have been manually added, are:

• a CNAME record, "caimano.ns1.prometeo.click", has been introduced in order
to route the requests to that address to "caimano.polito.it", where our Grafana
dashboard was hosted. This has been done in order to put Grafana and our
dashboard under the same domain

• more CNAME entries whose characteristics have been described by Amazon
SES in order to prove we were in control of the domain we were trying to
verify for our mail server

• an MX record to redirect the incoming email traffic to a secondary address in
order to be able to read and receive email

To insert a new record, we opened Route53’s dashboard, visualized the Hosted
Zones and selected the desired Hosted Zone, in our case "prometeo.click".
In the main page, a table displays all current records. In that page select “Create
Record”. This opens a form which allows to insert the new record’s characteristics,
which vary from type to type
For example, in order to add a CNAME record for AmazonSES we select "Create
record". In "record type" we choose "CNAME". We insert the record name and
value as defined by Amazon SES and keep the other settings at their default value.
Then, we click "create records" and the new entry will be added to the table.

As previously mentioned, the domain defined in Route53 has also been used
to define an email address with which we can contact the app’s users to send them
messages in case of sign up or survey’s completion.

3.1.8 Amazon SES
Amazon Simple Email Service is an Amazon service which allows users to send
automatic email in a fast and simple way. Through the use of its APIs it makes
it possible to send and receive emails. A particular aspect of this service is its
use of metadata, which creates reports and statistics about the communication’s
efficiency in order to keep track of the user’s own reputation to make sure that
every message is received efficiently.
Amazon SES is recommended for both transactional and commercial mail.

To start sending emails, we created an identity from Amazon SES’ console by
clicking on the "Create identity" button.
We chose to create an identity based on the domain we previously created on
Route53, "prometeo.click", so we chose Domain as our Identity type and we inserted
our domain under the "domain" field. To verify our domain, Amazon SES advices

49

AWS Services

us that the verification will happen as a DKIM-based domain verification. This
means that the DKIM values will have to be inserted in the DNS records table to
demonstrate its ownership.
Once completed the domain registration a verification procedure will start and
afterwards our address will be inserted in a sandbox. To exit the sandbox and make
the email domain completely operative, we need to advance a request to Amazon.
This can be done through the Amazon SES dashboard. By selecting the identity
we want to take out of the sandbox (in our case, prometeo.click), we click "Account
dashboard". On the top part of the page, a message will appear if the identity is
still in the sandbox. Together with it, a button to require the exit will be displayed.
By clicking on it, a set of information about the intended use of the email will be
asked. This form will then be analyzed by Amazon which will then decide whether
to actually enable email transmission outside the sandbox or not. The decisional
process can take an amount of time that can range from some hours to a few days.
In the meantime, we created a Lambda function to send emails.
In order to do so, we created a Lamdbda function called "sendEmail", which requires
"aws-sdk" library in order to interface with Amazon SES. We also setup our SES
reference by setting its region to eu-west-3.
After taking the email parameters from the request body, we use ses.sendEmail(params)
function to send the email according to the parameters defined in the "params"
object. An example of params is:

{Destination: {ToAddresses: [/*destination email*/]},
Message: {

Body: {Text: { Data: /*message content*/ },},
Subject: { Data: /*message subject*/ },

},
Source: "no-reply@prometeo.click"}

This function must then be deployed through the use of the "Deploy" button on
top of the text editor.
An API Gateway resource called "EmailSenderAPI" is also created in order be able
to invoke the previously created function. The creation process works as earlier
described.
Moreover, in order to allow the function to send email, a special policy has to be
created. To create a policy we access Amazon IAM web interface and, under the
"policy" tab, we select "Create Policy". In order to do so, we rely on the JSON
definition, clicking on the "JSON" tab of the creator and pasting the following piece
of code:

{
"Version": "2012-10-17",

50

AWS Services

"Statement": [
{

"Sid": "VisualEditor0",
"Effect": "Allow",
"Action": [

"ses:SendEmail",
"ses:SendRawEmail"

],
"Resource": "*"

}
]

}

We choose to add no tags and, after selecting an evocative name for this policy,
in our case "SendEmailPolicy", we can finalize its creation. At creation of the
lambda, an execution role is automatically generated. In our case, it was named
"sendEmail-role-4rzc240v" and we could find it in the Roles tab of the IAM Console.
By opening its details, we choose "Add permissions", "Attach policies" and select
the SendEmailPolicy we created earlier. Finally, we click "Attach policies"
Since this function has no particular correlation to DynamoDB tables or different
versions of data it references, we chose to use the very same resource for both our
environments, sampledev (which is Paris’ backend environment) and glori (which
is ns01’s environment).

3.1.9 Considerations about AWS Services
The richness of AWS’ environment makes it particularly interesting on the develop-
ment side. Despite its costs being higher than some of its main competitors, there
is a payback in terms of a rich and exhaustive documentation, an active community
of users, a continuous support by its developers and a wide offer of services.
The perfect integration among resources that represent virtually any need a user
might have is undoubtedly a strong point of this solution.
Albeit, high automation of some of its aspects might make it difficult to introduce
a more precise customization.
An example of said limitation has been noted in the attempt of setting up the
communication between the app for the collection of subjective comfort data (on
Amplify) with its objective counterpart (on Grafana). In order to achieve a higher
level of optimization, it would have been fit to be allowed to set up ad hoc caching
policies, but these were systematically overwritten by a service called CloudFront.
CloudFront is a CDN Service (Content Delivery Network) which mostly operates
at the network edge to make it so that our application is distributed, protected and
available through systems that span from load balancing and routing, encryption

51

AWS Services

and access control. Just like many other previously analyzed aspects, CloudFront is
also automatically provided and managed autonomously by Amplify in a standard
way.
Together with the previously mentioned services, CloudFront also manages the
caching policies we would have liked to customize, however, being CloudFront
integrated, it’s not possible to access its dashboard, with the result that there is
no way of personalizing those policies.
Afterwards, optimization has been achieved by modifying the rendering order and
groups of some React components, other than substituting some iframe elements
with a textual field updated through a single query repeated every 5 seconds to
update the values.

3.2 Reusability of the solution
The extreme modularity of AWS’ architecture makes the proposed solution partic-
ularly fit also for a context where modifications are expected. Adding new services
does not imply substantial modifications to what is already present.
Being AWS extremely business-oriented, Amazon developed its infrastructure in a
way that it can adapt to the necessity of having distinguished environments. This
can be used both to segregate development and production environments, but also
for different releases, just like we did for our two versions, "paris" and "ns01".
The management of the different environments works in a way much similar to
git’s branches, allowing for the creation of new environments, pushing to save local
modifications to the cloud and swap from one area to another through checkouts.
This versatility also applies to the frontend. If one desired, for example, to create
a new application specifically developed for mobile, the backend would still be
entirely usable as it’s independent from the frontend’s paradigms and technologies.

3.3 Cost analysis
Our system is expected to be deployed in Europe, more specifically in the region
eu-west-3 (Paris) as it provides all of the services we are to use.
The solutions to be compared are:

• A machine-based solution, where a server is rented to host our services

• A serverless solution, based on the cumulative costs of services per usage

In this analysis we can make the following assumptions on costs:

• One month (30 days) of operativity without considering Saturdays and Sundays,
which are around 8 per month

52

AWS Services

• Around 10 logged users and 10 anonymous users

• An average of one answer per day

• All logged users have answered once their personal questions

• All anonymous users reply to the personal questions

• One visit per day per user on the profile page

• One deploy per week, each of about 5 minutes of deploy time

• Average answer size of surveys: 250 bytes

• Average answer size of personal questions: 125 bytes

• Average account size: 100 bytes

The average answers’ sizes are calculated as the average between the size of an
answer where all fields have been filled and the size of an answer where the minimum
number of fields have been answered, both rounded up to the higher 50 multiple in
order to get a conservative estimate.
In detail the largest survey answer is around 350 bytes and the smallest is around
100 bytes, while the largest personal answer is around 250 bytes, while the smallest
is 0 bytes, as all the questions are optional.

3.3.1 Machine-based solution
The machine-based solution can be implemented by the use of Amazon EC2.
This service has an hour-based pricing and an estimate can be performed through
the use of AWS Pricing calculator[28].
A quick estimate was performed, inserting the following assumptions:

• AWS[29] suggests using 2 t2.micro EC2 instances.

• As our project will be used for 8 hours a day, the utilization percentage will
be around 33

• The operating system taken into consideration was Linux

• The pricing strategy chosen will be On-Demand Instances

• The expected storage during the first month of operativity will include:

– 10 users for a space of 1000 bytes

53

AWS Services

– 230 personal questionnaire’s answers for a space of 28750 bytes
– 440 indoor environmental survey’s answers for a space of 110000 bytes
– Thus, the total expected space for the first month of operativity will be

around: 139750 bytes or 0,13975 MB. Every following month under the
same conditions will bring an increase of 0.13875 MB.

To keep a conservative approach and due to the fact that there would be no
price overhead, we can set the amount of storage to 22MB, which is expected
to largely satisfy our requirements.

The total cost of this solution would be 13.43$ per month, assuming to find free
versions for all the needed services.
Alternative solutions have also been considered:

Model vCPU Mem [GiB] Storage [GB] Cost taxFree [$/month]
AWS t2.micro 1 1 variable 10.20 + 0.12 per GB/stor
AWS t2.small 1 2 variable 13.43 + 0.12 per GB/stor
AWS t2.medium 2 4 variable 26.94 + 0.12 per GB/stor
Aruba VPS V2I4 2 4 80 13.25

Table 3.1: Machine-based cost comparison

3.3.2 Service-based solution
The service-based solution allows us to rely on a free tier for a few of the required
services.
The expected monthly costs, evaluated according to AWS Pricing Calculator, are
the following:
In more detail:

• Amplify:Amplify costs around 0,01$ per month for each minute of build.
Moreover, additional costs should be registered for the storage of the different
versions of the application. Since our website is about 1.5GB and four builds
of it are expected to be delivered every month, we must accommodate 6GB of
storage. Finally, also the data exchanged monthly has an influence on these
costs, and it is estimated to be less than 5MB of data.

• Route53: Route53’s costs stem from the fact that, in the eu-west-3 region,
each hosted zone costs 0,50$ every month.

54

AWS Services

Amplify 0,55$
Route53 0,50$
DynamoDB 0,00$
Cognito 0,00$
API Gateway 0,00$
SES 0.00$
Lambda 0.00$
TOTAL 1,05$

Table 3.2: Expected AWS services costs in an office context

• DynamoDB: DynamoDB costs depend on storage and on the amount of read
and write operations performed. In our system the expected storage required
is a few MB and we expect to perform an amount of read and write operations
in the order of magnitude of thousands. Since the size of our data is in the
order of Bytes, DynamoDB does not represent a significant cost.

• Cognito: Cognito can still be configured within the free tier, as we expect to
have an amount of monthly active users much lower than the 50.000 provided
and we did not set up any advanced security features.

• API Gateway: API gateway’s cost is almost null due to the fact that 0,01$
would allow us to perform up to 5000 requests, which is much more than
expected

• Amazon SES: Amazon SES is also free, as we expect to send a few dozens
email messages and up to 100 emails can be sent for less than 0,01$

• Lambda: Lambda allows us to answer up to one million requests for free
each month, satisfying our requirements with a large margin.

To these monthly costs should also be added the expected development costs.
The need to deploy the changes often, the amount of attempts required in order to
write and test features, the purchase of the domain and the space required to store
the data can make the costs rise, but operatively the monthly expenses are limited.

The serverless solution results particularly advantageous in our specific use case,
due to the fact that the current context of application is of a reduced size. This
is because AWS services scale based exactly on the actual usage and the billing
works in exactly the same way, resulting in a significant saving compared to the
machine-based solution.
The EC2 solution, in fact, is based on the operativity time and, even if the machine
we need has small requirements, we can still assume that a great part of the

55

AWS Services

resources we have allocated and we paid for will not be fully exploited.

A different speculation can be performed based on another potential use case,
which would be represented by deploying our tablets inside one of the largest
classrooms of the Polytechnic University of Turin.
The assumption, in this case, would be to have around 5000 students every day
filling the survey twice.
In this situation, different assumptions should be made on the different services’
usage.

• Amplify: The expected amount of build time would not change, just like
there would be no change in the amount of stored space to host the application.
The amount of data served, albeit rising, would determine a minimal rise in
costs.

• Route53: Route53’s costs should not change, as we would still require just
one hosted zone.

• DynamoDB: The increased requirements in storage, together with the much
higher amount of read and write operations, determined a significant rise in
costs.

• Cognito: Cognito would still fall under the free tier requirements even if
it were to be expanded to the management of users, other than devices
authentication, therefore there would be no increase in costs.

• API Gateway: The increase in the expected requests made us go beyond
the free tier’s consumption, resulting in an increase in costs. In particular, we
expect to answer around 5000 http calls, represented by the email sending
and slightly more than a million REST API calls.

• Amazon SES: We expect to send about 5000 emails, which would result in
an increase in costs of about 0,50$ per month

• Lambda: The amount of expected Lambda requests would exceed the million
of requests per month represented by the free tier. An amount of 1.1 million
requests per month should be enough to satisfy our needs, resulting in minimal
costs.

This solution is therefore to be considered interesting even in different contexts
of application, with a larger pool of active users, thanks to the automatic scaling
system and the pay-per-use pricing system enforced by Amazon.

56

AWS Services

API Gateway 3,50$
Amplify 0,60$
Route53 0,50$
SES 0,50$
DynamoDB 0,20$
Lambda 0,02$
Cognito 0,00$
TOTAL 5,32$

Table 3.3: Expected AWS services costs in a university context

57

Chapter 4

Frontend

Our application’s frontend is developed in Javascript React, which has been chosen
for its familiarity, diffusion and expressive power.
To quicken some implementation aspects, we looked for a solution which could also
include customizable, pre-built components, especially for the building of surveys
and forms.
We chose to use SurveyJS and Formik, respectively.
Because of the huge importance given to the aesthetic aspect of the application, the
use of pre-built components was not sufficient: a large amount of CSS allowed us
to create the pages in order to be exactly matching with the descriptions proposed
by the Architecture department.
On the other hand, the punctual personalization and the mostly horizontal layout
given to the application made it very little responsive to vertical layouts.

4.1 Auxiliary Tools

4.1.1 SurveyJS
SurveyJS is a free, open source solution for the implementation of surveys. It
provides a wide set of possible questions, a large chance of customization and
useful functions which allow to collect data and partially intervene on the questions’
characteristics.
Our SurveyJS journey begins in the SurveyJS Creator, a precious tool in the form
of a graphic interface to allow us to build the structure of our code.
There, we are free to:

• add new questions

• group the questions in pages

58

Frontend

• choose the visibility of said pages depending on a wide range of possible
conditions

• selecting questionnaire-wide options like:

– the survey’s title and description and whether to display it
– the default language
– if the questionnaire is editable or read-only
– if it’s responsive or fixed-width or automatically sized
– which logo to display and what size
– showing or hiding navigation buttons
– the text that we want the buttons to display
– the possibility of moving automatically to the next question right after

answering
– how all questions are displayed (title and description position, indicators

for mandatory questions, display errors)
– the structures of pages
– logic, data collection and validation
– what to do on survey completion

• settings to make the survey a quiz or add a timer

• testing the questionnaire flow

• adding logic conditions on the questionnaire flow

• preview the generated JSON code

• translate the questionnaire in multiple languages for better localization

Moreover, for each question we can:

• change the kind of question we’re working on

• choose the name and description

• choose whether it’s visible, required or read-only

• choose the options, for closed-ended questions, by either adding them manually
or getting them from an API

• introduce conditions on the question’s visualization

59

Frontend

• introduce conditions on the questions’ options’ visibility and on how many
answers can be chosen

• define a secondary location where to store data

• choose a correct answer, in case of quizzes

• introduce validation

All these actions can easily be performed by the convenient visual interface and
afterwards a JSON file will be generated containing all the information we defined
earlier. That document holds by itself all of our survey’s characteristics. For exam-
ple, the files which hold our surveys’ configurations are respectively "survey.json"
for the Indoor Environmental Comfort survey and "personal.json" for the personal
questions’ survey.
In order to introduce it in our code, we must place the file in a convenient location
in relation to our project’s structure. From there, we can import the JSON file into
the JavaScript file where the survey will be rendered. Together with it, we must
also import the libraries needed to correctly display our survey and the relative
React components.
Then we introduced some code to:

• Set the language

• Set some special CSS rules in correspondence to some questions where we
wanted to set a particular style

• Display the survey

• Set the survey’s behavior upon its end.

A bittersweet aspect of SurveyJS is the complete autonomy in the management of
surveys.
Each survey can be represented with a finite state machine where every question is
a new state and this feature is managed entirely by SurveyJS itself. This makes it
impossible to intervene on the page using React states or effects, because every
state change would cause the page to refresh and the survey’s finite state machine
to restart.
Although this can be limiting, the survey’s management is still seamless and a huge
load of work off the developers’ shoulders.

4.1.2 Formik
Formik is a JavaScript library used to create forms in a declarative way.
Through the use of the appropriate tag and relative properties, it’s possible to create

60

Frontend

a form with all the required characteristics in terms of validation and behavior in a
few lines of code.
All that is required is to define the initial values, the validation function, the
callback function on submit and set up the form with regular html tags.
Formik will emit a group of elements to reference our variables’ value, if there is
any error associated with them, if it has been modified and of course it will provide
handles to manage value changes and submit.
Inside the functions, we can reference those very same objects to act consequently,
for example to display an error or to allow data submission.
Everything is therefore networked in an almost transparent way through the use of
Formik’s variables, which set the user free of the burden of managing several states
and errors.
This makes the production of forms easier and more straightforward, granting also
that no aspect has been left behind.
These characteristics, together with the fact that it’s completely free and easy to
introduce in our React code represented very strong points in favor of this solution.

4.2 React
React[30] is a JavaScript library used to realize Single-Page Applications, which
are dynamic pages whose content depends on the interaction that the user has with
them.

To do so, React relies on structures called Components.
Each application has a core which manages the rendering of all needed components,
all the time.
A component is a JavaScript class which returns fragments of html code which will
then be used inside the page. React’s particular characteristic is that the code that
precedes the return statement can be used to affect its content, granting therefore
higher control on what will be visualized.
A peculiar feature of these elements is that, by including other Components in
html, they can generate a hierarchical structure.
Just like a Chinese box, each component can be made of other components itself.
This grants a higher and safer code reuse, because each duplicated code fragment
can be substituted by a component invoked multiple times and maintainable from
a single file. As previously mentioned, these components get selected and ren-
dered each time individually. Choice can be based on multiple criteria: an element
can be rendered always, only in specific paths or based on state variables’ conditions.

61

Frontend

SurveyJS has also been chosen for its compatibility with React.
By importing the libraries "survey-react-ui" and "survey-core" it’s possible to have
access to SurveyJS-developed components like Survey, Model and StylesManager.
These components are fundamental for the management of the survey itself.
The following code will illustrate how SurveyJS’ classes are used inside SurveyJS.js
in order to implement the Indoor Environmental Comfort survey.

Survey is a React Object which takes its model and css as properties, together with
the function to be called upon questionnaire completion:

<Survey id = ’surveyjs’ css={css} model = {survey}
onComplete={sendDataToServer} />

"css" is a normal CSS file containing all the style directives to be applied onto the
survey.
"survey" is the object generated by the Model constructor from the JSON file
containing all information about the survey.

import * as surveyJSON from ’./resources/survey.json’;
[...]
let survey = new Model(surveyJSON);

SendDataToServer is a special function which decides the behaviour of the survey
upon completion. Since we can’t tell at this stage if the user is done or still has to
fill personal questions or create an account, at this stage we only save the answers
in a state variable in order for them to be shipped only when the transaction is
complete.
In this stage, user’s data is also completed with additional information, such as
timestamp, a unique id and multisensor reference.

function sendDataToServer(sur) {
let data = sur.data
data.resultID= uuid()
data.timestamp= new Date().getTime()
data.multisensor = localStorage.getItem("multi")
if (props.logged===""||props.logged===null) {

data.user = generateAnonId()
props.setAnon(data.user)
props.setAnswers(data)
navigate("/furtherQuestions")}

else {
data.user = props.logged
props.setAnswers(data)

62

Frontend

navigate("/thanks")}
}

The survey itself is represented by the Model object, which gets built, as previously
described, by receiving the survey’s JSON as its parameter.
This object is later used in order to define:

• the survey language:

if(props.ita)
survey.locale=’it’

• ad-hoc css classes for specific questions:

survey.onUpdateQuestionCssClasses.add((sur, options) => {
let classes = options.cssClasses
if(options.question.name==="Q4"||
options.question.name==="Q3") {

classes.title += " thermal noBorder"
classes.titleOnAnswer = "";}

else if(options.question.name==="Q5"||
options.question.name==="Q6") {

classes.title += " acoustic noBorder"
classes.titleOnAnswer = "";}

else if(options.question.name==="Q7"||
options.question.name==="Q8"||
options.question.name==="Q9") {

classes.title += " visual noBorder"
classes.titleOnAnswer = "";}

else if(options.question.name==="Q10"||
options.question.name==="Q11") {

classes.title += " air noBorder"
classes.titleOnAnswer = "";}

})

StylesManager is used to apply the "modern" style onto the survey. These very
same characteristics get supplemented by the previously described CSS classes.
We operate in the very same way to implement also the Personal Questions’ survey
in Personal.js.

As previously stated, these answers don’t get immediately sent to the server.
Depending on the path chosen by the user, different options are available:

63

Frontend

• If the user is logged, the answers are sent up to the server in the Thanks.js
page available right after completing the survey in the name of the logged
user.

• If the user is unlogged and chooses to answer the personal questions, the
answers are marked as answered by an "anon" user and they are sent up to the
server in the Thanks.js page, right after sending the personal questionnaire’s
answers to server, still from the same anonymous user.

• If the user is unlogged and chooses to sign up, the answers are sent up to the
server in CreateAccount.js in the name of the newly created user.

In order to store the answers into the DynamoDB database, we rely on the "aws-
amplify" library. This library provides us with an API component which, through
methods such as .get(), .post() and .put() allows us to send REST API requests to
the resources we created on Amplify CLI.
Particularly, in order to save the survey’s answers, this is the operation to perform:
let init = {
body: props.answers,
headers: {"Authorization": props.deviceJwt}
}
API.post("userTokenAPI", "/survey", init)
.then(/*action to perform in case of success*/)
.catch(/*action to perform in case of failure*/)

where "props.answers" is the JSON of answers generated by the survey upon com-
pletion complete with additional information, such as the user, timestamp and
multisensor of reference as previously built in sendDataToServer function.
This command will trigger the userTokenAPI in its /survey path in order to store
the received data into the surveyResult table.

To manage paths inside our Single-Page Application in React, we rely on a group
of React-provided components, defined altogether as React-Router.
These components allow for the creation of Routes, each of which has its own path
and element. This means that, when accessing that specific path, that very own
element will be rendered.
Each route, itself, can contain others within, making it possible to create multilevel
paths.
More in detail, we used the component ProtectedRoute for those pages that could
only be accessed by authenticated devices. This special route works so that, when
trying to connect to its path, the current logged device is checked. If a value is
present, the Outlet component is returned, meaning that the page is displayed.
Otherwise, the user is redirected to Page401, meaning "unauthorized"

64

Frontend

//in ProtectedRoute.js
return props.logged ? <Outlet/> : <Page401/>;

//in App.js
//closed route
<Route exact path=’/survey’ element={<ProtectedRoute
logged={adminLogged}/>}>

<Route path=’/survey’ element={<SurveyJS setAnon={setAnon}
setAnswers={setAnswers} ita={ita} logged={logged}
doLogout={doLogout}/>} />

</Route>
//open route
<Route path=’/login’ element={<Login deviceJwt={deviceJwt}
doLogin={doLogin} ita={ita}/>} />

The navigate construct can be used to switch paths and, therefore, visualize different
components. It has been used in several pages. For example, from the home page
in order to move to the Indoor Environmental Comfort survey page.

let navigate = props.useNavigate();
const routeSurvey = () => {navigate("/survey");}
[...]
<button [...] onClick={routeSurvey}>{props.ita ? "Inizia il sondaggio" :
"Start the questionnaire"}</button>

Within a path, components can be modified also based on states.
The useState construct allows creating a variable used as a state and a function to
safely modify it. Updating a state variable makes it so that the component gets
reloaded with the new state and consequently updated.
States can also be used inside the construct useEffect. An effect is a function which,
according to its dependencies, can be executed only at a components’ mounting, at
the update of any of the elements in its dependency array or repeatedly as long
as the component is mounted. This can be used to update states and the page’s
content.
For example, useEffect has been used in Personal.js in order to retrieve the user’s
previous answer to the personal questions’ survey in order to allow the user to
simply update them.

useEffect(()=>{
if((user===null || user === undefined)&&props.deviceJwt===null)

navigate("/login")
if(user!==null) {

let init={

65

Frontend

headers:{
Authorization : localStorage.getItem("userJwt")
}

}
API.get("userTokenAPI",
"/personal/personalID?user=" + user, init)
.then(resp => {

resp.sort((a,b) => (a.timestamp < b.timestamp) ? 1 :
((b.timestamp < a.timestamp) ? -1 : 0))
oldValues=resp[0]
if(oldValues!==null)

fillOldValues()
}).catch([...])

}
}, [])

function fillOldValues()
{

for(let ov in oldValues)
{

if(ov!=="personalID" && ov!=="user" && ov!=="timestamp") {
survey.setValue(ov, oldValues[ov]);

}
}

}

4.3 CSS
The precise aesthetic requirements of the application make it so that the customiza-
tion level has been substantial. This has been achieved both through the use of
classic CSS and through the use of Bootstrap.

CSS stands for Cascading Style Sheets and is made of a set of indications about
how each element should be presented. Any aspect can be customized, starting
from its margin or text color and size, moving on to its border and rounding.
CSS is made of classes, which group together rules related to an object, which can
be identified based on class, kind of html component or identification. This makes
it so that these rules are repeatable to keep consistent semantically related object’s
appearance.
SurveyJS uses consistent class names for every component of his surveys, making

66

Frontend

it so that defining a set of css rules related to a specific class propagates the same
modification to all equivalent objects. Moreover, additional class names can be
added to some well-known elements, for example question titles, through the use
of a function called "add" which can be used upon the property "onUpdateQues-
tionCssClasses" of the object Model.
This allows us to perform very punctual modifications to questions. For example,
in that function we can notice the lines

let classes = options.cssClasses
if(options.question.name==="Q4"||
options.question.name==="Q3") {

classes.title += " thermal noBorder"}

This means that, if the visualized question has name "Q3" or "Q4", the classes
"thermal" and "noBorder" should be added to their list of classes. This makes
it so that, together with the style properties they already have, some additional
indications will be applied. Particularly:

.thermal {
background-color: rgba(167,101,102,0.6) !important;
border-top-left-radius: 50px 50px !important;
border-bottom-left-radius: 50px 50px !important;
border-top-right-radius: 50px 50px !important;
border-bottom-right-radius: 50px 50px !important;
}
.noBorder
{

border-bottom: 0 !important;
}

This will result on questions Q3 and Q4 to have a reddish background color with
slightly rounded corners and no orange border underneath them.
This very same principle has also been applied to a variety of other components
by integrating their already existing css classes with additional rules to customize
their appearance. For example, the navigation buttons generated by SurveyJS to
move from one question to another, which are characterized by classes such as
"sv-footer__prev-btn", "sv-footer__next-btn", "sv-footer__complete-btn" have
been customized with the following indications:

#surveyjs .sv-footer__prev-btn,
#surveyjs .sv-footer__next-btn,
#surveyjs .sv-footer__complete-btn {
background-color: #FF9724!important;
font-size: 175%;}

67

Frontend

Meaning that the buttons will have an orange color and a large text, matching the
aesthetic of analogous orange-coloured buttons across the website.

Other than through the use of stylesheets, which group aesthetic indications in a
single file, css rules can also be applied to a single object, making the modification
more precise.
This can be noticed in the Hello.js page, where some specific indications have been
added to the title.

<h1 className="display-3 text-center" style={{"color":"white"}}>
[...]Welcome to the questionnaire of Indoor Environmental Quality!
</h1>

These characteristics in the h1 tag are divided into two different kind of rules:
"display-3 text-center" are class names used by Bootstrap in order to enforce rules
about text styling and layout. The "style" tag instead enforces a rule created by
me in order to make the text within the tag appear white.

The choice about where to place said modification should not be casual. A priority
order exists in order to make sure that, when two rules are in conflict, the more
specific one will be applied over the general one. This order can be non-trivial,
because it depends not only on single rules, but also on their combination or on
the presence of keywords such as !important.

Bootstrap is a CSS framework largely used for the building of webpages.
Bootstrap makes it so that, by assigning one of the many provided classes to an
object, the associated style will be applied. To make an example, if I associate a
button with the class btn-danger, it will turn red.
Although Bootstrap is often used because of its responsiveness, together with the
pleasant aesthetic of its components, in the present case it has been chosen mostly
because of the intuitive management of the pages’ spaces. Bootstrap’s CSS classes,
in fact, also allow organizing the page dividing the space in rows and columns.
Columns, in particular, are 12 and their width depends on the available space. This
makes it possible to partition the page in proportional blocks. This is particularly
notable in pages such as ThanksEmail.js:

<div className="row h-25" />
<div className="row h-50 align-items-center">
<div className="col-12">
/*thank you message*/
</div>
<div className="row">

68

Frontend

<div className="col-lg-3 col-1"/>
<div className="d-grid col-lg-6 col-10">
/*home button*/
</div>
<div className="col-lg-3 col-1"/>
[...]

This divides the page in:

• an empty container as tall as the 25% of the available space

• a container as tall as the 50% of the available space containing:

– A title as wide as the entire page containing a Thank You message
– A row divided as follows:

∗ 1/4 of the page empty, which becomes 1/12 of the page on medium
and smaller screens

∗ a button as large as 1/2 of the available space, which becomes 5/6 of
the page on medium and smaller screens

∗ the remaining 1/4 of the page empty, which also becomes 1/12 of the
page on medium and smaller screens

This allows to organize the space proportionally among the objects and also to
choose these proportions according to the width of the visualization screens.
This aspect of Bootstrap makes it suitable for responsive designs, but the tight
requirements on a mostly horizontal layout made it so that the application can be
optimally visualized only on screens with a horizontal layout.

69

Chapter 5

User interface

Figure 5.1: Overview of the routes in the application

The User Interface presents itself differently depending on the kind of device that
the application is accessed from.
The application looks for device credentials at the first access to the website. If these
are available, a request is forwarded to Amazon Cognito in order to authenticate
the device and store information such as a reference number to identify the closest
multisensor station.
This generates a jwt which will then be used in those requests that require the
device to be authenticated, such as the POST on /survey. Whether the device is
authenticated or not is also an important indicator to tell which pages should be
displayed or not: a non authenticated device, in fact, won’t allow to display the
Indoor Environmental Comfort survey as it wouldn’t be possible to correlate said

70

User interface

data to any multisensor.

5.1 Unregistered device

If the device is not authenticated and no jwt is available for it, the homepage will
look like this:

Figure 5.2: Homepage on unregistered device

The user can either create an account by filling the first survey or through the
link in the Login page.

71

User interface

Figure 5.3: Login page

In this page, an API POST call is performed on the resource "/token" of "user-
TokenAPI" sending the token we desire to check in the body.
In the API some checks are performed. For example, if there is less than a user
or more than one associated to that token or the account hasn’t been verified yet,
a body with null email and token will be returned, otherwise a body containing
email, token and a newly generated jwt will be sent.
By inserting an existing, valid token and pressing “Submit”, the user will be logged
and brought back to the homepage.
The jwt token obtained will be used to authorize some API access and to prove
the user’s identity to Grafana by storing it into the cookies.

72

User interface

Figure 5.4: Homepage of a logged user on an unregistered device

In this version, the user is only allowed to visit his or her profile by clicking the
“Profile” button.

Figure 5.5: User’s profile

Here the timestamps of past surveys are displayed and two paths are provided:
“Dashboard” and “Personal”

73

User interface

In order to display the latest survey completion timestamps, a GET request is
forwarded to "/survey/user?user=[email]" of "userTokenAPI" where [email] is the
one of the logged user. Moreover, in the header, the user’s jwt must be added in
the "Authorization" field.
The resulting answers are subsequently sorted by timestamp and grouped in pages
of up to ten elements.
By clicking on "Dashboard", the user is lead to the objective data dashboard.

Figure 5.6: Dashboard

The Dashboard is used to display the objective data collected by the sensors
placed around the building. By clicking on any comfort aspect, related objective
measures appear. Clicking on Indoor Environmental Quality’s gauge makes them
all appear.

74

User interface

Figure 5.7: Dashboard fully activated

The analyzed time window can change depending on the selected button at the
top. By clicking on “Hints” and “More”, some additional information about the
selected topic is displayed in a pop-up. Hints are randomly selected from a pool of
suggestions, More instead is a fixed, more detailed explanation of the desired aspect.

Figure 5.8: Hints and more

By clicking on “Show the Graph”, a graph related to the desired topic and time
window will be displayed

75

User interface

Figure 5.9: Graphs visualization

And by clicking “Compare the graphs” the chance will be given to compare
the graph to up to three other ones. The other graphs can be related to different
measures in the same time window or to different time windows of the same measure.

Figure 5.10: Graphs comparison

The “Personal” path of the profile will display the possibility of filling a quick
two-pages survey about the users’ habits and environment. If available, the most
recent set of answers is displayed as default values, in order to allow the user to
change only the specific aspects he wants to update.
In order to do so, a GET request is forwarded to "/personal/personalID?user=[user]"
onto the API resource "userTokenAPI", where [user] is the email address of the
user who wants to answer the survey. It also requires to send the user’s jwt in the
Authorization header for authentication. This returns all previous responses, sorts
them by date and selects the newest, if at least one is available.

76

User interface

These old values are then set as the default answer of the survey, allowing the user
to update only selected questions, keeping the previous answers for the ones that
haven’t changed without having to renew them.
To do so, for all the questions present into the survey we perform this operation:
survey.setValue(ov, oldValues[ov]);
where "ov" is the question index and oldValues[ov] is the relative answer.

Figure 5.11: Personal questions’ survey

When the survey is complete, sendDataToServer function is called:

77

User interface

function sendDataToServer(sur) {
if((user===undefined || user === null) && props.anon===null)
{

console.log("No user assigned")
return

}
if(Object.keys(sur.data).length === 0) {

localStorage.setItem("previousPersonal", true)
navigate("/thanks")

}
else
{

let data = sur.data;
data.personalID = generateResponseId()
data.user = user===null ? props.anon : user
data.timestamp = Date.now()
let init = {

body: data,
}
API.post("userTokenAPI", "/personal", init).then(resp=>{

localStorage.setItem("previousPersonal", true)
navigate("/thanks")

}).catch([...])
}
}

This function checks whether a user has been assigned, which should always occur,
either in the form of an anonymous user or a logged one.
Another check that is performed is how many answers have been filled: if zero
answers have been completed, we simply redirect the user to the next page. Other-
wise, a post to "/personal" containing the provided answers is performed before
redirecting the user.
Upon completion, a “thank you” page will be displayed. Inside of it, data about the
four aspects of environmental comfort are shown in graphs and info about where
to know more are provided in the form of a link and a qr code.

78

User interface

Figure 5.12: Thank you page

The Thank You page has actually a much more complex structure than what
may appear. The useEffect invoked at loading, in fact, represents the end of a
multitude of possible paths, which are all analyzed and specific actions are taken.
More precisely:

• the user should either be logged (because he or she reached the page through his
profile, from the personal questions’ survey) or accessing from an authenticated
device (because he or she reached the page either at the end of the IEC survey
as a logged user or at the end of the personal questions’ survey as an anonymous
user). Moreover, either the IEC survey or personal survey should have been
completed. If none of these cases apply, the user is redirected to home.

• If the user is authenticated and IEC answers are available, elaboration of the
received data is performed.
First, data is elaborated through the function "evaluateComfort", which turns
subjective data into percentage indices. This data is then published over a
MQTT topic named [multisensor]/questionnaire.

• Afterwards, the received answers to the IEC survey are then sent to the server
through the use of a POST request to the path "/survey" of "userTokenAPI".
This kind of request requires both the answers as its body and the deviceJWT
in the Authorization header.

• Afterwards, in case of success, a GET request is forwarded to

79

User interface

"/survey/user?user=[user]" together with the user jwt Authorization header
in order to count how many survey answers have been provided by the user.
If the previous one was the first answer, a mail is sent to the user through a
POST onto
https://822240w7r0.execute-api.eu-west-3.amazonaws.com
/sampledev/sendEmail
forwarding destination email address, email body and subject.
At this stage, it is expected that the user is logged and thus the jwt will be
available.

• If the user is not logged, his or her personal answers have already been sent,
thus the page does nothing else.

The user is later allowed to be redirected to home by clicking a "Go Back Home"
button.

5.2 Registered device
If the device is, instead, authenticated, the homepage that will greet the user is
the following:

Figure 5.13: Homepage of a registered device

The questionnaire can be completed even by a non-registered user by clicking
“Start the questionnaire”

80

User interface

Figure 5.14: IEC survey structure

Completing successfully the questionnaire will lead an unlogged user to the
following page:

Figure 5.15: End of questionnaire page for unlogged users

81

User interface

By selecting “Not now” the user will be led to the lifestyle survey page in order
to provide anonymous information about his habits.
Before redirecting the user to the personal survey page, the answer he or she
gave anonymously are sent to the database through the use of a POST request to
"/survey" and the same anonymous id is used as the identificator of the user to
whom the personal answers provided belong.

By selecting “Create an account” the user will be redirected to the sign in page.

Figure 5.16: Sign in page

By inserting a mail address and creating a personal token, after accepting
PROMET&O’s Privacy policy, the user will be registered inside the application
and will be able to log in whenever he pleases.
A POST request is placed onto the path "/token" of "userTokenAPI". There, checks
are performed in order to understand whether somebody with the same email or
token already exists. If it’s the case, an error message is returned, otherwise the
new data is inserted into the database. Together with the chosen email and token,
the server also receives a 6 letters code to be used for verification and two booleans:

• "active", set to false, which represents whether the account has been verified

• "subscribed", set to true but temporarily unused, which represents whether
the account has accepted to receive email communications from PROMET&O

Afterwards, a mail with a verification link is sent to the indicated email address

82

User interface

through the API available at the address:
https://822240w7r0.execute-api.eu-west-3.amazonaws.com
/sampledev/sendEmail
If answers are also available to the Indoor Environmental Comfort survey, they are
sent to the database with a POST to "/survey"
After signing in, a thank you message is prompted and the user is led back to home.

Figure 5.17: End of registration page

By clicking on the verification link received through email, the user is sent to
the Verification.js page.
Here, a PUT is sent to "/token". Checks are performed in order to understand
whether the email and code are actually associated and to understand if the user
had been verified previously. If the code matches and the user was not verified yet,
the user is set as active and a message displaying the successful verification of the
account is displayed.
Otherwise, if the account is active, a message saying that the account has already
been verified will be displayed.
Finally, if no match was found, the account verification is marked as unsuccessful
and a related message will appear.

83

Chapter 6

Conclusions

During this work of thesis, several possible combinations for the implementation of
PROMET&O’s web application have been analyzed.
Through an accurate analysis of possible tools, both for the frontend and the
backend, several options have been taken into consideration. Internet, in fact,
showcases a large amount of possible, valid solutions.

The usage of Amazon’s Web Services for the serverless implementation of our
backend has posed several challenges because of the novelty in the approach, but
has also proved to be a reliable solution, adaptable to a multitude of possible use
cases.
This makes it so that both the present scenario, with a limited amount of users,
and possible future developments including a larger user pool makes this solution
viable and interesting.

DynamoDB, AWS Lambda’s functions and API Gateway are able to support
ever changing scenarios thanks to their automatic scaling of resources.
Amplify allows to deploy new application versions in a matter of minutes, without
needing to halt the application and granting a seamless transition from a software
version to another.
Cognito, in the meantime, is a useful tool in order to manage device authentication.
Route53 allowed us to purchase a domain and generate new subdomains,
paris.prometeo.click and ns01.prometeo.click, to deploy our applications.
That very same domain has also been used by Amazon SES to send emails to our
users.

Through the Amplify CLI, the creation and correlation of these resources in
order to be able to save data in our database, read information and interact with
our users has been intuitive and simple.

84

Conclusions

Amazon’s web interface, moreover, allowed us to keep track of the state of our
resources and create different environments which correspond to different flavours
of our application.
The creation of "paris" and "ns01" as distinguished versions of the same project
made it so that the data from Paris, which is more of a development stage, do
not get mixed up with the ones from ns01, which was a testing implementation
deployed at a customer’s office.
In doing so, the two paths have been able to evolve independently, according to
the needs of the head of project and our customers without interference.

SurveyJS, instead, represents a simple, powerful tool for the automatic imple-
mentation of surveys.
Surveys can be heavily customized by choosing among a wide range of possible
question types, defining logical paths among questions and integrate the existing
aesthetic with additional style rules defined in order to make sure that our survey
appears exactly like desired.
Thanks to SurveyJS we were able to implement the Indoor Environmental Comfort
survey in a way that specific questions are displayed according to the user’s previous
answers, for example displaying the question "Your evaluation is positive, can you
tell us which environmental aspects you consider particularly satisfying?" only if
the question "Are you satisfied with the thermal, acoustic, visual, and air quality
conditions in your environment?" received a positive or mildly positive response.
At the same time, in the personal questions’ survey, question number 6 "Am-
bits/Roles" displays different options depending on the answer provided to the
previous question, "Intended use of the building".
This allows to have a large control on how the survey experience is built for the
user, in order to be able to obtain large pieces of information in a quick, intuitive
way.
The use of colors and icons in order to guide the user should also make the survey
experience simple, fast and pleasant, objectives which were primary in the context of
the project, as they help stimulate a proactive approach in the buildings’ occupants.
Their role, in fact, is fundamental in order to collect high quality data and, in the
future, be able to elaborate correlations among environmental conditions, habits
and perceived comfort.

A proactive approach in the users is required since the earliest test stages.
Their opinion not only on Environmental Comfort, but also on User Experience,
achieved through a personal feedback loop and critical confrontation will lead to
improvements in the platform that will grant a more and more pleasant interaction
with the web portal deployment after deployment.

85

Bibliography

[1] Amazon Web Services Inc. What is Amazon API Gateway? url: https:
//docs.aws.amazon.com/apigateway/latest/developerguide/welcome.
html. (accessed: 01.12.2022) (cit. on p. 9).

[2] Amazon Web Services Inc. What is AWS Lambda? url: https://docs.
aws.amazon.com/lambda/latest/dg/welcome.html. (accessed: 01.12.2022)
(cit. on p. 9).

[3] Amazon Web Services Inc. What is Amazon DynamoDB? url: https://
docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introd
uction.html. (accessed: 01.12.2022) (cit. on p. 9).

[4] Amazon Web Services Inc. What is Amazon Cognito? url: https://docs.
aws.amazon.com/cognito/latest/developerguide/what- is- amazon-
cognito.html. (accessed: 01.12.2022) (cit. on p. 9).

[5] Amazon Web Services Inc. What is Amazon Route 53? url: https : / /
docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html.
(accessed: 01.12.2022) (cit. on p. 9).

[6] Amazon Web Services Inc. What is Amazon SES? url: https://docs.aws.
amazon.com/ses/latest/dg/Welcome.html. (accessed: 01.12.2022) (cit. on
p. 9).

[7] Google. Make data-driven decisions, in Google Sheets. url: https://www.
google.com/sheets/about/. (accessed: 01.12.2022) (cit. on p. 12).

[8] The Apache Software Foundation. CouchDB Relax. url: https://couchdb.
apache.org/. (accessed: 01.12.2022) (cit. on p. 12).

[9] Oracle. NoSQL Database Cloud Service. url: https://www.oracle.com/
database/nosql/. (accessed: 01.12.2022) (cit. on p. 13).

[10] The International Business Machines Corporation (IBM). IBM Cloudant.
url: https://www.ibm.com/cloud/cloudant. (accessed: 01.12.2022) (cit.
on p. 13).

[11] Inc. Couchbase. Couchbase. url: https://www.couchbase.com/. (accessed:
01.12.2022) (cit. on p. 13).

86

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/ses/latest/dg/Welcome.html
https://docs.aws.amazon.com/ses/latest/dg/Welcome.html
https://www.google.com/sheets/about/
https://www.google.com/sheets/about/
https://couchdb.apache.org/
https://couchdb.apache.org/
https://www.oracle.com/database/nosql/
https://www.oracle.com/database/nosql/
https://www.ibm.com/cloud/cloudant
https://www.couchbase.com/

BIBLIOGRAPHY

[12] Florian pharindoko Fuß. json-serverless. url: https://github.com/pharin
doko/json-serverless. (accessed: 01.12.2022) (cit. on p. 13).

[13] Inc. DataStax. DataStax. url: https://www.datastax.com/. (accessed:
01.12.2022) (cit. on p. 14).

[14] restdb.io. RestDB.io. url: https://restdb.io/. (accessed: 01.12.2022) (cit.
on p. 14).

[15] Inc. MongoDB. MongoDB Atlas Database. url: https://www.mongodb.com/
atlas/database. (accessed: 01.12.2022) (cit. on p. 14).

[16] LimeSurvey GmbH. LimeSurvey- Turn questions into answers. url: https:
//www.limesurvey.org/. (accessed: 01.12.2022) (cit. on p. 16).

[17] Devsoft Baltic OÜ. SurveyJS - Javascript Libraries for Surveys and Forms.
url: https://surveyjs.io/. (accessed: 01.12.2022) (cit. on p. 16).

[18] Google LLC. Get insights quickly, with Google Forms. url: https://www.
google.it/intl/en- GB/forms/about/. (accessed: 01.12.2022) (cit. on
p. 17).

[19] formsflow.ai. Best Free Open Source Low Code Platform | Formsflow.AI. url:
https://formsflow.ai/. (accessed: 01.12.2022) (cit. on p. 18).

[20] Form.io LLC. Form.IO - A Form and Data Management Platform. url:
https://www.form.io/. (accessed: 01.12.2022) (cit. on p. 18).

[21] Zoho Corporation Pvt. Ltd. Form Builder | Create Free Online Forms - Zoho
Forms. url: https://www.zoho.com/forms/. (accessed: 01.12.2022) (cit. on
p. 19).

[22] Budibase. Budibase | Build internal tools in minutes, the easy way. url:
https://budibase.com/. (accessed: 01.12.2022) (cit. on p. 19).

[23] Jotform Inc. Free Online Form Builder Form Creator | Jotform. url: https:
//www.jotform.com/. (accessed: 01.12.2022) (cit. on p. 19).

[24] Inc. Gitana Software. Alpaca Forms - Easy Forms for jQuery. url: http:
//www.alpacajs.org/. (accessed: 01.12.2022) (cit. on p. 19).

[25] OhMyForm. OhMyForm | OhMyForm is the best open source form solution
for the web. url: https://ohmyform.com/. (accessed: 01.12.2022) (cit. on
p. 19).

[26] Inc. Formium. Formik: Build forms in React, without the tears. url: https:
//formik.org/. (accessed: 01.12.2022) (cit. on p. 20).

[27] Inc. Amazon Web Services. Amplify CLI - AWS Amplify Docs. url: https:
//docs.amplify.aws/cli/. (accessed: 01.12.2022) (cit. on p. 24).

87

https://github.com/pharindoko/json-serverless
https://github.com/pharindoko/json-serverless
https://www.datastax.com/
https://restdb.io/
https://www.mongodb.com/atlas/database
https://www.mongodb.com/atlas/database
https://www.limesurvey.org/
https://www.limesurvey.org/
https://surveyjs.io/
https://www.google.it/intl/en-GB/forms/about/
https://www.google.it/intl/en-GB/forms/about/
https://formsflow.ai/
https://www.form.io/
https://www.zoho.com/forms/
https://budibase.com/
https://www.jotform.com/
https://www.jotform.com/
http://www.alpacajs.org/
http://www.alpacajs.org/
https://ohmyform.com/
https://formik.org/
https://formik.org/
https://docs.amplify.aws/cli/
https://docs.amplify.aws/cli/

BIBLIOGRAPHY

[28] Amazon Web Services Inc. AWS Pricing Calculator. url: https://calcula
tor.aws/#/. (accessed: 01.12.2022) (cit. on p. 53).

[29] Amazon Web Services Inc. Deploy a Node.js Web App. url: https://aws.
amazon.com/getting- started/hands- on/deploy- nodejs- web- app/.
(accessed: 21.11.2022) (cit. on p. 53).

[30] Inc. Meta Platforms. React – Una libreria JavaScript per creare interfacce
utente. url: https://it.reactjs.org/. (accessed: 01.12.2022) (cit. on
p. 61).

88

https://calculator.aws/#/
https://calculator.aws/#/
https://aws.amazon.com/getting-started/hands-on/deploy-nodejs-web-app/
https://aws.amazon.com/getting-started/hands-on/deploy-nodejs-web-app/
https://it.reactjs.org/

	List of Tables
	List of Figures
	Introduction
	Context of application
	Requirements
	Surveys
	Backend
	Users and device management
	Emails
	Dashboard
	Localization

	Architecture analysis
	Architecture
	Backend
	Comparison between server and serverless solution
	Comparison between potential serverless environments
	Conclusions

	Surveys
	Survey Creation Tools
	Forms Creation Tools
	Conclusions

	AWS Services
	Application’s architecture
	Amplify CLI
	API Gateway
	Lambda
	DynamoDB
	Amazon Cognito
	AWS Amplify
	Route53
	Amazon SES
	Considerations about AWS Services

	Reusability of the solution
	Cost analysis
	Machine-based solution
	Service-based solution

	Frontend
	Auxiliary Tools
	SurveyJS
	Formik

	React
	CSS

	User interface
	Unregistered device
	Registered device

	Conclusions
	Bibliography

