
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Patient simulation. Generation of a
machine learning “inverse” digital twin.

Supervisors

Prof. Paolo GARZA

Prof. Erik FRANSÉN

Annaclaudia MONTANINO

Candidate

Paolo CALDERARO

December 2022

Summary

In the medtech industry models of the cardiiovascular systems and simulations are
valuable tools for the development of new products ad therapies. The simulator
Aplysia has been developed over several decade and is able to replicate a wide
range of phenomena involved in the physiology and pathophysiology of breathing
and circulation. Aplysia is also able to simulate the hemodynamics phenomena
starting from a set of patient model parameters enhancing the idea of a "digital
twin", i.e. a patient-specific representative simulation. Having a good starting
estimate of the patient model parameters is a crucial aspect to start the simulation.
A first estimate can be given by looking at patient monitoring data but medical
expertise is required. The goal of this thesis is to address the parameter estimation
task by developing machine learning and deep learning model to give an estimate
of the patient model parameter starting from a set of time-varying data that we
will refers as state variables. Those state variables are descriptive of a specific
patient and for our project we will generate them through Aplysia starting from
the simulation presets already available in the framework. Those presets simulates
different physiologies, from healthy cases to different cardiovascular diseases. The
thesis propose a comparison between a machine learning pipeline and more complex
deep learning architecture to simultaneously predicting all the model parameters.
This task is referred as Multi Target Regression (MTR) so the performances
will be assessed in terms of MTR performance metrics. The results shows that
a gradient boosting regressor with a regressorstacking approach achieve overall
good performances, still it shows some lack of performances on some target model
parameters. The deep learning architectures did not produced any valuable results
because of the amount of our data: to deploy deep architectures such as ResNet
or more complex Convolutional Neural Network (CNN) we need more simulations
then the one that were done for this thesis work.

ii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xii

1 Introduction 1
1.1 Context . 1

1.1.1 Bio-medtech modelling and simulation 1
1.1.2 Machine learning for a digital twin 2

1.2 Problem . 3
1.2.1 Problem specification . 3
1.2.2 Challenges . 3
1.2.3 Research questions . 4

1.3 Purpose . 4
1.4 Structure of the thesis . 5

2 Background 6
2.1 Hemodynamics . 6

2.1.1 Cardiovascular system . 6
2.1.2 Healthcare-aided simulator: Aplysia 8

2.2 Time series analysis . 8
2.2.1 Univariate and multivariate time series 10
2.2.2 Time series forecasting and classification 10
2.2.3 Deep learning for time series 11

2.3 MTR: Multi-Target Regression . 12
2.3.1 Approaches . 12

2.4 Related work . 13
2.4.1 Inverse modelling through optimization 13
2.4.2 RNN-based architectures . 14
2.4.3 Time series to 2D representations 15

iv

3 Methods 17
3.1 Approaches for MTR . 17
3.2 CNN . 18
3.3 Residual Network . 18
3.4 Evaluation metrics . 19

3.4.1 Problems and challenges . 20
3.5 Correlation analysis for time series 20
3.6 Data generation . 21

3.6.1 Input of the regressor models 21
3.6.2 Models of cardiovascular physiology and pathophysiology . . 23
3.6.3 Cardiovascular model generation 24
3.6.4 Dataset(s) . 26

3.7 Machine Learning experiments . 27
3.7.1 Features extraction . 27
3.7.2 Validation . 29
3.7.3 Regression models . 29
3.7.4 Experiments settings . 31

3.8 Deep Learning experiments . 33
3.8.1 Training methods . 34
3.8.2 Data normalization . 35
3.8.3 ResNet Plus configuration 35
3.8.4 1D ResNet configuration . 36
3.8.5 1D CNN configuration . 37

4 Results 39
4.1 Machine learning results . 39

4.1.1 Different performance among model parameters 40
4.1.2 Problems deriving from high dimensionality 42

4.2 Deep learning results . 42
4.2.1 Risk of overfitting with deep architectures 43
4.2.2 Fine-tuning architecture depth 43

4.3 Variation in input: adding body dimensions 45

5 Discussion and limitations 53
5.1 Experimental findings . 53

5.1.1 Parameter estimation . 53
5.1.2 Cardiovascular parameter analysis 54

5.2 Correlation analysis . 54
5.3 Limitations . 56

v

6 Ethics, future work and conclusions 57
6.1 Future work . 57
6.2 Ethical considerations . 59

6.2.1 Sustainability . 59
6.3 Conclusions . 60

A Visualizations 62

Bibliography 71

vi

List of Tables

2.1 subset of model parameters choosen for the analysis. Those will be
the output to predict in our task. In the third column from left
there are typical values from healthy patients together with humanly
possible ranges for each parameter. 9

3.1 subset of state variables gathered from Aplysia. Those will be the
actual data that we will use to predict the target model parameters.
The "typical values" columns shows some common values coming
from healthy adult physiology. 23

3.2 Presets used for the patient generation. Each of these entries has
different characteristics. 24

3.3 Summary of how the different models were managed to perform the
multi-output task. 32

3.4 List of the fine-tuned hyperparamters for each model. 32

4.1 Abbreviation for the target model parameters. 39
4.2 Performances of the machine learning models tested. The MSE and

aRRMSE score are computed on the test set and averaged through 5
different runs. If a model has been tested with different approaches
only the one with the best scores is here reported. The best scores
are in bold characters. 40

4.3 Comparision of performance among the gradient boosting regressor
trained on the dataset contained for each target model parameter.
The value is the MSE error so it has the same unit of error of the
target. In bold are indicated the lower error for each target parameter. 47

vii

List of Figures

1.1 Scheme on how we plan to train our Machine Learning model.
Starting from a given set of model parameters we are going to
gather the time-varying simulation output. Those signals will then
be fed into the model that will learn to give the model parameters
as output. 2

1.2 proposed deployment of the model. Using the existing data from
a patient we can extract the set of model parameters necessary to
drive Aplysia to make a patient-specific simulation (digital twin, in
the figure) . 3

2.1 Wiggers diagram of a full hearth cycle. 7

3.1 Scheme of ResNet architecture. Input is a multivariate time-series
and output is a set of target values. 19

3.2 Pearson correlation between state variables (x-axis) and model pa-
rameters (y-axis). 22

3.3 Example of the pipeline. On top we have params_values that con-
tains the target parameter for a given physiology and params_percentage
which contains the intervals. From left to right: we extract a pa-
rameter from params_values (Heart Rate in the example) we then
access the relative interval contained in params_percentage and we
randomly extract a percentage in that interval. We then increase
(or decrease) the starting value of the extracted amount. By repeat-
ing this procedure for all the parameters we obtain a new model
parameter set. 25

3.4 t-SNE visualization of the generated dataset. 27
3.5 Scatter plot of the length and weight combination generated for

the second dataset. The red rectangle marks the area between the
25 and 75 percentiles for both attributes considering the average
population. 28

viii

3.6 5 different train and validation splits. We can notice how for each
seed we have different data falling into the validation subset (the
green segments). 30

3.7 Learning rate identification plot. The orange dot states the last spot
in which the slope is low: a good starting learning rate can be found
around that area (in this specific example, a good choice would be
between 10−2 and 10−1). 36

3.8 Scheme of the 1D-CNN used in the experiments. The number in the
parenthesis states the input and output dimension of each layer. We
can notice how after each convolution the depth of the time series
changes because of the convolutions. 38

4.1 Learning curves from tsai experiments. The curve on the bottom
shows the loss (MSE) both on the training (blue curve) and validation
(orange curve) set during the epochs while the curve on the bottom
displays the RMSE through the epochs. 44

4.2 Loss (MSE) from 1D ResNet throughout the epochs. Blue: validation
loss, purple: Train loss. 45

4.3 Learning curves for the different CNN tried. 46
4.4 Legend for the scatter plot visualization. 48
4.5 Scatter plots of the test data, color coded by starting preset. Gradient

boosting regressor. Legend can be found in 4.4. The same plots for
the remaining model parameters can be found in A 49

4.6 Distribution plots of the test data displaying the true and predicted
distribution. The same plots for the remaining model parameters
can be found in A. 50

4.7 Scatter plots of the test data, KNN Regressor. The same plots for
the remaining model parameters can be found in A. 51

4.8 Distribution plots of the test data displaying the true (blue) and
predicted (orange) distribution for the KNN regressor. The same
plots for the remaining model parameters can be found in A. 52

5.1 Pearson correlation between state variables (x-axis) and model pa-
rameters (y-axis). 55

6.1 Scheme of the local optimization loop with the deployment of the
machine learning model. 58

A.1 Scatter plots of the test data, color coded by starting preset. Gradient
boosting regressor. Legend can be found in 4.4. 63

A.2 Scatter plots of the test data, color coded by starting preset. Gradient
boosting regressor. Legend can be found in 4.4. 64

ix

A.3 Distribution plots of the test data displaying the true (blue) and
predicted (orange) distribution. 65

A.4 Distribution plots of the test data displaying the true (blue) and
predicted (orange) distribution. 66

A.5 Scatter plots of the test data, KNN Regressor. 67
A.6 Scatter plots of the test data, KNN Regressor. 68
A.7 Distribution plots of the test data displaying the true (blue) and

predicted (orange) distribution for the KNN regressor. 69
A.8 Distribution plots of the test data displaying the true (blue) and

predicted (orange) distribution for the KNN regressor. 70

x

Acronyms

AI
artificial intelligence

IQL
Independent Q-Learning

LAN
Local Area Network

Wi-Fi
Wireless Fidelity

MTR
Multi Target Regression

MTS
Multi-variate Time Series

EHR
Electronic Health Record

ECG
Electrocardiogram

DFT
Discrete Fourier Transform

DTW
Dynamic Time Warping

xii

MLP
Multi-Layer Perceptron

SVM
Support Vector Machine

k-NN
K-Nearest Neighbours

PCA
Principal Components Analysis

LCA
Linear Components Analysis

CNN
Convolutional Neural Network

FCN
Fully Convolutional Network

MC-DCNN
Multi Channel - Deep CNN

EEG
Electroencephalogram

NLP
Natural Language Processing

MTF
Markov Transition Field

GAF
Gramian Angular Field

RNN
Recurrent Neural Network

xiii

LSTM
Long Short-Term Memory

TFT
Temporal Fusion Transformer

RC
Regressor Chain

MTRS
Multi-Target Regressor Stacking

ODE
Ordinary Differential Equations

WLAN
Wireless Local Area Network

UN
United Nations

SDG
Sustainable Development Goal

xiv

Chapter 1

Introduction

1.1 Context

1.1.1 Bio-medtech modelling and simulation

Modelling and simulation tools are indispensable during R&D in the bio-medtech
field. A simulation model can be adapted to the properties of an individual patient
in order to enhance personalized monitoring, diagnosis and prognosis. Those type
of systems might in the future be used to taylor treatments, a need that has
become apparent especially during the recent COVID-19 pandemic, in which the
importance of intensive care heart or lungs support equipment has been highlighted
even more. Furthermore, a fully functional simulator can be used by clinicians and
students for training and gain knowledge of the pathophysiology of several diseases.
For those reasons, several studies aim at reproducing cardiovascular systems and
its dynamics [1]. In this field, the simulator Aplysia [2] has been developed over
several decades. It can replicate a wide range of phenomena and processes involved
in the physiology and pathophysiology of breathing and circulation. Aplysia is
able to reproduce and simulate the hemodynamics phenomena starting from a
set of patient model parameters and by exploiting a set of non-linear ODE that
well describe the dynamics of our vascular and breathing system. These model
parameters are the input to the simulation and there are key parameters in the
equations that have a large impact on the simulation output. Since Aplysia is
based on a set of ODE we will refer to the Aplysia output as state variables. Most
of the state variables choosen for the analysis are time-varying signals such as the
blood pressure, that changes periodically during a full heart cycle.

1

Introduction

1.1.2 Machine learning for a digital twin

The vision of this project is to have a model capable of predicting the correct set
of model parameters starting from time-varying simulation output. This would
enhance the full capability of the Aplysia simulator and make the idea of the ’digital
twin’ closer to reality. By ’digital twin’ we mean having a running simulation
of a patient that emulates as close as possible that patient’s physiology. The
Aplysia simulator at the current stage can be only manually tuned by adjusting
its model parameters to represent different patient conditions. The idea in this
master thesis project is to start from Aplysia’s time-varying simulator output, we
can train a model that learn to return the correct model parameters to set into
Aplysia in order to recreate the dynamics of a patient. Thus, by using a Machine
Learning model the output state variables could then be used to automatically
tune the patient model and make it patient-specific: such model can be trained
on the time-varying simulator output and return a set of model parameters, as
showed in picture 1.1. Once the trained model is deployed, we can use it to start
patient-specific simulation and Aplysia could become part of the decision support
steps, by testing drugs or medical procedures on the patient model in order to
check the behaviour of the ’digital twin’ before testing on the actual patient. A
scheme of the proposed use case is shown in figure 1.2.

Figure 1.1: Scheme on how we plan to train our Machine Learning model. Starting
from a given set of model parameters we are going to gather the time-varying
simulation output. Those signals will then be fed into the model that will learn to
give the model parameters as output.

2

Introduction

Figure 1.2: proposed deployment of the model. Using the existing data from a
patient we can extract the set of model parameters necessary to drive Aplysia to
make a patient-specific simulation (digital twin, in the figure)

1.2 Problem
1.2.1 Problem specification
The aim of this project is to develop a machine learning framework that is capable
of analyzing the time series data that Aplysia generates in an efficient way. The
final task is then to predict a set of real values that Aplysia uses as input in order
to recreate the input time series data. The literature refers this problem as MTR,
as opposed to standard regression problem in which we predict a single value. An
high-level design of the project is showed in figure 1.1. The time-varying patient
data that will be used to train the model will be generated by Aplysia itself, so
this project includes also a dataset generation phase.

1.2.2 Challenges
Different challenges needs to be faced to perform this project:

• Dataset generation: A general knowledge and background of the physiology
of the cardio-vascular system needs to be acquired to understand how different
model parameters can influence each other in order to properly generate the
dataset;

• Heterogeneous data: we are dealing with extremely heterogeneous data,
since we need to handle both MTS data (such as systemic and pulmonary

3

Introduction

arterial pressure or oxygen saturation) and static data (such as heart rate or
blood volume);

• Correlation among state variables: several state variables may heavily
interact with other and this high correlation could interfer with the learning
process of our framework by making our models learning incorrect features.
On the other hand, thanks to correlation among all the available state variables
in the simulator we can believe that is possible to extract enough information
to estimate the model parameters even if we limit the analysis on few time
series;

• Lack of literature: there is a lack of literature regarding MTR task applied
on MTS. We need to benefit from the literature on time series classification and
forecasting in order to acquire a proper knowledge of the possible framework
that can fit this task;

• Computational resources: deep architecture may require some time to
train and test. This could become a bottleneck that need to be faced by taking
into account solutions that are efficient and can be run on the hardware we
have.

1.2.3 Research questions
The main questions we will address with this project will be:

• Which approach would provide the the best features from Aplysia output time
series in terms of serving as input to a regressor?

• Which machine learning or deep learning framework would fit this task and
provide the best estimates for the Aplysia model parameter values, as measured
in terms of MTR scores [3]?

• How much robust is the choosen algorithm in terms of correct extimation of
the model parameters? Robustness includes sensitivity to variations in the
input from noise, small changes in expansion or compression of the time scale,
variations in mean etc.?

1.3 Purpose
The main purpose of this project will be fulfilled if a working machine learning
framework to analyze patient data will be developed. The work done could be useful
for future studies in the field of medical simulation and hemodynamics related
patient assistant. The reading of the final work can also be helpful for people

4

Introduction

interested in handling multivariate time-series for generic regression problems: since
most of the literature is focused on time series forecasting or classification, the
analysis of this regression problem could further promote the use of time series
data for different type of problems.
The project is developed in collaboration with Getinge AB, a Swedish healthcare
company that offers products and solutions for intensive care, cardiovascular
procedures, operating rooms and life science. The company will benefit from this
work since it will be able to further exploit the simulator as a part of a decision
support tool.

1.4 Structure of the thesis
Chapter 2 (Background) introduces the reader to notions of hemodynamics and
the physiology of cardiovascular system in order to provide some medical context
for the thesis, as well as introducing the paramters of our analysis. There will
be described also machine learning and deep learning approaches and challenges
from the literature analyzed. Chapter 3 (Method) starts with describing more
in details the methods involved in the experiments, followed by a description
on how we generated the dataset followed by some data analysis, details of the
developed models, and the evaluation metrics. Chapter 4 (Results) presents the
results of the experiments while Chapter 5 (Discussion) contains a discussion of
the results, suggestions of future work, and a discourse on sustainability. Chapter
6 (Conclusions) summarizes the main findings of this thesis.

5

Chapter 2

Background

2.1 Hemodynamics
In this section, a brief overview of hemodynamics, physiology of cardiovascular
system and nature of monitoring signal is given. By hemodynamics we mean a
branch of physiology that studies the forces and mechanism involved in circulation.
The blood flows between different components through different types of blood
vessels: arteries, veins, capillaries. The aim of this chapter is to provide to the
reader with some medical context for the thesis, as well as introduce the relevant
parameters on which our analysis will focus.

2.1.1 Cardiovascular system
The cardiovascular system is responsible for delivering blood to the whole body
[4]. It is composed by the heart, arteries, veins and capillaries. Veins, arteries and
capillares compose the human vasculature.
The human vasculature is divided in two distinct circuits: the pulmonary and the
systemic circulation.

• pulmonary circulation: transport of blood between the heart and the lungs.
It transports deoxygenated blood from the right heart to the lungs to absorb
oxygen through the pulmonary arteries. The oxygenated blood then returns
back to the left side of the heart through the pulmonary veins.

• systemic circulation: transport of blood between the heart and the rest of
the body. It sends oxygenated blood out to cells and returns deoxygenated
blood to the heart.

Two important quantities in hemodynamics are pressure and flow. Pressure is the
force applied per unit area. Usually in hemodynamics we think of that in terms

6

Background

of a pressure difference since is the gradient itself that causes the flow of blood.
Flow is usually measured in liters/minute. By monitoring those two quantities in
different point we can derive properties of the arterial system and the hearth.
The heart consists of four different chambers: two atria and two ventricles with
valves between them. Aspects such as heart contractility, the mechanical description
of valve opening as well as mechanical properties of the vasculature determine
blood flow and pressure throughout the system. In particular, the equation for
heart contractility describes the heart cycle (or cardiac cycle) and determines
the heart rate. In an healthy patient a full cardiac cycle takes around 0.8 sec-
onds. This information is usually carried through the heart rate: we would rather
hear "heart rate of 75 BPM (Beat Per Minute)" instead of "0.8 seconds cardiac cycle".

Iso
vo

lu
m

ic
 c
on

tra
ct

io
n

Ej
ec

tio
n

Iso
vo

lu
m

ic
 re

la
xa

tio
n

Ra
pi

d
in
flo

w

Dia
st

as
is

At
ria

l s
ys

to
le

Aortic pressure

Atrial pressure

Ventricular pressure

Ventricular volume

Electrocardiogram

Phonocardiogram

Systole Diastole Systole

1st 2nd 3rd

P
R

T
Q S

a c vP
re

ss
u
re

 (
m

m
H

g
) 120

100

80

60

40

20

0

V
o
lu

m
e
 (

m
L) 130

90

50

Aortic valve
opens

Aortic valve
closes

Mitral valve
closes

Mitral valve
opens

Figure 2.1: Wiggers diagram of a full hearth cycle.

The cardiac cycle consists of two main phases: systole and diastole. Diastole
is the phase in which the heart muscle relaxes and the chambers fill with blood

7

Background

coming from the pulmonary and the systemic veins. Once the ventricles are filled,
the ventricles start to contract and systole begins. As a result, when the pressure
in the ventricles exceeds the pressure in the arteries, blood is ejected from the right
and left ventricle into the pulmonary and aortic arteries respectively. In figure 2.1
we can appreciate how pressure and volume vary over an entire heart cycle. The
plot, called Wiggers diagram, describes how those two forces vary over the cycle in
different ways for each part of the heart.

2.1.2 Healthcare-aided simulator: Aplysia
Due to the complexity of the cardiovascular system, simulators are becoming more
and more popular since they help to get an overall understanding of different
pathophysiological conditions. Simulators can also be integrated as part of bedside
decision tool [1]. When this happens, the model is connected to a patient’s data in
order to reproduce the corresponding hemodynamic condition. Then, one or more
clinical interventions can be simulated on the model to predict patient’s response
and elaborate possible improvements on the treatments. Aplysia CardioVascular
Lab is a flexible simulator that can be used as a user-friendly teaching tool, but it
also allows to control every parameter in detail, making it possible to study the
interaction between many combination of vascular or cardiac disease or physiological
mechanism in different set of patients. The input model parameters that can be
modified in each simulation are more then 200. We recall that the final goal of
this project is to predict a set of model parameters starting from the time-varying
monitoring data: a one-to-one relation between the available monitoring data and
all 200 parameters is challenging. Hence, it is necessary to identify a subset of
parameters that are realistic and relevant to extract: we aim at simulating as close
as possible the patient physiology. Therefore, a set with the most important model
parameters to identify was choosen for this thesis. A brief description of those is
available in table 2.1.

2.2 Time series analysis
In this section we are going to define time-series data in a more analytical way by
introducing definitions that will ease the understanding of the following work. As
we are dealing with medical monitoring data we focus on biomedical time series
data literature. Several dataset are available to the research community for this
field: most of them focus on ECG data or EHR, such as ECG200 or MIMIC [5],
which are often used as benchmark for the new algorithms proposed. Even if those
data are often used, the amount of information that we can extract from those is
not relevant for our scope because it is either un-related to Aplysia monitoring
output (such as information in EHR) or too coarse for our project (such as the info

8

Background

Name (target variables) Unit Typical values / range Description
Heart rate bpm 70 / (40-140) Heart beat per minutes.

Blood volume mL 5500 / (3500-7500) Total amount of blood
flowing in the body.

Left ventricular contractility mmHg/mL 2.8 / (0.5 - 5.0) peak value of the time-
varying elastance function.

Right ventricular contractility mmHg/mL 0.6 / (0.2 - 5.0) See left ventricular contractil-
ity.

Left ventricular stiffness mmHg/mL 0.04 / (0.01 - 0.10) Basal level of elastance in the
time-varying elastance func-
tion.

Right ventricular stiffness mmHg/mL 0.03 / (0.01 - 0.10) See left ventricular stiffness.
Systemic Vascular Resistance mmHg·s/mL 1.0 / (0.1 - 5.0) Amount of force exerted on

circulating blood by the vas-
culature of the body.

Pulmonary Vascular Resistance mmHg·s/mL 0.1 / (0.05 - 2.00) Resistance against blood flow
from the pulmonary artery to
the left atrium.

Systemic Arterial Stiffness mmHg/mL 0.4 / (0.1 - 5.0) Measure of aging of the ar-
teries. Determined by both
geometry and tissue proper-
ties.

Pulmonary Arterial Stiffness mmHg/mL 0.7 / (0.2 - 2.0) See Systemic Arterial Stiff-
ness.

Hemoglobin g/L 140 / (40 - 200) Oxygen carrying capacity of
the blood.

Total oxygen consumption mL/min 250 / (100 - 500) Indicator of metabolic activ-
ity.

Pulmonary shunt % 5 / (0 - 100) Percentage of blood flow in
the pulmonary circulation
not being oxygenated in the
lung before entering the left
side of the heart

Table 2.1: subset of model parameters choosen for the analysis. Those will be the
output to predict in our task. In the third column from left there are typical values
from healthy patients together with humanly possible ranges for each parameter.

in MIMIC). Those are still interesting since they come from real patients and not
from simulations, as in our case.
As the name suggest, time series is a set of ordered data. This means that every
problem related to data that is registered taking into account some notion of
ordering can be casted as a time series problem. This aspect makes time series
data valuable and interesting in multiple fields. According to [6] during the last
years there have been a large number of new time series-related algorithm proposed

9

Background

in the literature. Most of the work is focused on time series classification and time
series forecasting. As we already mentioned in the introduction, since we have
a lack of literature regarding MTR applied on MTS we will mention all possible
approaches tailored for classification and forecasting that can also be useful for our
MTR task.

2.2.1 Univariate and multivariate time series
We define a univariate time series as:

X = [x1, x2, ..., xT]

where x1, x2, ..., xT is an ordered set of real values. The length of X is equal to T ,
which is the number of element that compose the time series.
We define an N -dimensional MTS as:

X = [X1, X2, ..., XN]

where X1, X2, ..., XN is a set of N univariate time series of length T . With Aplysia
we can generate both univariate and MTS time series depending on how many
parameters we want to monitor at the same time. For our task we will generate
and exploit MTS.

2.2.2 Time series forecasting and classification
With time series forecasting we mean the process of making prediction on the next
values of the time series based on the available historical data. Forecasting has a
wide range of applications in different industries [7]: weather forecasting, economic
forecasting, finance forecasting and healthcare forecasting. In many particular
circumstances we talk about multi-horizon forecasting which stands for forecasting
for multiple steps in the future. Multi-horizon forecasting has gained more and
more attention in recent literature [8] [9] since it provides support for decision
making over mid to long periods of time.
In time series classification, we aim at predicting a class label associated to time-
series by extracting meaningful features from the time domain data. There are
mainly two main approaches to time series classification [10]:

• feature-based: we first extract time series features such as statistical mo-
ments, maximum and minimum, both from the time domain and frequency
domain through DFT;

10

Background

• distance-based: we implement a a definition of suitable distance between
time series, such as DTW [11] or euclidean distance and we combine it with a
k-NN algorithm [6].

We are not going deeper in the analysis of distance-based approaches because
they can not be useful for a regression task. We can infer useful insights from the
feature-based approaches. The most important step in those approaches is the
features extraction and selection step: the feature representation of the input time
series is the main discriminative aspect for the final performances. Given that, the
idea of the following study is that we can benefit from previous works on feature
representation since we can always deploy a MTR model on top of those features
and switch the task from a classification to a MTR task.
In [12] the authors explore three different ways to obtain a structured representation
of time-series, exploiting different type of metrics ranging from statistical metrics
and complexity measures to temporal patterns. Experiments were performed on five
medical time series dataset (mainly ECG data) and good classification results were
obtained by combining all three types of metrics and deploying a naive MLP on top
of the features representation. Also in [13] a MTS classification task is performed
on ECG data by deploying a simple SVM classifier on the data after extracting
intra-temporal patterns within each component and inter-temporal patterns among
different components of the MTS. Those first approaches shows that the feature
representation step is crucial when dealing with time series and great results can
be achieved even by naive models. Despite the results, those methods still has
some drawbacks. In those approaches, time series are required to be equally spaced
in time, resulting in not being able of handling MTS of different length. Also,
important correlation information among different channel could be lost during
the feature extraction procedure and, furthermore, redundant information could
be extracted. A solution to this last problem could be to apply PCA or LCA, but
still this leads to additional overhead to the computational time. Also features
extraction and signal processing techniques may require expertise knowledge on
the data. Despite their drawbacks those approach still represent a good baseline to
perform our task.

2.2.3 Deep learning for time series
Aside from hand-crafted features techniques, with the advent of Deep Learning new
methods and models to automatically infer features from time series were proposed.
Deep Learning has a lot to contribute to the bio-medtech field. A promising aspect
of deep learning approaches is that we can customize the architecture in order to
full-fill our needs. For this project, it is particularly useful since we can make deep
architecture output a vector of real values by properly acting on the layers.

11

Background

As proposed in [14] we can separate deep learning approaches for time series in
two branches:

• generative approaches: models use an unsupervised training step that
precedes the classification phase. Often reffered as model-based;

• discriminative approaches: models directly learns the mapping between
the time series and the desired output, without any pre-training for features
extraction.

By ”generative” we mean that we generate a set of features on top of the raw time
series data, as opposed to ”discriminative” which means that our model classify
time series without the needs of any elaborate preprocessing step. Adopting a
generative approach lead to multiple advantages. First of all, it reduces the need
for expertise of the data since we leave to the architecture the features learning
step. Experiments also showed that these models are able to capture all the salient
trends and characteristics of a time series. Although, the general consensus in the
literature is that generative models are usually less precise than discriminative.
Implementing and training generative models is also harder since we need a first
learning stage to learn the embeddings and a second in which we train the classifier.
The choice of the type of classifier is not trivial also considering that the final
accuracy mainly depends on the classifier choosen (which often is not even a neural
network [15]).
Discriminative approaches are then preferred, also because there is a wide range of
architecture that covers time series problem and they allow enable the network to
learn the most discriminant features by not incorporating any domain knowledge.
For our goal, both discriminative and generative approaches could be useful.

2.3 MTR: Multi-Target Regression
The aim of this section is to give an overview of the existing ways of tackling MTR
problem from the literature. The goal is to identify the common approaches and
main challenges that may arise when dealing with this task. MTR is also known
in the literature as multi-response, multi-variate or multi-output regression. As
already stated in previous sections, this task refers to models that are able to
predict simultaneously multiple continuous variables at the same time. When the
numerical values to predict are binary we talk about multi-label classification task.

2.3.1 Approaches
According to [16], we can categorize existing approaches for MTR as:

12

Background

• problem transformation methods: also known as local methods, these
methods transform the multi-output problem to several single-target problem,
then one model for each sub-problem is developed;

• algorithm adaptation methods: also known as global methods, these
methods predict all the target using a single model.

With respect to problem transformation methods, algorithm adaptations simul-
taneously predict all the target using a single model. Those approaches lead to
better performance especially when targets are correlated. By properly adapting
the iterative weight learning procedure SVM [17] were generalized and introduced
to MTR. It is important to notice that in algorithm adaptation methods the
algorithm itself get modified while in problem transformation we rely on already
existing model: multi-output SVM can be obtained also through a problem trans-
formation approach. Regression trees can also be used for multi-target problems
[18]. Those algorithms in their multi-variate version has two major benefits: a
single multi-target tree is much smaller then the total size of one single-target
tree for each target; the performance can be improved by using ensemble learning
techniques such as random forest or bagging of multi-target regression trees. We
can categorize as algorithm adaptation also neural network approaches since the
network architecture learn how to predict the entire set of target at once. In this
set of algorithms, further exploitation of the learning procedure can be used to
boost the performance even more [19].

2.4 Related work
In the following section we present works in the literature that deals with related
problem. As already stated there is no similar task to this in the literature but we
can still infer useful information from literature on medical-related tasks.

2.4.1 Inverse modelling through optimization
The aim of this thesis is to retrieve unobservable information, the model parameters,
given the observable state variables generated by Aplysia in form of time-series
signals. In modelling this problem is referred as inverse modelling and can be done
also through optimization algorithms that aim at minimizing the error between the
target data and the model output. This approach has been used in biochemical
models [20] since mathematical modelling of biological processes is effective in
different applications and while some model parameter can be obtained from
the literature other can be inferred from measured observations. One of the
main problem about tackling this task with optimization algorithms is the risk of

13

Background

formulating non-linear problem that could be non-convex. This mean that most of
the optimization algorithm risk of finding sub-optimal solution and not the optimal.
This problem even affects neural networks approaches [21] since the training process
can be seen as an optimization problem solved with a gradient-based algorithms.
To overcome this problem, different approaches can be found in the optimization
literature. We can classify the different algorithms in local, global and hybrid
algorithm. Local methods usually requires less to converge to a solution but this
often lead to find sub-optimal. Global algorithm aim at finding the global solution
having the drawback of being computationally heavy. In [22] a genetic algorithm
is deployed to identify parameters related to a cardiac model. The focus of the
study is to analyze cardiac wall stress rather then particular hearth disease but the
analysis is interesting because deals with model parameters that are very close to
ours. The results proved the feasibility of using a global optimization strategy to
optimize the model parameters in analysis. Hybrid approaches combine the two
previous approaches by combining an exploratory phase with an intensification
phase. Different hybrid algorithms have been proven effective for parameter
estimation in system biology [23] [24].

2.4.2 RNN-based architectures
The RNN are artificial neural networks in which the connections are not feed-
forward only: connections between RNN units form directed cycles, providing an
implicit internal memory. Because of their nature and their capability of storing
values in memory those network can well be adapted to problems dealing with
signals evolving through time [25]. In the field of medical time series analysis
LSTM units are often used. Those LSTM cells are able to solve some problem
and limitations that RNN has with gradient-based algorithm during the training
phase [26]. Application of LSTM models aside with classical features for ECG
classification showed that RNN capture temporal dependencies in sequential data
more efficiently compared to other types of networks [27]. LSTM cells can be also
used to build autoencoder structure. In those approach [28] one LSTM layer runs
as an encoder and another runs as a decoder: the encoder layer takes the input
sequence and encodes it into a learned representation vector. Then, the decoder
layer takes that vector as input and tries to reconstruct the input sequence and
forecast. This approach also propose an unsupervised pre-training phase in order to
avoid random initialization. Is worth mentioning that this model handles well MTS.
LSTM auto-encoder can also be used as generative architecture prior to learning
the classifier [15]. The LSTM auto-encoder is used to generate syntetic additional
channel to the time series data in order to improve the learning phase. This
particular data augmentation technique helps when we have limited channel data,
which may happens in several scenario in healthcare (e.g. limited sensors, fault

14

Background

during sensing, invasiveness etc.). For instance, an ECG is natively recorded on
twelve channel, but if some errors or fault occurs only few of them may be available
for the analysis. This approach aims at reconstructing the original twelve channel
signals by generating the missing ones. Despite the great performance in capturing
long term dependencies in time signal, deep LSTM-based architecture requires a lot
of computational resources to train. To limit that several hybrid architecture are
proposed in the literature. PP-Net [29] combine LSTM units and CNN to predict
cardiovascular disease starting from PPG (photoplethysmogram) and ECG data.
This architecture deals with a MTR task since it needs to predict diastolic blood
pressure, systolic blood pressure and heart rate, which are the three main indicator
of cardiovascular disease in a patient. The model stacks CNN as feature extractor
with two LSTMs layer followed by one last dense layer. Results shows that the
joint framework leverages the advantages of both network providing an efficient and
light-weight model. Another promising hybrid architecture recently proposed is the
TFT [9]. No application of this architecture on medical data can be found in the
literature yet but this model stands as top-performer in multi-horizon forecasting
by also accounting model explainability. Here LSTM units are combined with more
complex variable selection network and gating mechanisms. This architecture aims
at tackling the heterogeneity of MTS input while keeping explainability of the
model. Even if the TFT is born to perform multi-horizon forecasting it can be
adapted to different type of task and input data due to its flexibility: we can feed
to the architecture static data, time-varying signal or a-priori known future inputs.

2.4.3 Time series to 2D representations
Given the recent successes of deep learning in computer vision, several studies
proposed of reformulating features of time series as visual clues. Time series imaging
consist in transforming the problem completely into the computer-vision domain
by turning the time signal into images. Interesting application of this method can
be found on time series forecasting problems [30] and classification [31]: time series
data are first transformed into images using recurrency plots and then a feature
extraction methods is developed upon the processed data. Results vary depending
on which type of plots we decide to use to encode time series data into images.
Several studies focus mainly on the encoding map and solutions range from MTF
to more sofisticated encoding such as GAF.
Some approach that relies on medical imaging also address privacy concerns
[32]. The development of cloud computing has increasingly allowed hospitals
to offload expensive computation tasks and deploy algorithms on cloud servers,
reducing the overall costs of local servers, but this aspect introduces several
privacy concerns since we need to preserve privacy. In the pipeline proposed
convolutional layers are combined with LSTM and Homomorphic Encryption,

15

Background

a type of encryption algorithm tailored for privacy preservation. The resulting
HE-CLSTM (Homomorphic Encryption-Convolutional LSTM) architecture is then
able to extract features from the input images and perform classification in a fully
encrypted way.
Having images data also enable the use of transfer learning [33]. Transfer learning
has been widely used in fields such image classification and NLP and it consists in
using publicly available models already trained on large dataset: we can re-use the
pre-trained model by fixing the weights of all the layers except for the last fully
connected layer and fine-tune the model using the task data. The main advantage
we obtain by transferring the already trained parameters is that we reduce the
training time since we just fine-tune the last layers of the architecture to learn
the new task. We also gain in performance since pre-trained architecture already
knows how to extract and recognize high-level features from images (such as edges,
curves, lines etc.) .

16

Chapter 3

Methods

3.1 Approaches for MTR

As explained in 2.3.1 we have different approaches to tackle MTR problems. The
baseline approach of developing one model for each target (referred as Multi Output
regressor) does not take into account dependencies among the multiple features
and the target variables: the target are predicted independently and this may affect
the overall quality of the predictions since the relationship among the target are
ignored. To limit this drawback two approaches were proposed [34]: MTRS and
RC. In MTRS we have a two-stage training phase: we first learn n single-target
model (one for each target output) and then a second set of n model is learned.
In the second stage we augment the input using predictions coming from all the
first stage models: the idea behind is that a second-stage trained model is able
to correct its prediction by considering information from all the target variable
coming from first-stage prediction. So if we want to make predictions for a new
instance, we first need to generate the estimates from the first-stage models and
then we apply the second stage models on the augmented output to produce the
final estimate.
RC is inspired from the multi-label chain classifiers. The idea is to select a random
permutation of the set of the target variables and build a regression model for each
one following the order of the series. Each model will use as input also the output
of the previous regressors in the chain. One remarkable issue of using RC is that
results are sensitive to regressor chain ordering: to limit that dependencies a set of
regressor chain can be used and the results are then averaged. This approach is
called ensemble of regressor chain.

17

Methods

3.2 CNN
CNN are common for image processing tasks. Those architecture are characterized
by convolutional layer (or filters) that performs convolution by shifting and sliding
over the input. This reduces the number of parameter to be learned since we
train to compute the weights of the filters. Every time the input goes through a
convolutional layer we obtain a new representation of it. Usually convolutional
layers are paired with pooling layer which downsamples the input through the
different convolutions. We talk of FCN when the networks does not contain any
pooling layer, which results in keeping the length of the input unchanged throughout
the convolutions.
Even if those architectures are widely famous for computer vision task they have
recently been applied also on time series. In [35] a first framework to analyze
MTS through CNN is proposed. This network is often referred as MC-DCNN. The
architecture has a generative approach: in a first stage the multivariate time series
is broken into univariate ones and feature learning through convolution is performed
on each univariate series individually. At the end of all the convolution layers
the output of all channels is flattened and then a standard MLP layer performs
the classification. Even if the architecture is composed of just two convolutional
layers followed by pooling layers, experiments conducted on ECG data showed
better results than the state of the art 1-NN + DTW. In [36] a similar approach is
proposed but an additional aggregating CNN layer is placed before the final MLP
layer. This additional layer is capable of extracting channel-wise information from
the processed MTS.

3.3 Residual Network
ResNet [37] extends the neural networks to very deep structures thanks to the
introduction of shortcut connections. These allow the most common gradient-based
algorithm to converge faster, hence deeper architecture could be developed by
still keeping reasonable training time. ResNet architecture represented a turning
point for the deep learning community, especially in the computer vision field.
It achieves the state-of-the-art performance in object detection and other vision
related tasks and interesting applications on time series data can be found in the
literature [38]. The literature work on this architecture make possible to easily
pre-train a model on a source dataset, then transfer and fine-tune it on our target
dataset. Since ResNet architecture are usually deep networks we need to be aware
of not overfitting the data: the ResNet overfits the training data much easier if
the datasets is comparatively small [39]. In figure 3.1 is represented a scheme of a
ResNet applied on MTS.

18

Methods

Figure 3.1: Scheme of ResNet architecture. Input is a multivariate time-series
and output is a set of target values.

3.4 Evaluation metrics
To assess the behaviour and performance of a MTR model several evaluation
metrics are available. Let be T target variable, ntest number of unseen data, y and
ŷ respectively the ground truth and the prediction for the input x, ȳ the vector of
averages of the actual output. The mostly used evaluation metrics in the literature
are:

• MSE: Mean Squared Error. This metrics is often used also in single-target
regression problem. In the multi-target version we subtract for each target
attribute the ground truth and its prediction and we then square it. The final
metrics will be the sum over all target attributes scaled by the number of test
sample, as in the following:

MSE =
TØ

i=1

1
ntest

ntestØ
j=1

(yi,j − ŷi,j)2

• aRMSE: Average Root Mean Squared Error. In this metric we extract
the root mean squared error for each target and we average it through the
number of training sample and then with respect to the number of target
variables :

aRMSE = 1
T

TØ
i=1

óqntest
j=1 (yi,j − ŷi,j)2

ntest

• aRRMSE: Average Relative Root Mean Squared Error. Also known as
Normalized Root Mean Square Error (NRMSE), this measure. It is composed

19

Methods

of a Root Mean Squared error normalized by the squared error of a simple
predictor (i.e. a model that predicts every data point with the average values
of the target). The result is then averaged across each target variable:

aRRMSE = 1
T

TØ
i=1

öõõôqntest
j=1 (yi,j − ŷi,j)2qntest
j=1 (yi,j − ȳi)2

Aside from average metrics is also useful to check the performance for each one of
the target. In this way we can get further insight on how our model is performing
overall.

3.4.1 Problems and challenges
One first challenge that needs to be handled is data normalization. The choice
mainly depends on the evaluation metrics: when the metrics is averaged through
the different targets (as in MSE or aRMSE) a scaling factor is necessary in order
to have comparable contribution to the error from all the targets. The re-scaling
factor could be either determined by previous knowledge or several trials: a good
starting point would be to normalize each target with its standard deviation and
see the effects on the overall performance.
Relative metrics (such as aRRMSE) automatically re-scale the contribution of each
target with its average, hence no additional scaling factor is needed.
Computational complexity represents another challenge: since we have more then
10 target attributes we need to train the same number of models in problem
transformation approaches.
Another problem to deal with is related to non-identifiability of the target pa-
rameters [23]. Non-identifiability means that a unique solution to the parameter
estimation problem does not exist: there may be several sets of parameter values
that fit the data equally well. A possible solution refers to data-driven normal-
ization. A data-driven normalization approach consist in finding a sample that
will be used as normalization factor. The choice of such sample influences the
identifiability so it is necessary to spot a sample which well represent the entire
sample population, which is often not trivial.

3.5 Correlation analysis for time series
A correlation matrix is a table that displays correlation coefficients for different
variables. It is a common and powerful tool to summarize a dataset and to visualize
patterns in given data. This tool may be particularly useful in our task since
we can discover linear relationship between variables which may be interesting to

20

Methods

understand the results. Different type of correlation can be computed when dealing
with time series [40]. For this task we decided to compute the Pearson correlation
coefficient which is among the simplest and most used indicator of correlation.
This index describes the linear relationship between two time series as a number
between -1 (negatively correlated) to 0 (not correlated) to 1 (perfectly correlated).
We can picture this index as a measure of global synchrony between two time series:
if both time series has an overall increasing trend the correlation coefficient will be
a value near 1. We need to remark that this is a global coefficient so it does not
describes local synchrony of the signals. A way to compute local synchrony would
be to measure the Pearson correlation in a small portion of the signals and then
repeat the process along a rolling window until the entire signals are analyzed. An
example can be seen in figure 3.2.

3.6 Data generation
The experiments will be performed on syntetic data generated by Aplysia. The
following section gives a detailed explanation of the different stages involved to
generate the final dataset. Compared to other machine learning task we were not
provided with a dataset. The way in which we generate the data is then crucial:
we need a strict methodology in order to get valuable results that could ideally be
used to further deploy the model on real and non-syntetic data.

3.6.1 Input of the regressor models
We already discussed which will be the output model parameters (a brief recap is
available in table 2.1).
It has been important to identify a relevant subset of state variables to sample
from Aplysia. Those state variables will be the time-varying data that we will feed
to our models, hence they should have the following characteristics:

• clinically accessible: ideally the final models will be applied on real patient
data so we need to work with parameters that are easy to gather from a
patient and that do not necessarily require invasive procedures.

• clinically relevant: the data that we gather needs to be clinically significant,
which means that we need to choose a relevant subset of parameters from
which it can be possible to predict the target.

The output model parameters should be ”composited” of more then one state
variables from the input subset. Ideally the higher the number of state variables
the easier it would be to predict the model parameters. This would mean that we

21

Methods

Figure 3.2: Pearson correlation between state variables (x-axis) and model
parameters (y-axis).

should take into analysis all the state variables vailable from Aplysia. However
not all those variables are available clinically, therefore we need a good subset that
satisfies the aforementioned criteria in order to predict correctly the output. The
final choice of the state variables that will be fed in the machine learning models is
available in table 3.1.

22

Methods

Name (target variables) Unit Typical values Description
Heart rate bpm 70 Heart beat per minutes.
Systemic arterial pressure (mean) mmHg 90 Mean pressure of the circulat-

ing blood in the vessels dur-
ing an entire cardiac cycle.

Pulmonary arterial pressure (mean) mmHg 15 Mean pressure of the circulat-
ing blood in the pulmonary
artery during an entire car-
diac cycle.

Right atrial pressure (mean) mmHg 5 Mean blood pressure in the
right atrium of the heart dur-
ing an entire heart cycle.

Left atrial pressure (mean) mmHg 8 Mean blood pressure in the
left atrium of the heart dur-
ing an entire heart cycle.

Cardiac output L/min 5 Amount of blood that the
heart pumps for each minute.

Left ventricular ejection fraction % 65 Percentage of blood leaving
the left heart chamber after
a contraction.

Right ventricular ejection fraction % 65 Percentage of blood leaving
the right heart chamber after
a contraction.

Hemoglobin g/L 140 Oxygen carrying capacity of
the blood.

Arterial oxygen saturation % 95 Measure of blood oxygena-
tion in the arterial compart-
ment of the circulating sys-
tem. Strictly related to the
hemoglobin level.

Mixed venous oxygen saturation % 95 Fraction of oxygen coming
back to the right side of the
heart. Strictly related to the
hemoglobin level.

Table 3.1: subset of state variables gathered from Aplysia. Those will be the
actual data that we will use to predict the target model parameters. The "typical
values" columns shows some common values coming from healthy adult physiology.

3.6.2 Models of cardiovascular physiology and pathophysi-
ology

Several considerations needed to be made in order to create our dataset. Aplysia
can in fact generate data starting from different presets of cardiovascular model

23

Methods

(from pediatric to adult) and pathological state. Depending on that the behaviours
of clinical parameters can significantly change. As an example, we can think of the
difference between a child and an adult in terms of heart rate. Children’s heart
rate is around 140bpm for newborns against the 70bpm for a standard adult. Also
the amount of blood significantly changes. Other parameters such as the oxygen
saturation do not change at all. These different behaviours can possibly mislead the
model during the prediction if we train our models on such different physiologies.
Because of that the first choice was to focus only on adult physiology and avoid
pediatric cases.
Once a preset is chosen Aplysia automatically sets all the model parameters in
order to simulate that given physiology. Since those presets comes from medical
expertise they were deemed to generate more patient data. A summary of the
presets used for this analysis together with a brief description can be found in
Table 3.2.

Physiology name Description # number simulations
Adult, 20y Adult normal case, 20 years 40
Adult, 40y Adult normal case, 40 years 40
Adult, 60y Adult normal case, 60 years 40
Adult, 80y Adult normal case, 80 years 40
Biventricular failure Disease coming from both side of

the heart: both ventricles fails to contract
correctly. May happen when the muscle
is weak or not elastic enough.

20

Severe left ventricular systolic failure Left ventricle loses its ability to contract
in the proper way.

20

Stiff ventricle The patient is characterized by a stiff
left ventricle, which usually leads to
an increase in the end diastolic pressure.

20

Relaxation abnormality The heart is not able to relax fast enough,
leading to abnormal behaviours during
cardiac cycle.

20

Right hearth failure Disfunction in the right heart structure,
predominantly in the right ventricle.

20

Table 3.2: Presets used for the patient generation. Each of these entries has
different characteristics.

3.6.3 Cardiovascular model generation
As stated in the previous section we need to generate more model parameters in
order to increase the number of simulated cardiovascular systems in our dataset.
In order to do that, the following pipeline has been developed:

1. We choose a preset and we extract the cardiovascular model parameters.

24

Methods

2. We define two quantities:

• parameters range: a lower and upper bound to threshold the values of
each parameters during the generation of new ones;

• parameters variations: an interval that indicates a lower and upper bound
for how much a parameter can vary in percentage.

3. We take each model parameter and we randomly update it with variations
bounded by the lower and upper bounds described in the previous point.

The final result will be a set of target parameters that will be similar but not
identical to the ones in one of the predefined parameter sets. In this way we explore
the input feature space and this helps the model to have a better representation of
the input parameters and how they vary with respect to the output. The pipeline
described above is summarized through an example in figure 3.3.

Figure 3.3: Example of the pipeline. On top we have params_values that
contains the target parameter for a given physiology and params_percentage
which contains the intervals. From left to right: we extract a parameter from
params_values (Heart Rate in the example) we then access the relative interval
contained in params_percentage and we randomly extract a percentage in that
interval. We then increase (or decrease) the starting value of the extracted amount.
By repeating this procedure for all the parameters we obtain a new model parameter
set.

25

Methods

Once obtained those set of target parameters we fed them into Aplysia and we
record the choosen subset of state variables discussed in table 3.1.
The most challenging part in this stage was to properly identify the range in
which each model parameter could vary. If we vary too much one we can reach an
unrealistic set of parameters. Nevertheless Aplysia is really sensitive to big changes
of certain parameter (e.g. the vascular volume) and big variations during the data
gathering leads the simulator to stop working. This happens because Aplysia has
consistency-check that triggers on large changes in state variables and if they are
too large the simulation is halted. Finetuning the interval of variation was then
needed in order to properly generate the dataset in the smoothest possible way.

3.6.4 Dataset(s)
The dataset consisted in a total of 240 patients with state variables sampled at
200 Hz frequency for 5 seconds (1000 samples for each patient). In order to check
if the patient were generated in the proper way a first clue was given by the
t-SNE visualization in 3.4. t-SNE [41] is a technique to visualize high-dimensional
data in a two or three-dimensional map. This technique is very important for
data that are described by an high number of variables and can raise relevant
observations. This technique is capable of capturing much of the local structure
of the high-dimensional data very well, while also revealing global structure such
as the presence of clusters at several scales. In 3.4 we have a t-SNE of the model
parameters (table 2.1) from all the 240 simulations. We can notice how most of the
clusters are formed by simulations with the same starting preset: this full-fill the
requirement of having simulations that resembles the original presets without being
duplicates of them. However we can notice that some cluster are heterogeneous and
composed by patients with different physiologies. This means that some diseases
share similar values of the state variables even if their starting presets is different.
This is possible since some starting presets describes similar disease and it can
happen that they are rather similar and thereby get clustered together.

Aside from this first dataset, another one was created including the patients’
body weight and length. Including those two informations is a good way to test
the model robustness to changes in the input: we need to make sure that our
models does not make prediction on the model parameters based on an estimation
of the body dimension since many of the model parameters we want to estimate
are correlated to the patient body dimension. A clear example is the blood volume,
which is directly proportional to the patient surface. This type of correlation
may be good to improve the prediction performance but at the same time we risk
that our model focus on predicting those characteristics rather then the target
parameters. To make sure that our model is not predicting the parameters by
guessing the patient body dimension we will make a comparison training the top

26

Methods

Figure 3.4: t-SNE visualization of the generated dataset.

performer model on a dataset in which those information are already available. If
the model is actually able to learn different insights from the data rather then just
body weight and length then we should not notice a huge drop of performance
among the two datasets.

Before starting with the experiments the dataset was checked and wrong data
entries were removed and generated again. This data cleaning operation was
necessary since we need to have a properly generated dataset in order to have
valuable results.

3.7 Machine Learning experiments
All the machine learning experiments were performed on a laptop with the following
characteristics: Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz processor, 16GB
Ram, NVIDIA GeForce 1650 graphic card. The main framework used was Scikit
learn (or sk-learn) [42] which is among the most used framework to perform
machine learning tasks. Most of the computation relied on the CPU since sk-learn
estimators and utilities do not support GPUs, but they do support multiple CPU
cores computation.

3.7.1 Features extraction
For the machine learning experiments we will adopt a feature-based approach (as
explained in 2.3.1). In this way most of the common models for machine learning
task can be used for the task and nevertheless we can rely on previous work on

27

Methods

Figure 3.5: Scatter plot of the length and weight combination generated for the
second dataset. The red rectangle marks the area between the 25 and 75 percentiles
for both attributes considering the average population.

features representation for time series. The first step of the machine learning
pipeline is then the features extraction. This step was done through TsFresh library
[43] available in Python. The library is able to extract a comprehensive number
of time-series features. The procedure applied for features extraction was the
following:

• Extract a wide set of features. At the beginning of a project we still do not
know which one could be the most significative for the task, so we need an
exploratory analysis. We then characterizes time series with comprehensive
feature mappings describing meta-information.

• Perform a features relevance analysis. Each feature extracted is individually
and independently evaluated with respect to its significance for predicting the
target under investigation. The result of these tests is a vector of p-values.

• Filter features based on the relevance. The vector of p-values is evaluated on

28

Methods

the basis of the Benjamini-Yekutieli procedure [44] in order to decide which
features to keep.

Most of the time training a model on a wide number of features is computationally
expensive, hence the need for filtering. Each of those steps has been applied
independently on the different channels of each patient’s time-series. The features
were also fine-tuned based on the final performances. Surprisingly we obtained
the best results in terms of performance by filtering just few features, keeping the
training time low. The only features that were filtered were the one that generated
null entries or non-numeric results. This aspect is most likely due to the low amount
of patients generated: even if we increase the number of dimensions (features) of
the dataset we still have only 240 patients available for the experiments, which is a
low number if compared to other experiments analyzed in the literature.

3.7.2 Validation
In order to validate the results an holdout technique has been used: this means that
we randomly split the dataset into train and test data. Since the split is performed
on a random basis each model has been trained and tested 5 times with a different
split every time. By doing that we make sure that the final performance of the
model does not depends on how the training and test data were shuffled. We can
take a look at the different splits coming from the 5 seeds tested in figure 3.6.
As performance metrics the following were used (further details on the metrics are
available in section 3.4):

• MSE averaged through all the target parameters;

• MSE for each target;

• RMSE for each target;

• aRRMSE.

Together with that we kept track of the runtime of each model in order to compare
also the efficiency in terms of computational time.

3.7.3 Regression models
Here it follow a list of the regression models tried with a brief overview of the
algorithm behind. We are testing different models since there is no previous studies
related to similar task (MTR applied over MTS) hence we need to explore different
alternatives in order to find out which one may work best.

29

Methods

Figure 3.6: 5 different train and validation splits. We can notice how for each
seed we have different data falling into the validation subset (the green segments).

• Ridge Regressor: one of the naive regressors used. This model solve the
regression problem by minimizing the least squares function, regularized by
an euclidean norm. From the optimization point of view, we want to minimize
(with respect to w) the following:

||y − Xw||2 + alpha ∗ ||w||2

with y as predicted target, X the training data and alpha fixed. This is one of
the most basic regression model that can be used for multi-output problems;

• Decision Tree Regressor: Non-parametric and unsupervised method. The
algorithm learn simple decision rules on the data features and makes decision
using them. It was hoosen because it requires no data preparation or normal-
ization, cost of the tree is logarithmic to the number of data samples and it is
considered a white-box model;

• Random Forest Regressor: Ensemble of decision trees. When we use
ensemble models we combine predictions of several base estimators in order
to improve the robustness over a single one. Chosen because often individual
decision tree tend to overfit the data although it does not support natively
multi-output;

• Gradient Boosting Regressor: or Gradient Boosted Decision Trees (GBDT)
is an effective off-the-shelf model that can be used for our task. It does not
natively support multi-output;

30

Methods

• KNN Regressor: not properly a model since it is a instance-based learning
algorithm, so it simply stores instances of the training data without training
any internal model. The label assigned to a sample is computed on the mean
of the labels of its neighbors;

• mSVR: Support Vector Machines (SVM) can be both used to perform classifi-
cation and regression (the m stands for multi-output). This model was chosen
because of its versatility (different kernel functions can be used to deal with
different data spaces, the so called "kernel trick") and because it is effective in
high dimensional space, even when the number of dimension is greater than
the number of sample.

All these models were available in the sklearn library except for the mSVR which
was implemented by customizing an available model1 in order to make our data
format readable.
As explained in section 2.3.1 not all the algorithm natively support multi-output
problems. Regressors stacking and regressors chaining are a workaround to this
limitation:

• Regressors stacking: simple strategy that consists in fitting one regressor
per target. It is possible to inspect each regressor and gain knowledge about
the target but this strategy does not take advantage of correlation among
targets;

• Regressors chaining: each model makes a prediction in the order specified
by the chain using also the predictions of the earlier model in the chain. The
order of the chain is important and in general we don’t know the optimal
ordering, hence we need to fit many randomly ordered chains.

in table 3.3 we can notice which one were the models tested with those approach.

3.7.4 Experiments settings
Each experiment is characterized by a seed for the reproducibility of the results
and also to ensure that we split the dataset in a different way. Each model has
been tested 5 times each time with a different see. In this section we will refer as
experiment an entire training and validation of a single model using a unique seed.
Furthermore, a baseline regressor has been trained during each experiment. When
it comes to this type of experiments is good to compare the trained estimator
against a simple rule of thumb. We refer to that as a baseline regressor, i.e. a

1https://github.com/Analytics-for-Forecasting/msvr

31

Methods

Regressor Native Stacking Chaining
Ridge ✓ ✓
Decision Tree ✓ ✓ ✓
Random Forest ✓ ✓ ✓
Gradient boosting ✓ ✓
KNN ✓
mSVR ✓

Table 3.3: Summary of how the different models were managed to perform the
multi-output task.

regressor that always give as a result the mean of the training target. If the model
actually learned from the data we should notice a huge difference in performance
between the dummy estimator and the model under experiment. Results and
outcomes of these experiments are discussed in chapter 4.
Most of the work was due to hyperparameters tuning for each model. It was not
feasible to perform a grid search because the regressors stacking and chaining ap-
proach needs to train one model for each target and grid searching hyperparameters
for each of the 11 models was too time consuming. The final approach consisted
then in applying the same set of hyperparameters to all the sub-model during the
search, which was done in a random search way. For the algorithms which natively
support multi-output (see table 3.3 to see which we are referring) it was possible
to perform a grid search hence the hyperparameters optimization was faster.

Regressor Hyperparameters Description
Ridge alpha Controls the regularization strength.

Decision Tree criterion Function that measure the quality of a split.
It can be thinked as of a loss function.

max_depth Maximum depth of a tree.
Random Forest n_estimators Numbers of tree to ensemble in the model.

criterion Same as Decision Tree.

Gradient boosting
loss Loss function to be optimized.
max_depth Maximum depth of nodes in the tree.
n_estimators Number of tree that contributes to the prediction.

KNN n_neighbors Number of neighbors to use for the algorithm.
weights Weight function to use.

mSVR

kernel Specifies the kernel type to use.
gamma Kernel coefficient.
epsilon Specifies the epsilon within no penalty is associated

in the training loss.
C Regularization parameter.

Table 3.4: List of the fine-tuned hyperparamters for each model.

32

Methods

3.8 Deep Learning experiments
All the deep learning experiments were performed using the free computational
resources available from Google Colab. For deep learning most of the computation
are GPU-centric. Services as Google Colab offer GPUs for a limited amount of
time for each user, hence computational resources were the main challenge during
those experiments. Most of the deepest architecture requires a lot of time to deploy
and train and is really easy to run out of GPU allocation even before starting the
training phase. The deep learning experiments were then resized on the amount of
computational resources available. Three main framework were exploited for those
experiments:

• TensorFlow [45]: open source, python based platform for machine learning
and deep learning developed by Google. It allows to easily build and modify
state-of-the-art architectures. Thanks to that there is no need to re-implement
architectures from scratch but is necessary to modify the proper layers. This
flexibility was the main reason behind the choose to perform experiments
within this framework;

• PyTorch [46]: open source machine learning and deep learning framework. Its
popularity is recently increasing since it simplifies the creation and deployment
of complex models. As TensorFlow does, this framework offers the flexibility of
customizing deep architectures, such as the TFT architecture which is already
available in this package: that’s one of the main reason of choosing to perform
experiments also within this framework;

• tsai [47]: open source deep learning package that focuses on providing state-of-
the-art architectures (such as ResNet, LSTM and 1-dimensional CNN) to train
and customize in a user-friendly way The package is built upon PyTorch and
fastai. It was used in order to have a quick feedback on how a pre-implemented
architecture could work on the dataset. Most of the architecture are adaptable
to multi-channel time series input and they support multi-output.

A first exploratory analysis was needed in order to evaluate which architecture
were computationally feasible to develop and train.
As already pointed out computational resources were the main challenge. Because
of that it was not possible to perform a single complete experiment with the TFT
architecture because it required a lot of resources both to deploy and then train:
it was not possible to finish a full training cycle without running out of GPU
resources. Furthermore, the number of parameter sets generated was not enough
to feed such a deep architecture, as the results from the experiment will show. So
the TFT architecture was discarded. The following architectures were the one used

33

Methods

in the deep learning experiments: ResNet Plus (from tsai package), 1D ResNet
implemented from scratch, 1D custom CNN implemented from scratch.

3.8.1 Training methods
Even if the architecture tested comes from different framework, the training process
was almost the same for all the 3 architectures tested. Most of the deep learning
architecture final performance depends on the training stage. The training of a
network is made through the Stochastic Gradient Descent algorithm (SGD). The
algorithm consists in a weight update procedure by scanning through the training
data: we take the training data, we go through the network, we compute how much
our result is far from the ground truth (the so called loss) and we then update the
weight depending on how much the prediction was wrong.
There are several variations of this algorithm and we can customize the training
stage by fine-tuning some hyperparameters. Here it follows a brief explanation of
the most important parameters involved during the tuning stage. It is useful to
get a knowledge of those since they will be cited through the description of the
experiments:

• Validation size: percentage of data that will not be used for training but to
validate the model throughout the training process;

• Batch size: the training data is partitioned in mini batches of a fixed
size. This procedure helps the learning algorithm (SGD, Stochastic Gradient
Descent) to converge to a solution. The optimal size depends on many factors
and most of the time is task-specific;

• Epochs: number of times all the training data have passed through the
neural network during training. As already pointed out, the learning process
is basically a weight updates and those updates are done in small steps, hence
the need to scan through the training data multiple times;

• Learning Rate: hyperparameters strictly related to SGD. It states the mag-
nitude of the weight update through each epochs. Commonly this parameters
change through the epochs since is best to make smaller adjustment when we
are approaching to a solution: by decaying it through the epochs we allow to
make big update in the beginning of the training when the network does not
know anything about the data and small change towards the end when the
network has been through several updates;

• Dropout: regularization methods that randomly drop nodes in the network
during the training stage. Studies have shown that this strategy helps to avoid
overfitting the data [48].

34

Methods

In order to quantify how far we are from the ground truth during the training
phase we need to define a loss function. The loss function used during training
were the MSE and RMSE (further details are given in 3.4) averaged through all
the target. Since multi-target loss function were not available out-of-the-shelf it
was necessary to implement customized loss functions to fit our task.

3.8.2 Data normalization
Even if our time series are all of the same length their values are in different ranges
(we can get a feeling of that from table 3.1). This does not represents a problem for
most of the machine learning algorithms, but is not ideal for a deep neural network.
One of the most common normalization used for time series classification [39] is
the z-score normalization. Also referred as Z-normalization [49] or "normalization
to zero mean and unit of energy" it consist in forcing the sample of each time series
to have 0 as mean and 1 as standard deviation. This is obtained by rescaling each
sample xi of a through the mean µ and standard deviation σ in the following way:

xi = xi − µ

σ

For the following experiments all the time series gathered where first z-normalized
before feeding them to the architectures developed.

3.8.3 ResNet Plus configuration
This model is a PyTorch-based implementation of a ResNet adapted for multi-input
and multi-output task (that’s what the "Plus" in the name stands for). This first
experiment was performed in order to check if an off-the-shelf implementation of a
ResNet could give good results.
This experiment has been quick and straight-forward since tsai offers ready to use
functions to perform all the steps needed for a deep learning-oriented task. The
starting learning rate has been found through a learning rate finder function that
starts the training with very low learning rate and change it at each batch of data.
By looking at the loss plot during this process we can get a clue on the starting
learning rate. A good choice is a value that is nearby the loss drop (see figure 3.7)
After the learning rate we tuned the batch size. A usual choice is to choose a batch
size as large as the memory consent (a batch is kept in memory while training). As
for all the parameters there is not a general rule but the choice is task dependent.
Since we have a small dataset the batch-size search has focused on relatively small
values (ranging from 8 to 32). Since the model was already implemented no other
architecture-related parameters were tuned.

35

Methods

Figure 3.7: Learning rate identification plot. The orange dot states the last spot
in which the slope is low: a good starting learning rate can be found around that
area (in this specific example, a good choice would be between 10−2 and 10−1).

3.8.4 1D ResNet configuration

This architecture had to be implemented from scratch since most of the ResNet
architecture are tailored for computer vision tasks, so they relies on 2D convolutional
layer which does not work for our task since we need convolution only on the time
dimension. Furthermore, we need an architecture that support multi-output.
Because of those two aspects it was not possible to re-use any model already
implemented. A scheme of the final architecture can be found in figure 3.1.
To obtain the multi-output feature it was necessary to modify the last layers of
the architecture: a last dense layer was added with the same number of output
neurons as of the target values. No softmax function is needed since we are dealing
with a regression task so ideally the final output of the network needs to be the
real values of the target parameters (and not likelihood of belonging to a certain
class). After adding the 1D convolution and implementing the skip connection, the

36

Methods

1D-ResNet architecture was ready to be trained.
Since deeper architecture often requires more epochs to reach convergence a learning
rate scheduler usually helps throughout the learning process: usually we start with
an high learning at the beginning when we do not know anything about the data,
and so is better to explore more the solution space. When the architecture has
learned something we lower it in order to make small steps towards the optimal.
The learning rate decay was set such that if the validation loss values get no
improvement for a certain amount of epochs the learning rate get reduced by a
factor of 2. After searching for the correct batch size in low range of values (for
the same reason explained in the previous experiment) also some trials with and
without dropout were made.

3.8.5 1D CNN configuration
Those experiments involved developing from scratch a shallow CNN with 1 dimen-
sional convolution layer in order to have an effective and light weight architecture as
a baseline for the deep learning approach. This type of approach was also adopted
in [6].
In the figure 3.8 we can get a clue about the architecture which is composed of
just 1D convolution followed by batch normalization layers and a final average
pooling layer. No skip connection are included. Since this architecture is small and
easy to manage it was possible to perform an automatic architecture parameters
optimization using KerasTuner, a framework tailored for parameters search. In this
way we could tune the architecture parameters like kernel size, filters, the usage of
batch normalization by a random search.

37

Methods

Figure 3.8: Scheme of the 1D-CNN used in the experiments. The number in the
parenthesis states the input and output dimension of each layer. We can notice
how after each convolution the depth of the time series changes because of the
convolutions.

38

Chapter 4

Results

In this section we will comment and evaluate the results obtained through the
experiments described in the previous section. In order to be clear, in the following
table 4.1 there is a recap of all the acronyms that will be found through the results
discussion.

Parameters Abbreviation
Hearth Rate HR
Blood volume TotalV ascularV olume
Left ventricular contractility e_lvmax
Right ventricular contractility e_rvmax
Left ventricular stiffness e0_lv
Right ventricular stiffness e0_rv
Systemic Vascular Resistance SV R
Pulmonary Vascular Resistance PV R
Systemic Arterial Stiffness Ea
Pulmonary Arterial Stiffness Epa
Hemoglobin Hb
Total oxygen consumption O2Cons
Pulmonary shunt PulmShuntFraction

Table 4.1: Abbreviation for the target model parameters.

4.1 Machine learning results
In table 4.2 we can notice the final performances of all the machine learning models
tested. The results refers on the performances on the test data. All the models were
fed with the raw time series, except for the mSVR which required z-normalization

39

Results

(more details in 3.8.2) since all the SVM-based models requires data to be in a
standard range.
Among all the models tried the top performer results to be a Gradient Boosting
regressor with regressor stacking technique. It performs best both in terms of MSE
(averaged through all targets) and aRRMSE. The worst performer turned out to
be the KNN Regressor which we recall support natively multi-target problem.
The results we got from these experiments were both satisfactory and unexpected.
We were expecting that the top performer would have been one of the native
multi-output models for their capability of taking into account the correlation
among all the targets during the prediction itself. Apparently this aspect was not
enough to gain in performance for this task and it might have misled the model
during the prediction. This shows us how correlation among target and input is not
helpful in any task but is strictly task-related. The native multi-output regressors
were still the one with the fastest computational time: if we look at the mSVR
performance they are quiet decent if we consider that it required just 0.12 sec to
train and deploy on the test data which is quiet impressive if compared with the
110.2 sec needed to train the top performer Gradient Boosting regressor. This
aspect was quiet expected since with regressor stacking we are training several
models (one for each target) instead of a single one.

Regressor Approach MSE averaged
(mean ± std)

aRRMSE
(mean ± std)

Ridge Multi-output 3621.3 ± 633.0 0.55 ± 0.02
Decision Tree Chain 4741.4 ± 1351.9 0.72 ± 0.05
Random Forest Multi-output 2497.0 ± 1109.0 0.52 ± 0.03
Gradient boosting Multi-output 1749.9 ± 564.2 0.46 ± 0.04
KNN Native 24884.4 ± 3650.7 0.72 ± 0.02
mSVR Native 4507.8 ± 609.0 0.54 ± 0.03
Baseline Native 31923.2 ± 8221.5 1.01 ± 0.01

Table 4.2: Performances of the machine learning models tested. The MSE and
aRRMSE score are computed on the test set and averaged through 5 different runs.
If a model has been tested with different approaches only the one with the best
scores is here reported. The best scores are in bold characters.

4.1.1 Different performance among model parameters
In the following section we are going to analyze more in the details the results
obtained with the top performer model: a stacked Gradient Boosting regressor.

40

Results

This further analysis has been conducted only on the top performer since all the
different models tried can be seen as an exploratory study of the task: since it is
the first time a study of this type has been conducted it was worth trying a wide
range of models to spot which one could work best. Once we found it, we can
proceed with further analysis.
From figure 4.5 we can infer the performance obtained on each target. As a rule of
thumb to read those visualization we can consider that the more the distance from
the red line the more the model is wrong. The data point are colored depending
on the patient group they belong.
We can notice how the most difficult attribute to predict were the PV R and SV R
since all the data points are scattered in the graph and we can also notice that
most of the predicted values lies around the average true value. This last aspect is
more evident in the SV R graph, in which we can notice how the trend resembles
a horizontal line rather then the ideal bisector line. Those two parameters are
actually difficult to measure in a precise way. They can be estimated from some
formulas since they are "composites" by other body parameters. For instance, we
can formulate the SV R as:

SV R = MeanSystemicArterialPressure − RightAtrialPressure

CardiacOutput

Even if we have all of those parameters as input for our model, our results are still not
satisfactory. This could be because even this formula gives just an approximation
of the real SV R value, which may depends from different physiology aspects such
as the musculature of the patient, length and shape of the vessels and so on. Those
parameters were not taken as input state variables, so we might be missing some
information to correctly predict those model parameters.
We do have good performances on parameters such as total vascular volume and
e0lv (Left ventricular stiffness). We can notice from the scatter plot that those
parameters were correctly estimated for most patient groups. This result was
impressive since is really difficult to estimate correctly the total vascular volume of
a patient: as for the SV R we can do this by formulas but we would obtain just an
approximation. Also most of the formulas for this parameter depends on the body
dimension, which was not included in the dataset for this analysis: that makes this
result even more valuable.
If we focus on the patient groups we can not notice any particular behaviour coming
from the difference in the physiology, we can though appreciate that to different
physiology correspond different ranges of values for each parameter: this is perfectly
coherent with the data generation procedure that we adopted. For some physiology
some values are in the same range, such as in the PulmShuntFraction graph in
which we can notice a mixed cluster in the left part or in the middle section of the
O2Cons graph. We can tell that this was a consistent problem for the prediction:

41

Results

for the parameters in which the patient values were spread much more evenly in
the space we obtained better results (see again the TotalV ascularV olume as a
clear example). We recall that from different physiology groups derives differences
in some state variables that were excluded from this analysis: this aspect can be a
problem since the model might not distinguish two different physiology, assigning
to them similar prediction even though they are really different.
The visualizations in figure 4.5 plot the predicted and ground truth distribution
of the test data. We can notice that for most of the target parameters the model
is able to predict correctly the true distribution of the data even when it is a
bi-variate normal distribution (which happens for most of the target). The same
comments from previous section applies also on those visualization: we can notice
how the predicted SV R and PV R distribution are far from the actual one. A
similar behaviour happens for the O2Cons. If we compare the two distribution,
the predicted expected value is similar to the true one but the predictions seems
biased towards that value since we can notice an high peak in the distribution.

4.1.2 Problems deriving from high dimensionality

As a comparison, here it follows the same visualizations but for the worst performer.
This analysis is useful to understand that other models were actually able to
learn useful information from the data gathered. For these results the scatter
plot is not color-mapped with the patient physiology since the model performs
bad independently from that. We can notice from the scatter plot in 4.7 that the
predicted values lies around the true mean for all the parameters. This can be
noticed also from the high peak in the predicted distribution plots: the model hardly
recognize a bi-variate distribution correctly. Sometimes the predicted distribution
is completely different from the true one (see systemic arterial stiffness). Even
if this algorithm is a native multi-output one, we can explain this huge fail in
tackling this task probably because of the number of features of the dataset: the
more dimension we have the more we complicate the distance calculating process
along each dimension. We refer as this problem as curse of dimensionality, which
more in general refers to the set of problems that may arise when we analyze high
dimensional spaces.

4.2 Deep learning results

Even if the basic machine learning models gave great results we got worst when we
applied deep learning architecture on our data.

42

Results

4.2.1 Risk of overfitting with deep architectures
The first results we are going to show are related to the ResNet architecture. As
explained in the previous section we tested two type of ResNet: ResNetPlus from
tsai as an exploratory analysis and a custom ResNet implemented from scratch
within the TensorFlow network. From the first experiment with ResNetPlus we
could already infer that the ResNet architecture is too deep for the amount of data
we have since it quickly overfit the data (as we can see from the learning figures
in figure 4.1). This behaviour does not change even with further fine-tuning and
regularization. We could not get any valuable results from the tsai architecture.
The hypotesis elaborated after the first ResNetPlus experiments were confirmed
after training the custom ResNet. After several fine-tuning steps we were still
not able to obtain any useful results. We can notice from the figure 4.2 that the
validation loss curve quickly goes under the training loss: this behaviour is not
regular and suggest that there are some problems during the learning process. One
problem could be related to the data shuffling: it may happens that "easy" patient
are getting into the validation set. To avoid that we performed several tests with
different seed but the results were about the same. Also those curves seems to
suggest that there was data leakage during the experiments: that means that some
data are duplicated and they are present in both train and validation subsets.
This could actually be true since we had no control on how the patient data were
generated since the procedure was random, then it could be that some patients
had really similar parameters. A double check on the dataset confirmed that there
were no duplicates in the data. Adding further regularization (such as increasing
dropout) helped a bit but we still obtained the same behaviours.

4.2.2 Fine-tuning architecture depth
Those experiments were the most interesting among the deep learning ones. Since
deep structure could not give any valuable results we decided to perform different
experiments by modifying the CNN architecture. Each experiment consisted in
training a CNN with different number of convolutional layers: in this way we could
check if the dimension and deepness of the architecture is a relevant factor that
affects the overall performance on this task.
The experiments consisted in developing three different 1D CNN for time series with
different numbers of convolutional layers (3, 5 and 8 respectively). As we can see
from the learning curves in figure 4.3 the results confirmed what was our hypothesis
after the ResNet experiments: a deep architecture quickly overfit the data. From
the learning curve we can infer that the 3-layers architecture is underfitting the
data since there is a huge gap in performance between the training and validation
curve: the model is not able to extract enough knowledge to perform good also on
never-seen data. The gap get thinner when it comes to the 5-layers architecture:

43

Results

Figure 4.1: Learning curves from tsai experiments. The curve on the bottom
shows the loss (MSE) both on the training (blue curve) and validation (orange
curve) set during the epochs while the curve on the bottom displays the RMSE
through the epochs.

the learning curves shows that the model is able to extract the right amount on
information since is not either overfitting or underfitting. With that architecture
we reach a plateau in the performance after 350 epochs. The 8-layers architecture
shows the same ResNet learning curve, so the same considerations applies to that.
The only architecture that was worth testing was the 5-layers 1D CNN. We then
kept 10% of the data as testing data and trained the architecture on the remaining
part. The average MSE was collected as metrics: the results inferred were not as

44

Results

-2e+5

0

2e+5

4e+5

6e+5

8e+5

1e+6

1.2e+6

1.4e+6

1.6e+6

1.8e+6

-100 0 100 200 300 400 500 600 700 800 90

Figure 4.2: Loss (MSE) from 1D ResNet throughout the epochs. Blue: validation
loss, purple: Train loss.

good as than the best machine learning approach since we measured an average
MSE of 2354.1 and and aRRMSE of 0.52.

4.3 Variation in input: adding body dimensions
After performing the experiment on the first dataset we decided to test the Gradient
Boosting regressor on the dataset containing the body size and length. We can
see a comparision from table 4.3. The experiment consisted in training a new
Gradient Boosting regressor instance with the second dataset and then test it.
Again a 80/20 holdout technique has been used. The hyperparameters search has
been performed starting from the best hyperparameters combination found for the
previous experiments and by randomly varying the values.
We can notice that there is not an huge difference among the two models. By
adding the body weight and length we still gain in terms of MSE and we have a
slight improvement in the aRRMSE since we have lower standard deviation. We
can say that the model is actually able to learn different insights from all the
time-series channels and it is not making its prediction by inferring the patient
body dimensions from the data.

45

Results

-1e+4

0

1e+4

2e+4

3e+4

4e+4

5e+4

6e+4

7e+4

8e+4

9e+4

1e+5

1.1e+5

1.2e+5

-20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 28

(a) Loss (MSE) from 3 layers CNN through-
out the epochs. Purple: training loss, green:
validation loss.

(b) Loss (MSE) from 5 layers CNN learning
throughout the epochs. blue: validation loss,
red: training loss.

(c) Loss (MSE) from 8 layers CNN throughout
the epochs. Blue: training loss, purple: train
loss.

Figure 4.3: Learning curves for the different CNN tried.

46

Results

Parameter w/ body size w/o body size
TotalV ascularV olume 17156.7 21348.1
elvmax 0.051 0.095
e0lv 3.45e-05 3.13e-05
ervmax 0.011 0.008
e0rv 8.05e-05 3.79e-05
SV R 0.024 0.017
PV R 0.00025 0.00041
Ea 0.009 0.008
Epa 0.009 0.013
O2Cons 806.39 1088.99
PulmShuntFraction 3.23 12.29
Overall aRRMSE: 0.49 0.46
Overall RMSE: 1420.0 1749.9

Table 4.3: Comparision of performance among the gradient boosting regressor
trained on the dataset contained for each target model parameter. The value is
the MSE error so it has the same unit of error of the target. In bold are indicated
the lower error for each target parameter.

47

Results

Figure 4.4: Legend for the scatter plot visualization.

48

Results

(a) Systemic Vascular Resistance. (b) Pulmonary Vascular Resistance.

(c) Total vascular volume. (d) Left ventricular stiffness.

(e) Pulmonary shunt. (f) Oxygen consumption.

Figure 4.5: Scatter plots of the test data, color coded by starting preset. Gradient
boosting regressor. Legend can be found in 4.4. The same plots for the remaining
model parameters can be found in A

49

Results

(a) Systemic Vascular Resistance. (b) Pulmonary Vascular Resistance.

(c) Total vascular volume. (d) Left ventricular stiffness.

(e) Pulmonary shunt. (f) Oxygen consumption.

Figure 4.6: Distribution plots of the test data displaying the true and predicted
distribution. The same plots for the remaining model parameters can be found in
A.

50

Results

(a) Systemic Vascular Resistance. (b) Pulmonary Vascular Resistance.

(c) Total vascular volume. (d) Left ventricular stiffness.

(e) Pulmonary shunt. (f) Oxygen consumption.

Figure 4.7: Scatter plots of the test data, KNN Regressor. The same plots for
the remaining model parameters can be found in A.

51

Results

(a) Systemic Vascular Resistance. (b) Pulmonary Vascular Resistance.

(c) Systemic arterial stiffness. (d) Left ventricular stiffness.

(e) Pulmonary shunt. (f) Oxygen consumption.

Figure 4.8: Distribution plots of the test data displaying the true (blue) and
predicted (orange) distribution for the KNN regressor. The same plots for the
remaining model parameters can be found in A.

52

Chapter 5

Discussion and limitations

5.1 Experimental findings

5.1.1 Parameter estimation
Before starting this thesis project it was known that this task is a difficult problem
to solve in an accurate way. The main concerns were related to the complexity
of the cardiovascular system, which we know is difficult to reproduce and analyze
accurately. The multi-input and multi-output aspect was the most challenging
aspect since there were no similar previous work. Because of that we had an open
scenario in front of us since we had no clue of which results to expect. After
performing all the planned experiments we can affirm that the results itself were
indeed satisfying and valuable.
In terms of performance there is a slight difference between the Gradient Boosting
regressor and the 5 layers 1D-CNN which were the top performer respectively from
the machine learning and deep learning experiments. Even though the performances
are similar is worth mentioning that the deep learning model requires more time to
train and deploy and is also more difficult to re-deploy if new data are acquired.
When it comes to decide whether a model is worth deploying or not we should also
take into account those factors.
Also the native multi-output SVR model (referred as mSVR in the experiments
section) brought impressive results not in terms of performance but for its computa-
tional time. Predicting all target at once does not improve the overall performance
but it is still a huge improvement with respect to developing one model for each
target. A lot of interesting possibilities may be explored by focusing on that model.
We were expecting the deep learning results since we were working with a small
dataset. Deep architectures such as ResNet requires enough data to be able to
learn properly. Also since the data was already simulated no data augmentation
techniques have been used [50] but this could be a field that can be explored for

53

Discussion and limitations

further development and improvement.

5.1.2 Cardiovascular parameter analysis
The analysis has been conducted on several different patient phisiology. We can
refer to those also as patient state: if we think of a patient lifetime in ?? its
condition can switch from one state to a more critical one. Also different disease
might show up during the patient monitoring. If we look at figure 3.4 we can notice
a C-shape on the left in which patient state slowly fade from a disease to another:
this aspect show us how different disease are really similar and differs only by small
change. Ideally, all patient states should be reached by "fading" from one preset
to another. This indicates that, even if the amount of data is small, the patient
states were generated in the proper way.
From the results obtained we can infer that our best model has low performance
with some particular patient state. An example is the relaxation abnormality. This
state consists in having delayed and not homogeneous relaxation of left ventricles
and right ventricles. Those disturbances affects then the pressures measures over
time by shifting them and this has clearly mislead the model in the prediction.
Another problematic state is the adult 60 years physiology. Even if it is not a disease
state the model had problem in performing well (see the oxygen consumption in
4.5). This behaviour is not surprising: we have different set of healthy state in our
dataset with different body physiologies and most likely the differences between an
healthy 20 years patient and 60 years patient are not caught by the time-varying
patient data gathered for the analysis. Hence the model does not have enough
information to discriminate among those cases. Including the age as input data
would have been useful for that but it could have lead to other ethical problems
discussed in 6.2.

5.2 Correlation analysis
We have already introduced correlation [40] for time series in section 3.5. Correlation
is usually analyzed to describe how features in a dataset are related to each other
before feeding the data into a model. We left this analysis at the end of the work
since this is a multi-output task, hence we could compute the correlation among
all input and all output and this can highlight relationship that can better explain
the performance obtained on certain target.
For this analysis we will refers to figures 3.2 that refers to our first dataset and 5.1
that refers to the dataset containing information about body weight and length.
Even if they refers to different data the pattern in the matrices are the same,
the only differences lies in the values of the correlation factor. The correlation
matrices were sorted using the Cuthill–McKee algorithm. This algorithm is capable

54

Discussion and limitations

Figure 5.1: Pearson correlation between state variables (x-axis) and model
parameters (y-axis).

of sorting rows and columns such that is easier to spot cluster of correlation in the
matrix so it make easier to read the correlation matrix even when we have multiple
input and output as in our case.
We can notice some high correlation factor that are straight-forward to understand
such as the high correlation among weight and vascular volume: we expect that
those two factor were linearly related since they both grow together. Also the
high positive correlation between the left ventricular ejection fraction and the left
ventricular stiffness describes correctly the interaction among those two parameters.
Other correct patterns are the negative correlation among the length and left
and right ventricular stiffness and contractility. All those correlation pattern

55

Discussion and limitations

actually reflects on the final results: if we focus on the SVR and PVR column
we will not notice high values of correlation with the input values if compared
with the ventricular stiffness that has high correlation values wit a lot of input
parameters. SVR and PVR were the most difficult model parameters to predict:
the low correlation among those factors and the input monitoring parameters can
be one of the reason of those low performance. We do not notice any huge drop
in performance on parameters that has high correlation patterns with input data.
Correlation is not the only factor that influences the performances.

5.3 Limitations
After performing all the experiments we can identify in the following list all the
limitations that has been encountered and that can be explored to improve even
more the quality of this work in the future:

• Use of synthetic data: even if those data are generated through Aplysia,
which is built upon medical knowledge, we are still not generating all the
possible events and conditions that real patient might shows during their
monitoring. It would be much more valuable to train the models found using
real patient data, but no such dataset are available as this project is going;

• Small amount of data: another drawback of having to generate our data
was that we could not generate a huge amount of patients since we could risk
of generating too similar phisiologies;

• Simulator instability: we also had to take into account Aplysia software
technical limits. The simulator fails to adapt to bigh changes in some parame-
ters values, such as the blood volume. Also, different consistency and error
check contributes to slow down the process of generating data. The lack of
data is an aspect that also made impossible to further explore deep learning
architectures such as the TFT;

• Lack of medical expertise: The lack of background knowledge in the
medical field has made it difficult to contextualize our results in terms of
how they relate to known and possibly correlations between different all the
different physiological parameters taken into analysis.

56

Chapter 6

Ethics, future work and
conclusions

6.1 Future work
This work can be a good starting point for further research in the field of cardiovas-
cular parameter estimation but there are still some improvements that can be made.
The first thing would be to increase the amount of generated data. For this job the
amount of generated data was limited by the number of available presets in Aplysia.
Generating completely random set of parameters would be for shure useless since
we could end up with non realistic combination of model parameters but it can be
interesting to apply the data-generation routine to generate new model parameter
set starting from real patient data. In this way we can generate syntetic model
parameters that resembles the starting real physiology. Having more data would
enhance the use of the architectures that did not gave good results in this study.
Other improvements can be made on the interpretability of the model. Since this
work could be used as a component of a support decision tool it would help to
avoid models whose inner workings are difficult to interpret. Modern and complex
architecture are more suited to this type of analysis, such as the transformer-based
architectures. Enhancing the use of those architectures by having a proper amount
of data would be a huge step towards the interpretation of the outcomes since we
could take a look at where the model is looking by plotting the attention maps [30].
Another step forward would be to turn this study into a real-time model that keep
learns from the monitoring data. Currently this study focus on fixed patient state
but it could happen that during the patient life-time in a ?? different diseases
shows up and the patient shifts from one particular state to another. In order to
keep the digital model coherent with the patient state we would need a model that
is able to correct its prediction of the model parameters over time depending on

57

Ethics, future work and conclusions

Figure 6.1: Scheme of the local optimization loop with the deployment of the
machine learning model.

the variations of the input time signals. Some alternatives can be found in the
literature to perform such things: incremental learning is a branch of deep learning
that focus on architectures that are able to learn from new data without forgetting
the previous knowledge acquired [51]. These framework could be useful to turn
this work into a real-time patient monitoring system in which the patient model
keeps get updated depending on the input data.
Another useful development of this project would be to generate and publish a
dataset using Aplysia in order to enhance research on this topic. As inferred
from the literature studies there are few articles that focus on predicting different
parameters at the same time and this could be because of the absence of dataset
that consent to develop and perform such experiments. Giving a dataset to the
research community would be for sure helpful to further explore this field.
A proof on how the developed methods is worth to be explored more is its ap-
plication for parameter optimization. The machine learning model trained and
developed for this model has been used by Giulia Tuccio, a KTH student performing
a Master’s Thesis at Getinge AB in the field of parameter estimation through
optimization. By using a trained machine learning model we can enhance the use
of local optimizer, which ensure faster convergence during the optimization process.
In particular, as we can notice from figure 6.1 the machine learning model gives an
initial guess of the parameters to further optimize with a local optimizer: without
an initial guess we need to use global strategies, which requires longer time to

58

Ethics, future work and conclusions

converge.

6.2 Ethical considerations
Ethics is an issue to consider when it comes to driving medical decision using AI.
One first question that may arise is how much do we trust a support decision tool
based on a digital twin. it is important to point out that not all the decisions are
critical but some are already a trial and error process, such as adrenaline injections.
This means that it is safe to rely on such system for those decision but further care
is needed for more critical ones. The system should have well-fixed margin of error
in order to be used as a support tool for decision in ??. Another consistent problem
that could affect this task is training models with dataset that may contain hidden
biases. This problem comes from the nature of supervised learning since we let
the models collect information from the data to make decisions. One of the risk is
that there could be a lack of representation of a particular disease group and it
would be problematic to say that we can generalize from one population to another.
This could result in discriminating gender or ethnics too. In this thesis we did not
included the gender in the dataset as information in order to mitigate any gender
discrimination but the starting presets from Aplysia are mostly based on men
patient. Although, the equations that describes the hemodynamics events that we
have analyzed are mainly based on the body composition, hence we can consider
them gender-neutral. Age bias is another bias we should be aware of, especially in
this field. When comes to medical decision age is an important factor. For instance,
older patient usually requires different types of treatment since they could have
different non-cardiovascular diseases. Potentially, having a model trained on an
unbalanced dataset (with respect to the age) can mislead the support system in
making much more drastic decisions then needed. In our analysis the age was
partially taken into account since 4 different age groups were generated from the
healthy presets but this is not enough to affirm that we have taken measure to
avoid any type of hidden bias. If we take a particular patient state the model
should behave correctly disregarding the age of the patient, but we already saw that
there is a group of control patient (adult 60y) that presents lower performances
compared to the other control patients.

6.2.1 Sustainability
The models developed for this thesis work could be used as a part of a bedside
decision-support framework. Those tool can both increase the efficiency of the
decisions by giving insights and suggest the best treatments for a specific patient,
as well as the use of specific medical devices [52]. If we look from the hospital
perspective, treatments and medical devices are often expensive and different

59

Ethics, future work and conclusions

criteria needs to be taken into account simultaneously. By automating this process,
decision-support models can lower cost on the overall health system.
Other saving can be seen in energy, time and resources: AI-driven decision can
automate processes that may have required human labour. Reducing these processes
reduce human action and the waste with ensuring a clean and sterile environment
for the healthcare standards. Also testing treatments virtually on a digital twin
reduces the waste of drugs.

6.3 Conclusions
The purpose of this thesis was to explore different approaches to estimate a set of
model parameters starting from time-dependant simulation output. The problem
was formulated as a MTR task with MTS as input. To perform this work, a first
literature study was conducted to find possible approaches for multi-input and
multi-output problems in the medical field. The experiments then focused on
comparing deep learning and machine learning models from the literature after
adapting them to this specific task. One of the most important constraint was that
no pre-existing dataset could be found in the literature and we had to generate the
dataset by ourselves. This aspect limited the possible deep learning architectures
that could have been deployed. After all the experiments and results evaluation,
we can directly address the research questions. We can state that:

• The best approach that provided the smallest residual error from Aplysia
output was the the machine learning features extraction and filtering approach.
Other approaches that used the raw time-series did not produced any better
results;

• The best framework in terms of MTR scores was the machine learning pipeline
based on a multi-output gradient boosting regressor. It performed best both
in terms of MSE and aRRMSE. We can appreciate the goodness in prediction
especially from the distribution visualization in figure 4.6. In general, all the
model developed are generally better than a random baseline regressor: this
aspect tell us that all the model evaluated were purposfully implemented and
produced useful results;

• The robustness of the algorithm was tested by varying the set of input moni-
toring data adding the weight and length information. This analysis was led to
prove that the best model was actually predicting the output model parameters
or it was basing its prediction on an estimation of the body dimension.

The multi-output gradient boosting regressor by itself can be profitable but in order
to be deployed in this field further studies on reliability needs to be done since we

60

Ethics, future work and conclusions

need wide safe margin when it comes to critical decision. The work of this thesis
can be considered a good starting point for future research and improvements as
described in section 6.1.

61

Appendix A

Visualizations

The following section contains the performance visualizations of the Gradient
Boosting Regressor model compared with the KNN regressor model on the test
data on the five parameters left out during the results discussion.

62

Visualizations

(a) Left ventricular contractility. (b) Right ventricular contractility.

(c) Right ventricular stiffness. (d) Systemic arterial stiffness.

Figure A.1: Scatter plots of the test data, color coded by starting preset. Gradient
boosting regressor. Legend can be found in 4.4.

63

Visualizations

(a) Pulmonary arterial stiffness.

Figure A.2: Scatter plots of the test data, color coded by starting preset. Gradient
boosting regressor. Legend can be found in 4.4.

64

Visualizations

(a) Left ventricular contractility. (b) Right ventricular contractility.

(c) Right ventricular stiffness. (d) Systemic arterial stiffness.

Figure A.3: Distribution plots of the test data displaying the true (blue) and
predicted (orange) distribution.

65

Visualizations

(a) Pulmonary arterial stiffness.

Figure A.4: Distribution plots of the test data displaying the true (blue) and
predicted (orange) distribution.

66

Visualizations

(a) Left ventricular contractility. (b) Right ventricular contractility.

(c) Right ventricular stiffness. (d) Systemic arterial stiffness.

Figure A.5: Scatter plots of the test data, KNN Regressor.

67

Visualizations

(a) Pulmonary arterial stiffness.

Figure A.6: Scatter plots of the test data, KNN Regressor.

68

Visualizations

(a) Left ventricular contractility. (b) Right ventricular contractility.

(c) Right ventricular stiffness. (d) Systemic arterial stiffness.

Figure A.7: Distribution plots of the test data displaying the true (blue) and
predicted (orange) distribution for the KNN regressor.

69

Visualizations

(a) Pulmonary arterial stiffness.

Figure A.8: Distribution plots of the test data displaying the true (blue) and
predicted (orange) distribution for the KNN regressor.

70

Bibliography

[1] L. Fresiello et al. «A Cardiovascular Simulator Tailored for Training and
Clinical Uses». In: Journal of Biomedical Informatics 57 (Oct. 2015), pp. 100–
112. issn: 1532-0480. doi: 10.1016/j.jbi.2015.07.004 (cit. on pp. 1, 8).

[2] Michael Broomé, Elira Maksuti, Anna Bjällmark, Björn Frenckner, and Bir-
gitta Janerot-Sjöberg. «Closed-loop real-time simulation model of hemodynam-
ics and oxygen transport in the cardiovascular system». eng. In: Biomedical En-
gineering Online 12 (July 2013), p. 69. issn: 1475-925X. doi: 10.1186/1475-
925X-12-69 (cit. on p. 1).

[3] Evgeniya Korneva and Hendrik Blockeel. «Towards Better Evaluation of
Multi-target Regression Models». In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2020, pp. 353–362
(cit. on p. 4).

[4] Nicolaas Westerhof, Nikolaos Stergiopulos, Mark I.M. Noble, and Berend E.
Westerhof. Snapshots of Hemodynamics: An Aid for Clinical Research and
Graduate Education. Cham: Springer International Publishing, 2019. isbn:
978-3-319-91931-7 978-3-319-91932-4. doi: 10.1007/978-3-319-91932-4
(cit. on p. 6).

[5] Alistair E. W. Johnson et al. «MIMIC-III, a Freely Accessible Critical Care
Database». In: Scientific Data 3.1 (May 2016), p. 160035. issn: 2052-4463.
doi: 10.1038/sdata.2016.35 (cit. on p. 8).

[6] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn
Keogh. «The Great Time Series Classification Bake off: A Review and Exper-
imental Evaluation of Recent Algorithmic Advances». In: Data Mining and
Knowledge Discovery 31.3 (May 2017), pp. 606–660. issn: 1573-756X. doi:
10.1007/s10618-016-0483-9 (cit. on pp. 9, 11, 37).

[7] Peter J. Brockwell and Richard A. Davis. «Introduction to Time Series and
Forecasting». In: Introduction to Time Series and Forecasting. Ed. by Peter J.
Brockwell and Richard A. Davis. Springer Texts in Statistics. Cham: Springer
International Publishing, 2016, pp. 227–257. isbn: 978-3-319-29854-2. doi:
10.1007/978-3-319-29854-2_8 (cit. on p. 10).

71

https://doi.org/10.1016/j.jbi.2015.07.004
https://doi.org/10.1186/1475-925X-12-69
https://doi.org/10.1186/1475-925X-12-69
https://doi.org/10.1007/978-3-319-91932-4
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/978-3-319-29854-2_8

BIBLIOGRAPHY

[8] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv
Madeka. «A Multi-Horizon Quantile Recurrent Forecaster». In: (Nov. 2017).
doi: 10.48550/arXiv.1711.11053 (cit. on p. 10).

[9] Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. «Temporal
Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting».
In: arXiv:1912.09363 [cs, stat] (Sept. 2020). arXiv: 1912.09363 [cs, stat]
(cit. on pp. 10, 15).

[10] Christian Bock, Michael Moor, Catherine R. Jutzeler, and Karsten Borgwardt.
«Machine Learning for Biomedical Time Series Classification: From Shapelets
to Deep Learning». In: Artificial Neural Networks. Ed. by Hugh Cartwright.
Methods in Molecular Biology. New York, NY: Springer US, 2021, pp. 33–71.
isbn: 978-1-07-160826-5. doi: 10.1007/978-1-0716-0826-5_2 (cit. on
p. 10).

[11] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo
Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh.
«Addressing Big Data Time Series: Mining Trillions of Time Series Subse-
quences Under Dynamic Time Warping». In: ACM Transactions on Knowl-
edge Discovery from Data 7.3 (Sept. 2013), 10:1–10:31. issn: 1556-4681. doi:
10.1145/2500489 (cit. on p. 11).

[12] André Maletzke, Carlos Ferrero, Chris Tibes, Everton Cherman, and Willian
Zalewski. «Medical Time Series Classification Using Global and Local Feature
Extraction Strategies». In: Journal of Health Informatics 9 (Aug. 2017), p. 73
(cit. on p. 11).

[13] Pei-Yuan Zhou and Keith C. C. Chan. «A Feature Extraction Method for Mul-
tivariate Time Series Classification Using Temporal Patterns». In: Advances
in Knowledge Discovery and Data Mining. Ed. by Tru Cao, Ee-Peng Lim, Zhi-
Hua Zhou, Tu-Bao Ho, David Cheung, and Hiroshi Motoda. Vol. 9078. Cham:
Springer International Publishing, 2015, pp. 409–421. isbn: 978-3-319-18031-1
978-3-319-18032-8. doi: 10.1007/978-3-319-18032-8_32 (cit. on p. 11).

[14] Martin Längkvist, Lars Karlsson, and Amy Loutfi. «A Review of Unsupervised
Feature Learning and Deep Learning for Time-Series Modeling». In: Pattern
Recognition Letters 42 (June 2014), pp. 11–24. issn: 0167-8655. doi: 10.1016/
j.patrec.2014.01.008 (cit. on p. 12).

[15] Deepta Rajan and Jayaraman J. Thiagarajan. «A Generative Modeling Ap-
proach to Limited Channel ECG Classification». In: arXiv:1802.06458 [cs,
stat] (June 2018). arXiv: 1802.06458 [cs, stat] (cit. on pp. 12, 14).

72

https://doi.org/10.48550/arXiv.1711.11053
https://arxiv.org/abs/1912.09363
https://doi.org/10.1007/978-1-0716-0826-5_2
https://doi.org/10.1145/2500489
https://doi.org/10.1007/978-3-319-18032-8_32
https://doi.org/10.1016/j.patrec.2014.01.008
https://doi.org/10.1016/j.patrec.2014.01.008
https://arxiv.org/abs/1802.06458

BIBLIOGRAPHY

[16] Hanen Borchani, Gherardo Varando, Concha Bielza, and Pedro Larrañaga.
«A Survey on Multi-Output Regression: Multi-output Regression Survey». In:
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5.5
(Sept. 2015), pp. 216–233. issn: 19424787. doi: 10.1002/widm.1157 (cit. on
p. 12).

[17] M. Sanchez-Fernandez, M. de-Prado-Cumplido, J. Arenas-Garcia, and F.
Perez-Cruz. «SVM Multiregression for Nonlinear Channel Estimation in
Multiple-Input Multiple-Output Systems». In: IEEE Transactions on Signal
Processing 52.8 (Aug. 2004), pp. 2298–2307. issn: 1941-0476. doi: 10.1109/
TSP.2004.831028 (cit. on p. 13).

[18] Dragi Kocev, Sašo Džeroski, Matt D. White, Graeme R. Newell, and Peter
Griffioen. «Using Single- and Multi-Target Regression Trees and Ensembles to
Model a Compound Index of Vegetation Condition». In: Ecological Modelling
220.8 (Apr. 2009), pp. 1159–1168. issn: 0304-3800. doi: 10.1016/j.ecolmod
el.2009.01.037 (cit. on p. 13).

[19] Esmaeil Hadavandi, Jamal Shahrabi, and Shahaboddin Shamshirband. «A
Novel Boosted-neural Network Ensemble for Modeling Multi-Target Regres-
sion Problems». In: Engineering Applications of Artificial Intelligence 45 (Oct.
2015), pp. 204–219. issn: 0952-1976. doi: 10.1016/j.engappai.2015.06.
022 (cit. on p. 13).

[20] Maksat Ashyraliyev, Yves Fomekong-Nanfack, Jaap A. Kaandorp, and Joke G.
Blom. «Systems Biology: Parameter Estimation for Biochemical Models».
In: The FEBS journal 276.4 (Feb. 2009), pp. 886–902. issn: 1742-4658. doi:
10.1111/j.1742-4658.2008.06844.x (cit. on p. 13).

[21] Kenji Kawaguchi. «Deep Learning without Poor Local Minima». In: Advances
in Neural Information Processing Systems. Vol. 29. Curran Associates, Inc.,
2016 (cit. on p. 14).

[22] Arun U. Nair, David G. Taggart, and Frederick J. Vetter. «Optimizing Cardiac
Material Parameters with a Genetic Algorithm». In: Journal of Biomechanics
40.7 (Jan. 2007), pp. 1646–1650. issn: 00219290. doi: 10.1016/j.jbiomech.
2006.07.018 (cit. on p. 14).

[23] Andrea Degasperi, Dirk Fey, and Boris N. Kholodenko. «Performance of
Objective Functions and Optimisation Procedures for Parameter Estimation
in System Biology Models». In: npj Systems Biology and Applications 3.1
(Dec. 2017), p. 20. issn: 2056-7189. doi: 10.1038/s41540-017-0023-2
(cit. on pp. 14, 20).

73

https://doi.org/10.1002/widm.1157
https://doi.org/10.1109/TSP.2004.831028
https://doi.org/10.1109/TSP.2004.831028
https://doi.org/10.1016/j.ecolmodel.2009.01.037
https://doi.org/10.1016/j.ecolmodel.2009.01.037
https://doi.org/10.1016/j.engappai.2015.06.022
https://doi.org/10.1016/j.engappai.2015.06.022
https://doi.org/10.1111/j.1742-4658.2008.06844.x
https://doi.org/10.1016/j.jbiomech.2006.07.018
https://doi.org/10.1016/j.jbiomech.2006.07.018
https://doi.org/10.1038/s41540-017-0023-2

BIBLIOGRAPHY

[24] Hugo Alonso, Teresa Mendonça, and Paula Rocha. «A Hybrid Method for
Parameter Estimation and Its Application to Biomedical Systems». In: Com-
puter Methods and Programs in Biomedicine. The 6th IFAC Symposium on
Modelling and Control in Biomedical Systems 89.2 (Feb. 2008), pp. 112–122.
issn: 0169-2607. doi: 10.1016/j.cmpb.2007.10.014 (cit. on p. 14).

[25] Hubert Cardot. Recurrent Neural Networks for Temporal Data Processing.
Feb. 2011. isbn: 978-953-307-685-0. doi: 10.5772/631 (cit. on p. 14).

[26] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-term Memory». In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.
8.1735 (cit. on p. 14).

[27] Saeed Saadatnejad, Mohammadhosein Oveisi, and Matin Hashemi. «LSTM-
Based ECG Classification for Continuous Monitoring on Personal Wearable
Devices». In: IEEE Journal of Biomedical and Health Informatics 24.2 (Feb.
2020), pp. 515–523. issn: 2168-2208. doi: 10.1109/JBHI.2019.2911367
(cit. on p. 14).

[28] Alaa Sagheer and Mostafa Kotb. «Unsupervised Pre-training of a Deep
LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting
Problems». In: Scientific Reports 9.1 (Dec. 2019), p. 19038. issn: 2045-2322.
doi: 10.1038/s41598-019-55320-6 (cit. on p. 14).

[29] Madhuri Panwar, Arvind Gautam, Dwaipayan Biswas, and Amit Acharyya.
«PP-Net: A Deep Learning Framework for PPG-Based Blood Pressure and
Heart Rate Estimation». In: IEEE Sensors Journal 20.17 (Sept. 2020),
pp. 10000–10011. issn: 1558-1748. doi: 10.1109/JSEN.2020.2990864 (cit. on
p. 15).

[30] Xixi Li, Yanfei Kang, and Feng Li. «Forecasting with Time Series Imaging». In:
Expert Systems with Applications 160 (Dec. 2020), p. 113680. issn: 09574174.
doi: 10.1016/j.eswa.2020.113680. arXiv: 1904.08064 (cit. on pp. 15, 57).

[31] Zhiguang Wang and Tim Oates. «Imaging Time-Series to Improve Classifica-
tion and Imputation». In: (), p. 7 (cit. on p. 15).

[32] YueZijie, DingShuai, ZhaoLei, ZhangYoutao, CaoZehong, TanveerM, Jol-
faeiAlireza, and ZhengXi. «Privacy-Preserving Time-series Medical Images
Analysis Using a Hybrid Deep Learning Framework». In: ACM Transactions
on Internet Technology (TOIT) (June 2021). doi: 10.1145/3383779 (cit. on
p. 15).

[33] S. Raghu, Natarajan Sriraam, Yasin Temel, Shyam Vasudeva Rao, and Pieter
L. Kubben. «EEG Based Multi-Class Seizure Type Classification Using
Convolutional Neural Network and Transfer Learning». In: Neural Networks
124 (Apr. 2020), pp. 202–212. issn: 0893-6080. doi: 10.1016/j.neunet.
2020.01.017 (cit. on p. 16).

74

https://doi.org/10.1016/j.cmpb.2007.10.014
https://doi.org/10.5772/631
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/JBHI.2019.2911367
https://doi.org/10.1038/s41598-019-55320-6
https://doi.org/10.1109/JSEN.2020.2990864
https://doi.org/10.1016/j.eswa.2020.113680
https://arxiv.org/abs/1904.08064
https://doi.org/10.1145/3383779
https://doi.org/10.1016/j.neunet.2020.01.017
https://doi.org/10.1016/j.neunet.2020.01.017

BIBLIOGRAPHY

[34] Eleftherios Spyromitros-Xioufis, Grigorios Tsoumakas, William Groves, and
Ioannis Vlahavas. «Multi-Target Regression via Input Space Expansion: Treat-
ing Targets as Inputs». In: Machine Learning 104.1 (July 2016), pp. 55–98.
issn: 0885-6125, 1573-0565. doi: 10.1007/s10994- 016- 5546- z. arXiv:
1211.6581 (cit. on p. 17).

[35] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J. Leon Zhao. «Time Series
Classification Using Multi-Channels Deep Convolutional Neural Networks».
In: Web-Age Information Management. Ed. by Feifei Li, Guoliang Li, Seung-
won Hwang, Bin Yao, and Zhenjie Zhang. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2014, pp. 298–310. isbn: 978-3-319-
08010-9. doi: 10.1007/978-3-319-08010-9_33 (cit. on p. 18).

[36] Kang Gu, Soroush Vosoughi, and Temiloluwa Prioleau. «Feature Selection
for Multivariate Time Series via Network Pruning». In: 2021 International
Conference on Data Mining Workshops (ICDMW) (Dec. 2021), pp. 1017–1024.
doi: 10.1109/ICDMW53433.2021.00132. arXiv: 2102.06024 (cit. on p. 18).

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: arXiv:1512.03385 [cs] (Dec. 2015).
arXiv: 1512.03385 [cs] (cit. on p. 18).

[38] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. «Data Augmentation Using Synthetic Data for Time
Series Classification with Deep Residual Networks». In: arXiv:1808.02455
[cs] (Aug. 2018). arXiv: 1808.02455 [cs] (cit. on p. 18).

[39] Zhiguang Wang, Weizhong Yan, and Tim Oates. «Time Series Classifica-
tion from Scratch with Deep Neural Networks: A Strong Baseline». In:
arXiv:1611.06455 [cs, stat] (Dec. 2016). arXiv: 1611.06455 [cs, stat]
(cit. on pp. 18, 35).

[40] Sabine Geiβ and Jürgen Einax. «Multivariate Correlation Analysis - a Method
for the Analysis of Multidimensional Time Series in Environmental Studies».
In: Chemometrics and Intelligent Laboratory Systems 32.1 (Feb. 1996), pp. 57–
65. issn: 0169-7439. doi: 10.1016/0169-7439(95)00067-4 (cit. on pp. 21,
54).

[41] Laurens van der Maaten and Geoffrey Hinton. «Visualizing Data Using T-
SNE». In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605.
issn: 1533-7928 (cit. on p. 26).

[42] F. Pedregosa et al. «Scikit-learn: Machine Learning in Python». In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 27).

[43] Time Series FeatuRe Extraction on Basis of Scalable Hypothesis Tests (Tsfresh
– A Python Package) - ScienceDirect (cit. on p. 28).

75

https://doi.org/10.1007/s10994-016-5546-z
https://arxiv.org/abs/1211.6581
https://doi.org/10.1007/978-3-319-08010-9_33
https://doi.org/10.1109/ICDMW53433.2021.00132
https://arxiv.org/abs/2102.06024
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1808.02455
https://arxiv.org/abs/1611.06455
https://doi.org/10.1016/0169-7439(95)00067-4

BIBLIOGRAPHY

[44] Yoav Benjamini and Daniel Yekutieli. «The Control of the False Discovery
Rate in Multiple Testing under Dependency». In: The Annals of Statistics
29.4 (Aug. 2001), pp. 1165–1188. issn: 0090-5364, 2168-8966. doi: 10.1214/
aos/1013699998 (cit. on p. 29).

[45] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/ (cit. on p. 33).

[46] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. Dec. 2019. doi: 10.48550/arXiv.1912.01703. arXiv:
1912.01703 [cs, stat] (cit. on p. 33).

[47] Ignacio Oguiza. tsai - A state-of-the-art deep learning library for time series
and sequential data. Github. 2022. url: https://github.com/timeseriesA
I/tsai (cit. on p. 33).

[48] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural Networks
from Overfitting». In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958. issn: 1533-7928 (cit. on p. 34).

[49] Dina Q. Goldin and Paris C. Kanellakis. «On Similarity Queries for Time-
Series Data: Constraint Specification and Implementation». In: Principles
and Practice of Constraint Programming — CP ’95. Ed. by Ugo Montanari
and Francesca Rossi. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 1995, pp. 137–153. isbn: 978-3-540-44788-7. doi: 10.1007/3-540-
60299-2_9 (cit. on p. 35).

[50] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang,
and Huan Xu. «Time Series Data Augmentation for Deep Learning: A Survey».
In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence. Aug. 2021, pp. 4653–4660. doi: 10.24963/ijcai.2021/631.
arXiv: 2002.12478 [cs, eess, stat] (cit. on p. 53).

[51] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H.
Lampert. iCaRL: Incremental Classifier and Representation Learning. Apr.
2017. doi: 10.48550/arXiv.1611.07725. arXiv: 1611.07725 [cs, stat]
(cit. on p. 58).

[52] Nicolas Martelli, Paul Hansen, Hélène van den Brink, Aurélie Boudard, Anne-
Laure Cordonnier, Capucine Devaux, Judith Pineau, Patrice Prognon, and
Isabelle Borget. «Combining Multi-Criteria Decision Analysis and Mini-Health
Technology Assessment: A Funding Decision-Support Tool for Medical Devices
in a University Hospital Setting». In: Journal of Biomedical Informatics 59
(Feb. 2016), pp. 201–208. issn: 1532-0480. doi: 10.1016/j.jbi.2015.12.002
(cit. on p. 59).

76

https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.48550/arXiv.1912.01703
https://arxiv.org/abs/1912.01703
https://github.com/timeseriesAI/tsai
https://github.com/timeseriesAI/tsai
https://doi.org/10.1007/3-540-60299-2_9
https://doi.org/10.1007/3-540-60299-2_9
https://doi.org/10.24963/ijcai.2021/631
https://arxiv.org/abs/2002.12478
https://doi.org/10.48550/arXiv.1611.07725
https://arxiv.org/abs/1611.07725
https://doi.org/10.1016/j.jbi.2015.12.002

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Context
	Bio-medtech modelling and simulation
	Machine learning for a digital twin

	Problem
	Problem specification
	Challenges
	Research questions

	Purpose
	Structure of the thesis

	Background
	Hemodynamics
	Cardiovascular system
	Healthcare-aided simulator: Aplysia

	Time series analysis
	Univariate and multivariate time series
	Time series forecasting and classification
	Deep learning for time series

	MTR: Multi-Target Regression
	Approaches

	Related work
	Inverse modelling through optimization
	RNN-based architectures
	Time series to 2D representations

	Methods
	Approaches for MTR
	CNN
	Residual Network
	Evaluation metrics
	Problems and challenges

	Correlation analysis for time series
	Data generation
	Input of the regressor models
	Models of cardiovascular physiology and pathophysiology
	Cardiovascular model generation
	Dataset(s)

	Machine Learning experiments
	Features extraction
	Validation
	Regression models
	Experiments settings

	Deep Learning experiments
	Training methods
	Data normalization
	ResNet Plus configuration
	1D ResNet configuration
	1D CNN configuration

	Results
	Machine learning results
	Different performance among model parameters
	Problems deriving from high dimensionality

	Deep learning results
	Risk of overfitting with deep architectures
	Fine-tuning architecture depth

	Variation in input: adding body dimensions

	Discussion and limitations
	Experimental findings
	Parameter estimation
	Cardiovascular parameter analysis

	Correlation analysis
	Limitations

	Ethics, future work and conclusions
	Future work
	Ethical considerations
	Sustainability

	Conclusions

	Visualizations
	Bibliography

