
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Speeding up convergence while preserving
privacy in Heterogeneous Federated

Learning

Supervisors

Prof. Barbara CAPUTO

Dr. Marco CICCONE

Dr. Debora CALDAROLA

Candidate

Andrea RIZZARDI

December 2022

Acknowledgements

Un ringraziamento di dovere va ai Professori che mi hanno accompagnato in questi
ultimi due anni. Ringrazio in particolare la mia relatrice Barbara Caputo ed i miei
correlatori Marco e Debora per aver affrontato insieme a me questo lavoro.
Ringrazio i miei amici di una vita, che anche in questo importante passo ci sono
stati.
Ringrazio le nuove amicizie fatte lungo questo percorso, con la speranza che, in un
futuro, possano rientrare nei ringraziamenti precedenti.
Ringrazio la mia famiglia, per avermi sostenuto anche questa volta.
Ringrazio Torino, per avermi ospitato ed accolto in questi ultimi due anni.
Ed infine ringrazio il me del passato, che con i suoi sforzi è riuscito a farmi arrivare
a scrivere questi ringraziamenti con la consapevolezza di aver concluso un percorso
incredibile.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1

2 Background 4
2.1 Machine and Deep Learning . 4
2.2 Neural Networks . 5

2.2.1 The perceptron . 5
2.2.2 Multi-layer Perceptron (MLP) 7
2.2.3 How to train a neural network 8

2.3 Different Neural Network architectures 12
2.3.1 Convolutional Neural Network 12
2.3.2 Recurrent Neural Network 15
2.3.3 Generative Adversarial Network 16

3 Federated Learning 18
3.1 Introduction . 18

3.1.1 Formal comparison between federated and centralized approach 19
3.2 Related works . 20

3.2.1 Federated Learning Taxonomy 20
3.2.2 FedAvg . 21
3.2.3 Regularization methods . 21
3.2.4 Clustering methods . 24

3.3 Privacy in Federated Learning . 26
3.3.1 Privacy attacks in Federated Learning 27
3.3.2 Privacy defences in Federated Learning 28

iv

4 FedSeq 30
4.1 The algorithm . 30

4.1.1 Client approximator . 31
4.1.2 Grouping method . 32

5 Experiments 37
5.1 Datasets . 37

5.1.1 Cifar-10 . 37
5.1.2 Cifar-100 . 38
5.1.3 EMnist . 39
5.1.4 Shakespeare N.C.P . 40
5.1.5 StackOverflow . 41

5.2 Models used . 41
5.2.1 Cifar-10 and Cifar-100 . 41
5.2.2 EMnist . 42
5.2.3 Shakespeare N.C.P . 43
5.2.4 StackOverflow . 43

5.3 General Analyses in FL . 44
5.3.1 Ablation on K . 45
5.3.2 Ablation study on C . 45
5.3.3 Ablation study on E . 47
5.3.4 Ablation on α . 48

5.4 FedSeq vs S.O.T.A . 48
5.4.1 Shakespeare dataset . 49
5.4.2 EMnist dataset . 50
5.4.3 Cifar10 dataset . 51
5.4.4 Cifar100 dataset . 53
5.4.5 StackOverflow dataset . 54

5.5 Ablation on FedSeq . 55
5.6 Privacy attacks . 56

5.6.1 The GAN attack . 56
5.6.2 The Label Flipping attack 59

6 Conclusion 62

Bibliography 64

v

List of Tables

5.1 LeNet-5 architecture. The flatten layer transforms the 2D tensor
input as a 1D tensor. n_class=10 for Cifar-10, n_class=100 for
Cifar-100. 42

5.2 EMnist network architecture. The first Convolution layer has one
channel since the EMnist dataset is composed by gray-scale images. 42

5.3 Shakespeare N.C.P architecture . 43
5.4 StackOverflow architecture . 44
5.5 Standard run setting . 44
5.6 FedSeq baselines: comparison of grouping criteria by varying ϕ, ψ

and τ . Results in terms of accuracy (%). 55
5.7 Label Flipping experiments averaged by fraction of attackers 60
5.8 Each cell represents the difference in performances between FedSeq

and FedAvg by averaging all the attack configurations. 61

vi

List of Figures

2.1 Visual representation of a Multi-layer Perceptron 6
2.2 Visual representation of a Multi-layer Perceptron 8
2.3 Visual representation of a Neural Network with 4 layers, one neuron

each . 11
2.4 How a convolutional filter is applied 13
2.5 Visual representation of an RNN 15
2.6 Different versions of an RNN . 15
2.7 Architecture of a GAN . 16

4.1 FedSeq pipeline for creating superclients 31
4.2 How the grouping method component works 33

5.1 The Cifar-10 dataset . 38
5.2 The Cifar-100 dataset . 39
5.3 The EMnist dataset . 40
5.4 EMnist classes distributions . 40
5.5 Ablation on K . 45
5.6 Ablation study on C . 46
5.7 Ablation study on E. 47
5.8 Ablation on α . 48
5.9 Comparison of FL algorithms on Shakespeare dataset 49
5.10 Comparison of FL algorithms on EMnist dataset 50
5.11 Comparison of FL algorithms on Cifar-10 dataset 51
5.12 Comparison of FL algorithms on Cifar-100 dataset 53
5.13 Comparison of FL algorithms on StackOverflow dataset 54
5.14 FedAvg vs FedSeq on GAN Attack 58
5.15 Some examples of reconstruction for FedAvg and FedSeq on the

EMNIST dataset . 59

vii

Acronyms

AI
artificial intelligence

ML
machine learning

SL
supervised learning

GDPR
General Data Protection Regulation

FL
Federated Learning

FMTL
Federated MultiTask Learning

CNN
Convolutional Neural Network

RNN
Recurrent Neural Network

SOTA
State Of The Art

PCA
Principal Components Analysis

ix

GAN
Generative Adversarial Network

NCP
Next Character Prediction

LSTM
Long Short Term Memory

FID
Fréchet inception distance

x

Chapter 1

Introduction

More and more, every day, machine learning and deep learning algorithms are
adopted as endeavor to automatize or facilitate many aspect of human life. Thanks
to their ability of ’learning’ from data, they can be applied in different contexts: in
the image domain for instance, the object recognition task[1] is one of the major
examples of how useful a ML algorithm can be with applications in the self driving
cars or robot industries. In the same domain, other interesting applications of ML
algorithms can be found in the medical sector, where, for example, the goal is to
recognize a tumor from an image [2].
The term learning has been adopted to emphasize the fact that ML algorithms
learn from data. Citing again the tumor recognition task, in order to have an
accurate ML algorithm capable of recognize a tumor with a fair confidence, a set
of images coupled with the label ’tumor’ and another set of images with the label
’no tumor’ must be provided. In other words, real-life example are necessary to
ML algorithms. Formally this ’learning from examples’ approach is denoted as
supervised learning (SL)[3] in relation to the fact that there must be a manual
supervision that ’feeds’ the ML algorithm with real-life examples.
Although SL approach has been proven to be effective in different tasks from an
accuracy point of view, it creates different challenges from the ’data gathering’
point of view. Especially if data are related to personal informations of individuals,
privacy constraints introduced by very strict international legislations like the
European GDPR [4], can represent an obstacle for a ML project.
Let’s make a crystal clear example of this problem: let’s suppose that we want
to create a ML model that is capable of, given an image of a face, recognize the
age of the person in the image. In order to train this model, we need to gather
locally thousands of images of faces, coupled with the age of each person. Clearly,
we are obtaining personal informations of the people in the images set. To ask a
formal permission to each person we have a photo of, it can represent a logistical
challenge for itself, since, usually, modern ML models requires very big datasets.

1

Introduction

The Federated Learning (FL) paradigm is born exactly as the attempt to solve this
problem [5]. The core idea of FL can be summed up in this sentence: instead of
’moving’ data from users to the ML algorithm, let’s move the ML algorithm to the
users. With this approach, the ’gather data’ phase is no more necessary, since it is
not necessary in FL to collect all the data inside a single local dataset.
The first FL algorithm introduced was FedAvg[5]. It was also the first work that
introduced FL as a new ML paradigm, so it set up the basis in FL. In FedAvg
there are two actors involved: the central server and the clients. The central server
has the role of coordinator, while the clients are all the devices that have private
data on which the ML algorithm will be trained on.
A traditional FL train of a model is an iterative process, composed by many rounds.
At each round, the central server selects a fraction of clients. To these selected
clients the server sends a not-yet-trained model. Each selected client trains locally,
on its own data, the model, then it sends back the trained model to the server. As
last step, the server combines all the trained models incoming from the selected
clients by averaging their weights. The resulting averaged model will be used in
the next round.
Even though FL paradigm can be used as a solution to solve the privacy-related
problems that supervised learning does not consider, it presents other different
challenges related to the decentralized setup: first of all, it is important to remember
that the local data distribution is not equal for all the clients, nor in terms of
number of examples neither in terms of class distribution. Let’s consider a scenario
in which the FL paradigm is applied in order to train a ML model capable of
recognize the landscape of a photo (mountains, sea, city, ...). The clients will be
different mobile phones scattered around the world. It is very plausible that clients
geographically located in a coastal country will have many ’sea-labelled’ images
with respect to clients located in cold countries. Moreover, young-age people tend
to use more often the phone, so probably they will have many more photo with
respect to the phone of an elder person.
This problem is formally defined as heterogeneity problem and it can represent a
huge threat for FL model performances [6].
Another FL problem is the fact that all the power computation required in order
to train a model is split among different heterogeneous devices, with different
computational power and a not-always reliable connection to the central server.
This problem is formally called client reliability problem [6]. Thinking again at
mobile phones as clients, it is very plausible that many of these devices can be old
and outdated, while others can be the current state of the art phones. Maybe some
of these phones are shut down by the owners, hence it is not possible to maintain
the connection with the center server.
The main goal of this work is introducing FedSeq [7], a novel algorithm specifically
tuned to ease the struggle of standard FL algorithms, like FedAvg, in heterogeneous

2

Introduction

scenarios. FedSeq is based on the following concepts: first of all, all the clients must
be grouped together in different clusters. The important rule to follow in order to
create the clusters is that, clients with different data distributions must be grouped
together in order to cover all the classes inside each group. With this approach, each
cluster has an homogeneous data distribution, hence the heterogeneity problem will
not come up. Remembering the landscape recognition example, with this approach
each cluster will be composed by clients with only photo of mountains, clients with
only photo of the sea, clients with only photo of cities and so on. From a cluster
point of view, the overall images set (considered as the union of the images of
all the clients inside the cluster) will cover all the classes (mountains, sea, city,
...). As second step, FedSeq considers, as clients, the aforementioned clusters and
then proceeds with the standard FedAvg approach. Specifically, the clients inside
a cluster will be form a "chain", and the incoming model from the central server
will be received from the first client, trained locally and then directly sent to the
next client in the chain. The process will continue until the last client of the chain
that will send the model back to the central server. With this approach, the model
is also able to ’see’ more example for each class per round (guaranteeing better
performances), while, in FedAvg, a model is only able to ’see’ the examples provided
by the client on which is trained on.
The novel FedSeq approach presents by itself new challenges: how is it possible to
create clusters based on the local clients data distributions if these informations
should be privacy protected? The fact that, inside a cluster, the model is sent
directly client-to-client, can create private informations leaks of any kind? How the
FedSeq approach responds to malicious clients? In this thesis, all these questions
will be deeply analyzed, along with empirical experiments and comparisons with
other state of the art FL methods.

3

Chapter 2

Background

2.1 Machine and Deep Learning

When we think about the industrial revolution, different images come to our minds.
Some examples of them might be the steam power, big machines, industrial facilities.
They all serve for one purpose and one purpose only: automation. We remember
the industrial revolution as the moment in time from which the manual work can
be automated by machines. Of course the jobs that can be automated at that
time were only manual and repetitive jobs in which there were no decision making
process.
In our modern times, we are witnessing a similar phenomena: backed by the
support of computers and microelectronic in general, machine learning is gradually
transforming our society just like the steam power during the industrial revolution.
The difference stands in what is automated. In this new modern revolution that we
are witnessing, the decision making process itself is automated and the "machine
learning" is the instrument to accomplish that.
When we are talking about machine learning, we are talking about algorithms that
learn from real life data a particular task. This task can span from recognizing a
particular entity in an image or forecasting the stock price of some company or
generating a natural language text.
Depending on the task, the algorithm as to differ in order to achieve good result on
it. For instance, if the task is entity recognition, the best algorithm to be used is a
Convolutional Neural Network [8] while, for a stock price forecasting task, maybe
a simple polynomial regression model could do the job.
As a subset of the whole ML algorithm world, the Deep Learning is defined [9]. A
Deep Learning model has to have the following feature: given an input data of any
kind, the algorithm has to "map" it in a latent space. Essentially, given an input,
the Deep Learning algorithm has to produce a vector representation of it. On of

4

Background

the first work in this regard is Word2Vec [10], a Deep Learning algorithm that is
able to map each world to a proper vector representation.
The approach of mapping a general input, like a word for Word2Vec, in a math-
ematical object like a vector, is very versatile and it opens different possibilities.
For instance, in Word2Vec, it is possible to define a concept of distance between
words: "dog" and "cat" will have closer vector representations with respect to "dog"
and "pencil". Moreover, since we are dealing with mathematical objects, vector
arithmetic can be applied: the vector representation of "queen" can be obtained as
the operation "king"-"man"+"woman" or "Italy" as "France"-"Paris"+"Rome". This
is just an example of how powerful Deep Learning can be.

2.2 Neural Networks

Among the plethora of algorithms used in Machine Learning, Neural Networks will
be widely used in this thesis. For this reason, this section is dedicated in their
definition and their application.

2.2.1 The perceptron

In order to define a Neural Network it is essential to firstly define a perceptron,
the core architecture of all Neural Networks.
Let’s properly define the most simple implementation of a perception conceptualized
by Frank Rosenblatt in 1957 [11]. In this implementation, a perceptron is a binary
classifier: given an input x, the algorithm will output the label 0 or 1.
Formally, a perceptron is defined by a set of weights w, and a non-linear activation
function σ. By denoting as ŷ the label produced by the perceptron, it is obtained
by:

ŷ = σ

è
1, x1, · · · , xn

é
·

w0
w1
...
wn

 (2.1)

where σ : R→ {0,1}. A possible implementation for σ could be the step function
defined as:

σ(x) =
0 if 0 > x

1 if x ≥ 0
(2.2)

A graphical representation of how the perceptron works can be seen in Figure 2.1.

5

Background

Figure 2.1: Visual representation of a Multi-layer Perceptron

In order to correctly classify the input x with the label 0 or 1 the weights vector
w must contain the proper values. In other words, we need to "train" the perceptron
in order to get the proper vector w capable of correctly classifying the input.
The standard training process for a perceptron (but for every Neural Network in
general) is based on the so called training set, a set of data {x1, · · · , xn} coupled
with the labels {y1, · · · , yn}. The idea is to iteratively update the vector w in such
a way that, the classification error produced by the perceptron will be as little as
possible.
The training process for a perceptron can be expressed by the following algorithm:
The most important part of Algorithm 1 is on line 6: if the perceptron incorrectly

Algorithm 1 Training of a perceptron
1: {x1, · · · , xn},{y1, · · · , yn},w,η ▷ Initial data definition
2: for e = 1, · · · , E do ▷ Repeat the process for E times
3: for i = 1, · · · , n do ▷ Iterate for all data
4: ŷi = σ(xi · wT) ▷ Classify xi

5: if ŷi /= yi then
6: w = w + η(yi − ŷi) ▷ If wrong classification, update w
7: end if
8: end for
9: end for

classify the input xi, it correct itself by updating the weights vector w. The update

6

Background

is scaled by a factor η, commonly called learning rate which defines "how fast"
the weight update can happen. Although in a binary classification scenario is
not important, the weights are updated by yi − ŷi which is the difference between
the correct label and the predicted one. In a binary classification problem this
difference can only be discrete, but, in a regression problem for instance, where
the label is a real number, the bigger the error, the bigger the weights update will
be. This concept of "propagating" the classification error through the weights by
updating them is the base of what is called back propagation[12], the true backbone
for training any Machine Learning algorithm.
It is proven that, if data are linearly separable, the perceptron training will converge
to a solution for the weights vector w with no classification error.
But how to deal with non-linearly separable data? The solution is concatenating
different perceptrons by creating a sequence of perceptron layers, each one with
their own weights, in which the output of the previous layer is the input of the next
one. This concept of having more perceptrons in one Neural Network is further
discuss in the next paragraph.

2.2.2 Multi-layer Perceptron (MLP)
As previously discussed, the concept of MLP was born from the necessity to
generalize the perceptron to those cases in which data are not linearly separable.
The idea is to concatenate different perceptrons in such a way that the output
of the previous one is the input of the next. An MLP architecture is structured
in different layers. The first one is defined as input layer since it will receive the
raw input data, the layers in the middle of the network are called hidden layers
while the last layer is called output layer since its output will be the output of the
entire network. Each layer is composed by a different number of neuron. An MLP
architecture is also defined as Fully Connected Network since each neuron of a layer
is connected to each neuron of the next one.
Let’s formally define the workflow of a multi-layer perceptron from the input layer

through the output one: as notation, the i-th layer will be defined as li, having l0
as the input layer and ln as the output one. With the same idea, the output of
the i-th layer will be yn, so the input of the layer li+1 will be yi, the output of the
previous one. Each layer has a proper number of neuron di which is also referred
as layer dimension. The generic layer li will receive an input of dimension di−1 and
will produce an output of dimension di. For this reason, for each layer is defined a
matrix weight Wi of dimension (di−1 × di).
Let’s define a generic input x of dimension d0: the input layer of the network
will receive it, and will output y0. Like for the perceptron, an activation function
(generally non linear) is involved. Let’s define the activation function of each layer
as σi. Similarly to the perceptron, the operation that the first layer will compute

7

Background

Figure 2.2: Visual representation of a Multi-layer Perceptron

will be:
y0 = σ0(xTW0) (2.3)

Equation 2.3 can be extended to any layer in the following way:

yi = σi(yT
i−1Wi) (2.4)

Combining all together, the final output of an MLP architecture can be expressed
as:

yn = σn(σn−1(· · ·σ0(xTW0)W1) · · ·)Wn) (2.5)
Like for the perceptron, all the weights has to be updated in order to correctly
classify the input. The problem is that now the weights are spread among different
layers. How can we update each single weight starting from the classification error
computed at the end of the Neural Network classification process? An answer to
this question is provided in the following section.

2.2.3 How to train a neural network
Just like the perceptron, any neural network has to adjust their weights starting
from a classification error. It’s possible to generalize this concept by defining a loss

8

Background

function L which takes in input the classification forecasted by the network ŷ and
the true label y (or groundtruth) and it produces in output some kind of measure
of "how much" error the network as made.
The most important and used loss functions are now reported:

• Regression problems

1. Mean Square Error (MSE):

L(y, ŷ) = 1
n

qn
i=1(yi − ŷi)2

2. Mean Square Logaritmic Error (MSLE):

L(y, ŷ) = 1
n

qn
i=1(log(yi + 1)− log(ŷi + 1)2

3. Mean Absolute Error (MAE):

L(y, ŷ) = 1
n

qn
i=1 |yi − ŷi|

• Binary classification problems

1. Binary Cross-Entropy:

L(y, ŷ) = − 1
n

qn
i=1 yilog(ŷi) + (1− yi)log(1− ŷi)

2. Hinge Loss:

L(y, ŷ) = max(0,1− yŷ)

3. Squared Hinge Loss:

L(y, ŷ) = (max(0,1− yŷ))2

• Multiclass classification problems

1. Multiclass Cross-Entropy:

L(y, ŷ) = −qn
i=1 yilog(ŷi)

9

Background

2. Hinge Loss:

L(y, ŷ) = max(0,1− yŷ)

3. Kullback Leibler Divergence Loss:

L(y, ŷ) = 1
n

qn
i=1 yilog(yi

ŷi
)

By recalling Algorithm 1, the perceptron weights w are updated starting from the
error that the perceptron has made yi− ŷi. Similarly, the update of Neural Network
weights must start from a loss function. But how to update different weights in
different layers starting from a loss function in order to improve the classification
ability of the network? The most common technique used is called back propagation
and the idea is to back propagate the error computed by the loss function through
all the network, from the output layer to the input one.
The back propagation technique is based on the gradient descent optimization
method. An optimization method is required because the training of a Neural
Network can be considered an optimization process where the goal is to minimize
the loss function and, to accomplish it, it is necessary the research of optimal
weights in the weight space.
The idea of gradient descent is the following: let’s "move" the weights in the
gradient’s opposite direction. By doing so, my weights will be updated towards a
minimum of the loss function and the network error will be smaller. Equation 2.6
expresses mathematically this concept.

w ← w −∇L(y, ŷ) (2.6)

Still, gradient descent is only the instrument that back propagation uses to define
the direction of the weights update. In order to understand how to compute the
actual value of each weight update let’s first understand how the loss gradient is
computed.
For the sake of simplicity, let’s define a simple neural network composed by an
input layer, two hidden layers and one output layer, each one with only one neuron.

10

Background

Figure 2.3: Visual representation of a Neural Network with 4 layers, one neuron
each

The network depicted in Figure 2.3 is defined by only 3 weights w1, w2 and
w3. Let’s define the output of each layer Li as yi. As previously mentioned,
yi = σi(wiŷi−1), or, in other words, each layer will take as input the output of the
previous one and then it will multiply it by its weight. To the result, an activation
function σi is applied. The loss function will be a function of the true value y and
the network output ŷ3, which can be explicitly expressed as function of the weights
as:

ŷ3 = σ3(w3ŷ2) = σ3(w3σ2(w2ŷ1)) = σ3(w3σ2(w2σ1(w1x))) (2.7)
In the end, each weight has an influence on the network output ŷ3, hence, every
weight has a contribution on the final loss function L(y, ŷ3). The back propagation
technique can be considered a method to quantize this contribution for each weight
and adjust it accordingly.
Let’s start with the last weight w3: we would like to understand how much the loss
will change if w3 changes too. Formally we are asking the partial derivative of the
loss function by w3: δL

δw3
. Naturally, this quantity can not be directly computed

since the Loss is only a function of ŷ3. The workaround for this issue is the chain
rule mechanism:

δL

δw3
= δL

δŷ3
· δŷ3

δw3
(2.8)

Equation 2.8 illustrates that it is possible to compute the partial derivative of
the Loss function by a general weight as a chain of product of different partial

11

Background

derivatives.
Similarly, for the partial derivative of the Loss for w2 will be:

δL

δw2
= δL

δŷ3
· δŷ3

δŷ2
· δŷ2

δw2
(2.9)

and, for w1, without any surprise the partial derivative will be:

δL

δw1
= δL

δŷ3
· δŷ3

δŷ2
· δŷ2

δŷ1
· δŷ1

δw1
(2.10)

In conclusion, an input x is given to the network that will produce ŷ3 as result.
The error of the network will be computed by the Loss function L which will
take, as parameters, the true value y and the network prediction ŷ3. In order to
update the weights, the gradient descent optimization method has to be applied
so: w ← w − η∇L(y, ŷ3) (η is the learning rate parameter which regularizes "how
much" the weights are updated). In order to compute the gradient ∇L(y, ŷ3), the
chain rule technique of partial derivatives is used, obtaining:

∇L(y, ŷ3) =

δL
δw1

δL
δw2

δL
δw3

=

δL
δŷ3
· δŷ3

δŷ2
· δŷ2

δŷ1
· δŷ1

δw1

δL
δŷ3
· δŷ3

δŷ2
· δŷ2

δw2

δL
δŷ3
· δŷ3

δw3

(2.11)

2.3 Different Neural Network architectures
Neural Networks are a powerful and general purpose instrument. They can be
applied in different scenarios, from the image domain to the natural language one.
They can solve a wide variety of tasks and output different kinds of outputs: images,
text, prediction, classification labels and so on. Of course, there are many kinds of
Neural Network architectures intentionally invented to solve particular tasks. In
this section, the most important architectures are reported and explained.

2.3.1 Convolutional Neural Network
Convolutional Neural Networks (CNN)[8] are the "de-facto" architecture in the
image domain. In computer vision, the concept of convolution was born before
the diffusion of Neural Networks. The idea of a CNN architecture is to extend the
traditional concept of convolution and integrate it inside a Neural Network.

Before explaining CNNs, it is important to talk about convolution in computer

12

Background

vision: convolution is generally used to extract or create a feature map out of the
input image. This is done with the help of filters (or kernels) that are applied on
the input image.
Let’s start with a toy example by defining a 5× 5 black and white image: to do
that, let’s write the image with a 5× 5 matrix in which each cell is associated to
each pixel and its value will span between 0 and 255 (0 is total black and 255 is
total white):

I =

0 35 255 255 50
5 40 255 255 23
0 15 255 255 10
12 46 255 255 32
0 0 255 255 10

To this image, let’s apply the following 3× 3 filter:

F1 =

0 1 0
1 −4 1
0 1 0

How does a filter is applied to an image? The idea is to span the 3× 3 filter along
all the original matrix by computing a dot product between the filter and each
3× 3 sub-matrix of the original image. Image 2.4 shows how a convolutional filter
is applied on a filter:

Figure 2.4: How a convolutional filter is applied

If we apply the previous filter on the original image defined before, we obtain a

13

Background

3× 3 image with the following values:

O1 =

150 −215 −232
281 −240 −245
98 −209 −223

The resulting image has values outside the image domain [0,255], hence the final
result has to be clipped, namely all the negative values must be clipped to zero
and all the values above 255 must be reduced to it:

O1 =

150 0 0
255 0 0
98 0 0

Mathematically, O1 = I

o
F1 where o is the convolution operator that applies a

filter on an image. O1 can be considered a particular feature of the image I under
the filter F1. Naturally, another image will obtain another output by applying the
same filter on it. By changing the filter, the feature extracted from the images on
which it is applied will change.
A natural question arises: what are the best filters to apply on images in order
to retrieve the most important features? Are they depending on the type of the
images, or on the task? Before Machine Learning, in computer vision, those filters
were handcrafted. For instance, the filter defined before is called sharpen filter and
it was created with the specific goal of highlighting the edges in an image.
The innovation of the CNN architecture is based on the automatic learning of those
filters. The idea is to consider the filter values as weights of the Neural Network and,
exactly like every weight, they will update thanks to the back-propagation process.
The advantage of this approach is that, for every specific task, the best filters
will be automatically applied on the images without relying on some handcrafted
kernels.
As stated before, CNN is the standard architecture in the image domain. But how
to deal with a task like image classification? Convolution is not enough. The idea
is to exploit convolutions in order to extract features from the images and also
reduce the dimension of the problem (it is important to note that, in the previous
example, the original image was 5 × 5 while O1 was only a 3 × 3) and, starting
from those extracted features, classify the image with a sequence of dense layers
(like the multi layer perceptron explained before). Recalling the previous example,
the matrix O1 has to be flattened:

O1 =

150 0 0
255 0 0
98 0 0

→ è
150 255 98 0 0 0 0 0 0

éT
This new vector will be the input of a classifier like a multi-layer perceptron that
will result in assigning a label for the image.

14

Background

2.3.2 Recurrent Neural Network
If CNN is the standard architecture in the image domain, Recurrent Neural Network
(RNN)[13] can be considered the standard in the natural language domain. One
of the main reason for that is the fact that RNNs are able to manage input of
dynamic size. In the natural language domain, in fact, the data to work on are
sentences and not all the sentences have the same length.
As depicted in Image 2.5, the RNN workflow can be seen as an iterative process
composed in cycles. At each cycle, the output of the RNN will become the input
of the next one.

Figure 2.5: Visual representation of an RNN

In Image 2.5, with x is denoted the input, h represents the hidden layers inside
the network while with o is defined the output of the network.
This kind of architecture is very versatile in its structure. There are, in fact, a lot
of different versions of an RNN architecture reported in Image 2.6.

Figure 2.6: Different versions of an RNN

15

Background

Each one of them can solve specific tasks. To cite some of them, an architecture
many to many can be used for the text translation task in which a sentence of an
arbitrary length in the source language is mapped to a sentence of an arbitrary
length in the target language.
A one to many architecture can be used for text generation: given the first word
as input, the next words of the sentence will be computed by the network.
A many to one architecture instead, can be used for sentiment analysis, where,
given a sentence of an arbitrary length as input, the RNN will produce as result
the sentiment of that sentence.

2.3.3 Generative Adversarial Network
Generative adversarial networks (shortly GANs) [14], are a particular Neural Net-
work architecture used to generate data. More specifically, given data in input, the
goal of a GAN network is to generate other samples similar to the ones received in
input. For this reason, the GANs are defined as generative models.
The architecture of a GAN, as reported in Figure 2.7, is composed by two compo-
nents: the generator and the discriminator.

Figure 2.7: Architecture of a GAN

A GAN network can be seen as a two-player non-cooperative game [15]: starting
from random noise, the generator produces artificial samples as close as possible to
the real ones. The generator then randomly receives real or fake examples and its
goal is to distinguish between them. Essentially, the discriminator, is a two-class
classifier.
Through the classic back-propagation technique, the discriminator will update its
weights in order to become more efficient in distinguish between real and fake

16

Background

examples, while the generator will become more efficient in producing artificial
samples very similar to the real ones.
GAN architectures are relevant in the Federated Learning scenario mainly from a
privacy point of view: many attacks in FL are based on reconstructing the clients’
private data with a GAN [16]. More details will be provided in the next chapters.

17

Chapter 3

Federated Learning

3.1 Introduction
In a FL typical scenario, it is assumed that K clients {C1, · · · , CK} own their
datasets {D1, · · · , DK}, Di ∈ D where D denotes the data space and each of them
cannot directly access to other clients’ data to expand their own data. The central
server will be denoted as C0.
A traditional FL training process is divided into R rounds.
In the first round r = 1, the central server C0 initializes the model θ1

0 ∈ Θ where Θ
is the space of all models. Then, it selects a fraction c of clients (the notation C̃r

will indicate the subset of clients of cardinality ⌊cK⌋ selected at round r).
C0 sends the newly initialized model θ1

0 to all the selected clients C̃1. Each client Ci,
then, trains the received model θ1

0 for E epochs, on the local dataset Di, resulting
in the updated model θ1

i . More generally, the training process on a client Ci at a
generic round r will be denoted as:

θi
r = T (θ∗, Di, E) (3.1)

Where T : Θ,D,N → Θ denotes the training process that starts from an initial
model θ∗, uses the data Di and lasts E epochs. T has the following properties:

1. T (θ,D,0) = θ

2. θ1 = T (θ0, D,E) θ2 = T (θ1, D,E) = T (θ0, D,2E) · · · θn = T (θ0, D, nE)

3. θA = T (θ,DA, E) θB = T (θ,DB, E)→ T (θA, DB, E) /= T (θB, DA, E)

After the training computed by all the selected clients, each one of them will send
the trained model to the central server C0, resulting in a collection of models
{θ1

i ∀i ∈ C̃1}.

18

Federated Learning

The central server C0 then aggregates all the incoming models through an aggrega-
tion process A : {Θ} → Θ, resulting in the creation of a new model that will serve
as starting point for the next round:

θ2
0 = A({θ1

i ∀i ∈ C̃1}) (3.2)

Now the second round starts (r = 2), hence, a new subset of clients C̃2 must be
selected and the process repeats.
The goal of the aggregating function A is aggregates models trained on different
datasets in order to emulate a model trained on the union of those data:

θA = T (θ,DA, E) θB = T (θ,DB, E)→ A({θA, θB}) = T (θ,∪{DA, DB}, E) + ϵ
(3.3)

Where ϵ > 0 denotes the distance between the model trained on the whole dataset
with the aggregated one.
We can define, for comparison, the standard centralized approach applied in ML.

θC = T (θ1
0,∪K

i=1Di, ER) (3.4)

where θC denotes the trained model in a centralized fashion and θ1
0 denotes the

same randomly initialized model used for the FL training.
The number of epochs is set to ER in order to guarantee the same amount of
computation for both centralized and federated scenarios since, in FL, for each
round, every client computes E epochs of training. The difference between the
federated and the centralized scenarios is the fact that, in FL, for each round only
a portion c of clients will be selected (and consequently only a portion of the data
will be available for the model), while, in the centralized approach, all the data
will be available at each epoch.
As a consequence, equation 3.4 can be fairly compared only with a FL training
process in which c = 1.

3.1.1 Formal comparison between federated and centralized
approach

Assuming c = 1, the centralized model θC and the federated model θR
0 have been

trained on the same data for the same amount of training computations. What
FL aims to achieve is θR

0 = θC . This is not an easy task due to the fact that, in a
FL setup, data are split in K local datasets D1, · · · , DK with independent class
distributions. In a centralized scenario we have:

T (θn+1,∪K
i=1Di, E) = T (T (θn,∪K

i=1Di, E),∪K
i=1Di, E) =

T (θn,∪K
i=1Di,2E) = · · · = T (θ0,∪K

i=1Di, nE) (3.5)

19

Federated Learning

Equation 3.5 is justified by property 2 of T .
In a FL scenario we have:

T (θn+1,∪K
i=1Di, E) = T (A({θn

0 , · · · , θn
K}),∪K

i=1Di, E) =
T (T (θn,∪K

i=1Di, E)+ϵn,∪K
i=1Di, E) = · · · = T · · ·T (T (θ0,∪K

i=1Di, E)+ϵ0,∪K
i=1Di, E)

(3.6)

In order to align the two scenarios, we need ϵi → 0 ∀i.
Related to the heterogeneity problem it is important to remember the following:

||θA − θB||2 ∝ ||PA − PB||2 (3.7)

where θA and θB are two models trained on DA and DB respectively, while PA and
PB are the distributions of the two datasets. Essentially, a model "reflects" the
data upon which is trained, hence two models trained on different datasets are
different themselves.
The distance ϵ between the centralized model and the aggregated model through the
aggregating function A, has a strict relation with the Equation 3.7. In particular:

ϵ ∝ ||θA − θB||2 ∝ ||PA − PB||2 (3.8)

The more DA and DB have a different distribution, the more the aggregating
distance to the centralized model ϵ is big, hence, the harder will be to the FL
setting to keep up with the centralized one.

3.2 Related works
3.2.1 Federated Learning Taxonomy
In FL, different works aim to improve the standard and first algorithm proposed in
the field, namely FedAvg [5]. They can be divided in different categories:

1. Regularization methods: Clients with models too different w.r.t. the
averaged one are penalized

2. Clustering methods: The general idea is to group different clients together
according to some rule. Inside this category we can distinguish:

(a) Multitask methods: Clients with similar data distributions are clustered
together. Each cluster is considered a separated task and a dedicated
model is trained among only those clients.

(b) Sequential methods: Clients with different data distributions are clus-
tered together. A model is then trained for each cluster. Each model then
will see data among all the classes.

20

Federated Learning

3.2.2 FedAvg
In this section the FedAvg algorithm introduced in [5] is formally defined.
At each round 0 ≤ r ≤ R, the central server C0 sends the model θr

0 to the fraction
of selected clients C̃r. Each selected client Ci ∈ C̃r will then train the received
model on its own local data by computing θr

i = T (θr
0, Di, E). All the models

θr
i ∀ i s.t. Ci ∈ C̃r are sent back to the server C0 that starts the aggregation process:

θr+1
0 = A({θr

i ∀ i s.t. Ci ∈ C̃r}) =
Ø

i s.t. Ci∈C̃r

|Di|
|D|

θr
i (3.9)

Equation 3.9 defines the aggregation function of FedAvg as the weighted sum of the
locally trained models weighted by the size of the local datasets (|Di|) normalized
(|D| = qK

i=1 |Di|). Algorithm 2 shows in pseudo-code the algorithm.

Algorithm 2 FedAvg Algorithm
1: C0, {C1, · · · , CK}, R, θ0

0 ▷ Initial data definition
2: for r = 1, · · · , R do
3: C̃r = random({C1, · · · , CK}, ⌊cK⌋) ▷ Select a random subset of clients
4: for Ci,∈ C̃r do ▷ In parallel, on client side
5: θr

i = T (θr
0, Di, E)

6: end for
7: θr

0 = q |Di|
|D| θ

r
i ▷ Aggregation on server side

8: end for
9: return θR

0 ▷ θR
0 is the trained model

3.2.3 Regularization methods
In this section the regularization methods in FL will be analyzed. The general idea
in common among all the methods is correcting the ’shift’ that some clients may
produce due to their data distribution that could lead to poor global performances.
Among all the algorithms the most important ones are FedProx [6], FedDyn[17]
and SCAFFOLD[18].

FedProx

FedProx changes the loss function that each client minimizes during the training
phase by adding a regularization term that constrain the model to be ’close’ to the
model received from the server at the beginning of the round. Formally:

θr+1
i = minθ Li(θr

0) + µ

2 ||θ − θ
r
0||2 (3.10)

21

Federated Learning

where Li(θr
0) is the loss function of the client Ci that has to be minimized in the

training phase resulting in the updated model θr+1
i . ||θ − θr

0||2 is the regularization
term that force the model θ to be ’close’ to θr

0. This term is weighted by an
hyperparameter µ. Algorithm 3 shows in pseudo-code the algorithm.

Algorithm 3 FedProx Algorithm
1: C0, {C1, · · · , CK}, R, θ0

0 ▷ Initial data definition
2: for r = 1, · · · , R do
3: C̃r = random({C1, · · · , CK}, ⌊cK⌋) ▷ Select a random subset of clients
4: for Ci,∈ C̃r do ▷ In parallel, on client side
5: θr

i = T (θr
0, Di, E)→ minθ Li(θ) + µ

2 ||θ − θ
r
0||2

6: end for
7: θr

0 = q |Di|
|D| θ

r
i ▷ Aggregation on server side

8: end for
9: return θR

0 ▷ θR
0 is the trained model

FedDyn

Also FedDyn exploits the same idea of FedProx in order to control the client shift
phenomenon. In particular FedDyn add to the local loss function two regularization
terms (linear and quadratic):

θr+1
i = minθ Li(θr

0)− ⟨∇Li(θr
i), θ⟩+ α

2 ||θ − θ
r
0||2 (3.11)

where ⟨∇Li(θr
i), θ⟩ is the linear regularization term and, equally to FedProx, α

2 ||θ−
θr

0||2 is the quadratic one, weighted by α. At each iteration, the loss gradient
∇Li(θr

i) is updated as:

∇Li(θr+1
i) = ∇Li(θr

i)− α(θr+1
i − θr

0) (3.12)

FedDyn changes also on server side w.r.t FedAvg by computing the aggregation
function as:

θr+1
0 = A({θr

i ∀ i s.t. Ci ∈ C̃r}) =
 1
|C̃i|

Ø
i s.t. Ci∈C̃r

θr+1
i

− 1
α
hr+1 (3.13)

where hr+1 = hr − α 1
|C̃i|

1q
i s.t. Ci∈C̃r

θr+1
i − θr

0

2
.

FedDyn is depicted in Algorithm 4.

22

Federated Learning

Algorithm 4 FedDyn Algorithm
1: C0, {C1, · · · , CK}, R, θ0

0 ▷ Initial data definition
2: for r = 1, · · · , R do
3: C̃r = random({C1, · · · , CK}, ⌊cK⌋) ▷ Select a random subset of clients
4: for Ci,∈ C̃r do ▷ In parallel, on client side
5: θr

i = T (θr
0, Di, E)→ minθ Li(θ)− ⟨∇Li(θr−1

i), θ⟩+ α
2 ||θ − θ

r−1
0 ||2

6: ∇Li(θr
i) = ∇Li(θr−1

i)− α(θr
i − θr−1

0)
7: end for
8: hr = hr−1 − α 1

|C̃i|

1q
i s.t. Ci∈C̃r

θr
i − θr−1

0

2
9: θr

0 =
1

1
|C̃i|

q
i s.t. Ci∈C̃r

θr
i

2
− 1

α
hr ▷ Aggregation on server side

10: end for
11: return θR

0 ▷ θR
0 is the trained model

SCAFFOLD

SCAFFOLD introduces the concept of "client control variate" as a method to steer,
at each round, all the clients towards solutions not too far from the initial server
model. Essentially, each client Ci is coupled with a client control variate ci. Also
the server is coupled with a server control variate c. SCAFFOLD modifies the
standard Stochastic Gradient Descent used during the training phase by adding
the term ci − c in order to constrain the client model θr

i more towards the server
model θr

0. Revisiting Equation [SGD Eq.], SCAFFOLD redefines the SGD method
as:

θe+1
i = θe

i + ν(∇θe
i + c− ci) (3.14)

The client control variate ci can then be updated by following two possible strategies:(1) c+
i = ∇(θr

0)
(2) c+

i = ci − c+ 1
Eν

(θr
0 − θr

i)
(3.15)

Option (1) involves making an additional pass over the local data to compute the
gradient at the server model θr

0. Option (2) instead re-uses the previously computed
gradients to update the control variate. Option (1) can be more stable than (2)
depending on the application, but (2) is cheaper to compute and usually suffices.
On server side, SCAFFOLD does the following:(1) θr+1

0 = ν
|C̃r|

q
i s.t.Ci∈C̃r

θr
i − θr

0

(2) c = c+ 1
N

q
i s.t.Ci∈C̃r

c+
i − ci

(3.16)

Firstly, with (1) it defines the aggregating function used in order to create the new
server model for the next round r + 1. Secondly it updates the "server control
variate" c by equation (2).

23

Federated Learning

Algorithm 5 SCAFFOLD Algorithm
1: C0, {C1, · · · , CK}, R, θ0

0, c ▷ Initial data definition
2: for r = 1, · · · , R do
3: C̃r = random({C1, · · · , CK}, ⌊cK⌋) ▷ Select a random subset of clients
4: for Ci,∈ C̃r do ▷ In parallel, on client side
5: for e = 1, · · · , E − 1 do ▷ Explicit definition of the training process
6: θe+1

i = θe
i + ν(∇θe

i + c− ci)
7: end for
8: θr

i = θE
i

9: (1) c+
i = ∇(θr

0) or (2) c+
i = ci − 1

Eν
(θr

0 − θr
i)

10: end for
11: θr+1

0 = ν
|C̃r|

q
i s.t.Ci∈C̃r

▷ Aggregation on server side
12: c = c+ 1

N

q
i s.t.Ci∈C̃r

c+
i − ci

13: end for
14: return θR

0 ▷ θR
0 is the trained model

3.2.4 Clustering methods
As the name said, clustering methods group clients together according to some rule
[19]. Generally, the rule is based on the clients’ data distribution. Following the FL
paradigm, due to privacy constraints, it is forbidden to directly access clients’ data
distribution. For this reason the data distribution of each client has to be indirectly
inferred through some metric. Once all the clients distributions are approximated
without directly accessing the clients’ data, the clusters can be composed according
with some predefined rule.
Formally, let’s define a clustering rule G as an ensamble of three elements:

1. Client distribution approximator ψ(.) : it provides statistics regarding the
local distribution of a client in a privacy-preserving way

2. Metric τ : it evaluates the distances between the estimated data distributions

3. Grouping method ϕ(.) : it defines the rule through which the clients will be
clustered together

So G := {ψ, τ, ϕ}. The standard procedure through which clients are clustered
together follows the following steps:

1. The server C0 applies the approximator ψ to all clients ({ψ(C1), · · · , ψ(CK)})
and obtains the approximations of the local data distributions ({P̃i ≈ Pi}K

i=1).

24

Federated Learning

2. Through the metric τ , the distances between all the approximations P̃i are
computed, obtaining a distance matrix DK×K where the i − j element is
τ(P̃i, P̃j).

3. From D, the grouping method ϕ is applied, resulting in the realization of N
clusters of clients {S1, · · · , SN}.

Algorithm 6 depict the aforementioned clustering method general idea:

Algorithm 6 Clustering methods
1: {C1, · · · , CK}, ψ, ϕ, τ ▷ Initial data definition
2: {P̃1, · · · , P̃K} ← {ψ(C1), · · · , ψ(CK)} ▷ Server sends the approximator to all

the clients
3: D = [0]K×K ▷ Distance matrix initialization
4: for i = 1, · · · , K do
5: for j = 1, · · · , K do
6: Di,j = τ(P̃i, P̃j)
7: end for
8: end for
9: {S1, · · · , SN} ← {C1, · · · , CK} ▷ Creation of N clusters

Multitask methods

Among the clustering methods, Federated Multitask learning (FMTL) methods
are the ones that follow the following principle: cluster similar clients together and
train one specialized model per per group. This approach relies on the underlying
assumption that each cluster will represent a different task, hence it is convenient
to have a specialized model tuned for that particular task.

Inside this category we can find algorithms like CFL [20] where clients are iter-
atively bi-partitioned in groups with the goal of putting similar clients together.
The metric τ used in CFL is the cosine similarity, while, as approximation of the
local data, this algorithm trains, for each client an initialized model θ and then it
uses its gradient as approximation.

Another example of FMTL algorithm is FeSEM [19]. This work has some similar-
ities with the notorious clustering algorithm K-means[21] applied in the models
weight space. Essentially, at the beginning of the algorithm are randomly defined
N "centroid" models θ̃1, · · · , θ̃N . Then, the training process begins with a dual
optimization: all the clients model θr

i are trained by constraining the model to
be close to the nearest centroid but far to all the others. By iterating with this
approach, clusters of similar models naturally emerges.

25

Federated Learning

Sequential methods

By relying on clients clustering, this typology of methods goes in the opposite
direction of FMTL. The idea is to cluster together clients with different data
distributions in order to obtain groups of clients that, internally, have a more
homogeneous data distributions obtained as the combination of the internal data
distributions of the clients inside the same cluster.
Let’s develop this concept with a toy example: let’s suppose to have 4 clients
c1, c2, c3 and c4. Let’s also suppose to deal with a 2-class problem, hence the
clients data distribution vectors p1, · · · , p4 will have only two entries. Let’s assume
that those vectors are defined as p1 = [0.1,0.9], p2 = [0.2,0.8], p3 = [0.9,0.1] and
p4 = [0.7, 0.3]. It is obvious in this case that c1 and c2 are more similar, because
both of them have more data on the second class and fewer data on the first one,
while c3 and c4 are more similar because of a data preponderance on the first class.
The idea in the sequential methods is to group together dissimilar clients, so in
this case, a possible clusterization could lead to S1 = {c1, c3}, S2 = {c2, c4}.
For the sake of simplicity, let’s assume that each client’s local dataset has a
cardinality of n. So the cardinality of S1’s local dataset will be 2n, divided in
pS1 = 1

2(p1 + p3) = [0.5,0.5]. For S2 we will get pS2 = [0,45,0,55].
The idea of the sequential methods is to train a model per cluster, specifically a
model for S1 and a model for S2. This approach leads to different advantages: the
fact that the model will be trained inside an homogeneous cluster means that the
model will see a fair amount of data for each class without being too specialized in
some classes rather than others. The second advantage relies on the fact that, if I
train a model inside a single client, the amount of data that the model is capable
to see is n, while a model trained on the entire cluster will double the data for the
training resulting in a more performing model.
FedSeq[7] belongs in this category. The next part of the thesis will be dedicated
to this algorithm.

3.3 Privacy in Federated Learning

The main reason why the Federated Learning paradigm has been created is related to
privacy: clients private data must be inaccessible from the server or any malevolent
attacker. For this reason, a lot of effort has been made in order to guarantee
privacy in FL, by developing different defence strategies and by studying different
typologies of attacks that can compromise the security of private data.
In the next part the most important attacks and the most important defences will
be presented.

26

Federated Learning

3.3.1 Privacy attacks in Federated Learning
If we talk about privacy attacks in FL, we first need to understand who can make
such attack [22]. The attacker can be an insider, like a malevolent client or the
server itself, or it can be an outsider, like model consumers or eavesdroppers that
can only have access to the model’s data. Surely, the attacks from the former is
much more effective since an insider has the chance to get the model during the
training rather than having only the final model.

Another distinction to make while talking about privacy attacks, is what is attacked.
We can split all the attacks in passive or active attacks. The former are all that
attacks that do not interfere with the training of the FL model, because their only
goal is to sniff private information. The latter, instead, are all that attacks that do
interfere with the FL model training, aiming at lowering the final performances.

It is also important to understand when the attack is made: it can be made
during the training phase (generally these attacks are stronger) or during inference
phase by exploiting the final model.

Another important factor that can distinguish an attack from another is where to
attack. Essentially, an attack can exploit three elements: the weight update of the
model, the gradient update of the model, or directly the trained model. The first
two elements lead to more effective attacks while the third one is used only if the
attacker is an outsider.

The last important element to define a privacy attack is the "why": what my
attack is aiming to do? In this case it is difficult to make an exhaustive list because
the reason depends on the task, but it is possible to divide the attacks in this four
categories:

1. The inference of class representatives aims to generate representative samples,
which are not real data instances of training datasets but can be used to study
sensitive information about the training datasets

2. The inference of memberships aims to determine whether a data sample has
been used for model training

3. The inference of properties of the training data aims to infer the property
information regarding the training datasets

4. The inference of inferring training samples and labels aims to reconstruct the
original training data samples and the corresponding labels

27

Federated Learning

3.3.2 Privacy defences in Federated Learning
The Federated Learning research community has invested a lot of effort in creating
good countermeasures to the aforementioned attacks [22]. These defences can be
divided in four categories:

1. Encryption based defences

2. Perturbation based defences

3. Anonymization based defences

4. Hybrid methods

Encryption based defences

In this category belong all those defences that rely on encryption cryptographic
techniques for privacy preservation. Among them we have the Homomorphic
encryption [23], a technique that guarantees that the same calculations computed
on the encrypted data and on the plain data lead to the same result. This techniques
is used, for instance, in [24] to encrypt the gradient update of the model.
Another encryption techniques is called secret sharing[25] and it guarantees that,
given a "secret" to encrypt divided in n shards, this "secret" can be reconstructed
only with, at least, m <= n shards. This technique is the FL paradigm in [26].
Another encryption technique widely used to secure privacy in FL is called Secure
multiparty computation (SMC). Essentially, SMC is a cryptographic scheme that
enables distributed participants to collaboratively calculate an objective function
without revealing their own data. This technique has been used in different works
like [27].
Generally speaking, this category of defences do not degrade the quality of the
resulting model after the FL training process, but it has a significant cost in terms
of complexity due to the encryption operations required. This could be a problem
since, in FL, we are in a situation of heterogeneous clients in term of computation
power, so, some strugglers may not be able to bare the encryption process required
by these techniques.

Perturbation based defences

In this category, all the defences are based on the principle of perturbing, in
some way, the data that an attacker needs in order to sniff information, without
downgrading too much the model performances. One way to accomplish this is
through the global differential privacy techniques[28]. Specifically, during each
training round, the server selects a random number of participants to train the
global model, and the participants update their local models and send weights

28

Federated Learning

back to the server. The server then aggregates the global model by adding random
Gaussian noise. In this way, malicious participants cannot infer the information of
other participants from the shared global model.
An alternative technique is called local differential privacy[29]: very similar to the
global one, a random Gaussian noise is added to the model gradient, but in this
case this operation is computed on client side. This means that the server will
never receive the original model.
Belonging to the perturbation based defences there are two more techniques:
Additive perturbation[30] and Multiplicative perturbation[31]. Both techniques aims
in transforming the original data space by shifting (the former) or rotating (the
latter) in order to secure sensitive data.
All the defences in this categories relies on data perturbation. Although they solve
the computation overhead problem posed by the encryption based defences, they
present a quality degradation issue.

Anonymization based defences

Anonymization techniques are mainly used to achieve group-based anonymization
by removing the identifiable information while maintaining the utility of the
published data. There are three types of widely used anonymization techniques:
k-anonymity[32], l-diversity[33], and t-closeness[34]. These methods are based
on the assumption that data are divided in three categories: unique identifiers
(UIDs), sensitive attributes (SAs), and non-sensitive attributes. The defences in
this category aim at protecting unique identifiers and sensitive attributes while
maintaining the utility of the published data.

29

Chapter 4

FedSeq

This chapter will be dedicated to a deep analysis of the algorithm FedSeq[7], the core
part of this thesis. After a formal and exhaustive definition of the algorithm, several
experiments will be presented in order to empirically understand the algorithm
performances, compared to the other state of the art (SOTA) methods.

4.1 The algorithm
If we take the Federated Learning algorithms taxonomy previously discussed, FedSeq
belongs in the clustering sequential methods category. Indeed, this algorithm
clusters clients together with the goal of building groups of clients that, overall,
has an homogeneous data distribution. Then, on this group of clients, from now
on called superclients, the classical FedAvg algorithm is applied. This approach to
the Federated Learning paradigm presents two main challenges:

• How to create the superclients without directly access the clients’ local data
distributions?

• How to train a model inside each superclient?

Let’s start with the first question. In order to build superclients in a proper way
without violating the FL privacy constraints, FedSeq uses a pipeline of different
components:

1. Client approximator : denoted with the letter ψ(.), it is used to approximate a
client’s data distribution with a vector. This step has to be done in a privacy
preserving way, so, the standard approach is to leverage on a local model
trained on the client’s data.

2. Grouping method: denoted with the letter ϕ(.), it is the component used for
cluster the clients together.

30

FedSeq

3. Grouping metric: denoted with the letter τ , it is the metric used to evaluate
the distances between the clients’ local data approximations.

A schema of this pipeline is reported in Image 4.1.

Figure 4.1: FedSeq pipeline for creating superclients

In the next part of this chapter, each one of these elements is discussed.

4.1.1 Client approximator
The goal of the client approximator is to approximate, in a privacy preserving way,
the clients’ local data distributions. Obviously no local information can be sent
to the server from the clients. For this reason the approach used in FedSeq is to
exploit a Neural Network and training it on the clients’ local data.
More in details, the idea behind exploiting a trained model to approximate data
distributions relies on the fact that the trained model itself can be seen as a
representation of the data upon which is trained. Given a dataset D, a model
θD = T (θ,D) inherits some properties of D. For instance, in a classification
problem, if D has only instances of one class, the model θD will classify every
possible input as member of that class. In a way, the information that the original
data have a very heterogeneous distribution towards one particular class is reflected
in the classification ability of the model. That’s the principle upon which the client
approximator is built.
The client approximator pipeline works in the following way:

31

FedSeq

1. The server sends to all K clients a randomly initialized model θ0

2. Each client k trains, for E0 epochs, the model on its own local data Dk

resulting in θk
0 = T (θ0, Dk, E0).

3. The server receives all the models {θk
0}K

k=1 and applies the client approximator
ψ on them in order to retrieve the clients’ local data approximations {P̃k}K

k=1.

Formally, FedSeq implements two different versions of client approximators:

1. Confidence approximator

2. Weight approximator

Confidence approximator

This approximator relies on a server-side public homogeneous dataset Dpub =tNc
c=1 Dc where Dc contains J samples for class c and Nc is the total number of

classes. On server side, each model θk
0 produces a probability vector pk,i,c k ∈

[K] i ∈ [J], c ∈ [Nc], for each example in Dpub. Then, for each class c, the following
value is computed pk,c = 1

J

qJ
i=1 pk,i,c. The final client approximator will result in:

pk = softmax({pk,1, pk,2, · · · , pk,Nc}) (4.1)

Weight approximator

This approximator doesn’t require a public dataset Dpub to work. It directly exploits
the models weights as approximators. Different works [35] have already proven
that the model weights can represent the data on which the model was trained
on. Naturally, the cardinality of the weights vector of a model can be huge and
can raise computational problem during the clustering process. For this reason, in
FedSeq, each weights vector wk is reduced by the P.C.A method [36] conserving
90% of the variance, resulting in:

pk = P.C.A(wk) (4.2)

4.1.2 Grouping method
Once all the clients are approximated by the chosen client approximator, the
grouping method ϕ(.) comes into play. Its goal is to create different clusters of
clients by trying to obtain, for each cluster, an overall data distribution (computed
as the sum of the clients’ distributions in that cluster) as homogeneous as possible.
Image 4.2 shows how the grouping method component works.

32

FedSeq

Figure 4.2: How the grouping method component works

Clients A and D are grouped together since the overall amount of data per class
is even after the two distributions are merged. With the same logic, also clients B
and C are grouped together.
FedSeq implements three different grouping methods: i)ϕrand, ii)ϕgreedy, iii)ϕkmeans.

Random Grouping Method

The random grouping method, ϕrand, is the most naive and basic approach to
implement a grouping method. Simply, each cluster is composed by a random
selection of clients. The only two constraints that this grouping method has to
follow are: i) guaranteeing that each cluster has a minimum number of examples
ii) each cluster has a maximum number of clients. These two constraints pose a
lower bound and an upper bound to the clusters’ dimension. Algorithm 7 codifies
this grouping method.

33

FedSeq

Algorithm 7 Random grouping method
1: {C1, · · · , CK}, S = [], Dmin, Kmax, j = 0 ▷ Initial data definition
2: for i = 1, · · · , K do
3: Sj = []
4: c = random({C1, · · · , CK}) ▷ Randomly select a client
5: {C1, · · · , CK} → c ▷ Remove c from the available clients
6: if |Sj|+ 1 > Kmax && |DSj

|+ |Dc| > Dmin then ▷ If the superclient has
too many clients but sufficient examples

7: S ← Sj

8: j = j + 1
9: end if

10: Sj ← c ▷ Insert c in the superclient
11: end for
12: return S ▷ Return the list of superclients

It is important to remember that this grouping method does not guarantee at
all the homogeneity of the superclients distributions, but it is used as baseline for
the other methods.

Greedy Grouping Method

This grouping method, shortly defined as ϕgreedy, follows, as the name said, a greedy
approach: one superclient at a time is created in the best way possible with the
available client that it has. More in details: one client is randomly select as starting
point. Then, the second client is chosen by finding that client that, together with
the first one, result in the most homogeneous overall distribution possible. Then
the third client is selected following the same principle: finding that client that
maximize the overall distribution homogeneity. Once the superclient respects the
two constraints defined before (minimum number of examples and max number of
clients), it is ready and the second superclient starts to selects the best clients.
Why greedy? Because each superclient selects the best clients in order to maximize
its own overall homogeneity distribution without considering the fact that, maybe,
a client selected now, could be the optimal choice for another superclient. In
conclusion, this approach creates a sub-optimal partitions of clients but it is very
feasible from a computational point of view.
Coupled with this grouping method, the metrics through which we evaluate how an
available client will affect the homogeneity of the overall superclient’s distribution
is a key factor of ϕgreedy. In FedSeq, three metric are used: i)Gini Index ii)Kullback-
Leibler divergence iii)Cosine Distance. All these metrics will take, as input, the
data approximation of a candidate client c and the data approximation of the
superclient that we are building (computed as the average of the approximations

34

FedSeq

of the clients already selected for this superclient).
So each metric will be in the form of: τ(Dc, DS)→ R. For the sake of readability,
let’s define the average between Dc and DS as Dc,s.
Regarding the Gini Index, τ is defined as:

τ(Dc, DS) = 1−
NØ

i=1
(Dc,S)2

i (4.3)

For the Kullback-Leibler divergence, instead, τ is defined as:

τ(Dc, DS) = 1−
NØ

i=1
(Dc,S)i · log

A
(Dc,S)i

1i

B
(4.4)

The Cosine Distance is defined as:

τ(Dc, DS) = 1− Dc ·DS

|Dc| · |DS|
(4.5)

Algorithm 8 shows the pseudo-code for ϕgreedy.

Algorithm 8 Greedy grouping method
1: {C1, · · · , CK}, S = [], Dmin, Kmax, j = 0, τ ▷ Initial data definition
2: while |{C1, · · · , CK}| > 0 do ▷ Iterate until all clients are clustered
3: Sj = []
4: if |Sj| == 0 then ▷ First client is randomly chosen
5: c = random({C1, · · · , CK})
6: else ▷ Chose the best client for τ
7: c = argmin(τ(Dk, DSj

)) ∀k ∈ [K]
8: end if
9: Sj ← c

10: if |Sj| > Kmax && |DSj
| > Dmin then

11: S ← Sj

12: j = j + 1
13: end if
14: end while
15: return S ▷ Return the list of superclients

K-means grouping method

The last grouping method implemented in FedSeq is ϕkmeans. This algorithm can
be considered a two-steps process: first, the k-means clustering algorithm[21] is
applied on the clients’ data approximations in order to get clusters of similar clients.

35

FedSeq

Then, the second step consists of creating the superclients by picking one client
per cluster guaranteeing that clients with different data distributions are grouped
in the same superclients. Algorithm 9 formalizes this grouping method.

Algorithm 9 K-means grouping method
1: {C1, · · · , CK}, S = [], Dmin, Kmax, j = 0, i = 1, h = 1
2: {G1, · · ·GH} = kmeans({C1, · · · , CK}) ▷ Creates H clusters with kmeans
3: while i <= K do
4: Sj = []
5: Sj ← random(Gh) ▷ Random select a client in Gh

6: h = mod(h+ 1, H) ▷ Get next cluster
7: if |Sj| > Kmax && |DSj

| > Dmin then
8: S ← Sj

9: j = j + 1
10: end if
11: i = i+ 1 ▷ Count the number of clients
12: end while
13: return S

In this grouping method, the selection of the metric τ is not involved since the
k-means algorithm can be only defined if the metric used to compute the distances
is the euclidean distance.

36

Chapter 5

Experiments

In this chapter, all the experiments conducted on FedSeq are presented, along
with the presentation on the dataset used and the metrics involved in order to
evaluate the algorithm. All the experiments can be divided in three categories:
i) experiments on the FedSeq parameters that aim to understand what are the
best configurations of the algorithm under different conditions ii) experiments that
test the algorithm from a privacy point of view that aim to understand how much
FedSeq is resilient under a privacy attack and iii) experiments that evaluate the
FedSeq performances against other state of the art (S.O.T.A) federated learning
algorithms.

5.1 Datasets
In this section, the datasets used in all the experiments are presented. For each
of them, the task, a brief description of the classes, and some statistics will be
reported.
In order to make experiments in a federated scenario, each dataset has to be split
in K local datasets where K is the number of simulated clients. Obviously, it is
important to understand how heterogeneous are the K partitions of the datasets.
For this reason, for each dataset, it will be explained the partition strategy.

5.1.1 Cifar-10
The Cifar-10 dataset [37], is a well established dataset in image recognition. It
consists of 60.000 images (50.000 in the train set and 10.000 in the test set) coupled
with a label that belongs to the 10 classes presented in the dataset. Each image
has a dimension of 32× 32 and three color channels.
The 10 classes, along with some image examples are reported in Figure 5.1.

37

Experiments

Figure 5.1: The Cifar-10 dataset

The dataset is uniformly distributed, meaning that, for each class, there are
6.000 examples, 5.000 in the training set and 1.000 in the test set.
The partition in K private local datasets is managed with a Dirichlet distribution
[38] parametrized by α:

p(x) ≃
KÙ

i=1
xα

i (5.1)

The Dirichlet distribution guarantees that, the sum of the K entries sum up to
1. The smaller α, the fewer elements in the distributions will have support. The
two extreme cases are α = 0, which means that each distribution will have only
support in one element and α→∞ which transforms the Dirichlet distribution to
a Uniform distribution. All the experiments conducted on Cifar-10 set a specific α
in order to simulate how much heterogeneous clients are.

5.1.2 Cifar-100
The Cifar-100 dataset [37] can be considered the extension of Cifar-10. The
domain and the number of examples are the same: image classification and 60.000
images split in 50.000 for the training set and 10.000 for the test set. The number
of classes is 100. They are grouped in 20 superclasses, each one of them containing
5 fine labels. As in Cifar10, the images are uniformly distributed among all the
100 classes, resulting in 600 examples per class (500 in the train set and 100 in the

38

Experiments

test set).
Image 5.2 reports the classes with an example.

Figure 5.2: The Cifar-100 dataset

Also Cifar-100, like the Cifar-10 dataset, exploits a Dirichlet distribution,
parametrized by α, in order to simulate the clients’ heterogeneity.

5.1.3 EMnist

The EMnist dataset [39] is another image classification dataset. It is composed by
814.255 images of hand-written characters split in 697.932 samples for the train set
and 116.323 samples for the test set. Each image has a size of 28× 28 and it is in
gray-scale, meaning that it has only one color channel. EMnist has 62 classes that
span all the English alphabet (lower case and upper case) plus all the digits from 0
to 9.
Image 5.3 shows some examples of images present in this dataset.

39

Experiments

Figure 5.3: The EMnist dataset

This dataset, is not not balanced, meaning that it does not have the same
number of samples for each class. Plot 5.4 shows the data distributions of the
classes.

Figure 5.4: EMnist classes distributions

Regarding the federated splitting, the experiments conducted on this dataset
aim to simulate the real life scenario in which each client represents a single person
with its own writing style. For this reason the data are split by authorship. In
total there are 3500 authors that have generated the data. Some experiments are
conducted also in a balanced fashion (I.I.D), meaning that the 3500 clients have
the same number of example for each class.

5.1.4 Shakespeare N.C.P
The Shakespeare dataset [40] belongs to the natural language domain. In partic-
ular, the task required by this dataset is Next Character Prediction (N.C.P): given
a sub-sequence of 80 characters extracted from a sentence, the goal is to predict
the 81’st. All the data are extracted from the works of the English poet and writer
William Shakespeare.
In total, the dataset is composed by 200000 sub-sequences of 80 character. Each
character can belong to one of the 80s classes presented in the dataset: they are all

40

Experiments

the letters (lowercase and uppercase) plus some punctuation marks like colons and
semicolons.
Regarding the federated splitting, since the sentences are retrieved from Shake-
speare’s plays, data are divided by character’s plays. In total, 100 different character
are selected, with 2000 sub-sequences of sentences each. Like the EMnist dataset,
also in this case some experiments are conducted in a balanced fashion by redis-
tributing the data inside the 100 clients such that each one has the same amount
of sample for each class.

5.1.5 StackOverflow
The StackOverflow dataset also belongs to the natural language domain. However
the task is different with respect to the Shakespeare dataset. For this dataset the
task required is next word prediction, namely, given a set of words in a sentence,
the goal is to predict the following one.
This dataset is a collection posts of the famous web-site StackOverflow. In particular
290 posts, on average, have been gathered for 342.477 users. Each post is composed
by a question and a corpus. For the experiments proposed in this work, only the
question part of each post is considered in order to do next word prediction.
In total, the number of different words used across all the dataset is 10.000 and, on
average, each word is used 9946 times.
The federated split is made by user and all the experiments are made in a non-I.I.D.
fashion since, due to the task, it has no meaning to split the data in order to create
local datasets with uniform distributions.

5.2 Models used
For each dataset reported above, a particular model architecture is adopted. In
this section, all the architectures chosen are reported and explained.

5.2.1 Cifar-10 and Cifar-100
Due to the similarity of these two datasets, the same model architecture is adopted
for all the experiments on both Cifar-10 and Cifar-100, with the exception of the
last layer that has to have an output dimension equal to the number of classes of
the dataset (10 for Cifar-10 and 100 for Cifar-100).
The model architecture is called, in the literature, LeNet-5[41] and it is defined by
a feature extractor, composed by a sequence of convolutional layers, and a classifier,
composed by a sequence of dense (fully connected) layers.
Table 5.1 reports the full LeNet-5 architecture.

41

Experiments

LeNet-5
Name Type Features # parameters

Conv1 Convolutional kernel=5, activation=relu 64x3x5x5+64
MaxPool1 MaxPool2D kernel=2 -
Conv2 Convolutional kernel=5, activation=relu 64x64x5x5+64
MaxPool2 MaxPool2D kernel=2 -
Flatten Flatten - -
Fc1 Dense activation=relu 384x1600+384
Fc2 Dense activation=relu 192*384+192
Fc3 Dense activation=relu n_class*192+n_class

Table 5.1: LeNet-5 architecture. The flatten layer transforms the 2D tensor input
as a 1D tensor. n_class=10 for Cifar-10, n_class=100 for Cifar-100.

5.2.2 EMnist
For the EMNIST dataset a similar CNN architecture to the previous one is used.
Yet again, the network is made by two components: a feature extractor composed
by a sequence of convolutional layers and then a classifier, composed by a sequence
of fully connected layers.
A peculiarity of this architecture with respect to the previous one is the use of
dropout layers. Each dropout layer has a parameter p ∈ [0,1]. During training
time, the layer will randomly zeroes some of the elements of the input tensor with
probability p. This has proven to be an effective technique for regularization and
preventing the co-adaptation of neurons [Improving neural networks by preventing
co-adaptation of feature detectors].
Table 5.2 reports the full architecture:

EMnist
Name Type Features # parameters

Conv1 Convolutional kernel=3 32x1x3x3+32
Conv2 Convolutional kernel=3, activation=relu 64x32x3x3+64
MaxPool1 MaxPool2D kernel=2 -
Dropout1 Dropout p=0.25 -
Flatten Flatten - -
Fc1 Dense - 128x9216+128
Dropout2 Dropout p=0.5 -
Fc2 Dense - 10x128+10

Table 5.2: EMnist network architecture. The first Convolution layer has one
channel since the EMnist dataset is composed by gray-scale images.

42

Experiments

5.2.3 Shakespeare N.C.P

For this dataset, a RNN-based architecture is used. More specifically, this architec-
ture is composed by three elements: i) an embedding layer, ii) an LSTM module
and iii) a dense layer.
The embedding layer is simply an hash-map that, for each input letter, will associate
a vector of a fixed embedding size. This letters’ embeddings are trainable parame-
ters of the network, meaning that they will modify themselves during training in
order to be the most suitable ones to guarantees the best network output.
The LSTM module is a particular RNN architecture proposed in [42]. It is composed
internally by 2 layers of 100 neurons each. The output of the LSTM module is fed
into iii), the dense layer that will output a vector of size 80 (the number of class).
This output vector is then passed into a softmax function that will transform all
the values of the vector into probabilities of belonging to that particular class.
Table 5.3 reports the full architecture.

Shakespeare N.C.P
Name Type Features

embedding Embedding num_classes=80 embed_size=8
lstm LSTM hidden_size=100 num_layers=2
linear Dense -

Table 5.3: Shakespeare N.C.P architecture

5.2.4 StackOverflow

The architecture used for the StackOverflow dataset is an enhanced version of the
previous one: it has the same structure composed by an embedding layer, an LSTM
module and some dense layers, but the size of each one of them is much larger. The
embedding layer maps each word to an embedding vector of size 96. The LSTM
module is composed by one single hidden layer with 670 neurons. Instead of using
one single dense layer for classification, this architecture uses two of them.
Table 5.4 shows the architecture.

43

Experiments

StackOverflow
Name Type Features

embedding Embedding num_classes=10004 embed_size=96
lstm LSTM hidden_size=670 num_layers=1
linear1 Dense -
linear2 Dense -

Table 5.4: StackOverflow architecture

5.3 General Analyses in FL

In this section, basic experiments on FedAvg are conducted in order to explore the
basic principles of the Federated Learning paradigm. In particular, four studies are
going to be conducted:

• What happens when the number of clients increase?

• What happens if the fraction of clients selected at each round changes?

• What happens if, each client, every round trains for more epochs the global
model?

• What happens to the performances of the global model if the heterogeneity of
the data split varies?

If not stated otherwise, the standard setting for the parameters is reported in Table
5.5

Algorithm FedAvg
Dataset Cifar-10
Rounds 10.000

K 100
C 0.2
E 1
α 100

Table 5.5: Standard run setting

44

Experiments

5.3.1 Ablation on K

Figure 5.5: Ablation on K

In this experiment, the effect of the number of clients is studied. Figure 5.5
compares 6 different configurations in which the parameter k is, in increasing order:
1, 10, 50, 100, 250 and 500. It is immediately clear that, the smaller K, the better
are the performances of the algorithm. This is due to the fact that, with a small
number of clients, each one of them has a local dataset with more samples, hence,
the locally trained models will be more performing. In particular, the case of K = 1
is equivalent to centralized learning process, since that only client will have, as
local dataset, the entire data samples available. It is also important to notice that,
the larger K, the more stable is the algorithm. This empirically proves that the
aggregated model is less prone to have loss instability: in the K = 500 case, for
instance, even if a single model has a performance drop in a particular round, the
other 499, which represent the 99.8% of the total number of models, will mitigate
the effect.

5.3.2 Ablation study on C
This ablation experiment has been conducted in order to understand what is the
effect of C, the fraction of clients selected at each round. The value of C will span
these different values: 0.05, 0.1, 0.2, 0.5, 0.7, 1. When C = 1, all clients are selected
at all rounds.

45

Experiments

Figure 5.6: Ablation study on C

In Figure 5.6 the experiments with different configurations of the parameter C
are reported: the values taken in consideration are C = 0.05, C = 0.1, C = 0.2,
C = 0.5, C = 0.7 and C = 1. It is immediately clear that there are no huge
differences, in terms of performances, between the different algorithms. Even from
a convergence speed, all the algorithms are very comparable. The real difference
stands on the noisiness of the algorithms: the smaller the C, the noisier the
algorithm. This is easy explainable by the fact that, if C is small, then it is more
likely that different clients are selected at each round, while, if C = 1 for instance,
each round will have always all the clients selected and the aggregated model will
be more stable.

46

Experiments

5.3.3 Ablation study on E

Figure 5.7: Ablation study on E.

In this experiment, the parameter E, the parameters that defines how many local
epochs each selected client has to compute in order to complete a local train of
a model is tested. Figure 5.7 reports four different configurations in which E
is equal to 1, 5 and 20. It is important to remember that, in an FL scenario,
client computational resources are limited, hence, a too large value of E could be
unfeasible. Moreover, in an FL scenario, clients’ local datasets are generally small,
which means that a too large value of E could lead to a heavily overfitted model.
From Figure 5.7, it is clear that, the smaller E, the slower is the convergence of the
algorithm w.r.t the accuracy. It is worth to mention that this convergence slowdown
effect is less effective when E is sufficiently large: the difference in convergence
between the setups in which E = 5 and E = 1 can reach 10 points in accuracy,
especially in the first rounds. On the other hand, the difference between the setups
E = 20 and E = 5 is way smaller. Lastly, it is clear that when E = 20 the
algorithm reaches worse overall performances, even though, in the first rounds the
accuracy curve is very steep. This is due to the fact that the local models are
trained for too many epochs on clients data, hence they are overfitted, which leads
too poor global performances.

47

Experiments

5.3.4 Ablation on α

Figure 5.8: Ablation on α

In this experiment, the effect of α has been tested. In particular, four different
values of α has been evaluated: from the most heterogeneous scenario of α = 0,
in which each client will have only data who belong to one class, to the most
homogeneous one, α = 100, in which each client will have a uniform local data
distribution among all classes. From Figure 5.8, it is clear that the higher the α,
the more performing is the algorithm. Moreover, it is interesting to notice that,
the smaller the α, the noisier the algorithm behaviour. Both of these effects are
justified by the fact that, local trained models tend to be more similar if they
are trained on similar local datasets, hence, if α is big, each client will have a
local dataset with a similar distribution w.r.t the other ones. It is important to
notice that the difference between a small-α and a big-α scenario is not only in the
accuracy reached but also in the speed of convergence: in a big-α scenario, even
after 2000 rounds, the algorithm is almost on its convergence, while, for α = 0, the
accuracy curve after round 2000 is still very steep.

5.4 FedSeq vs S.O.T.A
In this section all the experiments that puts in comparison FedSeq with the other FL
state of the art algorithms are presented. The S.O.T.A algorithms involved in this

48

Experiments

analysis are: FedAvg, SCAFFOLD, FedProx and FedDyn. All the experiments are
conducted on the datasets presented in Section 5.1. Moreover, for each dataset, the
analyses are proposed with different values of selected clients per round C ∈ [0.1,0.2]
and in different settings of data distribution (IID and NIID, or α ∈ [0.1,0.2,0.5] for
the Cifar datasets).

5.4.1 Shakespeare dataset

Figure 5.9: Comparison of FL algorithms on Shakespeare dataset

Figure 5.9 shows all the experiments conducted on the Shakespeare dataset, for
250 rounds, in four different configurations of C and IID/NIID data distribution.
It is clear that FedSeq is the fastest algorithm from a convergence point of view,
regardless the configurations of C and the dataset IIDness. Generally FedDyn
is the only algorithm capable of reaching the FedSeq accuracies. On average,
FedAvg, SCAFFOLD and FedProx have worse performances reaching 3-4% less
points in accuracy w.r.t FedSeq and FedDyn. It is important to remember that
each algorithm presented in Figure 5.9 uses the best combination of parameters
that each algorithm requires (found with an extensive grid-search):

• C = 0.1, IID configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback, the
maximum number of client per superclient is set to 5 and the minimum number
of examples is 8000. FedDyn sets α = 0.015, while FedProx sets µ = 0.0001.

• C = 0.1, NIID configuration: FedSeq uses ψclf , ϕgreedy, τ = Wasserstein,
the maximum number of client per superclient is set to 5 and the minimum

49

Experiments

number of examples is 8000. FedDyn sets α = 0.001, while FedProx sets
µ = 0.0001.

• C = 0.2, IID configuration: FedSeq uses ψconf , ϕgreedy, τ = Gini, the
maximum number of client per superclient is set to 5 and the minimum
number of examples is 8000. FedDyn sets α = 0.001, while FedProx sets
µ = 0.0001.

• C = 0.2, NIID configuration: FedSeq uses ψclf , ϕgreedy, τ = Wasserstein,
the maximum number of client per superclient is set to 5 and the minimum
number of examples is 8000. FedDyn sets α = 0.001, while FedProx sets
µ = 0.001.

5.4.2 EMnist dataset

Figure 5.10: Comparison of FL algorithms on EMnist dataset

Figure 5.10 shows all the experiments conducted on the EMnist dataset, for 1500
rounds, in four different configurations of C and IID/NIID data distribution. Also
with this dataset, regardless the configuration, FedSeq outperforms the other
algorithms in both accuracy reached and speed of convergence. FedDyn shows a
better speed of convergence w.r.t the other S.O.T.A algorithms even though the
final accuracy reached is the same: 3-4 percentage point lower w.r.t the accuracy
achieved by FedSeq. For this dataset, the parameters chosen for each algorithm
are now reported:

50

Experiments

• C = 0.1, IID configuration: FedSeq uses ψclf , ϕKMeans, τ = Euclidean, the
maximum number of client per superclient is set to 21 and the minimum
number of examples is 4120. FedDyn sets α = 0.0155, while FedProx sets
µ = 0.0001.

• C = 0.1, NIID configuration: FedSeq uses ψclf , ϕgreedy, τ = Cosine, the
maximum number of client per superclient is set to 21 and the minimum
number of examples is 4120. FedDyn sets α = 0.001, while FedProx sets
µ = 0.0001.

• C = 0.2, IID configuration: FedSeq uses ψconf , ϕKMeans, τ = Euclidean,
the maximum number of client per superclient is set to 21 and the minimum
number of examples is 4120. FedDyn is missing in this setup due to lack of
resources, while FedProx sets µ = 0.001.

• C = 0.2, IID configuration: FedSeq uses ψconf , ϕKMeans, τ = Euclidean,
the maximum number of client per superclient is set to 21 and the minimum
number of examples is 4120. FedDyn sets α = 0.01, while FedProx sets
µ = 0.001.

5.4.3 Cifar10 dataset

Figure 5.11: Comparison of FL algorithms on Cifar-10 dataset

Figure 5.1 shows six different experiments conducted on the Cifar-10 dataset. The
value for C varies from 0.1 and 0.2 while α can assume three different configurations

51

Experiments

0, 0.2 and 0.5. Regardless the configuration, FedSeq reaches better results in both
terms of accuracy and speed of convergence. The only algorithm that is competitive
is FedDyn, which is capable of reaching the same performances of FedSeq. FedAvg
and FedProx perform similarly while SCAFFOLD is better especially when α is
small, showing that it performs better when the scenario tends to be more NIID.
In the following, the parameters chosen for each algorithm are now reported:

• C = 0.1, α = 0 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.001, while FedProx sets
µ = 0.0001.

• C = 0.1, α = 0.2 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.01, while FedProx sets
µ = 0.001.

• C = 0.1, α = 0.5 configuration: FedSeq uses ψclf , ϕgreedy, τ = Cosine, the
maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.015, while FedProx sets
µ = 0.0001.

• C = 0.2, α = 0 configuration: FedSeq uses ψconf , ϕgreedy, τ = kullback, the
maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.001, while FedProx sets
µ = 0.01.

• C = 0.2, α = 0.2 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.001, while FedProx sets
µ = 0.01.

• C = 0.2, α = 0.5 configuration: FedSeq uses ψclf , ϕgreedy, τ = Cosine, the
maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.001, while FedProx sets
µ = 0.01.

52

Experiments

5.4.4 Cifar100 dataset

Figure 5.12: Comparison of FL algorithms on Cifar-100 dataset

Figure 5.12 shows six different experiments conducted on the Cifar-100 dataset.
The value for C varies between 0.1 and 0.2 while α can assume three different
configurations 0, 0.2 and 0.5. It is immediately clear that FedSeq and FedDyn are
the best algorithms: they are able to reach higher accuracies than the others (up to
8% in certain configurations) while being very fast in convergence (in most of the
cases, after 2500 rounds they reach stability). FedAvg, FedProx and SCAFFOLD
show a similar behaviour in every configuration. Another aspect to consider is the
noisiness of the algorithm: it is clear that, when α = 0, every experiment is noisier.
SCAFFOLD seems to be the most susceptible in this regard.
In the following, the parameters chosen for each algorithm are now reported:

• C = 0.1, α = 0 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.001, while FedProx sets
µ = 0.001.

• C = 0.1, α = 0.2 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.001, while FedProx sets
µ = 0.0001.

53

Experiments

• C = 0.1, α = 0.5 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.01, while FedProx sets
µ = 0.001.

• C = 0.2, α = 0 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.015, while FedProx sets
µ = 0.01.

• C = 0.2, α = 0.2 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.015, while FedProx sets
µ = 0.01.

• C = 0.2, α = 0.5 configuration: FedSeq uses ψconf , ϕgreedy, τ = Kullback,
the maximum number of client per superclient is set to 11 and the minimum
number of examples is 800. FedDyn sets α = 0.015, while FedProx sets
µ = 0.01.

5.4.5 StackOverflow dataset

Figure 5.13: Comparison of FL algorithms on StackOverflow dataset

54

Experiments

Figure 5.13 shows the results related to the NLP StackOverflow dataset. Due to its
huge size, the number of experiments had to be reduced: in particular, C was set
to 0.01 reducing the number of selected clients per round to 400. Moreover FedDyn
and SCAFFOLD require more resources in order to be executed, hence it was not
possible to conduct the experiments for those algorithms with the StackOverflow
dataset. Regarding the experiments reported in Figure 5.13, it is clear that FedSeq
is able of reaching a better performances w.r.t FedProx and FedAvg gaining, on
average, 4 more points in accuracy.
For this dataset, the parameters chosen for each algorithm are now reported:

• FedSeq uses ψconf , ϕrandom the maximum number of client per superclient is
set to 25 and the minimum number of examples is 8500.

• FedProx sets µ = 0.0001.

5.5 Ablation on FedSeq

ψ ϕ τ α = 0 α = 0.2 α = 0.5
Cifar-10

- random - 81.90 82.09 82.12
clf K-means Euclidean 82.30 81.78 82.48
conf K-means Euclidean 82.04 81.99 82.37
conf greedy KL 82.21 82.20 82.22
conf greedy Cosine 82.09 81.85 82.71
clf greedy Cosine 79.95 82.06 82.83

Cifar-100
- random - 46.39 48.62 49.44
clf K-means Euclidean 44.91 48.74 49.60
conf K-means Euclidean 43.55 49.43 49.79
conf greedy KL 45.97 49.56 49.82
conf greedy Cosine 45.79 48.98 49.61
clf greedy Cosine 45.22 48.92 49.62

Table 5.6: FedSeq baselines: comparison of grouping criteria by varying ϕ, ψ and
τ . Results in terms of accuracy (%).

55

Experiments

Table 5.6 reports an ablation study conducted on FedSeq for its parameters client ap-
proximator ψ and grouping method ϕ. For the sake of simplicity, all the experiments
involve only the Cifar datasets (Cifar10 and Cifar100). The best performances are
reported in bold.
The differences in terms of accuracy between the runs are not very important. Even
the random method is competitive with the other setups.
When α = 0.5 (a more IID scenario), we can notice a slight improvement by all the
configurations from the random setup: this is due to the fact that, in this scenario,
clients are likely to have the majority of the classes in their local datasets, hence, the
algorithm must be able to cluster together those clients who have complementary
classes in their local data.
The same reason, explains why, in the scenario Cifar-100 α = 0, the configuration
that reaches the best performances is the random one: since every client has only
one class (among the 100 considered in Cifar-100), it is very likely to cluster together
clients with different classes, even if the cluster strategy is a random one.

5.6 Privacy attacks
In this section two different attacks are presented and then tested: the GAN
attack[16] and the label flipping attack[43]. In particular, the goal of the following
experiments, is to empirically test the resilience of FedSeq against the aforemen-
tioned attacks. To do so, all the experiments are conducted with the FedSeq and
FedAvg algorithms, in order to understand if the former is more resilient with
respect to the latter.

5.6.1 The GAN attack
The GAN attack, proposed in [16] is a passive FL attack that aims at reconstructing
private data. In order to accomplish that, at round t, an attacker a ∈ [Ci]Ki=1,
disguised as a client, exploits the incoming trained model θt as discriminator inside
a GAN [14] architecture. More specifically, when the attacker a receives the model
θt from the server, it trains, like every client, the model on its local data, but it also
stores locally the model θt. The attacker now creates a GAN architecture Λ(G,D)
composed by a generator G and a discriminator D = θt.
The main idea behind this reconstruction attack follows the fact that θt has gained
some knowledge about the past t − 1 rounds of training on other clients. If the
attacker a is capable of training a GAN model Λ such that its generator G is
capable of "fooling" θt into classifying with high probability a generated image,
such reconstruction must resemble data on which θt has been trained on.
In the original work[16], the last classification layer of θt was changed in size
with the addition of another class, dedicated to the classification of fake images

56

Experiments

constructed by the generator G. Moreover, it is assumed that the attacker a is
selected every round. Since those two assumptions significantly deviate from a real
life scenario, in these experiments different assumptions must be made:

1. The incoming model θt must remain invariant. For this reason, just at the
end of the architecture, a dense layer with an output shape of one is added.
This is done in order to have a Discriminator capable of binary classifies an
incoming input into "real" or "fake" without modifying the original model’s
architecture.

2. Just like every other client, the attacker a is selected in only a fraction of the
total rounds. This means that the incoming model θt has been trained for
an unknown (for the attacker) number of rounds on an unknown number of
clients.

3. The architecture and the parameters of the Generator follows [44].

Evaluation of the attack

In order to evaluate how "good" is the GAN reconstruction, the metric classically
used in the literature is the Fréchet inception distance (F.I.D) metric, introduced
in [45]. This distance measures how far are two multivariate Gaussian distributions
X1 ∼ (µ1, σ1) and X2 ∼ (µ2, σ2):

FID(X1, X2) = |µ1 − µ2|2 + Tr(σ1 + σ2 − 2√σ1 · σ2) (5.2)

The F.I.D is calculated by assuming that X1 and X2 are the outputs of the coding
layer pool3 of a pre-trained InceptionV3 model (see below) for generated samples
and real world samples respectively. µn is the mean and σn the covariance of the
outputs of the pre-trained network over all real world or generated samples. The
lower the F.I.D, the better the reconstruction.

57

Experiments

FedAvg and FedSeq comparison

Figure 5.14: FedAvg vs FedSeq on GAN Attack

Figure 5.14 reports different reconstructions F.I.D metrics conducted on different
levels of accuracy for the discriminator on the dataset Cifar-10. It is clear that, on
average, the F.I.D metric is lower when the algorithm used is FedAvg, hence for
the attacker it is easier to steal private informations from other clients if the FL
algorithm used is FedAvg. This means that FedSeq, other that obtaining better
performances, it is also more resilient against this attack.

58

Experiments

Figure 5.15: Some examples of reconstruction for FedAvg and FedSeq on the
EMNIST dataset

Figure 5.15 shows some examples of reconstruction for both the algorithms
FedAvg and FedSeq. It is important to notice that the images are reconstructed at
a specific round t. Since FedSeq reaches good performances way before FedAvg,
the discriminator used for its reconstruction is significantly better. Nevertheless,
the FedSeq reconstructions quality is not higher that the FedAvg reconstructions.
This qualitatively proves that FedSeq is more resilient to that attack with respect
to FedAvg.

5.6.2 The Label Flipping attack
The Label Flipping attack, introduced in [43], is an active privacy attack that aims
at deteriorating the FL algorithm performances. The idea behind this attack is
the following: a set [ai]LK

i=1 ⊆ [Ci]Ki=1, L ∈ [0,1] of clients, willingly swaps the labels
of their local data, through a set of criteria {γi}LK

i=1 in order to mislead the global
model classification ability. Each criterion γi defines, for the attacker i, which
labels will be swapped during the attack. All the experiments aimed at testing this
attack are done over the Cifar-10 and Cifar-100 datasets.

Experiments setup

Different experiments have been conducted in order to test the resilience of FedAvg
and FedSeq against this attack.
The fraction L of attackers varies among {0.1, 0.3, 0.5}. For FedSeq a fraction L of
superclients are considered attackers: inside those superclients all the clients are
attackers.
Each experiment is also divided in random or fixed: when an experiment is random,

59

Experiments

each criterion γi is defined independently from the other criteria γj j /= i, meaning
that different attackers are going to swap different classes. On the other hand,
when the experiment is fixed, γi = γj ∀i, j, meaning that all the attackers are going
to swap the same classes.
Regarding the classes swapped, it is important to distinguish between the two
datasets involved. For Cifar-10, three types of class swapping are proposed: follow-
ing [43], class 0 (airplane) and class 2 (birds) or class 5 (dog) and class 3 (cat) are
swapped. A configuration in which all the four aforementioned classes (0,2,3,5) are
paired and swapped is also proposed.
For Cifar-100 two configurations of class swapping are proposed: swapping 20
classes that do not belong to the same superclass (meaning one class for each
superclass) and swapping 20 classes but pairing only those classes that belong to
the same superclass. The first configuration will be referenced as extra_SC while
the second one intra_SC.
All the experiments are ran for only 1000 rounds, with α = 100 and K = 100
clients on Cifar-10 and Cifar-100 datasets.

algorithm dataset swapped classes method global acc. swapped acc.

FedAvg

Cifar-10

0-2 Fixed 64.79 51.43
5-3 Fixed 65.93 41.50

0-2-5-3 Fixed 62.56 47.97
Random 64.56 52.75

Cifar-100
extra_SC Fixed 26.90 17.50

Random 26.40 19.05

intra_SC Fixed 26.83 21.89
Random 27.39 24.33

FedSeq

Cifar-10

0-2 Fixed 72,69 61,16
5-3 Fixed 74,66 52,54

0-2-5-3 Fixed 70,19 53,47
Random 72,18 58,57

Cifar-100
extra_SC Fixed 36,89 26,46

Random 37,22 26,80

intra_SC Fixed 37,80 30,65
Random 38,30 32,04

Table 5.7: Label Flipping experiments averaged by fraction of attackers

Table 5.7 reports, averaged by L, both the global accuracies and the accuracies
computed on only the swapped classes for each configuration attack. It is clear that
the swapped accuracy is consistently lower that the global one, meaning that the
global model struggles in correctly classify the attacked classes. Moreover, the more
the number of attacked classes, the lower the global accuracies. On average, the
fixed attacks are more effective than the random ones. For CIFAR-100, there is a

60

Experiments

significant difference between extra_SC and intra_SC configurations, resulting
in more effective attacks when the swapped classes do not belong to the same
superclass.

L (%) global acc. swapped acc.
Cifar-10

0% 8.59 -
10% 8.74 6.62
30% 7.68 9.86
50% 7.5 7.6

Cifar-100
0% 11.22 -
10% 11.22 9.67
30% 10.50 8.60
50% 9.66 8.43

Table 5.8: Each cell represents the difference in performances between FedSeq
and FedAvg by averaging all the attack configurations.

Table 5.8 shows the difference in accuracies, both the global and the swapped
ones, between FedSeq and FedAvg by averaging all the experiments results. The
results are presented by fraction of attackers and dataset. It is clear that, the larger
L, the thinner the difference in performances between the two algorithms. Even
though FedSeq seems to be less resilient to the attack, even when L = 0.5, the
algorithm performs significantly better than FedAvg.

61

Chapter 6

Conclusion

In this work of thesis the Federated Learning world was explored. Initially, a
theoretical formulation of the FL learning approach was formulated and put in
comparison with the traditional centralized one.
Different problems arise within the FL approach. Among them, one of the most
important is the heterogeneity problem: since a FL training process is executed
in a decentralized fashion, data are split in K local datasets stored in K different
devices and, for privacy reasons, they cannot be shared. The heterogeneity problem
emerges when different local datasets have different data distributions, forcing the
local trained models to be incompatible for a proper aggregation that can produce
a performing aggregated model.
FedAvg [5] was the first algorithm in the FL scenario and it is not able of handling
the heterogeneity problem. In this work, a non-exhaustive taxonomy of the current
state of the art algorithms in FL that try to solve the aforementioned problem has
been analyzed. Among them it is possible to cite FedProx [6], FedDyn [17] and
SCAFFOLD [18].
The main part of this thesis has been dedicated to FedSeq[7], a novel FL algo-
rithm that, by clustering together dissimilar clients in order to get clusters with
homogeneous data distributions, is capable of training local models in the clusters
following a sequential approach.
Chapter 4 is dedicated to the formal definition of FedSeq and all of its components:
the different client approximators and grouping methods coupled with different
metrics.
Chapter 5 is dedicated to the experiments: first, different general analysis of the
behaviour of different FL parameters like the number of clients of the clients’ data
distributions has been conducted. Then a deep ablation analysis dedicated to the
parameters of FedSeq. Lastly a comparison between FedSeq and other state of the
art algorithms has been conducted: these experiments were made on five different
datasets in two different tasks: image recognition and NLP prediction.

62

Conclusion

The results shows that, overall, FedSeq is capable of surpassing (or, at least match-
ing), the other algorithms in every configuration, regardless the task, the dataset or
the client’s data distributions. From a speed of convergence point of view, FedSeq
shows great improvements with respect to the other algorithms, even reaching a 7x
reduction in certain configurations.
Another important aspect of this thesis is the privacy in FL: section 3.3 is dedicated
to a non-exhaustive taxonomy of different privacy attacks and defences proposed
in the literature. Among the attacks, the passive GAN attack proposed in [16]
and the active Label Flipping attack proposed in [43] have been tested against
FedSeq and FedAvg. The results show that FedSeq, even if capable of reaching
better performances, is not more susceptible to those attacks, meaning that its
improvements in performances don’t come at a cost in terms of privacy.

63

Bibliography

[1] PN Druzhkov and VD Kustikova. «A survey of deep learning methods and
software tools for image classification and object detection». In: Pattern
Recognition and Image Analysis 26.1 (2016), pp. 9–15 (cit. on p. 1).

[2] Abdullah-Al Nahid and Yinan Kong. «Involvement of machine learning
for breast cancer image classification: a survey». In: Computational and
mathematical methods in medicine 2017 (2017) (cit. on p. 1).

[3] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. «Supervised
learning». In: Machine learning techniques for multimedia. Springer, 2008,
pp. 21–49 (cit. on p. 1).

[4] 2018 reform of EU data protection rules. European Commission. May 25, 2018.
url: https://ec.europa.eu/commission/sites/beta-political/files/
data-protection-factsheet-changes_en.pdf (visited on 06/17/2019) (cit.
on p. 1).

[5] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. «Communication-efficient learning of deep networks from
decentralized data». In: Artificial intelligence and statistics. PMLR. 2017,
pp. 1273–1282 (cit. on pp. 2, 20, 21, 62).

[6] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. «Feder-
ated learning: Challenges, methods, and future directions». In: IEEE Signal
Processing Magazine 37.3 (2020), pp. 50–60 (cit. on pp. 2, 21, 62).

[7] Riccardo Zaccone, Andrea Rizzardi, Debora Caldarola, Marco Ciccone, and
Barbara Caputo. «Speeding up Heterogeneous Federated Learning with Se-
quentially Trained Superclients». In: arXiv preprint arXiv:2201.10899 (2022)
(cit. on pp. 2, 26, 30, 62).

[8] Yann LeCun, Yoshua Bengio, et al. «Convolutional networks for images,
speech, and time series». In: The handbook of brain theory and neural networks
3361.10 (1995), p. 1995 (cit. on pp. 4, 12).

[9] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. «Deep learning». In:
nature 521.7553 (2015), pp. 436–444 (cit. on p. 4).

64

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

BIBLIOGRAPHY

[10] Kenneth Ward Church. «Word2Vec». In: Natural Language Engineering 23.1
(2017), pp. 155–162 (cit. on p. 5).

[11] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65.6 (1958),
p. 386 (cit. on p. 5).

[12] Robert Hecht-Nielsen. «Theory of the backpropagation neural network». In:
Neural networks for perception. Elsevier, 1992, pp. 65–93 (cit. on p. 7).

[13] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. California Univ San
Diego La Jolla Inst for Cognitive Science, 1985 (cit. on p. 15).

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
adversarial networks». In: Communications of the ACM 63.11 (2020), pp. 139–
144 (cit. on pp. 16, 56).

[15] John Nash Jr. «Non-cooperative games». In: Essays on Game Theory. Edward
Elgar Publishing, 1996, pp. 22–33 (cit. on p. 16).

[16] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. «Deep models
under the GAN: information leakage from collaborative deep learning». In:
Proceedings of the 2017 ACM SIGSAC conference on computer and commu-
nications security. 2017, pp. 603–618 (cit. on pp. 17, 56, 63).

[17] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina,
Paul N Whatmough, and Venkatesh Saligrama. «Federated learning based on
dynamic regularization». In: arXiv preprint arXiv:2111.04263 (2021) (cit. on
pp. 21, 62).

[18] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi,
Sebastian Stich, and Ananda Theertha Suresh. «Scaffold: Stochastic controlled
averaging for federated learning». In: International Conference on Machine
Learning. PMLR. 2020, pp. 5132–5143 (cit. on pp. 21, 62).

[19] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing Jiang,
and Chengqi Zhang. «Multi-center federated learning». In: arXiv preprint
arXiv:2005.01026 (2020) (cit. on pp. 24, 25).

[20] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. «Clustered federated
learning: Model-agnostic distributed multitask optimization under privacy
constraints». In: IEEE transactions on neural networks and learning systems
32.8 (2020), pp. 3710–3722 (cit. on p. 25).

[21] J MacQueen. «Classification and analysis of multivariate observations». In:
5th Berkeley Symp. Math. Statist. Probability. 1967, pp. 281–297 (cit. on
pp. 25, 35).

65

BIBLIOGRAPHY

[22] Xuefei Yin, Yanming Zhu, and Jiankun Hu. «A comprehensive survey of
privacy-preserving federated learning: A taxonomy, review, and future direc-
tions». In: ACM Computing Surveys (CSUR) 54.6 (2021), pp. 1–36 (cit. on
pp. 27, 28).

[23] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. «On data banks
and privacy homomorphisms». In: Foundations of secure computation 4.11
(1978), pp. 169–180 (cit. on p. 28).

[24] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. «Privacy-
preserving deep learning via additively homomorphic encryption». In: IEEE
Transactions on Information Forensics and Security 13.5 (2017), pp. 1333–
1345 (cit. on p. 28).

[25] Adi Shamir. «How to share a secret». In: Communications of the ACM 22.11
(1979), pp. 612–613 (cit. on p. 28).

[26] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth.
«Practical secure aggregation for privacy-preserving machine learning». In:
proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. 2017, pp. 1175–1191 (cit. on p. 28).

[27] Payman Mohassel and Yupeng Zhang. «Secureml: A system for scalable
privacy-preserving machine learning». In: 2017 IEEE symposium on security
and privacy (SP). IEEE. 2017, pp. 19–38 (cit. on p. 28).

[28] Cynthia Dwork, Aaron Roth, et al. «The algorithmic foundations of differential
privacy». In: Foundations and Trends® in Theoretical Computer Science 9.3–4
(2014), pp. 211–407 (cit. on p. 28).

[29] Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava,
and Tianhao Wang. «Privacy at scale: Local differential privacy in practice».
In: Proceedings of the 2018 International Conference on Management of Data.
2018, pp. 1655–1658 (cit. on p. 29).

[30] Dakshi Agrawal and Charu C Aggarwal. «On the design and quantification
of privacy preserving data mining algorithms». In: Proceedings of the twenti-
eth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 2001, pp. 247–255 (cit. on p. 29).

[31] Keke Chen and Ling Liu. «A survey of multiplicative perturbation for privacy-
preserving data mining». In: Privacy-Preserving Data Mining. Springer, 2008,
pp. 157–181 (cit. on p. 29).

[32] Pierangela Samarati and Latanya Sweeney. «Protecting privacy when disclos-
ing information: k-anonymity and its enforcement through generalization and
suppression». In: (1998) (cit. on p. 29).

66

BIBLIOGRAPHY

[33] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakr-
ishnan Venkitasubramaniam. «l-diversity: Privacy beyond k-anonymity». In:
ACM Transactions on Knowledge Discovery from Data (TKDD) 1.1 (2007),
3–es (cit. on p. 29).

[34] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. «t-closeness: Pri-
vacy beyond k-anonymity and l-diversity». In: 2007 IEEE 23rd international
conference on data engineering. IEEE. 2006, pp. 106–115 (cit. on p. 29).

[35] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran,
Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona.
«Task2vec: Task embedding for meta-learning». In: Proceedings of the IEEE/CVF
international conference on computer vision. 2019, pp. 6430–6439 (cit. on
p. 32).

[36] Hervé Abdi and Lynne J Williams. «Principal component analysis». In: Wiley
interdisciplinary reviews: computational statistics 2.4 (2010), pp. 433–459
(cit. on p. 32).

[37] Alex Krizhevsky, Geoffrey Hinton, et al. «Learning multiple layers of features
from tiny images». In: (2009) (cit. on pp. 37, 38).

[38] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. «Measuring the effects
of non-identical data distribution for federated visual classification». In: arXiv
preprint arXiv:1909.06335 (2019) (cit. on p. 38).

[39] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik.
«EMNIST: Extending MNIST to handwritten letters». In: 2017 international
joint conference on neural networks (IJCNN). IEEE. 2017, pp. 2921–2926
(cit. on p. 39).

[40] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub
Konečn, H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. «Leaf:
A benchmark for federated settings». In: arXiv preprint arXiv:1812.01097
(2018) (cit. on p. 40).

[41] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on p. 41).

[42] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory». In:
Neural computation 9.8 (1997), pp. 1735–1780 (cit. on p. 43).

[43] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. «Data
poisoning attacks against federated learning systems». In: European Sympo-
sium on Research in Computer Security. Springer. 2020, pp. 480–501 (cit. on
pp. 56, 59, 60, 63).

67

BIBLIOGRAPHY

[44] Alec Radford, Luke Metz, and Soumith Chintala. «Unsupervised representa-
tion learning with deep convolutional generative adversarial networks». In:
arXiv preprint arXiv:1511.06434 (2015) (cit. on p. 57).

[45] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. «GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium». In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates,
Inc., 2017. url: https://proceedings.neurips.cc/paper/2017/file/
8a1d694707eb0fefe65871369074926d-Paper.pdf (cit. on p. 57).

68

https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Machine and Deep Learning
	Neural Networks
	The perceptron
	Multi-layer Perceptron (MLP)
	How to train a neural network

	Different Neural Network architectures
	Convolutional Neural Network
	Recurrent Neural Network
	Generative Adversarial Network

	Federated Learning
	Introduction
	Formal comparison between federated and centralized approach

	Related works
	Federated Learning Taxonomy
	FedAvg
	Regularization methods
	Clustering methods

	Privacy in Federated Learning
	Privacy attacks in Federated Learning
	Privacy defences in Federated Learning

	FedSeq
	The algorithm
	Client approximator
	Grouping method

	Experiments
	Datasets
	Cifar-10
	Cifar-100
	EMnist
	Shakespeare N.C.P
	StackOverflow

	Models used
	Cifar-10 and Cifar-100
	EMnist
	Shakespeare N.C.P
	StackOverflow

	General Analyses in FL
	Ablation on K
	Ablation study on C
	Ablation study on E
	Ablation on

	FedSeq vs S.O.T.A
	Shakespeare dataset
	EMnist dataset
	Cifar10 dataset
	Cifar100 dataset
	StackOverflow dataset

	Ablation on FedSeq
	Privacy attacks
	The GAN attack
	The Label Flipping attack

	Conclusion
	Bibliography

