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Abstract

Advanced Driver Assistance Systems (ADAS) can be significantly improved with
effective driver action prediction: predicting driver actions early and accurately
can help mitigate the effects of potentially unsafe driving behaviors, avoid possi-
ble accidents, and improve vehicle powertrain model predictive control applications.
Concerning the interpretation of the term “action”, consistent efforts in the litera-
ture focus on the vehicle’s trajectory, while there exist works on the forecast of the
driver’s intention (e.g. going straight, turning left, etc.) or pedals pressure. The
aim of this project is to develop a system predicting steering wheel angles, accel-
erator and brake pedals pressures in a fixed time-window, exploiting a sensor-less
architecture: no additional sensors beyond those already present in the car are re-
quired, nor are any biometric readings necessary. The driver’s actions are forecasted
through an algorithm based on Artificial Intelligence that combines vehicle dynam-
ics (e.g., lateral/longitudinal acceleration) and the perception of the road and the
vehicle’s surroundings. For the outlined purpose it is proposed a methodology that
approaches the mentioned time-series forecasting problem by exploiting a Model-
Based Reinforcement Learning framework. First, an autonomous driving agent is
trained in a virtual simulation environment that reproduces the road conditions
and driving dynamics of a motor vehicle. The Model-Based paradigm implies that,
while interacting with the environment, a model of this is learned through Super-
vised Learning, creating an imaginary copy of the world. The action prediction
system will envision the trained agent that, starting from the current state of the
driver and of the environment, will move ahead in time in the learned environment
model. The sequences of actions imagined are saved and represent the output of
the system: the driver action prediction. The work conducted allows for a two-fold
result. First, an analysis of the trade-offs in adopting a model-based approach or a
model-free one in an industrial driving simulator, evaluated on the sample and com-
pute efficiency of the Reinforcement Learning framework. Second, it is presented
the possibility of obtaining a system capable of a prediction in a time-horizon built
upon modules obtained through Model-Based Reinforcement Learning, evaluated
on both metrics defined during the work, and metrics common in the literature.
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Chapter 1

Introduction

1.1 Thesis genesis

This work is the result of a collaboration between the GRaphics And INtelligent
Systems (GRAINS) group of Politecnico di Torino, Department of Control and Com-
puter Engineering, and SENSOR Reply. SENSOR Reply is a Reply Group company
with expertise in IoT applications powered by Artificial Intelligence techniques. The
company’s mission is to provide customers with data-driven software applications
and engineering services for decision support.

The result of the work conducted is a system capable of a prediction in a time
horizon built upon modules obtained through Model-Based Reinforcement Learning
(MBRL), evaluated on both metrics defined during the work, and metrics common in
the literature. Furthermore, even if not strictly required by the prediction system we
propose, we perform experiments with Model-Free Reinforcement Learning (MFRL)
techniques to show the trade-offs in adopting a model-based approach or a model-
free one in an industrial driving simulator. This is evaluated on the sample and
compute efficiency of the Reinforcement Learning framework.

The approach developed in this work is based on methodologies proposed in
previous research projects [1, 2], whose purpose was different, but whose core idea
remains the same: using an RL agent as a digital twin of the driver.

1.2 Objectives

The purpose of this thesis project is to develop a system capable of inferring a
sequence of steering wheel angles, throttle and brake pedals pressures in a fixed
time window.

In fact, Advanced Driver Assistance Systems (ADAS) can be significantly im-
proved with effective driver action prediction: knowing in advance the future be-
havior of a human, it is possible to tune the vehicle or launch alerts depending
on the characteristics of the driver. For instance, predicting driver actions early
and accurately can help mitigate the effects of potentially unsafe driving behaviors,
avoid possible accidents, and improve vehicle powertrain model predictive control
applications [3, 4].

1



Introduction

The aim is to develop a methodology with the prospect of future industrializa-
tion, keeping into account the non-availability of complex sources of data. Therefore,
the proposed approach addresses the problem under analysis by providing a non-
intrusive solution, exploiting the signals coming from the current onboard technology
and from the vehicle dynamics. The software-based solution proposed has the ad-
vantage of not requiring the implementation of other instrumentation in the vehicle,
no cameras or biometric tracking systems, to be strictly adhering to the principles
of privacy and data protection.

The actual implementation envisions a system forecasting the driver’s actions
through an algorithm based on Artificial Intelligence that combines vehicle dynamics
and the perception of the road and the vehicle’s surroundings.

The development of this project can be summarised in three steps:

• Implementation of Model-Based Reinforcement Learning technique for train-
ing an autonomous driving agent, while learning as well a model of the envi-
ronment into which the driver is inserted;

• Exploitation of the trained modules obtained for developing a prediction sys-
tem outputting a series of future actions or trajectories by moving the RL
agent ahead in time in the learned environment model. This step presents also
a comparison with the literature considering a state-of-the-art model modified
to work with our data;

• First trials of system enhancement, through the insertion of a driver profiling
block, to choose the RL agent most similar to the human whose actions we
want to predict.

1.3 Document structure

The present thesis document is characterized by the following structure.

• Introduction: description of the problem and the steps needed to achieve
the final objective.

• State of the art: overview of several interpretations of “action prediction”
in the literature, with the relative algorithms and tools commonly exploited.

• Background: description of the algorithms, techniques and physical models
used in this work.

• Material and methods: description of the methodology developed through-
out this thesis works, from the implementation of the MBRL framework to the
realization of the prediction system. This chapter presents several experiments
concerning different parts of the work.

• Results: quantitative analysis of the results and comments on their implica-
tions.

2



1.3 – Document structure

• Discussion: qualitative considerations of the idea leading the development or
emerged throughout it.

• Conclusions: considerations on the outcomes of this thesis works and discus-
sion of possible future extensions.
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Chapter 2

State of the art

In this chapter, various ways the “driving action prediction” problem can be intended
in the literature are presented. Having overviewed the methods, it is highlighted
highlight how the proposed prediction system positions itself in this field. Finally, it
is brought a review the research tools exploited by the state-of-the-art models and
by the one developed throughout this thesis work.

2.1 Driving data

Before diving into the analysis of the methods, it is possible to summarize the typical
data exploited for the prediction task. In fact, although the literature envisions
different branches based on the algorithms’ methodologies and outputs, the inputs
remain quite the same and can be grouped into the following types:

• motion data of the target vehicle and its nearby agents, generally represented
as time-series of positions and its derivatives on each ax;

• context data, of the surrounding environment, often given through images,
maps, etc.;

• high-level data, which underwent some feature engineering processes, such
as the “time-to-collision” between two vehicles.

2.2 Action Prediction formalizations

The first step required to dive into the challenge of predicting the driver’s actions
consists of providing a definition of the term “action”. The literature envisions
mainly two branches, occasionally overlapping, well-suiting such a definition: ma-
neuver (or intent) and trajectory. Furthermore, it is worth mentioning some
works involving the forecast of accelerations/decelerations or even the pressure of a
driving pedal, by clustering them into a new branch referred to as driver action
prediction.

In fact, despite being a less explored field, it better matches the level of detail
that we aim to achieve in this work and our interpretation of the problem. This

5
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Overview

Maneuver Predicting a future action among a predefined set
Trajectory Forecasting a coordinates sequence
Action Forecasting accelerations and pedals pressures sequences

Table 2.1: Literature branches

Figure 2.1: An example of architecture employed in the Maneuver Prediction task,
presenting as output a discrete set of actions.

section has been structured as an exploration of these ways to intend the problem,
summarized in Table 2.1, reporting the major contemporary approaches to tackle
it.

2.2.1 Maneuver Prediction

The maneuver prediction problem involves anticipating in a classification fashion
an action among a predefined set of driver intentions such as “go straight”, “lane
change”, and so forth. A notable example of a solution is shown in Figure 2.1, with
the architecture proposed in [5], which combines the information from the driver
monitoring videos with the outside view. In particular, a ConvLSTM [6] based
encoder predicts the future outside frame, while a 3D ResNet [7] acquires features
from the driver video. Applying convolutional layers to the outside optical flow it
is possible to jointly leverage features from both branches for classifying the next
maneuver. [8] focuses on the binary problem of predicting a hard brake by exploiting
scalar signals from different sensors through a proposed RNN architecture. In par-
ticular, signals are divided into categories, and for each one an individual network is
trained: the final prediction is taken by the most confident network, namely the one
outputting the highest probability score on a label. [3] uses Deep Bidirectional Re-
current Neural Networks (DBRNNs) on sensor data, camera images, and GPS maps,
thereby enabling the temporal fusion of both past and future contexts for several

6



2.2 – Action Prediction formalizations

binary problems (Braking Action Prediction, Lane Change Action Prediction, etc.).

2.2.2 Trajectory Prediction

Trajectory prediction consists mainly of the regression problem of forecasting a
coordinates sequence. The literature in this field is not limited to the prediction of
a vehicle’s movement since the subject of the focus often involves pedestrians, more
drivers simultaneously, or a mixture of those. This branch collects a major part of
the literature efforts related to our research, thereby resulting in a natural field in
which to compare the system that we will present throughout this thesis work.

To ease the movement in this line of research we present clusters of similar al-
gorithms. It is important to highlight that the categories into which the works
are divided are not orthogonal, in fact, often papers in a paragraph make use of ap-
proaches or tools presented in another. Despite its overlapping nature, the structure
of this section is aimed to the construction of a narrative in which every paragraph
can present several ways in which a key idea or tool can be instantiated.

Model-based methods

Although Deep Learning dominates the literature on trajectory prediction, there
exist methods directly exploiting the dynamics of the ego-vehicle. A major ap-
proach is motion model-based vehicle trajectory prediction, in which the vehicle
is simplified as an entity controlled by physics laws, described by the mathematical
relationship between the parameters of the movement, such as position, velocity
and acceleration [9]. The main motion models [10] include Constant Velocity Model
(CV), Constant Acceleration Model (CA), Constant Turn Rate and Velocity Model
(CTRV), Constant Turn Rate and Acceleration Model (CTRA), Constant Steer-
ing Angle and Velocity Model (CSAV), Constant Steering Angle and Acceleration
Model (CSAA). The algorithms in this category can operate in real-time, making
them particularly suited for pre-crash warning systems. However, relying on vehicle
motion parameters and ignoring the influence of road geometry, motion model-based
trajectory prediction methods perform especially badly when the vehicle change its
behaviors suddenly: predictions can be accurate and reliable only in the short term,
less than one second. To address this, it is possible to first identify a maneuver
for then associate a model, an approach referred to as maneuver-based vehicle
trajectory prediction. Even though the recognition phase of these methods is of-
ten associated with Machine Learning methods, it is possible to adopt rule-based
methods in place of them, resulting in a whole model-based pipeline. An example is
given in [11] in which the similarity between vehicle historic trajectory and lane lines
is extracted. A threshold on such a metric establishes if employ models associated
with a lane keep maneuver or a lane change one. In fact, this work shows how it
is possible to concurrently employ a motion-based model1 and a maneuver-based
model, returning a final estimation combining the ones from the different models.

1In this case the CTRA model.
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Figure 2.2: The TNT framework.

Direct regression methods

With this paragraph, the review of AI-based methods starts from simple applica-
tions that directly tackle the regression problem. [12] trains an LSTM [13] for the
future trajectory of a single “target” vehicle using information of ego-vehicle and ve-
hicles immediately around it, consisting of positions, velocities, and estimated times
to collisions (TTC). In two similar2 works [14] and [15] incorporate the maneuver
prediction task to predict the successive kinematic states being the execution of the
identified maneuver. In particular, the latter system inputs transformed coordinates
of the surrounding vehicles to two LSTMs, the first recognizing the high-level lat-
eral intention and providing it to the other, the second outputting future locations
in the next 5 seconds. We can envision such a maneuver-oriented framework also
in [16], which aims at predicting a future trajectory distribution. There are two
output branches, one outputting the maneuvers probabilities, the other outputting
time-series composed of the parameters of a Gaussian distribution, conditioned on
the input and on the maneuver probability: the product of the parametrized distri-
bution and of the maneuvers distribution returns the overall trajectory distributions
conditioned on the input.

Goal-driven methods

A milestone in the literature was introduced in the Target-Driven-Trajectory (TNT)
[17] framework in Figure 2.2, suggesting that for prediction within a moderate time
horizon, the future modes can be effectively captured by a set of target states.

TNT first predicts an agent’s potential target states T steps into the future, by
encoding its interactions with the environment and the other agents. Having done
that, it generates trajectory state sequences conditioned on targets. A final stage
estimates trajectory likelihoods and a final compact set of trajectory predictions is

2The main difference being whether to output the anticipated maneuver or just keep it as an
intermediate representation.
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Figure 2.3: Trajectory prediction pipeline of models exploiting probability heatmaps.

selected.

Such focus on trajectory endpoints is increased in HOME [18] and GOHOME
[19], two frameworks outputting an image representing the probability distribution
of the agent’s future location, as exemplified in Figure 2.3. To do this, they employ
an output target consisting of an image with a Gaussian centered around the ground
truth position. In a second step, they sample from the heatmap a finite number of
possible future locations, optimizing specific metrics without retraining the model.
Finally, a separate Neural Network builds the full trajectories based on the past
history and conditioned on the sampled final points. Furthermore, it is also possible
to associate each trajectory a probability computed as the integral of the probability
heatmap under the circle of radius 2 m around the endpoint of the trajectory. The
differences between HOME and GOHOME derive from the input relative to the en-
vironmental context. The former directly employs High Definition maps (HD maps)
so that the processing of such information relies on CNNs, while the second extracts
a graph from the HD maps, therefore exploiting GNNs) (Graph Neural Networks)
to process it. A peculiarity of these frameworks is that probability heatmaps are a
great way of representing information coming from different sources or models in a
common system of reference and can be averaged together. This allows for these
models’ concurrent exploitation through model ensembling.
The mentioned exploitation of graph structures in a goal-driven context can lead
to state-of-the-art results, as proven by Prediction via Graph-based Policy (PGP)
[20]. Here, a graph encoder outputs learned representations for each node of the
lane graph, incorporating the HD map and the surrounding agent context. Then a
behavior cloning-based module outputs a discrete probability distribution over out-
going edges at each node, allowing for sampling paths in the graph. Such paths are
basically sequences of intentions of the driver and represent the longitudinal com-
ponent of the choice. The longitudinal variability component is inserted through an
attention-based trajectory decoder that outputs trajectories conditioned on paths
traversed by the policy and a sampled latent variable.

Finally, [21] gives a more comprehensive intention representation with a new
recurrent encoder-decoder architecture, Stepwise Goal-Driven Network (SGNet),
which predicts goals step-by-step. This work, schematized in Figure 2.4, breaks
the simplistic assumption that an agent’s intentions are exclusively represented by
a single long-term goal, by estimating numerous smaller goals along the way and
explicitly including them at each decoder time step. In particular, a stepwise goal

9
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Figure 2.4: SGNet. Arrows in red, yellow, and black respectively indicate connec-
tions during training, inference, and both training and inference.

estimator (SGE) predicts an object’s future locations as stepwise goals and embeds
them as input to the decoder in an incremental manner. SGE also fuses and feeds
all predicted goals into the encoder for the next time step, treating historical goals
as additional information. To provide a more compact representation, and extract
useful information, there are aggregators that adaptively learn the importance of
each stepwise goal with an attention mechanism. It is possible to add stochastic-
ity to the framework by sampling a latent variable from a Conditional Variational
Autoencoder (CVAE), learning the distribution of the future (output) trajectory
conditioned on the observed (input) trajectory.

Inverse Reinforcement Learning methods

Another common tool used for the prediction task under analysis is Inverse Rein-
forcement Learning (IRL). It is even possible to use it for purposes other than the
direct prediction, as [22] does, using it as a regularization method. The proposed
model is composed of two modules, trajectory prediction module (TPM) and reward
function (RF). TPM is based on an encoder-decoder RNN architecture, where the
encoder encodes inputs (past trajectory and scene context information) while the
decoder predicts the future trajectory, keeping into account the rewards produced
by RF. RF inputs the scene context at time t and the position for time t and out-
puts a reward. RF does this for both the ground-truth position and the predicted
position so that through a loss function comparing the relative rewards it is possible
to update the RF module weights.

Differently, [23] exploit IRL for the prediction considering also the interaction
element since the distribution over all possible trajectories of the predicted vehicle
depends not only on historical information, but also on future plans of other vehicles
that interact with it.

To achieve such interaction-aware predictions, first, they explicitly consider the
hierarchical trajectory-generation process of human drivers involving both discrete
and continuous driving decisions. The discrete driving decisions determine a pattern,
whereas the continuous driving decisions influence the details of the trajectory, as
exemplified in Figure 2.6. Based on this, the distribution over all future trajectories

10
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Figure 2.5: The probabilistic and hierarchical trajectory–generation process for a
lane-changing scenario. The predicted vehicle (blue) is trying to merge into the lane
of the host vehicle (red). With O other vehicles, H host vehicle (the interacting
one), M ego-vehicle, given all observed historical trajectories ξ = ξ1:NO , ξH , ξM and

his belief about the host vehicle’s future trajectory ξ̂M , the trajectory distribution
of the predicted vehicle over all the trajectory space is partitioned by the discrete
decisions: merge behind (d1M) and merge front (d2M).

of the predicted vehicle is formulated as a mixture of distributions partitioned by
discrete decisions. Then they apply IRL hierarchically to learn the distributions
from real human demonstrations based on the principle of maximum entropy [24],
assuming that all drivers are exponentially more likely to make decisions (both
discrete and continuous) that lead to a lower cost. Such a cost function is linearly
parametrized by a group of pre-selected features whose weights are optimized so
that the given demonstration set is most likely to happen. In a similar work, [25]
even tests personalized modeling showing that outperforms the general modeling
method.

Finally, P2T is capable of state-of-the-art results by using IRL in one that we
could loosely see as a goal-driven approach. In particular, P2T [26] learns rewards
and a policy to plan on a 2D grid, in the form of sequences of positions. Then,
through an attention-based trajectory generator it outputs continuous valued tra-
jectories3 conditioned on the sampled plans.

3Agent locations without assigned times are referred to as paths, whereas agent locations with
assigned times as trajectories.
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Figure 2.6: P2T: plans to trajectories.

Figure 2.7: MultiModal Transformer framework.

Proposal-based methods

Proposal-based approaches first define candidate points or trajectories as proposals,
and then regress or classify these proposals to the ground truth. With predefined
proposals, these methods alleviate the optimization burden and narrow down the fea-
sible space of solutions, even though the results depend on heuristic methods applied
to sample the candidate points. A recent example is MultiModal Transformer [27],
in which the proposals are first randomly initialized and then refined to incorporate
contextual information. mmTransformer is designed based on the transformer [28]
architecture, particularly effective in modeling sequential data. The whole model
(Figure 2.7) can be viewed as stacked transformers in which the past trajectories,
the road information, and the social interaction are aggregated hierarchically with
several transformer encoder-decoder modules.

2.2.3 Driver Action Prediction

As [4] highlights a driver’s pedal behavior model has the potential to be used in
various vehicle powertrain model predictive control applications. However, modeling

12



2.3 – Industrial requirements

the driver pedal behavior is challenging because the pedal position is the output of
a complicated virtual system, which involves human sensing, decision-making, and
body movement processes. One simple alternative to driver pedal behavior models
is the vehicle speed model. In these models, the torque demand of the vehicle can
only be calculated by taking derivatives of the modeled vehicle speed. As the torque
demand is a key factor in the powertrain control systems, it is more desirable to
have its direct and accurate prediction that may not be provided by these speed
models. The solution proposed by [4] considers the pedal behavior of a given driver
on a given vehicle as a sequence of actions, intended as adjustments of the pedal
position. Vehicle speed and acceleration, and road information that a driver receives
is considered as the inputs to the model, while the probabilities of pedal actions are
the outputs of the model. This driver pedals behavior model is depicted under the
input-output hidden Markov model (IOHMM) [29] framework, with states standing
for the modes of driving behaviors, (e.g., brake for a stop, free acceleration, or
cruise, etc), determining the mapping between the input that a driver receives and
the probabilities of the action. The proposed IOHMM-based model can only provide
the output action probability distribution for one step. To be able to make multistep
predictions within one step a pedal position is sampled from the output distribution
and then fed into a vehicle-road model, providing the inputs to each time-step of
the prediction window.

Moving to AI-based systems, [30] implements LSTMs taking traffic state infor-
mation (velocities, accelerations, distances, etc.) as input to output a Gaussian
mixture that models a distribution of future longitudinal acceleration values in the
next timestep. At each timestep, accelerations are sampled from such distributions,
and the input state for the next timestep is calculated accordingly.
[31] proposes a framework consisting of undirected graphs representing the interac-
tions between vehicles, a graph convolution neural network [32] used to encode the
graph structure directly, and a fully-connected or LSTM mixture density network
used to predict future acceleration distributions. More in detail, also in this case
the outputs of the ANN are Gaussian mixture model parameters that characterize
the future acceleration distribution. Commonalities do not stop here, indeed, here
as in all the methods overviewed in this paragraph is envisioned the practice of out-
putting a time-series of predictions by updating input parameters of the time t+1,
basing on a sampled acceleration4 at time t. Such a technique has the advantage
of being particularly flexible, since we do not have to fix the output window length
in advance, but we can unroll the prediction until desired at test time. However, it
needs the availability of a model to update the inputs according to the outputs at
the previous time-step, therefore being limited to simple scenarios.

2.3 Industrial requirements

We defined the cluster of works in Section 2.2.3 as the “driver action prediction”
branch, because of its similarity in the way we intended the problem. Indeed, the

4Meant as pedal pressure, actual dynamic, and also accounting for a deceleration if negative.
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purpose of this work is to develop a system capable of inferring a sequence of driver
commands, namely accelerator and brake pedal pressure and steering an-
gle. Furthermore, the proposed methodology is born with the prospect of future
industrialization. This can imply the non-availability of complex sources of
data, such as densely annotated maps exploited by some of the best-performing
SOTA models. As will be explained in Section 4, the proposed approach addresses
the problem under analysis by providing a non-intrusive solution, exploiting the
signals coming from the current onboard technology (e.g. ADAS systems) and
from the vehicle dynamics. The software-based solution proposed has the advan-
tage of not requiring the implementation of other instrumentation in the vehicle, no
cameras or biometric tracking systems. It has a low computational cost and does
not require modifications to the passenger compartment. This could be relevant,
especially, in the luxury car market, where attention to design is an important ele-
ment of this type of vehicle. In fact, the objectives that drive the development can
be summarized as follows:

• compared to the more pursued objective of trajectory prediction, the granu-
larity of predictions is augmented, and indeed it will be possible to confront
on a common field by computing the trajectory derived from the application
of the forecast driving commands;

• since a digital twin of the driver is instantiated, in the introduced framework
the meaning of “action” is arbitrarily extendable, as long as the action can be
simulated and produce an effect on the car;

• the prediction system proposed is meant to be integrated into the vehicle’s
ECU (Engine Control Unit), it does not require any additional instrumenta-
tion that distorts the car’s interior design, and to be strictly adhering to the
principles of privacy and data protection.

2.4 Materials and Tools

In this section, we present the sources of data utilized or utilizable for developing
and/or benchmarking the prediction systems presented in Sections 2.2.1, 2.2.2, 2.2.3,
and for the system at the core of this thesis work.

2.4.1 Datasets

The following is a list of datasets commonly used for the research branches intro-
duced. As mentioned before, Trajectory Prediction can focus on objects other than
vehicles, and because of that, some pedestrian datasets are mentioned as well.

nuScenes dataset

The nuScenes [33] dataset is a large-scale autonomous driving dataset. The dataset
has 3D bounding boxes for 1000 scenes collected in Boston and Singapore. Each
scene (Figure 2.8) is 20 seconds long and annotated at 2Hz. This results in a total of
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Figure 2.8: An example from the nuScenes dataset

Figure 2.9: An example from the ETH dataset

28130 samples for training, 6019 samples for validation and 6008 samples for testing.
The dataset has the full autonomous vehicle data suite: 32-beam LiDAR, 6 cameras
and radars with complete 360° coverage.

ETH dataset

ETH [34] is a dataset for pedestrian detection. The testing set contains 1,804 images
(Figure 2.9) in three video clips. The dataset is captured from a stereo rig mounted
on car, with a resolution of 640 x 480, and a framerate of 13-14 FPS.

UCY dataset

The UCY [35] dataset consists of real pedestrians’ trajectories with rich multi-human
interaction scenarios captured at 2.5 Hz. It is composed of sequences taken in public
spaces from top view, as shown in Figure 2.10.
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Figure 2.10: An example from the UCY dataset

Figure 2.11: An example from the ApolloScape dataset

ApolloScape dataset

ApolloScape [36] is a large dataset consisting of over 140,000 video frames (73 street
scene videos) from various locations in China under varying weather conditions.
Pixel-wise semantic annotation of the recorded data is provided in 2D, with point-
wise semantic annotation in 3D for 28 classes. In addition, the dataset contains lane
marking annotations in 2D. An example from this dataset is reported in Figure 2.11.

INTERACTION dataset

The INTERACTION dataset contains naturalistic motions of various traffic partic-
ipants in a variety of highly interactive driving scenarios from different countries.
Examples from this dataset are reported in Figure 2.12

HDD dataset

Honda Research Institute Driving Dataset (HDD) [37] is a dataset to enable research
on learning driver behavior in real-life environments. The dataset, exemplified in
Figure 2.13, includes 104 hours of real human driving in the San Francisco Bay Area
collected using an instrumented vehicle equipped with different sensors.
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Figure 2.12: Examples from the INTERACTION dataset

Figure 2.13: Examples from the HDD dataset

Figure 2.14: An example from the JAAD dataset

JAAD dataset

Joint Attention in Autonomous Driving (JAAD) [38] is a dataset for studying joint
attention in the context of autonomous driving. The focus is on pedestrian and
driver behaviors at the point of crossing and on the factors that influence them. To
this end, JAAD dataset provides a richly annotated collection of 346 short video
clips (5-10 sec long) extracted from over 240 hours of driving footage, as shown in
Figure 2.14.

Behavior annotations specify behaviors for pedestrians that interact with or re-
quire the attention of the driver. For each video, there are several tags (weather,
locations, etc.) and timestamped behavior labels from a fixed list (e.g. stopped,
walking, looking, etc.). In addition, each frame presents a list of demographic at-
tributes is provided for each pedestrian (e.g. age, gender, direction of motion, etc.)
as well as a list of visible traffic scene elements (e.g. stop sign, traffic signal, etc.).
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Figure 2.15: An example from the PIE dataset

TITAN dataset

TITAN [39] consists of 700 labeled video clips captured from a moving vehicle on
highly interactive urban traffic scenes in Tokyo. The dataset includes 50 labels
including vehicle states and actions, pedestrian age groups, and targeted pedestrian
action attributes.

PIE dataset

PIE [40] is a new dataset for studying pedestrian behavior in traffic. PIE contains
over 6 hours of footage recorded in typical traffic scenes with on-board camera. It
also provides accurate vehicle information from OBD sensor (vehicle speed, heading
direction and GPS coordinates) synchronized with video footage. Rich spatial and
behavioral annotations are available for pedestrians and vehicles that potentially
interact with the ego-vehicle as well as for the relevant elements of infrastructure.
There are over 300K labeled video frames (Figure 2.15) with 1842 pedestrian samples
making this the largest publicly available dataset for studying pedestrian behavior
in traffic.

2.4.2 Simulation Environments

Different driving simulation environments and models are examined below, whose
exploitation can allow for research in the branches reviewed.

Complete Vehicle Model

The Complete Vehicle Model is a Simulink model for emulating a complete vehicle,
namely its powertrain, driveline, and dynamics [41].

The main subsystems and transmission components, shown in Figure 2.16, are:

• Driver inputs: throttle/brake profiles;

• Engine: system-level model of spark-ignition and diesel engine;

• Torque Converter: three-part torque converter consisting of an impeller, tur-
bine, and stator;

• Transmission subsystem: CR-CR 4-speed transmission;
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Figure 2.16: Complete Vehicle Model

Figure 2.17: Scene Interrogation in 3D Environment

• Shift Logic: Stateflow® implemented transmission controller;

• Bodywork: Vehicle, tire, and brake dynamics.

Although it is open for customization and well-documented, it does not accept
steering movement as input but only throttle and brake signals to the engine and
transmission control system.

Scene Interrogation in 3D Environment

The scene interrogation in 3D environment is a Simulink model for emulating a com-
plete vehicle (powertrain, driveline, and dynamics) linked with a 3D visual represen-
tation with the Unreal Engine [42]. As shown in Figure 2.17, the scene interrogation
with camera and ray tracing reference application contains:

• A passenger vehicle with a simple driveline, combined slip wheel, and 3DOF
vehicle dynamics model;

• A camera mounted on the rear-view mirror of the passenger vehicle;

• Steering, acceleration, gear, and braking controls;
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Figure 2.18: Conventional Vehicle Reference Application

• Vehicle light controls;

• 3D viewing environment configured for the Virtual Mcity scene.

The downside of this simulator is that it requires the use of a GPU for 3D rendering.

Conventional Vehicle Reference Application

The Conventional Vehicle Reference Application [43] is an open-source Simulink
model that emulates a complete vehicle model with internal combustion engine,
transmission, and associated control algorithms. The block set includes a library of
components for modeling propulsion, steering, suspension, vehicle body, brakes, and
tires. It is often used for powertrain matching and component selection analysis,
control algorithm design and diagnostics, and hardware-in-the-loop (HIL) testing.

As shown in Figure 2.18, the main subsystems are:

• Driver commands – Steering, throttle, brake, and gear (optional);

• Passenger Vehicle - It implements a vehicle that contains transmission and
engine subsystems;

• Controllers’ subsystem - It implements a powertrain control module (PCM)
containing a transmission control module (TCM) and an engine control module
(ECM);

• Environment subsystem - It creates environmental variables, including road
slope, wind speed, temperature, and ambient pressure;

• Sensor’s subsystem - An inertial measurement unit (IMU), a sensor assembly
consisting of a three-axis accelerometer that measures acceleration and a three-
axis gyroscope that measures angular velocity.

This model allows testing the vehicle with standard driving maneuvers, such as a
double lane change, or as part of customized scenarios. It is open for customization
and well-documented. The downside is that it does not have a comprehensive and
useful 2D visualization of vehicle behavior.
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Figure 2.19: Automated Lane-Change Manoeuvring simulation environment

Figure 2.20: Highway Gym simulation environment

Automated Lane-Change Manoeuvring

The Automated Lane-Change Manoeuvring is a 2D visual simulation environment
for a problem of Lane-Changing [44]. It is developed with Pyglet, a powerful and
easy-to-use Python library for game development. The simulation is a simplified
traffic flow scene, exemplified through Figure 2.19. It consists of the lane line, the
lane boundary line, and the vehicles in each lane. The agent can observe its own
relative position through the distance state information between itself and the other
vehicles. It can control the steering wheel angle, throttle opening, and brake pedal
pressure. The positive aspects of this simulator are that it has easy and intuitive
graphics and does not require the use of a GPU. The downside of this tool is the
impossibility to access its source code.

Highway Gym

The Highway Gym is an open-source 2D visual simulation environment [45]. It is
developed with the gym library for problems of Lane-Keeping or Lane-Changing.
The agent drives on a multilane highway populated with other vehicles, as exem-
plified in figure 2.20. Its goal is to reach a high speed while avoiding collisions
with neighboring vehicles. The agent can perform longitudinal (speed changes) and
lateral (lane changes) actions. It is possible to add road junctions with oncoming
vehicles, roundabouts with flowing traffic and intersections with intense traffic.

Udacity’s Self-Driving Car Simulator

The Udacity’s Self-Driving Car (Figure 2.21) is an open-source 3D visual simulation
environment developed on the Unity game platform [46]. It allows to manually
drive a car to generate training data (image data, steering angles, and acceleration
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Figure 2.21: Udacity’s Self-Driving Car Simulator

Figure 2.22: Driving Scenario Designer

throttle) or to test a machine learning model. The disadvantage of this simulator is
that it offers only basic vehicle dynamics.

Driving Scenario Designer

The Driving Scenario Designer application [47] is a MathWorks tool and enables the
design of synthetic driving scenarios for testing autonomous driving systems. With
this tool, of which we show a visualization in Figure 2.22, it is possible to:

• create models of roads and actors (vehicles and pedestrians) using a drag-
anddrop interface;

• configure vision, radar, lidar, INS and ultrasonic sensors mounted on the ego
vehicle.
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Figure 2.23: AVSimulation

• import road data from OpenStreetMap into a driving scenario;

• export synthetic sensor readings into MATLAB;

• generate MATLAB code of the scenario and sensors, then programmatically
edit the scenario and import it back into the application for further simulations;

• generate a Simulink model from the scenario and sensors and use the generated
models to test the sensor fusion or vehicle control algorithms.

It does not require high hardware resources, is easily configurable and can be con-
nected to a vehicle model. It also features 3D and 2D visualization of the vehicle
and sensors and an integrated Unreal Engine.

AVSimulation

AVSimulation [48] is a complete 3D driving simulation software allowing scenario
modification and sensors (RADAR, LIDAR, cameras) and vehicle modeling at the
physical level. It makes it possible to develop and validate ADAS vehicles, both
autonomous and connected on any type of platform (real-time, cloud, PC) or to
perform human behavior studies on simulators. The simulator, whose Figure 2.23
is an example, provides digital resources (urban plans, buildings, vehicles) and a
flexible API python that allows controlling all aspects related to the simulation,
such as static and dynamic actors, traffic scenarios and environmental properties
(weather, conditions, illumination etc.). The positive aspects of AVSimulation are
that it offers many ADAS and Sensor systems and an excellent personalization of
the environment, but the downside is that it is not open source.
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Figure 2.24: AirSim Simulator

AirSim

The AirSim (Figure 2.24) is an open-source 3D visual simulation environment devel-
oped by Microsoft [49]. It is a simulator for drones, cars and more, built on Unreal
Engine and on Unity game platform. The goal is to develop a platform for AI anal-
ysis for autonomous vehicles to experiment with deep learning and reinforcement
learning algorithms. AirSim’s APIs allow to interact with the vehicle in simulation,
retrieve useful images and vehicle variables as data to train models for deep learn-
ing, control the vehicle, get state, and so on. AirSim allows to set throttle, steering,
handbrake, and gear, and to retrieve the state vehicle information, such as speed
and the 6 kinematics quantities (position, orientation, linear and angular velocity,
linear and angular acceleration). It also supports some vehicle sensors: camera,
barometer, IMU (inertial measurement unit), GPS, magnetometer, distance sensor
and LiDAR.

TORCS

The Open Racing Car Simulator (TORCS) is an open-source 3D driving simulator
based on OpenGL [50]. It is a highly portable multi-platform car racing simulation
with a sophisticated physical model easy to modify. It is used as an ordinary car
racing game and as a research platform. The purpose of the simulator is to develop
artificial intelligence for vehicle control. TORCS simulates the main components of
the vehicle dynamic, such as mass, rotational inertia, links and differentials, friction,
collision, suspensions, and aerodynamics. The 3D rendering, shown in Figure 2.25,
is lightweight, and it can be turned off for faster training. The downside of this
simulator is that it lacks in the complexity of urban driving, such as pedestrians,
intersections, cross traffic, and other characteristics of urban environment.
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Figure 2.25: TORCS Simulator

Figure 2.26: CARLA Simulator

CARLA Simulator

CARLA is an acronym of Car Learning to Act [51, 52]. It is an open-source 3D
visual simulation environment for urban driving, as shown in Figure 2.26, based on
Unreal Engine. It is developed by European Commission to support autonomous
driving research and ADAS testing. The simulator provides open digital resources
(urban plans, buildings, vehicles) and a flexible API python that allows controlling
all aspects related to the simulation, such as static and dynamic actors, traffic
scenarios and environmental properties (weather, conditions, illumination etc.). The
commands that control the vehicle are steering, acceleration and braking. CARLA
also supports a flexible configuration of sensor suites (LIDARs, multiple cameras,
depth sensors, GPS etc.). The positive aspects of CARLA are that it offers many
ADAS systems and excellent customization of the environment, but the downside is
that it provides few variables on the dynamics of the vehicle.
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Parameters Var Units Value
Vehicle mass m [kg] 1181
Longitudinal distance from
center of mass to front axle a [m] 1.515
Longitudinal distance from
center of mass to rear axle b [m] 1.504
Vertical distance from
center of mass to axle plane h [m] 0.134
Track width w [m] 1.563
Gears [adims] 6
Driveline Model Rear Wheel Drive

Active Differential

Table 2.2: Vehicle Specifics

2.4.3 SENSOR Driveline environment

The actual simulation environment choice consists of an asset of SENSOR, which is
built upon some of the previously mentioned simulators and has the following key
features:

• it is developed by implementing various tools from MATLAB and Simulink;

• it has interfaces with the python library OpenAI gym [53], commonly exploited
for Reinforcement Learning;

• it reproduces vehicle behavior and driving conditions and is shaped to allow
training on a lane-keeping task.

Vehicle model

The MATLAB implemented vehicle model, deepened in Section 3.1.3, is a 14 degrees-
of-freedom (DOF) model and provides a series of signals on the dynamics of its
components. The vehicle model is configured according to the parameters defined
in Table 2.2, and represented in Figure 2.27.

In addition, it is simulated a sensor on the vehicle, configured according to the
specifications defined in Table 2.3. It is a camera that provides information on road
signs, such as the distance of the vehicle to the lane lines or the curvature of the
road.

Road scenario

The road scenario is developed with Driving Scenario Designer, reviewed in Sec-
tion 2.4.2. It allows for randomly generating different types of road scenarios, by
employing an algorithm designing the layout of the road varying:

• the lane width;

• the number of curves;
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Figure 2.27: The load locations and vehicle parameter dimensions

Parameters Units Value
Sensor’s (x, y) position [m] [1.9, 0]
Sensor’s height [m] 1.1
Pitch angle of sensor mounted [deg] 1
Maximum detection range [m] 150
Focal length [pixel] [800, 800]
Image size produced
by the camera [pixel] [480, 640]

Table 2.3: Camera specifics

• the radius of curvature.

Based on these three variables, the difficulty of the scenario is defined. If the random
generation is active, the road generated are always single-lane (Figure 2.28) and
do not include any intersections or other road users, such as pedestrians or other
vehicles.

Road difficulty level

In the road scenario, the complexity factor is the route layout. The random gener-
ation algorithm follows a track rating scale, defining 10 levels of difficulty based on
the lane width, the number of curves, and the radius of the curvature. Each of these
factors is given a weight, whose maximum value is reported in Table 2.4, according
to the importance this variable has in defining the level of difficulty, and the sum of
these weights give the difficulty level of the track.
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Figure 2.28: An example of road track randomly generated.

Factors Units Maximum
value

Width Lane [m] 4
Number of curves [adims] 2
Radius of curvature [m] 4

Table 2.4: Maximum weight attributed to each factor

Graphic User Interface

Considering that the outlined simulator is meant to be utilized for Reinforcement
Learning frameworks, we highlight that for this learning paradigm, unlike in other
Machine Learning techniques, it is also important to have a visualization of the newly
trained agent to evaluate its behavior in a dimension that is not only numerical but
also qualitative. Such an intuition of its goodness is provided by the Graphic User
Interface (GUI) shown in Figure 2.29.

The visualization can be divided into three parts:

• the top left is the ego view of the vehicle and provides information on the
actions taken and the behavior of the vehicle, as well as the instant reward
and total reward earned;

• on the right, the first half shows the physical variables of the vehicle and the
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Figure 2.29: Graphical interface of agent behavior.

sensors, the input of the neural network. While in the second half we have
information about the scenario on which the agent is validating or testing;

• at the bottom, there is the time evolution of some physical signals useful for
the general understanding of the vehicle behavior, such as the distance to the
lane line or the steering progression.

Agent-Environment interaction

The MATLAB environment is used for creating an OpenAI gym environment, en-
visioning a lane-keeping task. The agent perceives its surroundings through its
dynamics and sensors and modifies its state by performing certain actions. As shown
in Figure 2.30, a Python “Orchestrator” component handles communication between
the MATLAB and Python sides of the environment. The decision-making and all
the Reinforcement Learning part is left to Python as well, where the training can
be performed through stable-baselines [54] library, or, after this thesis work, with
MBRL-lib [54] library.
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Figure 2.30: The interaction between the MATLAB environment, and its wrapped
Python version, where Reinforcement Learning is performed.
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Chapter 3

Background

This chapter presents the previous knowledge, tools, and algorithms exploited in
this study.

3.1 Vehicles variables

The behavior of a vehicle is the result of the action of interactions (Figure 3.1) that
have different origins and points of application. Some, such as weight and inertia,
are proper to the body itself, while others are induced by the driver through the
controls, and others come from outside.

Figure 3.1: Decomposition of a wheeled vehicle into subsystems
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3.1.1 Driving actions

The driver is in charge of observing the external environment and conducting the
vehicle according to needs and demands. The interface between the driver and the
vehicle is fixed and it comes down to a few main elements:

• steering wheel, determining the vehicle steering angle, according to the trans-
mission ratio, and thus responsible for the lateral control;

• throttle pedal, that through pressure determines a positive longitudinal accel-
eration of the vehicle;

• brake pedal, that through pressure determines a negative longitudinal accel-
eration of the vehicle;

• gear lever, not always present, (e.g. for vehicles equipped with automatic
transmission the selected gear is not controllable by the driver).

3.1.2 Powertrain and drivetrain

The powertrain consists of the engine and all the components that generate a
propulsive drive in the vehicle. On the other hand, the drivetrain includes the
transmission and the differential.
Those components are not under the direct control of the driver, but they respond
to its action and can provide useful information about the way the vehicle is used.
Further insightful signals to consider may be engine RPM (Rotation Per Minute),
engine instant torque, generated power, and selected gear.

3.1.3 Vehicle dynamics

The dynamics of a body consists of the forces that act on it and all the resulting
accelerations (i.e. along the 3-dimensional components).

Vehicle model

To study vehicle behavior in the longitudinal, lateral, and vertical directions we used
the 14 degrees-of-freedom (DOF) vehicle model shown in Figure 3.2. It is composed
of an elastic vehicle body mass and four non-elastic wheel masses:

• the suspended mass has 6 DOF and it includes longitudinal, lateral, vertical,
roll, pitch, and yaw motion;

• each of the wheels has 2 DOF, which consist of vertical movement of the wheel
and rotation of the wheel.
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Figure 3.2: 14 DOF Vehicle Mode

Figure 3.3: An overview of the sensing system for vehicles ADAS

3.1.4 ADAS Sensors

ADAS stands for the new Advanced Driver Assistance Systems, devices that can
ensure safer cars, especially in terms of active protection. These new technologies
(Figure 3.3) consist of a series of sensors that are mounted on cars in different lo-
cations and with different functions. Radar sensors, ultrasonic sensors, cameras,
and in the future even lidar allow for the detection of the vehicle’s environment
and consequently for automated driving and parking capabilities. Cameras, in par-
ticular, permit to easily recover information such as the status of a traffic light or
traffic signals can be integrated. The sphere of camera use is broad, for instance it
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Figure 3.4: Schematical representation of the Rosenblatt perceptron.

recognizes lane markings and supports driver assistance features such as lane keep-
ing or emergency braking, which react to the presence of vehicles, pedestrians, and
bicycles.

3.2 Deep Learning

Deep Learning (DL) is the branch of Machine Learning (ML) that involves artifi-
cial neural networks (ANN) as models able to incorporate both the feature extraction
and classification or regression steps.

3.2.1 Feed-Forward Neural Network

Multi-Layer Perceptron (MLP) represents an architecture of an artificial neu-
ral network, composed of fully connected layers. This means that every neuron of a
layer receives as input the weighted output of all the neurons of the previous layer.
Every neuron sums the weighted values of the input and possibly applies a non-
linear function (Figure 3.4), intuitively representing whether or not the outcome is
meaningful to be forward propagated.

3.2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is a more complex ANN architecture
that exploits locally-connected layers. It involves a kernel that slides over the input
tensor and provides a single-value result by means of a weighted sum (Figure 3.5).

3.2.3 Recurrent Neural Network

The Recurrent Neural Network (RNN) is an architecture whose connections
form a direct graph along a temporal sequence (Figure 3.6). The RNN creates an
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Figure 3.5: Schematic representation of a convolution operation.

Figure 3.6: An unrolled recurrent neural network.

internal state ht that encodes all the information it considers relevant to keep from
the previous history.

This architecture provides a memory feature that is of paramount importance in
time series and in all applications where the dynamic evolution of the data is highly
informative.

3.3 Reinforcement Learning

Reinforcement Learning (RL) is a learning paradigm that envisions an agent
capable of dealing with dynamic environments. This decision process is carried out
by observing the environment state and selecting the preferable action to reach the
final goal (Figure 3.7).

The two main entities involved in this learning process are:

• the agent: intelligent module capable of perceiving the environment and se-
lecting the action to perform;

• the environment: context with which the agent interacts and that evolves
according to its actions.
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Figure 3.7: Reinforcement Learning loop.

3.3.1 Sim2Real gap

The environment is usually implemented as a virtual simulation for ease of manip-
ulation, the possibility of handling a big amount of iterations, and speeding up the
simulation time.

The drawback of this approach is the deployment of the trained agent in a
real context that is different from the simulated one. This can correspond to a
degradation of the model performance.

Therefore, the goal in designing the environment is reducing the so-called sim-
ulation to reality gap, hence creating an environment as realistic as possible.

3.3.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is a discipline applying Deep Learning tools
to Reinforcement Learning algorithms. In fact, it employs ANNs used as function
approximators to learn value functions and/or policies, depending on the specific
algorithm.

3.3.3 Model-Free vs Model-Based RL

One of the most important branching points in an RL algorithm is the question of
whether the agent has access to (or learns) a model of the environment. Here, the
model of the environment is a function that predicts state transitions and rewards.

The main upside to having a model is that it allows the agent to plan by thinking
ahead or to train in the imagined environment. When this works, it can result in
a substantial improvement in sample efficiency over methods that do not have a
model.

The main downside is that a ground-truth model of the environment is usually

36



3.3 – Reinforcement Learning

Figure 3.8: A non-exhaustive taxonomy of algorithms in modern RL

not available to the agent. If an agent wants to use a model in this case, it has
to learn the model purely from experience, which creates several challenges. The
biggest challenge is that bias in the model can be exploited by the agent, resulting
in an agent which underperforms in the real environment.

Algorithms using an environment model are calledmodel-based, and those that
do not are called model-free, and depending on this there are different possibilities
of what to learn [55].

Model-Free methods

The algorithm in this learning paradigm, in general, assumes the following non-
exclusive approaches:

• Value Learning, aiming at learning functions accounting for the value of
taking a specific action in a specific state (e.g. Q-function), then use them to
infer a deterministic signal of what action to take;

• Policy Learning, inferring directly the policy that the agent should adopt.
The model takes as input the state and predicts a probability distribution over
its actions.

The actual methods can go beyond one or the other by adopting trade-offs between
them or interpolating from one to the other.

Model-Based methods

In this case, there are even more orthogonal clusters of approaches, where the model
may either be given or learned. Therefore, we propose a list far from being exhaus-
tive:
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• Pure Planning, never explicitly representing the policy, but employing pure
planning techniques like model-predictive control (MPC) to select actions. In
MPC, each time the agent observes the environment, it computes a plan which
is optimal with respect to the model, where the plan describes all actions to
take over some fixed window of time after the present. The agent then executes
the first planned action, discards the rest of the plan, and computes a new one;

• Expert Iteration, a straightforward follow-on to pure planning that learns
an explicit representation of the policy. The agent uses a planning algorithm
in the model, generating candidate actions for the plan by sampling from its
current policy. The planning algorithm produces an action that is better than
what the policy alone would have produced, hence it is an “expert” relative
to the policy. The policy is afterward updated to produce an action more like
the planning algorithm’s output;

• Data Augmentation for Model-Free Methods, using a model-free RL
algorithm to train a policy or value function, but augmenting real experiences
with imagined ones for updating the agent;

• Embedding Planning Loops into Policies, envisioning a subroutine, so
that complete plans become side information for the policy, while training the
output of the policy with any standard model-free algorithm.

3.3.4 RL Algorithms employed

In this section, we deepen the Reinforcement Learning algorithms characterizing
this thesis, starting from SAC, the model-free baseline for training our agent, to
MBPO, its model-based version1, at the core of the work.

Soft-Actor-Critic

Soft Actor Critic (SAC) [56] is an algorithm that optimizes a stochastic policy in an
off-policy way. A central feature of SAC is entropy regularization. The policy is
trained to maximize a trade-off between expected return and entropy, a measure of
randomness in the policy. This has a close connection to the exploration-exploitation
trade-off: increasing entropy results in more exploration, which can accelerate learn-
ing later on. It can also prevent the policy from prematurely converging to a bad
local optimum.
More in-depth, let x be a random variable with probability mass or density function
P . The entropy H of x is computed from its distribution P according to

H(P ) = E
x∼P

[
− logP (x)

]
(3.1)

In entropy-regularized reinforcement learning, the agent gets a bonus reward at
each time step proportional to the entropy of the policy at that timestep. The

1Actually, MBPO describes a methodology at whose core there can be a generic model-free
algorithm. We considered MBPO as the authors of the original paper did.
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resulting RL problem is

π∗ = argmax
π

Eπ

[ ∞∑
t=0

γt
(
R(st, at, st+1) + αH (π(·|st))

)]
, (3.2)

where

• st is the state of the environment at time t;

• at is the action performed by the agent at time t;

• R(·) is the reward function;

• π(·) is a policy;

• α > 0 is the explore-exploit trade-off coefficient, with higher values correspond-
ing to more exploration, and lower ones corresponding to more exploitation.

At test time, to see how well the policy exploits what it has learned, stochasticity
is removed and it is used the mean action instead of a sample from the distribution.
Having overviewed the policy, it is possible to the value functions in the specific
form they assume in this algorithm.

• the V-function, representing the value of being in a determinate state, here
considering also the entropy term:

V π(s) = Eπ

[ ∞∑
t=0

γt
(
R(st, at, st+1) + αH (π(·|st))

)∣∣∣∣∣ s0 = s

]
; (3.3)

• the Q-function, representing the value of taking a specific action in a determi-
nate state, and then behaving according to the policy:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtR(st, at, st+1) + α
∞∑
t=1

γtH (π(·|st))

∣∣∣∣∣ s0 = s, a0 = a

]
,

(3.4)
from which, after some manipulation, we obtain the resulting Bellman equa-
tion:

Qπ(s, a) = E
s′∼P

[
R(st, at, st+1) + γV π(s′)

]
(3.5)

SAC concurrently learns a policy πθ, two Q-functions Qϕ1 , Qϕ2 , and in some imple-
mentations a value function Vψ, where the subscript represents a parametrization.
Such a parametrization involves ANNs and the learning process is characterized by
the following items:

• the loss functions for the Q-networks in SAC are

L(ϕi,D) = E
(s,a,r,s′,d)∼D

(Qϕi(s, a)− y(r, s′, d)

)2
 , (3.6)

39



Background

Figure 3.9: MBPO high-level representation.

where the target is given by

y(r, s′, d) = r+γ(1−d)

(
min
j=1,2

Qϕtarg,j(s
′, ã′)− α log πθ(ã

′|s′)
)
, ã′ ∼ πθ(·|s′).

(3.7)

• the policy is optimized by gradient ascent on the following objective function

max
θ

E
s∼D,ξ∼N

min
j=1,2

Qϕj(s, ãθ(s, ξ))− α log πθ(ãθ(s, ξ)|s), (3.8)

where it is possible to notice the use of the reparameterization trick, in which
a sample from πθ(·|s) is drawn by computing a deterministic function of state,
policy parameters, and independent noise. Practically, it is used a squashed
Gaussian policy to obtain the actions as follows:

ãθ(s, ξ) = tanh (µθ(s) + σθ(s)⊙ ξ) , ξ ∼ N (0, I). (3.9)

Model-Based Policy Optimization

Model-Based Policy Optimization (MBPO) is a model-based RL algorithm using
the environment model with the purpose of “Data Augmentation for Model-Free
Methods”, introduced in section 3.3.3. The high-level idea behind this algorithm is
represented in Figure 3.9 and consists of a three phases loop:

1. the agent interacts with the real environment;

2. a model of the environment through Supervised Learning is learned, creating
the “fictional” copy of the environment;

3. the agent is trained on the learned environment model.

The description of such an algorithm is deepened while exemplifying how it is
employed in the Simulink environment introduced in Section 2.4.3.

In the outer loop, schematized in Figure 3.10 the agent interacts with the simula-
tor, the real environment, choosing the best action, and leaving the stochasticity to
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Figure 3.10: Interaction with the real environment.

Figure 3.11: Environment-model learning.

the phase of the interaction with the environment model. The transitions of State-
Action-NextState are stored in a buffer, which will be employed for environment
learning.

Then there is the phase of the environment modeling, depicted in Figure 3.11
left to probabilistic neural networks, networks whose output neurons simply param-
eterize a probability distribution function. The objective function responsible for
the training of such ANNs is the negative log-prediction probability:

lossP (θ) =
N∑
n=1

−logfθ(sn+1|sn, an), (3.10)

where fθ(sn+1|sn, an) is the approximator of the conditional distribution of the next
state given the current state and action, parametrized by the ANN, and N is the
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Figure 3.12: Interaction with the imagined environment.

number of samples over which the sum is computed. In this particular case the
environment model outputs a Gaussian distribution with diagonal covariances:

fθ(sn+1|sn, an) = N
(
µθ(st, at), σθ(st, at)

)
, (3.11)

and the learning is performed through gradient descent. A probabilistic ANN cap-
tures aleatoric uncertainty or the noise in the outputs with respect to the inputs.
However, the usage of an ensemble of probabilistic ANNs allows for a bootstrapping
procedure accounting for epistemic uncertainty, or uncertainty in the model param-
eters. This technique is introduced in [57] and is crucial in regions when data is
scarce and the model can be exploited by policy optimization.

Finally, there is the inner loop (Figure 3.12), in which the agent interacts with
the imagined model, in a loop that can be defined as “virtualization”. The policy
optimization algorithm adopted is SAC, and once the agent takes an action, the
environment-model ensemble generates a new state by simply selecting a model
uniformly at random2. In Figure 3.12, the “reward evaluator” is an entity out of
the environment model, to highlight how the reward can be learned as well, or
how it is possible to imagine the insertion of a separately trained block ANN 3. A
final key feature of MBPO consists of its model usage: instead of having the agent
perform a few long rollouts from the initial state distribution4, many short rollouts
are performed starting from some replay buffer states.

The complete loop previously reviewed is shown in Figure 3.13.

2This has the further advantage of allowing for different transitions along a single model rollout
to be sampled from different dynamics models.

3This second possibility, the insertion of a separately trained block is not in the original paper,
and could be the focus of future works.

4The state in which it arrived in the real environment.
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Figure 3.13: MBPO complete loop.

Figure 3.14: Sliding windows on streaming data

3.4 Data structures

A data structure defines the format for processing, organizing, and storing data.
There are different types of structures, all designed to organize data for a specific
purpose. Here it is introduced the only advanced data structure employed by the
developed predictor: the sliding window.

3.4.1 Sliding window

In a sliding window (Figure 3.14) data are grouped within a window that slides over
the data stream according to a specified interval. The employed time-based sliding
windows have a fixed prediction horizon, namely the number of time-steps within
the window, and a fixed sampling time.
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Chapter 4

Material and methods

The current chapter presents the formalizations, methodology, environments, and
tools characterizing the work presented. First, it is given an overview of the devel-
oped prediction system. Follows a step-by-step deepening of the workflow needed
to obtain it with its key techniques. After this, there is a description of the dataset
onto which perform the evaluation of the proposed system, as well as of the state-
of-the-art model exploited to make a comparison. Finally, a first enhancement of
the developed system is proposed.

4.1 System overview

This work focus on a prediction system consisting of an RL agent running in parallel
to a human driver in a learned environment model. The high-level idea is represented
in Figure 4.1.

Figure 4.1: High-level representation of the proposed prediction system

In particular, the development workflow of the prediction system at the core
of this thesis requires first the training of a Model-Based Reinforcement Learning
agent, through the MBPO algorithm as described in Section 3.3.4. After that, two
key modules are available:

• the agent, trained through Reinforcement Learning;
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Figure 4.2: The final prediction system, composed of modules trained through
Model-Based Reinforcement Learning.

• the environment model, trained through Supervised Learning.

The prediction system is built upon these modules as deepened in Figure 4.2 and
the way it works can be summarized by the following pipeline.

1. The system inputs Driving real-time data:

• Vehicle variables, CAN bus signals from the driveline and vehicle dy-
namics, such as IMU acceleration, lateral and longitudinal speed, etc.;

• Environmental conditions, information from the road environment,
e.g. the distance of the vehicle from the lane lines.

2. The input undergoes a series of transformations to be compliant with the
trained Reinforcement Learning agent inputs, so as to provide an initial state;

3. The predictive system loops in the learned environment model for a fixed
number of steps, depending on the desired prediction horizon. Specifically, the
RL agent

• chooses the best action to take in the current state and saves it in a buffer;

• moves one step ahead in time in the learned environment model, reaching
a new state;

4. The series of actions taken represents the action prediction and can be
evaluated against the ground-truth actions for further applications.

In this work, one of the greatest challenges is to deal with the indeterminacy
of subjective human behavior: the difficulty of creating a model that generalizes
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sufficiently to the specifics of each person’s driving style. The operational work-
flow described above will be supposed to be performed in the vehicle, to minimize
response latency and operate in real-time. On the other hand, this has the dis-
advantage of harsher computational constraints on the complexity of the Machine
Learning model, due to hardware limitations.

4.2 Model-Based Reinforcement Learning frame-

work

In the following paragraphs, it is presented a review of the specific shape taken
by the environment, the learning workflow key details, and the principal parameters
and structures involved in the MBRL framework. In fact, a major effort in this work
consisted in ensuring the compatibility between the MATLAB-Python environment
introduced in Section 2.4.3, and the still under-development library mbrl-lib [58],
resulting in several modifications of its source code1.

4.2.1 Real environment

Before deepening the discussion, it is to highlight how the term “real environment”
refers to the simulation environment with whom the agent interfaces, in opposition
to the learned environment model, recalling a virtualization.
For the agent to be successful in the lane-keeping task first it was necessary to
reshape the way it interacts with the environment, namely its observation space,
action space, and the rewards it receives. Although previous works already solved
the environment [2], this was done by learning algorithms other than the ones we
employ, in particular by using the PPO [59] implementation of the stable-baselines
library [54]. This algorithm does not allow for a Model-Based extension, so the
presented work needs to start back from the development of an agent able to solve the
environment, and this implies engineering the way it perceives it. No modifications
are performed on the MATLAB simulator, so there is no difference in the states
characterizing the real environment.

Observation space

The observation space is a fixed-size vector of continuous floating-point values repre-
senting the physical information collected in the driving environment and provided
as input to the neural network. There are two sources of information:

• vehicle dynamics, consisting of

– x and y absolute traveled distance, measured in the absolute refer-
ence system;

1In fact, it was necessary also to ensure compatibility with stable-baselines [54] library. Although
no algorithms from this model-free reinforcement learning library were exploited, some modules
were involved in the python environment itself.
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Field Units
x absolute traveled distance [m]
y absolute traveled distance [m]
longitudinal velocity [m/s]
lateral velocity [m/s]
longitudinal acceleration [m/s2]
lateral acceleration [m/s2]
yaw angle [rad]
yaw rate [rad/s]
lateral offset [m]
heading angle [rad]
lane boundary curvature [rad/m]
lane boundary curvature derivative [rad/m2]

Table 4.1: Observation space

– longitudinal and lateral velocity, measured with reference to the
vehicle;

– longitudinal and lateral acceleration, measured with reference to the
vehicle;

– yaw motion.

• camera information, focusing on the lane on which the vehicle is traveling:

– lateral offset of the vehicle’s position relative to the lane boundary,
specified as an actual offset. An offset from the lane boundary to the left
of the ego vehicle is positive. An offset to the right of the ego vehicle is
negative;

– heading angle, the initial lane boundary direction angle. The direction
angle of the lane boundary is relative to the direction of the vehicle;

– lane boundary curvature;

– lane boundary curvature derivative.

This results in a 15-dimensional observation space, better shown in Table 4.1.

Action space

The action space is a fixed-dimensional vector of continuous floating-point values
representing the decision made by the agent, namely output by the neural network
that represents it, and delivered to the vehicle to act it on the environment. Although
the three driving commands that are performed in the MATLAB environment are
given by:

• Steering wheel angle;

• Throttle pedal pressure percentage;
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Field Operational Range Units
Steering Wheel Angle [-π/2,+π/2] [rad]
Throttle-Brake pedals pressure [-1, 1] [adims]

Table 4.2: Action space

• Brake pedal pressure percentage;

the agent showed better behavior with a 2-dimensional action space, obtained by
merging the signals concerning the pedals pressures. This leads to the Throttle-
Brake pedals pressure signal, from which the single pedals pressures are obtained
as follows:

• a positive value is interpreted as throttle pedal pressure, and the brake pedal
pressure is set to zero in the MATLAB environment;

• a negative value is interpreted as brake pedal pressure, and the throttle pedal
pressure is set to zero in the MATLAB environment.

The action space, along with the values that its fields can assume, is detailed in
Table 4.2. To account for how often the agent can perform a new action there is
the decision interval parameter. In the decision interval the agent performs the
same action vector, and no observations are collected. In this work, the decision
interval is fixed as the observation sampling rate of 25 Hz, implying that the
agent performs a decision at every sampling time.

Reward function

Defining rewards is one of the key elements when approaching a given problem
through Reinforcement Learning, having a major impact on the final behavior of
the agent, sometimes resulting in completely unexpected behavior [1]. The aspects
taken into account in the final reward function exploited during training are the
following.

• Time. To avoid a stalemate situation and incentivize the agent to move, the
time spent at each step is penalized according to

Rtime = −ktime (4.1)

where ktime is the time reward weight coefficient;

• Travel. The “Direction Guided” reward function, defined in [60], allows the
agent to learn to drive faster. The heading angle and the traveled distances
(Section 4.2.1) are used at the center of this reward function component. If the
vehicle goes in the direction of the road, a high reward is received. Conversely,
if the vehicle goes in the opposite direction, it will receive a low reward or
penalty, as exemplified in Figure 4.3. Mathematically, the travel reward is
defined as

Rtravel = direction guided · ktravel (4.2)
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Figure 4.3: Visualization of travel reward acting as an incentive or penalty.

Figure 4.4: Components of the direction guided reward.

direction guided =
∆r cos∆θ − |∆r sin∆θ|

decision interval
(4.3)

where ktravel is the travel reward weight coefficient, ∆θ is the heading angle
and ∆r the distance traveled in a decision interval, as can be visualized in
Figure 4.4.

• Lane-keeping task. The agent must be able to not go off the road and we
shall give a negative reward in this case:

Roffroad = Lflag · koffroad (4.4)
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Figure 4.5: Correlation between vehicle CM position relative to lane centre and
reward function.

Lflag =

{
1 if offroad

0 else

where koffroad is the reward weight coefficient and Lflag is the detection mark
vehicle off the road. In the lane-keeping task, the position of the vehicle relative
to the center of the lane must also be considered to assess compliance with
the task. To assess the position of the vehicle within the lane, the distance of
the center of mass (CM) of the vehicle from the center of the lane is used as
an index.

As shown in Figure 4.5, the farther the vehicle gets from the lane center the
more the reward decreases until it is no more than a quarter of the lane width
away from the center, following an inverse cubic function:

Rlk =

(
3

√
w

4
−
∣∣ 3
√

lleft + lright
∣∣) · klk (4.5)

where klk is the reward weight coefficient of lane keeping task, w is the lane
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Reward weight Value
ktime 1
ktravel 5
koffroad 200
klk 5

Table 4.3: Reward weights.

width and lleft and lright are the lateral offsets2.

The total reward function is given by the sum of the introduced components:

Rtot = Rtime +Rtravel +Roffroad +Rlk, (4.6)

with the specific weights being reported in Table 4.3.

4.2.2 Experimental set-up

The workflow for the creation of the presented prediction system allows for exper-
iments already at this stage of development, which is focusing on an autonomous
driving agent, rather than on a predictor. However, the objective of the evaluation
shall not be the quality of the driving agent, already assessed by previous works [2].
In fact, the focus is on one of the key elements in the presented methodology, the
model of the environment, in particular, showing the trade-offs in adopting a
model-based or a model-free approach in an industrial driving simulator. The
algorithms compared in this experimental setup are treated in Section 3.3.4 and are:

• SAC, a model-free reinforcement learning algorithm, in which the agent is
trained on the real environment, namely directly on samples collected during
the interaction with the MATLAB environment;

• MBPO, the model-based version of SAC, in which a copy of the real environ-
ment will be learned and the agent will be trained on this, namely on samples
collected on imaginary rollouts.

From a practical standpoint, this is a comparison involving the same learning algo-
rithm, making use of the same hyperparameters when possible, to isolate and assess
the impact of the practice of environment-model learning and exploitation.

The experiment is characterized by 3 trainings with different initial random
seeds for both the algorithms presented, allowing the computation of average and
standard deviation of the evaluation metrics introduced in Section 4.2.3.

2Recall from Section 4.2.1 that the an offset to the right of the ego vehicle is negative. Conse-
quently, when the vehicle is at the center of the lane the offsets have sum equal to zero and the
reward is maximum.
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Parameter Value
Learned rewards False
Rollout length 1
Difficulty level 3
Number of runs 3
Maximum episode duration 2000 steps
Agent evaluation frequency 5000 steps
Environment-model training frequency 200 steps
Validation ratio 10 %
Patience 5 epochs
Log-likelihood improvement threshold 0.01
SAC gradient descent steps
per environment step 20

Table 4.4: Parameters characterizing the training and evaluation phases of the al-
gorithms.

4.2.3 Metrics

Following the Model-Based Reinforcement Learning literature [57, 61], the evalua-
tion of the environment-model introduction is based upon metrics concerning the
efficiency of the Reinforcement Learning framework. Although there does not exist
an official mathematical formulation, the most common are:

• Sample efficiency: the reward collected in evaluation episodes after a fixed
number of steps in the real environment;

• Compute efficiency: the average time for computing a fixed number of steps,
measured on the same working machine. To directly compare the algorithms
against each other it is introduced the MBPO-SAC compute time ratio,
given by the ratio between the average computing time of MBPO and the
average computing time of SAC;

4.2.4 Learning

In the following paragraphs, it is reported an overview of some design choices re-
garding the training and testing of the agent, as well as some key hyperparameters
characterizing them, summarized in Table 4.4. A theoretical overview of the algo-
rithms employed is given in Section 3.3.4, and to ease the reading of this section a
visualization of the MBPO loop is reproposed in Figure 4.6.

Episode

During the training phase, numerous episodes are necessary, and it is necessary to
restore the initial state whenever the episode ends (Section 3.3). The episode ends
if at least one of three conditions occurs:

• the agent has completed the track;
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Figure 4.6: MBPO complete loop.

• the agent has gone offroad;

• the agent has reached the maximum number of steps, i.e., the maximum length
of the episode even if still on the road. During all the trainings this parameter
was fixed to 2000 steps.

Afterward, the environment is reset to its initial state. The reset repositions the
driver to the beginning of the track and regenerates the vehicle model.

Environment model

Although the environment model is learned in parallel to the interaction with the
real environment, there are several elements characterizing its design.

• Object of learning. In this case, the inference is limited to the state transi-
tions, namely, the object of learning is a function specifying what will be the
next state starting from the current one and the action taken, as deepened in
Section 3.3.4. This implies that no model of the reward will be learned, and
thus, that it is necessary to pass a reward function to the environment model
to evaluate the actions in the “virtualized” world. As it is reasonable, it is
used the same reward function mentioned in Section 4.2.1, but this is not a
requirement.

• Termination function. It is necessary to pass a function allowing the en-
vironment to understand that it is in a terminal state. In this case, it is not
used the same exact one defined in Section 4.2.4. Indeed, for the specific MAT-
LAB simulator exploited, the track final point has no difference from the other
points in the road, it is needed only for resetting the environment. This is a
practical need that has nothing to do with learning how to deal with an envi-
ronment. Furthermore, it would make no sense to put a “maximum number of
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steps” in the learned environment model. Consequently, in the environment
model the termination function labels a state as terminal only if the agent
has gone offroad.

• Rollout length. It is necessary to specify for how long to interrogate the
environment model. To minimize the hyperparameters tuning phase duration
the rollout length is set to 1, given that the MBPO paper states that,
although this value can be sub-optimal, the baseline it sets is difficult to beat.
Consequently, after each step in the real environment:

1. a set of states is randomly sampled from a replay buffer containing the
real states encountered by the agent during the interaction with the real
environment;

2. the agent acts on these starting states and goes to the next ones. These
imagined single-transitions are stored in a second buffer, referred to as
SAC buffer3, on which the agent will be trained.4

Training

At the beginning of each training, and after each validation phase, a track is ran-
domly generated from the MATLAB simulator according to a difficulty level (Section
2.4.3), which determines some key characteristics. Having conducted some tests on
a straight road environment (with difficulty 0 or 1), both SAC and MBPO agents
were able to beat it, so the final difficulty level is set to 3 to have a direct com-
parison between the two. Indeed, this level already presents fairly complex curves,
resembling extra-urban roads, and it was not needed to perform an evaluation on
extremely harsh environments for the purpose of this thesis project.

After 5000 steps the agent’s training is stopped and an evaluation episode5

is conducted, in which a GUI (Graphic User Interface) allows to see how the agent
is performing, as shown in Figure 4.7. Furthermore every 200 steps in the real
environment the environment-model is trained:

1. it is created a training-set with the 90% of the samples in the replay buffer
and a validation-set with the remaining 10%;

2. the environment model is trained to minimize the negative prediction log-
likelihood, as mentioned in Section 3.3.4, exploiting the early stopping tech-
nique: if after a number of epochs referred to as patience no improvement
higher than an improvement threshold is observed on the validation-set,
training stops.

3Recall that the learning agent is SAC both in the model-free and model-based (MBPO)
frameworks.

4A difference between the replay buffer and the SAC buffer is that the first is continuously
filled, while the second gets discarded and re-filled at each interaction. The reason behind this is
that the samples in the SAC buffer are sampled from the learned environment model, which gets
updated during training.

5Subject to the termination conditions outlined in Section 4.2.4.
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Figure 4.7: Graphical interface of agent behaviour.

The SAC agents in both the model-free and model-based frameworks (MBPO)
are trained after each step in the real environment, with the parameters of their
ANNs being updated with 20 gradient descent steps. This high ratio between
ANNs parameters updating and real environment steps is quite common in model-
based frameworks, and following the MBPO paper, it is kept also in the model-free
framework.6

4.2.5 Architectures

Although the last years in Deep Learning, as the name suggests, have been charac-
terized by particularly deep architectures, with reference to the number of layers,
Reinforcement Learning backbones do not present this peculiarity yet. Furthermore,
for the work developed, the state perceived by the agent is characterized by engi-
neered tabular features, so there is no need for the employment of complex architec-
tures for feature extraction7. Consequently, for both the agent and the environment
model the ANNs structures consist of simple MLPs (Section 3.2.1).

Agent backbones

There are 3 MLPs, for approximating the 3 functions characterizing the SAC agent
(Section 3.3.4):

• Policy function, reported in Table 4.5. It inputs the current and outputs a

6Actually, such a test in the proposed framework seems to be fair not only for the literature
referral. Indeed, in some fast experiments, the update frequency was lowered in the model-free
framework, to not introduce any disadvantage, but no improvement was observed. Consequently,
tests were performed as the literature suggests.

7For instance CNNs 3.2.2 would have been considered in presence of image inputs.
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Layer Number Annotation
of neurons

Input 15 State space dim
Fully-connected layer 1 256 ReLU activation function
Fully-connected layer 2 256 ReLU activation function
Output 4 Action space means and vars

Table 4.5: Policy function ANN structure.

Layer Number Annotation
of neurons

Input 17 State space + Actions space dim
Fully-connected layer 1 256 ReLU activation function
Fully-connected layer 2 256 ReLU activation function
Output 1 Q value

Table 4.6: Q-functions ANNs structures.

Layer Number Annotation
of neurons

Input 17 State space + Actions space dim
Fully-connected layer 1 200 Leaky-ReLU activation function
Fully-connected layer 2 200 Leaky-ReLU activation function
Output 30 State space means and vars

Table 4.7: Environment-model ANNs structures.

Gaussian mean and standard deviations, from which the current action will
be sampled;

• Two different Q-functions, reported in Table 4.6. They input the current
state and current action and output the Q-value, accounting for the goodness
of taking such an action in that state.

All these feed-forward ANNs present 2 hidden layers with the ReLU non-linearity
as activation function:

ReLU(x) =

{
x if x ≥ 0

0 if x < 0
(4.7)

Environment-model backbones

The environment model is represented by an ensemble of 8 MLPs whose structure
is presented in Table 4.7. It takes a 17-dimensional input given by the concatenated
15-dimensional current state and 2-dimensional current action. The signal is prop-
agated through 2 hidden layers having a Leaky ReLU as activation function, where
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Parameter Value
Prediction horizon 2 sec
Window length 50 samples
Prediction interval 0.04 sec

Table 4.8: Prediction window summary.

LeakyReLU(x) =

{
x if x ≥ 0

0.01 · x if x < 0
(4.8)

Finally, the ANNs return the means and variances of a Gaussian representing the
distribution of the 15-dimensional next state, resulting in a 30-dimensional output.

4.3 Prediction system

Having explored the details behind the design and training of the MBPO agent, it is
possible to dive into deepening how its modules can provide the action prediction
system introduced in Section 4.1, and how it can be used for trajectory prediction
as well.

4.3.1 Implementation

Prediction window

A key design feature of the developed system is how long it will predict in the
future, a time referred to as prediction horizon, set to 2 seconds when performing
inference8, being this a common value in the literature.
Given that the MBPO agent has been trained to interact with the environment
at 25 Hz (Section 2.4.3), when it will move ahead in time, it will interact with
the environment model with the same frequency. Consequently, each action (and
imagined observation) will present an interval of 0.04 seconds with the next one,
and the 2-seconds prediction window will present 50 entries. These features are
summarized in Table 4.8.

MBRL Modules exploitation

It is now possible to deepen the interaction between the trained agent, which will
be the digital twin of the driver, and the environment model, mentioned at point 3
of Section 4.1.

1. The agent perceives the state of the environment which is:

8Notice how the prediction system presented is used only in inference, there was not a training
phase of the predictor, being it composed of modules obtained through the MBRL framework.
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• real only in the first step, derived from the real situation that the driver
is facing. In this case, a buffer is initialized;

• imagined in further steps.

2. The agent acts deterministically outputting the mean value returned by
the policy network, that represents the best action9. For the action predic-
tion task the action is saved into an action buffer;

3. The learned environment model is stepped: the ensemble of backbones of
the environment model inputs the current state and the action taken by the
agent and outputs deterministically the next state10. For the trajectory
prediction task the first two entries of the next state, representing the traveled
distances along the x and y axis, are saved into an offsets buffer. These are
in absolute value, so they are given the sign of the third and fourth next-state
entries, representing the longitudinal and lateral velocity of the vehicle.

Having an ensemble of ANNs and needing to store just one value in the off-
sets buffer, among the output next states is chosen the one whose absolute
sum of the entries is minimum. Regarding action prediction, it is stored the
action associated with this state in the actions buffer. The rationale behind
this choosing criterion is to prevent potential errors of the ANN representing
the environment model: if an entry in the next state vector diverges, this min-
imization criterion will not choose that state as a prediction. Practically, this
constraint acts as a regularization method;

4. If the prediction horizon has not been reached return to step 1 of this loop.

For the trajectory prediction task to obtain the final trajectory:

• it is performed a cumulative sum in the offsets buffer;

• each entry is added the initial coordinates of the vehicle, information avail-
able to the system.

4.3.2 Dataset

To test the proposed predictor, as well as to perform a comparison with a state-
of-the-art model, a human demonstrations dataset is needed. The data collected
were

• encoded in the form seen by the RL agent, transforming them appropriately,
and discarding non-used features (e.g. RPMs);

• used to extract a dataset with the following shape:

9Recall that, to act stochastically, the policy network outputs the mean and variance of the
action vector, for then sampling the actual action.

10Also these ANNs, to inject stochasticity, output the mean and variance of the state vector, for
then sampling the next state. To perform a deterministic step they simply output the mean value.
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Figure 4.8: Steering wheels and pedals employed during human data collection.

Figure 4.9: Controller employed during previous human data collection.

– input features: the input of the system, practically these will be the
initial states of the real environment;

– output time-series: the ground truth windows, composed of actions or
positions, depending on the task.

Collection

The collection was a supervised process to observe external driver behavior and to
evaluate future improvements in this procedure. In particular, each person was ex-
plained the objective of the simulation, namely to complete the track without ever
leaving their lane, and asked to maintain as consistent a driving style as possible
throughout the collected demonstrations. Drivers were given the opportunity to
familiarise themselves with the controls with a few test laps. Most importantly, the
collection was performed in the same simulator exploited by the agent, to which the
human interfaced through Logitech gaming steering wheels and pedals, shown in
Figure 4.8. The obtained data were integrated with data from previous collections
performed through an Xbox Joystick as the driving controller, using the two poten-
tiometers (LT and RT, in Figure 4.9) to simulate the pressure on the throttle and
brake pedals.

To even ease the human interface with the simulator the 3D rendering of the
environment was enabled, and to ensure realism no data was displayed on the GUI,
as shown in Figure 4.10.

Summarizing, there are three types of tracks:

• a simple straight road, with 30 seconds lasting tracks;

• a closed curved road, lasting 120 seconds. The map of this is shown in Figure
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Figure 4.10: 3D rendering of the simulation environment.

Figure 4.11: Map of the curved road onto which human data have been collected.

4.11, but no human completed the whole track. The collection time was not
increased since the driver, after that threshold time, started to consistently
lower its performance. Since analyzing variations in driving style, such as
tiredness, distraction, etc. is out of the scope of this thesis project, the 120
seconds lasting laps were kept, allowing to define the driver state as nominal;

• several increasing difficulties driving tracks, randomly generated as the ones
in which our agent was trained (Figure 2.28).

Metadata and required additional labels

The collection of further data, in the form of metadata and labels, is not thought to
be relevant. Indeed, both the prediction tasks considered just need a transposition
of the data collected: the construction of timeseries of positions and actions. In
fact, the prediction system developed is nothing but a virtual twin of the driver, so
it is not possible to think of additional data that would increase the quality of the
predictor without these having been seen by the agent: the agent and the predictor
are the very same thing.
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Figure 4.12: SGNet

4.3.3 Comparison model: SGNet

To compare against the state-of-the-art a deterministic SGNet is instantiated,
a model overviewed in Section 2.2.2. This is shown in Figure 4.12, which presents
also a Conditional Variational Autoencoder (CVAE), needed to provide stochastic
outputs, that we will not use in our model. This model is chosen because in its paper
[21] it is described as a methodology prone to working on different data sources11 as
long as the historical positions are available: additional data are just concatenated
to these inputs.
To test in the most similar conditions in which the proposed predictor works it is
necessary to:

• provide as input the vehicle initial coordinates, plus the set of features
characterizing the observation of a RL agent12, reported in Table 4.1.
Consequently, the input will be a degenerated time-series composed of only
one sample;

• require the same outputs, a prediction window of 50 samples, with 2 seconds
as prediction horizon.

However, the described model, as will be deepened in Section 5.1, was not able
to return an efficient system, so the predictor developed in this thesis project, not
having any memory of the past, is compared with two further SGNets, receiving in
input time-series of:

• 10 samples, namely 0.4 sec, a fifth of the future prediction window;

• 25 samples, namely 1 sec, half of the future prediction window.

11In fact, the authors trained and tested on different types of datasets for different benchmarks.
12Except for the absolute traveled distances, to avoid redundant information. In fact, this model

also sees its position, in terms of coordinates, differently from the MBPO agent.
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As is usual in the data-driven approaches not all of the data are employed for
testing the models. In this case, Driver Trajectory Prediction task evaluation en-
visions a comparison with a state-of-the-art model, belonging to the Supervised
Learning paradigm. Because of this, there is a need for data to train and validate
this model before testing it. Consequently, available data are split as follows:

• Training split, composed of 2 tracks for each driver in the curved road and
6 tracks in the increasing difficulty scenario. This split counts 12 400 samples
and it is used for training the SGNets;

• Validation split, composed of 1 track for each driver in the curved road and
2 tracks in the increasing difficulty scenario. This split counts 8 300 samples
and it is used for validating the SGNets and stopping the training when no
improvements are observed;

• Testing split, composed of 1 track for each driver in the curved road, 1 track
in the straight road for each driver, and 2 tracks in the increasing difficulty
scenario. This split counts 9 700 samples and it is used for testing both the
proposed prediction system and the SGNets.

4.3.4 Experimental set-up

The object of the evaluation will be the quality of the prediction in:

• the action prediction task, at the core of the thesis project;

• the trajectory prediction task, central in the literature, from which the
SGNet is taken, observing how a state-of-the-art model compares with our
predictor in a realistic scenario, with scarce sources of data.

Furthermore, it is proposed a comparison centered on memory requirements of
the proposed model and the SGNet. The metrics allowing for this are defined in
Section 4.3.5.

Finally, although it should be obvious, it is to highlight that such a test on
a preprocessed dataset constitutes an offline procedure. Bringing the developed
system to work in real-time to test in online frameworks will be an idea for future
works.

4.3.5 Metrics

Driver Action Prediction

The predictor is evaluated on the following metrics, designed throughout this project:

• Window MSE and Window MAE, where the difference is computed for
each signal at each time-step and averaged over the prediction window:

MSE =
1

H

H∑
t=1

(
u(t)− û(t)

)2
, (4.9)
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MAE =
1

H

H∑
t=1

∣∣u(t)− û(t)
∣∣, (4.10)

where

– t is the time-step;

– H is number of steps in the prediction window;

– û is the predicted signal;

– u is signal ground truth;

• WAE (Window Absolute Error), where the absolute difference is computed
for each signal at each time-step:

WAE =
∣∣u(t)− û(t)

∣∣, (4.11)

returning not a scalar but a vector with each entry corresponding to a time-
step. This allows for analyzing how the prediction quality degrades when the
prediction horizon increases;

• Window Sign Accuracy, averaging over the prediction window the number
of times the sign of the signal is correct. This happens when the system
predicts the right turning direction, or it does not mistake an acceleration for
a braking and vice-versa:

Sign accuracy =
1

H

H∑
t=1

sign δ

(
(u(t), û(t)

)
, (4.12)

sign δ(x, y) =

{
1 if sign(x) = sign(y)

0 otherwise
(4.13)

where sign(·) is the sign function.

Trajectory Prediction

The comparison against the state-of-the-art model trained on our data is conducted
on the most common evaluation metrics in the literature:

• ADE (Average Displacement Error), the Euclidean distance between the real
and the predicted trajectories:

ADE =
1

H

H∑
t=1

dist
(
x(t), x̂(t)

)
, (4.14)

where

– dist(·) is the Euclidean distance;

– x̂ are the predicted coordinates of the vehicle;
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– x are the ground-truth coordinates of the vehicle;

• FDE (Final Displacement Error), the Euclidean distance between the end-
points of the real and the predicted trajectories:

FDE = dist
(
x(H), x̂(H)

)
, (4.15)

To perform the memory requirements comparison between the proposed prediction
system and the SGNet it is just employed the function “summary” of the “pytorch-
summary” library. This returns the number of parameters and the size of the ANN
onto which the function is applied.

4.4 Enhancement

The system presented in Section 4.1 basically aims at instantiating a digital twin of
the driver able to move ahead in time to predict the human behavior. Having said
this, it is intuitive that the introduction of a method to adapt to different drivers
will consistently benefit the predictor.

Several ways of doing this have been considered, and a first implementation
is proposed in Figure 4.13, envisioning an enhancement of the proposed system
involving a profiling block. More in detail, the final system should work as follows:

• the driver senses the state of the real environment and performs actions
on the vehicle. Data concerning this are collected in a historic driving
dataset;

• a Profiler computes a similarity metric between data in the historic driv-
ing dataset and driving data of several RL agents, each one of these
trained with different parameters in order to show different behavioral ten-
dencies (e.g. nominal driving, aggressive driving, etc.). This should be done
at the end of the warm-up phase in which no prediction is performed13 but
the human driver’s data are collected to profile him;

• after the similarity metric computation, the Predictive system overviewed
in Section 4.1 will take in its core the RL agent returned by the profiler, the
most similar to the human to predict. From this moment on the system
will work as previously described, moving the RL agent ahead in the learned
environment model and saving the future actions.

13Alternatively, it is already possible to output predictions, choosing an agent among the candi-
dates, at random or with other predefined criteria, accepting lower performance.
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Figure 4.13: Enhanced prediction system, envisioning a profiling block upstream.

4.4.1 Similarity metric

A key design choice in the definition of the Profiler is the metric exploited for profiling
the driver. For this first proposal of enhancement, it is employed the Believability
precision, introduced in [1] and improved in [2]14.

The rationale behind this metric consists of looking at the frequency with which
the agent makes the same decision as the human driver in the same driving scenario.

Formally, the believability precision of a driver’s behavior is defined as the ratio
between the number of events in which the agent performs the same action as the
human driver when encountering the same driving state and the number of driving
states encountered by both the expert and the agent:

Belivability precision =
#(same decision of human driver)

#(driving states encountered by human and agent)
,

(4.16)
where the “#” symbol stands for “number of”, representing a counting operator.

4.4.2 Experimental set-up

The experiments focusing on the Profiler involve the computation of the Believability
precision to choose one among the three agents available after the MBPO training
discussed in Section 4.2.2 as the digital twin of the driver. To create the agents’
driving datasets, 3 random tracks are generated and each RL agent is tested on these.
Having done this, it is necessary the definition of the human driving dataset for

14In fact, in these works the authors refer to the “believability precision”, and to an improved
version naming it “believability precision refined”. Being a twofold analysis out of the scope of
this thesis work, it is used as believability precision its refined version, dropping the “refined”
appellative.
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profiling through Believability precision.
To understand if part of the data can be representative of all the driving data
belonging to a human driver the test involves three sizes for the profiling split for
each driver:

• single curved track: 10% of samples;

• train and validation sets of the SGNet: 68% of samples;

• all tracks: 100% of samples. This is the upper bound to compare against.
Indeed, the previous split sizes can be defined as sufficient for profiling if the
RL agent maximizing the Believability precision with a human is the same
independently from the split size.

This representativeness of smaller datasets is linked to the length of the warm-up
phase mentioned in Section 4.4. In fact, the lower the data required for profiling,
the faster it is possible to start outputting high-quality predictions.

Having done this, the Believability precision will be defined as a successful pro-
filing metric if the agent maximizing it is also the one returning the best actions and
trajectory predictions when used at the core of the predictive system.
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Chapter 5

Experimental results

This chapter presents the results obtained from the experiments introduced in Sec-
tions 4.2.2 and 4.3.4 and summarized in Table 5.1.

Experiment focus Summary

MBPO agent Analysis of the advantages of a model-based framework,
obtained through a model-free algorithm (SAC) and its
model-based version (MBPO).

SENSOR Predictor Analysis in performance for Action Prediction task and
comparison with SOTA for Trajectory Prediction task.
Comparison on memory requirements.

Profiling block Analysis of believability precision as profiling metric
computed on different profiling split sizes.

Table 5.1: Experiments summary

5.1 MBPO Agent

As mentioned in Section 4.2.3 the evaluation metrics characterizing this section focus
on the efficiency of the Reinforcement Learning framework and are summarized in
Table 5.2.

The results concerning sample efficiency are shown in Figure 5.1, with the
average reward and its standard deviation measured on three runs of 30 000
steps each, with a frequency of evaluation of 5 000 steps.
As it is possible to notice the introduction of the environment model speeds up learn-
ing allowing for higher performance. MBPO reaches first its best results, allowing
for earlier training stopping at 25 000 steps, which is at the core of the concept of
sample efficiency. Consequently, in an industrial context where the collection of data
could be demanding the introduction of an environment-model is beneficial from this
standpoint. Furthermore, it is possible to draw some conclusions about robustness
by looking at the standard deviation of the reward. For both models this is quite
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Metric Summary

Sample efficiency Reward collected in three evaluation episodes after a fixed
number of steps in the real environment.

Compute efficiency Average time for computing a fixed number of steps,
measured on the same working machine.

Table 5.2: Overview of the metrics involved in evaluating the MBPO framework

Figure 5.1: Sample efficiency comparison between MBPO and SAC.

high, as it is typical in Reinforcement Learning frameworks: in this paradigm the
learning phase is more variable since the agent is trained on data collected by him-
self, differently than in Supervised Learning contexts. In fact, if an agent happens
to end up in bad environment spots, the learning will not benefit from this. It is
reasonable to affirm that in a Model-Based context, where the environment model is
learned, this agent learning instability will be even harsher because of an additional
source of bias: data come from a learned function approximating the environment.
This can explain why in the first part of the training there is a larger variance in the
performance: the environment model is not yet well approximated and introduces
additional noise.

Regarding compute efficiency, for computing 5000 steps on the machine sum-
marized in Table 5.3 MBPO needs in average 1h 45 min, while SAC needs 1h 10
min, so the epoch MBPO-SAC compute time ratio is 1.5.
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Hardware Summary

CPU 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

GPU NVIDIA GeForce MX450 @ 2048.0MB

Table 5.3: Overview of the hardware specifications of the working machine employed.

Metric Summary

MAE Absolute error of each signal averaged over the prediction
window.

MSE Squared error of each signal averaged over the prediction
window.

Sign Accuracy Accuracy in guessing the sign of each signal averaged over
the prediction window.

WAE Absolute error of each signal at each timestep in the
prediction window.

Table 5.4: Overview of the metrics involved in evaluating the Action Prediction
task.

Metric Steering (rad) Throttle (%) Brake (%)
Window MAE 0.15 ±0.11 0.22 ±0.18 0.01 ±0.02
Window MSE 0.08 ±0.09 0.14 ±0.16 0.01 ±0.02
Sign accuracy 0.56 ±0.07 0.87 ±0.18 0.98 ±0.03

Table 5.5: Driver Action Prediction overall results.

5.2 Prediction system

As mentioned in Section 4.3.5 the evaluation metrics characterizing this section
focus on the quality of the predictions of the proposed framework in the two tasks
of Driver Action Prediction and Driver Trajectory Prediction.

5.2.1 Driver Action Prediction

A summary of the metrics involved in the evaluation of this task can be found in
Table 5.4.

Table 5.5 shows average and standard deviations of the results computed over
all the collected driving tracks.

In particular, looking at the intuitive MAE and combining this information with
the one concerning sign accuracy it is possible to draw several conclusions on each
driving command forecasting capability. Having done this, it is possible to zoom
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Figure 5.2: Window Absolute Error of brake command.

into the evolution of performance with the evolution of time in the widow prediction
by looking at the graphs concerning Window Absolute Errors.

Brake

Brake MAE shows how the system performs practically null errors when pre-
dicting the driver braking action and Figure 5.2 shows that this is independent
of how ahead in the prediction window. This was an expected result, testing in
extra-urban scenarios with no other agents to interact with so that the usage of the
brake pedal is limited to difficult curves, and it should be easy for the agent the
acquire such usage behavior.

Throttle

Concerning the throttle pedal pressure, a higher error is observed. A first hy-
pothesis is that this is due to the fact that theRL agent has a decision frequency
much higher than the human one. In fact, the agent perceives the environment
every 0.04 sec and can concurrently act. Conversely, human reaction time to visual
stimuli 1 is around 0.19 sec [62]. This implies a smoother driving style of the human,
and the RL agent frequent adjustments will result in errors. Also in this case, as
in the brake pedal forecasting one, Figure 5.4 shows that our prediction quality is
independent of the timestep in the prediction window.

However, while in the braking case it is reasonable to affirm that for the majority
of the time both human and RL agent were performing no braking, in the throttle
pressure case they both are acting but with different intensities, and hence the
errors. The fact that the error is constant can imply that the proposed system is

1The focus is on this kind of stimuli only because during data collection the driver can only see
how it moves on the track, the simulator does not provide any sound information. However the
hypothesis advanced would still hold in the case of sound presence since the same referred source
states that the reaction time to this kind of stimuli is 0.16 sec on average.
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Figure 5.3: Window Absolute Error of throttle command.

good at forecasting future environment conditions so that the error depends only on
the different styles between human and RL agent.

Finally, focusing on the throttle and brake sign accuracy in Table 5.5, they are
counter-intuitively not equal. In fact, given the way the action space was engineered
(Section 4.2.1), these actions can not be performed at the same time. However, it
is not true that when the agent is not braking it is necessarily accelerating and
vice-versa: the symmetry is broken by the null action. Consequently, the 87%
capability of our system of predicting an acceleration is not alarming, since in the
majority of the cases that it makes a mistake it is not predicting a brake
but a null action.

Steering

The decision frequency argument can explain the error in forecasting the steering
command as well. However, observing the evolution in time of the error from
Figure 5.3, this presents a counter-intuitive profile: higher errors are committed in
forecasting actions nearer in time. This error could be due to the type of data
available to the proposed system. In fact, considering the state of the environment
as perceived by the human, whose sensing system consists basically of his eyes, he
has information about the future evolution of the surroundings. Consequently, he
will anticipate his maneuvers, even hypercompensating in the opposite directions.
To better visualize this, let us consider the example of a curve to the right: a human
driver, before undertaking it, will slightly move to the left, in the opposite direction.
Conversely, our agent sensing system can provide only information about the im-
mediate surroundings, not allowing the preparatory maneuvers, thus it is possible
to observe steering angles in the opposite direction of the ones performed by the
human. This hypothesis is strengthened by looking at steering accuracy in Table
5.5, implying that the human and the RL agent turn in the same direction a little
more than half of the time.

The conclusion is that it is unthinkable to engineer a highly performing steering
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Figure 5.4: Window Absolute Error of steering command.

Metric Steering (rad) Throttle (%) Brake (%)
Window MAE 0.13 ±0.10 0.23 ±0.19 0.01 ±0.02
Window MSE 0.07 ±0.10 0.16 ±0.18 0.01 ±0.01
Sign accuracy 0.56 ±0.06 0.85 ±0.20 0.99 ±0.02

Table 5.6: Driver Action Prediction driver A results.

Metric Steering (rad) Throttle (%) Brake (%)
Window MAE 0.22 ±0.11 0.15 ±0.12 0.01 ±0.01
Window MSE 0.12 ±0.08 0.09 ±0.11 0.01 ±0.01
Sign accuracy 0.58 ±0.01 0.93 ±0.08 0.96 ±0.05

Table 5.7: Driver Action Prediction driver B results.

action predictor without information about the future evolution of the environment,
and the introduction of data proving it is reserved for future enhancements of this
prediction system.

Considerations on adaptability

It is also possible to deepen this analysis by dividing the results per driver: Table
5.6 reports the results of driver A, Table 5.7 reports the results of driver B, and
Figure 5.5 reports their respective analysis in time through the WAE metric.

These tools permit to visualize how it is easier to predict the pedal pressure
behavior of driver B, in particular of the throttle one, having already discussed the
ease of braking forecasting in the use case scenario. Conversely, there is a higher
performance in the steering forecasting of driver A, both from the average error
standpoint and the standard deviation one, meaning that predictions precision and
robustness can vary from one driver to another. Consequently, although this thesis
project does not explicitly encompasses adaptability at this stage of development,
it highlights the necessity of this feature, putting the basis for future improvements
in this direction.
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Figure 5.5: Window Absolute Error of the actions
focusing on two different drivers.

5.2.2 Driver Trajectory Prediction

A summary of the metrics involved in the evaluation of this task can be found in
Table 5.8.
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Metric Summary

ADE Euclidean distance between the real and the predicted trajectories.

FDE Euclidean distance between the end-points of the real and the
predicted trajectories.

Table 5.8: Overview of the metrics involved in evaluating the Trajectory Prediction
task.

Model ADE (m) FDE (m)
Ours 7.05 14.55
SGNet, H=1 86.05 101.52
SGNet, H=10 7.73 8.35
SGNet, H=25 4.84 5.54

Table 5.9: Driver Trajectory Prediction overall results.

Prediction quality

Before diving into the final performance of the proposed prediction system and of
the SGNets trained for comparison, the curves relative to the training of these last
ones are presented. Figure 5.6 involves both ADE and FDE on the validations set
used by the SGNets, showing how the training was stopped after each ANN plateau
was reached.

In particular, to stop training each model must observe no improvement for
at least 5 epochs2 in ADE computed over the validation set.

This graph provides insight into the nature of the predictions as well. Indeed,
ADE and FDE are almost superposed, independently from the quality of predictions,
which depends on the dimension of the input timeseries. This implies that each
prediction in the time window does not keep into account the previous error and the
forecasting accuracy is almost independent of how far in the prediction window we
are.

Conversely, Figure 5.7 shows that the proposed prediction system’s error in fore-
casting future positions increases almost linearly with the prediction horizon. This
is intuitive since as described in Section 4.1 to perform predictions an agent moves
ahead in time propagating its actions and states so that the error cumulates in time.
However, this does not imply that the overall performance of the system is worse
than the one of the SGNets.

Table 5.9 shows a comparison of the prediction system with the SGNets with
different input timeseries dimensions, noted as “H”.

The presented prediction system average error in the prediction of the position
is 7.05 m, while the error in the final position prediction is 14.55 m, almost double,

2Actually, the strict threshold of 5 epochs is kept only in the case of the SGNet with input
timeseries of 25 samples since each epoch requires hours of training. For the lighter remaining
models, training also further this patience parameter was allowed.
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Figure 5.6: SGNet validation ADE and FDE.

as expected for the previous considerations. The SGNet with no historic infor-
mation, namely working with the exact same data of the proposed predictor is
basically incapable of performing Trajectory Prediction. To reach the same
performance in ADE the SOTA model needs in input timeseries of 10 samples in
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Figure 5.7: Window Absolute Error of vehicle position.

Model Num Parameters Memory requirements
Ours 610 628 2.33 MB
SGNet, H=10 193 503 182 754.98 MB

Table 5.10: Comparison on memory requirements.

the past3, while it outperforms our model from the FDE standpoint. Finally, the
SGNet surpasses the proposed prediction system also on the ADE metric if given
25 samples in the past, namely half of the future prediction window dimension.

Memory requirements

The final comparison between the proposed system and the SGNet is done from the
memory requirements standpoint. Considering the backbones described in Section
4.2.5, there are:

• the policy backbone counting 70 916 parameters, requiring around 0.27 MB;

• two Q-functions backbones each counting 70 656 parameters, requiring around
0.27 MB;

• eight environment-model functions backbones each counting 49 800 parame-
ters, requiring around 0.19 MB.

Summing up all the previous items, our prediction system is characterized by 610
628 parameters, requiring around 2.33 MB of memory. Conversely, considering
the SGNet with H=10, the smaller among the successful ones, it is characterized
by 193 503 182 parameters, requiring 754.98 MB of memory. To summarize,
in the Trajectory Prediction tasks there are comparable results with such a SOTA
model, with a system weighting two orders of magnitude less.

3Counting the present sample.
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Figure 5.8: Window Absolute Error of vehicle position focusing on two different
drivers.

Model ADE (m) FDE (m)
Ours 6.55 13.08
SGNet, H=1 73.60 84.00
SGNet, H=10 5.81 6.45
SGNet, H=25 3.51 4.05

Table 5.11: Driver Trajectory Prediction driver A results.

Model ADE (m) FDE (m)
Ours 7.85 16.40
SGNet, H=1 86.32 101.57
SGNet, H=10 7.91 8.48
SGNet, H=25 4.82 5.52

Table 5.12: Driver Trajectory Prediction driver B results.

Considerations on adaptability

To conclude this analysis, it is possible to separate the results by the driver as done
in the Action Prediction study in Section 5.2.1. Also in this case both the SGNet and
the proposed predictor have different performances on different drivers, specifically
encountering more difficulty in predicting driver B’s position. Recalling from the
Action Prediction analysis that this driver was the one whose steering action was
more difficult to predict, a hypothesis is that this increased error is correlated to the
lateral component of the motion.

It is straightforward to conclude that a form of adaptability to the driver is
required independently from the prediction task to perform.
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Metric Summary

Believability precision Ratio between the number of events in which the
agent performs the same action of the human driver
when encountering the same driving state and the
number of driving states encountered by both the
expert and the agent.

Table 5.13: Overview of the metric involved in the Profiler experiments.

5.3 Profiling results

Table 5.13 provides a description of the only metric involved in this experimental
section, the Believability precision.

Figures 5.9 and 5.10 show the Believability precision computed on the driving
track of the three RL agents and of drivers A and B, with different profiling splits
sizes.

First, it is possible to notice that considering all the data, corresponding to the
100% split, the most credible agent for drivers A and B is different. Furthermore,
it is possible to notice that smaller splits are not always representative of the
driver. In fact, looking at driver A graph we observe that the agent more similar
to this driver changes if considering all the data or part of these. This can reveal a
first flaw of the similarity metric under analysis, consisting of a lack of robustness.
However, to confirm this further analysis with larger datasets is needed since the
one considered consists only of tracks lasting a few minutes: a real system mounted
on a car could have at its disposal data of several hours of drive.

Finally, it is found that the Believability precision is not the metric to put at
the center of the Profiler since for driver B it suggests using the candidate agent
“mbpoConfig 220 6”, but the performance of the predictor using it as the digital
twin of the driver is lower with respect to the ones of “mbpoConfig 226 6”4, both
in the action and trajectory prediction tasks. However, we present this result con-
vinced of the methodologic validity of the enhanced system proposed in Section
4.4, envisioning a profiling block, and future works will research a more appropriate
profiling metric.

4The results reported in Section 5.2 envisioned Predictors using this agent as their core.
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5.3 – Profiling results

Figure 5.9: Believability precision for driver A computed on different profiling splits.

Figure 5.10: Believability precision for driver B computed on different profiling
splits.
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Chapter 6

Discussion

The present chapter summarizes some high-level considerations drawn throughout
the development of this thesis project.

6.1 PPO vs SAC for MBPO

As mentioned, the Lane Keeping task, characterizing the environment that the RL
agent needs to beat, was already faced in previous works [2] employing a model-
free algorithm, PPO [59]. Considering that MBPO is a model-based algorithm that
exploits the environment model for data augmentation for a model-free algorithm,
it is virtually possible to use PPO instead of SAC as a learning algorithm for the
agent.

Although some developing steps were performed in this direction, these were
interrupted, because of a theoretical argument. In fact, PPO is a Policy Gradient
algorithm that improves the agent’s policy after having performed rollouts of several
steps and computed an expectation of the return on these. On the other hand, one
of the main points on which the authors of MBPO [61] insisted is that to maximize
the advantage of the environment model exploitation, an approach is to minimize
the length of the rollouts in the learned environment model. They state that one-
step rollouts, consisting of a single state transition, are a difficult baseline to beat.
This suggests keeping SAC as model-free algorithm at the core of MBPO given that
this algorithm uses a learning approach different from the PPO one. As reported in
Section 3.3.4, SAC collects samples to evaluate the quality of being in a state and
then optimizes the policy accordingly. Consequently, it is not necessary for these
samples to come from the same long rollout: they can come from several randomly
initialized starting states and this allows for exploiting one-step rollouts.

6.2 Decision frequency

The RL agent developed throughout this thesis project is characterized by a sample
rate of 25 Hz. This means that it receives input from the environment every 0.04 sec
and concurrently acts. This has a repercussion on the Predictor as well: when mov-
ing the agent ahead in time it is necessary need to feed him with data arriving at the
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same frequency. This means that the environment model is frequently interrogated1

and therefore every error with respect to the real environment will cumulate.

Considering the experiments proposed in Section 4.3.4 a prediction window of
2 sec was characterized by the considerably high number of 50 samples. To avoid
this error propagation an idea would be that of reducing the decision frequency, and
therefore the sample rate. This is reasonable since the already considered argument
that human reaction time to visual stimuli is 0.16 sec [62], so a human will act with
a decision frequency of at most 6.25 Hz. Unfortunately, this would come with a
drawback. The proposed system, indeed, requires a first RL training and lowering
the sample rate would increase the difficulty of the task performed by the agent,
decreasing its performance. Practically, there is a trade-off between the performance
of the agent and the propagation of the error when exploiting a learned environment
model.

6.3 RL outcome variance and human behavior

As already discussed, independently of model-free or model-based, Reinforcement
Learning can lead to very different outcomes when training an agent. This is due
to the fact that differently from Supervised and Unsupervised Learning, there is
no dataset leading the learning process. The agent learns and collects data simul-
taneously so that bad policies can lead to bad data and so on in a vicious cycle.
This problem is softened by several techniques aiming at improving “exploration”,
namely the collection of data as representative as possible of the state and action
space. For instance, SAC, as reported in Section 3.3.4, is characterized at its core
by an optimization problem that maximizes the expected reward and the “random-
ness” (entropy) of the policy. In spite of this, the results shown in Section 5.1 still
show considerably varying performances of the trained agents, whose only difference
is the random seed.

However, for the purpose of the presented prediction system, this randomness
of the outcome can be exploited. In fact, having different agents characterized by
different behaviors can be an advantage when wanting to use one of these as a
digital twin of the driver. In fact, a future improved version of the predictor can
incorporate agents trained in different ways to represent different driving states such
as aggressiveness, impaired conditions, etc.. Let us assume for a moment that it does
not exist a way to train an RL agent to represent these states directly. In this case,
launching a sufficient number of RL trainings with different random seeds will return
very different agents, that could be labeled as aggressive, impaired, etc. a posteriori
because resembling those driving states even though not explicitly trained for it.

1The agent performs an action, the environment model returns a state.
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6.4 Learning vs Enforcing

Previous works [2] used a reward function term to prohibit the possibility of accel-
erating and decelerating at the same time:

RUnfeasible =

{
−1 if accelerate and brake

0 else

However, when exploiting SAC, this approach revealed unsuccessful. A fist hypoth-
esis was that by substituting this term with a derivable one learning would have
been easier since performed through gradient descent. One of the attempts is given
by the following function:

RUnfeasible = − 3
√
acc · brake,

and represented in Figure 6.1.
The undesired behavior, however, was still presented by the agent. Finally, the

constraint was directly enforced in the action space (Section 4.2.1), substituting
the two vector entries of throttle and brake, with only one so that an action would
exclude the other. This experience allows concluding that if there exists a method for
enforcing at design time a desired behavior in an RL agent, this should be preferred
to a learning technique.
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Figure 6.1: Representation of a reward function aiming at prohibit concurrent ac-
celeration (x) and brake (y).
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Chapter 7

Conclusions

This final chapter summarises the conclusions of this thesis work and proposes sev-
eral ways to direct the research concerning the prediction system presented.

7.1 Potential and limits

7.1.1 Environment-model exploitation and design

The work presented allowed first to confirm how a model-based framework in Re-
inforcement Learning can help speed up training and return higher performance
within the context of an industrial application. In the specific case, the exploited
algorithm, MBPO, envisions an environment model learned from past experience.
This feature can be double-edged and needs careful analysis at the moment of design-
ing a system for future deployment. A learned model has certainly the potential of
modeling environments arbitrarily complex since the introduction of new elements1

depends only on the availability of data concerning them. However, as said, this is
a “potentiality”, it is just virtually possible: such functions may be not robust and
then from the practical standpoint could be limited to simple scenarios. In this last
case, the introduction of a learned environment model could be useless, and it could
make more sense to exploit mathematical models of the environment (not subject
to a learning phase).

Probably, as it often happens, third ways are possible, for instance, deploying a
mathematical model of the environment, and learning the residual difference with
the real environment.

7.1.2 Prediction quality and requirements

Concerning the forecasting of actions, and of the consequent trajectories, the pro-
posed system can output predictions without requiring naturalistic data to be trained
on. Practically, the human behavior to replicate is encoded in the reward function,

1Examples of this can be new agents on the streets to interact with, complex road profiles,
damaged streets, etc.).
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which takes the role of the “labels” in Supervised Learning. Consequently, the per-
formance of the learning task moves from the quality of the data to the quality of
the reward function. These items are not exclusive though, existing the possibility
of improving the goodness of the reward function through data once they become
available, as discussed in Section 7.2.2.

From a practical standpoint, the proposed framework can return decent results
concerning the controls over the longitudinal movement, namely of the pedal pres-
sures. At the same time, considering the lateral control left to the steering wheel, it
is observed how critical it is the introduction of adaptability tools and of data bring-
ing information about the future evolution of the environment. Concerning this last
point, differently from the state-of-the-art model (the SGNet), the proposed system
can work also on minimal data, consisting of no historic information, so the men-
tioned data addition needs to still fulfill this minimality criterion if reasoning from
the perspective of future industrialization.

7.1.3 Hardware constraints

The hardware requirements theme is another point deserving some focus. In fact,
the presented system sacrificed some precision from the forecasting standpoint but
decreased the storage requirements by two orders of magnitude. In spite of this, the
models are working in the order of Megabytes of size, so an actual implementation
still needs to work on the minimization of this. This leads to a first limitation to
tackle, the one of hardware constraints.

7.1.4 MBRL tools for industry

Although there exist many reinforcement learning libraries publicly released that
provide high-quality implementations of the complex components involved in train-
ing RL agents, the vast majority of these focus on model-free reinforcement learning
and lack crucial components of implementing MBRL algorithms [58]. This is a dif-
ficult obstacle to overcome to open up the streets to the model-based framework,
even though it proved its validity several times. In fact, the exploited (and modified)
Python library is still under development, having added new algorithms since the
beginning of this thesis project. Consequently, industrial applications wanting to ex-
ploit these methods can be hampered by higher difficulty in guaranteeing efficiency
and robustness.

7.2 Future works

7.2.1 Data integration

A great but easily solvable vulnerability of the proposed system is the presence of
data concerning only the vehicle and the immediate surroundings. As discussed
in Section 5.2, this implies an RL agent whose behavior will be characterized by
some sort of delay in perception with respect to the human one. In fact, humans,
through vision, will have information about the future evolution of the environment
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and can keep this into account when executing their maneuvers. Consequently, it is
paramount to introduce data regarding the road ahead of the driver, to add to the
RL state space the information discussed. Possible choices are the following:

• to work directly on the image of the camera, not extracting the distances from
the lane and the other features exploited in this work. However, this comes
with the drawback of working with high dimensional states space and requires
careful addressing when working with a learned environment model;

• to utilize the same type of engineered features used throughout this thesis
work, but not limiting them to the immediate left and right of the vehicle.
Specifically, it is possible to input a series of lane distances and curvatures
with a fixed distance among each other, e.g. take the lane distances of the
road ahead every 2 m, drawing a profile of the near track;

• to exploit information from a map.

Furthermore, when modifying the input data, it is possible to think of the incorpo-
ration of historic data, such as the past trajectory, as done by the SGNet. However,
this approach, introducing information about the past, is believed to be secondary
with respect to the one previously mentioned, introducing information about the
future environment: a driver, when performing its decisions, looks only ahead and
it is reasonable that a successful RL agent for this task shall recall a human.

7.2.2 GAIL

Concerning the development of a system adaptable to different humans, a technique
to introduce is referred to as GAIL, Generative Adversarial Imitation Learning [63].
GAIL is based on Generative Adversarial Networks, a framework characterized by
the following items:

• a discriminator that classifies whether a given data point is generated by the
generator or by the actual data distribution;

• a generator that generates new data points by learning the distribution of the
input data set.

In this specific case, the RL agent would act as the generator and the input data
set would be given by human-driving data. Practically, there is a loop in which:

• a discriminator ANN is trained to distinguish between human and RL agents
sequences of actions and states;

• a generator, namely the RL agent is trained using the discriminator in its
reward function. The RL agent receives rewards when the discriminator is
wrong, namely when its behavior is indistinguishable from the human one.

Therefore it is obtained from human data a reward function, encoded by an ANN,
representing the driver’s behavior. The result will be an RL agent imitating the
driver whose data were used for GAIL training.
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7.2.3 Profiling

An enhanced version of the developed predictor was proposed in Section 4.4, dis-
cussing a system capable of adapting to different humans after a profiling procedure.
However, the challenge that this methodology has to overcome consists of finding
an appropriate profiling metric for associating a pretrained RL agent with a human
driver.

Comparing this technique for adaptability to the previously introduced GAIL,
profiling has a more limited capability of replicating a driving style, but it could
directly be applicated on edge for inference purposes, not requiring any retraining.
Consequently, a reasonable approach consists of a system adopting these techniques
in a series:

• after a warm-up phase in which driver data are collected, profiling starts;

• a driver is associated with its most similar (in behavior) RL agent, and this is
used to output predictions while keeping collecting data;

• a further RL agent is trained in the cloud through GAIL, obtaining the most
similar possible digital twin of the driver. Once it is available, it is used for
the driver to predict.

7.2.4 Ensemble exploitation

The MBPO technique learns the environment model through an ensemble of ANNs.
It is possible to think of several possibilities to exploit this networks ensemble for
the proposed system, assuming mainly two directions:

• improving predictions, still keeping a unimodal output. The system outputs
only a series of actions (or trajectory), possible to improve by testing several
types of aggregations (mean, median, voting, etc.) on the states returned by
the environment model;

• proposing a multimodal system, namely outputting more than a series of ac-
tions, propagating independently different states and actions across the ANNs
ensemble.

7.2.5 Existing framework improvement

Previous paragraphs referred to several additions to insert into our system. However,
of course, it is also possible to think of several improvements to various modules
characterizing the system or to the general framework involved in its instantiation.

A first objective is to widen the scope of the simulation environment, currently
limited to an extra-urban single-track scenario. Examples are the introduction of
other agents on the street to interact with or of more complex road profiles, charac-
terized by signals, varying steep and intersections. A further possibility is to leave
MATLAB to move towards different simulators, to participate in official benchmarks
for instance in the autonomous driving agent development stage. In fact, some first
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research has been conducted focusing on tools for moving the developed framework
into the CARLA (Section 2.4.2) simulator.

Furthermore, it is possible to insist on the automation of hyperparameters tun-
ing. The authors of SAC showed how this algorithm is relatively stable with respect
to hyperparameters modification, except for the relative scale of the reward term
and the entropy term. Nonetheless, it is possible a tuning of the hyperparameters
characterizing the environment model in MBPO, for instance the imaginary rollout
length, the number of steps performed in the environment model at each interroga-
tion2.

7.2.6 Resources minimization

As mentioned in Section 7.1.3, since the system is designed from the perspective
of deployment, it is necessary to implement techniques for minimizing hardware
requirements. Examples of these [64] can be quantization, bringing the parameters
and inputs of the ANNs from 32-bit floats to 8-bit integers, and pruning, cutting
the uninformative links between neurons of the ANNs.

2Although it is reported that single-step rollouts are a difficult baseline to beat, they could be
non-optimal.
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