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Summary

Research on autonomous landing methods of UAVs on a moving platform has
experienced rapid growth in recent years and found applications in civil and
military sectors. The extreme precision of drone landing is required to overcome
problems related to the low battery autonomy of drones, through landing in mobile
charging stations, but at the same time also finding applications in the most varied
sectors ranging from parcel delivery to rescue operations.
This work implements an autonomous algorithm that allows for the landing onto a
vehicle that is moving at high speed, through the use of different sensors, chosen
depending on the relative drone-rover position. The result is a robust three state
machine that makes use of GPS measurements when the drone-rover distance is
large, UWB when the rover is nearby and the fusion of information from the camera
and the UWB when the drone is landing. The relative position, computed from
the UWB sensors with a Least Square algorithm, must be rotated from the rover’s
mobile system to the NED reference frame. Therefore, a correct estimate of the
orientation of the rover and a consistency between the UAV and UGV compasses
is of vital importance for an autonomous landing at high speed. This limit is
overcome by mounting a camera on the drone that computes the orientation of the
apriltag with extreme precision and this information replaces the noisy one of the
rover compass. A Kalman filter manages the information coming from the various
sensors and generates an estimate of the relative position and relative speed. These
are then passed to a PID speed controller that allows accurate and fast tracking
and landing on the moving target. Through a purely proportional control over
long distances of the rover and a proportional-integrative-derivative control when
UAV and UGV are close together, the drone speed value is computed and this is
passed to the autopilot which in turn generates the correct thrust of the motors
corresponding to that speed. Since the rover landing occurs with a vertical descent
after the engines are turned off, a predictive control must be implemented so that
the drone predicts the progression of the rover in the next timesteps. The adoption
of a predictive control system, the introduction of new sensors and the correction
of the misalignment between the compasses of the drone and rover made it possible
to reach landing speeds above 30 km/h.
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Chapter 1

Introduction

1.1 Objective of the thesis
This work implements an autonomous algorithm that allows for the landing onto a
vehicle that is moving at high speed, through the use of different sensors, chosen
depending on the relative drone-rover position. The result is a robust three state
machine that makes use of GPS measurements when the drone-rover distance is
large, UWB when the rover is nearby and the fusion of information from the camera
and the UWB when the drone is landing. The correct functionality of the proposed
algorithm was first evaluated in a simulated environment provided by Gazebo and
then through real tests.

1.2 Organization of the thesis
The thesis consists of six main chapters:

1. PX4 Autopilot: This chapter offers an overview of PX4 autopilot, an open
source autopilot flight stack that provides many guidance, navigation and
control algorithms. This section presents the communication protocol between
PX4 and ROS2, the types of messages supported, the different reference
systems used and how to control the flight and landing of the drone through
the code that runs on a companion computer.

2. Positioning techniques: This section provides a theoretical background
of the common positioning technique. Then, the functionality of the main
sensors used to localise the drone and rover are illustrated. In the last section,
a comparison of the accuracy and coverage of various positioning technologies
is reported.
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3. Filtering and sensor fusion: This chapter focuses on the design of the
implemented Kalman filter, which handles the information coming from the
various sensors and generates an estimate of the relative position and relative
velocity. In the last part, the positioning error, due to the incorrect estimation
of the rover’s orientation, is examined. This limit is overcome by mounting
a camera on the drone that computes the orientation of the apriltag with
extreme precision . This information replaces the noisy information of the
rover’s compass.

4. System control algorithm: Here, the control algorithm is presented. A
PID speed controller, reinforced with a predictive control algorithm, allows
accurate and fast tracking and landing on the moving target. The problem of
motor shutdown and free fall of the drone when above the platform is deeply
investigated.

5. Simulation: In the first part of this chapter Gazebo models and plugins are
illustrated. In the final part, the ways by which the simulation was conducted
is described. The system is stressed by adding errors to the various sensors.
Finally, the simulation results are reported.

6. Experimental analysis: In this last part the instrumentation used during
the tests is described. Finally, the results are reported proving the correct
functionality of the proposed solution.
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Chapter 2

PX4 Autopilot

2.1 System overview

PX4 is an open source autopilot flight stack that provides many guidance, navigation
and control algorithms and several flight mode for different types of vehicles.
Autonomous flight modes are completely controlled by the autopilot (takeoff and
landing in this work). The user can control the flight via the radio controller
(RC)[1]. A companion computer communicates with the PX4-board through a
UART to USB adapter. The companion computer used is a Raspberry-pi 4, which
in turn communicates via wifi with a ground station running ROS2.
The set of guidance, navigation and control algorithms constitutes one of the main
layers of PX4, known as the flight stack. The other fundamental layer of PX4 is
the middleware that allows you to communicate with the embedded sensors and
with the outside world.

2.1.1 Flight stack and Middleware

The flight stack represents the estimation and control system of PX4. This work will
try to improve the estimation and control system to achieve our goal, also through
the introduction of external sensors that are not part of PX4. The flight stack
represents the living part of PX4, from sensors to engines, with all the intermediate
layers of guidance, navigation and control.

3



PX4 Autopilot

Figure 2.1: Flight Stack[2]

The middleware used by PX4 are basically two. The first one concerns the
interface with the companion computer; on the other hand, the second (simulation
layer) allows you to simulate the PX4 flight code on a desktop computer.
The middleware includes all the functions allowing PX4 to communicate with
ROS2. The message types supported within PX4 are UORB type, unlike ROS2
which uses DDS message type. The microRTPS bridge allows the two systems to
communicate, through the translation of the two different types of messages, and
therefore the real-time publication and subscription of data.

Figure 2.2: MicroRTPS Bridge [3]

The PX4-ROS2 bridge also allows running the flight stack both in a simulated
environment on a desktop computer and in a companion computer (Raspberry Pi
4) mounted on the drone.
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2.1.2 Control stack

The whole control structure is summarized in the figure. The setpoints are estimated
through an EKF. The angle and position control is achieved through a P controller.
Velocity and angular rate control also need integrative-derivative control terms.
The velocity controller stabilizes the speed of the drone and generates an Asp

acceleration. The maximum horizontal speed value allowed to the drone is set in
the PX4 firmware in MPC_XY_VEL_MAX parameter. After the P and PID
controller cascade, the correct thrust setpoint is generated through the mixer to be
input to the motors.

Figure 2.3: Multicopter Control Architecture [4]

2.2 ROS2 Offboard control
This work wants to control the flight and landing of the drone through the code
that runs on a companion computer. The Offboard control mode is a control mode
that helps us in this intent. The main requirements to be respected for this mode
to be possible are the following:

• At least one position method available

• Vehicle must be armed before Offboard control mode is engaged

• The setpoints must be received at a frequency >2 Hz before and during
Offboard control mode

• Any RC inputs, except changing of the mode, will force an exit from the
Offboard control mode [5]

5
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2.3 World and Body frame
PX4 and ROS don’t use the same world and body frames. For the body frame,
PX4 uses FRD (X Forward, Y Right and Z Down) and ROS uses FLU (X Forward,
Y Left, Z Up) convention.
Instead, as far as the fixed reference system is concerned, PX4 uses NED (X North,
Y East, Z Down) and ROS uses ENU convention. It is therefore necessary to
convert messages from one system to another before being fused in the estimation
part or used in the control part.

Figure 2.4: Reference frames used by PX4 and ROS [6]

6



Chapter 3

Positioning techniques

3.1 Classification of Positioning System
There are two types of positioning systems: Global Position System (GPS) and
Local Position System (LPS). Due to the limitations of GPS in enclosed spaces or
between high buildings, due to a lack of line of sight (LOS), the usage of LPS has
become a real necessity to accurately estimate a user’s or object’s position.

3.1.1 Position estimation techniques
By using estimation methods that are proportional to distance calculation, the
measure of receiving positions is derived indirectly. The following are the main
positioning techniques :

• Time of Arrival (TOA): The distance between the transmitter and receiver
can be calculated based on the time it takes for the signal to reach the receiver,
the time of flight (TOF). Then this delay time must be multiplied by the
speed of light, d = c · ∆t. If there are at least three transmitters in 2D space
or three in 3D space, the distances of the transmitters from the receivers can
be calculated and thus, the position of the receiver can be uniquely defined.
The TOA technique is influenced by several factors, the fundamental one
being associated with the synchronization of the clocks of the transmitter and
receiver.[7]

• Time Different of Arrivals (TDOA): the position of a source transmitter can
be calculated through the difference between the time of signal arrival at two or
more receivers. The difference in time is multiplied by the speed of light, thus
obtaining a difference in the distance between each receiver. This difference
removes, then, the error associated with the possible non-synchronization
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between transmitter and receiver, since the receivers are affected by the same
error. This difference can be plotted as a set of hyperbolic lines in which each
pair of receivers represents the foci. The intersection of these lines identifies
the position of the source.[8]

• Angle-of-Arrival: Angle-based techniques estimate the position of a receiver
based on the angle of arrival of the signal. The intersection of the lines (line of
bearing or LOB) joining the receiver to each transmitter uniquely identifies the
position of the receiver. However, a problem that arises in the identification
of the angle of arrival is the need for the use of large antennas, which is not
very favourable in terms of size and cost.[9]

• Received Signal Strength Indicator: RSSI technique is based on an indicator
that depends on the received signal strength. In this method, the estimated
position is related to the difference between the transmitted signal and the
received signal power. The advantage of this technique is that line of sight
is not required. Also, all the equipment that AOA and TDOA techniques
require is not required. However, it presents critical problems of reflection,
refraction, and multipath fading.

• Near-Field Ranging (NFR): The fundamental concept behind this technique is
to take advantage of the link between the angle generated by the electric and
magnetic fields of the received signal and the distance between the transmitter
and receiver. The electric and magnetic field in the proximity of an antenna
form an angle of 90 degrees. The EH phase difference decreases with increasing
distance from the antenna. As a result, the distance to the transmitter can
be determined by a receiver that can measure the electric and magnetic field
components of a near-field signal and calculate the EH phase difference. This
technology is based on low-frequency signals. Low-frequency signals are better
than the high frequency at penetrating obstacles and resisting multipath
interference. The main drawback of this technology is the need to use large
antennas.[10]

• Connectivity: There is no requirement for specialized hardware or time synchro-
nization because the only information used to achieve localization is whether
the connection with the anchor nodes is active or not. This technique’s main
benefit is that it eliminates the need for specialized hardware and node-to-node
time synchronization. However, relying just on proximity information results
in poor positioning accuracy.

8
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Measurament
type

Positioning
technique Description

AOA Angle based

Measurament
of the angle
of arrival of
the signal

RSSI Range based
Measurament
of the received
signal strength

TOA Range based

Measurement
of the signal
propagation
delay

TDOA Range difference based

Measurement
of the signal
propagation
delay difference

NFR Range-based
Measurement
of the EH phase
difference

Radio Visibility Proximity range-free Connectivity

Table 3.1: Position estimation techniques [11]

3.1.2 Network configuration

The localization method depends on the network architecture and the collection of
available measurements.
One of the simplest cases is the problem of determining the position of an agent
through N coordinates at known positions. Assuming that the estimated distances
are accurate, the position of the agent is given by the intersection of the N
circumferences with centres in the anchors and having for radius the respective
estimated distances, as in figure 3.1.

9
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Figure 3.1: Ideal 2D Geometric Positioning [11]

The classification of network types is mainly based on the information we have
about the anchors and consequently, the possibility of locating the agent (or tag).
If the agent can be identified directly from the known location of a few anchors,
a single-hop algorithm can be adopted. If, on the other hand, the number of
anchors whose position is known is not sufficient for a direct localisation of the
agent, a propagation of information is necessary through the use of a multi-hop
algorithm. In the case where the absolute position of no anchor is known, only a
relative localisation is possible. This is referred to as anchor-free localisation. A
more general classification of how information is processed and the target position
calculated leads to the distinction between terminal-centred and network-centred
systems. The terminal-centred system directly allows the target to calculate its
position once it has received the information. In the network-centred system, the
position is calculated by the anchors and then sent to the target.[11] A summary
of this classification is presented in table 3.2.

10
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Network
Configuration Description

Anchor-based some anchors know their
positions

Single-hop
the agent can be identified
directly from the known
location of a few anchors

Multihop the agent can be identified
by intermediate nodes

Anchor-free

only a relative localisation
is possible because the
absolute position of no
anchors is known

Range-free only connectivity data are
used

Terminal-centered

the agent performs its own
location on the basis of
information coming from
anchor nodes

Network-centered

the anchor nodes compute
the position of the agent on
the basis of the signal
coming from the agent

Table 3.2: Network configuration [11]

3.2 Global Positioning System
GNSS is a term denoting a constellation of satellites orbiting the earth and offering
positioning, navigation and timing services. 24 satellites are needed to achieve
complete coverage of the globe.

3.2.1 Ranging measurements and errors
A GPS device uses satellite measurements to calculate the geocentric coordinates
(x, y, z) of a receiver, that is the coordinates relative to the centre of the earth
(0, 0, 0).
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The receiver receives information from the satellite at time Ti. The satellite
sends the following information regarding its position in geocentric coordinates
(xi, yi, zi) and time ti of transmission. Based on the two sent and received times,
the satellite-receiver distance ρi can be calculated as :

ρi = c · (Ti − ti)

Where c is the speed of light. At this point, the known data are the data that
we get from satellite i: 

xi

yi

zi

ρi


Calculating the geocentric coordinates of the receiver is not an easy problem to

solve. The main problem arises from the fact that the satellite clock is not perfectly
synchronised with the receiver clock. An error of just one nanosecond results in
a deviation from the true position of 0.29metres. For this reason, the previously
calculated distance ρi is called the pseudorange. This error is the same for all
pseudoranges since the satellites are synchronised with each other. A common
clock bias error b can be defined for all pseudoranges. It is defined as: b = c∆t,
where t is the error in the time of the receiver. The unknown data of the receiver
are the following: 

x
y
z
b


These four unknown data can be computed with the following equation applied

to each i-th satellite:ñ
(xi − x)2 + (yi − y)2 + (zi − z)2 + b = ρi

Since the equation has four unknowns, four satellites are required. Furthermore,
since the equation is non-linear methods from calculus have to be used, such as
Newton’s method.
Errors associated with GPS depend on various factors, which must be taken into
account to know the magnitude of error affecting our GPS data and in some cases
compensate them to increase GPS position accuracy. The main errors are:

• Atmospheric effects: Atmospheric conditions cause a delay in the transmit-
ted signal. The main delay is associated with the effects of the ionosphere due
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to dispersion phenomena. These phenomena are frequency-dependent and in
military and civil situations, which require extreme precision, are corrected by
considering two fixed frequency bands, calculating the delay associated with
those two frequencies and then, using a mathematical model, estimating the
error associated with other frequencies.
However, in cases where high precision is not required, the errors associated
with the ionosphere are corrected according to the region or location. In
fact, for receivers located in the same place, these corrections are almost
similar. The correction error is usually communicated via Satellite Based
Augmentation Systems (SBAS).
The errors associated with the troposphere are minor, but less predictable.
Humidity and atmospheric pressure have a decisive effect on signal reflection.
The only problem is that these effects are more dependent on the specific
location where GPS receivers are positioned. Furthermore, they are not
frequency-dependent. Consequently, the prediction of these delays is less
predictable than those associated with the ionosphere. [12]

• Multipath distorsion: Errors associated with multipath effects, due to the
reflection of the signal in various types of obstacles such as high buildings,
also play a major role.
Signals affected by long delays are easily identified directly by the receiver.
Short signal delays, on the other hand, are more difficult to identify and
require the use of specific antennas. [13]

• Satellite ephemeris and clock errors: Satellite ephemeris errors depend
on the position and trajectory information sent by satellites. This is closely
influenced by solar radiation pressure. This error is usually fixed by the ground
station passing correction parameters to the receivers.
Clock errors are due to the drift of the satellites’ clock. This, as we will see,
can be solved with the use of a differential GPS. [14]

• Numerical error : estimated error σnum associated to the numerical compu-
tation

Figure 3.2 shows how the errors affect the true receiver position. The intersection
of the 4 sphere surfaces represents the estimated point in the ideal case computed
with the geometric sphere method.
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Figure 3.2: GPS errors [15]

In the table 3.3 are reported the user equivalent range errors.

Source Effect (m)
Ionospheric effects ±5

Tropospheric effects ±0.5
Ephemeris errors ±2.5

Satellite clock errors ±2
Multipath distortion ±1

3σr ±6.7

Table 3.3: User equivalent range errors [15]

The standard deviation of the user equivalent range errors σr can be computed
as the square root of the square of each error:

3σr =
√

32 + 52 + 2.52 + 22 + 12 + 0.52m = 6.7m

At this point, the standard deviation of receiver position estimate can be computed
considering the appropriate PDOP (Position Dilution Of Precision) term. It is a
term that indicates how errors in measurements can influence the final estimated
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state:

GDOP = ∆(OutputLocation)
∆(MeasuredData)

Therefore the lower the PDOP the better in terms of accuracy. The standard
deviation of the receiver position estimate is computed in this way[15]:

σrc =
ñ

PDOP 2 · σ2
r + σ2

num =
√

PDOP 2 · 2.22 + 12m

3.2.2 Standard GPS

The standard GPS computes the receiver’s position by solving the preceding
equation using one of the analytical methods listed below:

• Least Square: it is based on the minimization of the error given by the
difference between the pseudoranges ρi and the clock bias b in order to find
some optimal x, y, z and b,

(x̂, ŷ, ẑ, b̂) = min
(x,y,z,b)

Ø
i

(
ñ

(x − xi)2 + (y − yi)2 + (z − zi)2 + bc − ρi)2

• Iterative: a linearized form of the above equation could be solved with an
iterative algorithm (for example Gauss-Newton algorithm)

• Closed form: this method could give one or two solutions where only one is
probable.

Standard GPS is not able to correct all errors that affect pseudoranges. Only
some errors, such as those associated with receiver clock bias can be mitigated by
analytical-geometric methods, such as the Hyperboloids method that we mentioned
in the previous pages. This generates a low accuracy of about 6 m [16].
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Figure 3.3: Standard GPS [17]

3.2.3 Differential GPS

Differential GPS is a system able to correct the errors of the GPS signals, using
a ground reference station at a fixed known position. The position of the ground
station is known with high accuracy. Consequently, the difference between the
known position and the position measured by the satellites provides the range error.
This is the quantity that must be subtracted from each pseudorange.
The range error information is then sent from the ground statiotoS in three distinct
ways according to distance.
The correction can be sent directly from the ground station to the GPS receiver
via the Ground-Based Augmentation System (GBAS) or Ground-Based Regional
Augmentation System (GRAS).
In other cases the correction is first sent to some geostationary satellites which
in turn send it to the GPS receiver via the Satellite-Based Augmentation System
(SBAS). The table 3.4 shows the coverage area supported by the systems mentioned
above.

16



Positioning techniques

Correction System Coverage Area
GBAS <23 km
GRAS region area
SBAS long distance

Table 3.4: Correction GPS system

This correction provides an accuracy below 1 meter. However, SBAS depends
on the relative ground station-receiver distance and corrections degrade as the
distance increases.

Figure 3.4: Differential GPS [17]

3.2.4 RTK GPS
RTK GPS is a particular type of differential GPS that uses a new technology and
communication protocol capable of achieving centimetre-level accuracy.
DGPS and RTK GPS are similar because they both make use of a base station.
However, in RTK GPS, the distance calculation is based on the product of the
number of carrier cycles between the satellite and rover (receiver) and the carrier
wavelength. To this quantity, is added the phase difference calculated by the base
station, which allows the errors affecting the GPS to be eliminated. The phase
calculated by the base station is compared to that calculated by the rover and the
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errors are corrected.
PX4 allows the use of RTK GPS by running QGroundControl in our PC, which
acts as a ground station. In addition, the vehicle must be connected via WiFi or
Telemetry radio to the ground station. The RTK GPS enables high accuracy, 1
centimetre horizontally and 2 centimetres vertically. [18]

3.2.5 Conversion of GPS data from WGS84 to Cartesian
format

GPS coordinates are published on a ROS2 topic, based on the WGS84 geodetic
coordinate system.Since these data are to be used in the measurament model, a
conversion to the Cartesian reference system is necessary.
To convert the GPS data from the WGS84 system to the Cartesian coordinate
system, the origin (reference) of the Cartesian system must be set coherently for
both drone and rover. It was decided to take the point where the drone is turned
on as the reference. In this way, the Cartesian coordinates of the GPS of the drone
and the rover will be published in the same reference system.

3.3 Inertial Measurements Unit

The use of information from the Inertial Measurements Unit ( IMU ) is of necessary
importance for basic flight control. The IMU is responsible for measuring every
change in the orientation and acceleration of the vehicle. Consequently, the fusion
of GPS data with data from the IMU is vital for any autopilot.
The IMU consists of several inertial sensors, but mainly of two sub sensors: ac-
celerometer and gyroscope.
The accelerometer is responsible for measuring linear acceleration along the three
axes X, Y and Z. There are usually three accelerometers, one for each axis.
Data coming from these two sensors are used as feedback for the closed loop
autopilot controller. In addition, they can provide information on the attitude,
speed and position of the vehicle through integration. The IMU is also able to
self-power all its sensors.
Along with the accelerometer and gyroscope, there can be other sensors such as
magnetometers, temperature sensors or altimeters. The image below shows a
schematic of a basic IMU. [19]
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Figure 3.5: IMU schema [19]

3.4 UWB

The Federal Communication Commission (FCC) defines UWB as any device with
a fractional bandwidth greater than 0.2 or that covers more than 500MHz of the
spectrum, where fractional bandwidth is defined as:

FractionalBandwidth = 2fH − fL

fH + fL

Here, fH and fL are the higher and lower frequencies, where measurements have a
power spectral density of 10 dB less than its maximum.
As established by the FCC in February 2002, UWB use is permitted in the 3.1-10.6
GHz frequency band and limited power density. The lower power density decreases
UWB interference.
Another factor that decreases UWB interference is the fact that it uses Pulse
Position Modulation (PPM), with a noise-like signal, which in a closed-loop is
difficult to be picked up by other radios technology.[20]

19



Positioning techniques

3.4.1 Advantages
The advantages of UWB are mainly related to high levels of accuracy, low costs
and low interferences. The main advantages are:

• Low accuracy, ranging accuracy of 10 cm is achieved [21]

• Robust to multipath or attenuation signal thanks to the wide bandwidth

• Low interference due to the lower power densitywith respect to other radio
technologies and to the use of PPM with a noise-like signal

• The wide bandwidth allows for a high and low-frequency signal. Consequently,
for long distances, low frequencies can be used since low frequencies allow better
penetration of obstacles and thus, better propagation than high frequencies.

• High timing capabilities, thanks to the very short time duration of pulse
signals

• Low cost and power consumption

3.4.2 Localization with UWB
The estimation of the position of the target via the UWB requires the use of at
least three receivers in the case of 2D positioning.
The three receivers are called anchors and are in charge of receiving the signal sent
by the tag and calculating the tag-anchors ranges through localization techniques
we have discussed in the previous sections, such as TOA or TDOA.
In our work, the UWB is only used to calculate the relative 2D position between
drone and rover. The estimated height, on the other hand, is not calculated through
the UWB because it is too unreliable. This is due to the fact that the four anchors
are positioned on the same level, at the vertices of the rover. The positioning on
the same plane results in an unreliable estimate of the z-coordinate.
The choice of using 4 anchors instead of 3 is to provide some redundancy to the
system in case one of the sensors stops working or is simply not in the line of sight.
Having the distances of each anchor to the tag available, it is possible to calculate
the UAV-UGV distance through linear methods such as Least-Square (used in our
case) or non-linear methods such as the Gauss-Newton method.

3.5 Camera and Marker description
The Apriltag is a specific marker with a black border and a white inner path. The
black border facilitates the detection of the position and orientation of the Apriltag.
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The Apriltag, in shape, looks like a QR code. The fundamental difference with the
QR node lies in the amount of information carried. Usually, a QR code can carry
up to 3 KB of information, unlike an Apriltag, which can carry a maximum of 12
bits of data. The decision to use the Apriltag lies precisely in this simplicity. The
Apriltag’s simplicity of information allows it to be detected in a robust and precise
manner.
Apriltags can be used in many different areas and for many different applications
including camera calibration, localization and orientation of an object, etc.

3.5.1 Detection

The detection of the apriltag was done by means of OpenCV by installing the
necessary packages. Since there are several Apriltags, we have had to choose one
of them. In our work, we used the standard Apriltag "Tag36h11". However, we
have a choice of six Apriltag families:

• Tag36h11

• TagStandard41h12

• TagStandard52h13

• TagCircle21h7

• TagCircle49h12

• TagCustom48h12

The Detection algorithm is based on calculating the position of the Apriltag from
the identification of the 4 corners. At that point, the position of the centre can be
calculated.[22]

21



Positioning techniques

Figure 3.6: AprilTags [23]

3.6 Accuracy and Coverage comparison between
different positioning system technologies

In this last section, a comparison of the accuracy and coverage of various positioning
technologies is reported.

Technologies Coverage
(m)

Accuracy
(m)

Cameras 1-10 0.0001
UWB 1-50 0.1

Differential
GPS global 0.1

Ultrasound 0.2-10 0.03
RFID 1-50 0.1

WLAN/WIFI 20-50 5

Table 3.5: Comparison between different positioning technologies [24]

It is straightforward to observe how UWB technology offers the best compromise
between coverage and accuracy. Although the camera offers one of the best accuracy,
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it is not advisable to rely on the camera alone in precision landings. This is because
the non visibility of a single piece of the tag results in the no-detection of the tag
and therefore the lack of information for the drone to land. For this reason, in our
work, the use of the camera is only combined with that of the UWB to correct any
errors in estimating the orientation of the rover.
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Chapter 4

Filtering and sensor fusion

4.1 Kalman Filter: Theoretical overview
This chapter explains how to obtain a better estimate of the relative position and
speed between UAV and UGV using the Kalman filter.
Kalman filter proposed in this work can be considered a 3-state estimation machine,
that makes use of GPS measurements when the drone-rover distance is large,
UWB when the rover is nearby and the fusion of information from the camera
and the UWB when the drone is landing.Further input of the Kalman filter is the
orientation coming from the compass of the rover necessary to rotate, in the NED
reference system, the relative position outgoing from the Least square and referred
to the mobile system of the rover. However, the error affecting the compass output
orientation makes the relative rotated position inaccurate and at the same time
does not allow the drone to land at high speeds. The orientation of the apriltag
allows us to have a more accurate estimate of the relative position and allows
landings at high speed.
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Figure 4.1: 3-state estimation machine

4.2 Filter design
Kalman filter is a linear estimation algorithm. This filter uses a dynamic model
of the system, various measurements from sensors and statistical noise to obtain
better estimates of the system. The algorithm is divided into two main phases.
In the first phase, predict phase, an estimate of the state at the current time-step
is generated based on the state estimated at the previous time-step. However,
this results to be based only on the dynamic model of the system and not on the
measurements received by the sensors at that time. Then, in the second phase,
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update phase, the estimated state is modified considering a weighted average of
predicted state and observations.The Kalman filter operates in a recursive manner,
that is, only the current measurements, the previous state and the uncertainty
matrix are needed, without the need to know the entire history of the system.

PREDICT PHASE: The predicted state estimate x̂k|k−1 and the predicted
covariance P̂k|k−1 are computed [25]:

x̂k|k−1 = Fkxk−1|k−1 + Bkuk

P̂k|k−1 = FkPk−1|k−1F
T
k + Qk

where
• Fk is the state transition model

• Bk is the control-input model which is applied to the control vector

• uk is the control vector

• Qk is the covariance associated to the process noise wk, normally distributed
with zero mean:

Qk : wk∼N (0, Qk)

UPDATE PHASE: The a-posteriori state estimate xk|k and estimate covari-
ance Pk|k are computed:

yk = zk − Hkx̂k|k−1

Sk = HkP̂k|k−1H
T
k + Rk

Kk = P̂k|k−1H
T
k S−1

k

xk|k = x̂k|k−1 + kkyk

Pk|k = (I − kkHk)P̂k|k−1

yk|k = zk − Hkxk|k

where
• zk is the measurement(or observation)

• Hk is the observation model

• Sk is the innovation covariance

• Kk is the optimal Kalman gain

• Rk is the covariance associated to the observation noise vk, Gaussian distributed
white noise:

Rk : vk∼N (0, Rk)

P0, Qk and Rk must be chosen. Usually, this is done by trial and error and by
considerations about the dynamic system
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4.2.1 Prediction model
The state x̂ of our system is described by 15 values:

• 6 states concerning the position, velocity, and acceleration of the drone along
x, y

• 2 states regarding the position and velocity of the drone along z

• 4 states for the position and velocity of the rover along x, y

• 1 state regarding the height of the rover

• 1 state concerning the orientation of the rover with respect to the NED
reference frame

• 1 state regarding the orientation error of the rover, given by the difference
between the noisy orientation of the compass and the one given by the apriltag

x̂ =



xUAV,k

ẋUAV,k

ẍUAV,k

yUAV,k

ẏUAV,k

ÿUAV,k

zUAV,k

żUAV,k

xUGV,k

ẋUGV,k

yUGV,k

ẏUGV,k

zUGV,k

θUGV,k

θerror,k


The dynamic model considered for the drone and the rover is based on con-

siderations and assumptions about their motion. Based on these considerations,
the differential equations and coherently the ’sub-matrices’ of the state transition
model have been written. Then:

• costant acceleration model for the drone in the motion along x, y

xUAV,K = xUAV,k−1 + ẋUAV,k−1dt + 1
2 ẍUAV,k−1dt2
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ẋUAV,k = ẋUAV,k−1 + ẍUAV,k−1dt

ẍUAV,k = ẍUAV,k−1

yUAV,K = yUAV,k−1 + ẏUAV,k−1dt + 1
2 ÿUAV,k−1dt2

ẏUAV,k = ẏUAV,k−1 + ÿUAV,k−1dt

ÿUAV,k = ÿUAV,k−1

In terms of state transition model matrix, these differential equations translate
with a pair of identical matrices of this form:

F1 =

1 dt 1
2dt2

0 1 dt
0 0 1


It is easy to see how this matrix, multiplied by the state vector, expresses the
uniformly accelerated rectilinear motion in matrix form.

• costant velocity model for the drone in the motion along z

xUGV,K = xUGV,k−1 + ẋUGV,k−1dt

ẋUGV,k = ẋUGV,k−1

yUGV,K = yUGV,k−1 + ẏUGV,k−1dt

ẏUGV,k = ẏUGV,k−1

In terms of state transition model matrix, these differential equations translate
with a pair of identical matrices of this form:

F2 =
C
1 dt
0 1

D

It is easy to see how this matrix, multiplied by the state vector, expresses the
motion at constant speed in matrix form.
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• costant velocity model for the rover in the motion along x, y

xUGV,K = xUGV,k−1 + ẋUGV,k−1dt

ẋUGV,k = ẋUGV,k−1

yUGV,K = yUGV,k−1 + ẏUGV,k−1dt

ẏUGV,k = ẏUGV,k−1

These differential equations are translated, in terms of state transition model
matrix, with a pair of matrices equal to F2:

F3 = F2 =
C
1 dt
0 1

D

as F2 this matrix, multiplied by the state vector, expresses the constant velocity
motion in matrix form

• null velocity for the rover along z

zUGV,K = zUGV,k−1

In this case, the state transition model matrix is trivially 1.

• null variation in the orientation for the rover

θUGV,K = θUGV,k−1

In this case, the state transition model matrix is trivially 1.

• null variation in the orientation error for the rover

θerror,K = θerror,k−1

In this case, the state transition model matrix is trivially 1.

In our system,the control input model Bk is equal to zero, so the state vector at
time k is

xk = Fkxk−1 + wk
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where Fk is

Fk =



F1 03×3 03×2 03×2 (03×2 03×1 03×1 03×1
03×3 F1 03×2 03×2 03×2 03×1 03×1 03×1
02×3 02×3 F2 02×2 02×2 02×1 02×1 02×1
02×3 02×3 02×2 F2 02×2 02×1 02×1 02×1
02×3 02×3 02×2 02×2 F2 02×1 02×1 02×1
01×3 01×3 01×2 01×2 01×2 1 0 0
01×3 01×3 01×2 01×2 01×2 0 1 0
01×3 01×3 01×2 01×2 01×2 0 0 1


The covariance matrix P0 is initialized as an identity matrix.
The matrix Q is chosen considering a Discrete constant white noise. The matrix Q
can have dimensions 2, 3, and 4 and is equal to [26]:

Q = GGT variance

where G is the process noise for time k.
For a constant velocity model is equal to:C

0.5dt2

dt

D

For a constant acceleration model, G is equal to:0.5dt2

dt
1


Then, assuming the motion of UAV along x and y as a constant acceleration

model, the covariance associated to the process noise for the states xUAV , ˙xUAV ¨xUAV

and for the states yUAV , ˙yUAV ¨yUAV is :

Q1 = σUAV

0.5dt2

dt
1

 è0.5dt2 dt 1
é

In the same way, assuming the motion of UAV along z and of UGV along x,y as
a constant velocity model:

Q2 = σUAV (UGV )

C
0.5dt2

dt

D è
0.5dt2 dt

é
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Clearly, the covariance associated to the process noise, for the orientation of the
rover and for errors in the orientation (last state), is simply equal to the variance
associated with each of them. Then, the overall covariance matrix Q is:

Qk =



Q1 03×3 03×2 03×2 (03×2 03×1 03×1 03×1
03×3 Q1 03×2 03×2 03×2 03×1 03×1 03×1
02×3 02×3 Q2 02×2 02×2 02×1 02×1 02×1
02×3 02×3 02×2 Q2 02×2 02×1 02×1 02×1
02×3 02×3 02×2 02×2 Q2 02×1 02×1 02×1
01×3 01×3 01×2 01×2 01×2 σzUGV

0 0
01×3 01×3 01×2 01×2 01×2 0 σθ 0
01×3 01×3 01×2 01×2 01×2 0 0 σθerror


4.2.2 Measurement model
The zk measurements of the various sensors allow us to obtain a better estimate
of our state variables. We must then associate each measurement with the cor-
responding state variable or combination of state variables, via the observation
matrix Hk. Furthermore, depending on the accuracy of each sensor, an observation
error will be associated with each measurement. In the model, this observation
error is translated as the covariance matrix Rk. The higher the value associated
with R, the less we trust the respective measurement. We can write five different
measurement models:

• GPS rover observation model: The rover’s GPS data must be converted
into Cartesian XYZ coordinates before being used in the Measurement Model,
how we have seen in chapter 3.2.5

zGP S,rover =

xUGV,k

yUGV,k

zUGV,k

+ vGP S,k
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zGP S,rover =

 1 01×2 0 01×2 0 01×8
0 01×2 1 01×2 0 01×8
0 01×2 0 01×2 1 01×8





xUAV,k

ẋUAV,k

ẍUAV,k

yUAV,k

ẏUAV,k

ÿUAV,k

zUAV,k

żUAV,k

xUGV,k

ẋUGV,k

yUGV,k

ẏUGV,k

zUGV,k

θUGV,k

θerror,k



+ vGP S,k

where:

HGP S,k =

 1 01×2 0 01×2 0 01×8
0 01×2 1 01×2 0 01×8
0 01×2 0 01×2 1 01×8


• UWB observation model: The Least Square provides the relative drone-

rover position p̂UGV
UW B in the UGV’s mobile reference system. This is rotated in

the NED reference system before being used in the measurement model, as
we will see in the section 4.3

zUW B =
C

xUAV − xUGV,k

yUAV,k − yUGV,k

D
+ vUW B,k
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zUW B =
C

1 01×2 0 01×4 −1 0 0 01×4
0 01×2 1 01×4 0 0 −1 01×4

D



xUAV,k

ẋUAV,k

ẍUAV,k

yUAV,k

ẏUAV,k

ÿUAV,k

zUAV,k

żUAV,k

xUGV,k

ẋUGV,k

yUGV,k

ẏUGV,k

zUGV,k

θUGV,k

θerror,k



+ vUW B,k

where:

HUW B =
C

1 01×2 0 01×4 −1 0 0 01×4
0 01×2 1 01×4 0 0 −1 01×4

D

• Camera observation model: The camera, mounted on the UAV underneath,
returns the relative UAV-UGV position and orientation of the rover.

zcam =


xUAV − xUGV,k

yUAV,k − yUGV,k

zUAV,k − zUGV,k

θerror

+ vcam,k
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zcam =


1 01×2 0 01×2 0 0 −1 0 0 0 0 0 0
0 01×2 1 01×2 0 0 0 0 −1 0 0 0 0
0 01×2 0 01×2 1 0 0 0 0 0 −1 0 0
0 01×2 0 01×2 0 0 0 0 0 0 0 0 1





xUAV,k

ẋUAV,k

ẍUAV,k

yUAV,k

ẏUAV,k

ÿUAV,k

zUAV,k

żUAV,k

xUGV,k

ẋUGV,k

yUGV,k

ẏUGV,k

zUGV,k

θUGV,k

θerror,k



+vcam,k

where:

Hcam =


1 01×2 0 01×2 0 0 −1 0 0 0 0 0 0
0 01×2 1 01×2 0 0 0 0 −1 0 0 0 0
0 01×2 0 01×2 1 0 0 0 0 0 −1 0 0
0 01×2 0 01×2 0 0 0 0 0 0 0 0 1


• Compass observation model: The compass outputs the orientation of the

rover.

zcompass = θUGV,k + vcompass,k
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zcompass =
è

01×13 1 0
é



xUAV,k

ẋUAV,k

ẍUAV,k

yUAV,k

ẏUAV,k

ÿUAV,k

zUAV,k

żUAV,k

xUGV,k

ẋUGV,k

yUGV,k

ẏUGV,k

zUGV,k

θUGV,k

θerror,k



+ vcompass,k

where:

Hcompass,k =
è

01×13 1 0
é

• PX4 observation model: The sensors integrated in PX4 allow us to know
the position, speed, acceleration and orientation of the drone.

zP X4 =



xUAV,k

ẋUAV,k

ẍUAV,k

yUAV,k

ẏUAV,k

ÿUAV,k

zUAV,k

żUAV,k


+ vP X4,k
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zP X4 =
è

I1×9 01×6
é



xUAV,k

ẋUAV,k

ẍUAV,k

yUAV,k

ẏUAV,k

ÿUAV,k

zUAV,k

żUAV,k

xUGV,k

ẋUGV,k

yUGV,k

ẏUGV,k

zUGV,k

θUGV,k

θerror,k



+ vP X4,k

where:

HP X4,k =
è

I1×9 01×6
é

4.3 Rotation of UWB ranges in NED frame
The UAV-UGV relative distance is computed through a multilateration algorithm
from the anchor and tag distances. The Least Square, used as multilateration
algorithm, allows the computation of the relative position p̂UGV

UW B between drone
and rover in the UGV’s mobile reference system. This relative position must be
rotated in the NED reference system before being used in the filter. However, using
the compass angle of the rover to rotate the relative position causes some problems,
because the compass output can be affected by misalignment error. Hence, we use
the orientation of the apriltag as an additional source of information regarding the
orientation of the rover.

4.3.1 Compasses misalignment effect
This work aims to create a system that allows the drone to land when the UGV is
moving at high speeds. One of the main limitations of the previous work is to be
attributed to an estimate of the orientation of the rover affected by the error, which
caused continuous oscillation and continuous corrections in the UAV trajectory.
An orientation affected by error leads the drone to move to a different point than

36



Filtering and sensor fusion

desired. The error in the relative position increases as the error on the angle (fig.
4.2) and the relative distance UAV-UGV (fig. 4.3) increase.
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dϴ1
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Figure 4.2: Positioning error increasing the misalignment

The estimated relative position when dθ is different from zero prel,dθ /=0 corre-
sponds to the rotation with respect to the z axis of the real relative position prel,dθ=0,
then:

prel,dθ /=0 =

cos dθ − sin dθ 0
sin dθ cos dθ 0

0 0 1

 prel,dθ=0

The error associated to the relative position given by dθ is [27]:

epos,dθ = ∥prel,dθ /=0 − prel,dθ=0∥2 = 2∥prel,dθ=0∥
-----sin

A
dθ

2

B-----
Therefore,the farther the drone is from the rover the greater the associated error:

37



Filtering and sensor fusion

UAV
INITIAL
DRONE

POSITION
PO

SITIO
N

IN
G 

ERRO
R

INCREASING  Prel

P rel
 dϴ  ≠

 0

Prel dϴ = 0

PERCEIV
ED U

GV P
OSIT

IO
N

ACTUAL UGV POSITION

Figure 4.3: Positioning error increasing the distance

It is trivial to deduce that the error in the relative position also increases as
the speed of the rover increases. In figure 4.4 the concept is clearly illustrated.
The drone will move along the trajectory affected by the misalignment error and
after a time-step, the drone following a faster rover will travel more space than
another drone following a slower rover. The time interval depends on how often the
prediction phase of the kalman filter takes place. Consequently, the error associated
with the drone following the fastest platform will be greater.
In the previous work, the main reason why the drone was unable to land on the
rover, when the speed was higher than 1 m/s, is to be traced back to the graph
illustrated above. This created strong wobbles in the drone and abrupt changes
of direction. Furthermore, in the previous work, when the angle was greater than
20 degrees, even at a speed of 1 m/s, strong oscillations were recorded, reaching
positioning errors of almost 4 meters

38



Filtering and sensor fusion

UAV
INITIAL
DRONE

POSITION

UGV
INITIAL
DRONE

POSITION

UGV
1 m/s

UGV
2 m/s

UGV
3 m/s

INCREASING UGV SPEED

UAV 
THAT FOLLOWS 

UGV AT 1 m/s

UAV 
THAT FOLLOWS 

UGV AT 2 m/s

UAV 
THAT FOLLOWS 

UGV AT 3 m/s

dϴ

Figure 4.4: Positioning error increasing the rover speed

4.3.2 Rotation with Apriltag orientation
In this work, the use of the apriltag allows for further information on the position
of the rover. This estimate merged with the information from the UWB allows the
drone to make a very precise landing. The apriltag also allows you to obtain a
very precise estimate of the rover’s orientation and therefore, allows to combine
and replace the noisy information coming from the rover’s compass. This leads to
the introduction of a new state in the estimation system given by the difference
in the orientation provided by the apriltag and the one estimated through the
compass. An offset is then generated which, added to the angle at the exit from
the compass, corrects the error. In the estimation system all the calculations are
referred to the NED frame. Consequently, the orientation must also be referred to
this reference system. Since the topic /ImageRaw, exclusively gives information on
the orientation of the apriltag with respect to the reference system of the drone,
this information must be rotated in the NED reference system. Then:

RNED
UGV = RNED

UAV RUAV
UGV

The orientation of the drone with respect to the NED reference system comes
from the topic /VehicleAttitude. These two successive rotations allow to obtain
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the matrix that provides the orientation of the rover. Consequently, the noisy
orientation information coming from the compass can be discarded.
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Chapter 5

System control algorithm

5.1 System state machine
The control system is structured as a state machine and consists of four phases:
takeoff, chase, descent and landing. In the first phase, the drone takes off to a
certain height, called HovHeight. During this phase, the drone is controlled in
position by passing the desired altitude zUAV = HovHeight to the autopilot. The
other phases are also controlled via offboard control, i.e. by passing setpoints to the
autopilot. As soon as the drone has reached the desired height, it switches to the
Chase phase. In this phase, the drone is controlled in speed via a PID controller. If
the relative position and speed fall below a certain value, the Descent phase begins.
The drone, then, begins its descent towards the rover. As soon as the distance to
the platform along z decreases below the LandHeight threshold, the drone shuts
down its motors and descends onto the platform. However, at higher rover speeds,
the drone continues its descent until it is on the platform, to avoid overturning due
to its free fall onto the rover.

Figure 5.1: Overall system architecture
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Figure 5.2: Control state machine
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5.1.1 Overall control algorithm
During the four phases, the drone is controlled by passing setpoints to the autopilot
via offboard control. The exception is the last phase, the landing phase, which is
controlled directly by the autopilot for safety reasons. Instead, in the chase phase,
the drone is controlled in speed along x and y. On the other hand, along z, position
control takes place by keeping z = HovHeight. Speed values are generated via a
PID controller or a simple P controller, depending on the relative distance. When
the drone is far from the rover a proportional control is used.

Figure 5.3: Control system

The setpoints passed to the autopilot at this stage are as follows:
ˆ̇xUAV,k = P · x̂rel,k

ˆ̇yUAV,k = P · ŷrel,k

In the vicinity of the rover, derivative integrative components are of crucial im-
portance in order to ensure fast convergence and small overshoot. The setpoints
passed to the autopilot at this stage are as follows:

x̂UAV,k = P · x̂rel,k + I ·
kØ
0

x̂rel,k · dt + D · ˆ̇xrel,k

ŷUAV,k = P · ŷrel,k + I ·
kØ
0

ŷrel,k · dt + D · ˆ̇yrel,k
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5.2 Predictive control algorithm
At high speeds, a predictive control algorithm is necessary. This is because the
landing phase takes place in vertical mode, which is managed exclusively by the
autopilot for safety reasons. However, vertical descent means that the drone shuts
down its motors at a certain height from the rover. The free fall of the drone means
that the rover is often missed when it goes at high speed. From the turning off of
the motors to the complete landing of the drone, the rover moves by an amount
proportional to its speed. The rover’s displacement can be predicted since we have
an estimate of the rover’s speed. The estimated speed of the rover multiplied by
the time it takes the drone to complete its descent, the prediction time, gives us
the prediction of the future displacement of the rover. By adding this value to the
relative position, we cause the drone to land at the predicted position, without
missing the platform as the speed increases. Then:

x̂pred,k = x̂rel,k + Tpred · ˆ̇xUGV,k

ŷpred,k = ŷrel,k + Tpred · ˆ̇yUGV,k

where:
Tpred = zLand,UAV

żLand,UAV

Now, proportional control becomes:

ˆ̇xUAV,k = P · x̂pred,k

ˆ̇yUAV,k = P · ŷpred,k

Similarly, the PID control becomes:

x̂UAV,k = P · x̂pred,k + I ·
kØ
0

x̂pred,k · dt + D · ˆ̇xpred,k

ŷUAV,k = P · ŷpred,k + I ·
kØ
0

ŷpred,k · dt + D · ˆ̇ypred,k
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Figure 5.4: Predictive control

5.3 Landing at high speed
In chapter 4.3, I have shown how one of the main problems for a high-speed
landing is the displacement of the rover when the drone shuts down its motors. To
this problem, two others must be added. One of these is the incorrect estimation
of the rover’s orientation, which we discussed extensively in Chapter 3.2. Without
the correction of the erroneous compass output thanks to the apriltag, it would be
impossible to land at high speeds.
The third problem relates to the stability of the drone once it has landed. At high
speeds the drone suffers from high vibrations on the platform. In addition, a purely
vertical descent from a height of 30cm from the rover would cause the rover to
overturn, unless it is equipped with magnetic legs that stick it to the platform. To
solve this problem, the vertical descent must take place as late as possible.
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5.3.1 Free fall drone problem
A convergent descent to the platform is required so that the drone has a chance to
stabilise on the platform. The presence of a horizontal velocity component in the
direction of movement of the rover prevents the drone from overturning. This is
required for a speed above 10 km/h. Instead of free-falling, the drone converges on
the platform, trying to stabilise itself on it. Once the drone is almost stabilised on
the platform the LAND command can be activated. In the next section, we will
examine the autopilot’s modus operandi in handling the Land command and the
problems associated with it.

Figure 5.5: Soft landing

5.3.2 Land detector
When the Land flight mode is engaged, the drone will land at the position where it
is at that time. If the landed conditions are satisfied, the vehicle will disarm after a
number of seconds that can be set in the PX4 parameter COM_DISARM_LAND
[28]. The land-detector is the main actor responsible for assessing the conditions
that determine whether the vehicle has actually landed. This evaluation is based
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on the examination of three states with more stringent conditions passing from one
state to the next. Before examining the three states, knowledge of five parameters
of the PX4 autopilot (in QGrounControl) is necessary:

• MPC_THR_HOVER: it represents the hover thrust, i.e the vertical thrust
needed to hover

• MPC_THR_MIN : it represents the minimum possible thrust. It is required
for a controlled descent.

• LNDMC_Z_VEL_MAX : it is the maximum vertical speed allowed during
the landing phase

• LNDMC_XY_VEL_MAX : it is the maximum horizontal velocity allowed
during the landing phase

• LNDMC_ROT_MAX : it is the maximum angular speed for each motor during
the landing phase

The table shows the possible values that the above parameters can assume and the
default values that PX4 recommends.

Min Max Default
MPC_THR_HOVER 0.1 0.8 0.5

MPC_THR_MIN 0.05 1.0 0.12
LNDMC_Z_VEL_MAX 0.25 m/s

LNDMC_XY_VEL_MAX 1.5 m/s
LNDMC_ROT_MAX 20 deg/s

Table 5.1: Land-Detector Parameters [29]

Let us now examine the three states that must be verified for the landed condition
to be verified. Each of these following states must be true for a number of seconds:

• Ground Contact: For this state to be passed, the following three conditions
must be true for at least 0.35 seconds:

1. vertical movement lower than LNDMC_Z_VEL_MAX
2. horizontal movement lower than LNDMC_XY_VEL_MAX
3. has thrust lower than MPC_THR_MIN + (MPC_THR_HOV ER −

MPC_THR_MIN) · 0.3
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• Maybe Landed: For this state to be passed, the following three conditions
must be true for at least 0.25 seconds:

1. Ground contact conditions are true
2. angular velocity is lower than LNDMC_ROT_MAX
3. has thrust lower than MPC_THR_MIN + (MPC_THR_HOV ER −

MPC_THR_MIN) · 0.1

• Landed: For this state to be passed, the following condition must be true for
at least 0.3 seconds:

1. Maybe Landed conditions are true

5.3.3 Problems to disarm
At high speeds, the drone has problems to disarm. These problems are to be found
in some of the conditions mentioned above that are not realised. Clearly, at high
speeds, vibrations increase dramatically. This causes that the condition of the
vertical movement below a certain threshold not to be fulfilled. As a result, the
land detector will not disarm the vehicle, even if it is already stable on the platform.
This problem could be solved by not using the LAND command as the landing
mode. However, for safety reasons, the LAND command is strictly recommended
because the autopilot is able to handle the landing in extreme safety for the space
around it and for the integrity of the drone itself. The use of magnetic legs, capable
of attaching themselves to the platform, could certainly help to achieve this end.

48



Chapter 6

Simulation

6.1 Gazebo models and plugin
PX4 allows our algorithm to be simulated in Gazebo. This is possible thanks to the
SITL package, which allows running the flight stack in the simulated enviroment
using ROS2. Moreover, the power of this package also lies in the fact that the same
code can be used directly in the tests without any change.

6.1.1 UAV and UGV model
The Gazebo drone model chosen for the simulation is the 3DR IRIS, because it is
the most similar to the real drone. This drone was customised for our case through
the integration of the camera, the UWB tag and the range sensor.

Figure 6.1: UAV and UGV model

The chosen rover is a 3-wheel vehicle with differential drive. Its dimensions are
1m × 1m × 0.5m. Four anchors are fixed to its vertices and an Apriltag is attached
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to its surface. In addition, a compass and a GPS device have been inserted.

6.1.2 UWB and GPS plugin
In our system there are four anchors and a tag. The four anchors are fixed to the
vertices of the rover. The tag is mounted on the UAV leg. The UWB plugin does
not deal with tags and anchors as two different sensors. Both publish data on a
common topic. If an anchor acts as a tag, it subscribes to that topic and calculates
the distances from each anchor.
Both the drone and the rover are equipped with GPS plugins. Both return their
pose in WGS84 geodetic coordinate system. This information has to be rotated in
the NED reference frame before they are used. It was decided to choose the point
where the rover is turned on as the origin of the Cartesian reference system.

6.2 Results
This section illustrates the results and shows the robustness of this algorithm to
possible erroneous information from the sensors. For this purpose, the system was
stressed by increasing the noise associated with each sensor.

The figures 6.2 and 6.3 plot the complete flight from the takeoff phase to the
final landing, in the case where the rover moves in one direction only or randomly.
The red and blue lines show the relative drone-rover potion during the three phases.
The change in relative position during the takeoff phase is due to the movement of
the rover. The black line shows the altitude of the drone in the three regions. In
particular, in the descent phase a stepped pattern is plotted. This is due to the
fact that the drone checks in each time-step whether certain conditions are realized.
If so, the drone can continue the descent.
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Figure 6.2: Simulated autonomous landing of a UAV on a linear moving UGV
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Figure 6.3: Simulated autonomous landing of a UAV on a random moving UGV
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The other graphs show the robustness of the algorithm to a possible misalignment
of the drone and rover compasses. To simulate this error, an offset error was added
to the angle coming from the compass. In the first graph the estimated rover
orientation, the information about the rover orientation coming from the compass
and apriltag, and the true rover orientation are compared. In the second graph,
the estimated relative position between drone and rover is plotted, focusing on
the most crucial part of the flight where camera and UWB are used. This graph
compares the position estimated by the Kalman filter and the position estimated
by the Least Square in the case where the system would use the compass as the sole
information about the rover orientation.The use of the Apriltag orientation within
the Kalman Filter corrects the compass output. In the last graph the positioning
error is evaluated, showing comparable values for the 3 cases.

Figure 6.4 shows the angle correction in the ideal case where there is no mis-
alignment between drone and rover compasses. In this case the output orientation
of the compass and apriltag are comparable. Figure 6.5 shows how the position
estimate would coincide with the LS information in the case where the system
would use the compass as the sole information about the rover orientation.
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Figure 6.4: Estimated UGV orientation when dθ = 0°
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Figure 6.5: Correct LS estimation when dθ = 0°
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Figure 6.6: Positioning error when dθ = 0°

53



Simulation

The situation turns out to be different if an offset error is added to the compass
mounted on the rover. In figure 6.8 and 6.11, we can see how the Least Square
estimate diverges from the estimated position if only the information of the compass
would be used as the rotation angle. The use of the apriltag orientation corrects
the erroneous information from the compass. This leads to a corrected position
estimate with a total positioning error of less than 0.3m and comparable in all 3
cases.
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Figure 6.7: Estimated UGV orientation when dθ = 25°
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Figure 6.8: Incorrect LS estimation when dθ = 25°
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Figure 6.9: Positioning error when dθ = 25°
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Figure 6.10: Estimated UGV orientation when dθ = 40°
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Figure 6.11: Incorret LS estimation when dθ = 40°
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Figure 6.12: Positioning error when dθ = 40°
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Chapter 7

Experimental analysis

7.1 Drone setup
The drone used is a Holybro X500. It has a chassis made entirely of carbon fibre,
with a series of mounting holes on its surface. The main components of this drone
are:

• Pixhawk 4 autopilot

• Power Management PM07

• Pixhawk4 GPS

• Motors - 2216 KV880

• BLHeli S ESC 20A

• Propeller 1045

• 433MHz Telemetry Radio / 915MHz Telemetry Radio

• Power and Radio Cables

• Battery Straps

A Raspberry Pi 4 is mounted on the platform to run the estimation and control
algorithms, sending setpoints to the PX4 autopilt, via UART. In addition, it is
possible to send commands to the UAV by connecting the raspberry to the wifi.
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Figure 7.1: Holybro X500 UAV[30]
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7.2 Rover setup

Figure 7.2: Husky UGV [31]

The rover used is the Husky UGV by Cleoorpath robotics. It provides an API
support for ROS. It has a dimensions of 990 × 670 × 390mm and a weight of 50kg.
The maximum weight supported is 75kg. The speed limit is set at 1.0m/s. It is
also equipped with GPS device, compass and four anchors attached to its vertices.
Orientation data are published on a ROS2 topic via wifi.

7.3 Instrumentations
7.3.1 Camera
The camera used for the tests is a Raspberry Pi cam, which is compatible with all
Rasberry Pi boards. This camera provides a low noise image, with resolution of 8
megapixels. It has dimensions 24 × 25 × 9mm and has a weight of 3g. The CSI
connector allows for high data rate. The max image transfer rate is 30fps for a
1080p image and 60fps for a 720p one.[32]
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Figure 7.3: Raspberry Pi Camera Module [33]

7.3.2 UWB sensors
The four anchors, attached to the rover, and the tag, fixed to the drone leg, are
provided by Decawave EVB1000 board. It is connected to the microcontroller via
USB. It shows a high precise position below than 5 cm and are able to have a
coverage of about 150m in LoS condidions. It has a weight of 40g and dimensions
70 × 120 × 13mm.

Figure 7.4: Decawave EVB1000 board [34]

7.3.3 GPS sensors
The rover is equipped with Piksi RTK GPS that allows centimeter accurate
positioning. The GPS mounted on the drone is a H-RTK F9P.It is based on
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a Ublox F9P module. The indicator LEDs let you know when the GPS receiver
starts to acquire information. The TTFF (time to first fix) may vary depending
on the availability of satellites in the area where you turn on the drone. The cold
start is less than 26 seconds. In addition, H-RTK F9P uses an IST8310 compass,
which is able to make the flight more stable.

Figure 7.5: H-RTK F9P GNSS [35]

7.4 Results
The experimental tests show the correct working of the autonomous algorithm in
three scenarios. First, the landing of the drone on the stationary platform was
tested. The drone was placed at a long distance from the rover in order to test
the proper operation of the state machine. In figure 7.6 the relative drone-rover
distance during the entire mission is plotted. The drone take off at an altitude
of 3m. During the first part of the chase phase, the accuracy of the RTK GPSs
allows the drone to approach the rover precisely without oscillation, reporting an
accuracy of less than 10cm. The fusion of UWB and Camera allows to achieve a
landing accuracy of about 5cm.
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Figure 7.6: Autonomous landing of a UAV on a stationary UGV

In the flight presented in the following figures, the rover moves at different
speeds. However, the maximum speed at which the system was tested is 1m/s,
as this represents the speed limit of the Husky UGV. In figure 7.7 the rover is
moving at speed with a linear motion. During the takeoff phase, the change in
relative position is due to the movement of the rover. The linear trend of the
curve suggests that rover moves in a single direction. The change in the slope
of the two curves is due to the beginning of the chase phase. In contrast, in the
figures 7.8 and 7.9 the oscillatory trend of the relative position suggests that
the rover moves in a random way. To land on the platform the use of prediction
parameters is of vital importance. A prediction time factor of 0.2 s was considered.
Considering a maximum rover speed of 1 m/s, this corresponds to a landing of the
drone at maximum 20cm forward, avoiding missing the platform. The adoption of
a predictive control system allows accurate and fast tracking and landing on the
moving target, making it possible to reach a landing accuracy of about 5cm.
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Figure 7.7: Autonomous landing of a UAV on a linear moving UGV
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Figure 7.8: Autonomous landing of a UAV on a random moving UGV
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Figure 7.9: Autonomous landing of a UAV on a random moving UGV
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Conclusions

This work implements an autonomous algorithm that allows for the landing of
a UAV onto a vehicle that is moving at high speed, through the use of different
sensors, chosen depending on the relative drone-rover position. The large number of
sensors used ensures a high level of redundancy in positioning, while offering greater
stability to the drone during the flight.The Kalman filter manages the information
coming from the various sensors and generates an estimate of the relative position
and relative speed. These are then passed to a PID speed controller that allows
accurate and fast tracking and landing on the moving target. By mounting a
camera on the drone that computes the orientation of the apriltag with extreme
precision, the noisy information of the compass can be corrected. The adoption of
a predictive control system, the introduction of new sensors and the correction of
the misalignment between the compasses of the drone and rover made it possible
to reach landing speeds above 30 km/h. The simulated and experimental results
validated the correct working of the algorithm, reporting a landing accuracy of less
than 10 cm. During the tests, it was possible to test the drone for a maximum rover
speed of 1 m/s, which corresponds to the speed limit of the Husky rover. At high
speeds, the stability of the drone on the platform could clearly be compromised
by the high vibrations. Therefore, blocking systems must be developed for the
integrity of the drone and for safety reasons. A possible solution could be the use
of a magnetic catcher [36] on the platform, capable of making magnetic contact
with the drone.
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