
POLITECNICO DI TORINO

Master Degree Course in Computer Engineering

Master Degree Thesis

Implementation of a Blockchain-based
Distributed PKI for IoT using Emercoin

NVS and TPM 2.0

Supervisor
prof. Antonio LIOY
prof. Diana BERBECARU

Candidate

Lorenzo Pintaldi

2022

A mio padre, radice di ogni

mio successo.

Summary

Internet-of-Things is constantly expanding and one of the most relevant challenge is to secure
the communications that involve these particular devices. Public Key Infrastructure (PKI) mech-
anisms are not well suited for IoT devices, and many new solutions to this problem leverage
on the Blockchain technology for moving the “trust-anchor” from centralized root Certification
Authorities (CAs) to a public distributed ledger. Starting from one of these solutions (proposed
in a 2018’s paper by Elisa Bertino, Ankush Singla, Jongho Won and Greg Bollella) based on a
Blockchain project called Emercoin NVS, the purpose of this work is to propose an implementa-
tion that extends the original design using the TPM 2.0 technology for the identification of the
IoT devices.

By using this Blockchain-based system, the certificates of the IoT devices within a network
are securely stored on the Blockchain, and they can be retrieved (with simple HTTP requests,
using the RPC configuration of the Emercoin Wallet) during the certificate verification step of the
TLS handshake, in replacement of the standard certificate chains provided by the Certification
Authorities. The registration of devices certificates on the Blockchain is performed by interacting
with a special node of the network called Device Manager (DM), that runs the Emercoin Wallet
and maintain a local copy of the ledger. In the original design, there are no security measures to
prevent the registration of a certificate forged by a “lying” entity. Any device can in fact claim
an arbitrary identity during the certificate registration protocol with the DM. Thanks to TPM
2.0 technology, the security level of the original solution was improved, by providing a strong
protection against the identity theft.

Finally, some experiments based on this implementation have been conducted for measuring
the TLS handshake time using the Emercoin-based distributed approach, in order to compare it
with the standard centralized one. Blockchain-based TLS handshake was slower that than the
standard one, but also more secure if we take into account that the revocation status check is
frequently skipped in standard communications (also for web-based communications), unless the
OCSP Must-Staple is enabled.

4

Acknowledgements

A special thanks goes to Silvia Sisinni for her patience and the huge support for everything
regarding the TPM technology.

5

Contents

List of Figures 8

1 Introduction 10

1.1 Background and motivation . 10

1.1.1 PKI model . 10

1.1.2 PKI drawbacks . 10

2 Related works 13

2.1 IoT scenario . 13

2.1.1 IoT security concerns . 13

2.2 Blockchain technology . 15

2.2.1 Block structure . 15

2.2.2 Proof-of-Work consensus mechanism . 16

2.2.3 51% attack . 17

2.2.4 Proof-of-Stake consensus protocol . 18

2.2.5 Practical Byzantine Fault Tolerance (PBFT) consensus mechanism 19

2.3 Blockchain usefulness for IoT . 20

2.3.1 Smart contracts . 21

2.4 Challenges for Blockchain integration in IoT . 22

2.4.1 Scalability . 23

2.4.2 Storage size . 23

2.4.3 Transactions cost . 24

2.5 Distributed PKI solutions . 25

2.5.1 Public Blockchain-based PKI in IoT scenario 25

2.5.2 Private/Consortium Blockchain-based solutions 30

2.6 IOTA . 32

2.6.1 Tangle . 32

2.6.2 DAG-based consensus: challenges . 33

2.6.3 IOTA STREAMS . 34

2.7 Web-of-Trust . 35

2.7.1 WoT related problems . 36

6

3 Proposed implementation 38

3.1 High level design . 38

3.1.1 Trusted Platform Module (TPM) . 40

3.1.2 Device identification using TPM 2.0 . 42

3.1.3 Device certificate registration . 43

3.1.4 Device ownership transfer . 45

3.1.5 Device key update . 45

3.1.6 Device key revocation . 46

3.1.7 Authenticated Key Exchange . 47

3.2 Test software . 48

3.2.1 Emercoin wallet . 48

3.2.2 TPM2 Software Stack (TSS2) library . 49

3.2.3 Protocol implementation . 53

3.2.4 Modified mbedTLS for Emercoin-based certificate verification 57

3.3 Installation of testbed . 60

3.4 Related issues . 63

4 Measurements and comparison 65

4.1 Performed tests . 65

4.1.1 Certificate registration process . 65

4.1.2 Standard TLS handshake testing environment 66

4.2 Comparison . 70

5 Conclusion 73

5.1 Future works . 73

6 User’s manual 75

6.1 Preliminary steps . 75

6.2 Device module . 76

6.3 Device Manager module . 77

7 Developer’s manual 80

7.1 Required software dependencies . 80

7.1.1 TPM 2.0 Software Stack (TSS2) . 80

7.1.2 Device Manager module dependencies . 80

7.1.3 Device module dependencies . 81

7.2 Enabling TPM 2.0 . 81

7.2.1 Configuring the software TPM emulator . 82

7.3 Building process . 84

Bibliography 85

7

List of Figures

2.1 IoT growth statistics [3] . 13

2.2 Blockchain blocks structure (source: image) . 15

2.3 Hashcash PoW schema: δ represents the number of leading zeroes of the defined
threshold (source: image) . 17

2.4 51% attack example (source: image) . 18

2.5 Proof-of-Stake schema (source: [6]) . 19

2.6 PBFT schema (source: image) . 20

2.7 Smart contract functioning (source: image) . 22

2.8 Bitcoin average transaction fee: all-time chart (source: image) 24

2.9 IoT-PKI architecture proposed in (source: [37]) . 26

2.10 One possible implementation for the smart contract proposed by [38] 28

2.11 Design proposed by [39] . 29

2.12 A possible Hyperledger Fabric transaction flow (source: [9]) 31

2.13 Tangle vs. Blockchain bottleneck (source: image) 33

2.14 Cumulative weight growth curve in different regimes (source: [35]) 34

2.15 STREAMS messages example (source: [10]) . 35

2.16 Web-of-Trust example schema (source: image) . 36

2.17 SCPKI [36] design schema . 37

3.1 Emercoin-based solution high level design . 39

3.2 TPM 1.2 vs. TPM 2.0 architectures (source: [68]) 41

3.3 Device setup implemented schema . 44

3.4 Device ownership transfer implemented schema . 45

3.5 Device certificate update implemented schema . 46

3.6 Name revocation in Emercoin NVS: the last transaction represent the current state
of the name (revoked) . 47

3.7 TLS authentication for authenticated key exchange 47

3.8 Emercoin wallet: names management tab . 49

3.9 TPM2 Software Stack schema (source: [66]) . 50

3.10 Device Manager Python application: first look . 53

3.11 Policy session configuration using Esys PolicySecret() 55

8

https://www.researchgate.net/figure/Blockchain-block-structure_fig1_325136332
https://www.researchgate.net/figure/Hashcash-basic-structure_fig1_338330266
https://adapulse.io/understanding-different-type-of-attacks-on-blockchain-consensus/
https://www.researchgate.net/figure/Normal-case-operation-of-the-Practical-Byzantine-Fault-Tlerance-PBFT-network-6_fig5_334612877
https://www.bitpanda.com/academy/en/lessons/what-are-smart-contracts-and-how-do-they-work/
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3y
https://en.m.wikipedia.org/wiki/File:Blockchain_vs_tangle_bottleneck.png
https://en.wikipedia.org/wiki/Web_of_trust#/media/File:Web_of_Trust-en.svg

3.12 Functions list from device-manager/emercoin.py file 57

3.13 Chain verification code section in library/x509 crt.c 58

3.14 Extraction and normalization of serial number from received X.509 certificate . . . 59

3.15 Configuration of the HTTP request using curl . 60

3.16 User-defined callback function for data writing . 60

3.17 Raspberry Pi 4 with OPTIGA SLI 9670AQ2.0 TPM 61

3.18 Testbed configuration . 63

3.19 TPM 2.0 chips price variation (2018-2021) (source: [11]) 64

4.1 Device certificate registration time: real hardware TPM vs. software TPM emulator 66

4.2 OpenSSL handshake time measurement . 67

4.3 Apache server configuration . 69

4.4 Testing laboratory configuration . 69

4.5 Emercoin-based PKI experiment setup . 70

4.6 mbedTLS modification for time measurement . 71

4.7 Results of the three conducted experiments . 72

6.1 Device-side application running example: device’s certificate registration 76

6.2 Device configuration file example . 77

6.3 Confirmation request before creating a new Emercoin transaction 77

6.4 Emercoin Wallet: Transactions tab . 78

6.5 Emercoin Wallet: Manage Names tab containing the new name-value pair 78

7.1 Example of a BIOS option for enabling TPM technology (source: image) 82

9

https://docs.oracle.com/cd/E19591-01/html/E23171/figures/Screen3_TCG-TPM_Support-YES.jpg

Chapter 1

Introduction

1.1 Background and motivation

1.1.1 PKI model

Public Key Infrastructure (PKI) is the set of hardware, software, entities, policies and procedures
defined to create, distribute and revoke digital certificates for digital signature authentication
and key-distribution protocol. PKI standardization (based on X.509 certificates) ensures the
possibility to estabilish secure communication channels between entities, binding each entity’s
attributes to unique public keys.

X.509 certificates are issued by Internet Certification Authorities (CAs) - the main actors of
the PKI model - following a certification hierarchy with many possible levels: each level represents
those entities that certifies for the underlying level, until the bottom of this hierarchy represented
by the End Entities (EEs). On the top, there’s a root-of-trust represented by some special top-
level CAs (Root CAs) assumed as “trustable” elements, whose public keys are locally stored nearly
in every software system as configuration objects. Certification chains resolution is based on this
“trust-assumption”.

X.509 is the standard solution to the problem of identifying the owner of a cryptographic key.
X.509 certificates are defined in ASN.1 (Abstract Syntax Notation 1) and are characterized by
many attributes.

In case the private key associated with a public key certified by a CA is compromised, the
certificate must be immediately revoked. When a certificate is received for authentication, the
revocation status must be always checked properly. There are two possible mechanisms for revoca-
tion status check: CRL (Certificate Revocation List), and OSCP (Online Status Check Protocol).

• CRL: an updated list of revoked certificates issued by the CA that provides the CRL;

• OCSP: using this protocol, OSCP servers can be queried for a specific certificate status
check. The server provides only the validity status of the certificate the request was made
for;

1.1.2 PKI drawbacks

PKI trust-based model has several drawbacks. It’s clear that by design this model has a single-
point-of-failure represented by root CAs. Root CAs can be compromised and issue rogue certifi-
cates for bad actors on behalf of well known entities. This scenario is extremely dangerous for
final users, who can’t easily distinguish the malicious entity from the good one due to the fact
that the provided certificate seems to be valid.

10

Introduction

PKI is employed in a huge number of application and contexts where security is a critical
feature: for this reason, a root CA compromise can be a relevant event and can also cause a
denial-of-service when the failure is detected, because many entities rely on that specific CA to
certify their own identity.

In this case, current implementations rely on the user to take a decision about the communica-
tion estabilishment (to trust or not the entity we are trying to communicate with). The problem
with this, is that the majority of users do not understand what consequences this choice will
imply.

Many attacks against root CAs have been performed successfully and in general the risks are
higher when we place too much trust in one or a small number of CAs. One of the most relevant
attack against a CA was performed in 2011 against DigiNotar, quickly causing bankruptcy for
the company.

Moreover, as previously discussed, one of the core step of certificate verification is the certificate
validity check. CRL and OSCP are in general two valid approach for this purpose, but they’re
still affected by some weaknesses and they can be inefficient in particular contexts.

• CRL file is usually very large and difficult to be managed by constrained-resource devices;

• OCSP is vulnerable to Denial-of-Service attacks, by overloading the OSCP responders with
many requests that requires a large computational overhead for signature generations

Another important issue of PKI was brought by one of the most expanding technology of the
last years, the IoT. The use of CA-based PKI is not well-suited for IoT devices for many reasons:

• It is difficult for IoT devices’ owners to manage all the certificates for their own devices
since there are no standard protocols or mechanism for certificate issuance and update on
these devices;

• Due to this difficulty, IoT devices’ keys are usually generated and installed by the manufac-
turers, before the deployment. This practice can lead to private key leakages;

• Modern mechanisms to easily get valid X509 certificates (e.g. ACME protocol, RFC-8555
[1]) are not well suited for typical IoT use cases/scenarios

In recent years, a lot of effort was spent on many researches about PKI drawbacks and modern
solutions to solve them. Many of these researches try to remove the necessity of trusted-third-
parties (TTPs) with some new PKI models. Decentralized PKIs are a possible alternative way
to achieve this intent, promising an easy way for certificates to be directly managed from the
entities they belong to. These solutions are mainly based on a shared database storing identities
and public keys. The problem with this approach is the necessity for a consensus mechanism to
ensure that what is stored on the database is valid. For this purpose, Blockchains are for sure the
most interesting technology to elaborate on.

The purpose of this work is to present an experimental implementation of a solution design
that’s already been proposed, fixing some important issues related to the original design. The
rest of the thesis will be divided into 6 chapters:

• Related works: in this chapter some background knowledge about Blockchain technol-
ogy will be provided in order to understand the actual state-of-art for what regards the
Blockchain integration with IoT and Public Key Infrastructure. Advantages and challenges
of this integration will be provided and many proposed solution will be further analyzed;

• Proposed implementation: it will contain all the technical details about the proposed
implementation, with a subsection dedicated to the TPM technology that was used for the
identification of the devices during the certificate registration/update process;

• Measurements; a discussion about the results of some experiments conducted on the
proposed solution, in order to compare it with the “standard” centralized PKI approach;

11

Introduction

• Conclusions;

• User’s manual: a simple description of the available interactions with the final application;

• Developer’s manual: a detailed guide to compile, configure and eventually modify the
application;

12

Chapter 2

Related works

2.1 IoT scenario

IoT connect a great amount of internet devices and aims to the transmission of huge data flows
and the creation of brand new smart scenarios (smart cities, smart home, smart healthcare, smart
cars, smart objects etc...) that will be able to improve the efficiency level of many processes
and operations associated with the context. IoT market is constantly growing: many researches
estimate that in 2025 the number of IoT devices will be approximately 35 billion, but for other
researchers this number can even be greater (50 billions). With similar numbers, the estimation
for the next decade is that IoT market could be potentially worth ≈ 19 trillions dollars.

The most important requirements for these new expanding scenarios, are low latency (es-
pecially for particular application like smart cars) and high throughput: IoT devices require a
network connection that can satisfy these requirements: for this reason, they’re usually featured
with cellular connectivity, WiFi or they’re supported by a base station connected to the network.
However, most of the IoT devices are actually very limited on computational resources and storage
capabilities, because their usage is typically tied to those use-cases that generally don’t require
an high computational power (sensors, actuators, etc...).

Figure 2.1: IoT growth statistics [3]

2.1.1 IoT security concerns

What clashes with this fact, is that security concerns have a great impact on some IoT applica-
tions. Among the great variety of devices within the IoT family, also actuators were previously
mentioned: this category of devices can be safety-critical (for instance if we take into account the

13

Related works

existence of smart IoT health-care devices) and can potentially be a threat for other individu-
als or things within the same environment if one of these devices is not working correctly. The
contradiction is that many effective security measures can’t be applied to these devices exactly
because of their lack of computational resources.

Moreover, the complexity of these systems is strictly tied to the great variety of different tech-
nologies and components used for their design and production: this technological heterogeneity
is very difficult to deal with, even more if we consider the estimated large employment of IoT
devices in the future. For this reason, ensuring an efficient and secure authentication process for
these devices can be difficult. The authentication is usually performed using standard central-
ized approaches that are affected by some critical issues (already mentioned in 1.1.2) that many
researches are trying to solve by focusing on Self-Sovereign Identity [22]

In the introduction, the integration of centralized PKI with IoT has already been discussed.
CA-based PKI doesn’t suit IoT because the management and maintenance of devices certificates
is performed using mechanisms that were not originally designed with IoT in mind. For instance,
the ACME protocol used by Let’s Encrypt [2], provides a simple and automatic mechanism to get
free certificates very quickly: its core functioning is based on a DNS/HTTPS challenge in order
to prove the ownership of the domain for which the certificate is requested. For the most common
use-cases, this protocol heavily simplifies the certificate issuance process, but it can’t be applied
to an IoT device that needs to be configured with a valid certificate.

The issues associated with centralized architectures are even worse if the central servers are
in charge of storing and/or processing all the data coming from IoT devices: the Internet-of-
Things produces a huge amount of data that could overload a centralized architecture, causing
a drop in the performance and the necessity of great storage capabilities. With this approach,
also the privacy and data integrity must be taken into account, especially because data processing
and storing is usually demanded to external cloud provider that are not completely transparent
about the management of the data contained within their infrastructure. In fact, in some cases,
(Internet of Medical Things, Internet of Battlefield Things, etc...) the IoT produces sensitive data
that must be properly secured and protected.

In general, the security measures applied to IoT devices are not sufficient, exposing them to
an important variety of threats and possible attacks. Compared to the networks of standard
devices, an additional challenge comes with Internet-of-Things: for these particular devices, it’s
challenging to provide host-based security because it’s difficult to use anti-virus systems and
automatic patching software for security monitoring and maintenance. The consequence of this,
is also a dangerous increased vulnerability of these devices to those attacks that come from the
internal network, where the perimeter security measures can’t be applied.

Starting from the necessity of ensuring data integrity and providing a scalable and effective
authentication mechanism for constrained-resource devices, many researches have been conducted
in order to address these issues. With the advent of Bitcoin protocol in 2009 [12], and the
widespread of Blockchain technology, most of these works have focused their attention on this
technology and on distributed architectures in general. Actually, the Blockchain represent the
main potential solution to many of those issues quickly discussed until now. This chapter will
provide a technical background to better understand what is a Blockchain, and a state-of-the-art
of its application to PKI and IoT. It will be organized in the following four subsections:

• Blockchain technology background

• Blockchain-IoT integration benefits

• Blockchain-IoT integration challenges

• State-of-the-art, proposed solutions

14

Related works

2.2 Blockchain technology

2.2.1 Block structure

First blockchain-like protocol was proposed in 1982 to implement a system wherein document
timestamps could not be tampered with, but the first decentralized blockchain application was
realized by Satoshi Nakamoto in 2008 with the publication of the Bitcoin whitepaper [12]. A
blockchain is a decentralized, distributed, usually public ledger consisting of a linked list of records
called “blocks”. Each node of a peer-to-peer network holds and maintain a copy of the blockchain
and the agreement between all of these entities about blockchain state is reached thanks to many
consensus protocol (e.g. Proof-of-Work, Proof-of-Stake, Byzantine Fault Tolerance, etc...). Blocks
contain transactions across the nodes of the network, but the key point of this new powerful
technology is that transaction/information exchanges are performed without any intermediary or
centralized third party. This property can be explained by further analyzing the structure of each
block (for the following explanation, the Bitcoin block structure will be used as a model, even if
the block structure can vary through different blockchain implementations):

Figure 2.2: Blockchain blocks structure (source: image)

• Size: block size

• Version: overlying protocol version (e.g. Bitcoin version);

• Merkle Tree root: root of a Merkle Hash Tree [13] whose leafs are labelled with the hash
of each transaction within the block. This is basically the “fingerprint” of the block and
it’s fundamental for the integrity mechanism of the blockchain. The reason why a Merkle
Tree structure is used instead of simple hash of the concatenation of each transaction is
that Merkle Hash Trees are very efficient structures to verify the integrity of large blocks

15

https://www.researchgate.net/figure/Blockchain-block-structure_fig1_325136332

Related works

of data (block’s transactions in this case). Merkle Trees were also fundamental for the
development of many Blockchain-based protocol lightweight clients (e.g. Light Ethereum
Subprotocol [58]), suited for low storage devices (e.g. smarthphones): instead of storing the
entire blockchain, these clients store only the blocks header; when some information about a
specific transaction is necessary, they query a full blockchain node to receive the transaction
data and a “Merkle proof”, the set of necessary hashes to recompute the Merkle tree root
for the integrity check (Merkle proof size is log(Ntransactions), that’s why Merkle Trees are
so efficient);

• Difficulty: the difficulty is a parameter for Proof-of-Work (PoW)-based blockchains, that
can change depending on the Blockchain’s validation rate; it represents the necessary efforts
to validate a block by solving the PoW cryptographic puzzle. This is a fundamental parame-
ter to keep PoW-based blockchains secure: due to the fast growth of hardware performance,
many possible attacks to the PoW mechanism would be possible in case of too low block
validation time. Difficulty parameter can change in time to keep the block validation time
under a certain threshold,

• Previous block hash: a block in the chain can’t be altered retroactively without the
alteration of all the subsequent blocks: this feature is provided by linking each block to the
previous one, thanks to the presence within the block header of the hash of the previous
block. If a malicious actor would try to tamper with a transaction within a block in the
middle of the chain, the Merkle tree root of that block would be automatically different,
causing a chain reaction for all the subsequent blocks (whose previous block hash is now
wrong).

• Timestamp: specifies the timestamp in which the block was validated;

• Nonce: the essential parameter to verify the correctness of the PoW. It is basically the
PoW solution, attached to the block after the validation process so that every other node of
the network can easily verify it’s correctness with a simple mathematical operation (further
details will be provided later in this section, when the PoW mechanism will be analyzed
more in depth);

• Transaction counter: it tells the number of transactions within the block

Transactions: details about a group of transactions. The content of a transaction can
vary through different blockchain-based applications. The fundamental parameters are the
sender and the receiver. Each transaction is digitally signed by the sender with its own
private key, to prove transaction authenticity. Sender and receiver are uniquely identified
by the key used to sign submitted transactions. Transactions not yet included in a block
(waiting for being validated by the consensus mechanism) are called “unconfirmed”;

2.2.2 Proof-of-Work consensus mechanism

Each node of the blockchain network can set up a new block from a collection of unconfirmed
transactions and broadcast it to the rest of the network as a suggestion for what the next block
in the chain should be. Because multiple nodes could create blocks at the same time, there could
be many options to choose from. It’s not possible to rely on the order in which blocks arrive
because they may arrive in different orders at different points in the network, causing what is
called forking of the chain.

Forking is when different peers receive different validated blocks from the network, generating
a transition period in which different versions of the chain exists together. It’s essential to esta-
bilish an ordering for the incoming block in a blockchain implementation. Chain forking leads to
dangerous attacks regarding the double-spending problem [14].

To mitigate this problem, a specific mechanism called Proof-of-Work is used.

PoW is basically a cryptographic proof used by one party to prove to others that a certain
amount of computational effort has been spent. It was originally employed to mitigate denial-of-
service attacks and to prevent email spam. This mechanism can be designed in different ways:

16

Related works

many PoW-blockchain application are based on Hashcash [15] system, originally proposed by
Adam Beck in 2002 e later used by Satoshi Nakamoto for Bitcoin implementation.

In this case, the Proof-of-Work is the solution to a very difficult mathematical problem that
each valid block must possess (the nonce mentioned in 2.2.1). This solution must satisfy a simple
condition:

H(block||nonce) < target

Where H is a cryptographic hash function (e.g. SHA256), || is the concatenation operator and
target is a threshold value that depends on the blockchain difficulty parameter discussed in 2.2.1.

The only way to solve the Hashcash PoW is with a brute-force approach: the validator ran-
domly select a nonce, computes the hash and checks if the result has a certain amount of leading
zeros, depending on the threshold defined by the difficulty. When the correct nonce is found,
the solution is attached to the validated block and the latter is broadcast to the rest of the net-
work. The other peers can immediately verify the correctness of the solution by computing the
hash (using the attached nonce) and checking if the result is below the threshold defined by the
difficulty.

Figure 2.3: Hashcash PoW schema: δ represents the number of leading zeroes of the defined
threshold (source: image)

The difficulty is an essential parameter to keep the block validation rate on a fixed value
(for Bitcoin is 1 block validated each 10 minutes). If the network exceed this rate, difficulty is
increased and Proof-of-Work become more difficult to be computed. The reason why difficulty is
essential for PoW-based blockchain applications was discussed in 2.2.1.

Basically, many nodes in the network called miners, compete to solve the Proof-of-Work to
earn a reward (cryptocurrencies) associated with the fact that the necessary computation requires
a great amount of energy to be spent. To have a concrete numerical idea, a normal computer would
require years to solve a single Bitcoin Proof-of-Work in order to validate an incoming block. This
is why many network nodes cooperate together to solve these cryptographic puzzles, creating
group of miners called mining pools where the final reward is shared according to members’
computational effort.

In order to solve the problem of transactions ordering, thanks to the mathematical properties
of this mechanism, it’s unlikely that more than one PoW is solved at the same time, and it’s way
more unlikely that this event occurs two times in a row.

2.2.3 51% attack

But what if two blocks are validated and broadcast to the network at the same time? This case
leads to the chain forking mentioned in 2.2.1. The forking issue is solved when the next block is
validated: all the nodes immediately switch to the longest branch available.

As said before, the math behind this mechanism makes it unlikely for blocks to be solved at
the same time, and even more rare for this to happen multiple times in a row. For this reason,
blockchain quickly converges, meaning that the the network is in agreement about the order of
blocks (apart from the few latest blocks).

The fact that there’s some ambiguity in the end of the chain has some important consequences
for transactions security. If a transaction is in one of the shorter branches, it will be moved back

17

https://www.researchgate.net/figure/Hashcash-basic-structure_fig1_338330266

Related works

to the pool of unconfirmed transactions and will be later included in another block. This scenario
can be dangerous: let’s suppose to have a blockchain implementation that allows users to store
in a transaction a UUID (Universally Unique Identifier) and a public key, that identify a single
device, and let’s suppose that other users can’t later store in another transaction the same UUID.
We want to store our device’s identity on the blockchain with a new transaction: if a malicious
actor could compute Proof-of-Works faster than the rest of the network, he could broadcast a
longer branch with forged (but valid) blocks that contain a fake transaction, to store our same
identical UUID but with a different public key. Our original transaction would be put back in
the pool of unconfirmed transactions, and later, when a new block containing our transaction will
be validated, it won’t be possible to store a UUID already registered. In Bitcoin protocol, for
instance, this attack leads to the double-spending problem.

Luckily, this kind of attacks is practically unfeasible: a malicious actor would be able to
broadcast a longer valid blockchain branch only if its computational power is greater than the 50%
of the entire network’s computational power (practically impossible). In the past, some mining
pools have successfully validated 6 blocks in a row and, for this reason, a block is considered
secure when it’s at least 6 blocks deep in the chain

Figure 2.4: 51% attack example (source: image)

2.2.4 Proof-of-Stake consensus protocol

Proof-of-Stake is one of the most known consensus algorithm used in public Blockchains. The
PoS was originally proposed to address one of the most debated issue about the PoW mechanism:
the energy consumption. The high computational effort spent by miners to solve a Proof-of-
Work requires a great amount of electrical energy and in the few last years, because of Bitcoin
widespread, this issue came forward due to the great amount of Bitcoin miners attracted by the
possibility of a passive income.

Instead of requiring to solve a complex cryptographic puzzle by spending a certain amount
of energy, PoS works by providing the user who has the higher stakes in the network a higher
probability to be selected to append a new block to the chain. The idea behind this mechanism
is that a miner in possession of a great amount of digital assets in the network wants to keep the
credibility of the ledger by avoiding fraudulent transactions.

The benefits of PoS mainly regard the energy consumption and the performance: on-chain
transaction throughput is higher compared to the PoW, because the there is no heavyweight
brute-force computation to be performed to create a new block, and the PoW computational
lottery-like process is bypassed.

Despite of this, PoS Blockchains give too much power to the early adopters and rich people,
that most likely possess the majority of the tokens of the network. Moreover, PoS is affected by
the “nothing-at-stake” dilemma. Whenever a chain fork occurs, it’s important for all the miners
to keep mining both chains for two reasons:

18

https://adapulse.io/understanding-different-type-of-attacks-on-blockchain-consensus/

Related works

Figure 2.5: Proof-of-Stake schema (source: [6])

• the validation process doesn’t imply a cost for the miner

• if a miner continues to validate blocks for the same branch, he could lose all the profit from
any of the time he spent mining that chain in case the alternative branch become longer.
Mining both chains ensures the validator the final profit, whatever fork wins

This increases the chances to perform double-spend attacks. An attacker could create a fork in
the blockchain one block before he spent some coins. If the attacker keeps mining his fork while
all other peers act in their best self-interest by mining both forks, the attacker’s branch would
eventually become longer. [23].

Proof-of-Work Proof-of-Stake

Block validation
Computing power deter-
mines the chances of mining
a block

The amount of stake deter-
mines the chance of mining
a block

Competition
Competition to solve the
cryptographic puzzle

An algorithm decides a win-
ner based on the amount of
its stake

Necessary equipment
ASICs and GPUs necessary
to mine blocks

A standard server-grade de-
vice is sufficient

Efficiency and reliability
Less energy efficient and
less expensive, but more re-
liable

High cost and higher energy
efficiency, but less reliable

Table 2.1: Proof-of-Work vs. Proof-of-Stake

2.2.5 Practical Byzantine Fault Tolerance (PBFT) consensus mecha-
nism

This consensus protocol uses a different approach compared with the already discussed PoW
and PoS. PBFT is used to reach a consensus based on the Byzantine Fault Tolerance (BFT).
Considering 3f + 1 participants in the network, a system possesses the BFT property if it can
resist to 2f + 1 malicious node inside the network [24].

In PBFT, the involved actors during the entire process are:

• clients: send transaction requests

• primary node: collects transactions into blocks and finalize them. During each consensus-
reaching process there’s only one primary node

• replica nodes: responsible for block finalization. Each process involves many replica nodes

19

Related works

PBFT protocol is composed by three phases: pre-prepare phase, prepare phase, commit phase.
[25]

• pre-prepare phase: the primary node verifies the requests and generates the corresponding
pre-prepare messages to be broadcast to the replica nodes. Replica nodes will verify the
legitimacy of the received pre-prepare messages and then broadcast a corresponding prepare
message

• prepare phase: nodes collect prepare messages; when a certain node collects 2f+1 prepare
messages it will communicate to other nodes that it’s ready for block submission and starts
to broadcast commit messages

• commit phase: nodes collect commit messages: when a certain node collects 2f+1 commit
messages, it will change the system state by processing the original request (locally cached)

Figure 2.6: PBFT schema (source: image)

When a client receives f + 1 identical commit messages, the consensus for its request has
been reached. This is because it can be proven that f + 1 identical commit messages contain at
least one message from a non-fault node and a non fault-node will only send a commit message
when 2f + 1 nodes voted for the request. When the consensus is not reached, the “view-change”
protocol is executed: a new primary node is elected to achieve the consensus and respond to the
client. The main reason for which this protocol is executed is that replica nodes confirm that
in limited time the primary node can’t reach a consensus on the request, because it’s temporary
unavailable or because it’s a fault node.

PBFT algorithm improves BFT efficiency and allows to achieve a polinomial complexity in-
stead of an exponential one. In this way BFT is applicable to real systems, offering a strong
consistency level.

The problem with PBFT is the huge communication overhead and the limited scalability.
When the number of nodes within the network is large enough, this mechanism can’t be used
because of huge delays to reach the consensus. For this reason, PBFT is usually used in permis-
sioned/private blockchain like Hyperledger Fabric [26], ensuring an higher transaction throughput
compared to PoW/PoS.

2.3 Blockchain usefulness for IoT

As previously discussed in the introduction, the main benefit brought by the Blockchain technology
is related to its distributed and intrinsically secure nature. Thanks to this property, the research
around the IoT scenario is focusing on this new technology, precisely because it’s potentially
able to solve many issues related to the IoT devices necessity of a continuous interaction with
centralized entities for authentication purposes and stored data integrity.

20

https://www.researchgate.net/figure/Normal-case-operation-of-the-Practical-Byzantine-Fault-Tlerance-PBFT-network-6_fig5_334612877

Related works

IoT device authentication is one of the “hottest” research topic: many Blockchain-based solu-
tions were proposed in the last 5 years. The main issue that has to be solved resides in the Public
Key Infrastructure centralized structure: the Root-of-Trust is basically a Single Point of Failure
(SPoF), because in case of attack a malicious actor could provide valid authentication credentials
so that the relying party won’t be able to distinguish valid certificates from rogue ones. More-
over, when the root CA compromise has been proven, accepting a certificate issued by that CA is
dangerous: for this reason, proceeding in the authentication process is strongly discouraged. The
natural consequence of this situation is a Denial-of-Service that temporary freezes the functioning
of the entire infrastructure.

During the last years, many Blockchain applications have been developed with the aim of
moving the Root-of-Trust into the Blockchain itself, thanks to its previously cited security prop-
erties and its decentralized nature which would eliminate the Single Point of Failure. A clear
example is for sure Namecoin [16], a project that shares many properties with Bitcoin (Name-
coin is a Bitcoin fork) but additionally provides an overlay that allows to register and transfer
unique “names” (keys) associated with arbitrary payload of any type (at most 512 bytes). The
most common Namecoin use-case is related to the creation of a decentralized DNS to ensure a
secure registration of web domains independently from third centralized entities. After Namecoin,
many other Bitcoin forks were developed and some of these are specifically based on Namecoin
itself, like Certcoin [17] and Emercoin [56]. Certcoin is Namecoin-based protocol that aims
at creating a distributed PKI using the previosly mentioned properties of Namecoin application.
Emercoin provides an overlay called Emercoin NVS, very similar to the Namecoin protocol but
with the possibility of storing greater amount of data with a set of ad-hoc use-cases specialization
for many applications (EmerSSH, EmerDNS etc...).

The decentralized nature of Blockchain technology, also ensures a greater robustness and fault-
tolerance to those systems and applications that rely on it. Each member of the peer-to-peer
network maintain a verified copy of the public distributed ledger, so it’s practically impossible
to successfully perform DDoS attacks or to compromise the integrity of the data stored on the
blockchain. Any external entity can retrieve the necessary information from a great number of
nodes, and this ensures a great level of reliability.

Another great Blockchain’s feature is to provide a sequential history of the transactions starting
from the creation of the chain. Potentially, for each IoT device, it would be possible to access
the list containing all the transactions directly related to it, providing a traceability system that
can be employed for further verification on gathered/processed data or executed operations. This
property is not irrelevant especially if applied to the expansion of Cloud Computing, which has
surely supported the IoT growth by providing a solid infrastructure for data processing (improving
the possibility to use this kind of devices for real-time applications with strict constraints in terms
of response time) but that doesn’t provide a great data transparency level.

2.3.1 Smart contracts

Smart contracts are computer programs that allow to control and execute some operations/in-
structions when specific contractual conditions (defined by the program) are satisfied. Smart
contracts technology has become widespread thanks to the employment of this technology as a
key feature of the Ethereum project [19].

Differently from the “standard” Blockchain platforms usually represented by a “ledger”, Ethereum
Blockchain is represented by a great distributed state machine (the Ethereum Virtual Machine
[20]). Besides containing every account and transaction, the EVM is the core component that de-
fines the rules for a state transition of the machine, every time that a new block is appended to the
chain. For Ethereum, the EVM is what allows the creation and the execution of smart contracts:
they’re represented by special accounts (addresses) that if addressed by a message call, allow the
execution of the bytecode registered at their creation time. The bytecode is usually computed
starting from an high-level programming language, that for Ethereum is Solidity. Solidity is an
expressive and powerful programming language that allows to write very complex decentralized
applications (DApps).

21

Related works

Figure 2.7: Smart contract functioning (source: image)

It’s important to notice the Smart Contracts are stored in the chain by following a protocol
similar to the one discussed in the Blockchain-dedicated section: for this reason, they have the
same security (and especially integrity) properties of the transactions stored on a “standard”
ledger. So, it’s very difficult to compromise the bytecode of a Smart Contract in order to modify
its instruction and functioning: when the Smart Contract is created, the code can only be modified
by creating a new contract with a new address.

Smart contracts are an expanding technology and can be employed in many use-case scenarios,
from real estate to voting, trade finance, digital identity, auto insurance (etc...), thanks to the
fact that in most of these scenarios this technology allows to reduce the cost of contractual
procedures, and it potentially ensures a greater security level without the necessity of any external
intermediary. In the IoT context, a Smart Contract can help the automation of those tasks that
depend from a variation of an external state: generally, IoT devices provide limited interaction
options and an automation mechanism for the execution of any device operation could be relevant.

For instance, it would be possible to design a Name Value System (similar to the one proposed
my Namecoin/Emercoin) with the additional feature to automatically renew an expired name-
value pair (with its associated X.509 certificate) by using a Smart Contract that can be triggered
by some specific time conditions. It’s important to keep in mind that due to the fact Smart
Contracts are represented by an address within the peer-to-peer network, a single instance of a
Smart Contract can invoke any function of any other Smart Contract in the Blockchain (as if
it was a normal network entity): this feature is a very powerful tool for linking many pieces of
bytecode in order to design more complex solutions.

2.4 Challenges for Blockchain integration in IoT

Despite of the great amount of benefits that Blockchain could potentially bring to the IoT, there
are many requirements that must be satisfied for a system to adopt it. In the initial phase of
the research, a great effort was spent in evaluating which applications could potentially benefit

22

https://www.bitpanda.com/academy/en/lessons/what-are-smart-contracts-and-how-do-they-work/

Related works

from Blockchain technology, but the difficulties associated with this integration if applied to
some constrained environments were usually underestimated. The Internet-of-Things is a perfect
representation of this problem: as previously discussed, IoT devices are usually characterized by
a large variety of hardware components employed in their production, and generally they’re not
featured with a good level of computational power and storage capabilities.

2.4.1 Scalability

In blockchain systems there are two categories of latency: [21]

• Block latency: necessary time to attach a new block to the chain. This time can be
different among many Blockchains, and it is usually defined by design. For instance, in
Bitcoin the block generation rate must be one block every 10 minutes: if this threshold
is exceeded, the difficulty of the Blockchain increases to slow down the validation process.
This is an important bottleneck that can’t be avoided because it’s a design property of the
Blockchain technology itself, necessary to provide specific features (other Distributed Ledger
Technologies with mechanisms and properties different from the Blockchain ones, may not
have this limitation);

• Transaction latency: necessary time to include a transaction in a block and attach the
latter to the chain. It depends from the block latency and the number of transaction per
block (can vary among many Blockchain implementations). Moreover, it’s possible that our
transaction is not immediately included in the next upcoming block for many reasons, for
instance the fee of a transaction is too low and doesn’t incentivize some miners to include
it in a block to confirm.

These latencies are one of the most discussed problem regarding Blockchain technology. When
the number of entities that form the peer-to-peer network grows up very fast, the transaction
latency increases a lot, forcing the nodes to use very high fees to have their transactions confirmed
faster. It’s easy to figure out that for IoT scenario, scalability can be a real issue, because the
number of IoT devices is growing exponentially.

Despite of this, in a potential distributed PKI the number of transactions is for sure strongly
reduced. In this scenario, transactions would be used to register/revoke/modify an identity (and
its public key) and, for this reason, it’s actually essential to adopt a Blockchain implementation
specifically designed for this usage. Using common Blockchain protocols designed for many pur-
poses (like value exchange) like Bitcoin or Ethereum, is self-defeating because the block latency
and the transaction cost would be too high and the final solution would be practically useless.

2.4.2 Storage size

Another very important drawback that comes up in the discussion about Blockchain technology
is the storage size requirements. Each node of the network must possess a full copy of the ledger,
from the genesis block (block #0) to the last one. Block size is ≈ 1MB (on average) and for
this reason, the size of the entire ledger can be extremely heavyweight for many Blockchain
applications

Blockchain Focus area Full ledger size
Bitcoin Diverse 422GB

Ethereum Diverse 863GB
Namecoin Key-value registration 6GB
Emercoin Key-value registration 495MB

EOS Smart contract based applications Undefined (many TBs)

In this table, Ethereum and EOS blockchains are extremely heavyweight because many DApps
(Decentralized Applications) are hosted on these platform. Decentralized applications use Blockchain

23

Related works

platform to provide different services (decentralized finance, healthcare, voting and many other
possible applications). For each interaction with a decentralized application based on a smart
contract, a new transaction must be created and attached to the underlying ledger, so the num-
ber of transactions is far bigger compared to other Blockchains that do not provide the smart
contracts feature.

It’s obvious that the size of the Blockchains focused on diverse areas is much larger compared
to the Blockchains designed for a restricted pool of applications, like the aforementioned Emercoin
and Namecoin for name-value registration

The point is that the magnitude of these storage requirements is not suited for IoT devices
and, in general, for low-storage devices. For this reason many Blockchains provide also lighter
protocols (e.g. LES, Light Ethereum Subprotocol [58]), that store only the block headers. This
reduces a lot the constraints on available storage but requires interactions with a full node to
retrieve information about transactions within a block and in some cases the reduction of the
necessary storage is not sufficient to satisfy IoT devices conditions.

2.4.3 Transactions cost

In the previous subsection about scalability issue in Blockchain-IoT integration, another important
drawback was also anticipated. In recent years, cryptocurrencies and Blockchains have become
widespread: due to this increasing statistic, the usage cost for major Blockchain applications has
increased drastically. The usage cost related to a Blockchain application depends on the amount
of required fees to submit a transaction and get it validated by miners in a reasonable time.

Figure 2.8: Bitcoin average transaction fee: all-time chart (source: image)

Transaction fees are an important element in public blockchain applications. Miners are incen-
tivized to validate blocks with the special reward mentioned before: by design, public blockchain
applications have a special mechanism to generate value scarcity and without this design feature,
any cryptocurrency could lose its own asset’s value (because of inflation). In Bitcoin, for instance,
the reward for blocks validation is halved every 4 years and in 2140 no more rewards can be
obtained by miners. For blockchain applications to be sustainable, the simple reward is not a
sufficient incentive for miners. When miners validate a block successfully, they get the validation
reward plus the sum of all the fees of each transaction within the block. Due to the fact that the
reward decreases every 4 years and Proof-of-Work difficulty can increase in time, fees cost can
also increase.

It’s essential to carefully evaluate the cost for employing the Blockchain technology for each
possible IoT scenario. An eventual widespread of these Blockchain-based architectures for IoT

24

https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3y

Related works

would imply an increase of transaction cost, and this consideration must be taken into account
when similar approaches are compared to the standard centralized ones. In our scenario, it’s
reasonable that a distributed PKI based on Blockchain would not generate an high transactions
throughput: in fact, the main purpose of this proposal is just to move the trust-anchor from
centralized entities to a distributed platform, using Blockchain as a trusted database that con-
tains secured information about devices certificates and their validity status. In other scenarios,
Blockchain could be useful, for instance, to guarantee about the integrity of data collected by
IoT sensors: in this case the potential transaction throughput is incredibly higher, and for this
reason projects like IOTA [28] try to propose different solutions (e.g. Tangle [29]) to minimize (or
remove) transaction cost (and confirmation time).

2.5 Distributed PKI solutions

2.5.1 Public Blockchain-based PKI in IoT scenario

A distributed PKI based on blockchain is theorically feasible. Some issues come up when these
concepts and designs are applied to some scenarios that differ from the common ones. In fact,
our purpose is to implement a distributed PKI that can fit IoT devices (and constrained-resource
devices in general) and Blockchain technology integration with IoT can be difficult for many
reasons also discussed in the previous section. Blockchain applications require in general a great
amount of storage to be used. As said before, the idea is that each communicating entity relies on
a self-owned copy of the blockchain but constrained-resource devices can’t afford this requirement.

For this reason, the focus is on proposing an efficient design solution that can overcome this
obstacle. One possible approach is to delegate blockchain operations and storage to a powerful,
trusted node. A communication scheme must be designed to define how the end-IoT-device can
perform all the necessary Blockchain operation through the intermediate trusted node.

Many works like [37], [38] [39] have followed this direction, also describing detailed protocols
for a set of operations related to IoT devices certificates. [37] and [38] describe basically the same
design: [37] is based on Emercoin Blockchain and [38] it’s an evolution of the original schema
that uses Ethereum smart contracts. Smart contracts-based applications depend on the bytecode
stored in the blockchain, so they leave more space to design more sofisticated solutions. Moreover,
the scope of [38] was also to compare the two solutions in terms of costs, performance and storage
requirements.

In this schema, the key actors are the B-nodes distributed in the Internet, powerful nodes
that are capable to run a full blockchain node thanks to high storage capability and good com-
putational resources. These nodes can be run by everyone in the network, and represent the
connection between the end devices (constrained-resource devices) and the blockchain platform
itself. Manufacturers, ISPs, and even individual users have the possibility to run some full B-
nodes.

An IoT device uses some trusted B-nodes in the network as a bridge connection to query the
Emercoin NVS platform and retrieve information about a specific key-value pair. In a possible
scenario, a group of IoT devices within a network is controlled by the devices owner. The ad-
ministrator hosts a pool of private B-nodes within the network also to provide more robustness
to the system. In this initial state, the pre-condition is that each IoT device in the network is
waiting to be configured: an IoT device in the initialization state doesn’t possess any certificate
that binds its identity to a specific public key, so it can’t estabilish secure communications with
other devices within the same network.

The sequence of necessary operations for the initial configuration is described in the device
setup protocol: the basic idea is that the device owner itself is responsible for its own devices
certificates, without any necessary intermediary. Each IoT device generates an identity and a self-
signed certificate associated with the generated ID: these two elements are going to represent the
<name, value> pair registered by theDevice Manager(DM) (one of the trusted B-nodes within
the network) on the Emercoin NVS platform. As previously discussed, the Emercoin consensus
protocol ensures the uniqueness of each name stored on the ledger. With this core property, the

25

Related works

Figure 2.9: IoT-PKI architecture proposed in (source: [37])

certificate’s hash associated with the unique name stored on the ledger can’t be altered, thanks to
the blockchain integrity properties previously discussed. Basically, the Registration Authority is
represented by the Device Manager and the Root CA (the trust-anchor) is moved to the blockchain
platform. When two devices are successfully configured, they’re finally able to estabilish a secure
communication channel (e.g. TLS channel) for data exchange: when a device receives an X.509
certificate from the other peer, instead of checking the validity of a certificate chain it has to
compute the hash of the certificate and compare the result with the value stored on Emercoin
NVS, whose corresponding name is defined within the certificate itself. If the two hashes are equal
and the certificate is not expired, the authentication is successful.

In addition to the device setup protocol, [37] proposes three more schemas for device ownership
transfer, device certificate update and revocation. Device ownership transfer protocol ends up with
a transaction on Emercoin NVS where the operation type is update, the name involved in the
transaction is the device identity and the recipient address is not equal to the sender one (the
old device owner) but it’s replaced with the address of the new owner. When this transaction is
confirmed, the old device owner won’t be able to generate transactions that modify the state of
that specific ¡name, value¿ pair.

The update operation in Emercoin NVS is also generally used to update the information
associated with a name (like the associated value or the expiration date): in this case, the recipient
address and the sender address will be equal.

The last possible operation that can be performed on a <name, value> pair is the revoke
operation. When a device private key is compromised, the DM can simply submit a revoke

transaction to Emercoin NVS, without further interaction with the compromised IoT device.

26

Related works

Apart from physical tampering attacks, this solution is affected by few problems related to
the device setup protocol. The protocol design doesn’t take into account the possibility of “lying”
end-entities and furthermore an IoT device in the initialization state can’t distinguish a message
from a real Device Manager of its network from the initialization message of an eventual malicious
actor. These issues will be discussed later and some possible solutions to address them will be
provided.

With this approach, the core benefit is for sure the ease of devices certificate management.
Using a classical CA-based PKI, the entire process to obtain/revoke a certificate for a single device
is slower and less sustainable also because dealing with certificate expiration/revocation is much
more complicated if compared to the proposed solution. Moreover, the OSCP DoS attacks that
affect CA-based PKI are mitigated, because it’s possible to keep a pool of DM nodes without
exposing their interface to the Internet. The core purpose of a DM node is to act as a reliable
ledger replica for the network of IoT devices in which is operating, so basically a single device can
perform all the necessary verifications for incoming certificates without interacting with external
entities.

The most important challenge here is to verify that an IoT device is not lying about its claimed
identity. This task is usually performed by a Certification Authority (or Registration Authority)
that requires verifiable credentials before issuing a certificate for a specific entity. In this solution,
each IoT device can generate its own identity and the DM does not perform any check to estabilish
a binding between the claimed identity and some intrisic property of the device. The Trusted
Computing Group (TCG) has published different specifications that define rules and procedures
to perform the identity attestation of a device using a Trusted Platform Module (TPM) [53], but
another useful technology to achieve this goal is the Physical Unclonable Function (PUF) [54]. In
the next chapter, further details about the identity attestation using TPM will be provided and
discussed.

A possible evolution of this design has been proposed by the same authors in [38]. The goal
of this work was to provide an alternative to the NVS platform based on Emercoin blockchain by
using Ethereum smart contracts, to evaluate the possible benefits/drawbacks of the two solutions.
Ethereum-based approach is evaluated in two different forms: in the first case, the high-level design
is basically identical to the previous one based on Emercoin NVS, with the presence of a trusted
full Ethereum node. In the second case, Light Ethereum Subprotocol is used to eliminate the
intermediary remote full node. A LES node stores only the header of each block of the chain,
reducing the necessary storage requirements to run a blockchain node. When a LES node needs
to retrieve information about specific transactions within a block, it queries an external full node
and verifies the integrity of the received data using Merkle Trees theory.

The core benefit brought by Ethereum smart contracts to the distributed PKI architecture is
the storage flexibility. Compared to the simple name-value storage, a smart contract provides an
high-level language with the possibility to use complex data structures (e.g. maps or custom user
defined structures) and to define arbitrary rules to enhance the system functionality and add new
custom features. The authors of [38] propose an high-level design of the deployed smart contract,
by describing the function signatures and their purpose plus the data structures used to store the
information:

• AddDevice(DeviceID, Hash): device data is stored in a hashmap of <DeviceID, DeviceDetails>,
where DeviceDetails is a structure that contains the device owner address, the hash of
the X.509 certificate and the validity status of the latter. With this function, the two input
parameters are used to add a new entry to the hashmap

• RemoveDevice(DeviceID): removes from the hashmap the entry associated with the input
DeviceID

• GetDeviceHash(DeviceID): returns the certificate hash corresponding to DeviceID.

After the deployment of the smart contract, everyone can call these functions with simple
HTTP requests to an Ethereum node that hosts an RPC server (localhost in case of LES-based
design), by following the ABI specifications provided by the Solidity official documentation [55].

27

Related works

contract PKI {

struct deviceDetails {

address deviceOwner;

bytes32 certificateHash;

bool valid;

}

mapping(bytes16 => deviceDetails) private certs;

modifier onlyOwner(bytes16 deviceId) {

require(msg.sender == certs[deviceId].deviceOwner,

Only the owner of this device can perform this operation.");

_;

}

modifier nonExistent(bytes16 deviceId) {

require(certs[deviceId].certificateHash == 0, This device ID

already exists.");

_;

}

function addDevice(bytes16 deviceId, bytes32 certificateHash) public

nonExistent(deviceId) {

certs[deviceId].deviceOwner = msg.sender;

certs[deviceId].certificateHash = certificateHash;

certs[deviceId].valid = true;

}

function removeDevice(bytes16 deviceId) public onlyOwner(deviceId) {

certs[deviceId].valid = false;

}

function getDeviceHash(bytes16 deviceId) public view returns(bytes32)

{

return certs[deviceId].certificateHash;

}

}

Figure 2.10: One possible implementation for the smart contract proposed by [38]

The issues discussed for the original design based on Emercoin NVS are still present in this
solution. Furthermore, the storage flexibility provided by the Ethereum smart contracts comes
with an important issue related to the cost of this solution: actually, one of the most debated
problem related to Ethereum regards the high transaction fees. Ethereum fees have reached a
cost of more than 40$ during last years, and every time that a smart contract function that stores
data within a structure is called, the state of the Ethereum Virtual Machine changes, and a new
transaction must be created. AddDevice() and RemoveDevice() functions act on the state of the
chain and every time they’re called, a new transaction is generated (and some fees must be paid).

By comparing the two solutions, the potential benefits brought by the second one based on
smart contracts are not enough to justify a cost far higher than the first solution based on Emercoin
NVS. These considerations about the cost can be made for many other proposed solutions based
on Ethereum Blockchain.

For instance, an interesting slightly different model based on Ethereum is proposed by [39].
Here, the architecture is called Distributed Public Key-store (DPK) and it consists of three
elements:

• Public Key Manager (PKM): authenticates DPK users and approves Blockchain storage
requests. This function can be a global platform or part of a dedicated network for any
device configuration. PKM sends to the client the necessary amount of Ether to store the
user public key on the ledger after the approval of the PKM module itself

28

Related works

• DPK Client Module: software module installed on a device, that creates an Ethereum
address and stores a generated public key on the blockchain thanks to the interaction with
the PKM. Before its installation, a configuration phase is necessary to provide the client
with a unique token that will be used for authentication. During the configuration, the
client should select the type of DPK identity: addressable or non-addressable. In case of an
addressable identity, the user must prove the ownership of the claimed identity, otherwise
for a non-addressable identity a UUID is generated. The provided token is crucial to ensure
that the transaction fees required to store data in Ethereum have been paid

• DPK Smart Contract: the core element that supports the architecture logic. In this case,
the smart contract provides three functions: addClient(), getClient(), approveClient()

Figure 2.11: Design proposed by [39]

To approve the registration of a public key, a specific procedure must be followed:

1. The client calls addClient() with 3 input parameters: DPK client identity, public key and
the token provided at configuration time. Now the client has been added to the pending
client list

2. The client sends to the PKM an approval request providing the signed token

3. The PKM calls approveClient() passing as input the token associated with the requesting
device: only the contract owner (the platform provider) can call approveClient()

Like [38], the problem here is also worsen because each device has to receive with a transaction
from the Platform Provider the necessary Ether to register its own public key on the chain. After
that, the client calls addDevice() function to append its own identity to the list of pending
clients (this operation requires a certain amount of fees to be paid) and finally, the platform
provider is going to approve the client with an additional invocation of a smart contract function
(approveClient()), which also requires some fees. By complicating the smart contract logic,
the main consequence is for sure the usage cost increase. Moreover, in this case, the Platform
Provider isn’t contextualized and further details or examples about the kind of entity that could

29

Related works

cover this role are not provided (it’s important to take into account the operational cost that the
Platform Provider is supposed to deal with).

The core advantage is to have an entity in charge of verifying each claimed (addressable)
identity, that will be active and capable to provide authentication using DPK architecture only
after an explicit approval from the Platform Provider. Despite of this, as previously anticipated,
the cost is even greater compared to the solution proposed in [38].

2.5.2 Private/Consortium Blockchain-based solutions

A Blockchain can also be implemented as a private platform instead of a public one like Bitcoin
and Ethereum. Private Blockchains can be useful in specific use cases where the number of par-
ticipating nodes is limited and controlled by specific authorization rules provided by the platform
host. This property allows private Blockchains to take advantage of efficient consensus protocols
(like PBFT mentioned before) that solve many important Blockchain issues about scalability, cost
and transaction throughput.

Consortium Blockchains are similar to the private ones, but the platform host is represented by
a consortium of entities that define rules and the role of each participating node. Each consortium
entity generally holds a portion of the network and join the consensus protocol together with the
other hosting parties. One of the most important project related to consortium Blockchains is
Hyperledger Fabric [26], supported by The Linux Foundation.

Hyperledger’s purpose is to provide an open source enterprise-oriented DLT (Distributed
Ledger Technology), to drive a massive adoption of this technology by the companies. Hyper-
ledger addresses consortium networks, where a group of stakeholders is interested in the adoption
of a decentralized, transparent network where the validation of data is not in charge of a central
authority. In order to concretize this approach, Hyperledger provides a great modularity and
flexibility to satisfy many potential industries and use cases. One of the core benefits of using
Hyperledger instead of a public Blockchain, is that in some enterprise use-cases some privacy is
necessary to protect the commercial agreements: public Blockchain transparency can be helpful
for many cases, but it can also be an obstacle for these specific scenarios. In Hyperledger Network,
only parties directly related to the transaction deal are updated on the ledger, thus maintaining
privacy and confidentiality. This is possible thanks to the channels, virtual blockchain networks
built upon a physical blockchain network, that have their own access rules.

Hyperledger blockchain runs programs called “chaincode”, and each transaction is basically an
invocation of the chaincode. Transaction must be “endorsed” to definitely modify the blockchain
state. Transactions may be of two types:

• Deploy transactions: create new chaincode. After a deploy transaction, the chaincode
has been “installed” on the blockchain;

• Invoke transactions: perform an operation by invoking one of the functions provided by
the deployed chaincode. When the chaincode is executed, the blockchain state may change;

As anticipated before, an Hyperledger network is hosted by a consortium of collaborating
parties. Each party controls a portion of the nodes in the network, and in Hyperledger different
nodes can cover different roles:

• Client: is basically the end-entity. It must be connected to a peer for communicating with
the blockchain in order to invoke the chaincode and generate new transactions;

• Peer: it maintains the state of the ledger, receiving ordered updates (blocks) from the
ordering service. Endorsing peers are special peers whose function is to endorse trans-
actions before they’re committed. The endorsement task is related to a specific chaincode:
every chaincode specifies its own “endorsement policy” and a set of endorsing peers. The
endorsement policy defines the necessary conditions for a valid transaction endorsement
(typically a set of endorsers’ signatures);

30

Related works

• Ordering service nodes (Orderers): provides delivery guarantees. Ordering service
provides a shared communication channel to client and peers, where they can broadcast
messages containing transactions. This channel supports the atomicity of the delivery so
that the channel outputs the same messages to all the connected peers in the same logical
order. Thanks to the atomic communication, the network is able to reach the consensus.
As anticipated before, the ordering service may support multiple channels, similar to the
topics of the publish/subscribe systems;

To invoke a transaction, a client sends a PROPOSE message to a set of endorsing peers. When an
endorsing peer receives a PROPOSE message, it initially verifies the client’s signature and then sim-
ulates a transaction. To simulate transaction execution, the endorsing peer invokes the chaincode
to which the transaction refers, using the state it’s currently holding. Then, the peer forwards
internally the transaction proposal to the part of its logic that endorses transactions (endorsing
logic). Basically, the endorsing logic accepts the transaction proposal and signs it, but it’s pos-
sible to define arbitrary functions to achieve specific behaviours. If the endorsing logic decides to
endorse the transaction, the peer sends back a message (TRANSACTION-ENDORSED) to the client.

The client waits until it receives enough messages (and signatures), depending on the endorse-
ment policy, to conclude that the transaction has been endorsed. At this point, the endorsement
is broadcast using the ordering service: each peer performs some checks on the endorsement, and
if they pass the transaction is marked as committed and the modifications to the blockchain state
are applied.

The endorsement policy for the chaincode is defined by the consortium that hosts the Hy-
perledger network, providing a great flexibility about the necessary conditions to achieve the
consensus for transactions endorsement.

Figure 2.12: A possible Hyperledger Fabric transaction flow (source: [9])

Many proposed solutions are based on Hyperledger projects, like Fabric [26] or Sawtooth
[27]. In [49] each IoT device is blockchain-enabled thanks to the consortium-based approach that
drastically reduces the amount of necessary storage for the maintenance of the ledger. IoT devices
are simple network clients, able to perform identity verification on their own (by retrieving data
from their local updated copy of the ledger). The rest of network is composed by many peers and
orderers provided by the entities that form the consortium.

The smart contract has been developed using Golang (Go) and each transaction that is going
to modify the state of the blockchain is identified by 4 elements:

• Operation: a tag that identifies which CRUD operation will be performed;

31

Related works

• Asset type: n-letter code that identifies the type of the involved asset (e.g. “ss” for sensor
devices);

• Nonce: an incrementing counter that ensures protection against replay attacks and poten-
tial malicious orderers;

• Asset identifier: identifies a specific asset within its own category;

To store the metadata associated with each specific device, a simple 32-byte string is used
instead of complex structures of arbitrary length. The 32-byte string allows to store a 256-bit
hash of the metadata.

This solution can be highly efficient in an Industrial-Internet-of-Things scenario, thanks to
the important benefits brought by Hyperledger Fabric implementation previously discussed (high
flexibility, open source code, high transaction throughput, cost free). Despite of this, the appli-
cability of this solution is restricted to the specific case where two or more partner companies
want to protect their communication channels and data exchange, using a distributed approach.
In case of a single entity, Hyperledger Fabric’s logic can’t be applied, and many security-related
benefits of public blockchains can’t be guaranteed.

2.6 IOTA

IOTA [28] is a distributed ledger technology that has been originally developed with IoT in
mind. The core problem that IOTA wanted to solve was related to the blockchain scalability. As
previously discussed, blockchain transactions cost is also related to the transactions volume: if
we consider a great amount of potential IoT devices participating to a blockchain network, the
cost and the delay issues can’t be ignored. The necessary cost to support transaction validators
exists because the network participants can decide to use the blockchain without joining the
consensus mechanism and by delegating the validation task to the other participants that decide
to contribute in exchange of a reward (miners). To solve this issue, IOTA proposes a completely
different way to implement a distributed ledger: the Tangle [29].

2.6.1 Tangle

IOTA Tangle’s core principle is that each network participant must be part of the consensus
mechanism and contribute to the validation of each new block. If a node wants to submit a new
transaction to the Tangle, it must help the network by validating 2 other pending transaction from
different nodes (in this case a “block” represents a single transaction). This key feature allows
the IOTA network to speed up proportionally to the transaction volume and efficently solves the
scalability issue (eliminating fees necessity). This is possible because the Tangle structure is far
different from the Blockchain: if the Blockchain can be associated with a linked list, the Tangle
is basically a DAG (Directed Acyclical Graph).

For this reason, a different consensus mechanism is necessary to address the forking problem:
the Tangle’s consensus is based on cumulative weight. The cumulative weight of a transaction
(a vertex of the graph) is the sum of its own weight (proportional to the computational effort
invested into the Proof-of-Work) and the weights of all the other vertexes that directly or indirectly
approves it. A transaction is accepted by the whole network if its corresponding weight is above a
certain threshold. When a user generates a new transaction, two tips (edge vertexes of the DAG)
without conflict are selected according to a Markov Chain Monte Carlo (MCMC) algorithm [30]
and the hash of the selected chips is included within the new transaction; a very simple PoW is
solved to avoid transaction spamming and, after this, the transaction is broadcast to the rest of
the network that checks its validity: the valid transaction is finally added as a new tip to the
Tangle and waits for its cumulative weight to reach the consensus threshold.

To avoid the double-spending problem, Blockchain consensus mechanisms uses the longest
chain as the criterion to choose between two branches after a forking, because the longest chain

32

Related works

Figure 2.13: Tangle vs. Blockchain bottleneck (source: image)

has the lowest probability to be replaced with a forged branch, A similar approach is used by
the Tangle, by using the MCMC tip selection algorithm to select the branch with the largest
cumulative weight: in this way, the overall computing capabilities of honest IoT nodes is powerful
enough to avoid double-spending while the invidual necessary computing effort is drastically
reduced.

2.6.2 DAG-based consensus: challenges

The Tangle is a brilliant solution to many DLTs common concerns. Despite of this, the DAG
based consensus mechanism is not perfect. From a theoretical point of view, the Markov chain
based model is characterized by a significant problem regarding the transition probabilities matrix,
especially in case of a huge number of system states. For this reason, Markov chain based model
requires some optimizations.

Moreover, an important paramater to take into account to analyze the DAG based consensus
mechanism is the transactions arrival rate. It’s impossible to assume a stable transaction arrival
rate (especially in IoT systems) and since the finality of a transaction is determined by its cumu-
lative weight, the confirmation delay can increase a lot if the transactions arrival rate is too low.
This problem is currently addressed using a coordinator [31]: in IOTA, the Coordinator is a
client that sends special signed messages called milestones; a message in the Tangle is considered
for confirmation only when it’s directly of indirectly referenced by a milestone that nodes have
validated. For the milestones to be recognized, all IOTA nodes on the same network are configured
with the signatures of a coordinator node which they trust, so that they can validate milestones
signatures to verify if a trusted Coordinator did sign them. To ensure that new messages have a
chance of being confirmed even if the transactions arrival rate is too low, the Coordinator sends
milestones in the network every 10 seconds. Even if the Coordinator can address the issue related
to the low transactions arrival rate, on the other hand it introduces a centralized element that
collide with the original decentralized nature of this technology.

33

https://en.m.wikipedia.org/wiki/File:Blockchain_vs_tangle_bottleneck.png

Related works

Figure 2.14: Cumulative weight growth curve in different regimes (source: [35])

Bitcoin Tangle
Transaction fee Yes No
Resource requirements Huge computing power for

validators
Low computing power

Throughput 7 TPS No upper bound
Confirmation delay 60m Variable: depends on

transaction throughput
Finality 6 confirmed blocks Cumulative weight

reaches predefined thresh-
old

Drawback High resource consump-
tion; low transaction
throughput

Large confirmation delay
when the transaction traf-
fic is low; centralization
in case of coordinator in-
volvement

Table 2.2: Comparison of PoW and DAG based consensus (source: [35])

2.6.3 IOTA STREAMS

The IOTA foundation developed two protocols to structure and retrieve data securely stored
on the Tangle. STREAMS [32] is the most recently proposed protocol, and allows any entity
to exchange encrypted, unalterable and authored data using the Tangle. STREAMS protocol
supports many Transport modes like HTTP or TCP, and the Tangle is just one of the possible
options.

Masked Authenticating Messaging (MAM) [33] is just one example of a STREAMS application.
It’s basically a publish-subscribe system that involves two parties: author and subscriber.
Messages can be signed or tagged : signed messages can be produced only by the author and
provides a signature to verify channel owner’s identity, while tagged messages can be sent both

34

Related works

by the author and the subscribers (it’s not possible to identify the sender of a tagged message).
Moreover, a message can be public or masked for a set of specific subscribers that possess the
correct key for decryption.

Figure 2.15: STREAMS messages example (source: [10])

STREAMS messaging system is based on “linking”: a channel is generated by creating an
announce message, whose reference is shared by the author to allow the subscribers to join the
channel. When an entity wants to subscribe to that specific channel, it retrieves the author’s
public encryption key from the message whose reference was previously published and creates a
new subscribe message containing its own new public encryption key. The subscriber links this
new message to the original announce message created by the author, so that the latter knows
which subscribers have joined the channel. The linking is also necessary to verify the authenticity
of signed messages: each signed message is linked to the original announce message, so that
subscribers can verify the correctness of the signature associated with the fresh new message. To
encrypt channel messages, the author can also publish a keyload, a special message to exchange
a session key with each subscriber or with a specific one: if the keyload message is linked to the
original announce message, the session key is shared between all the channel subscriber; otherwise,
if the linking is estabilished with a specific subscribe message, the session key is exclusively shared
with that specific subscriber.

This messaging system provides a good level of flexibility to implement different kind of ap-
plications, but it’s based on RUST language. RUST is a powerful language not suitable for
constrained IoT devices: [34] proposes an alternative layer-two cryptographic protocol called
L2sec, developed from scratch in C language and designed to be lightweight enough to run on
constrained IoT devices.

2.7 Web-of-Trust

Web-of-Trust (WoT) is a decentralized alternative to the classic centralized trust model of a PKI.
In WoT, there are many independent webs of trust: any user can be part of multiple webs and
can be a link between two different webs. This concept is used in many OpenPGP-compatible
[59] systems.

OpenPGP certificates can be digitally signed by other users that endorse the binding between
that public key and the identity listed in the certificate. This is commonly done at key signing
parties, meetings where many PGP users present their public keys to other users who can digitally
sign the certificate containing that public key associated with the user’s identity. This approach
mitigates the main issues of PKI model: there is no single point of failure, because there are no
central authorities (like root CAs) to be trusted. WoT model is also inspired by the theory of six
degrees of separation (all people are six or fewer social connections away from each other).

The strong set is the largest set of strongly connected PGP keys. Two keys in the strong
set always have a path that links them. In case of isolated and disconnected groups of key, if a
single member of these groups exchange signatures with the strong set, the entire isolated group
becomes part of the strong set. The most common metric to evaluate the level of trust of a given

35

Related works

PGP key within the strongly connected set of PGP keys that form the web of trust is the mean
shortest distance (MSD)

Figure 2.16: Web-of-Trust example schema (source: image)

2.7.1 WoT related problems

One of the main problems with Web-of-Trust is the public key authenticity check process. Ba-
sically, WoT can’t be considered a PKI because there is no native mechanism to retrieve public
keys. Currently, public keys are stored in some centralized keyservers (e.g. pgp.mit.edu), but
this is in contradiction with the decentralized nature WoT was proposed for. Anyway, WoT also
have a great adoption barrier: one of the major constraint to use PGP is to physically meet
with someone (e.g. key signing party) to verify their identity and ownership of a public key and
email address. For instance, a software user may need to verify lots of software produced by
many developers all around the world and, in general, it would be impossible to physically meet
every developers to trust their identities. It can happen in practice, that a new user’s identity
can’t be endorsed by anyone in the peer-to-peer network. This issue can be common for user in
remote areas, where there’s scarcity of PGP users. In any case, a new user is not practically able
to readily find someone to endorse a new certificate. This approach starts to work fine when a
certain amount of endorsing signatures have been collected by a certain user.

Another important issue that affects WoT is the compromise of private keys. Initially, PGP
certificates did not even include an expiration date; later, the expiration date was included to
mitigate the problem, but the revocation of a compromised key is still difficult to deal with:
the currently used solution is to use designated revokers, third trusted entities that have the
permission to revoke the owner’s key. The drawback is that revokers’ misbehaviour could lead to
potential attacks.

Research was active trying to integrate WoT with DLTs in order to solve these common issues.
For instance, [36] proposes an Ethereum-based PKI where the smart contract logic tries to enhance
the WoT mechanism. As anticipated before, WoT can’t be strictly considered a PKI because there
is no native mechanism to retrieve public keys: the solution proposed by [36] contains two core
components: the smart contract - that defines the logic for the management of identities and
attributes - and the client - which interacts with the smart contract and provide an interface to
allow users to search for published attributes. The smart contract logic is based on the “entity”,
that publishes attributes, signatures and revocations for its identitity on the Ethereum Blockchain.
Entity is representend by an Ethereum address and each attribute has an identifier, so that it’s
easily found by another user who wants to sign that specific attribute of another entity (because
he can ensure the binding between the identity and the published attribute). Every signature
that trusts a specific attribute is linked to the entity that released the signature, and everything
is transparently and securely stored on the public ledger (instead of centralized PGP key servers).

36

https://en.wikipedia.org/wiki/Web_of_trust#/media/File:Web_of_Trust-en.svg
pgp.mit.edu

Related works

The smart contract also provide a function to revoke a published signature and keeps track of all
the revocations in a dedicated array.

Despite of the benefits brought by this integration, WoT approaches still suffer from a great
adoption barrier that prevent its large adoption in replacement of standard PKI.

Figure 2.17: SCPKI [36] design schema

37

Chapter 3

Proposed implementation

3.1 High level design

The purpose to achieve with the work proposed by this thesis project is to designate and implement
one possible solution among the many proposals that already exist in literature and that have
been partially discussed in the second section of this document, also providing more possible
enhancements where drawbacks and problematics arise. For what regards the design solution to
elaborate on, the choice was to work on the proposal published by Elisa Bertino, Ankush Singla,
Jongho Won and Greg Bollella [37], that has been already partially discussed in the previous
section. There are many reason behind this choice and like any other solution, the brought
benefits live together with the possible drawbacks, when compared to other existing solutions.

In this case, the proposed solution is based on Emercoin NVS (Name-Value System) Blockchain,
a platform that benefits from Blockchain security properties to provide the possibility for storing
on the ledger arbitrary values associated with unique keys, ensuring the integrity and security of
this data. The idea is to use this platform to register the certificates of a group of constrained
devices (like IoT devices) within the same network. To achieve this result, the proposed design re-
quires the presence of non-constrained devices (characterized by a sufficient computational power
and great storage capabilities) that can host an Emercoin node and maintain a full copy of the
public ledger. The reason is that constrained devices are not compatible with the requirements
that this task imposes. These powerful nodes are called B-nodes and they will be the interface
between the IoT devices and the Blockchain platform. Logically, three actors can be defined: the
client (in this case it’s represented by the single IoT device), the Device Manager (DM) (the
node that starts the communication with the client during all the protocols for certificate registra-
tion/modification/revocation and retrieve the necessary Blockchain data from a B-node) and the
B-node. The DM and the B-node can also be merged in a single entity: in this implementation,
the DM will host an Emercoin NVS node, so it will maintain a copy of the distributed ledger.
Practically, for the implementation, two communicating portions of code have been developed,
respectively for the client and the DM.

The most relevant concern of this solution is the same of every other Blockchain-based solution:
the mechanism that allows to reach the consensus about the validity of a new block that is
appended to the ledger is very inefficient in terms of computational resources and time. In order
for a block to be appended to the chain, approximately 10 minutes are require, but this time is
not sufficient for a block to be considered completely secure. Because of the possibility of 51%
attacks, it’s usually suggested to wait until the block depth is equal to 6 blocks: if we take into
account this constraint, a group of transaction is validated after ≈ 60 minutes. Starting from
this considerations it’s possible to calculate the transaction throughput, which is on average 5-6
TPS (Transactions Per-Second). In many scenarios, a similar rate is insufficient for taking into
account the possibility to choose the Blockchain as a valuable option for ensuring security and
data integrity. Moreover, if we consider PoW consensus-based systems, the majority of the nodes
within the peer-to-peer network do not contribute to the consensus mechanism because they
can’t afford the necessary computational effort due to their limited hardware components. The

38

Proposed implementation

Figure 3.1: Emercoin-based solution high level design

consequence of this, is an optimistic reliance on miners, that must be economically incentivized to
keep executing these tasks (and this is why fees are necessary for the creation of a new transaction
in the Blockchain).

Other platforms like IOTA, provide a much higher throughput: considering IOTA, the tech-
nology proposed by this project (the Tangle) also eliminates the necessity of a cost related to the
creation of new transactions. Despite of this, the reason why Emercoin-based solution was chosen
resides in the type of application we are trying to implement: the core purpose is to provide
a simplified access to the management of the certificates of a group (potentially very large) of
devices that have difficulties in performing this task. In this scenario, an efficient mechanism that
provides higher throughput is not necessary, also because the number of transactions generated
by a PKI would be generally very limited when compared to other applications. Furthermore, if
we compare the time required for Blockchain-based operations against the actual necessary time
for the set of operations related to a “standard” PKI, we would get a good improvement anyway.
For what regards the cost related to the creation of new transactions, it’s important to notice
that Emercoin fees are very low, especially if compared with the fees of other popular platform
like Ethereum. Differently from Ethereum, the application range of Emercoin NVS is way lower:
Emercoin can be useful in a restricted pool of use-cases, so the occurence of many issues also
related to the financial speculation that affects Ethereum (or Bitcoin) is very unlikely for this
platform. If we take into account these two compromises just analyzed, the benefit brought by
the employment of Emercoin when compared to other platforms is its software layer built upon
the normal Blockchain structure, that allows to register unique keys associated with arbitrary
values. In Emercoin is not possible to register a key that already exists in the public ledger (if
it’s not been revoked): thanks to this feature, during certificate verification phase, we are sure to

39

Proposed implementation

retrieve from the Emercoin ledger the only existent key-value pair associated to the identity we
want to authenticate.

Moreover, the PoW consensus mechanism is mature and solid: as previously discussed in
the previous chapter, IOTA uses a consensus mechanism based on Markov Chain Monte Carlo
algorithm and, in order for this system to properly work, it’s necessary to provide a minimum
transactions arrival rate; due to the fact that is difficult to constantly satisfy a similar condi-
tion, IOTA is supported by the Coordinator system, which inevitably includes in the consensus
mechanism a third party (that clashes with the original decentralized nature of the technology).
On the contrary, by using a PoW consensus mechanism, despite of the compromises that’s been
already discussed and analyzed, the decentralization is total (it’s also important to notify that
IOTA’s Coordinator is a temporary solution, and the IOTA foundation is planning a 2.0 phase
of the project, called “Coordicide”, that manages to replace the Coordinator with a completely
decentralized solution).

The core section of the proposed design is about the registration of a constrained device’s
X.509 certificate on Emercoin NVS: this operation is executed during the initialization process of
a device that has just been added to the network. Compared to the original design proposed by
[37], the certificate registration process of this implementation has been modified and improved
in order to fix some important security issues:

• The first step executed by the DM is to send the initialization message Minit to the device
that is waiting for a configuration. This message is digitally signed using a private key
generated “on the fly” and the corresponding public key for signature verification is included
within the message structure: potentially, with this approach, any entity within the network
would be able to generate a keypair and to sign a validMinit message that would be accepted
by the other devices without any trouble. A possible solution it to provide the DM with
an X.509 certificate released by a valid CA and to maintain it in time. Even if this option
could be interpreted as a contradictory solution if compared to the original purpose of this
work (to promote a decentralized approach), it’s important to notice that this would be
considered only for the DM node, which is not affected by those issues and constraints that
affect IoT devices (the DM node can normally deal with “standard” PKI processes). In this
case, the IoT devices must be pre-configured in order to recognize the valid DM’s certificate
in order to prevent any potential malicious device configuration coming from fake DMs that
try to register on Emercoin NVS a different certificate hash value associated with the real
device’s identity (the malicious agent would be able to successfully impersonate the device);

• Another crucial modification is related to the step where (during the registration protocol)
the device generates its own asymmetric key pair and the corresponding self-signed certifi-
cate: when the DM receives the message containing the identity provided by the device
together with the corresponding public key, it can’t verify the binding between the device
and the received data. Potentially, any device could claim an arbitrary identity while the DM
won’t be able to detect a “lying entity”. This issue has a great impact on the overall security
and robustness of the proposed system: for this reason, this implementation also proposes
a TPM-based solution for verifying that a device is strictly bound to a specific key/identity.
In this chapter, a quick background on TPM technology will be provided together with
further details about the Trusted Computing Group specification we are interested in. It’s
important to notice that basically, this TPM-based approach can be very useful in many
other scenarios involving Digital Identity Systems [52] or e.g “Authorize-then-Authenticate”
mechanisms [51].

3.1.1 Trusted Platform Module (TPM)

The TPM is a cryptographic chip that can securely store passwords, keys and certificates. This
chip can be installed on high-end devices like desktop PCs, but also on smartphone and constrained
devices. When a cryptographic key is stored on the TPM, the operative system won’t be able
to retrieve it, neither with special authorization. To use a key, the operative system can only
ask to the TPM to perform cryptographic operations using that specific key. This chip enables

40

Proposed implementation

the possibility to develop a variety of applications that make it harder to access information
on computing devices without authorization. For instance, TPM is mainly used for software
attestation: when the software running on a device is altered, the chip can deny the access to a
specific set of operations or storage areas, depending on a pre-defined policy. But this technology
can also be used for the identification of the devices, using the pre-installed Endorsement Key
(EK) that will be discussed later.

Figure 3.2: TPM 1.2 vs. TPM 2.0 architectures (source: [68])

The figure summarize TPM 2.0 architecture and compares it with the older TPM 1.2 archi-
tecture. TPM 2.0 architecture is composed by the following modules:

• I/O Buffer: a memory area where the data that transit from the host system to the TPM
and vice-versa is stored. The input buffer contains commands-related data that will be
received by the TPM, while the output buffer contains the command output data that will
be sent back to the host system;

• Cryptography Subsystem: it is responsible for the execution of TPM’s cryptographic
functions. Many modules compose the Cryptography subsystem (Hash Engine, Symmet-
ric Engine, Asymmetric Engine, Key Generation, RNG). The TCG (Trusted Computing
Group, further details will be provided later) recommends specific algorithms providing a
classification of three different categories: S (Standard), A (Assigned), L (Legacy). RSA and
ECC are the only standard asymmetric algorithms: for RSA the standard signing schemes
are RSASSA and RSAPSS while for ECC the set of standard signing scheme is composed
by ECDSA, ECDAA and ECSchnorr.

Differently from TPM 1.2, TPM 2.0 allows to perform symmetric encryption operation for
the encrypting/decrypting command parameters and externally stored data. The standard
symmetric algorithm is AES.

Key Generation module can be used to generate two types of keys: Primary keys and
Ordinary keys. Primary keys are generated starting from special seeds (Primary Seeds)
computed by the RNG and permanently stored in the chip for next key generations. The

41

Proposed implementation

Attestation Key, necessary for the device authentication procedure defined by the TCG
must be generated using a Primary Seed, so it will be a Primary Key;

• Authorization Subsystem: every time that a TPM command is executed, the Autho-
rization Subsystem is invoked if the command wants to access shielded locations. When
invoked, it performs two different operations (before and after command execution):

– before command execution it checks that every authorization is valid for the involved
TPM object;

– after command execution it generates an acknowledge session value for the response

• RAM: it contains transient TPM data;

• NVM (Non-Volatile Memory): it stores TPM persistent data. NV memory areas can
be accessed using an handle called NV index ;

The evolution from TPM 1.2 to TPM 2.0 brought many benefits to this technology. For in-
stance, TPM 2.0 provides a greater flexibility for managing authorization roles; originally, TPM
1.2 was designed to provide two different types of authorization: Owner authorization and Stor-
age Root Key authorization. Owner authorization was used in many different cases potentially
different one from the other, and with TPM 2.0 this issue was solved by creating different hierar-
chies where every resident object is characterized by a specific set of policies and authorizations:
Platform Hierarchy, Storage Hierarchy, Null Hierarchy and Endorsement Hierarchy, used by the
privacy administrator in order to control the access to the Endorsement Key, that basically repre-
sents the identity of the TPM and that will be used for authenticating the device using the TCG
specification procedure for Attestation Key generation;

The development of TPM-based applications is regulated by the Trusted Computing Group
(TCG), an international standards body in charge of defining specifications, protocols and APIs
related to the development of TPM-based interoperable applications. To achieve the device iden-
tity attestation using TPM, the TCG has published a detailed specification [60] that will be
followed for the purpose of this work. The Endorsement Key previously mentioned, is an en-
cryption key permanently stored on the TPM by the manufacturer. Together with this key, the
TPM also includes an Endorsement Key Certificate, signed by the manufacturer’s CA and whose
validity is easily verifiable by the chip owner. Because EK has a long lifetime and is persistent, is
a good candidate to be used as a device identity. Nevertheless, it’s important to notice that an
Endorsement Key identifies a TPM and not a device. The purpose of the specification, in fact, is
to provide a detailed procedure that finally produces a DevID (Device Identity) certificate.

3.1.2 Device identification using TPM 2.0

The scenario described by [60] involves a Certification Authority in charge of verifying the binding
between the device identity and the generated Attestation Key. In our study case, the standard
CA-based PKI is replaced with a decentralized application based on Emercoin NVS, so the CA
is replaced by the Device Manager, which has to verify that all the messages exchanged with a
device during the registration phase really come from the device we are intended to configure.
Basically, the device must prove that the generated Attestation Key resides in the same TPM
of the Endorsement Key associated with the EK certificate stored by the DM. The procedure is
described in section 6.1.2 of [60] and is composed as follows:

1. The device creates the Attestation Key (AK) in the Endorsement Hierarchy following the
rules described in section 3.6 and 7.2 of the specification;

2. The device builds the TCG-CSR-IDEVID structure (further details will be discussed later),
that contains:

• Platform Identity Information: device model and serial number;

• The TPM EK Certificate previously mentioned;

42

Proposed implementation

• The AK Public Area

3. Using the TPM, the TCG-CSR-IDEVID hash is generated and signed with the AK, to
address potential MITM attacks during the transmission to the Device Manager;

4. The TCG-CSR-IDEVID is sent to the Device Manager together with the signature;

5. The DM verifies the received data:

• Extracts the AK public key from the Public Area and uses it to verify the signature
on the TCG-CSR-IDEVID structure

• Extracts the EK certificate and verifies it using the indicated TPM manufacturer’s
certificate chain. Before this verification, the DM checks if the received EK certificate
is equal to the certificate associated with the device model and serial number stored
locally;

6. The DM issues a challenge to the device to get a Proof-of-Possession of the Endorsement
Key certified by the EK certificate and to ensure that the AK is stored in the same TPM
where the EK resides. To build this challenge, the DM uses the following procedure:

• Calculate the cryptographic name of the AK (IDH ||H(PubAreaAK), where H is the
hash function and IDH is the hash algorithm ID);

• Using the TPM2 MakeCredential command, create the encrypted credential blob that
will be received by the device. TPM2 MakeCredential receives as input a nonce that
must be retained by the DM for use in later steps;

• The DM sends the generated blob to the device;

7. Using the TPM2 ActivateCredential command, the device decrypts the credential blob
and gets the CertInfo data. Moreover, by using this command, the TPM verifies the AK’s
name using the EK. The returned CertInfo is basically the Proof-of-Possession (the nonce
provided in step 6);

8. The device sends CertInfo to the CA, that checks if the received value is equal to the nonce
previously retained.

9. In case of success, the AK resides in the TPM described by the EK certificate: the device
is not lying about its identity and the certificate registration procedure can proceed.

The device is now able to securely authenticate the following messages of the certificate reg-
istration procedure using the Attestation Key. In the original procedure described in [37], the
device generates its own identity, the private/public key pair and the self-signed X.509 certificate
and signs the certificate hash (that will be sent to the DM) with the newly generated asymmetric
key. As explained before, this procedure doesn’t ensure a binding between the claimed identity
and the real device. Now, by signing the certificate hash with the Attestation Key previously cre-
ated, the DM knows that the received data come from a specific device of the network uniquely
identified thanks to its TPM and the procedure described before.

3.1.3 Device certificate registration

Initially, each IoT device is waiting the DM for the configuration: in this state, the device is
not active in the network. The first operation that must be performed is the registration of a
device certificate using Emercoin. The DM locally stores a list containing the information about
each device within the network, including IP address, model name, serial number and the EK
certificate that uniquely identify a device’s TPM. Potential malicious actors trying to configure
malicious devices won’t be able to perform the attack if the device’s data is not present in this
list. As discussed before, during the authentication using the TPM-based procedure, the TCG-
CSR-IDEVID structure contains the device’s model name, the serial number and the TPM’s EK
certificate: this information must match the corresponding entry in the list for the procedure to
end successfully.

43

Proposed implementation

Figure 3.3: Device setup implemented schema

The device setup protocol described in [37] has been modified to integrate the TPM-based
device authentication:

1. DM generates a private/public key pair skDM and pkDM

2. DM sends a message Minit = (Cinit, pkDM , EXA, σ) where Cinit is an initialization com-
mand, EXa is the expiration date of the future certificate and σ is the signature of the
concatenation of all the previous elements, signed with skDM ;

3. The device (DA) is waiting for a configuration: it receives Minit from DM and, after signa-
ture verification, it generates the AK following the procedure described before;

4. If the AK creation procedure ends successfully, the device generates an identity IDa, a
private/public key pair skA/pkA and a self-signed X.509 certificate CertA. For IDa it’s
recommended to use a Universally Unique Identifier (UUID), to avoid eventual collisions
with other names in the ledger;

5. Da sends C = Enc(pkDM , CertA) to DM. The encryption of CertA is recommended to avoid
that a Man-in-the-Middle catches the unique identity and performs the name registration
(with another certificate digest) before the DM. The message is finally signed using the AK
previously created;

6. DM receives C, decrypts it using skDM and verifies the signature. Then, it computes
V = H(CertA) where H is the hash function and finally generates a transaction to register
the < IDA, V > pair on Emercoin NVS;

7. When the transaction is successfully confirmed by the consensus procedure, DM sends a
signed acknowledgement to DA;

8. DA receives the acknowledgment and verifies the signature using pkDM . In case of success,
DA update its configuration by storing pkDM and EXA on the local storage. Now DA is in
running state and can’t accept other initialization command from the DM;

44

Proposed implementation

3.1.4 Device ownership transfer

This procedure is applied every time that a device Da is transferred to a different network under
the control of another administrator. If this procedure is not executed, the future device admin-
istrator won’t be able to submit new Emercoin transactions for that specific device name-value
pair, and this privilege would be reserved to the old administrator only. In Emercoin, when a
transaction related to a name-value pair is inflated with different addresses for the receiver and
the sender, the management privileges of that specific pair is transferred from the sender to the
receiver.

Figure 3.4: Device ownership transfer implemented schema

The procedure is composed by the following steps:

1. The new owner generates an asymmetric key pair skDM2/pkDM2;

2. The old owner creates a new UPDATE transaction in Emercoin, inflated with the corre-
sponding name of the device involved in the transfer and providing the new owner Emercoin
address as receiver address;

3. The old owner sends pkDM2 and its signature using skDM : this is necessary to prove the
right to transfer the ownership of that device to another entity. The device verifies the
signature using the master public key of its configuration and, in case of success, switches
its master public key with the new one;

3.1.5 Device key update

When a certificate is about to expire or contains wrong information that must be updated, the
application provides a way to update the name-value pair stored on the ledger. Like in the
registration procedure and differently from the original protocol, the message containing the data
related to the updated identity information must be signed with the AK that’s been already
validated.

45

Proposed implementation

Figure 3.5: Device certificate update implemented schema

The update operation procedure is very similar to the registration one, and consists of the
following steps:

1. DM sends Mupdate = Cupdate||η together with the signature, where Cupdate is the command
identifier and η is a nonce necessary to avoid replay attacks;

2. DA checks if the signature is correct and if the nonce is greater than the previously stored
one. If the verification succeeds, DA generates a new asymmetric key pair sk′A/pk

′
A and a

new self-signed X.509 certificate Cert′A (the identity is still the same IDA already registered
on Emercoin NVS);

3. DA sends Cert′A plus a signature obtained using the AK (the encryption is not necessary
in this case because no new identities are generated);

4. DM receives the message and the signature: if the signature verification succeeds, the DM
creates a new UPDATE transaction for the same old name associated with the device, where
the value is replaced with the hash of the newly generated certificate;

3.1.6 Device key revocation

When a device is compromised, it’s important to provide the possibility to revoke its correspond-
ing certificate stored on the ledger. In this case, the device owner itself doesn’t have to ask for
revocation to a Certification Authority, but it can simply creates a new DELETE transaction,
providing as input the name that needs to be revoked. Whenever an entity tries to retrieve infor-
mation about a specific name registered in Emercoin NVS, the returned data is always associated
with the last transaction where that name is involved. If the last transaction related to a name
is a revoke transaction, that record must be considered expired and not yet valid.

46

Proposed implementation

Figure 3.6: Name revocation in Emercoin NVS: the last transaction represent the current state
of the name (revoked)

3.1.7 Authenticated Key Exchange

The final result to achieve with this work is to replace the centralized trust anchor represented by
the Root CAs with a decentralized platform represented, in this case, by the Emercoin Blockchain.
The standard TLS libraries, perform server/client authentication by using CA-based mechanism
(certificate chain verification): with proper adjustments, our purpose is to estabilish TLS channel
by using Emercoin NVS to ensure the validity of a certificate. When two devices want to securely
communicate using a TLS channel, the pre-condition is that each device has been configured
using the device setup procedure described in 3.1.3. Both the devices locally store their self-
signed certificate containing the information about their identity and for each X.509 certificate
there’s a name-value pair on Emercoin NVS, where the value is the hash of the certificate and the
name is the corresponding device identity.

During the TLS handshake, each device receives a certificate from the other party for the
authentication: at this point, instead of providing a certificate chain that goes up until a Root
CA, the certificate is self-signed and it’s verified using Emercoin NVS: first the device identity
is extracted from the received X.509 certificate, then the hash of the certificate is computed
and compared with the value contained in the name-value pair stored on the ledger whose name
is equal to the extracted identity. If the name-value pair exists, and the value is equal to the
computed hash, the authentication process ends successfully and the TLS handshake can proceed.
To retrieve information from the ledger, an IoT device must query a trusted B-node: to improve
security and robustness, it would also be useful to query different trusted B-nodes, so that an
eventual forged response can be detected.

Figure 3.7: TLS authentication for authenticated key exchange

47

Proposed implementation

3.2 Test software

This section will provide further technical details about the implementation and the software used
to build this test application.

3.2.1 Emercoin wallet

Starting from the B-node (Device Manager), the core element to run an Emercoin node is the
Emercoin Wallet. A wallet is a software that allows users to run a Blockchain node and to
manage their own account within that specific Blockchain network. When the wallet is launched
for the first time, the entire blockchain will be downloaded on the storage: this process can
require an important amount of time, depending on the Blockchain size, but it will be executed
only the first time. The Emercoin wallet also provides a configuration file that allows a user to
enable/disable specific options, like the possibility to use the testnet instead of the real blockchain
network. The testnet is a secondary network used for experimental and test purposes, where the
official cryptocurrency is replaced with a fake one. Some platforms (e.g. Ethereum) provides
automatic mechanisms to get testnet coins (e.g. Ethereum testnet faucet) but, for Emercoin,
the only way to get some testnet coins is to write an email to the official support, providing an
Emercoin testnet address.

The home page provides a simple recap of the account, by displaying the current balance and
the recent transactions. “Send” and “Receive” tabs are for simple value exchange transactions
that do not involve any name-value pair. Basically, the NVS is built upon the normal Blockchain
application, so that Emercoin can also be used to send/receive EMCs (the official Emercoin
cryptocurrency). “Transaction” tab shows the list of all the transactions related to the active
account.

“Manage Names” is the most interesting section of the wallet for our purpose. This tab
provides a GUI for name-value pair creation, update and revocation: these three possible operation
are identified with three specific command strings (NAME NEW, NAME UPDATE, NAME DELETE and
in case of a pair creation/update the interface allows to specify the expiration window, expressed
in days but practically converted in number of mined blocks (the block mining rate is constant,
so it’s possible to convert the number of days in number of mined blocks starting from the block
containing the involved transaction). If an address is specified, the selected name-value pair will be
under the control of the entity associated with that address (this feature is used for the ownership
transfer procedure described before).

The wallet can also be used without the GUI, by editing the configuration file to setup an
RPC server. The configuration file can also be edited using a GUI window, that allows to specify
the access credentials. To use the Emercoin RPC server, a list of API is available at [69]: this
API is based on Bitcoin API with some newly added commands specific for the NVS operations.
The most important functions that will be used in the implementation are:

• name new: creates a new name-value pair that expires after the specified number of days.
The input parameters are the following:

– name: name to create;

– value: value to write;

– days: expiration time window (1 day ≈ 175 blocks);

– toaddress: (optional) address of the recipient. If empty, the transaction is to yourself;

– valuetype: (optional) interpretation of the string value. Can be “hex” or “base64”;

• name delete: delete a name (only if the user owns it). This is basically the revocation:
when a delete transaction is confirmed, another entity can use name new using the deleted
name;

• name update: it works exactly like name new, but the user must own the name of which
the corresponding value is going to be updated. By specifying a different toaddress, the
ownership of that name-value pair is transferred to the recipient;

48

Proposed implementation

Figure 3.8: Emercoin wallet: names management tab

• listtransactions: returns up to count most recent transactions skipping the first from
transactions (related to the specified account passed as input parameter). listtransactions
will be used after the creation of a transaction to check if the block containing the transac-
tion is at least 6 blocks deep in the chain (6 is the threshold to trust the validity of a block).
This function receives the following input parameters:

– account: (optional) DEPRECATED. This should be set to “*” to indicate the default
active account;

– count: (optional) the amount of transactions to return. Default is 10;

– skip: (optional) the amount of transactions to skip. Default is 0;

3.2.2 TPM2 Software Stack (TSS2) library

TSS2 is an implementation of the Trusted Computing Group’s TPM2 Software Stack (TSS). The
stack is composed by the following layers (from top to the bottom):

• Feature API (FAPI): this is the most high-level interface for TPM programming. It’s
designed for simple TPM-based applications and it’s very easy to use. FAPI functions cover
the 80% of the use cases where a TPM is involved. For more complex use cases, TSS2
provides more sofisticated APIs (ESAPI and SAPI). All these functions are grouped in a
single library: libtss2-fapi. The documentation is available on [61]

• Enhanced System API (ESAPI): this API maps all the available TPM2 commands
documented in Part 3 of the TPM2 specification. It’s a bit more simple to use than the
SAPI and, in addition to the latter, it performs tracking of metadata for TPM object and
automatic calculation of session based authorization. Finally, ESAPI functions are also
available in their asynchronous version. ESAPI is documented in [62] and all its functions
are grouped in the libtss2-esys library

• System API (SAPI): ESAPI and FAPI are built upon the System API. Also for SAPI
functions there’s an asynchronous variant, useful for event-driven systems. The functions
are entirely grouped in libtss2-sys library and a rich documentation is available on [63];

• Marshaling/Unmarshaling (MU) API: this API provides a set of functions that allow to
serialize complex TSS structures into bytes (for transmission) and vice-versa. The functions
are included in the libtss2-mu library and their documentation is available on [64];

49

Proposed implementation

• TPM Command Transmission Interface TCTI: this API is the most low-level interface
for TPM interactions. There are different libraries for TCTI, depending on the used TPM
platform (e.g. libtss2-tcti-device for hardware TPMs, libtss2-tcti-tbs for Windows,
libtss2-tcti-swtpm for software TPM). The documentation is available on [65].

Figure 3.9: TPM2 Software Stack schema (source: [66])

For the implementation discussed in this section, the FAPI was not well suited because some
important steps of the TPM-based authentication requires specific TPM commands that are not
provided by the FAPI. For this reason, the ESAPI was used to implement the TCG specification
for devices identity. ESAPI lies directly above the SAPI, and it’s been designed to provide 100%
of TPM’s functionalities with some simplification when compared to the SAPI. ESAPI’s main
advantage is to provide cryptographic functionalities for that applications that requires to have
an encrypted data stream from the library to the TPM itself (parameter encryption/decryption,
secure HMAC sessions) and an enhanced session management functionality. ESAPI simplifies
session starting and salting, HMAC calculation and the creation of encrypting/decrypting sessions.
It’s written using C99, to provide great compatibility through many potential operative systems
and so that it can be easily bound to other languages (e.g. Python [77]). Compared to the
System API, the ESAPI allows to execute different TPM commands using fewer function calls
and to control each input parameters of the corresponding TPM commands.

The core element for the ESAPI to be used is the context. The ESYS CONTEXT is a structure
that contains all the necessary data that must be stored between each function call, so that no
global state variables are necessary. It contains:

• Data structures and information that provides to the ESAPI a low-level communication
channel with the TPM (e.g. TCTI context);

50

Proposed implementation

• Metadata associated to each ESYS TR objects (handles that identify TPM Resources);

• State information;

The memory for the context is always allocated by the ESAPI (not by the programmer) and
its lifecycle can be summarized as follows:

• An ESYS CONTEXT is created using Esys Initialize() function;

• Create (or deserialize bytes previously store on the local storage) metadata to retrieve
sessions and resource information structures;

• Use sessions and resources obtained from the previous step to execute TPM commands;

• Serialize resources/sessions information on disk;

• Close the context using Esys Finalize();

Another important element stricly related to the context is the TPM resource. TPM resource
metadata is referenced by an ESYS TR handle associated with a specific ESYS CONTEXT: an handle
for a resource created using one ESYS CONTEXT can only be used within that specific ESYS CONTEXT.
TPM resource metadata contains the following data:

• The TPM handle;

• authValue: the authentication value of the resource;

• The public area of the resource (TPM2B PUBLIC);

• The resource name, equal to the digest of resource’s public area prepended with the hash
algorithm identifier;

TPM resource lifecycle is summarily described as follows:

• Create an ESYS TR object (e.g. deserializing metadata from disk using Esys TR Deserialize());

• Executed TPM commands using ESAPI function calls referencing the obtained resource;

• Serialize metadata to disk (using Esys TR Serialize(), the reverse function of Esys TR Deserialize());

• Destroy the ESYS TR handle by flushing the resource (e.g. using Esys FlushContext()) or
releasing only the metadata with Esys TR Close() (leaving the resource in the TPM);

The last important element related to the ESAPI use model is the session. Also the session is
stored in an opaque structure associated with an ESYS CONTEXT. This structure is referenced by
an ESYS TR handle and contains the following session information:

• The TPM handle;

• Session attributes that will be used in the next TPM command;

• Information related to the encrypted salt of the session and the storage of the session key;

• Session hash and symmetric algorithms information;

• Session nonces;

• Session policy information;

A session can be started using the Esys StartAuthSession() function that generates the
corresponding ESYS TR handle. The latter is used to reference the session when a TPM command
is executed through ESAPI function calls. When the application’s task is finished, the session can
be closed in two ways:

51

Proposed implementation

• using Esys FlushContext() function;

• setting the continueSession bit to false using Esys TRSess SetAttributes() function;

These elements are essential for any TPM-based application: in order to implement the spec-
ification provided by the Trusted Computing Group for the authentication of a TPM-enabled
device, the most important TPM commands that will be used are:

• TPM2 CreatePrimary: this command can be executed using Esys CreatePrimary() func-
tion from ESAPI. It creates a Primary Object using the TPM’s primary seed for generation.
TCG specification explicitly requires to use TPM2 CreatePrimary to generate the AK. In
this case, apart from the ESYS CONTEXT and the session handle ESYS TR, the most important
input parameter is the TPM2B PUBLIC *inPublic, a TSS structure that contains many fields
related to the attributes of the key that we want to create. inPublic->publicArea.type

represents the key type (e.g. RSA), inPublic->publicArea.attributes is an important
bitstring that can be configured using a combination of pre-defined constants (using OR
logical operator). This configuration must comply the specification’s indicatons: for the
AK, the following object attributes must be set:

– FixedTPM: the key can’t be duplicated;

– FixedParent: the key can be copied only if the parent key can be duplicated (a
FixedTPM key is also FixedParent);

– SensitiveDataOrigin: the private key was generated by the TPM. This ensures that
no other copies of that key exist;

– Restricted: the key can only sign TPM-generated hashes (when a digest is calculated
using the corresponding TPM command, the latter releases a specific ticket that can
be provided to the TPM2 Sign command to prove that the data we are trying to sign
was generated by the TPM;

– Signing: the key can be used for signing;

– UserWithAuth: if this attribute is set, the USER role authorizations can be provided
using object’s authValue (e.g. a password), without the necessity to satisfy a specific
policy within a policy session;

Another important field of TPM2B PUBLIC structure is inPublic->publicArea.authPolicy:
this field must be filled with a pre-defined sequence of bytes in order to retrieve the Endorse-
ment Key with TPM2 CreatePrimary (the value is specified in [67, Table 1]). Generally, it
contains the information related to a policy that defines the authorization rules and the
constraints on the TPM object;

• TPM2 HashSequenceStart: hash computation must be performed using the TPM in order to
sign a payload with a TPM restricted key. ESAPI provides also the possibility to compute
the hash using a single function Esys Hash() when the payload length is <= 1024B. If
the payload is > 1024B, it has to be split in different chunks, and for each chunk the
Esys SequenceUpdate() function is called (after Esys HashSequenceStart() function has
been called). As explained before, when a digest is computed using these TPM commands,
a special ticket is released to prove that the hash value has been calculated by the TPM
and not externally. When this ticket is passed to the Esys Sign() function, it’s possible to
use a restricted key for the signature;

• TPM2 Sign: this command allows to sign also an externally provided hash (except for re-
stricted keys). To specify the signature properties, the Esys Sign() function requires as
input a TPMT SIG SCHEME structure, that contains two fields:

– scheme: an identifier for the signature scheme that will be used for the signing process
(e.g. TPM2 ALG RSAPSS;

– details.<scheme>.hashAlg: the hash algorithm that will be used for the computa-
tion of the signature;

52

Proposed implementation

• TPM2 MakeCredential: allows the TPM to create a TPM2B ID OBJECT containing an activa-
tion credential according to the methods described in section “Credential Protection” of [68].
The encrypted credential blob generated by this command is used by a TPM-enabled device
to release the credential (using TPM2 ActivateCredential) in order to prove that a TPM
object resides in the same TPM in which resides the specific Endorsement Key whose public
part was used to encrypt the blob. The ESAPI function bound to TPM2 MakeCredential

command is Esys MakeCredential(). Apart from the handle of the key that is used to
encrypt the credential blob, the function requires two important input parameters:

– credential: a TPM2B DIGEST structure that contains a buffer filled with credential
data (credential data are application-dependent);

– objectName: a TPM2B NAME structure that wraps a buffer containing the name of the
TPM key whose TPM residency has to be proved. The name is basically the hash
of the public key prepended with the identifier of the hash algorithm used for the
computation;

• TPM2 ActivateCredential: this command enables the association of a credential with an
object in a way that ensures that the TPM has validated the parameters of the credentialed
object. The corresponding ESAPI function’s (Esys ActivateCredential()) important in-
put parameters are: the handle of the key that will be used to decrypt the credential
blob, the handle of the credentialed key and the encrypted credential blob generated by
Esys MakeCredential().

3.2.3 Protocol implementation

The software run by the DM and the one run by the constrained device have been developed
from scratch. The DM runs a Python script organized in different files, one for each significant
operation (device initialization, ownership transfer etc...). Python was chosen because is an
extremely powerful language, that allows to produce complex code in very short time thanks to
a great variety of libraries that provides lots of complex functionalities with minimum verbosity
in the code. This choice was possible also because the DM does not have any restriction on
its computational resources: in fact, Python and its libraries are not well suited for constrained
resource devices.

Welcome to your personal Device Manager! Choose an option:

1. Initialize new IoT device

2. Device ownership transfer

3. Device key update

4. Device key revocation

5. Exit

>>

Figure 3.10: Device Manager Python application: first look

pyca/cryptography library [71] was used to perform all the necessary cryptographic opera-
tions on DM side, except for those specific steps related to the Attestation Key creation procedure,
that require to use some functions of the tss2 library [70]. TSS2 has been developed using the
C language, but also a Python binding is available (tpm2-pytss) [77]. Cryptographic operations
are grouped in a single Python file (device-manager/crypto.py) that basically provides each
necessary cryptographic functionality hiding extra low-level operations on the input data to make
them suitable for pyca/cryptography library functions. On the device side, because of the hypo-
thetical restrictions related to the computational resources, mbedTLS [72] library was adopted and
the same approach used for the DM Python application has been replicated, so that every neces-
sary high-level cryptographic task was wrapped into a function that hides low-level programming
details. All these wrappers have been grouped in iot-device/crypto.c.

53

Proposed implementation

The following section will discuss more in detail the practical implementation of the protocols
desribed in 3.1. In case of particular sections of code that require a deeper analysis, more technical
details will be provided together with small code reports.

For the initial device configuration, the main function is deviceconf() on the DM’s side,
while the corresponding device-side function is called initialization() and can be found inside
iot-device/initialization.c file: first, deviceconf() function asks to the user to type the
IP address of the device that will be registered on Emercoin NVS. A connection with the device
is established using Python sockets, and after this step the real registration procedure begin. The
first function to be invoked is generate mInit(): the purpose of this function is to build the
Minit message described in the high-level design. It’s important to specify that each message
exchanged using sockets will be encoded using JSON format. The JSON Minit message will be
structured in the following way:

• command: identifies the initialization message;

• pubkey: the public part of the RSA key previously generated, encoded using PEM format;

• exp date: expiration date that the device will use to generate the self-signed X.509 certifi-
cate. This date is based on the number of validity days selected by the user;

The JSON message is sent to the device: at this point, when the message is received and
verified by the device using verify minit() function, the latter will execute the TPM-based
authentication procedure in order to generate the Attestation Key. The entire procedure is
wrapped into a single function called create tpm idevid(): in its first phase, this function
generates the TCG-CSR-IDEVID structure and sends it to the DM. When the message contain-
ing the TCG-CSR-IDEVID is received, the DM completes the procedure by calling two functions:
verify idevid() and make credential(). verify idevid() extracts the device information
(model name, serial number and EK certificate) in order to check if the EK certificate matches the
one stored locally. Finally, the signature is extracted together with the public part of the generated
Attestation Key necessary to verify it. If verify idevid() ends successfully, make credential()

is executed: its purpose is to run the TPM2 MakeCredential command and send the output of the
latter to the client. As discussed before TPM2 MakeCredential is used to produce a challenge for
the device in order to verify the Proof-of-Possession of the key certified by the EK certificate and
to prove that the AK resides in the same chip of the EK. To achieve this result, the DM generates
a random nonce that will be used by tpm2 pytss utils.make credential() in order to produce
an encrypted (using the received public EK) credential blob that can be decrypted only using the
corresponding private part of the EK that resides in the device’s TPM. The device extracts the
nonce by decrypting the credential blob using Esys ActivateCredential() and sends back the
solved challenge to the DM, that verifies if the received solution matches the previously generated
nonce. The input parameters of tpm2 pytss utils.make credential() will be filled with the
following data:

• public (TPMT PUBLIC): this will be the public area of device’s TPM EK;

• credential (bytes): the nonce;

• name (bytes): in this case, we want to ensure that the AK resides in the same TPM where
the EK resides. So, name will be represented by the AK name;

The output of tpm2 pytss utils.make credential() is composed by two objects: the cre-
dential blob (the encrypted challenge) and the secret, that must be provided to Esys ActivateCredential()

to extract the original credential. When the client receives the encrypted challenge containing
the credential blob and the secret, Esys ActivateCredential() is invoked, but its functioning
is a bit more complex and requires an extra explanation. This function receives (apart from the
ESYS CONTEXT the following required input parameters:

• activateHandle: the ESYS TR handle of the key that will be attested to be resident in the
same TPM where the EK resides. In this case this handle will reference the AK;

54

Proposed implementation

• keyHandle: the ESYS TR handle of the key used to solve the challenge. In this case, it will
reference the EK;

• shandle1: the ESYS TR handle of the TPM session in which the key referenced by activateHandle
was created (AK);

• shandle2: like shandle1 but for the key referenced by keyHandle (EK). For our imple-
mentation, this session must satisfy some specific requirements. If keyHandle points to
a restricted key (like the EK), the TPM grants the authorization to use it for credential
decryption only if shandle2 points to a valid policy session. To create a policy session,
the Esys StartAuthSession() function must be called passing the pre-defined constant
TPM2 SE POLICY as session type. In order for a TPM command to be authorized to use
a specific TPM object using a session policy, the policy hash value contained in session’s
metadata must be equal to authPolicy field value included in the TPM2B PUBLIC struc-
ture passed to the Esys CreatePrimary() function as a required parameter. In case of a
mismatch between these two values, the TPM will deny the authorization to execute the
command. The authPolicy field of the EK can be found in the table at section B.3.3 of [67]:
the table also provide an important indication to make the policy session hash value match
that specific authPolicy. To achieve the latter result, the Esys PolicySecret() function
must be invoked, passing the pre-defined handle ESYS TR RH ENDORSEMENT as authHandle
(a required input parameter). With these adjustments the TPM grants to the application
the necessary authorization for using EK to decrypt the credential blob and retrieve the
challenge solution.

rc = Esys_StartAuthSession(ectx, ESYS_TR_NONE, ESYS_TR_NONE, ESYS_TR_NONE,

ESYS_TR_NONE, ESYS_TR_NONE, NULL, TPM2_SE_POLICY, &symmetric,

TPM2_ALG_SHA256, &session2);

if (rc != TSS2_RC_SUCCESS) {

printf("AuthSession 2 error: %s\n", Tss2_RC_Decode(rc));

return rc;

}

TPM2B_NONCE *nonceTPM;

Esys_TRSess_GetNonceTPM(ectx, session2, &nonceTPM);

TPM2B_DIGEST cpHashA = {0};

TPM2B_NONCE policyRef = {0};

INT32 expiration = -(10*365*24*60*60); /* Expiration ten years */

rc = Esys_PolicySecret(ectx, ESYS_TR_RH_ENDORSEMENT, session2,

ESYS_TR_PASSWORD, ESYS_TR_NONE, ESYS_TR_NONE, nonceTPM, &cpHashA,

&policyRef, expiration, NULL, NULL);

Figure 3.11: Policy session configuration using Esys PolicySecret()

When the TPM-based authentication procedure is successfully completed (the solution found
by the device matches the nonce originally generated by the DM), the DM receives from the device
a JSON message containing all the information about the newly generated identity (identifier,
public key, self-signed certificate) signed with the verified AK. This JSON message is the output
of a initialization.c function called create encrypted identity message(). On the DM
side, verified encrypted identity() decrypts the ciphered identifier using DM’s private key
(the encryption is performed to prevent a potential eavesdropper that creates a new transaction
on Emercoin using that identity with a different certificate hash value) and verifies the received
signature using the device’s public AK. If the signature is valid, the DM calls registerDevice(),
a function that uses python-bitcoinrpc library [78] to interact with the Emercoin API discussed
in 3.2.1.

55

Proposed implementation

The registration procedure ends with an acknowledgment message from the DM to the device
(produced by the function gen cReg()): this message is generated when the transaction has been
validated and it’s considered secure (6 blocks deep in the chain). To check the status of the
transaction, every 10 minutes the DM uses the listtransactions API call with count = 1.
Among the different fields of the returned JSON response, confirmations represents the depth
in the chain of the block containing our transaction. When confirmations == 6, the block is
considered secure and the registration protocol is completed with the acknowledgment message.

The last operation performed by the DM is to store all the information about the registered
device status on the local storage. For each device, there’s a directory whose name is represented
by the device’s model name and serial number. This directory includes the EK certificate, the
device’s AK and a configuration file that contains the following information:

• status: INIT if the device is waiting for a certificate registration, RUNNING otherwise (if the
status is RUNNING, the device won’t accept any initialization messages from the DM);

• id: name corresponding to the newly name-value pair registered on Emercoin NVS;

Also the device stores some information on iot-device/cli-build/configuration using a
function called save configuration(): together with the status and the id, the device must
store the information related to the DM’s public key and additionally the certificate’s expiration
date.

In order to update the identity information/public key related to a specific device, the DM
provides another Python script whose main function is called update key(), while by the de-
vice’s side all the necessary functions are grouped within iot-device/update.c file, whose main
function is called update(). As discussed before, the update process steps are very similar to the
registration ones. The important difference is that in this case, we won’t find any Attestation
Key generation phase in order to authenticate the device: this procedure is only executed when
the device is configured for the first time, so that the AK can be used for the authentication of
the device in every other communication between the device itself and its DM. The DM starts the
communication with a message very similar to the Minit message seen before: now, the identifier
is UPDT and together with the latter it would be appropriate to include a nonce, so that a malicious
actor won’t be able to perform replay attacks later. After the verification of this first message
(generated with the gen mUpdt() function), the remaining part of the procedure is identical to
the registration phase except for AK generation.

The last two implemented operations are device ownership transfer and device key revoca-
tion. For what concerns device key revocation, the Python application provides a single func-
tion called revoke key(): when the key revocation option is selected, revoke key() is invoked
and asks to the user to type the ID of the device whose key must be revoked. The ID is the
name corresponding to the name-value pair stored on the public ledger, previously stored by
the DM at the end of registration procedure. revoke key() simply wraps another function of
device-manager/emercoin.py, a file that contains the set of functions that uses bitcoinrpc

library to invoke Emercoin API procedures using the pre-configured RPC server. In this case,
revoke key() simply invokes revokeName() function.

The last available operation is for transferring the ownership of a device to another entity. The
functions that implement this feature are contained in device-manager/transfer device ownership.py

file on DM side and in iot-device/ownership.c on the device side. The main DM function is
ownership transfer() and its execution flow is similar to the previously discussed functions:
before the generation of the initial command that starts the procedure, the pre-condition is that
the DM knows the Emercoin address of the new owner and has previously stored its public key so
that it can be loaded using the load new owner pubkey() function. The new owner’s Emercoin
address will be asked later during the protocol. If these pre-conditions are satisfied, the DM
generates Mowner by calling gen mOwnr(): the message includes the identifier (OWNR in this case)
and the public key of the new device owner. This message must be signed using the private key

56

Proposed implementation

from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException

import json

def registerDevice(deviceId, certHash, exptime):

rpc_connection = AuthServiceProxy("http://user:psw@127.0.0.1:9092")

rpc_connection.name_new(deviceId, certHash, exptime, "", "hex")

You have to wait for the block to be mined, before the call to ’name_show’

def getDeviceValue(deviceId):

rpc_connection = AuthServiceProxy("http://user:psw@127.0.0.1:9092")

rpc_connection.name_show(deviceId, "hex")

def transferOwnership(deviceId, newOwnerAddress):

rpc_connection = AuthServiceProxy("http://user:psw@127.0.0.1:9092")

rpc_connection.name_update(deviceId, "", 0, newOwnerAddress, "hex")

def updateValue(deviceId, value):

rpc_connection = AuthServiceProxy("http://user:psw@127.0.0.1:9092")

rpc_connection.name_update(deviceId, value, 0, "", "hex")

def revokeName(deviceId):

rpc_connection = AuthServiceProxy("http://user:psw@127.0.0.1:9092")

rpc_connection.name_delete(deviceId)

def getTransactionConfirmations():

rpc_connection = AuthServiceProxy("http://user:psw@127.0.0.1:9092")

transaction = rpc_connection.listtransactions("*", 1, 0, True)[0]

return transaction[’confirmations’]

Figure 3.12: Functions list from device-manager/emercoin.py file

of the last device owner, to ensure the validity of the ownership transfer. The device will verify
this signature using verify mOwnr() function.

Then, the DM requires the authentication of the device involved in the communication: it
receives a message created by the device (containing its ID and a nonce to prevent replay attacks)
using create ack message() function , signed with the AK obtained from the registration pro-
cess. When this message is validated by the DM using verify identity signature() function,
the latter creates the Blockchain transaction that will sanction the ownership transfer from the
previous entity to the new one. When the transaction is confirmed (always waiting until the block
containing the transaction is at least 6 block deep in the chain), the DM sends an acknowledgment
to the device (gen ack message()). The latter receives the acknowledgment and finally replaces
its locally stored DM’s public key with the new one by calling a function called

3.2.4 Modified mbedTLS for Emercoin-based certificate verification

mbedTLS is a C library implementing cryptographic primitives, X.509 certificate manipulation
and the SSL/TLS and DTLS protocols. Its small code footprint makes it suitable for embedded
systems and constrained devices in general. When two devices within the network are successfully
registered, they should be able to estabilish a secure TLS channel using their self-signed certificates
previously registered on Emercoin NVS. Of course, the original mbedTLS library doesn’t support
a similar feature: many changes are necessary, also because mbedTLS authentication does not
allow to use self-signed certificates but only valid CA chains the end up with a trusted root CA
certificate. The library provides a set of programs that deal with most common operations (e.g
SSL client, SSL server, X.509 certificate creation and verification etc...).

57

Proposed implementation

For our experimental purposes, the mbedTLS application that must be modified in order to
enable the Emercoin-based certificate verification is contained in a specific C file that resides in
mbedTLS/src/programs/ssl, called ssl client2.c. This program is essentially a simple imple-
mentation of the TLS protocol that receives 2 mandatory input parameters from the command
line: server addr/server name and server port. The interesting feature of mbedTLS is the
possibility to configure a user-defined callback function called my verify() that will be invoked
for every certificate of the chain received by the other party. Despite of this, the rest of the cer-
tificate verification procedure is always based on the validation of the certificate chain: the only
way to change this approach is to remove the code section related to the verification of the chain
against pre-loaded root CA certificates and the conditional statement that prevents the usage of
self-signed certificate. In this way, the entire certificate verification procedure is delegated to the
user-defined callback function. my verify().

static int x509_crt_verify_restartable_ca_cb(...) {

...

/* Check the chain */

/* Chain verification code is commented

ret = x509_crt_verify_chain(crt, trust_ca, ca_crl,

f_ca_cb, p_ca_cb, profile,

&ver_chain, rs_ctx);

if(ret != 0)

goto exit;

*/

/* Merge end-entity flags */

//ver_chain.items[0].flags |= ee_flags;

ret = f_vrfy(NULL, crt, 0, flags);

...

}

Figure 3.13: Chain verification code section in library/x509 crt.c

In the picture above, f verify() is the input parameter of x509 crt verify restartable ca cb()

that points to the callback function that’s going to be called for every certificate in the loaded
chain (in our case, the chain will always be composed by a single self-signed certificate): by
default, this parameter is a reference to the function my verify().

Now let’s concentrate on my verify(): for the code development, a great support has been
provided by another similar implementation based on OpenSSL [73]. This implementation is
strictly related to [37] and for this reason it already suit our final purpose: what has been done was
to “translate” this implementation using mbedTLS structures and its available functions. First
of all, it’s important to notice that for the verification against Emercoin NVS, the retrievement
of the information related to the other party is performed using the serial number of the received
certificate. This is because the randomly generated pseudonym (that represents the name of the
name-value pair in Emercoin NVS) produced by the device during the creation of a self-signed
certificate is used to fill the serial number field of the X.509 structure.

So, the first executed operation is the extraction of the serial number from the received X.509
certificate together with some string manipulations in order to remove the colon character from
the original string.

After this, a JSON request must be forwarded to the Emercoin RPC server in order to retrieve
the certificate hash value associated with the serial number of the received X.509 certificate. The

58

Proposed implementation

mbedtls_x509_serial_gets(cert_sn, len, &crt->serial);

/*

* Change the serial number to lower case

* Remove ’:’ from serial number

*/

char modified_sn[1024];

memset(modified_sn, ’\0’, 1024);

int c = 0;

int j = 0;

while (cert_sn[c] != ’\0’) {

if (cert_sn[c] >= ’A’ && cert_sn[c] <= ’Z’) {

if (cert_sn[c] != ’:’) {

modified_sn[j] = cert_sn[c] + 32;

j++;

}

} else {

if (cert_sn[c] != ’:’) {

modified_sn[j] = cert_sn[c];

j++;

}

}

c++;

}

Figure 3.14: Extraction and normalization of serial number from received X.509 certificate

JSON message must be composed as follows:

• params (array): an array containing the name of which we want to retrieve the corre-
sponding value and the encoding format of the latter (hex in this case);

• method (string): the operation we want to execute (name show);

• id (string/integer): identifies the request (for simplicity the used id is always 1);

The JSON message is forwarded to the RPC server using curl library [75], a very useful sup-
port to deal with HTTP request. To configure the HTTP request, curl easy setopt() function
is used: EMC CORE URL is a pre-defined constant that represents the URL of the RPC server and
json request is the JSONmessage already discussed. MBEDTLS X509 EMC FAILED TO CONNECT EMC CORE

has been added to mbedTLS/src/include/mbedtls/x509.h to provide specific error codes in case
of failures related to Emercoin NVS (that native mbedTLS can’t recognize).

The CURLOPT WRITEFUNCTION option is necessary to store the HTTP response in a buffer: to
set this option, it’s necessary to provide a user-defined callback function that receives the data
from the HTTP response and the pointer to an outpuf buffer that will be inflated.

If the requested name exists within Emercoin NVS, the RPC server provides a valid JSON
response. The most important JSON field we are interested in is value: JSON messages are
tricky to manage for C language and, for this reason, a useful support library called jsmn [76] was
used to speed up the code development. Using jsmn, the value field containing the requested
certificate hash value has been successfully extracted.

At this point, what remains is to compute the digest of the received X.509 certificate and
compare it with the hash value retrieved from Emercoin NVS. For the hash computation, the
X.509 raw certificate bytes can be found within the mbedtls x509 crt *crt input parameter of
my verify(): this structure contains a field called tbs that includes the buffer containing certifi-
cate’s raw bytes and its length. By using mbedTLS cryptographic API for digest computation

59

Proposed implementation

curl = curl_easy_init();

if (curl) {

chunk.memory = malloc(1);

chunk.size = 0;

curl_easy_setopt(curl, CURLOPT_URL, EMC_CORE_URL);

curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, strlen(json_request));

curl_easy_setopt(curl, CURLOPT_POSTFIELDS, json_request);

curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_memory_callback);

curl_easy_setopt(curl, CURLOPT_WRITEDATA, (void *) &chunk);

res = curl_easy_perform(curl);

if (res != CURLE_OK) {

*flags |= MBEDTLS_X509_EMC_FAILED_TO_CONNECT_EMC_CORE;

return MBEDTLS_X509_EMC_FAILED_TO_CONNECT_EMC_CORE;

}

curl_easy_cleanup(curl);

} else {

*flags |= MBEDTLS_X509_EMC_FAILED_TO_CONNECT_EMC_CORE;

return MBEDTLS_X509_EMC_FAILED_TO_CONNECT_EMC_CORE;

}

Figure 3.15: Configuration of the HTTP request using curl

write_memory_callback(void *contents, size_t size, size_t nmemb, void *userp)

{

size_t realsize = size * nmemb;

struct MemoryStruct *mem = (struct MemoryStruct *) userp;

mem->memory = realloc(mem->memory, mem->size + realsize + 1);

if (mem->memory == NULL) {

printf("not enough memory (realloc returned NULL)\n");

return 0;

}

memcpy(&(mem->memory[mem->size]), contents, realsize);

mem->size += realsize;

mem->memory[mem->size] = 0;

return realsize;

}

Figure 3.16: User-defined callback function for data writing

(mbedtls md xxx(), where xxx can be starts, update or finish), the hash of the received X.509
certificate is computed and the verification is finally performed. If the two values match, the TLS
handshake can successfully proceeds.

3.3 Installation of testbed

The implementation that’s just been proposed was deployed in a simple testbed in order to test the
functionality of the Emercoin-based distributed PKI and the creation of a TLS channel between
two devices registered on Emercoin NVS using the authentication mechanism proposed in 3.2.4.
For the IoT device simulation, the choice was a special Raspberry Pi 4 Model B provided by
LINKS foundation, a single-board micro computer configured with a TPM 2.0 chip. The board

60

Proposed implementation

is featured with:

• 4GBs of RAM;

• 16GBs of micro SD storage;

• USB-C for power supply;

• micro-HDMI to connect a monitor;

• USB-A to connect a keyboard;

• Infineon Iridium TPM evaluation board (TPM 9670 Raspberry) with an OPTIGA SLI
9670AQ2.0 TPM;

Figure 3.17: Raspberry Pi 4 with OPTIGA SLI 9670AQ2.0 TPM

This particular device was also used for another research about the addressing of software
integrity attacks on IoT devices using remote attestation [50]. In fact, the most important reason
behind this choice is the presence of a TPM 2.0 chip already installed on the board and configured
to provide software attestation support by using uBoot boot loader to wake up the TPM and
measure boot components. On the software side, the board is featured by:

• uBoot boot loader (version - 2020.04);

• Raspbian Buster Lite OS (kernel 4.19.118), no GUI;

• TPM2 TSS v.2.4.0;

• TPM2 TABRM v.2.3.1;

• TPM2 Tools v.4.2 (CLI-based TSS2 utility);

• TPM2 TSS Engine v.1.1.0;

• Cryptsetup with TPM support v.2.0.3;

61

Proposed implementation

Some additional software dependencies have been installed to support the implementation of
the Emercoin-based PKI protocols described before: mbedTLS has been compiled from scratch
with the necessary changes to support Emercoin-based certificate verification, and curl was in-
stalled to support HTTP requests. For the compiling process, CMake was incredibly helpful
for configuring each necessary compiling option using the file iot-device/CMakeList.txt. The
development process has been mainly conducted in a separate environment enabled to run an
Integrated Development Environment (IDE). In fact, another important reason for CMake em-
ployment was its native integration with CLion IDE, used to separately develop all the code that
was going to be executed by the Raspberry Pi board.

The Device Manager was deployed in a powerful desktop workstation. In our case, for sake
of simplicity, the DM is also a B-node, so the Emercoin blockchain data are entirely stored in
the same storage volume where the DM software resides. The workstation is featured with the
following relevant hardware components:

• 16GBs RAM DDR4 3200 MHz;

• AMD Ryzen 5 5600x, 6 core CPU (max clock frequency 3632 MHz). This chip also has an
internal TPM 2.0 that can be enabled from the BIOS (fTPM);

• 1TB Solid State Drive NVME (3400MB/s max read speed and 3000 MB/s max write speed);

• Ethernet network interface (1Gbit/s speed)

This machine runs a Linux Debian-based 64bit distribution (PopOS 21.10 [79], Linux kernel
version 5.17.5-76051705-generic) and many important software dependencies necessary for running
the DM software module. The most important installed modules are the pyca/cryptography

library for cryptographic operations in Python, the tpm2 pytss library for TPM-based operations
(this is a Python wrapper for standard TSS2 C library) and the bitcoinrpc Python module
for interfacing the Emercoin RPC server. The Emercoin wallet was run using the -testnet

option to enable the testnet instead of the official chain. From the wallet’s interface, the RPC
server was configured to accept incoming connections at port 9092. The remaining necessary
elements for the configuration procedure to work correctly in a realistic use-case scenario are the
TPM Manufacturer CA certificate and the EK certificate for each device of the network (for the
Raspberry Pi, the TPM manufacturer CA certificate can be retrieved from Infineon website [80]).
These elements are necessary to verify the validity of the EK certificate received by the DM during
the procedure.

Finally, the last element of this testbed represents the secondary device that will be configured
and used to test the creation of a TLS channel between two registered devices using the modified
Emercoin-based version of mbedTLS library. For this purpose, a VM was deployed using the
Oracle VM VirtualBox [81] virtualization system installed on a Windows-running laptop. The
laptop is a Huawei Matebook D14 with the following specifications:

• 8GBs RAM;

• 512GBs of SSD storage;

• Intel Core i3-10110U 2 cores CPU (Max clock frequency 2592 MHz);

• Intel Wireless-AC 9560 160MHz Wi-Fi network interface (Max speed 292 Mbit/s for recep-
tion and 866 Mbit/s for transmission);

The VM’s guest OS is Kali-linux v2021.4 (kernel 5.14.0-kali4-amd64) with 1024 MBs of RAM.
TPM2 TSS library (v3.2.0 in this case) has been installed also in this context, but in this case
another TCTI (TPM Command Transmission Interface) was used. In order to provide the VM
with TPM technology, a software TPM simulator was installed and configured as a background
daemon. The TSS library provides different TCTI modules for different TPM implementations
(hardware, virtual TPM, software TPM). For a successful emulated TPM configuration, the fol-
lowing software modules have been installed:

62

Proposed implementation

• IBM’s Software TPM 2.0 [82];

• TPM2 TSS library (v 3.2.0)

• TPM2 ABRMD (Access Broker and Resource Manager) [83]: normally with a real physical
TPM device, there’s the resource manager (TPMRM) that manages the TPM context in
a manner similar to a virtual memory manager; it swaps objects, sessions, and sequences
in and out of the limited TPM memory as needed. This layer is mostly transparent to the
upper layers of the TSS and is not mandatory. However, if not implemented, the upper
layers will be responsible for TPM context management. In this case, since a software TPM
is going to be used, an access broker implementation of it must be installed (which is what
tpm2-abrmd is all about).

Figure 3.18: Testbed configuration

3.4 Related issues

Despite of the great improvement brought to the original design, which now provides a solid
method to prevent malicious actions from “lying entities” within the network, it’s still important
to take into account that the background technology which enables this important feature (TPM)
is not usually supported by IoT and constrained resource devices in general. Naturally, this
implementation was proposed for experimental purposes, but it’s also important to notice that
TPM is not an expensive technology: originally, the average cost of a TPM 2.0 chip was around
10-15$. In recent times, this cost increased because Microsoft designated the TPM 2.0 as a stricly
required technology for the installation of Windows 11. The consequence of this event was an
incredible increase of the demand for TPM chips that caused a quadruplication of the average
price in the first period. Actually, due to the widespread of TPM technology, this issue (and
consequently also the price of TPM chips) has been drastically resized.

Internet-of-Things includes a huge variety of devices for many purposes, from simple sensors to
more complex and expensive devices for critical applications. Not every IoT application requires

63

Proposed implementation

Figure 3.19: TPM 2.0 chips price variation (2018-2021) (source: [11])

high security level, especially because in many cases the data processed and transmitted by these
devices do not represent a critical asset or a sensitive source of information that must be carefully
protected. For other critical application like smart cars and smart healthcare, the integration of
TPM technology could be a reasonable option to improve the level of security in exchange of a
moderately cheap investment.

64

Chapter 4

Measurements and comparison

This section will present the results of the experiments conducted on the implementation proposed
in the previous chapter. The purpose of the tests that have been conducted was first to provide
a general impression of the necessary time for the entire certificate registration process using the
proposed system (Blockchain transaction confirmation time won’t be taken into account), also
considering the presence of the TPM-related operations that surely require a certain amount of
additional time. Additionally, the tests aim at comparing the necessary time to complete a TLS
handshake in order to estabilish a secure connection for the two PKI approaches (“standard” and
distributed).

It’s not easy to set up a test laboratory that can define balanced conditions in which perform
this kind of tests without any significant bias: in the original paper, the comparison with the
centralized “standard” PKI approach was performed using a Google certificate for the verification
process; this scenario is sharply different from the second one where a local Emercoin RPC server
provides the information about devices’ certificate, because in the first case there’s an important
additional time component associated with the distance of the server the provides the certificate
information (an Internet connection is used). To address this issue, the “test laboratory” presented
in this section has been configured to be as “fair” as possible.

4.1 Performed tests

The experiments will be divided in three subsections:

1. Performance measurement of the certificate registration process based on Emer-
coin NVS: the test will be performed first on the Raspberry Pi client using the hardware
TPM 2.0 chip and then on the Kali-linux virtual machine set up with the software TPM
simulator, to specifically point out the performance differences between a real and simulated
technology;

2. TLS handshake time measurement using “standard” PKI approach;

3. TLS handshake time measurement using distributed Emercoin-based PKI ap-
proach;

4.1.1 Certificate registration process

For the certificate registration process, it can be useful to provide a measurement of the perfor-
mance especially for comparing the two different employed implementations of the TPM tech-
nology. The software TPM emulator should only be used for experimental and study purposes:
from what concerns its security level, it can’t offer a good level of security when compared to the
effective hardware implementation. For this reason, two different measurement were collected for

65

Measurements and comparison

the registration process: a time measurement collected using the Raspberry Pi 4 board with the
hardware TPM and another one using the Linux virtual machine configured with the software
TPM emulator. Both this measurements will be performed without taking into account the nec-
essary time for a transaction to be considered secure within the blockchain (6 blocks deep in the
chain, ≈ 1 hour) because it would invalidate the result of the experiment. The measured process
will include all the necessary operations except for the final Emercoin registration.

In the Linux virtual machine, the software TPM emulator components (the emulator and the
ABRM) were configured as services using systemctl and started in background using systemctl

start <service-name>. Another important consideration about the software TPM is about its
initial provisioning: an hardware TPM is initially provisioned with an EK together with the
corresponding certificate issued by the chip manifacturer; in the case of a software TPM, the
EK is already configured at installation time, but the corresponding certificate must be manually
provided. Using tpm2-tools [85] (a CLI tool to send TPM2 commands to a TPM 2.0 platform,
very useful for scripting), the EK certificate (generated using OpenSSL) was persistently written
on the virtual memory of the software TPM so that the entire certificate registration function
could keep working with the original instruction flow.

Figure 4.1: Device certificate registration time: real hardware TPM vs. software TPM emulator

As expected, the results of the same experiment on these two different TPM technology is
drastically different. An important factor that influences these results is the execution platform
diversity: the hardware TPM test was executed on the Raspberry Pi 4 board, while the software
TPM emulator was running on a Linux virtual machine whose CPU power was limited to 50% in
order to define similar conditions for both the experiments. Despite of this, this result is also one
of the reason for which the employment of software TPM implementations is strongly discouraged
for real applications: an emulator is forced to simplify some operations whose security level is
stricly derived from the hardware presence, and these simplifications are partially responsible for
the performance boost.

4.1.2 Standard TLS handshake testing environment

As anticipated in the introduction to this section, the purpose of these experiments is also to make
a “fair” comparison between the alternative distributed PKI and the “standard” centralized one,
by setting a test-lab where each involved actor is deployed locally. The measurement is related

66

Measurements and comparison

to the standard OpenSSL handshake function: for this purpose, an additional modification was
applied the standard version of the library in order to measure the time spent to complete the
handshake process. The measurement technique is practically identical to the one used for the
certificate registration process.

static void print_stuff(BIO *bio, SSL *s, int full) {

clock_t start, end;

double cpu_time_used;

start = clock();

...

verify_result = SSL_get_verify_result(s);

BIO_printf(bio, Verify return code: %ld (%s)\n", verify_result,

X509_verify_cert_error_string(verify_result);

end = clock();

cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC * 1000;

mbedtls_printf(\Handshake time: %5f ms", cpu_time_used);

}

Figure 4.2: OpenSSL handshake time measurement

The modification was applied to the print stuff() function within the s client.c file (it
can be found under apps/, on the official GitHub repository of OpenSSL [74]), a simple test
application provided by OpenSSL for testing the creation of a TLS channel with a listening node.

For this experiment, the listening node was a Linux VM hosted by the Linux Desktop work-
station already mentioned in the section dedicated to the implementation’s testbed. An Apache
server was deployed and configured on this machine for replying to any incoming TLS connection.
The Apache server has been provided with a X.509 certificate issued by a local root CA, created
using OpenSSL: for the generation of a certificate that includes the specific X.509v3 extension
that points to the OCSP responder in charge of providing status information about the validity
of the certificate, the local CA must be properly configured with a little adjustment on the con-
figuration file. In this case, the original OpenSSL configuration file (/etc/ssl/openssl.cnf on
the Linux virtual machine) was duplicated and the copy was modified by adding the following
line under the tag [usr cert]:

[usr_cert]

authorityInfoAccess = OCSP;URI:http://192.168.1.20:8080

In this case, the OCSP responder’s IP address (192.168.1.20) is of a remote Linux VM hosted
by the Windows laptop already mentioned in the implementation testbed section. The OCSP
responder was configured on a different machine to create a use-case scenario as realistic as possible
(further details on the OCSP responder configuration will be provided later in this section).

At the end of the same file, an additional tag must be appended for a correct configuration:

[v3_OCSP]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = OCSPSigning

After this, the local root CA is created starting from an asymmetric RSA keypair (generated by
running the command openssl genrsa -out rootCA.key 2048) and an X.509 certificate associ-
ated with the public part of the key (created with the command openssl req -new -x509 -days

3650 -key rootCA.key -out rootCA.crt -config validation.cnf, where validation.cnf

is the modified configuration file previously discussed). After the creation of the local root CA,

67

Measurements and comparison

the remaining steps are related to the issuance of a valid certificate for our Apache server and the
creation of an OCSP responder whose certificate will also be issued by the same local root CA.
The provisioning of a valid certificate for the Apache server can be performed with the following
operations:

1. Create another RSA key for the Apache server (always using openssl genrsa -out

apacheServer.key 2048);

2. Create the X.509 certificate associated with the key generated in the previous step (always
using openssl req -new -x509 -days 3650 -key apacheServer.key -out apacheServer.crt

-config validation.cnf);

3. Generate the Certificate Signing Request (CSR) for the previously generated X.509 certifi-
cate, using the command openssl x509 -x509toreq -in apacheServer.crt -out CSR.csr

-signkey apacheServer.key;

4. Sign the Apache server certificate using the local CA previously created (the certificate will
include the OCSP responder URI, thanks to the modified configuration file): the command
used for this operation is

openssl ca -batch -startdate <start-date> -enddate <end-date> -keyfile

rootCA.key -cert rootCA.crt -policy policy anything -config validation.cnf

-notext -out apacheServer.crt -infiles CSR.csr;

Finally, the OCSP responder is configured bu running the two following commands:

1. openssl req -new -nodes -out ocspSigning.csr -keyout ocspSigning.key for gen-
erating the OCSP signing key together with the CSR;

2. openssl ca -keyfile rootCA.key -cert rootCA.crt -in ocspSigning.csr -out

ocspSigning.crt -config validation.conf for generating an X.509 certificate issued by
the local CA for the OCSP responder;

As anticipated before, the OCSP responder is running on a separate machine to propose a
more realistic scenario: this machine (the Windows laptop) hosts a Linux VM properly configured
with the previously generated OCSP key and certificate, that simply execute the OCSP responder
function in background, thanks to a command provided by OpenSSL:

openssl ocsp -index demoCA/index.txt -port 8080 -rsigner ocspSigning.crt -rkey

ocspSigning.key -CA rootCA.crt -text -out log.txt &

(index.txt is a configuration file automatically generated when the local CA signs the first
end-user certificate)

While the OCSP VM is running, the same machine hosts an additional Linux VM that repre-
sents the client that is going to start the TLS connection with the Apache server. The connection
is started using the following OpenSSL command:

openssl s_client -connect 192.168.1.21:443 -status -CAfile

/path/to/CAfile/rootCA.crt

The -status option enables the OCSP stapling (RFC-6961 [84]) feature for the new TLS con-
nection: OCSP stapling is used only if requested by a client, which submits the status request

extension in the handshake request. A server that supports OCSP stapling will respond by includ-
ing an OCSP response as part of the handshake. By default, the Apache server doesn’t provide
the OCSP stapling feature. This option was enabled during the configuration of the Apache sever
by adding the following lines:

• SSLStaplingCache option must be added to specify the path of the local OCSP cache file
(OCSP stapling doesn’t work if this option is missing);

68

Measurements and comparison

• VirtualHost *:433 allows the Apache server to accept connections on every network inter-
faces (not only localhost): in this case the server will be contacted on its LAN IP address
192.168.1.21;

• SSLEngine on enables TLS connections;

• SSLUseStapling on enables OCSP stapling;

• SSLCertificateFile specifies the path of the X.509 server certificate;

• SSLCertificateKeyFile specifies the path of the private key corresponding to the X.509
certificate specified before;

• SSLCACertificateFile specifies the path of the CA’s X.509 certificate;

<IfModule mod_ssl.c>

SSLStaplingCache shmcb:/var/run/ocsp(128000)

<VirtualHost *:443>

...

SSLEngine on

SSLUseStapling on

SSLCertificateFile /path/to/end-certificate/clientCert.crt

SSLCertificateKeyFile /path/to/end-keyfile/clientKey.key

SSLCACertificateFile /path/to/CAfile/rootCA.crt

...

</VirtualHost>

</IfModule>

Figure 4.3: Apache server configuration

Figure 4.4: Testing laboratory configuration

With this configuration, three different experiments were conducted:

69

Measurements and comparison

1. TLS handshake time using OCSP stapling without any cached data;

2. TLS handshake time using OCSP stapling with cached data;

3. TLS handshake time without using OCSP responder;

The result of each experiments was obtained by calculating an average time on 20 connection
trials. The average time for a successful TLS handshake for the three experiements was:

• OCSP stapling with no cached data: 26.137 ms;

• OCSP stapling with cached data: 11.949 ms;

• No OCSP: 7.925 ms;

4.2 Comparison

The results of the experiments using the “standard” PKI approach in a local test environment
must be compared with an evaluation of the performance related to the proposed distributed PKI
implementation, in order to make the appropriate final considerations. In this case, the experiment
configuration is far simple, because the only necessary precondition is to have two devices of the
network correctly registered on Emercoin NVS, using the certificate registration procedure that’s
been discussed in the third chapter. After the certificate registration preliminary phase, we can
consider a test environment composed by the Raspberry Pi 4 board that will represent the relying
party of the TLS connection, the Linux Desktop workstation that stores a copy of the Emercoin
public ledger and represents the trusted B-node, and finally a Linux virtual machine deployed
in a separate host that will represent the entity that provides its own certificate for the TLS
authentication.

Figure 4.5: Emercoin-based PKI experiment setup

The latter is going to accept TLS connection by using the following mbedTLS command

/path/to/mbedTLS/programs/ssl/ssl_server2 crt_file=/path/to/certificate

key_file=/path/to/keyfile

70

Measurements and comparison

The relying party (Raspberry Pi 4) will instead execute the “client” program provided by
mbedTLS:

/path/to/mbedTLS/programs/ssl/ssl_client2 server_addr=192.168.1.22

An additional adjustment to the modified version of the mbedTLS library (already shown in the
third section) was applied to perform the time measurement like in the previous experiment with
OpenSSL. In this case, the modification was applied to mbedTLS/src/programs/ssl/ssl client2.c

source code (there’s only the main() function), using the same technique seen before.

/*

* 4. Handshake

*/

clock_t start, end;

double cpu_time_used;

start = clock();

...

/*

* 5. Verify the server certificate

*/

mbedtls_printf(. Verifying peer X.509 certificate...");

if((flags = mbedtls_ssl_get_verify_result(&ssl)) != 0)

{

...

} else {

mbedtls_printf(ok\n");

end = clock();

cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC * 1000;

mbedtls_printf(\Handshake time: %5f ms", cpu_time_used);

}

Figure 4.6: mbedTLS modification for time measurement

With this configuration, the measured handshake time in case of a successful certificate con-
figuration is 123.132 ms (also in this case the final result represents the average time computed
on 20 connection trials). From this experiment it’s possible to notice a significant performance
decrease if compared to the previous experiments on the normal PKI approach: the main reason
behind the higher execution time when using the proposed implemented authentication schema,
is that the certificate information is retrieved with a linear search on the distributed ledger. If we
take into account the great amount of data to be process in order to find the name-value pair we
are looking for (especially if compared to the minimum amount of entry monitored by our demo
OCSP server), a relevant time increase in the handshake execution is justified.

71

Measurements and comparison

Figure 4.7: Results of the three conducted experiments

72

Chapter 5

Conclusion

The work carried out for this thesis project, proposes an alternative authentication mechanism
that could solve many issues related to the standard centralized PKI approach when applied to
particular use-case scenarios like the Internet-of-Things, that is characterized by a set of barriers
and limitations that do not always allow an efficient employment of these mechanism for the
creation of secure communication channels.

This alternative mechanism is based on the Blockchain technology: a preliminary research
stage was necessary to underline the potential benefits this technology can bring and at the
same time to analyze and discuss its limitations and the challenges for its integration with the
Internet-of-Things. The most relevant obstacles to this integration are related to the low resource
capabilities of IoT devices, that can’t often satisfy the technological requirements necessary for
the employment of the Blockchain technology.

Starting from these conditions, during the last 5 years many solutions were proposed for
efficiently integrating Blockchain and IoT, in order to address the security criticalities that affect
IoT devices. One of these solution, proposed in 2018 by Elisa Bertino, Ankush Singla, Greg Bollella
and Jongho Won, was studied in deep, in order to propose an experimental implementation that
could draw the benefits from the original solution and fix some of its security concerns. Therefore,
the original solution has been implemented and improved thanks to the TPM technology, that
provides a strong device identification mechanism.

Finally, some experiments have been conducted on the proposed implementation in order to
underline eventual benefits/drawbacks when compared to the standard centralized PKI. From
the obtained results, we can state that the Blockchain-based system has a negative impact on
the performance related to the creation of a secure communication channel (e.g TLS channel),
but on the other side it drastically simplifies the provisioning and the management of IoT devices
keys and certificates. Moreover, this solution can benefit from the high availability and the strong
integrity protection provided by the distributed design of the Blockchain in order to eliminate the
Single Points of Failure represented by the Root CAs.

5.1 Future works

There are many possible further improvements that can be taken into account for future studies
and proposals. Basically, the most relevant drawbacks of the Blockchain technology are:

• Transactions have a cost;

• Miners support is required;

• Low transaction validation rate;

• The size of the ledger;

73

Conclusion

Many of these issues have been addressed by the Tangle technology (discussed in 2.6) proposed
by the IOTA foundation: it could be interesting to develop a software layer built upon the Tangle
in order to provide a Name Value System (similar to the one provided by Emercoin) that ensures
the uniqueness of each name value pair and that at the same time benefit from the Tangle
technology features to achieve the elimination of miners (and the consequent elimination of the
transactions cost) and a faster and more efficient transaction validation process.

Furthermore, the ledger growth can be restrained by reducing the number of transactions
related to the PKI operations: a possible solution is to use the Merkle Hash Trees in order to
group a set of IoT devices within a single <name,value> pair where the value is represented by
the root of a Merkle Hash Tree whose leafs represent each single IoT device of the network. With
this approach, the certificates of the entire IoT devices network could be stored on the Blockchain
using a single transaction instead of many, but the certificate verification process during the
creation of the secure communication channel must be performed using Merkle Proofs instead of
the simple certificate’s hash value.

74

Chapter 6

User’s manual

6.1 Preliminary steps

The application is split into two modules: one for IoT devices and one for the Device Manager.
The IoT device module must be compiled to be executed and for both the modules the tss

library and other secondary dependencies must be installed: the description of these operations
is demanded to 7.

It’s important to perform some preliminary operations to successfully use the application.
(Note: in this chapter we assume the presence of a TPM 2.0 chip on each device. In case of a
software TPM emulator, further details for the configuration will be provided in 7)

On the device side, the file iot-device/device identity must contain the model name and
the serial number of the device separated by a whitespace;

On the side of the Device Manager, for every IoT device within the network, the folder
device-manager/devices must contain a subfolder whose name must be equal to the value stored
on the file device identity previously configured on the corresponding device. This subfolders
must contain a file called “configuration”, containing the following line

status=INIT

and the Endorsement Key (EK) certificate in PEM format. The Endorsement Key certificate
can be retrieved from the device by using tpm2-tools for the execution of the following TPM2
command:

tpm2 nvread 0x01c00002 -o RSA EK cert.bin

This command will save the RSA EK certificate in DER format in a file called RSA EK cert.bin.
Then, it’s possible to convert a DER certificate into a PEM certificate by using the following
OpenSSL command:

openssl x509 -inform DER -in RSA EK cert.bin -outform PEM -out ek cert.pem

Finally, the file ek cert.pem must be moved from the device to the Device Manager inside
the corresponding subfolder.

tpm2-tools and openssl can be installed on Debian-based Linux distributions with the fol-
lowing commands:

sudo apt install tpm2-tools

sudo apt install openssl

75

User’s manual

6.2 Device module

The first module must run in background on each IoT device within the network and can be
executed after the compilation by running

sudo ./iot-device/cli-build/iot-device

This section of the application does not require any interaction with the final user: the device
basically waits until the Device Manager sends a Minit, Mownr or Mupdt message. By default, the
status (stored in iot-device/cli-build/configuration) of the device is set to INIT: in this
condition, the device accepts the incoming Minit messages, but when the certificate registration
procedure is completed and the status is set to RUNNING, the only accepted messages are Mownr

and Mupdt.

Figure 6.1: Device-side application running example: device’s certificate registration

Figure 6.1 reports the example of an execution of the device software module: the application’s
logs summarize the entire execution flow already discussed in the previous chapters, also providing
a step-by-step description of the TCG protocol used for the identification of the IoT devices.
In this example, the execution is stopped because on the other side the DM has to confirm
the creation of a new Emercoin transaction before sending back the acknowledgement to the
device (Figure 6.3). When the transaction is created and validated by the Emercoin network, the
acknowledgment is received and verified by the device: if no errors occur, the device can update
its configuration file and finally store (in iot-device/cli-build/keys/master pubkey.pem the
DM’s public key for eventual future interactions. It’s important to notice that the directory
iot-device/cli-build/keys/ won’t include the Attestation Key generated during the certificate
registration procedure: this key is permanently stored inside the TPM and every cryptographic
operation based on it, is interally managed by the application’s code.

Figure 6.2 reports an example of a configuration file for a device.

The ID is the unique label associated with the certificate hash value stored on Emercoin NVS.
The expiration date is calculated by adding the number of validity days to the current date at the
time of the execution of the registration procedure. Practically, Emercoin measures the expiration
date in number of blocks (further details in 6.3).

76

User’s manual

STATUS RUNNING

ID 9688180d6365a699dfc69cdd43e042c27663a79dd924654d56d0630bc46ab1fb

EXP_DATE 04/11/2022, 15:35

Figure 6.2: Device configuration file example

6.3 Device Manager module

The second module (device-manager/) is for the Device Manager node. The application can be
run using Python 3, by executing the command

sudo python3 main.py

when the current working directory is device-manager/. In this case there’s an initial in-
teractive command-line interface: here, the user can select the operation to perform on the IoT
devices of its network. When the option is selected, the CLI requires to type the IP address of the
interested device and eventual additional information (e.g. the number of validity days in case of
a certificate registration). Before the final Blockchain transaction is created, the application asks
to the user for a final confirmation.

Figure 6.3: Confirmation request before creating a new Emercoin transaction

For the certificate registration process, the user must first select the IP address of the device
in the network; if the device is reachable, the application asks to the user the expiration time for
the certificate that is going to be created. Also in this case, the application provides some event
logs, to track the most important steps of the procedures described in the third chapter. If the
user confirms the registration of the device on Emercoin NVS, a notification from the Emercoin
Wallet should be quickly received.

If the notification has been correctly received, the transaction’s data can be consulted in
the “Transactions” tab of the Wallet: the transaction will be pending until the validation after

77

User’s manual

the mining process. As long as the transaction is pending, it won’t be possible to retrieve any
information about it from the Blockchain.

Figure 6.4: Emercoin Wallet: Transactions tab

The record on the top of this list represent the newly generated key-pair for our device. The
symbol displayed on the left of the date tracks the depth of the block containing our transaction
in the chain: when this symbol becomes a green check mark (like the rest of the transactions
displayed in the tab), our transaction starts to be considered secure (because 6 blocks have been
”mined” after the one containing the transaction). The necessary time to see the green checkmark
is ≈ 1 hour (1 block validation each 10 minutes).

Moreover, an overview of the current registered name-value pairs is available in the “Manage
Names” tab, where it’s possibile to check the “expired” flag to display the information associated
the expired name-value pairs. The “value” field can’t be correctly displayed because during the
certificate registration procedure, the hash value of each certificate is stored as a byte value in hex
format (some values are not associated with printable characters). The expiration is expressed
in number of days before the expiration: under the hood, Emercoin NVS translates the number
of days in number of mined blocks starting from the block containing the transaction. This can
be done because the blocks mining rate is always the same, so it’s possible to map the number of
mined blocks to the number of elapsed days. To provide a general unit of measurement, 1 days is
approximately corresponding to 175 blocks.

Figure 6.5: Emercoin Wallet: Manage Names tab containing the new name-value pair

When the certificate registration process is successfully completed, the subfolder corresponding
to the configured device should contain the following files:

78

User’s manual

1. configuration: basically the same configuration file that’s been already discussed for the
IoT device module;

2. ek cert.pem: the device’s TPM Endorsement Key certificate in PEM format (this must be
already included before the execution of the certificate registration process);

3. iak.pem: the device’s Attestation Key created during the TCG procedure, in PEM format;

4. local pubkey.pem: the RSA public key generated by the IoT device for the creation of the
self-signed X.509 certificate that is finally stored on the Blockchain;

The other available operations (ownership transfer and certificate update) follow the same
execution flow, but the ownership transfer protocol requires an additional preliminary step: the
keys folder must include a file called new pubkey.pem containing the public key of the next
device’s owner, in PEM format.

Finally, the revoke operation is equivalent to the creation of a revoke transaction from the
Emercoin Wallet. In this case, the application will ask for the name of the <name,value> pair
instead of the IP address of the device like for the other operations.

79

Chapter 7

Developer’s manual

The entire manual will be referred to a Debian-based Linux distribution as development environ-
ment. All the commands and procedures are based on this assumption.

7.1 Required software dependencies

7.1.1 TPM 2.0 Software Stack (TSS2)

It’s strongly suggested to manually build the TSS2 library, starting from the source code available
on the official GitHub repository [70]: this approach allows to select many configurable options
before the installation. The installation process can be summarized by the following steps:

1. Clone the GitHub repository using

git clone https://github.com/tpm2-software/tpm2-tss.git

2. Install all the required dependencies by running the command suggested in the INSTALL.md
file of the GitHub repository (“Ubuntu” section);

3. Move the current working directory to the cloned repository, using

cd /path/to/repository/tpm2-tss/

4. Run the bootstrap script (./bootstrap);

5. Configure the build using ./configure. In this step it will be possible to select the config-
uration options mentioned before: the list of the available options can be retrieved using

./configure --help

6. Compile the libraries using make;

7. Install the libraries using sudo make install;

7.1.2 Device Manager module dependencies

The Device Manager software module requires Python3 to be executed. Python3 can be installed
by running the following command:

sudo apt install python3

In addition to the TSS2 library required for both the modules of the application, the Device
Manager module relies on some specific Python3 packages. All the Python packages can be
installed and managed using pip (a Python package manager). This tool can be installed by
running the following command:

80

Developer’s manual

sudo apt install python3-pip

Using pip, the packages can be installed by simply running pip install <package-name>. The
required packages for the Device Manager module of the application are listed below:

• python-bitcoinrpc: provides an interface to the Emercoin API (based on Bitcoin API);

• tpm2-pytss: Python wrapper for TSS2 library;

• cryptography: Python module for cryptographic operations;

The device-manager module is going to communicate with the Emercoin Blockchain by leverag-
ing on a RPC server: the RPC server can be configured from the Emercoin wallet (it can be
downloaded from the official Emercoin website [57]):

1. From the Emercoin wallet GUI toolbar, select “Settings” > “RPC” > “emercoin.conf”. This
will open the Emercoin wallet configuration file;

2. Replace the content of the file with the following lines:

testnet=1

server=1

listen=1

rpcuser=user

rpcpassword=psw

rpcport=9092

rpcallowip=0.0.0.0/0

3. Save the changes and restart the wallet (note: the first time you run the wallet, the -testnet
option must be included)

7.1.3 Device module dependencies

On the device side, in addition to the TSS2 library, two more software dependencies must be
satisfied: mbedTLS (further details on how to install the modified version of mbedTLS will be
provided in 7.3) and jsmn, that simplifies the handling of JSON objects. The latter is a simple
header file (jsmn.h) that has been already included in the application (no additional steps are
required).

7.2 Enabling TPM 2.0

The TSS2 library requires the presence of a TPM 2.0 chip to be used: for the implementation
proposed in this work, the TPM 2.0 chip was already installed and configured on the Raspberry
Pi 4 board. The purpose of this section is to provide the instructions to enable the TPM 2.0
technology for two distinct scenarios:

1. Testing the application on any laptop/desktop machine whose motherboard is featured with
a TPM 2.0 chip;

2. Testing the application using a software TPM emulator;

In the first case, the only required operation is to enable the TPM technology from the BIOS
settings of the motherboard. This procedure can vary depending on the running BIOS. Figure
7.1 shows an example of a BIOS tab where it’s possible to enable/disable the TPM technology.

81

Developer’s manual

Figure 7.1: Example of a BIOS option for enabling TPM technology (source: image)

7.2.1 Configuring the software TPM emulator

The software TPM emulator is a good solution to the absence of a TPM 2.0 chip, and it’s very
useful for experimental and study purposes. The configuration of the TPM emulator requires the
following software dependencies:

• IBM’s Software TPM 2.0: the software TPM emulator;

• TPM2-TSS: TPM 2.0 Software Stack (installation steps described in 7.1.1);

• TPM2 Access Broker and Resource Manager (ABRMD): for the management of
the TPM context;

• tpm2-tools: CLI tools for executing TPM2 commands (installation: sudo apt install

tpm2-tools)

First, the IBM’s Software TPM 2.0 dependencies must be installed:

sudo apt install lcov \

pandoc autoconf-archive liburiparser-dev \

libdbus-1-dev libglib2.0-dev dbus-x11 \

libssl-dev autoconf automake \

libtool pkg-config gcc \

libcurl4-gnutls-dev libgcrypt20-dev libcmocka-dev uthash-dev \

Then, the Software TPM can be downloaded by running the following command:

wget https://jaist.dl.sourceforge.net/project/ibmswtpm2/ibmtpm1661.tar.gz

When the downloaded archive has been extracted, the make command must be run within the
src/ directory of the Software TPM to start the compiling process. When the compiling process
is completed, the generated binary file called tpm server must be moved to /usr/local/bin.
Now, the Software TPM can be configured as a daemon service of the operative system with the
following steps:

1. Create the daemon configuration file using

(sudo touch /lib/systemd/system/tpm-server.service)

82

https://docs.oracle.com/cd/E19591-01/html/E23171/figures/Screen3_TCG-TPM_Support-YES.jpg

Developer’s manual

2. Add the following content to the file

[Unit]

Description=TPM2.0 Simulator Server daemon

Before=tpm2-abrmd.service

[Service]

ExecStart=/usr/local/bin/tpm_server

Restart=always

Environment=PATH=/usr/bin:/usr/local/bin

[Install]

WantedBy=multi-user.target

3. Reload daemon and start the service using the following commands:

systemctl daemon-reload

systemctl start tpm-server.service

The Software TPM is now installed and configured as a daemon service (the service’s status can
be checked with systemctl status tpm-server)

The installation of the TPM2 ABRMD follows a similar procedure:

1. Download TPM2 ABRMD from the official GitHub repository [83] using wget;

2. Extract the archive configure the installation:

cd tpm2-abrmd-2.3.1

sudo ldconfig

./configure --with-dbuspolicydir=/etc/dbus-1/system.d

--with-systemdsystemunitdir=/usr/lib/systemd/system

3. Start the installation process with sudo make install

4. Add TPM2 ABRMD to the system services. During the previous step, a sample service
definition is placed under /usr/local/share/dbus-1/system-services/. Copy it to the system
services directory:

sudo cp

/usr/local/share/dbus-1/system-services/com.intel.tss2.Tabrmd.service

/usr/share/dbus-1/system-services/

5. Restart DBUS with sudo pkill -HUP dbus-daemon

6. Replace the content of /lib/systemd/system/tpm2-abrmd.service with the following
lines:

[Unit]

Descript=TPM2 Access Broker and Resource Management Daemon

[Service]

Type=dbus

Restart=always

RestartSec=5

BusName=com.intel.tss2.Tabrmd

StandardOutput=syslog

ExecStart=/usr/local/sbin/tpm2-abrmd

--tcti="libtss2-tcti-mssim.so.0:host=127.0.0.1,port=2321"

User=tss

[Install]

WantedBy=multi-user.target

83

Developer’s manual

7. Run the service and check its state:

systemctl daemon-reload

systemctl start tpm2-abrmd.service

service tpm2-abrmd status

Basically, the Software TPM 2.0 is now correctly working. Despite of this, one last operation
is required to make the application work with the emulator: by default, the simulated TPM is
not provisioned with X.509 certificate for the Endorsement Key. To fix this issue, it’s enough
to run the bash script ekc-inflater/ekc-inflater.sh. In order to successfully run this script
(note: root privileges are required), tpm2-tools and openssl must be installed; moreover, the
two system services previously configured (TPM2 ABRMD and Software TPM) must be active.
The script will generate an Endorsement Key certificate using a “dummy” local root CA, and
permanently stores it on the proper TPM non-volatile area.

7.3 Building process

When everything is correctly configured, that last required operation is to compile the project
(only for the device module and the modified mbedTLS library). The compiling process is highly
simplified thanks to CMake. This tool can be installed with

sudo apt install cmake

and it’s a cross-platform compiler that allow to configure the building process by leveraging
on a text file called CMakeList.txt. This file will include all the necessary declarations (e.g.
libraries path) to properly build the project. In order to successfully compile the device applica-
tion module, the mbedTLS library is required. The modified library will retrieve data from the
Emercoin Blockchain, so it’s necessary to specify the correct Emercoin RPC server address in the
source code. This can be done by editing the IP address defined in the constant at line 49 of
mbedTLS/src/programs/ssl/ssl client2.c Then, the mbedTLS library can be compiled with
the following steps using CMake:

1. Move inside mbedTLS/build mbedtls directory;

2. Configure the building process with cmake ../src

3. Build mbedTLS using cmake --build .

The binary files associated with each mbedTLS application, are included within build mbedtls/programs

subfolders. To compile the device application module using CMake, a similar procedure must be
followed:

1. Move inside the cli-build/ directory of the device module (cd iot-device/cli-build);

2. Configure the building process with cmake ..

3. Build the module with cmake --build .

The binary file for executing the application will be generated inside cli-build/ and it will be
named iot-device.

84

Bibliography

[1] RFC 8555, Automatic Certificate Management Environment (ACME), https://datatrac
ker.ietf.org/doc/html/rfc8555

[2] Let’s Encrypt, https://letsencrypt.org/

[3] IoT statistics (2022-2030), https://explodingtopics.com/blog/iot-stats

[4] T. L. Basegio, R. Michelin, A. F. Zorzo, R. H. Bordini, “A Decentralised Approach to Task
Allocation Using Blockchain”, In book: Engineering Multi-Agent Systems (pp. 75-91), May
2018, DOI: 10.1007/978-3-319-91899-0

[5] A. Meneghetti, M. Sala, D. Taufer, “A Survey on PoW-based Consensus”, Annals of Emerg-
ing Technologies in Computing (AETiC), January 2020, DOI: 10.33166/AETiC.2020.01.002

[6] “What is Proof-of-Stake?”, https://www.ledger.com/academy/blockchain/what-is-pr
oof-of-stake

[7] O. Onireti, L. Zhang, M. Ali Imran, “On the Viable Area of Wireless Practical Byzantine
Fault Tolerance (PBFT) Blockchain Networks”, 2019 IEEE Global Communications Confer-
ence (GLOBECOM), December 2019, DOI:10.1109/GLOBECOM38437.2019.9013778

[8] Bitcoin Avg. Transaction Fee historical chart, https://bitinfocharts.com/comparison/b
itcoin-transactionfees.html#3y

[9] Hyperledger Fabric architecture explained, https://hyperledger-fabric.readthedocs.i
o/en/release-1.3/arch-deep-dive.html

[10] IEN Workshops: from MAM to Streams, https://www.youtube.com/watch?v=EycFnTG74
8c

[11] TPM 2.0 chips price variation (2018-2021), %https://windowsreport.com/tpm-2-0-chip
-price/

[12] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, 2008, www.bitcoin.
org/bitcoin.pdf

[13] Merkle Hash Trees, https://en.wikipedia.org/wiki/Merkle tree

[14] “Understanding Double-Spending and How to Prevent Attacks”, https://www.investoped
ia.com/terms/d/doublespending.asp

[15] Adam Back, “Hashcash - A Denial-of-Service Counter-Measure”, 2002, http://www.hashca
sh.org/hashcash.pdf

[16] Namecoin, https://www.namecoin.org/

[17] C. Fromknecht, D. Velicanu, S. Yakoubov, “CertCoin: A NameCoin Based Decentralized
Authentication System”, May 2014, https://courses.csail.mit.edu/6.857/2014/files
/19-fromknecht-velicann-yakoubov-certcoin.pdf

[18] Introduction to smart contracts, https://ethereum.org/en/developers/docs/smart-co
ntracts/

[19] Vitalik Buterin, Ethereum whitepaper, 2013, https://ethereum.org/en/whitepaper

[20] Ethereum Virtual Machine (EVM), https://ethereum.org/en/developers/docs/evm/

[21] J.H. Khor, M. Sidorov, P.Y. Woon, “Public Blockchains for Resource-Constrained IoT De-
vices - A State-of-the-Art Survey”, IEEE Internet of Things Journal (Vol. 8, Issue 15), March
2021, DOI 10.1109/JIOT.2021.3069120,

[22] Md Sadek Ferdous, Farida Chowdhury, Madini O. Alassafi, “In Search of Self-Sovereign
Identity Leveraging Blockchain Technology”, IEEE Access (Vol. 7), 2019, DOI: 10.1109/AC-
CESS.2019.2931173,

[23] “Nothing-at-stake problem”, https://golden.com/wiki/Nothing-at-stake problem

85

https://datatracker.ietf.org/doc/html/rfc8555
https://datatracker.ietf.org/doc/html/rfc8555
https://letsencrypt.org/
https://explodingtopics.com/blog/iot-stats
https://www.ledger.com/academy/blockchain/what-is-proof-of-stake
https://www.ledger.com/academy/blockchain/what-is-proof-of-stake
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3y
https://bitinfocharts.com/comparison/bitcoin-transactionfees.html#3y
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/arch-deep-dive.html
https://www.youtube.com/watch?v=EycFnTG748c
https://www.youtube.com/watch?v=EycFnTG748c
%https://windowsreport.com/tpm-2-0-chip-price/
%https://windowsreport.com/tpm-2-0-chip-price/
www.bitcoin.org/bitcoin.pdf
www.bitcoin.org/bitcoin.pdf
https://en.wikipedia.org/wiki/Merkle_tree
https://www.investopedia.com/terms/d/doublespending.asp
https://www.investopedia.com/terms/d/doublespending.asp
http://www.hashcash.org/hashcash.pdf
http://www.hashcash.org/hashcash.pdf
https://www.namecoin.org/
https://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
https://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/whitepaper
https://ethereum.org/en/developers/docs/evm/
https://golden.com/wiki/Nothing-at-stake_problem

Bibliography

[24] K.Driscoll, B.Hall, H.Sivencrona, P.Zumsteg, “Byzantine Fault Tolerance, from Theory to
Reality”, SAFECOMP 2003 (Edinburgh, UK), September 2003, DOI: 10.1007/978-3-540-
39878-3 19

[25] Miguel Casto, Barbara Liskov, “Practical Byzantine Fault Tolerance”, Proceedings of the
Third Symposium on Operating Systems Design and Implementation (New Orleans, USA)
February 1999, https://pmg.csail.mit.edu/papers/osdi99.pdf

[26] The Linux Foundation, Hyperledger Fabric, https://www.hyperledger.org/wp-content
/uploads/2020/03/hyperledger fabric whitepaper.pdf

[27] The Linux Foundation, Hyperledger Sawtooth, https://www.hyperledger.org/use/sawt
ooth

[28] IOTA Foundation, IOTA, https://www.iota.org/
[29] IOTA Foundation, IOTA Tangle, https://wiki.iota.org/learn/about-iota/tangle
[30] P.J. Atzberger, “The Monte-Carlo Method”, http://web.math.ucsb.edu/~atzberg/pmwik

i intranet/uploads/AtzbergerHomePage/Atzberger MonteCarlo.pdf

[31] IOTA Foundation, IOTA - The Coordinator, https://wiki.iota.org/learn/about-iota
/coordinator

[32] IOTA Foundation, IOTA Streams, https://www.iota.org/solutions/streams
[33] “Introducing Masked Authenticated Messaging”, https://blog.iota.org/introducing-

masked-authenticated-messaging-e55c1822d50e/

[34] A.Carelli, A.Palmieri, A.Vilei, F.Castanier, A.Vesco, “Enabling Secure Data Exchange
through the IOTA Tangle for IoT Constrained Devices”, Sensors 2022, February 2022, DOI:
10.3390/s22041384

[35] Bin Cao, Yixin Li, Lei Zhang, Long Zhang, Shahid Mumtaz, Zhenyu Zhou, and Mugen Peng,
“When Internet of Things Meets Blockchain: Challenges in Distributed Consensus”, IEEE
Network (Vol. 33, Issue 6), July 2019, DOI: 10.1109/MNET.2019.1900002

[36] M.Al-Bassam, “SCPKI: A Smart Contract-based PKI and Identity System”, BBC ’17: “Pro-
ceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts”, April 2017,
DOI: 10.1145/3055518.3055530

[37] J.Won, A.Singla, E.Bertino, G.Bollella, “Decentralized Public Key Infrastructure for
Internet-of-Things”, MILCOM 2018, October 2018, DOI: 10.1109/MILCOM.2018.8599710

[38] A.Singla, E.Bertino, “Blockchain-based PKI solutions for IoT”, 2018 IEEE 4th Interna-
tional Conference on Collaboration and Internet Computing (CIC), October 2018, DOI:
10.1109/CIC.2018.00-45

[39] E.Kfoury, D.Khoury, “Distributed PKI and PSK exchange based on Blockchain technology”,
2018 IEEE iThings and IEEE GreenCom and IEEE CPSCom and IEEE SmartData, 2018,
DOI: 10.1109/Cybermatics 2018.2018.00203

[40] A.N. Bikos and S.A.P. Kumar, “Securing Digital Ledger Technologies-Enabled IoT Devices:
Taxonomy, Challenges, and Solutions”, IEEE Access (Vol. 10), April 2022, DOI: 10.1109/AC-
CESS.2022.3169141

[41] A. Reyna, C. MartÃn, J. Chen. E. Soler and M. DÃaz, “On blockchain and its integration
with IoT. Challenges and opportunities” Elsevier “Future Generation Computer Systems”
(Vol. 88, pp. 173-190), May 2018, DOI: 10.1016/j.future.2018.05.046

[42] I. Makhdoom, M. Abolhasan, H. Abbas, Wei Ni, “Blockchain’s adoption in IoT: The chal-
lenges, and a way forward”, Elsevier Journal of Network and Computer Applications (Vol.
125, pp. 251-279), November 2018, DOI: 10.1016/j.jnca.2018.10.019

[43] E. Kfoury, D. Khoury, “Securing NATted IoT devices using Ethereum Blockchain and dis-
tributed TURN servers”, 2018 10th International Conference on Advanced Infocomm Tech-
nology (ICAIT), August 2018, DOI: 10.1109/ICAIT.2018.8686623,

[44] E. Beckwith, G. Thamilarasu, “BA-TLS: Blockchain authentication for TLS in IoT”, 2020
7th International Conference on Internet of Things: Systems, Management and Security
(IOTSMS), December 2020, DOI: 10.1109/IOTSMS52051.2020.9340204

[45] I. Amankona Obiri, J. Yang, Q. Xia, J. Gao, “A sovereign PKI for IoT devices based on the
blockchain technology”, 2021 18th International Computer Conference on Wavelet Active
Media Technology and Information Processing (ICCWAMTIP), December 2021, 10.1109/IC-
CWAMTIP53232.2021.9674095,

[46] B. Khieu, M. Moh, “CBPKI: Cloud Blockchain-based PKI”, ACM SE ’19: “Proceedings of
the 2019 ACM Southeast Conference”, April 2019, DOI: 10.1145/3299815.3314433

86

https://pmg.csail.mit.edu/papers/osdi99.pdf
https://www.hyperledger.org/wp-content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf
https://www.hyperledger.org/wp-content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf
https://www.hyperledger.org/use/sawtooth
https://www.hyperledger.org/use/sawtooth
https://www.iota.org/
https://wiki.iota.org/learn/about-iota/tangle
http://web.math.ucsb.edu/~atzberg/pmwiki_intranet/uploads/AtzbergerHomePage/Atzberger_MonteCarlo.pdf
http://web.math.ucsb.edu/~atzberg/pmwiki_intranet/uploads/AtzbergerHomePage/Atzberger_MonteCarlo.pdf
https://wiki.iota.org/learn/about-iota/coordinator
https://wiki.iota.org/learn/about-iota/coordinator
https://www.iota.org/solutions/streams
https://blog.iota.org/introducing-masked-authenticated-messaging-e55c1822d50e/
https://blog.iota.org/introducing-masked-authenticated-messaging-e55c1822d50e/

Bibliography

[47] Y. Tu, J. Gan, Y. Hu, R. Jin, Z. Yang, M. Liu, “Decentralized identity authentication and
key management scheme”, 2019 IEEE 3rd Conference on Energy Internet and Energy System
Integration (EI2), April 2020, DOI: 10.1109/EI247390.2019.9062013

[48] A. Dua, S. Sekhar Barpanda, N. Kumar, S. Tanwar, “Trustful: A decentralized PKI and
Identity Management System”, 2020 IEEE Globecom Workshops (GC Wkshps), March 2021,
DOI: 10.1109/GCWkshps50303.2020.9367444

[49] A. Papageorgiou, K. Loupos, A. Mygiakis, T. Krousarlis, “DPKI: A blockchain-based
decentralized PKI”, 2020 Global Internet of Things Summit (GIoTS), June 2020, DOI:
10.1109/GIOTS49054.2020.9119673

[50] D.G. Berbecaru, S. Sisinni, “Counteracting software integrity attacks on IoT devices with re-
mote attestation: a prototype”, 2022 26th International Conference on System Theory, Con-
trol and Computing (ICSTCC), October 2022, DOI: 10.1109/ICSTCC55426.2022.9931765

[51] D.G. Berbecaru, A. Lioy, C. Cameroni, “On Enabling Additional Natural Person and
Domain-Specific Attributes in the eIDAS Network”, IEEE Access (Vol. 9 - pp. 134096 -
134121), September 2021, DOI: 10.1109/ACCESS.2021.3115853

[52] D. Berbecaru, A. Lioy, C. Cameroni, “Supporting Authorize-then-Authenticate for Wi-Fi
access based on an electronic identity infrastructure”, Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications (JoWUA), 11(2):34-54, June 2020,
DOI: 10.22667/JOWUA.2020.06.30.034

[53] Trusted Computing Group, Trusted Platform Module (TPM) Summary, https://trustedc
omputinggroup.org/resource/trusted-platform-module-tpm-summary/

[54] Y.Gao, S.F.Al-Sarawi, D.Abbott, “Physical unclonable functions”, 2020, https://www.na
ture.com/articles/s41928-020-0372-5

[55] Contract ABI Specifications, https://docs.soliditylang.org/en/v0.8.13/abi-spec.ht
ml

[56] Emercoin NVS documentation, https://emercoin.com/en/documentation/blockchain-s
ervices/emernvs/

[57] Emercoin Wallet download page, https://emercoin.com/en/for-coinholders#download

[58] Light Ethereum Subprotocol, https://github.com/ethereum/devp2p/blob/master/cap
s/les.md

[59] OpenPGP, https://www.openpgp.org/

[60] Trusted Computing Group, TPM 2.0 Keys for Device Identity and Attestation (1.00, Revision
2), 2020, https://trustedcomputinggroup.org/wp-content/uploads/TCG IWG DevID v

1r2 02dec2020.pdf

[61] Trusted Computing Group, TCG Feature API (FAPI) Documentation, https://trustedc
omputinggroup.org/resource/tss-fapi/

[62] Trusted Computing Group, TCG TSS 2.0 Enhanced System API (ESAPI) Specification,
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-enhanced-system-api

-esapi-specification/

[63] Trusted Computing Group, TCG TSS 2.0 System Level API (SAPI) Specification, https:
//trustedcomputinggroup.org/resource/tcg-tss-2-0-system-level-api-sapi-spe

cification/

[64] Trusted Computing Group, TCG TSS 2.0 Marshaling/Unmarshaling API Specification, ht
tps://trustedcomputinggroup.org/resource/tcg-tss-2-0-marshalingunmarshaling-

api-specification/

[65] Trusted Computing Group, TCG TSS 2.0 TPM Command Transmission Interface (TCTI)
API Specification, https://trustedcomputinggroup.org/resource/tss-tcti-specific
ation/

[66] Trusted Computing Group, TCG TSS 2.0 Overview and Common Structures Specification,
https://trustedcomputinggroup.org/wp-content/uploads/TCG TSS Overview Commo

n Structures v0.9 r03 published.pdf

[67] Trusted Computing Group, TCG EK Credential Profile, https://www.trustedcomputing
group.org/wp-content/uploads/Credential Profile EK V2.0 R14 published.pdf

[68] Trusted Computing Group, TPM 2.0 Library Chapter 1: Architecture, https://trustedc
omputinggroup.org/resource/tpm-library-specification/

[69] Emercoin API, https://emercoin.com/en/documentation/emercoin-api/

87

https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/
https://trustedcomputinggroup.org/resource/trusted-platform-module-tpm-summary/
https://www.nature.com/articles/s41928-020-0372-5
https://www.nature.com/articles/s41928-020-0372-5
https://docs.soliditylang.org/en/v0.8.13/abi-spec.html
https://docs.soliditylang.org/en/v0.8.13/abi-spec.html
https://emercoin.com/en/documentation/blockchain-services/emernvs/
https://emercoin.com/en/documentation/blockchain-services/emernvs/
https://emercoin.com/en/for-coinholders#download
https://github.com/ethereum/devp2p/blob/master/caps/les.md
https://github.com/ethereum/devp2p/blob/master/caps/les.md
https://www.openpgp.org/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_DevID_v1r2_02dec2020.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_DevID_v1r2_02dec2020.pdf
https://trustedcomputinggroup.org/resource/tss-fapi/
https://trustedcomputinggroup.org/resource/tss-fapi/
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-enhanced-system-api-esapi-specification/
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-enhanced-system-api-esapi-specification/
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-system-level-api-sapi-specification/
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-system-level-api-sapi-specification/
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-system-level-api-sapi-specification/
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-marshalingunmarshaling-api-specification/
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-marshalingunmarshaling-api-specification/
https://trustedcomputinggroup.org/resource/tcg-tss-2-0-marshalingunmarshaling-api-specification/
https://trustedcomputinggroup.org/resource/tss-tcti-specification/
https://trustedcomputinggroup.org/resource/tss-tcti-specification/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_Overview_Common_Structures_v0.9_r03_published.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_Overview_Common_Structures_v0.9_r03_published.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/Credential_Profile_EK_V2.0_R14_published.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/Credential_Profile_EK_V2.0_R14_published.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://emercoin.com/en/documentation/emercoin-api/

Bibliography

[70] OSS implementation of the TCG TPM2 Software Stack (TSS2), https://github.com/tpm
2-software/tpm2-tss

[71] pyca/cryptography, https://cryptography.io/en/latest/
[72] mbedTLS library, https://github.com/Mbed-TLS/mbedtls
[73] OpenSSL fork with Emercoin-based certificate verification, Jongho Won, https://github

.com/JonghoWon/openssl

[74] OpenSSL, https://github.com/openssl/openssl
[75] CURL library, https://curl.se/
[76] jsmn library, https://github.com/zserge/jsmn
[77] tpm2-software/tpm2-pytss: Python bindings for TSS, https://github.com/tpm2-softwa

re/tpm2-pytss

[78] python-bitcoinrpc, https://github.com/jgarzik/python-bitcoinrpc
[79] PopOS by System76, https://pop.system76.com/
[80] OPTIGA TPM & OPTIGA Trust certificates, https://www.infineon.com/cms/en/prod

uct/promopages/optiga tpm certificates/

[81] Oracle VM VirtualBox, https://www.virtualbox.org/
[82] IBM’s Software TPM 2.0, https://sourceforge.net/projects/ibmswtpm2/
[83] TPM2 Access Broker and Resource Manager, https://github.com/tpm2-software/tpm2-

abrmd

[84] IETF, RFC-6961: Transport Layer Security (TLS) Certificate Status Version 2 Extension,
June 2013 https://www.ietf.org/rfc/rfc6961.txt

[85] tpm2-tools, https://github.com/tpm2-software/tpm2-tools

88

https://github.com/tpm2-software/tpm2-tss
https://github.com/tpm2-software/tpm2-tss
https://cryptography.io/en/latest/
https://github.com/Mbed-TLS/mbedtls
https://github.com/JonghoWon/openssl
https://github.com/JonghoWon/openssl
https://github.com/openssl/openssl
https://curl.se/
https://github.com/zserge/jsmn
https://github.com/tpm2-software/tpm2-pytss
https://github.com/tpm2-software/tpm2-pytss
https://github.com/jgarzik/python-bitcoinrpc
https://pop.system76.com/
https://www.infineon.com/cms/en/product/promopages/optiga_tpm_certificates/
https://www.infineon.com/cms/en/product/promopages/optiga_tpm_certificates/
https://www.virtualbox.org/
https://sourceforge.net/projects/ibmswtpm2/
https://github.com/tpm2-software/tpm2-abrmd
https://github.com/tpm2-software/tpm2-abrmd
https://www.ietf.org/rfc/rfc6961.txt
https://github.com/tpm2-software/tpm2-tools

	List of Figures
	Introduction
	Background and motivation
	PKI model
	PKI drawbacks

	Related works
	IoT scenario
	IoT security concerns

	Blockchain technology
	Block structure
	Proof-of-Work consensus mechanism
	51% attack
	Proof-of-Stake consensus protocol
	Practical Byzantine Fault Tolerance (PBFT) consensus mechanism

	Blockchain usefulness for IoT
	Smart contracts

	Challenges for Blockchain integration in IoT
	Scalability
	Storage size
	Transactions cost

	Distributed PKI solutions
	Public Blockchain-based PKI in IoT scenario
	Private/Consortium Blockchain-based solutions

	IOTA
	Tangle
	DAG-based consensus: challenges
	IOTA STREAMS

	Web-of-Trust
	WoT related problems

	Proposed implementation
	High level design
	Trusted Platform Module (TPM)
	Device identification using TPM 2.0
	Device certificate registration
	Device ownership transfer
	Device key update
	Device key revocation
	Authenticated Key Exchange

	Test software
	Emercoin wallet
	TPM2 Software Stack (TSS2) library
	Protocol implementation
	Modified mbedTLS for Emercoin-based certificate verification

	Installation of testbed
	Related issues

	Measurements and comparison
	Performed tests
	Certificate registration process
	Standard TLS handshake testing environment

	Comparison

	Conclusion
	Future works

	User's manual
	Preliminary steps
	Device module
	Device Manager module

	Developer's manual
	Required software dependencies
	TPM 2.0 Software Stack (TSS2)
	Device Manager module dependencies
	Device module dependencies

	Enabling TPM 2.0
	Configuring the software TPM emulator

	Building process

	Bibliography

