
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Development and characterization of a
USB communication between two

microcontrollers general purpose STM32
to analyze the digital IP in order to

improve its performance

Supervisors

Prof. Danilo DEMARCHI

Ing. Giuseppe GUARNACCIA

Ing. Giovanni PANGALLO

Candidate

Alessio SIPALA

December 2022

“Credi in te stesso e in tutto ciò che sei.
Sappi che c’è qualcosa dentro di te

che è più grande di qualsiasi ostacolo.”

ii

Abstract

The objective that is proposed to achieve with this experience is to evaluate the
characteristics, the performances and the limits of a USB communication between
two evaluation boards belonging to the STM32G0 family via a USB type-C cable,
highlighting anomalies and criticisms.
The two evaluation boards have a USB type-C connector on board and they support
the USB 2.0 version in full speed mode, i.e. they are able to exchange data between
them at a speed of 12 Mbps. The activity was divided into several phases. The first
one in which the knowledge on controllers and the USB protocol were acquired,
the other one in which the skills to use ST’s software and boards were acquired.
The last phase, the experimental one, is the one in which a criticism of the USB
was stimulated in order to improve its digital design or the software usage.
More specifically, at first a code was implemented that would allow to verify the
correct communication between the host board and the device board. Subsequently,
to put the digital IP under stress, the amount of data traffic exchanged between
the two boards was increased and the used bandwidth has been evaluated. In this
way it is possible to compare the theoretical limit of the data sent between two
start of frames and the real one.
This analysis was possible also thanks to a "Teledyne Lecroy Mercury T2C" protocol
analyzer, that, located in series between the two boards, is able to spy on the
USB data traffic that is exchanged and allows to evaluate, in addition to the used
bandwidth, also other important parameters such as the transfer type, the various
packets and their sizes and the possible errors that may occur.

iii

Table of Contents

List of Figures vii

Acronyms xi

1 Introduction 1
1.1 Microcontrollers and STM32 . 1
1.2 UART protocol . 3
1.3 SPI protocol . 4
1.4 I2C protocol . 7
1.5 USB protocol . 7

1.5.1 USB version history . 8

2 USB protocol 11
2.1 Introduction . 11
2.2 Architecture . 12
2.3 Electrical and line states . 13
2.4 Protocol and transfer types . 17

3 USB2 IP by STMicroelectronics 24
3.1 Description of USB blocks . 26
3.2 Usage and structure of packet buffers 30

3.2.1 Double buffer in HOST/DEVICE mode 32
3.3 USB registers . 34

4 Used resources for the experience 37
4.1 STM32 Evaluation Board . 37

4.1.1 Clock Recovery System . 40
4.2 Protocol Analyzer . 42
4.3 STM32CubeIDE . 45

v

5 Software and hardware implementation 48
5.1 Hardware configuration . 48
5.2 Software configurations . 49

6 Performance test, results and conclusions 58
6.1 Evaluation of the maximum bandwidth 58
6.2 First test . 60
6.3 Second test . 64
6.4 Third test . 65

Bibliography 77

vi

List of Figures

1.1 STM32 product line [1] . 2
1.2 UART protocol [2] . 4
1.3 SPI protocol [3] . 5
1.4 SPI protocol - example with CPHA=1 6
1.5 SPI protocol - example with CPHA=0 6
1.6 I2C protocol [5] . 7
1.7 USB Type-A and Type-B connectors [6] 8
1.8 USB Micro and Mini connectors . 9
1.9 USB Type-C connector . 10
1.10 USB Type-C pinout [7] . 10

2.1 USB different speeds and respective applications [8] 11
2.2 USB star-topology architecture [9] 12
2.3 USB coaxial cable [10] . 13
2.4 USB speed detenction based on 1.5 kΩ resistance [11] 14
2.5 state diagram configuration [12] . 16
2.6 Non-return-to-zero-inverted encoding [13] 17
2.7 NRZI with bit stuffing [14] . 17
2.8 Single packet format [15] . 18
2.9 different packet identifier types [16] 19
2.10 token packet format [17] . 20
2.11 data packet format . 20
2.12 handshake packet format . 21
2.13 SOF packet format . 21
2.14 OUT and IN types transactions . 22
2.15 Example of control transfer made up of 3 different stages 23

3.1 USB peripheral block diagram [18] 25
3.2 Upstream and downstream transceivers [19] 27
3.3 Low-/full-speed Signaling Levels [20] 28
3.4 Packet buffer with examples of buffer description table locations [21] 30

vii

3.5 STATRX status table [22] . 33
3.6 Double-buffering buffer flag definition [23] 33
3.7 Control register structure [24] . 34
3.8 Interrupt status register structure 36

4.1 STM32G0C1E-EV evaluation board [25] 37
4.2 STM32G0C1E-EV motherboard and daughterboards schematic [26] 38
4.3 STM32G0C1E-EV motherboard layout [27] 38
4.4 CRS block diagram [28] . 40
4.5 CRS counter behavior [29] . 41
4.6 Instrumentation setup . 42
4.7 user interface view at packet level 44
4.8 user interface view at transfer level 45
4.9 HOST mode configuration from ST32CubeIDE side 46
4.10 HOST mode configuration from ST32CubeIDE side 46
4.11 Clock configuration from ST32CubeIDE side 47

5.1 JP3 and JP4 configuration [30] . 48
5.2 Corrupted data view . 49
5.3 Device library structure [31] . 50
5.4 Device handler structure . 51
5.5 Host library structure [32] . 52
5.6 Host handler structure . 52
5.7 Log display after turning on the boards 54
5.8 Host state machine [33] . 55
5.9 Transmit function that has been implemented 56
5.10 Receive function that has been implemented 57

6.1 Full-speed BULK transaction limits 59
6.2 Maximum number of bits for the forbidden window 59
6.3 Log on host and device display for the first test 60
6.4 Transaction and packet level view for the first test 61
6.5 Data view of the first transaction 61
6.6 Waveforms view for Packet 73 (first DATA1) 62
6.7 Bandwidth evaluation of the first test 63
6.8 Presence of multiple NAK . 64
6.9 Results and bandwidth evaluation of second test 65
6.10 Double buffer bit enable . 66
6.11 Double buffer . 66
6.12 Debug session: EPKIND bit is not enabled 67
6.13 Process Transmission function . 68
6.14 Function used to start the transfer using double buffer feature . . . 68

viii

6.15 Debug session: EPKIND bit is enabled 69
6.16 Case statement within process transmission function 70
6.17 Initialize parameters before transfer 71
6.18 Bandwidth utilization percentage using double buffer 71
6.19 Presence of NAK handshake that reduces the bandwidth percentage 72
6.20 Bulk double-buffering memory buffers usage (Device mode) 73
6.23 Achieved results with the various tests 74
6.21 HAL_PCD_EP_DB_Receive function 75
6.22 Log and bandwidth usage with correct double buffer 76

ix

Acronyms

ACK
Acknowledge

ADC
Analog to digital converter

API
Application Program Interface

BCD
Battery Charging Detection

BSP
Board Support Package

CRC
Cyclic Redundancy Code

CRS
Clock Recovery System

DRP
Dual-Role Port

DAC
Digital to analog converter

EOF
End of frame

xi

EOP
End of packet

FS
Full speed

HFS
Host Frame Scheduler

HS
High speed

IP
Intellectual property

LS
Low speed

NAK
Not acknowledge

PD
Power Delivery

PHY
Physical Interface

PID
Packet identifier

SE0
Single-ended zero

SE1
Single-ended one

SIE
Serial Interface Engine

SOF
Start of frame

xii

Chapter 1

Introduction

1.1 Microcontrollers and STM32
The microcontroller (MCU) is a small-sized programmable electronic device that
contains all the peripherals necessary for its operation. Generally it integrates one
or more data/instruction memories to save results, temporary variables and instruc-
tions to be executed, a central processing unit (CPU), several PINs and I/O ports to
communicate with the outside world and some additional optional peripherals such
as converters DAC/ADC and timers. All the integrated peripherals ensure that
the microcontroller is able to manage in complete autonomy the operation of the
device where it is located, such as computers, smartphones, household appliances
and in general in all systems where electronic control is required.

STMicroelectronics was the first company to effectively introduce a general-purpose
microcontroller based on an ARM Cortex processor, giving life to a family of micro-
controllers that takes the name of STM32. The integration with ARM processors
has led to an important expansion of the company’s product portfolio, providing
different solutions to the customer based on the characteristics of the product and
the fields of use. The product lines are divided into:

• High performance: microcontrollers suitable for a context where high perfor-
mance is required for greater integration and connectivity;

• Mainstream: ideal for general-purpose systems where the costs of the final
product are limited;

• Ultra-low-power : microcontrollers with an excellent trade-off between perfor-
mance, power and costs, where the main goal is energy saving;

1

Introduction

• Wireless: used for applications requiring wireless connectivity up to a maxi-
mum operating frequency of 2.4 GHz.

For each type of application there are different series of STM32 that offer
different characteristics. The following figure locates the different microcontrollers
according to the four macro categories listed above.

Figure 1.1: STM32 product line [1]

2

Introduction

Each microcontroller has one or more peripherals in order to communicate with
other microcontrollers or with other external components, in order to exchange
data and control or status signals. In general, the communication between two
electronic systems can be parallel or serial. The first one involves the exchange
of bits in a parallel manner, therefore it will need a number of data buses equal,
at least, to the number of bits to be transmitted; this implies on the one hand
higher performance in terms of data transfer speed, on the other a high cost due
to the greater resources used. The second communication mode provides, unlike
the first, that the bits are sent in serial mode one after the other, making the data
transmission speed lower but at the same time substantially reducing production
costs, as you will need only one data BUS.

Furthermore, at very high frequencies, the cross-talk phenomenon is consider-
ably reduced, increasing the robustness of the system towards disturbances coming
from other parts of the circuit. In parallel communication, in fact, due to the
greater number of conductors, mutual capacities and inductances are created, which
cause interference that modify the voltage levels present on the conductors them-
selves, making the system much more fragile. This problem is solved by trying to
reduce the capacities and parasitic inductances as much as possible, increasing the
strength of the drivers that drive the buses, or trying to reduce as much as possible
the number of conductors that can disturb each other, as in the case of serial
transmission. Within a microcontroller we can find one or more communication
protocols, which differ in transmission speed, complexity and timing of the clock
signal between the transmitting part and the receiving part. The most widely used
serial transmission protocols within an electronic system are briefly described in
the following pages.

1.2 UART protocol
The UART (Universal Asynchronous Receiver Transmitter) protocol was one of the
first protocols to be used due to its simplicity of implementation and low cost; for
this reason it has been widely used and is still used in some applications, although
in most cases more efficient protocols are preferred.

As suggested by the name itself, this protocol is asynchronous: there is no timing
signal in common between the transmitter and the receiver. However, to ensure
that the data exchange takes place correctly, it is necessary that both parties have
the same "baud rate", defined as the number of transitions that occur on the data
BUS per second. To facilitate transmission and substantially reduce potential
errors, the entire string of bits to be transmitted is fragmented into smaller strings

3

Introduction

(normally 8-bit strings are used; however the protocol is quite flexible, so different
packets size can be used) which is called "frame". The first bit that is transmitted
takes the name of "start bit", that is a transition on the BUS from the high logic
level to the low logic level; this is necessary to notify the receiver of the arrival of
the data. After transmitting all the frames, the communication is terminated by a
“stop bit”, the opposite transition with respect to the start bit which restores the
line to the idle condition. Optionally, a "parity bit" can be added, located between
the last data bit and the stop bit, and the purpose of this bit is to detect any
transmission errors.

Figure 1.2: UART protocol [2]

The Figure 1.2 shows an example of transmission via the UART protocol. It is
possible to notice the presence of the start and stop bits which respectively start
and end the transmission, plus an additional bit for error detection.
In conclusion, it can be said that the UART protocol is very simple to use both
from the software side and from the hardware side. However, the communication
is of the "point-to-point" type, ie reserved only for two devices. Furthermore, the
low transmission speed makes the UART protocol less preferable than other more
performing protocols.

1.3 SPI protocol
The SPI (Serial Peripheral Interface) protocol was introduced by Motorola and is
widely used in the world of microcontrollers. Unlike the UART protocol, it is a
synchronous communication standard, thanks to the presence of a line used for the
timing signal; this allows data to be transmitted at higher speed with respect to
any asynchronous protocol, and this reduce the probability of error.
It is also a master-slave communication, so the master device has complete control:
it decides the exact moment in which to start/end a data transfer and it decide
the slave device with which to interact.

4

Introduction

In general, there are more slaves that are connected to the same master, so we
need more lines than the UART protocol:

• SCLK : the shared timing signal between master and slave;

• MOSI (master output slave input): the signal that indicates the start of a
data transmission from the master to the slave;

• MISO (master input slave output): the signal that indicates the start of a
transmission from the slave to the master;

• SS (slave select): the signal that enables the slave with which the master must
interact.

The number of lines must be at least 4; however, if there are more than one slave,
we will need as many additional selection lines as there are slaves.

Figure 1.3: SPI protocol [3]

5

Introduction

Greater flexibility is guaranteed by the presence of two additional signals, which
are normally called "CPOL" and "CPHA". The first, which stands for “clock
polarity”, adjusts the polarity of the timing signal: if CPOL is at the high logic
level, then the clock will be in the idle condition when it gets low logic level; vice
versa if CPOL is at the low logic level, the clock will be in idle condition when it is
at the high logic level. The second signal stands for "clock phase" and discriminates
the active sampling edge: if CPHA is at the high logic level, then the data is
sampled on the rising edge, otherwise on the falling edge. Figure 1.4 and Figure
1.5 show the waveforms of the signals of a transmission via SPI protocol [4] based
on the value assumed by the CPHA phase bit.

Figure 1.4: SPI protocol - example with CPHA=1

Figure 1.5: SPI protocol - example with CPHA=0

6

Introduction

1.4 I2C protocol
The I2C (Inter Integrated Circuit) protocol is a type of serial communication
very similar to the SPI. The substantial difference is that now only two lines are
used, one for the timing signal which is called SCL (Serial Clock), the other for
data exchange SDA (Serial Data). To identify the slave with which to interact, a
selection line is not used, but a first frame is sent that indicates the unique address
of the slave in question. So there will be a start bit that is used to "wake up" the
BUS from the idle state. It is recognized by the receiver as it is brought to the
low logic value while the timing signal is in idle state. There are then 7 successive
address bits, an R/W bit needed by the slave to understand if it is a read or write
operation, and finally an ACK bit which is needed by the master to understand
if the slave is available for communication. In the following frames there will be
the data exchange between the transmitter and the receiver, which ends with a
stop bit, i.e. bringing the data line to the high logic level after having brought the
timing signal to the high logic level.

Figure 1.6: I2C protocol [5]

1.5 USB protocol
One of the most used communication standards, especially to connect external
peripherals to the computer, is USB (Universal Serial Bus).
Introduced for the first time in the market in 1996 thanks to a collaboration of 7
companies (Compaq, Hewlett-Packard, IBM, Microsoft, NEC and Nortel), it was
soon adopted in the world and integrated in most of the six electronic devices. The
reason why the USB standard has become so popular and is still evolving after
more than 25 years, despite the technological evolution, is to be found in several
aspects:

• Versatility: The same connector is used to connect different peripherals, instead
of using different connectors for each peripheral. This greatly reduces costs
and complexity, as well as creating an universal bus for each device.

7

Introduction

• Simplicity: just connect the USB cable on both sides to automatically start
the recognition of the inserted device and the installation of the drivers. In this
way, all the initial configuration part is hidden from the end user, increasing
ease of use.

• Robustness: the USB protocol stands out from the others for its robustness
and rigidity, which make it one of the safest among those in existence. Plug
and Play: allows you to connect/disconnect a device connected via USB cable
simply by disconnecting it, without damaging the computer or the device
itself.

1.5.1 USB version history
The first version to be introduced was the one that takes the name of "USB 1.0"
and was used for HID (human interface device) as mouse and keyboards. In fact,
its maximum data transfer rate of about 1.5 Mbps, defined as low-speed, makes it
impossible to use this version for applications that require higher performance, such
as video or audio transfer, but it turned out to be ideal for where performance is
not of primary importance. The biggest problem with this version is that the cable
length can reach a maximum of 3 meters. The connectors used for this version are
called "Type-A" and "Type-B": Two years later, in 1998, the USB 1.1 version was

Figure 1.7: USB Type-A and Type-B connectors [6]

introduced with the aim of increasing the performance and solving some problems
of the previous version. More specifically, the data transfer speed was increased up
to 12 Mbps (full speed) and the maximum cable length reached 5 meters.

The USB 2.0 standard was introduced in the first half of 2000. Within just
2 years from the previous version, there were significant improvements in data

8

Introduction

transmission speed, which went up to 480 Mbps (high speed). This made it possible
to adopt the USB standard for applications that required higher performance. An
important novelty was that of battery charging: the device connected to the PC via
USB cable is not powered by an external battery, but is powered by the cable itself,
which in addition to carrying information, is able to deliver up to a maximum of
100 mA. A winning idea was to make the USB 2.0 standard completely backward
compatible with previous versions. However, using a USB 2.0 cable to connect
devices that can only support previous standards, the transmission speed must
be adapted and limited to the maximum speed of the devices themselves. The
“Type-A” and “Type-B” connectors remained, and four more were introduced,
which took the name of “Mini” and “Micro”. Thanks to the small connectors, they
were used to connect devices with reduced thickness such as tablets, cameras or
satellite navigators.

Figure 1.8: USB Micro and Mini connectors

In 2008, the USB 3.0 version was introduced, which offers the customer even
greater performance (a speed of 4.8 Gbps can be achieved) for most applications.
In order to achieve this speed, it was necessary to slightly modify the structure
of the connector by adding 5 new pins to support high-speed optical connections.
However, in order to maintain backward compatibility with versions 1.0 and 2.0,
the position and size of the pins must be such that they do not come into contact
with the conductors of the previous version.

9

Introduction

The version currently most used on the market is the one that takes the name
of USB 3.1 (SuperSpeed+), whose specifications were announced starting from 2013.
The "Type-C " connector was introduced for the first time, now much more small
and performing compared to its predecessor.

Figure 1.9: USB Type-C connector

In addition to the addition of some pins to support power delivery (in addition
to the exchange of information, at the same time the exchange of power is now
also allowed to power devices such as monitors and computers), the connector was
made reversible, i.e. the ability to be inserted in any direction.

Figure 1.10: USB Type-C pinout [7]

Backward compatibility with previous versions was maintained, which had to be
done via adapters or docking stations. The compactness of the connector, versatility
and performance have made Type-C the most suitable adapter, at the moment, for
latest generation devices where the main goal is to lighten and save space.

10

Chapter 2

USB protocol

2.1 Introduction

The USB 2.0 protocol provides three different data transfer speeds depending on
the application being used. We can identify them in ascending order respectively
with: low-speed, full-speed, high-speed.

Figure 2.1: USB different speeds and respective applications [8]

11

USB protocol

The LS is able to reach a theoretical speed of about 1.5 Mbps, so it is reasonable
for applications that do not require particular performance, such as the use of mice,
keyboards or interactive devices in general. The FS was initially designed for all
other devices that were not HID and reached a data transfer speed of about 12
Mbps. With the technological evolution, the HS was introduced in conjunction
with the USB 2.0 protocol, which allowed the use of more complex and performing
applications, such as video transfer and storage. It should be noted that all speeds
maintain the fundamental characteristics that distinguish the USB protocol from the
other existing ones: ease of use, ability to manage multiple peripherals, automatic
and secure connection / disconnection between the two devices. However, the price
to pay for better performance is to increase production costs due to greater control
required.

2.2 Architecture
USB communication provides a master-slave architecture, in which the master
takes control of the bus and starts the communication, while the slave waits and
responds accordingly. The protocol requires the presence of only one master, which
takes the name of "Host", and one or more slaves, which is called "Device". To
expand the interconnection between the host and the various devices, it is possible
to use devices called "Hub"; the latter are conceptually comparable to a multiple
socket that is connected to the host or to another hub and allows the output to
connect other devices.

Figure 2.2: USB star-topology architecture [9]

12

USB protocol

This pyramid structure is called "star topology" and provides for a maximum
of 127 connected devices, as the address space is 7 bits and the first address is
reserved for particular uses. However, such a large number of connections could
substantially reduce the maximum bandwidth and weigh on the overall speed. In
addition, the maximum length of each cable to ensure reasonable performance is
5 meters, so you can instantiate 7 different levels and a total system length of 30
meters.

2.3 Electrical and line states
From an electrical point of view, the system is composed of a coaxial cable with a
certain characteristic impedance Z∞ that connects the host with the device. The
data travels inside the cable along two differential lines which are called "D+"
and "D−"; in this way the system is made more robust and protects itself from
electromagnetic interference that can change the voltage levels present on the bus.

Figure 2.3: USB coaxial cable [10]

In fact, the receiving part is composed of a differential amplifier that receives the
two lines and discriminates a "0" from a logic "1" thanks to the voltage difference
on the lines themselves. In this way, any disturbance coming from other parts
of the circuit will affect both conductors while maintaining the voltage difference
constant. In the termination of the coaxial cable, on the device/hub side, there is
a pull-up resistor with a nominal value of 1.5 kΩ.

This resistance is essential to make the host understand the maximum data transfer
speed of the device: if the "D+" line is brought to the power supply voltage, the
communication will be of the FS type with a maximum speed of 12 Mbps, otherwise
it will be of type LS with a maximum speed of 1.5 Mbps.

13

USB protocol

Figure 2.4: USB speed detenction based on 1.5 kΩ resistance [11]

The status of the connection between host and device can assume different
states based on the voltage level applied on the differential lines. It is possible to
distinguish the following states:

• Detached: no device is connected to the host, therefore both lines are kept at
logic zero through the two pull-down resistors.

• Attached: at least one device has been connected and one of the two lines is
brought to the logical one; through the position of the pull-up resistor of the
device, the host distinguishes FS or LS.

• Idle: at least one device is connected but is waiting to receive a bit packet
from the host. As for the attach state, the line in which there is the pull up
resistor is kept at the high logic state.

These two states are the fundamental ones to discriminate the connection of a
new Device. However, once the connection between Host and Device has been
established, other configurations of the bus lines are possible:

• Idle: at least one device is connected but is waiting to receive a bit packet
from the host. As for the attach state, the line in which there is the pull up
resistor is kept at the high logic state.

• J state: coincides with the idle state in which there is a differential "1", that
is to say that the line in which the pull-up resistor is connected is brought to
the high logic value.

• K state: coincides with the opposite polarity with respect to the previous
state.

14

USB protocol

• Single-ended one (SE1): it is a prohibited configuration that occurs when both
differential lines are brought to the high logic value due to a conflict between
two drivers.

• Single-ended zero (SE0): both lines are at the low logic level.

• Reset: both lines are brought to logic zero for a time greater than or equal
to 10 ms. Normally this condition is used to configure a new device after
connecting with the host.

• End of Packet (EOP): as soon as a packet is transmitted, both lines are
brought to logic zero (SE0) for 2 bit times followed by a J state for 1 bit time
(Idle).

• Suspend: when hosts and devices no longer have to communicate for an
indefinite time, switching on the bus is avoided to save energy. This condition
is obtained when the idle condition is maintained for a time greater than or
equal to 3 ms.

• Resume: when you want to pass from a suspend condition to an activity
condition, you have to switch the lines, thus passing from J state to K state
for a time greater than or equal to 20 ms.

In order to establish a connection to exchange data, the USB protocol provides
some initialization steps to configure the device. The steps can be summarized
through a state diagram that takes into account all the possible scenarios that can
occur during communication.

15

USB protocol

Figure 2.5: state diagram configuration [12]

After detecting a device connection (attached state), the host proceeds with the
initial configuration of the hub and begins to provide the power needed to power
the device (powered state). A device can be powered via an external power supply
or via battery charging, or using the same USB cable which, in addition to carrying
information, also carries power. In the first case we speak of a "self-powered device",
in the second we speak of a "bus-powered device". It is possible that a device
supports both types and switches from one to the other if it is not possible to have
the necessary power in one of the two configurations. Subsequently, the host resets
the device and assigns it a default address that corresponds to the first address of

16

USB protocol

the address space, which is then reserved for the initial configuration of the devices.
The final step is to assign the first available address uniquely, based on the number
of devices already connected (address state) and device configuration (configured
state).

2.4 Protocol and transfer types
The host and each device have a well-defined number of "endpoints", which can
be defined as a two-way virtual communication channel that coexists between the
two devices. Each endpoint is associated with a type of transfer depending on
its application field. Normally the first endpoint, the one with an address equal
to ’0’, is reserved for particular functions such as the enumeration and general
configuration of the device. The exchange of information between two endpoints of
the host and the device takes place through data "packets", which coincide with the
smallest elementary block that can be sent. The transmitted data is encoded via
the NRZI (non-return to zero inverted). In this case, to transmit a ’1’, the logic
level present on the bus is not changed. On the contrary, a ’0’ is represented by
a change in the logic level However, this encoding could lead to synchronization

Figure 2.6: Non-return-to-zero-inverted encoding [13]

problems when many consecutive ’1’ are transmitted. For this reason, what is
called bit stuffing is used, i.e. a ’0’ is transmitted after six consecutive ’1’. This
technique therefore forces the inversion of the logic state on the bus ensuring a
situation of data and clock lock.

Figure 2.7: NRZI with bit stuffing [14]

17

USB protocol

At the beginning and at the end of each transmitted packet, the bus is in the
idle condition and the packet is made up of some fundamental fields:

• SYNC: is the field reserved for synchronization between the transmitting and
receiving part and corresponds to the first 8 MSBs of each packet. When
transmitting these bits, the receiving part uses a 48 MHz clock to over-sample
the bits from the second device and synchronize with it.

• DATA: this field is variable according to the type of transfer to be used and
is made up of some “sub fields”, including the one that contains the bytes of
information that must be transmitted on the bus.

• EOP: each packets ends with an end of packet.

Figure 2.8: Single packet format [15]

The DATA field, as already mentioned, can be divided into several parts. The first
8 bits are always the same regardless of the type of transfer and are called the
“Packet Identifier” (PID). Based on the combination of the first 4 bits (the 4 MSBs
are complementary), the type of packet being transferred is identified between
token packet, data packet, handshake packet and special packet. The table (. . .)
lists all the possible combinations of bits, each of which is associated with a PID.

18

USB protocol

Figure 2.9: different packet identifier types [16]

Therefore, the format and size of the single packet can change based on the type
of PID that is specified within the first byte of data, after sending the SYNC. The
various packages can be cataloged in:

• Token packet: is used to specify that the next data packet to be transferred
will be in the IN (from the device to the host) or OUT direction (from the
host to the device), to transmit a start of frame, i.e. a packet that serves to

19

USB protocol

keep the device without going into suspend mode, or to transmit a SETUP,
that is a packet necessary for the initial configuration of a new device that is
connected. In this case, therefore, the data field will be formed, in addition

Figure 2.10: token packet format [17]

to the SYNC and the PID, by 7 address bits corresponding to the device
with which you want to speak, 4 address bits relating to a specific endpoint
of that specific device in which you want to send the communication, and 5
redundancy bits that take the name of "Cyclic Redundancy Check" to check
for any errors. The last bits are intended for the EOP.

• Data packet: it can be DATA0 or DATA1 alternately, in order to understand
if the communication is continuing correctly or if there has been some problem.
In this last case, two consecutive non-alternating DATA0/1 are received and
the transmitting device will always send the same packet until it receives the
packet of the opposite type. The two PIDs corresponding to DATA2 and
MDATA are reserved for high speed communication. Normally this packet is

Figure 2.11: data packet format

sent immediately after the token packet in which the address and endpoint
of the device has already been specified. Therefore, in addition to the classic
overhead formed by SYNC, PID, CRC and EOP, the remaining bytes are used
for the actual data to be transmitted, which can be up to 1024 bytes.

• Handshake packet: this is the last packet within a transaction that is sent. If
it is the host that sends data to the device, the handshake packet will be in
the IN direction, that is, from the device to the host. Conversely, the host
will send this packet to the device.

20

USB protocol

Figure 2.12: handshake packet format

The handshake can have different meanings depending on the type of PID
transmitted: ACK if the receiving device has correctly received all the packets
and the communication was successful; NAK if the receiving device is “busy”
in other operations and is unable to receive/transmit data; STALL if there is a
problem with that particular endpoint or NYET in case of delays. For this type
of packet, in addition to the SYNC and the EOP which must necessarily exist
for each packet, only the PID that specifies the type of handshake received is
required.

• Start of frame packet: it is a special packet that is transmitted on the bus on
a regular basis every 1 ms by the host.

Figure 2.13: SOF packet format

The single packets, if sent with a certain order, form more complex structures
called “transactions”. In this way, a communication that is as simple as effective
and secure is used. Each transactions is made up of 3 packets, respectively token
packet, data packet and handshake packet. So, for example, an OUT transaction
will be formed by an OUT type token packet (the respective PID will give 0001 in
binary), a DATA0/1 type data packet that originates from the host to the device
and finally a handshake packet, whose content depends on the PID which expresses
the status of the communication at that particular moment. Similarly, an IN
transaction, will consist of an IN token packet, a data packet from the device to
the host and a handshake packet.
In some cases, in OUT and IN transactions, the handshake packet is omitted
because it is useless. This is the case of the so-called "real-time" communications,
for example communications in real time in which the same data cannot be sent
again in case of errors. A “correct reception” packet, therefore, would be useless as
the data that you wanted to transmit at that moment has now been lost and can’t
be sent again.

21

USB protocol

Finally, it is also possible to distinguish a SETUP transaction whose format is
similar to OUT and IN transactions. The only difference is that in this case the
data packet, by convention, will always be of the DATA0 type. Furthermore, this
transaction is normally used for device configuration, which is why it cannot be a
real-time communication and the handshake packet is also required.

Figure 2.14: OUT and IN types transactions

The sequence of multiple transactions form the highest level structures that are
called "transfers", which can be of four types depending on the application being
used and the endpoint with which you intend to communicate. It is possible to
distinguish four different types of transfers:

• Bulk transfer: allows the transmission of a large amount of data without
errors. This type of transfer can’t take place in LS and allows a packet size
of up to 64 bytes. After identifying an OUT or IN endpoint, an OUT or IN
transaction using that specific endpoint is required to initiate a bulk transfer.

• Isochronous transfer: allows the transmission of "real-time" data, i.e. for those
applications that need to exchange instant information, such as audio devices
like microphones and speakers. As for bulk transfer, the possible types of
transactions are OUT or IN, with a maximum size of 1024 bytes. However,
unlike bulk transfers, there is the absence of the handshake packet after data
transmission.

• Interrupt transfer: allows the transmission of data for HID applications such
as the use of mouse and keyboards. As soon as the instantaneous position
of the mouse is changed, or if a key on the keyboard is pressed, an interrupt
bit is activated that alerts the host of a new event. It will then initiate an

22

USB protocol

interrupt transfer to update the position of the mouse or display the character
corresponding to the key pressed. As for the previous transfers, the possible
transactions are of type OUT or IN, even if in this case the IN transaction is
more used. The maximum packet size in FS is 64 bytes and the handshake
packet is present.

• Control transfer: this type of transfer is necessary for the initial configuration
of a new device and allows the host to receive all the information necessary for
the correct behavior of the device. This transfer is the most "complicated" of
all those already listed, as it is made up of 3 stages, each of which corresponds
to a different transaction.

Figure 2.15: Example of control transfer made up of 3 different stages

The first stage corresponds to the “setup stage”, where a SETUP transaction is
sent, in which the data packet is 8 bytes and gives some information about the
size of the bytes transferred to the next stage, which is called the “data stage”.
This second stage is optional and consists of a variable number of OUT/IN
transactions of the DATA0/1 type. The third and last stage is what takes
the name of "status stage" and is formed by an OUT/IN transaction of zero
length opposite to that of the previous stage. For example, if IN transactions
are transmitted in the second stage, an OUT transaction with a byte length
of zero will be transmitted in the last stage.

23

Chapter 3

USB2 IP by
STMicroelectronics

The USB 2.0 digital IP designed by STMicroelectronics supports data transfer in
FS, i.e. with a speed of 12 Mbps. Both Host and Device mode are supported,
with a programmable number of endpoints reaching up to 8 endpoints: the first is
normally reserved for control transfers, in order to to allow the correct configuration
of a new connected device, while the other endpoints can be used for other transfers,
including the isochronous one. Furthermore, the USB communication provides
a dedicated memory for the storage of the received/sent data which takes the
name of “packet buffer memory”, and in this case reaches a maximum size of 2048
bytes. Suspend/resume operations are supported to disable digital IP when a USB
communication to the external world is no longer required and to save on power
consumption. This is done by writing a specific bit in the control register and
allows to disable the clock using the clock gating technique in order to disable the
IP. Any new activity on the bus will wake up the peripheral enabling the clock
asynchronously. Finally, the Device mode implements the featuring of battery
charging, and can therefore be powered via a hub or via the same host using
the USB Type-C cable. As per USB specification, there is the possibility to
connect/disconnect the USB cable without damaging the IP itself. This occurs
thanks to the presence of an integrated pull-up resistor on the D+ line of the host.
The block diagram of the entire IP is shown in Figure 3.1.

24

USB2 IP by STMicroelectronics

Figure 3.1: USB peripheral block diagram [18]

The data exchanged between an external USB device and the system memory
takes place via the packet buffer memory, which is directly accessible from the
USB device. Each endpoint is associated with a "buffer description block", that is
a buffer in which the specific memory location for that particular endpoint, its size
and the size of the bytes to be transmitted are indicated.

25

USB2 IP by STMicroelectronics

Once the USB device recognizes the arrival of a token on a specific endpoint, a
data transfer takes place and the data received are momentarily saved in a 32-bit
register; the memory is accessed on the flight and the contents of the buffer are
saved. When all data is received, an handshake packet is generated by the host
or device, depending on the direction of the previous packets. When the first
transaction is completed, a specific interrupt is generated and the microcontroller
determines some parameters, such as what will be the next type of transfer to
take place and which endpoint must be served for the next transaction. A very
interesting feature is the one called "double buffer", in which two buffers are used
instead of one, so as to always have a buffer available to receive new data while
the microcontroller uses the other to load it inside the memory.

3.1 Description of USB blocks
From the block diagram of Figure 3.1 it is possible to identify various blocks
connected to the USB interface, including:

• USB physical interface: this block consists of the pull-up resistor to manage
the attach/detach of a device, a support to detect the battery charging feature
(battery charging detection) and a differential transceiver. The latter is
composed by many drivers which allow to force J state or K state to transmit
data from the transmitter side, and to discriminate one of the two states
from the receiver side. The left transceiver is called "upstream trainceiver"
as it is related to the host, while the one on the right is connected to the
device and is called "downstream transceiver", in which we can also identify
the connected pull-up resistor to line D+ (FS mode). The upstream and
downstream transceivers linked respectively to the host and the device, are
formed by some receivers for the transmission and reception of the signal.
There are both differential and single-ended receivers: in the first receivers,
both the D+ and D- lines are linked to the input and the voltage difference
between the two lines is evaluated, while the latter have only one of the two
lines at the input. Both types of receivers have a minimum threshold VIL equal
to 0.8 V and a maximum threshold VIH equal to 2.0 V. It is also necessary that
the single-ended receiver is composed by a voltage comparator with hysteresis,
in order to have a greater robustness to external disturbances. The USB
protocol provides very precise specifications regarding the voltage levels that
must be present on the D+ and D- lines in order to discriminate the different
states of the bus.

26

USB2 IP by STMicroelectronics

Figure 3.2: Upstream and downstream transceivers [19]

From the table in Figure 3.3, it is possible to analyze some fundamental
parameters. For example, to correctly detect a Differential "1", the voltage
difference between the D+ line and the D- line must be greater than 200 mV
and at the same time, the voltage on D+ must be greater than 2 V . Therefore,
the worst case to be able to detect a Differential "1", would be with a voltage
on the D+ line equal to 2.01 V and a voltage on D- equal to 1.80 V. According
to the USB specification, the SE1 coincides with a prohibited condition in the
which the bus should never be in during normal operation.

27

USB2 IP by STMicroelectronics

An SE1 is detected by the receivers when both the D+ and D- lines are above
0.8 V. The conditions of Differential “1” and of SE1 are mutually exclusive,
as different voltage comparators are used.

Figure 3.3: Low-/full-speed Signaling Levels [20]

28

USB2 IP by STMicroelectronics

• Serial Interface Engine: the function of this block is to recognize the synchro-
nization bits, the bit stuffing and verify the packet identifier. It is also able to
generate some signals such as SOF and RESET.

• Timer: this block detects a suspend condition when there is no type of activity
on the bus for a time greater than or equal to 3 ms.

• Endpoint registers: a register is associated with each endpoint, which contains
a register where the type of endpoint (based on the transfers it manages) and
the current state in which it is located are saved.

• Host Frame Scheduler: this is a block that allows the management of the
transfers to be made between two SOFs based on the available bandwidth.
In fact, within a frame, different transfers can be sent until the maximum
limit is reached, beyond which nothing more can be sent except before the
next frame. This organization takes place according to the priorities of the
transfers. Normally, real-time transfers are placed first, such as interrupts and
isochronous ones, while non-periodic transfers (bulk and control) are placed
at the last.

• Control Registers: this block consists of all the registers that contain the
control bits of the entire USB peripheral.

• Interrupt Registers: this block consists of all the registers that contain the
interrupt detection bits, clear of some states or clear of pending interrupt.

• Packet Memory: consists of local memory which contains all packet buffers.
This memory is directly accessible from the software to pick up the received
packets and has a maximum size of 2048 bytes.

• APB Wrapper: this block maps all the USB device in the Advanced Peripheral
bus address space.

Therefore, the USB interface acts as a "bridge" between the differential lines D+/D-
and the APB bus. The latter is a bus that is optimized to consume as little
power as possible and is normally used to drive slower microcontroller peripherals,
including the UART, timers, keyboard or USB peripheral. Another type of bus is
what is called AHB (Advanced High-performance Bus) and is used for connection
to processors, memories and DMAs, which require higher performance than the
peripherals connected to the APB. Normally the APB and AHB buses are interfaced
through a "bridge" that allows you to switch from one bus to another.

29

USB2 IP by STMicroelectronics

3.2 Usage and structure of packet buffers
Each endpoint is configured as bidirectional, which means it can be used to transmit
or receive data over the bus. These data are contained in a specific memory location
which is reserved for each endpoint and contains two buffers, one for transmission
and the other for reception. They can be placed anywhere within the packet
memory, as their position and size are specified by the "buffer description table",
that is a table made up of many buffers associated with each endpoint.

Figure 3.4: Packet buffer with examples of buffer description table locations [21]

30

USB2 IP by STMicroelectronics

When the host sends a data packet to the device, the first thing that is done is
to check that the address matches the address of a device endpoint. If there is a co-
incidence, the USB peripheral of the host accesses the "buffer description table" and
selects the "CHEP_RXTXBD_n" register for that specific endpoint. Within this
register, there are two fields, respectively "ADDRn_TX" and "COUNTn_TX";
the first contains the address of the first byte inside the packet memory that the host
must transmit, while the second contains its size and it is useful to understand how
many bytes have been sent and how many are left to be sent. On the other hand,
when the device receives a packet from the host, the received address is always
checked against the endpoint address. Subsequently, the content of ADDRn_RX
(which contains the memory address to save the data) of that related endpoint is
saved in an internal ADDR register and the COUNT register is reset. The received
bytes are transferred to the packet memory starting from the address contained
in ADDR. At the same time, an internal counter is initialized with the maximum
value of the data size for that specific transfer and is decremented each time a
data transfer occurs, while COUNT is incremented. This is essential to detect any
overrun situations. When the end of the data transfer is detected, any errors are
evaluated through the CRC and proceeds with the handshake. In the event that
some error occurs, the data is still copied into memory but an ACK signal is not
sent to the host, while an error bit is set in the status register of the USB device.
In this case the packet must be resent.
When a large amount of data needs to be transferred, an endpoint configured in
bulk mode is normally used. The data processing procedure requires some time
to access the various buffers and save the content inside the packet memory. In
case a packet is transferred while the previous one has not yet finished processing,
a NAK signal is sent to resend the packet again, hoping that the buffer has been
managed. The double buffer consists in configuring both buffers contained within
the packet memory and addressed by the buffer description table, both modes
in TX or RX. In this way, the first data received is saved on the first buffer and
processed immediately. The second data is however accepted and saved in the
second buffer; while the second buffer has been saved, the first has already been
processed by the software and therefore you are available to process the second.
This technique allows to increase the working frequency thanks to a higher band.
In order to enable the double buffer it is necessary first of all to select the type of
endpoint, and then to set a bit inside a control register, which allows you to choose
between two unidirectional buffers (both TX or both RX) or a single bidirectional
buffer.

31

USB2 IP by STMicroelectronics

3.2.1 Double buffer in HOST/DEVICE mode
As described above, double buffer is a technique that is used to transfer a large
amount of data between two systems via the USB protocol, maximizing the use of the
available bandwidth. For this purpose, the two buffers CHEP_RXTX_BD and
CHEP_TXRX_BD, which contain the number of bytes received/transmitted
and the addresses related to the endpoint in the packet memory area, are made
unidirectional, i.e. both in the OUT direction (for data exchange from the host
to the device) or both in the IN direction (for data exchange from the device
to the host). In our case, the two buffers were both configured to support OUT
transactions and this allowed us to increase the percentage of bandwidth used by
a single frame. In the case of single buffer, the USB hardware device used the
CHEP_TXRX_BD buffer to fill it with the data just received and then waited
for the software to write the buffer in memory, as the CHEP_RXTX_BD buffer
was reserved for IN transactions. By enabling the double buffer instead, both
buffers can be written with the received data, so the USB device can fill a buffer
while the software takes care of processing the second.
Therefore, the fact that the USB device does not necessarily have to wait for the
software to manage the data being received but can switch to fill another buffer,
allows you to increase the maximum bandwidth and transfer data faster. It could
happen that the host is faster than the device and sends OUT transactions very
close to each other on the bus. The device software, being slower, is unable to free
the buffer to be processed in time to accept the new transaction from the host. In
this case, the device will respond with a NAK handshake to tell the host that it is
unable to accept new data as the buffers are both occupied. The host will always
send the same transaction until the device is able to accept and manage it. In the
case of double buffer, one of the two signals between STATTX and STATRX must
be activated according to the type of endpoint that is configured (in the case of
OUT transactions STATRX will be set to a value other than 0, while STATTX
will be disabled and will assume ’the value 0). This signal contains information
about the status of the endpoint involved in the communication.
On the device side, the hardware will configure STATRX to NAK immediately
after there has been a correct transaction, so that the software has time to process
the data just received before setting it back to VALID, send an ACK and be ready
to receive a new transaction. On the host side, however, this signal is configured
to VALID when the channel is ready to start a new transaction; in this case it will
enter the HFS execution queue and will wait for its confirmation in order to start
the transmission.

32

USB2 IP by STMicroelectronics

In the case of double buffer, VALID can be set if an ACK is received from the
device: the second channel will remain valid and ready to receive a new transaction,
while the first will be managed by the software to save the data in memory. When
the host receives a NAK from the device, the channel is suspended and the hardware
will write VALID only at the beginning of the next frame, trying to send that data
again. However, the software may decide to retry transmission immediately by
configuring STATRX to VALID. In order to handle the double buffer function, the

Figure 3.5: STATRX status table [22]

structure must be slightly changed. To discriminate which buffer is currently in use
by the software and which buffer is about to be filled by the hardware, two signals
are used, DTOGRX and DTOGTX, which are bit 14 and bit 6 of the register of
that particular endpoint, respectively. In single buffer, only one of these two signals
was used, depending on the direction, to signal the correct reception of a packet
along with the STATRX bit. In particular, this signal is updated by the hardware
when an ACK is received and contains the expected value of the data bit that must
be alternated (DATA0 = 0, DATA1 = 1). In double buffer, DTOGRX is normally
used as in the case of single buffer, while DTOGTX is renamed to SW_BUF and
indicates which buffer is currently used by the software.

Figure 3.6: Double-buffering buffer flag definition [23]

33

USB2 IP by STMicroelectronics

In the case of OUT transactions, as specified in Figure 3.6, DTOGRX is used by
the hardware as in the case of single buffer, while SW_BUF (DTOGTX) is used
by the software to save the data already received in memory. The double buffer is
enabled by the software by configuring two bits:

• UTYPE: corresponds to bits 9 and 10 of the endpoint register and is set to 00
to specify the type of endpoint (BULK)

• EPKIND: corresponds to bit 8 of the endpoint register and is set to 1
(DBL_BUF)

The software initializes the DTOGRX and SW_BUF signals based on the buffer
that is used by the software and hardware. At the end of each transaction, DTOGRX
is removed from the hardware so that the software already knows the next buffer to
take. As soon as the software completes the processing of the buffer, it changes the
SW_BUF signal in such a way as to notify the hardware device that the buffer is
available and that it can receive a new transaction.

3.3 USB registers
The USB device has several registers to be able to manage all the features that
are implemented. It is possible to list the registers in two large groups, common
registers and endpoint registers. The first group contains the control and interrupt
management registers, while the second contains the endpoint configuration and
status registers. Furthermore, there is a third type of registers which is called
"USB SRAM registers", which includes the buffer description table, which is used
to locate the packet buffers and is contained within a section of the packet memory.

USB control register

This control register (USB_CNTR) is part of the common registers and is a 32-bit
register. Some of them are reserved and not configurable by the user, as they can
be configuration bits or redundancy bits in view of future functionality. Bit 31

Figure 3.7: Control register structure [24]

34

USB2 IP by STMicroelectronics

"HOST" is initialized when the USB peripheral of the evaluation board is switched
on. This value is set to "1" if the board is to be used as a host, or to "0" if the board
is to be used as a device. The value of the bit can be changed every time the IP is
turned on or reset so that its role can be changed. A feature born with USB 2.0
and used above all in the field of mobile telephony, is the one that takes the name
of "On-The-Go" (OTG), whose purpose was to alternate the role of a mobile device
between Host and Device to be able to interface both with external Hard Disks
to save data, and with a host PC to be viewed as mass memory. The substantial
difference with respect to the functioning of the evaluation board (which does not
support the OTG) is that bit 31 "HOST" can be changed during normal operation
of the device, without the need to restart it. Bit 0 "USBRST" allows you to reset
the device. In case the board is configured in "device mode", this signal would allow
to reset the internal state machine. In the case of "host mode", the reset signal
is asserted by the software to drive the reset status on the bus and to initialize
the device. To completely disable the USB device and turn off all analog parts,
you can use bit 1 "PDWN". In the case of "device mode", receiving a suspend
interrupt (when there is no activity for at least 3 ms) enables the "SUSPEN" bit.
As soon as the suspend state is propagated inside the peripheral, the activity of
the device is stopped and the "SUSPRDY" bit is raised to logic 1. Instead, the
host can enable this bit when no activity is expected to be sent on the bus; in this
case the SOF generation is stopped. In the event that a SUSPEN signal is received
while data is being sent on the bus, it is necessary to first finish sending the data
itself and then put the device into suspend mode. All the other bits are used to
enable/disable some interrupts such as error interrupt (ERRM), wakeup interrupt
(WKUPM) or SOF interrupt (SOFM), so they are used to mask or unmask these
kind of interrupt.

USB interrupt status register

This register (USB_ISTR) contains the status bits of all interrupts, in order to
determine which event caused an interrupt request. These bits are driven by the
hardware and generate an interrupt request if and only if the corresponding bit in
the control register is enabled. After executing the routine code linked to that type
of interrupt, the corresponding bit in this register is brought back to the logical
state ’0’; if this does not happen, the interrupt is still pending and the bit is kept
high. Also, if multiple interrupt requests occur, only one is executed based on
the assigned priority. To assign priority to each interrupt, the user can specify
within the software the order of the interrupts to be served. Furthermore, to be
more robust against external noise that could alter the voltage levels by canceling
some interrupts, more bits are used instead of just one bit. Bit 30 "LS_DCON",
if the logical value is high, indicates the detection of an LS device and is available

35

USB2 IP by STMicroelectronics

Figure 3.8: Interrupt status register structure

only in host mode, while bit 29 "DCON_STAT " indicates the connection status:
’0’ if no device is connected, ’1’ if the LS device is connected. To indicate that a
transfer was successful, the hardware configures bit 15 "CTR". Then we have other
important bits:

• PMAOVR (14): this bit is brought to the high logic level by the microcontroller
when it is not able to manage a memory access in time. In this case an interrupt
is generated which is used by the host to try to send the packet again.

• WKUP (12): this bit is managed by the hardware to "wake up" the USB
device after a suspend period because activity on the bus is detected. Due to
this interrupt, the SUSPRDY bit in the control register is reset.

• SUSP (11): this bit is managed by the hardware and activated when no
activity is detected for a period of time greater than or equal to 3 ms.

• SOF (9): this bit indicates the start of a new frame and is configured when a
new SOF packet is detected.

• IDN[3:0]: these 4 bits indicate the endpoint that generated the interrupt that
is being executed.

From Figure 3.8 it is possible to notice that the status bits can only be read by the
software as they are marked with the letter "r", while the interrupt request bits
can be written.

36

Chapter 4

Used resources for the
experience

4.1 STM32 Evaluation Board
STMicroelectronics offers a wide range of evaluation boards. These boards can be
considered as a development and testing platform for the microcontrollers that are
located on the boards of the ST family. For this experimental project it was decided
to use the STM32G0C1E-EV, which is part of the STM32G0 mainstream product
line. This evaluation board offers a wide range of applications and a high level
of integration thanks to the Arm® Cortex®-M0+ 32-bit microprocessor equipped
with a 512 kB flash memory to contain the startup and application files, and a
data memory 144 kB RAM, essential for saving data and temporary variables. On

Figure 4.1: STM32G0C1E-EV evaluation board [25]

37

Used resources for the experience

the front of the board it can be seen a large 2.4" LCD display, which allows you
to display the implemented application and the results obtained on the screen. In
this project, the presence of the LCD was essential for following the flow of the
connection between the two boards and for debugging, showing on the screen all
the various configuration steps and the transmitted string once the communication
between host and device was established. Two more daughterboards are mounted
on top of the motherboard, which increase flexibility and extend the variety of
applications through which various peripherals can be tested.

Figure 4.2: STM32G0C1E-EV motherboard and daughterboards schematic [26]

Figure 4.3: STM32G0C1E-EV motherboard layout [27]

38

Used resources for the experience

The hardware block diagram in Figure 4.2 illustrates the various connections
between the microcontroller, the motherboard and the daughter boards, while
Figure 4.3 refers to the layout of the motherboard and all the I/O connectors to
communicate with the outside world. It should be noted that the microcontroller
has two independent USB Type-C peripherals that are connected to the I/O
connectors of the daughter board. The first connector is a DRP and can deliver
up to 45W of power, while the second only acts as a sink. However, both ports
support PD to supply other devices and USB 2.0 FS for data transfer. In addition
to the two Type-C connectors, there are other connectors that allow the use of
various types of applications, including:

• MicroSD card: useful in mass storage applications. For example, it is possible
to load an image into the MicroSD card and show it on the 2.4 "LCD screen;

• SWD debug connector: ARM debug interface that uses 2 pins, which allow
data to be released (for example flags, printf, error signals, ...) using specific
protocols

• RS232/RS485 connector: output port for communicating the board with
another device via RS232 or RS485 serial protocol

• DisplayPort Input: useful in applications where a second device is capable
of providing a video via a USB Type-C cable. In this case, the board is
connected both to an external monitor via the DisplayPort and to the device
that transmits the video via a USB Type-C cable.

In order to work properly, the motherboard must be powered with a voltage of
5V. This voltage can be supplied in different ways according to the position of
the jumper J24 present in the lower part of the board. By placing the jumper
in "STLK " position, the board will be powered using a Micro-B USB cable, by
placing it in "E5V " it will be powered through the PSU jack, or in "D5V " it will be
powered by the connectors on the daughterboard. Another possibility is to position
the jumper in "U5V ": in this case the PD feature is exploited and the board will be
powered via a USB Type-C cable that will be attached to the connector mounted
on the daughterboard. The microcontroller, on the other hand, is powered via the
VBAT pin, which can be connected to different power supply voltages based on
the positions of jumpers J16 and J17: it is possible to choose between 3V, 3.3V
(standard configuration) or V DD_ADJ . In the latter case, a trimmer allows you
to adjust the voltage supplied to the microcontroller from a minimum of 1.65V
to a maximum of 3.5V; this feature can be useful in some applications where the
microcontroller voltage can be lowered to save power consumption. Below we will
analyze in depth a module present within the evaluation board essential for the
correct functioning of the USB device.

39

Used resources for the experience

4.1.1 Clock Recovery System
From the USB protocol specifications, it can be seen that for good communication
to take place, the data-rate must be 12,000 Mb/s ± 0.25%. This high accuracy
requires the use of a very precise clock signal, which is normally generated by a
quartz crystal external to the microcontroller. Through magnetic resonance or
mechanical deformation, the crystal begins to oscillate with a very precise frequency.
However, an high quality quartz is very expensive, and this would increase the
production cost of the board itself. In order to generate a timing signal of a device,
an internal or an external component can be used. Another possibility is to use an
internal signal whose precision is variable.

The Clock Recovery System is a peripheral whose purpose is to obtain a timing
signal with very high precision without using an external oscillator, but simply
using an input signal as a reference to generate an error capable of controlling
the accuracy of the timing signal. It is similar to a digital PLL: it requires a very
precise external clock signal to generate a replica of the input signal at the output.
Normally, the board host is equipped with an external high-speed oscillator (HSE),
while the board device is equipped with a less precise internal oscillator (HSI) and
a CRS module. In this case, therefore, the synchronization signal is generated by
the SOF packet sent by the host on the bus every 1 ms.

Figure 4.4: CRS block diagram [28]

40

Used resources for the experience

From the block diagram in Figure 4.4 it can be seen that it is possible to choose
between a series of external synchronization signals. The SYNCSRC selection
signal chooses one of the input signals and divides it, if necessary, by a power of
2 through the programmable SYNC divider block. The SYNC signal that comes
out of this block is used to reset a 16-bit counter and "capture" the instantaneous
value in which the counter is located at the moment the SOF is received.
Therefore, after receiving the SYNC signal, the counter will begin to decrease the
current value; as soon as the minimum value ’0’ is reached, it will start increasing
the counter value until it reaches the maximum limit (OUTRANGE) or receives
another SOF. In the first case, a SYNCMISS non-reception signal is generated,
while in the second case, as soon as the SOF is received, the current value of the
counter is saved in the FECAP register and the direction (increment or decrement)
in the register FEDIR. At this point, three possible scenarios are possible depending
on the counter value:

• A SYNCERR error signal is generated if the counter value is above the
OUTRANGE limit zone (whose limit value in binary is that contained within
the FELIM register multiplied by x128)

• A SYNCWARN warning signal is generated if the counter value is between
the OUTRANGE and WARNING LIMIT areas (whose limit value in binary
is that contained within the FELIM register multiplied by x3)

• A SYNCOK is generated if the counter value is between the WARNING
LIMIT and FELIM zones.

Figure 4.5: CRS counter behavior [29]

41

Used resources for the experience

In the second scenario, if the counter is in that specific area and the direction is
of the “DOWN” type, it means that the current frequency is less than the desired
one. Then, the new TRIM value is increased by one unit and the counter at the next
RELOAD will start from this last updated value. If, on the other hand, the counter
is always within that area but the direction is of the "UP" type, it is updated by
decreasing TRIM by one unit. In the third scenario, a similar procedure takes
place based on the direction of the counter, but it is incremented/decremented by
2 units. If the two frequencies are synchronized, an ESYNC signal is generated and
the counter is not updated.

4.2 Protocol Analyzer
The protocol analyzer is a non-intrusive verification tool able to "spy" and "capture"
the data traffic present on a communication channel without altering the voltage
level. To achieve the purpose of this thesis it was necessary to purchase a hardware
protocol analyzer and, after a careful analysis of the products on the market, the
"Teledyne Lecroy Mercury T2C" was selected with all the necessary accessories.
The correct setup involves placing the analyzer in series between the two devices
that are communicating. Therefore it is necessary to connect the second end of the
USB Type-C cable of the host board to port 2, while the cable connected to port 1
will be connected to the board device.

Figure 4.6: Instrumentation setup

42

Used resources for the experience

On the back of the protocol analyzer there is a third USB Type-C port for
powering the device itself, which must be done via the PC in which the Teledyne
Lecroy proprietary software is installed, which takes the name of "USB Protocol
Suite". Once the protocol analyzer is powered, the program must be launched
from the PC to configure the device before capturing data on the bus. After the
configuration it is possible to connect the device in series and start recording by
clicking on “Start recording”.
Through a special option, you can configure some recording parameters such as:

• Trigger Mode: it is possible to select the automatic trigger (snapshot), the
manual trigger via a button to click, or the event trigger configurable via
a specific option. In this last case, the software will start recording the
condition of the pre-trigger bus. As soon as the selected event has been
verified, the software will automatically trigger and the post-trigger packets
will be captured.

• External Trigger Settings: useful if you want to use an external signal as a
trigger (for example a button or the voltage variation on a certain pin)

• Spooled Recording: it is possible to choose the duration of the recording by
setting a start and end time or the maximum size (in MB) of the recording
file.

A very powerful feature is to choose the trigger based on the occurrence of a certain
event or multiple events in sequence. For example, you can start triggering as soon
as a first SOF signal occurs or if a SOF - TOKEN sequence occurs. To enable this
option, you need to switch to advanced mode and then, through the appropriate
section, choose the events or trigger sequences. Once registration has started, the
interface visible to the user is the one in Figure 4.7. It is a colorful graphic interface,
in which the different fields are highlighted with a different color for easy reading
and better viewing of data, errors and other conditions.

43

Used resources for the experience

Figure 4.7: user interface view at packet level

Individual packets that are transmitted on the USB bus can be analyzed. Within
a single line visible on the screen, numerous information is shown, such as the
number of the channel used (in this case channel 0), the number of the packet
transmitted, the direction (IN / OUT), the speed transmission, the various fields of
the packet (SYNC, PID, ADDR, ENDP, CRC, EOP) and some information about
the duration of transmission of the packets and the time that elapses between the
end of one packet and the beginning of the next. Using the toolbar at the top you
can select the "level view" and you can choose between different options:

• PKT: default configuration in which the single packages are shown;

• TRA: configuration in which transaction types are shown;

• XFR: configuration in which the transfer types are shown;

44

Used resources for the experience

By clicking on the single transaction or on the single transfer, it is possible to
extend the window and see the whole hierarchy. In Figure 4.8 there is an example

Figure 4.8: user interface view at transfer level

of the first transfer to be transmitted on the bus: it is a control transfer made up
of 3 different transactions, as seen in the chapter 2.
Furthermore, the first packet to be sent is a setup packet in the OUT direction
to address 0 and endpoint 0, followed by a second data packet and an acknoledge.
The other two transactions are respectively IN and OUT, both at address 0 and at
endpoint 0. It is, therefore, the first control transfer required to configure a new
device after attachment and reset by the host. Other control transfers will follow
to receive all the information necessary for the correct configuration of the device
and the assignment of a unique address.

4.3 STM32CubeIDE
STM32CubeIDE is a development environment based on the C/C++ programming
language designed by STMicroelectronics to implement and test applications on the
STM32 priority boards. The initial graphic interface allows you to configure the
microcontroller more easily, generating a default code that activates/deactivates
the peripherals selected for that specific application. Furthermore, through a search
window, it is possible to search quickly and effectively for the board you are using,
with the possibility of selecting pre-set test examples that show the operation of
the various peripherals. Once the microcontroller or core board has been selected, a
new window allows me to easily configure the initial setup, activating/deactivating
the peripherals and setting the various parameters. The tool also includes an
advanced debugging tool, which allows, step by step, to view temporary variables,
core registers, memories and all the peripherals inside the microcontroller.

45

Used resources for the experience

From the graphic interface of the tool it was possible to configure the board as a
host or as a device by selecting the appropriate peripheral from the drop-down menu
and choosing one of the two configurations. This configuration is automatically

Figure 4.9: HOST mode configuration from ST32CubeIDE side

translated into code by the compiler, which will configure bit 31 of the control
register (USB_CNTR) according to the desired configuration. After enabling
the peripheral by selecting as "HOST", we will see pins PA12 and PA11 of the
microcontroller in green: this means that the lines D+ and D- associated with
the relative pins have been enabled correctly. Just below, a specific section called
"USB_HOST " will be enabled, in which you can select the desired class based on
the application to be designed. In our case the "Communication Host Class" will
be selected.

Figure 4.10: HOST mode configuration from ST32CubeIDE side

46

Used resources for the experience

Another very important section to initially configure our system is what is called
"clock configuration". Through the appropriate section, it is possible to select the
desired clock source (through an internal oscillator or an external quartz oscillator)
and divide/multiply the frequency through various PLLs in such a way as to give
the right timing signal to the various peripherals. From Figure 4.11 it is possible to

Figure 4.11: Clock configuration from ST32CubeIDE side

notice that the external quartz oscillator was selected as a clock source through the
"PLL Source Mux" and subsequently various clock dividers/multipliers were used
to have a frequency equal to 48 MHz in input to the PLLQ, whose output will go
directly to the USB peripheral. For the other peripherals the internal oscillator
is used, as they do not require as high a precision as that required by the USB
peripheral. In this case, the internal 16 MHz oscillator was chosen.

47

Chapter 5

Software and hardware
implementation

In this chapter, the hardware and software changes and implementations that were
required to properly configure the initial setup will be discussed.

5.1 Hardware configuration
In order to establish a correct communication between the two boards, it was
necessary to change the position of some jumpers in both boards. More specifically,
from the user manual of the evaluation board, a table is shown which specifies the
correct configuration of two jumpers, JP3 and JP4 respectively, in order to use the
D + and D- lines correctly.

Figure 5.1: JP3 and JP4 configuration [30]

The D+ line is connected to pin PA12 of the microcontroller, while the D- line
is connected to pin PA11. Both lines are shared with the USART IP, and it is
therefore necessary to remove the jumpers JP3 and JP4 in order to isolate and
use the lines only with USB communication. The correct configuration of these
jumpers is fundamental, as if the lines were shared, the voltage levels would be
altered, making it impossible to discriminate between the various states discussed
in Chapter 2. In fact, a first problem encountered during the experience was to see

48

Software and hardware implementation

an incorrect communication through the "USB Protocol Suite" protocol analyzer
software, as the packets were corrupted.

Figure 5.2: Corrupted data view

However, the communication between the two boards was apparently correct,
as it was possible to see the transmission of the test string sent from the host to
the device thanks to the log error reported on the LCD screen of the two boards.
The problem was due to the fact that the sharing of the D + and D- lines allowed
communication between the two boards at the hardware level but altered the
voltage levels, making it impossible for the protocol analyzer to decode the various
packets. By removing the two jumpers JP3 and JP4 as suggested by the user
manual, the graphical interface of the protocol analyzer was similar to that in
Figure 4.7.

5.2 Software configurations
Before discussing the implemented implementations, it is useful to describe the
structure and hierarchy at the software level of the host and device. In fact, there
are many libraries with specific functions that allow to interact with individual
blocks depending on the level of abstraction. The libraries implemented for both
host and device part, give all the necessary functions to implement an application
in which the USB 2.0 FS peripheral of the STM32G0 is involved. In order to
include these libraries in the project, a preliminary action is required in which the
package is downloaded according to the product line that is used. In our case the
downloaded package was “STM32CubeG0 MCU Firmware Package”.

49

Software and hardware implementation

Device library organization

The device library organization is shown in Figure 5.3. At the lowest level we find
the USB IP, i.e. the hardware part composed by the various registers and structures
of the communication device. An intermediate interface is the one which is called
"Device Hardware Abstraction Layer Driver", which includes all the various source
files in which there are the functions used to access the registers of the lowest level.
The initial configuration of the core takes place through access to these registers
and the initialization of the bits inside them. Furthermore, this block acts as a
linker between the hardware and the highest level, that is the USB device driver.
The latter is made up of 2 sub-blocks: the first, which is called "USB Device Core",
includes some files that offer a set of application programming interfaces to manage
the main state machine, the various interrupts and modules that allow you to send
out error and debug messages intended for the user. The second one includes a
file called "usbd_cdc_if.c" which allows, through user-implementable functions, to
communicate with the application and send/receive packets with a second device.
The highest level is the one called "Application". It includes a set of files that wrap
all the information related to the device and allow the connection of all parts of
the software.

Figure 5.3: Device library structure [31]

50

Software and hardware implementation

The main structure used in the device library is the "device handle", that is a
class that has variables and fundamental substructures as attributes, in order to
hold together all the information related to the device.

Figure 5.4: Device handler structure

Figure 5.4 shows the structure of the device handler. In the structure, there
are some signals that specify the current device configuration type, manage the
state machine and specify the number of IN / OUT endpoints present. In addition,
there are other substructures, such as "USBD_SetupReqTypedef" which allows
you to manage the arrival of a SETUP packet, "USBD_DescriptorsTypeDef"
which offers callback functions to allow the user to manage the descriptors and
"USBD_ClassTypeDef" which allows you to select and configure the desired
class.

Host library organization

The host library structure (Figure 5.5) is similar to the library of the device. The
USB Host Library consists of two main parts: the host core and the host class
drivers. The first includes a set of APIs that are called by the user through the
application layer and the state machine that manages the connection/disconnection
of the device, the enumeration process regardless of the type of class and the
transfer of packets during communication with the device. The second includes, in
addition to the API, a class handler that is called by the host state machine to

51

Software and hardware implementation

deal with some configurations related to the class (initialization, de-initialization,
process).

Figure 5.5: Host library structure [32]

As for the device library, also for the host part there is a class called “USBH
HandleTypeDef” (Figure 5.6), which is able to wrap all the host configuration
parameter inside an unique object.

Figure 5.6: Host handler structure

The "gState" object is part of the "HOST_StateTypeDef " class and corresponds
to the current value of the host state machine. Therefore, the state machine will
always be active in the background and the gState signal will contain the current

52

Software and hardware implementation

state in which the connection between host and device is located. The “EnumState”
structure, on the other hand, provides the current state in the state machine
destined for the enumeration process. Finally, “RequestState”, provides the current
status of a control request between IDLE, SEND or WAIT.

STM32CubeIDE configurations

At the software level, some functions have been implemented, starting from the
configuration of the LCD screen. In order to correctly use the display, it was first
necessary to include the board support package (BSP) library. Inside there are
many functions to initialize and manage the LCD screen, selecting the size of the
font to be printed, the row and column and the color of the text. Among the many
functions, the ones that were used most for this project were:

• BSP_LCD_Init(): enables and initializes the LCD screen;

• BSP_LCD_SetFont(): receives as parameter the size of the text to be
printed on the screen;

• BSP_LCD_SetBackColor(): receives as a parameter the background color
to be set (white by default);

• BSP_LCD_Clear(): receives the background color as a parameter and
deletes all the writings and/or figures that are printed on the screen, while
maintaining the last font set;

• BSP_LCD_SetTextColor(): receives as a parameter the color of the text
you want;

• BSP_LCD_DisplayStringAt(): receives 4 parameters, respectively the col-
umn index, the row index, the text to be printed and the position (left mode,
center mode, right mode).

In the main source code (top layer), that is the "main.c", after enabling the
HAL functions and configuring the system clock, the initialization preset function
was called first and then a function implemented ad hoc to print to screen the
title of the project in red, the type of board implemented (host or device) and the
corporate copyright in blue.

53

Software and hardware implementation

After launching and executing the My_LCD_Setting() function, the LCD
screen of the host and device boards appears as in Figure .

Figure 5.7: Log display after turning on the boards

Within the infinite while loop, there is the MX_USB_HOST_Process() func-
tion which contains the USBH_Process() function. The latter represents the
state machine that is called continuously to perform many actions depending on the
state and receives the object "hUsbHostFS" by reference as a parameter; it belongs
to the USBH_HandleTypeDef class, that is the host handler that contains all
the parameters and characteristics of the host. The USBH_Process() function
consists of a “switch” case structure in which the comparison parameter is the
gState signal. The entire structure, therefore, can be schematized with the Figure
5.8 . All the states have been analyzed and many print commands have been added
to print all the flow on the LCD screen, such as device attachment, choice of class
and enumeration.

Another function within the infinite while loop is the one implemented specifically
to transmit a string from the host to the device via a BULK transfer. After finishing
the flow that leads to the enumeration of the device, the Transmit() function is called.
If the application is ready to make a transmission, we proceed with the deletion
of all the written messages already printed on the screen regarding the correct
connection between host and device; the initialization strings of the LCD screen are
printed again, regarding the name of the project, the type of device implemented
and the corporate copyright. In addition, instructions are printed for the user, who
has the option of increasing or decreasing the number to be transmitted to the
device by 1 or 10 units. Therefore, through the BSP_JOY _GetState() function,
it can be acquired the direction of the joystick button that has been pressed.

54

Software and hardware implementation

Figure 5.8: Host state machine [33]

At this point 5 alternatives are possible:

• If the UP button (coded with the number 4) is pressed, the number to be
transmitted is increased by 1 unit;

• If the DOWN key (coded with the number 1) is pressed, the number to be
transmitted is decreased by 1 unit;

• If the RIGHT key (coded with the number 3) is pressed, the number to be
transmitted is increased by 10 units;

• If the LEFT key (coded with the number 2) is pressed, the number to be
transmitted is decreased by 10 units;

• If no key is pressed, the number to be transmitted always remains the same
and is neither increased nor decreased.

55

Software and hardware implementation

Figure 5.9: Transmit function that has been implemented

The function used to transmit the number via a BULK transfer is called "USBH
CDC Transmit()" and accepts the host handler, a string and the length of the string
as input parameters. Therefore, before transmitting the number, it was necessary
to convert it into a string using the itoa() function, which accepts as parameters
the number to be transmitted, the buffer in which to insert the converted number
and the conversion base. As for the clock configuration, the external HSE oscillator
present on the board has been selected for both the host and the device, in order

56

Software and hardware implementation

to increase the performance and stability of the system.

On the device side, a function similar to that of the host has been implemented for
the initialization of the LCD screen and the printing of the initial configuration
strings. However, in the device code it was necessary to add a function within
the code capable of receiving the input string and printing it on the LCD screen.
The USBD_CDC_SetRxBuffer() function is called whenever a new packet is

Figure 5.10: Receive function that has been implemented

sent from the host to the device and cannot be called again before the end of
the reception for not having overwriting. Once the data has been processed, the
USBD_CDC_ReceivePacket() function is used to indicate that the buffer can
be used again to receive the next packet.

57

Chapter 6

Performance test, results
and conclusions

6.1 Evaluation of the maximum bandwidth
The main purpose of this thesis project is to evaluate the performance of the digital
USB IP designed by STMicroelectronics by evaluating the maximum bandwidth.
In the case of USB FS, the data transfer rate is 12 Mbit/s. This means that every
second, theoretically, 12.000.000 bits can be transferred from one device to another
via USB cable. When you want to do an analysis on the bandwidth used, it is
better to refer to a frame, or a time interval equal to 1 ms which corresponds to
having two consecutive SOFs. So, in this case, the data transfer rate is 12.000
bits/ms. To evaluate the performance of USB2 IP by STMicroelectronics, we
must refer to Figure 6.1, which indicates the maximum number of possible BULK
transfers within a single frame, based on the size of the data we want to send (Data
Payload). The maximum number of bytes that can be had within a frame is equal
to 12.000bits : 8) = 1500 bytes, which corresponds to the maximum bandwidth if
we only had the useful information to transmit. In this case we would therefore
have 1500 : 64 = 23 bulk transfers in a single frame. However, we must consider
the presence of the protocol overhead, which in the case of BULK transfers is 13
bytes for each transaction. The maximum transfers are reduced to a value equal to
1500 : (64 + 13) = 19 transfers. Therefore, 13 · 19 = 247 bytes will be the bytes due
to the overhead and the useful bytes that we can send will be (64 · 19) + 247 = 1463
bytes compared to the theoretical 1500.
However, we must also consider the presence of the forbidden window, which is
a time window within each frame within which it is not possible to start new
transactions. Its purpose is to avoid the start of a new transaction near the SOF
which indicates the end of the frame. In the latter case, in fact, the transmission

58

Performance test, results and conclusions

Figure 6.1: Full-speed BULK transaction limits

would be incomplete and could cause errors with subsequent transmissions. Taking
into consideration what has been said so far, it is considerable to think that the
size of the forbidden window is equal to that of a BULK transfer, i.e. 77 bytes.
From the VHDL code written by STMicroelectronics digital hardware design
engineers, we see that the limit has been configured to 848 bits, which corresponds
to 106 bytes. This choice was made considering also other factors that affect the

Figure 6.2: Maximum number of bits for the forbidden window

delays that may occur and therefore it is a value with which we can consider
ourselves safe. Therefore, also considering the forbidden window we will have
a maximum number of transfers equal to 18, which correspond to a maximum
achievable band of 92.93%. In fact, 1500 − 106 = 1394 bytes that can be in a
frame. Now dividing 1394 by 77 bytes we get 18.10 maximum possible transfers. It
should be noted that the number of transfers is not an integer: the contribution of

59

Performance test, results and conclusions

0.10 transfers is equivalent to 8 bytes that can be transmitted before the start of
forbidden windows. So it could theoretically start a last bulk transfer just before
the beginning of the forbidden window and end inside it, before having the end of
the frame. In this case, the percentage increase to a maximum of 98

6.2 First test
After configuring the hardware and software of the two evaluation boards, and
after setting up the setup with the protocol analyzer (Figure 4.6), the correctness
of the communication was verified both through the LCD screen and through
the graphical interface of the protocol analyzer. After turning on the two boards,
having powered them through a USB Micro-B cable and having connected them
through a USB Type-C cable, the LCD screen showed all the strings related to the
initialization of the boards. Subsequently, communication began by transferring a
data string with a size of 4 bytes inside which the number "1" is contained. In fact,
the implemented code described in Chapter 5.2 (STM32CubeIDE configurations),
allows you to increase or decrease the number to be transmitted based on the
joystick button pressed, starting from number "1".

Figure 6.3: Log on host and device display for the first test

Figure 6.3 shows how the number is actually received in the correct way by
both boards, showing a correct communication between the host board and the
device board. However, it would be of fundamental importance to have practical
feedback through the protocol analyzer. By opening the USB Protocol Suite
software and starting the recording of USB 2.0 FS data traffic, it is possible to
see the transmission of 3 packets repeatedly: the first two packets are in the OUT
direction, while the third is in the IN direction. Analyzing it more carefully, it can
be seen that the first packet is the one relating to the OUT token packet, the second
is the DATA1 data packet, while the third is the ACK handshake packet. This
means that many OUT transactions are taking place from the host to the device,

60

Performance test, results and conclusions

as expected. Also, these transactions are sent repeatedly, as the implemented code
relies on a "Transmit()" function within an infinite while loop. This means that
every time the software enters the while loop, a number is sent from the host to
the device. If no button is pressed, the number sent will always be the same as the
previous one.

Figure 6.4: Transaction and packet level view for the first test

Raising the level of abstraction of the graphical interface, it is possible to notice
that it is a set of BULK transfers, as expected; the chosen class is used to transfer a
large amount of data in a non-periodic way and without time constraints, therefore
the BULK transfer is the preferred one in these cases. By right-clicking on "Data"
label and then on "View data block", you can view the content of the 16-bit data
that the host sends to the device. This number is displayed in hexadecimal and
is equal to "31", which exactly corresponds to the number "1" according to the
ASCII code, which is the number transmitted by the host and displayed on the
LCD screen.

Figure 6.5: Data view of the first transaction

Another very interesting feature is that of being able to view the waveforms of
the transmitted packets by right clicking on the packet number and selecting "show
raw bits". In this case, therefore, we will have a graphic view of all the bits that

61

Performance test, results and conclusions

form the various fields of the packet, according to the NRZI encoding used by the
USB protocol.

Figure 6.6: Waveforms view for Packet 73 (first DATA1)

Used bandwidth evaluation

As described in Chapter 3, the host frame scheduler is a hardware module that
allows you to manage requests on the bus based on the priority assigned to the
transfers. The HFS divides a 1 ms full-speed frame into 3 different parts, which
are called "windows" and are managed by the same scheduler:

• Periodic service windows: within this window, only periodic type transfers
are managed such as isochronous and interrupt;

• Non-periodic service window: non-periodic transfers such as bulk and control
are managed within this window.

• Black security window: this is also called "forbidden window", as no transfer
can be start but it is a necessary window for the host to prepare to send
the next SOF. Therefore, in this window no transfer can start, but it is only
possible to finish those started just before the start of this window.

Therefore, at the beginning of each frame, the host initially considers all the
isochronous and interrupt transfers that are associated with periodic endpoints,
then manages the window reserved for non-periodic transfers and subsequently
posts all other requests to the frame later, because of the presence of the black

62

Performance test, results and conclusions

security window. Due to the overhead present within a single packet (SYNC, PID,
CRC, ...) and due to the forbidden window, the useful bandwidth used will be less
than the theoretical one equal to 12 Mbps, as explained before. There is also a
delay, called "inter-packet delay", which would be a time necessary for the hardware
to pass from one transaction to the next. This delay represents idles and reduces
the maximum bandwidth that the device is able to reach. In order to evaluate the
actual bandwidth usage for this test, it can always used the USB Protocol Suite
tool by clicking on the "Bus utilization" button. Then the software needs to know
and select the interval in which you want to measure the bandwidth, by entering
markers or by entering the number of the start packet and the number of the end
packet. By inserting two consecutive SOFs as start and end packets, the bandwidth
can be calculated by clicking the "Calculate" button.

Figure 6.7: Bandwidth evaluation of the first test

The bandwidth usage is very low and equal to 0.158 Mbps. This means that
within a frame (between two SOFs), only one bulk transmission is taking place and
all the remaining time is "wasted" remaining in the IDLE state, as only SOFs are
sent in order to avoid to send the USB device in the suspend state.

63

Performance test, results and conclusions

6.3 Second test
This second test was implemented with the aim of increasing the USB data traffic
exchanged between the two boards and therefore also increasing the used bandwidth.
In a first attempt, the main functions of the previous code have been maintained,
while the size of the buffer to be transmitted from the host to the device has been
increased. In this case the number "1" has been replaced with a very large string
containing the character "A". The "Transmit()" function in the previous code,
accept a buffer with a maximum size of 216 bytes as a parameter. However, the
new string used for this code is much higher than 4 bytes: this forces the software
to break the string into smaller strings with a size of 4 bytes and perform the
"Transmit()" function several times to be able to send all the bytes. In this case,
on the software analyzer tool, it is possible to notice the presence of many NAKs.
The presence of these NAKs is due to the presence of the "DisplayString" function

Figure 6.8: Presence of multiple NAK

inside the "ReceiveFS" function which prints the string received from the device.
Since the string is much larger this time, the microcontroller is busy printing it all
and wastes a lot of time before printing the next string. Therefore, the device will
send a NAK handshake to the board host to inform it that it is busy and to try to
send the string again.

64

Performance test, results and conclusions

Figure 6.9: Results and bandwidth evaluation of second test

By modifying the code and removing the print string, we get the expected result,
that is the reception of many more transactions than before. Furthermore, the
bandwidth used is much higher than before, reaching a maximum peak of 6.928
Mbps between packet 40 (first SOF) and packet 134 (subsequent SOF).

6.4 Third test
To further increase the percentage of bandwidth usage, it is necessary to enable
the double buffer function already described in the subsection 3.2.1, in order to use
both buffers of EP1 only in the OUT direction. For greater debugging capacity, the

65

Performance test, results and conclusions

string of test 2 has been modified with a size of 512 bytes containing a sequence
of 8 alternating characters starting from the letter A and ending at the letter R.
In fact, due to how the feature was designed, it is activated only when the size of
the data to be sent (512 bytes) is greater than the maximum size of the BULK
transfer data (64 bytes in FS). In this way, the string is split into multiple packets
and 8 transactions of 64 bytes each are sent. Furthermore, to make the analysis
more interesting and understand how the two devices behave according to different
situations, various tests were carried out, first enabling the double buffer only for
the DEVICE, then enabling it only for the HOST and finally enabling it for both
boards.

Double buffer enabled on host/device side

To enable the double buffer on the host side, it was necessary to make some changes
to the Test 2 code, starting from the size and content of the string to be sent.
In fact, as already mentioned in the introductory part of this chapter, to enable
the double buffer it is necessary that the size of the data to be sent exceeds the
maximum size of the transfer, so that software and hardware work on two different
packets to transmit/receive the data. Subsequently, it was necessary to initialize
the double buffer in the file USB_Host > Target > "usbh_conf.c" by changing
the "bulk_doublebuffer_enable" signal present on line 197 from "DISABLE" (0U)
to "ENABLE" (1U) To enable the double buffer on the device side, it is necessary

Figure 6.10: Double buffer bit enable

to enable the same bit within the device code. Furthermore, the two buffers of
the endpoint involved in the communication inside the packet memory area must
be unidirectional (both RX in the case of OUT transaction). So, you have to
change "PCD_SNG_BUF " to "PCD_DBL_BUF " in line 462/463. However,

Figure 6.11: Double buffer

the percentage of bandwidth used, evaluated by the protocol analyzer, is unchanged.
To analyze the problem and try to solve it, a debugging session was carried out. A
breakpoint was positioned near the "Transmit()" function and within the register
of the endpoint involved in the OUT transaction, it was realized that the UTYPE

66

Performance test, results and conclusions

signal was correctly "00" (BULK TYPE), but the EPKIND signal turned out to be
’0’, while from the USB IP specification it should be ’1’ to enable double buffer.

Figure 6.12: Debug session: EPKIND bit is not enabled

To identify the problem, it can be started by analyzing the CDC_Transmit()
function inside the "Transmit()" function in the file USB_HOST > App >
“usb_host.c”. Internally, this function initializes parameters such as the pointer that
scans the vector of letters in the buffer, the size of the buffer and the transmission
status. The status "wake up" the CDC_ProcessTransmission() function which
is responsible for sending the data to the device. Inside we find a switch case which
is described in Figure 6.13.

67

Performance test, results and conclusions

Figure 6.13: Process Transmission function

Therefore, if we are in "SEND_DATA" state, we must distinguish two cases:
the first in which the size of the data to be sent is greater than the maxi-
mum size of 64 bytes (in this case the size that is passed to the next called
function is equal to 64) and the second case in which the size of the data
to be sent is less than 64 bytes (in this case the current size is passed). In
any case, the “USBH_BulkSendData()” function is called, which is the fun-
damental one to start the bulk transaction. Going to open all the other func-
tions that are called in "matryoshka" way, we finally arrive at a function called
"HAL_HCD_HC_SubmitRequest()" in which the index DATA0/DATA1 is tog-
gled. Before terminating this last function, various parameters are assigned to the
channel involved in the OUT transmission and then the function to start the transfer
is called, which takes the name of “USB_HC_BULK_DB_StartXfer()" inside
Drivers > STM32G0xx_HAL_Driver > “stm32g0xx_II_usb.c". The first in-
struction that is executed within this function is a comparison between the size of
the transfer and the maximum size of the BULK, as can be seen in Figure 6.14. So

Figure 6.14: Function used to start the transfer using double buffer feature

68

Performance test, results and conclusions

if we want to send a string with a size greater than 64 bytes, the double buffer is
enabled and the length of the transfer of 128 bytes is decreased each time (64 bytes
for each buffer), so as to know when the transfer is finished and all bytes have been
sent. The problem encountered is that the "xfer_len_db" parameter is assigned
in HAL_HCD_HC_SubmitRequest()"and in the original code corresponds to
the maximum size of the BULK, while it should be the size of the entire transfer.
In fact, the EPKIND bit was never enabled because the condition is never verified
and the double buffer is never enabled. The solution implemented to try to solve
the problem was to store the size of the transfer in a "len_db" variable which is
used only if the size of the transfer is greater than 64 bytes (line 673 inside the code
in Figure 6.13). This variable is declared "external" in the "stm32g0xx_hal_hcd.c"
file which contains the HAL_HCD_HC_SubmitRequest() function. Then, on
line 698, the variable "len_db" is used which contains the size of the transfer instead
of "length" which contains the maximum size of the BULK. As you can see from

Figure 6.15: Debug session: EPKIND bit is enabled

Figure 6.15, after this modification the EPKIND bit turns out to be 1 and the

69

Performance test, results and conclusions

UTYPE signal turns out to be 00 (bulk transfer). Furthermore, thanks to the use
of the protocol analyzer, another error was identified: if we wanted to transmit
a string with a size greater than 64 bytes, the Transmit() function was called
before the end of the current transfer. This means that only the first 64 bytes were
sent, while all subsequent bytes were not sent because the Transmit() function
was called too early and initialized the buffer again. From Figure 6.13, it can
be seen that after the "USBH_BulkSendData()" function, the status is set in
"CDC_SEND_DATA_WAIT ". Therefore, after sending the first 64 bytes, you
will enter the following case:

Figure 6.16: Case statement within process transmission function

70

Performance test, results and conclusions

The buffer and the size of the string are managed within this case. If the size
of the data to be sent is greater than 64 bytes, the size is reduced by subtracting
64 (since the first packet has already been sent by the BulkSendData function)
and the pointer is updated by adding 64 (in so as to send the next 64 bytes).
This procedure is done cyclically until the size of the transfer is reduced to a
number less than or equal to 0: in this case the entire string has been sent
and you have to put yourself in the IDLE condition in order to possibly start
a new one. transmission. The main problem is that the original code never
accessed the "CDC_SEND_DATA_WAIT " case, as the Transmit() function
was automatically called on the next run, which initialized the parameters such as
buffer length and pointer to the buffer.

Figure 6.17: Initialize parameters before transfer

The code has been modified by adding a flag inside the Transmit() function.
Initially this flag is set to a value that initializes the buffer and the pointer.
Immediately after carrying out this step, the flag is removed in such a way as to
avoid a new initialization on the next lap. Therefore, the buffer is managed correctly
and at the end of the transmission (Figure 6.16 line 711), a CallBack function is
used to return the flag value to the starting one and send a new transaction. After
these small changes, the percentage of bandwidth used was calculated. Using the
double buffer, we went from 56% to about 70%.

Figure 6.18: Bandwidth utilization percentage using double buffer

71

Performance test, results and conclusions

However, the result obtained is not the one evaluated theoretically, which is close
to 92%. In fact, by observing the packets from the interface of the protocol analyzer,
it can be seen that within a frame (i.e. between two consecutive SOFs) only 14
transactions are sent (compared to the maximum 19 possible). This happens due
to the presence of the NAKs, which are transmitted from the device to the host to
make it understand that it is already busy processing the previous transactions
and therefore must try again to send the transaction in the future. In this way the
host waits a long time to send the packet again: more precisely, there are about 84
us of delay between receiving the NAK and the start of the next transaction. The

Figure 6.19: Presence of NAK handshake that reduces the bandwidth percentage

presence of NAKs indicates that the device software is extremely slow compared to
the host, as it is unable to process the packet in time to receive the second before
the arrival of a new transaction. Therefore, the hardware must still wait for the
software to get rid of the previous buffer before being able to "accept" the arrival
of a new transaction. However, the two boards are identical and use the same
external quartz oscillator. The doubt is that there is some problem with enabling
the double buffer for the board device. Thanks to an analysis using a debug session,
it was seen that the DTOGRX and DTOGTX bits did not switch correctly. After
a successful transaction, an interrupt is called that brings the VTRX signal to the
high logical value. Immediately after, since the data has been correctly written to
the buffer, the DTOGRX bit (which indicates the buffer used by the hardware)
is removed by the hardware. The software takes care of processing the second
buffer and removes the DTOGTX bit, so that the hardware can fill it again. This

72

Performance test, results and conclusions

behavior is described in an exhaustive way by the table in Figure 6.20. Inside

Figure 6.20: Bulk double-buffering memory buffers usage (Device mode)

the code there is "HAL_PCD_EP_DB_Receive" which is called every time the
VTRX bit is brought to logic ’1’. When DTOGRX is worth ’1’ (first condition),
the software reads the first buffer through the USB_ReadPMA function and then
must toggle DTOGTX (which must be ’0’ to ensure that the conditions in Figure
6.21 are verified. In fact, the peripheral will autonomously toggle DTOGRX and
therefore the final condition will be DTOGRX = 0 and DTOGTX = 1. Similarly,
if DTOGRX is ’0’, the software reads the second buffer and toggles DTOGTX from
’1’to ’0’, so that the final condition after the two toggles will be DTOGRX = 1 and
DTOGTX = 0. The two controls on line 2041 and 2074 have been changed as they
were wrong and it was the latter that caused problems on the double buffer. After
making this last correction, the band calculated by the protocol analyzer turns
out to be very close to the maximum calculated and equal to 91.1%, as shown in
Figure 6.22. Therefore, it is possible to observe that through the use of the double
buffer, which is a fundamental function of the USB peripheral to obtain higher
performances, we can obtain an excellent band almost equal to the theoretical one
calculated. However, some bugs in the native code created by STM32Cube had to
be fixed. These bugs have been communicated to the team and taken into careful
analysis.

73

Performance test, results and conclusions

The results obtained have been summarized in Figure 6.23. Enabling the double
buffer on both boards was essential to push digital IP to the limit and achieve
maximum performance. In fact, enable the double buffer only for the board of
type device, maintains the percentage of bandwidth used equal to 65%, which is
equal to the case with double buffer disabled for both cards. In this case, the
"bottleneck" regarding the performance is linked to the host, which is unable to
quickly send two consecutive packets, while the device is very fast and always has
a free buffer waiting for a new packet. Enabling the double buffer only for the host
type board, the performance increases slightly and the percentage is around 75%
(1 transaction more than before). However, even if the bandwidth is higher, the
effective packets exchanged between host and device decrease; the host is faster
than the device, which is not always able to accept the new packet as both buffers
are already occupied by previous packets. When double buffering is enabled on
both boards, the best performance is achieved because the software and digital
peripherals on both boards work at the same speed. The implementation of the
codes and the enabling of the double buffer led to the resolution of some problems
of the native code, and an important feedback was provided to the team located in
Tunisia that writes the firmware for the STM32 boards on the market.

Figure 6.23: Achieved results with the various tests

74

Performance test, results and conclusions

Figure 6.21: HAL_PCD_EP_DB_Receive function
75

Performance test, results and conclusions

Figure 6.22: Log and bandwidth usage with correct double buffer

76

Bibliography

[1] STMicroelectronics. STM32 32-bit Arm Cortex MCUs. url: https://www.
st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-
cortex-mcus.html (cit. on p. 2).

[2] Rohde Schwarz. Comprensione dell’UART. url: https://www.rohde-schw
arz.com/it/prodotti/misura-e-collaudo/oscilloscopi/educational-
content/comprensione-uart_254524.html (cit. on p. 4).

[3] Wikipedia. Serial Pheripheral Interface. June 7, 2021. url: https://it.
wikipedia.org/wiki/Serial_Peripheral_Interface (cit. on p. 5).

[4] STMicroelectronics. Full duplex SPI emulation for STM32 microcontrollers.
August 4, 2015. url: https://www.st.com/resource/en/application_
note/an4678-full-duplex-spi-emulation-for-stm32f4-microcontrol
lers-stmicroelectronics.pdf (cit. on p. 6).

[5] Gaspare Santaera. «STM32 Discovery: Le Comunicazioni Seriali». In: Elettron-
ica Open Source Decembrer 31 (2015). url: https://it.emcelettronica.
com/stm32-discovery-le-comunicazioni-seriali (cit. on p. 7).

[6] Inventiva. The USB Connectors: Upbeat journey of USB 1.0 to USB 3.1.
Novembrer 1, 2021. url: https://www.inventiva.co.in/stories/the_
usb-connectors/ (cit. on p. 8).

[7] Wikipedia. USB-C. September 10, 2022. url: https://en.wikipedia.org/
wiki/USB-C (cit. on p. 10).

[8] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal
Serial Bus Specification». In: April 27, 2000, p. 12 (cit. on p. 11).

[9] Open4Tech team. An Introduction to USB Communication. url: https:
//open4tech.com/an-introduction-to-usb-communication-part-1/
(cit. on p. 12).

[10] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal
Serial Bus Specification». In: April 27, 2000, p. 17 (cit. on p. 13).

[11] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal
Serial Bus Specification». In: April 27, 2000, p. 141 (cit. on p. 14).

77

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.rohde-schwarz.com/it/prodotti/misura-e-collaudo/oscilloscopi/educational-content/comprensione-uart_254524.html
https://www.rohde-schwarz.com/it/prodotti/misura-e-collaudo/oscilloscopi/educational-content/comprensione-uart_254524.html
https://www.rohde-schwarz.com/it/prodotti/misura-e-collaudo/oscilloscopi/educational-content/comprensione-uart_254524.html
https://it.wikipedia.org/wiki/Serial_Peripheral_Interface
https://it.wikipedia.org/wiki/Serial_Peripheral_Interface
https://www.st.com/resource/en/application_note/an4678-full-duplex-spi-emulation-for-stm32f4-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4678-full-duplex-spi-emulation-for-stm32f4-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4678-full-duplex-spi-emulation-for-stm32f4-microcontrollers-stmicroelectronics.pdf
https://it.emcelettronica.com/stm32-discovery-le-comunicazioni-seriali
https://it.emcelettronica.com/stm32-discovery-le-comunicazioni-seriali
https://www.inventiva.co.in/stories/the_usb-connectors/
https://www.inventiva.co.in/stories/the_usb-connectors/
https://en.wikipedia.org/wiki/USB-C
https://en.wikipedia.org/wiki/USB-C
https://open4tech.com/an-introduction-to-usb-communication-part-1/
https://open4tech.com/an-introduction-to-usb-communication-part-1/

BIBLIOGRAPHY

[12] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal
Serial Bus Specification». In: April 27, 2000, p. 240 (cit. on p. 16).

[13] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal
Serial Bus Specification». In: April 27, 2000, p. 157 (cit. on p. 17).

[14] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal
Serial Bus Specification». In: April 27, 2000, p. 157 (cit. on p. 17).

[15] USB Made Simple. Data Flow. url: https://www.usbmadesimple.co.uk/
ums_3.htm (cit. on p. 18).

[16] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal
Serial Bus Specification». In: April 27, 2000, p. 196 (cit. on p. 19).

[17] USB Made Simple. Data Flow. url: https://www.usbmadesimple.co.uk/
ums_3.htm (cit. on p. 20).

[18] STMicroelectronics. «RM0444». In: November 2020, p. 1263 (cit. on p. 25).
[19] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal

Serial Bus Specification». In: April 27, 2000, p. 146 (cit. on p. 27).
[20] Compaq-Hewlett-Packard-Intel-Lucent-Microsoft-NEC-Philips. «Universal

Serial Bus Specification». In: April 27, 2000, p. 145 (cit. on p. 28).
[21] STMicroelectronics. «RM0444». In: November 2020, p. 1269 (cit. on p. 30).
[22] STMicroelectronics. «RM0444». In: November 2020, p. 222 (cit. on p. 33).
[23] STMicroelectronics. «RM0444». In: November 2020, p. 1275 (cit. on p. 33).
[24] STMicroelectronics. «RM0444». In: November 2020, p. 1283 (cit. on p. 34).
[25] STMicroelectronics. Evaluation board with STM32G0C1VE MCU. url: ht

tps://www.st.com/en/evaluation-tools/stm32g0c1e-ev.html (cit. on
p. 37).

[26] STMicroelectronics. «UM2783». In: December 1, 2020, p. 8 (cit. on p. 38).
[27] STMicroelectronics. «UM2783». In: December 1, 2020, p. 9 (cit. on p. 38).
[28] STMicroelectronics. «RM0444». In: November 2020, p. 1300 (cit. on p. 40).
[29] STMicroelectronics. «RM0444». In: November 2020, p. 223 (cit. on p. 41).
[30] STMicroelectronics. «UM2783». In: December 1, 2020, p. 30 (cit. on p. 48).
[31] STMicroelectronics. «STM32Cube USB device library». In: February, 2019,

p. 11. url: https://www.st.com/resource/en/user_manual/um1734-
stm32cube-usb-device-library-stmicroelectronics.pdf (cit. on p. 50).

[32] STMicroelectronics. «STM32Cube USB host library». In: May, 2015, p. 7.
url: https://www.st.com/resource/en/user_manual/dm00105256-
stm32cube-usb-host-library-stmicroelectronics.pdf (cit. on p. 52).

78

https://www.usbmadesimple.co.uk/ums_3.htm
https://www.usbmadesimple.co.uk/ums_3.htm
https://www.usbmadesimple.co.uk/ums_3.htm
https://www.usbmadesimple.co.uk/ums_3.htm
https://www.st.com/en/evaluation-tools/stm32g0c1e-ev.html
https://www.st.com/en/evaluation-tools/stm32g0c1e-ev.html
https://www.st.com/resource/en/user_manual/um1734-stm32cube-usb-device-library-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1734-stm32cube-usb-device-library-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105256-stm32cube-usb-host-library-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105256-stm32cube-usb-host-library-stmicroelectronics.pdf

BIBLIOGRAPHY

[33] STMicroelectronics. «STM32Cube USB host library». In: May, 2015, p. 18.
url: https://www.st.com/resource/en/user_manual/dm00105256-
stm32cube-usb-host-library-stmicroelectronics.pdf (cit. on p. 55).

79

https://www.st.com/resource/en/user_manual/dm00105256-stm32cube-usb-host-library-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105256-stm32cube-usb-host-library-stmicroelectronics.pdf

Ringraziamenti

Una pagina importante della mia vita si chiude adesso, con l’ultima pagina di
questo elaborato finale. Mai avrei immaginato, all’inizio di questo percorso, di
possedere la forza e la determinazione che mi hanno portato al raggiungimento
di questo fondamentale obiettivo. Mi sembra doveroso dedicare alcune parole a
tutte le persone che mi hanno sostenuto ed hanno contribuito alla realizzazione
di questo elaborato. Sono certamente consapevole che senza il vostro supporto,
questa avventura sarebbe stata molto più difficile, se non impossibile.

Ringrazio il professor Demarchi, per avermi guidato nella fase più importante
del mio percorso accademico.
Sono grato all’ingegnere Giuseppe Guarnaccia, tutor aziendale della mia attività, ed
a tutto il team Digital IP di Catania per avermi ben accolto ed avermi fatto sentire
parte del gruppo sin dal primo giorno. I vostri consigli, dettati dall’esperienza,
sono e saranno la base per iniziare il mio percorso professionale. Darò il massimo
per ripagare la fiducia che avete riposto in me.
Grazie a tutti i miei colleghi di corso, per avermi sempre incoraggiato fin dall’inizio
del percorso universitario ed aver condiviso successi, paure, fatiche e risate. Senza
di voi questa avventura sarebbe stata più noiosa e difficile.
Grazie a tutti i miei amici, per avermi regalato momenti di spensieratezza anche
quando era lo sconforto a prevalere sul mio stato d’animo. Vi voglio bene.
Un ringraziamento particolare alla mia ragazza, Martina, che è il mio porto sicuro
dove rifugiarmi quando il mare è in tempesta: grazie per amarmi incondizionata-
mente per quello che sono, nonostante gli innumerevoli difetti, e per essere sempre
al mio fianco. Grazie per aver sopportato le mie ansie e le mie paure, per aver
ridimensionato le mie preoccupazioni. Sono orgoglioso di avere una Donna come
te al mio fianco. Auguro a noi di raggiungere altri importanti traguardi, sempre
insieme, pronti a sorreggerci l’un l’altro.
Grazie nonna Piera e mastro Giovanni, per avermi donato la vostra infinita dolcezza
ed avermi fatto sentire sempre a casa, nonostante la lontananza.
Un pensiero ai nonni Pippo e Concetta, che mi guardano da lassù. Spero che siate
orgogliosi dell’uomo che sono diventato.

80

Ringraziamenti

Grazie ai miei cugini ed ai miei zii per tutte le volte che siete stati presenti quando
il mio cuore necessitava di stare insieme a voi. Siete la mia seconda famiglia.
A mia sorella, da sempre la metà che mi completa. Grazie per avermi insegnato
ad essere più forte nei momenti difficili, quando tutto sembra andare nel verso
sbagliato. Ti proteggerò sempre. Ti amo.
A mio padre, l’uomo che ammiro più di tutti. Grazie per tutti i valori che mi hai
trasmesso, per avermi dato la possibilità di studiare e diventare quello che sono
oggi. Non sarà mai abbastanza la gratitudine per tutto quello che hai fatto per la
nostra famiglia.

Infine, ringrazio mia madre, a cui dedico questo mio traguardo. Sei stata la
forza che mi è servita per andare avanti. Con la paura di poter cadere, certo, ma
con la consapevolezza di sapersi rialzare più forti di prima. Grazie per aver sempre
creduto in me, sin dal primo giorno di università. Questa laurea è anche tua, che
insieme a Papà, avete combattuto e stretto i denti al mio fianco, e che spero oggi
possiate essere felici. Siete tutta la mia vita.

81

	List of Figures
	Acronyms
	Introduction
	Microcontrollers and STM32
	UART protocol
	SPI protocol
	I2C protocol
	USB protocol
	USB version history

	USB protocol
	Introduction
	Architecture
	Electrical and line states
	Protocol and transfer types

	USB2 IP by STMicroelectronics
	Description of USB blocks
	Usage and structure of packet buffers
	Double buffer in HOST/DEVICE mode

	USB registers

	Used resources for the experience
	STM32 Evaluation Board
	Clock Recovery System

	Protocol Analyzer
	STM32CubeIDE

	Software and hardware implementation
	Hardware configuration
	Software configurations

	Performance test, results and conclusions
	Evaluation of the maximum bandwidth
	First test
	Second test
	Third test

	Bibliography

