
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Artificial Intelligence for Security
Attacks Detection

Relatori

Prof. Antonio Lioy

Dr. Ing. Diana Berbecaru

Dr. Ing. Daniele Canavese

Stefano Giannuzzi

Dicembre 2022





Acknowledgements

I want to express my gratitude to Prof. Lioy, Dr. Ing. Berbecaru and Dr. Ing. Canavese
for their assistance and guidance with this thesis. Without their encouragement and
direction, this work would not have been possible. When I had problems, they were
always there to help me.

I want to thank all my family and close friends for their constant support throughout
my master’s program.

3



Contents

1 Introduction 7

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Works 10

2.1 Intrusion detection system for atypical cyberattacks . . . . . . . . . . . . 10

2.2 Anomaly-based intrusion detection using variational auto-encoder and au-
toencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 CSE-IDS: deep learning and ensemble models for network-based intrusion
detection systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Meta-Learning to improve unsupervised intrusion detection systems . . . 12

2.5 Deep learning for cyber security intrusion detection: Approaches, datasets,
and comparative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Using machine learning techniques for DoS/DDoS attacks detection . . . 14

3 Background 16

3.1 Basic Concepts of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Internet Protocol (IP) . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Transport Layer: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Transport Layer Security (TLS) . . . . . . . . . . . . . . . . . . . 23

3.1.4 Cyber-Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.5 Intrusion Detection System (IDS) and Intrusion Prevention System
(IPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Basic Concepts of Data Science . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Dataset and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Confusion Matrix and other Metrics . . . . . . . . . . . . . . . . . 34

3.2.3 Machine Learning (ML) . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.4 Deep Learning (DL) . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4



4 Motivation 48

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 State-of-Art Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Datasets 51

5.1 CICFlowMeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 CIC-IDS2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 TORSEC Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Heartbleed Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Proposed Solution 58

6.1 Dataset Features Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Proposed Model: Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Implementation 64

7.1 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.2 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Results 69

8.1 Testing Phase: CIC-IDS2017 . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1.2 Extreme Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . 72

8.1.3 Results for Proposed Auto-Encoder Model . . . . . . . . . . . . . . 73

8.1.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.2 Testing Phase: The Unkown Attack Test . . . . . . . . . . . . . . . . . . . 77

8.2.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.2.2 Extreme Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . 79

8.2.3 Results for Proposed Auto-Encoder Model . . . . . . . . . . . . . . 81

8.2.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.3 Testing Phase: Auto Encoder and Heartbleed . . . . . . . . . . . . . . . . 85

9 Conclusions 88

A Features Datasets 90

5



B Histograms 93

C User Manual 104

C.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.2 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.2.1 Python 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.2.2 Pip3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C.2.3 Conda and Cuda-toolkit (only supported GPUs) . . . . . . . . . . 105

C.2.4 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.4 Jupyter notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.4.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.4.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

D Developer Manual 109

D.1 The Proposed Auto-Encoder Model . . . . . . . . . . . . . . . . . . . . . . 109

D.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

D.1.2 Source Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 112

6



Chapter 1

Introduction

Nowadays, cyber-attacks are becoming more frequent and use new threats that are un-
known to the common defence system. These techniques can be so sophisticated that
they go unnoticed by Intrusion Detection Systems (IDS), which detect malicious activity
on a system or a network. As reported by Kaspersky, there is an increase of half in
the cybersecurity incidents1. This also depends because many organizations do not have
appropriate defence systems or those systems do not recognize unknown threats without
additional resources. Moreover, according to a study conducted by Positive Technologies
among financial, fuel and energy organizations, government agencies, industrial enter-
prises, and other sectors, an external attacker can breach a network perimeter and access
local network resources in 93% of cases2. For this reason, there is a need to use new
systems that find the “anomaly” in the network.

There are two main techniques for IDS: signature-based and anomaly-based. The
IDS signature-based system typically only detects attacks already discovered for which
a signature exists and is stored in a database. As a result, any traffic that matches any
signature in the database containing all known attack signatures is categorized as belong-
ing to the corresponding attack. IDS Anomaly-based methods can identify attacks that
have not yet been discovered without registered signatures using Machine Learning and
Deep Learning techniques. The concept of Anomaly-based is more similar to whitelisting;
when the system detects behaviour outside an acceptable range, that is an anomaly.

The Anomaly-based system is pretty different from the IDS Signature-based because
the last just compare signatures with events that have already happened, and only the
traffic that generates a match is reported. Anomaly-based detection searches for anoma-
lous traffic, out of the ordinary, in which there are also new threats that have not yet been
discovered and for which there is not yet a signature. For this reason, an anomaly-based
IDS system has advantages compared to an IDS signature-based system, especially on
new attacks.

1https://www.kaspersky.com/about/press-releases/2022_share-of-high-severity-

cybersecurity-incidents-facing-organizations-increases-by-half-in-a-year

2https://www.ptsecurity.com/ww-en/about/news/positive-technologies-cybercriminals-can-

penetrate-93-of-local-company-networks-and-trigger-71-of-events-deemed-unacceptable-

for-their-businesses/
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Introduction

1.1 Objective

The main issue is that many anomaly-based IDS models are insufficiently exhaustive
and do not recognize unknown attacks. This occurs because these models are mainly
supervised models that need to classify traffic based on what they learned during the
training phase, but if there is an unknown attack, their accuracy decreases. This happens
because they are not trained to do so.
Therefore, there is a need to create a new model that can detect unknown attacks in
network traffic.

The main objective of this thesis is to identify anomalies in network traffic using
artificial intelligence techniques. More specifically, a model based on an Auto-Encoder is
proposed in this thesis to recognize unknown attacks based on flow characteristics.

Compared to other works utilizing the same strategy, the model proposed in this
dissertation detects the same attacks with the same dataset more effectively.
During the testing phase, the proposed model is compared to supervised learning models
such as Random Forest and Extreme Gradient Boosting to assess its ability to detect
known and unknown attacks.

The first test is conducted on the CIC-IDS2017 dataset to evaluate the model’s ability
to detect known attacks. That means the same attacks are present in both the training
and testing dataset. In this phase, the supervised model outperforms the proposed model
because they are trained to recognize the attacks. However, for some attacks, the proposed
model achieved the same results as the supervised models.
In the second test, the model’s ability to detect unknown attacks is evaluated with the
TORSEC dataset, meaning that they are trained without considering a specific attack and
then tested on it. For instance, models are trained on all DoS attacks (DoS Slowhttptest,
DoS hulk, and DoS GoldenEye) with the label “DoS”, and then tested on a variant of DoS
attacks called DoS Slowloris. In this case, the proposed model outperforms the supervised
models in detecting the unknown DoS attack Slowloris, which behaves as random.

In addition, the proposed model is evaluated on a new dataset, the Hearthbleed
dataset described in Chapter 5. This is done because, in the initial test, the auto-encoder
achieved high values for detecting the Heartbleed attack; consequently, this dataset is
created ad hoc to comprehend the motivations.

1.2 Outline

The thesis is structured as follows:

• Chapter 2 describes the related studies.

• Chapter 3 is divided into two sections, the first introduces the basic concept of
network traffic (IP, TCP, TLS), the most common network attacks, and the systems
used to detect and mitigate them (IDS, IPS); then the second introduces the basic
concepts of Machine Learning and Deep Learning.

• Chapter 4 describes motivations and the contribution of this thesis.

• Chapter 5 analysed the datasets used for this thesis.

• Chapter 6 describes the design of the proposed solutions and the features of the
dataset used.

8
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• Chapter 7 describes the implementation of the proposed model.

• Chapter 8 presents the results obtained from the proposed model and then compared
to the supervised models (Random Forest and Extreme Gradient Boosting) and the
model described in the reference paper.

• Chapter 9 summarizes the workflow of this thesis, and the result obtained. In the
end, there are the final observations and future works.

• Appendix A shows the features of the CIC-IDS2017.

• Appendix B shows the histograms used for feature selection.

• Appendix C is the user manual to use the provided solution.

• Appendix D is the developer manual to modify the provided solution.

9



Chapter 2

Related Works

This section explains the state of the art of the different works done by researchers to
complete this thesis.

2.1 Intrusion detection system for atypical cyberattacks

This work, as described [1], proposes a defensive AI engine that combines a Heterogeneous
Feature Selection Ensemble (HFSE) technique, an ensemble model used to select features,
with AI models with hyperparameter optimization.

In this study, they used a Heterogeneous Feature Selection Ensemble (HFSE) com-
posed of seven different models that select features with a voting operation, then they
developed the proposed approach, a Stacked Decision Tree Classifier (S-DTC) for iden-
tifying binary attack flows. A stacked decision tree is an ensemble model composed by
different decision trees1 one after the other. The AI models are trained and validated
using the CIC-IDS2017 data set.

The system is subsequently tested by simulating real-world scenarios with generated
attack flows.
Using different Deep Learning and Machine Learning models, they demonstrate the ef-
fectiveness of the suggested unusual attack flow detection method (S-DTC).
The suggested defensive AI engine significantly improves the True Positive Rate (TPR =

TP
TP+FN )2 of AI models against many atypical attacks, as demonstrated by simulation
results.
Using the proposed Defensive AI Engine, they compare and evaluate several AI mod-
els such as DNN, L-SVC, and S-DTC against atypical attacks through a comprehensive
experimental analysis.

These AI models are trained using a training set and tested using generated attacks
with different feature profiles. Experiments show that after hyperparameter3 optimization
(HPO), the performance of AI models trained with their methodology is considerably
increased against both normal and atypical attacks.

1tree model used for classification and regression.

2the probability that an actual positive test positive.

3parameter which controls the model learning process.
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Related Works

They propose an innovative defensive AI engine to build and test IDS models against
dynamically changing, atypical attacks in order to improve current knowledge of such
attacks.

Multiple performance metrics are used to evaluate the AI model sensitivity to detect
atypical attacks. These metrics showed that the S-DTC achieved higher values than the
other models, in fact it obtained a value of 1.0 for accuracy (accuracy = TP+TN

TP+TN+FP+FN ),

precision ( TP
TP+FP ), recall (

TP
TP+FN ) and F1-score (2×precision×recall

precision+recall ).
They observe an increase in the performance of their proposed AI models against different
atypical attacks, they require more hyperparameter optimization and training to classify
True Positive Rate (TPR) accurately.

The primary focus of this research is on attacks that can change into atypical attacks,
i.e., beginning as a known attack and then transforming into different profiles that can
fool the IDS. They utilized Slowloris and SlowHttptest, two kinds of slow-rate Denial-of-
service assaults, to generate atypical attacks for IDS evaluation.

The aspect that must be emphasized in this work is that they have tested the system
on a model trained with a variant of the attack.

2.2 Anomaly-based intrusion detection using variational auto-
encoder and autoencoder

This work is described in the paper [2].

Using a semi-supervised learning strategy, the performance of Auto-Encoder (AE)
and Variational Auto-Encoder (VAE)4 algorithms along with One-Class Support Vector
Machine (OCSVM)5 are evaluated in this study.
Only “benign” data flow are utilized in the construction of the models, from the dataset
CIC-IDS20176 [3]. In addition, the models are evaluated using both normal and anomaly
data.

For AE and VAE, the encoder and decoder have two hidden layers with 512 and 256
dimensions each respectively. Both AE and VAE have 64 dimensions in their bottleneck
layer. In order to determine the best-performing models of both AE and VAE, the
hyperparameters are determined by trial and error while maintaining a constant number
of layers.

Initially, the features of the dataset are normalized using the feature scaling approach,
also known as unity-based normalization, to scale all values in the range [0,1].
In the testing phase, all the labels other than “benign” are called “anomaly”, and then
the metrics are computed using only the “normal” and “anomaly” records of the selected
attack class (DoS Slowloris, FTP Patator, Dos Goldeneye, ...), without considering the
records of any other attack classes.

In order to determine whether the approaches can distinguish unknown attacks from
normal traffic, a second evaluation strategy combines all attacks into the class “anomaly”,
and then it is distinct from “normal” using the above strategies (AE, VAE, OCSVM).

4Deep Learning model which learns to compress and reconstruct data.

5Machine Learning model which has the object to find a hyperplane that classifies the data.

6https://www.unb.ca/cic/datasets/ids-2017.html

11

https://www.unb.ca/cic/datasets/ids-2017.html


Related Works

The experimental outcomes are calculated using ROC-curve (Receiver Operating
Characteristic) and AUC (Area Under the Curve) measures. Based on the results, the
detection rate of VAE (Variational Autoencoder) is often superior to that of AE and
OCSVM. Observe that the AUC for all attacks is 75.96% for the VAE and 73.38% for
the AE. Regarding all the attacks, the distinctions between VAE and AE are negligible,
though in the advantage of VAE.

However, it is also essential to note that the methods must be complemented by
supervised learning techniques due to their high rate of false positives. In addition, in
order to boost the detection rate of methods, the flow-based characteristics acquired at
certain time intervals can be considered, as the characteristics of certain attacks can be
better modelled.

2.3 CSE-IDS: deep learning and ensemble models for network-
based intrusion detection systems

The proposed CSE-IDS, described in [4], consists of three layers and accurately classifies
network traffic using Deep Learning algorithms and Ensemble techniques. The first layer
is a Cost-Sensitive Deep Neural Network (CS-DNN), the second is an Extreme Gradient
Boosting (XGBoost), and the third is a Random Forest (RF).

Seven additional NIDSs7 (DNN, XGBoost, RF, Siam-IDS [5], I-SiamIDS [6], LIO-IDS
[7]) are compared to CSE-IDS using a variety of evaluation measures, including Accuracy,
Recall, Precision, F1-score, ROC curve, AUC values, and computational duration.
The collected results demonstrate that the proposed CSE-IDS has the best performance
in intrusion detection and effectively manages class imbalance in NIDS.

2.4 Meta-Learning to improve unsupervised intrusion de-
tection systems

This paper [8] methodically implements several meta-learning approaches using ensem-
bles of unsupervised base-learners and discusses how the adoption of a particular meta-
learning approach can considerably reduce the frequency of miss-classifications in com-
parison to non-meta unsupervised algorithms.

After elaborating on different meta-learners and their effectiveness for detecting (zero-
day) attacks in Cyber-physical systems (CPS), they conduct an experiment to compare
various techniques.

The training set is collected from publicly available datasets that report on network
intrusion detectors and biometric authentication systems, which are typically used to
improve CPS security.
The unsupervised algorithms chosen for this research will be utilized both as non-meta
learners and as base classifiers of meta-learning techniques to detect unknown threats or
zero-day attacks.
They choose a total of 21 datasets, 15 unsupervised algorithms, and 9 distinct meta-
learning techniques, which we instantiate by taking the aforementioned unsupervised

7Network Intrusion Detection System: identify cyber attacks on a computer network.
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algorithms as base-learners.
In 20 of the 21 datasets utilized for this research, they show that meta-learning decreases
miss-classifications, consequently improving metric scores.

They first divide the supervised and unsupervised learning models according to their
performances:

1. G1 Higher Matthews Coefficient (MCC)8 (SVM (Classification family), ODIN [9]
(Neighbor-based), FastABOD [10] (Angle/Neighbor-based).

2. G2 Higher Accuracy (SDO [11] (Density family), DBSCAN [12] (Clustering), SVM
(Classification)).

3. G3 Higher Recall (SDO [11] (Density family), DBSCAN [12] (Clustering), SVM
(Classification)).

4. G4 Seven Algorithms, one for each family (SVM (Classification family), ODIN [9]
(Neighbor-based), FastABOD [10] (Angle/Neighbor-based), SDO [11] (Density),
DBSCAN [12] (Clustering), SOM (Neural Networks), HBOS (Statistical))

Then, they build three different meta-learning techniques that were used for each of
the above groups:

• Single Classifier (SC) Meta-Learners. More specifically, for each algorithm, they
instantiate Bagging meta-learners.

• Multiple Classifiers (MC) Meta-Learners. (Weighted) Voting and Stacking (Gener-
alization) based on the above algorithms.

• Multiple Classifiers with Ordering (MCO) Meta-Learners. Delegating, Cascading,
and Cascade Generalization for each algorithms group.

In the end, they performed the experiments with Multiple Classifiers (MC) and Multi-
ple Classifiers with Ordering (MCO) meta-learners using G1 to G4 groups of base learners.

They discovered that selecting classifiers from distinct families, described in MCO
meta-learners by conducting experiments with different base groups, does not guarantee
that has the best performance. Moreover, groups of base learners with similar character-
istics performed poorly. Not all groups with “diverse” base-learner algorithms performed
well.

The MCC score obtained by meta-learners is higher than the MCC of unsupervised
algorithms for 20/21 datasets, indicating that meta-learners guarantee less misclassifica-
tion in nearly all circumstances and none for one dataset.
In 11 on 21 datasets, boosting beats unsupervised algorithms and other meta-learners,
hence lowering miss-classifications.

8Also know as Phi Phi Coefficient, it is the association between two binary variables.
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2.5 Deep learning for cyber security intrusion detection:
Approaches, datasets, and comparative study

In this research, described in [13], they compared different Deep Learning and Machine
Learning approaches for Intrusion Detection Systems. In particular, they compared seven
Deep Learning models and Machine Learning models.

These models approaches are compared using two new datasets, the CSE-CIC-IDS20189

and the Bot-IoT10 datasets, with three crucial performance indicators: False Alarm Rate
(FAR)11, Accuracy (ACC), and Detection Rate (DR)12.

They demonstrate that the Convolution Neural Networks (CNN) have the highest
True Negative Rate (TNR)13 and the highest Detection Rate for Distributed Denial of
Service (DDoS) attacks and Botnet. The Recurrent Neural Networks (RNN) have the
highest Detection Rate for Web Brute Force attacks, Denial of Service (DoS) attacks and
Infiltration. About unsupervised models, DBN has the highest True Negative Rate (TNR)
and the highest Detection Rate for Brute Force Web attacks, DoS Hulk attacks and DDoS
attacks. The Auto-Encoders (AE) has the highest Detection Rate for Web Brute Force
attack, DoS Slowloris, and Infiltration. The Deep Boltzmann Machines (DBM) give the
highest Detection Rate for DoS Hulk, DoS SlowHTTPTest, DoS GoldenEye, DDoS and
Botnet.

About Accuracy the CNN has the higher accuracy for CSE-CIC-IDS2018 and the Bot-
IoT. For the unsupervised, the higher accuracy is achieved by AE for CSE-CIC-IDS2018
and for Bot-IoT.

Compared to the Machine learning Model, the CNN model has the highest overall
detection rate (DR Overall) in the CSE-CIC-IDS2018 dataset and in the Bot-IoT dataset.
In the unsupervised models, the AE model has the highest overall detection rate (DR
Overall) in CSE-CIC- IDS2018 dataset and in the Bot-IoT dataset.

2.6 Using machine learning techniques for DoS/DDoS at-
tacks detection

This research [14] describes the Smart Detection system, an online solution to DoS/DDoS
attack detection that uses the Random Forest Tree algorithm to classify network traffic
based on samples taken directly from network devices using the sFlow protocol 14. Several
tests were performed to calibrate and evaluate the performance of the system.
The suggested system was assessed using three intrusion detection benchmark datasets,
namely CIC-DoS, CIC-IDS2017, and CSE-CIC-IDS2018.

9https://www.unb.ca/cic/datasets/ids-2018.html

10https://research.unsw.edu.au/projects/bot-iot-dataset

11Also known as false positive rate, it is the ratio between the number of negative events considered as
false positives and the total number of negative events FP

FP+TN

12It is also known as True Positive Rate.

13Also called Specificity, it is the probability of a negative test to be really negative

14https://sflow.org/sflow_version_5.txt
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They evaluate the method with Detection Rate (DR), False Alarm Rate (FAR), Pre-
cision (PRC) and F1-Score (F1). The model proposed in the paper obtain higher perfor-
mance for CSE-CIC-IDS2018 than for CIC-IDS2017 and CIC-DoS.
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Chapter 3

Background

3.1 Basic Concepts of Networks

This section describes the basic concepts of Networks.

In the first part, there is a description of the Network Layer and the Transport Layer.
Then, the Cyber attacks that will be used by the proposed model are described. In the
end, there is a description of what an Intrusion Detection System (IDS) is, what are the
types of IDS and the difference between Signature-based and Anomaly-based with their
advantages and disadvantages.

3.1.1 Internet Protocol (IP)

As described in [15], in this subsection there is a focus on key aspects of the Network
Layer, mainly on the Internet Protocol (IP)[16].

Figure 3.1: It represents the IPv4 header. At the top is represented the number of bits
that each field occupies, on the side, it indicates the length in bytes of the selected fields.

The Figure 3.1 describes the IPv4 header:

• Version [4 bit]: identifies the version of IP (IPv4, IPv6).

16
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• Internet Header Length (IHL) [4 bit]: identifies the length of the IP packet header,
it is required for the “Options” field which makes a variable length header.

• Type of Service (TOS) [8 bit]: used to differentiate traffic on a device, for example,
if you want to prioritise some particular data.

• Total Length [16 bit]: identifies the total length of the package in bytes.

• Identification [16 bit], Flags [3 bit] and Fragment Offset [13 bit]: used for the
fragmentation of the packet. These fields are used to rebuild a fragmented package
and to prevent the loss of a fragment.
Today practically all local networks are made with Ethernet where the maximum
transfer unit (MTU) is 1500 bytes [17].

• Time to live (TTL) [8 bit]: Maximum number of routers that the packet can fit
before its destruction. When this happens an ICMP packet with a “time exceeded”
message is sent to the source.

• Protocol [8 bit]: indicates the level 4 protocol contained in the payload (i.e. TCP).

• Header Checksum [16 bit]: error check on bits. The checksum is done only on the
header part. Each router calculates the checksum on the header and compares it
with that in the packet, if they are different there was some error in the transmission
and the packet is discarded.

• Source address [32 bit]: source host address.

• Destination address [32 bit]: destination host address.

• Options: it may contain zero, one, or more options. This field is not often used.

The IP address consists of 32 bits and is divided into network parts, the most sig-
nificant bits, and host parts, the least significant bits. The first indicates the network
address, the second indicates the host address, and it is unique for the whole network.
Hosts connected to the same network have the same network part, but different host
parts.
A network has the following properties:

• Network ID (or subnetwork ID) is the network address, it has the most part set to
0 (e.g. 223.1.1.0).

• Limited Broadcast (255.255.255.255), sends a broadcast packet to all hosts of a
certain network, it does not cross over the router and exit from the network.

• Directed Broadcast (223.1.1.255), sends a broadcast packet to hosts on a particular
network.

• Loopback (127.0.0.1) used for debugging purposes, it is an address that identifies
the localhost.

IP addresses depend on the physical network to which a host is connected. If a host
move from two different networks, it has different IP addresses, because the Network
ID changes. The IP address is not portable, unlike the MAC address which is unique
and always is that because it was established by the customer. In this way, there is the
scalability of routing, because, in the router tables (Routing Table), you no longer have
to write the whole list of devices, but you can write only the networks.

There are different methods to divide the IP address space:
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• Classful addressing: the static division between the network part and the host part
defined by some initial bits, Most Significant Bit (MSB).

• Classless addressing: the static division between the network part and the host
part. The concept of class is completely removed and there is the use of Network
ID and Netmask.

The classful addressing method gets the first bits of the network part and based on
these, there are reference classes if the first bit is 0 (MSB), the address is Class A, and
the network part ends after the first 8-bits, in this way you can have about 128 different
networks. With addresses with 10 (MSB) are Class B addresses, networks up to 16-bit
so you have about 16k different networks, and with 110 (MSB) is Class C, network up
to 24-bit, with 2M of different networks. This way of dividing address space is not more
used today.

The dynamic method does not use classes but uses the standard CIDR (Classless
Interdomain Routing) [18]. This method uses a special address called a Network Mask
or Netmask, which has all 1-bit in the network part and all 0-bit in the host part. Using
the Netmask, and using the bitwise logical AND operator with the address, you get the
network ID.
In this standard, to make it more user-friendly, the Netmask is indicated with the prefix
length, it is after the address and indicates how many bits the Netmask is long (e.g.
200.23.16.0/23 with Netmask 255.255.254.0). A Network ID, to be valid, must have the
bits of the host part to 0, i.e. it must not have a Netmask larger than the network part.

The netmask indicates how many hosts a network can have, for example, an /8 has
more hosts than a /24, because the network part is smaller and the host part is larger,
also with the use of a netmask a larger network (smaller netmask) can contain more
small networks (larger netmask), as it has more addressing spaces, es 200.23.16.0/20 may
contain 200.23.16.0/23.

3.1.2 Transport Layer: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP)

The Transport Layer, as described in [15], is necessary in order to understand, once the
destination received the packets, to which application such packets must be delivered.
To differentiate the applications, the concept of “port” is introduced. This operation
is called demultiplexing because the traffic flow at level 3 arrives for a single host (only
destination IP) and must be demultiplexed to applications based on the port number. On
the opposite side, there is multiplexing, that is many applications that send traffic and IP
has to multiplex it, that is it comes out with a single source IP address. In multiplexing,
we focus on the source port and in demultiplexing on the destination port.

The Transport Layer is used to add new functionality, for example, the IP network is a
datagram protocol and it is not oriented to the connection, it does not give guarantees. It
specifically does not guarantee the delivery of segments, the orderly delivery of segments,
or the accuracy of the data contained in the segments. For these reasons, it is possible
to guarantee that traffic arrives at its destination by implementing the ACK, which
confirms when the packet is delivered correctly. With Transport Layer, there are more
functionalities, such as flow control and congestion control. The flow control guarantees
that the receiver is not overcharged, and the congestion control guarantees that the
network is not overloaded.
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The main protocols of this level are Transmission Control Protocol (TCP) [19] and
not User Datagram Protocol (UDP) [20]:

• UDP offers a connection-less service, it sends data without worrying about opening
or closing connections.

• TCP offers a connection-oriented service, opening and closing connections with the
host, and then informing the receiver that you are going to send something.

UDP is an unreliable service, it does not ensure that information sent by one process will
be received by the intended process in an accurate manner. Instead, TCP, using flow
control, sequence numbers, and acknowledgements, ensures that data is delivered from
the sending application to the receiving application. Flow and congestion control can
only be used with Transmission Control Protocol (TCP) and not with User Datagram
Protocol (UDP).

The transport layer receives segments from the network layer below, its role is to
transport these data to the relative application process running on the destination host.
For example, if there is a server with four processes when the transport layer receives
segments from the network layer, it needs to send the received data to one of these four
processes, which are listening on a socket, which is a door through which data arrives to
the listening process, and sending it from the process.

In order to properly exchange data between applications, the well-known ports stan-
dard has been defined where fixed ports are assigned to specific applications. For exam-
ple, TCP port 80 is reserved for the HTTP protocol, which will be processed later, so all
HTTP servers must be played on port 80. With the source port, there is no need to use a
standard, this is because when the receiver reads the port used by the sender, he can use
it to respond. For this reason, the source ports are decided randomly. In general, there
is no control over the ports used and they can be changed.

User Datagram Protocol (UDP)

Figure 3.2: It describes the UDP header. At the top is described the number of bits that
each field occupies, on the side, it indicates the length in bytes of the selected fields.

UDP does not improve IP best-effort service. The header is small, only 4 bytes, it has
Source Port and Destination Port, and it does a checksum on the whole segment. UDP
has no ACK, i.e. no guarantees, and it does not control flow/congestion.
UDP is better to use during streaming applications since there are no delays due to
retransmission and the flow/congestion control that lowers the transmission rate. In the
case of streaming some data can be lost, with a reduction of the quality, but this can be
acceptable because it avoids the control of flow and congestion and delays.

19



Background

Transmission Control Protocol (TCP)

With TCP there is reliability. TCP implements solutions based on window protocols to
try to offer reliable services to applications that are at the top level. As described in [15],
there are two basic approaches toward pipelined error recovery that can be identified:
Go-Back-N and selective repeat.

• Go-Back-N: The sender is allowed to send several packets (when available) without
waiting for an acknowledgement, but is limited to a maximum number of unac-
knowledged packets in the pipeline. In the end, the receiver sends a cumulative
ACK, which indicates that all packets have been correctly received at the receiver.
When there are N packets, waiting for ACK, there is a single timer, related to the
older packet, and when it expires sends the whole window of packages again.

• Selective repeat: The sender can have up to N packets waiting for ACK in the
pipeline and the receiver sends an individual ACK for each packet. The receiver
keeps a timer for each packet found.

As described in 3.1, TCP is connection-oriented because, before one application pro-
cess can send data to another, the two processes must first “handshake,” to communicate
certain preliminary segments to each other in order to define the parameters for the data
transfer.
Many TCP state variables connected with the TCP connection will be initialized as part
of the TCP connection establishment process on both sides of the connection.

Figure 3.3: It describes the TCP header. At the top is represented the number of bits
that each field occupies, on the side, it indicates the length in bytes of the selected fields.

As described in Figure 3.3, the TCP header consists of 20 bytes, without the Options
field. The header has Source and Destination Port numbers for multiplexing and de-
multiplexing data.

• The Sequence and ACK Number [32 bit] are used by the TCP sender and receiver
to count the segments and to find the received segments.

• Data Offset [4 bit] is the TCP header length field. The TCP header can be of
variable length based on the TCP options field.
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• Flag Field [6 bit] has 6 bits, each for a specific flag:

– URG indicates that the sending-side upper-layer entity has designated certain
data in this segment as “urgent”.

– ACK indicates that the segment includes an acknowledgement for a success-
fully received segment.

– PSH indicates that the data is sent to the upper layer immediately by the
receiver.

– RST, SYN and FIN are used to open and close the connection.

• Window Size [16 bit] is used for flow control. This parameter represents the number
of bytes that the receiver can accept.

• Checksum is equivalent to that of UDP, and it is calculated on the header and
payload.

• Options are used for window scaling factor in high-speed networks or when a sender
and receiver agree on the Maximum Segment Size (MSS).

TCP provides a connection-oriented service with reliable data transfer over unreliable
IP protocol. This can be done with: a pipeline, cumulative Acknowledge and a Timer.

Figure 3.4: It describes what happens when an ACK is lost, Figure on the left, then the
timer expires and the sender sends the packet back, while in the figure on the right the
sender sends several packets, and one of them is lost, in this case, the recipient returns
numerous ACK with the number of bytes of the packet missing.

As described in Figure 3.4, in general retransmission of a packet can be triggered by
two events:

1. Timer timeout, TCP retransmits a packet, possibly because it was lost in the chan-
nel.
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2. Duplicate ACK, in TCP ACK, is cumulative, but it does not say what is the last
byte received, but it says what is the next byte that expected to receive. The
receipt of three duplicate ACKs for a given segment triggers the retransmission of
that segment because it is a sign that there was a problem and the related package
is sent again.

Referred to Figure 3.4, a TCP transmitter performs the following steps:

1. It receives the byte stream from the application layer and it builds the segments
using sequence numbers.

2. If there is not already an active timer, it starts one. The timer refers to the oldest
package with no ACK received yet.

3. If the timer timeout only the segment that caused the timeout.

4. When receiving the ACK the timer relative is stopped, but there is the need to
start a new timer if there are still ACK to be received for other segments.

In general, the TCP timer is longer than the Round Trip Time (RTT), which is
twice the propagation time, that is, the time from when a segment is sent until an
acknowledgement is received. The sample RTT, also called SampleRTT, for a segment
is the interval of time between when the segment is sent and when an acknowledgement
(ACK) for the segment is received.

Over time, RTT changes according to network congestion. It is therefore difficult to
estimate the RTT to initialize the timeout. For this purpose, the EstimatedRTT is used:

EstimatedRTT = (1− α) ∗ EstimatedRTT + α ∗ SampleRTT

where α has as recommended value 0,125 or 1.
EstimatedRTT is a weighted average of SampleRTT values, and this weighted average
gives more weight to recent samples than to old ones, because recent samples better
reflect current network congestion.

Flow Control

Flow control is the ability of the transmitter to avoid overloading the receiver.

Figure 3.5: It describes the receive buffer. On the left comes the correct frames and
verified by TCP, from the right instead there are applications that take this data from
the buffer. When the data arrives, the buffer fills and decreases the rwnd, i.e. receiver
window.
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To summarize, when the TCP connection receives bytes, it does not send them directly
to the application, but they are in a buffer and then it is the application that takes the
data from the buffer, not necessarily at the instant, the data arrives and then uses them.
If the application struggles to read network traffic that comes in this buffer, the buffer
fills up until overflow (memory in the buffer ends) and the received bytes have no more
space. Flow control avoids overflowing the buffer.

As described in Figure 3.5, the buffer of the receiver is composed of a part with the
received data waiting to be read (Buffer Data) and an empty part waiting for the new
segments (Free Buffer Space), this last empty part is the receiving window. The reception
window gets smaller as the buffer is full.
It is necessary to provide the rwnd value of the transmitter in order to establish flow
control. In this way, the buffer will never overflow if the transmitter sets the value of
its transmission window to rwnd. The TCP header includes a field for the rwnd value,
called “Window Size”.

3.1.3 Transport Layer Security (TLS)

TLS is the most adopted network security protocol nowadays. Initially, it was called SSL
(Secure Socket Layer) [21] [22], but this term shouldn’t be used anymore because it refers
to a protocol that was discontinued and had security vulnerabilities. In January 1999,
TLS was standardised [23].
TLS constructs a secure transport channel on top of Transport Layer 4, also known as
session-level security, for which it is also referred to as a layer 4.5 protocol.
TLS is a security protocol and it has the following Security Proprieties:

• Peer authentication establishes when a channel is opened. If there is single peer
authentication, only the server is verified, if there is mutual peer authentication,
both the server and client are verified. It is based on asymmetric challenge-response
authentication, which means that should be proof of possession of the private key.
For the server, this is indirect proof because the server, without its private key,
can’t establish a secure channel. On the other hand, there is an explicit signature
for the client.
If peer authentication fails, the channel is not opened. This is important because
if an attacker can’t make a connection to us, he can not perform an attack. That
is why it is so important to do authentication at the network level and not at the
application level. The sooner the authentication is performed in the network stack,
the more you can block an attack.

• Message confidentiality means that the content of each record sent over TLS can
be encrypted if needed. It depends on the version of the protocol, but taking into
account that encryption takes a long time, especially when there are a lot of data.
In some cases, the data is not private, so message confidentiality is not needed.

• Message integrity and authentication for each message sent over the TLS channel.
In this case, authentication means that data sent over the channel really came from
the counterpart; it also proves that the data has not been changed. Integrity only
tells you if data has been changed or not, but does not prevent changes.

• Protection against replay and filtering attacks, where a valid message is taken and
re-injected again. TLS protects against replay attacks because if an old message
is sent again, it is noticed by implicit record numbering. This means that each
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message sent over TLS has a numbered record, that is not inside the packet, but it
is handled by the top-layer application which doesn’t lose data because it sends and
receives data in the same order. This protects against replay attacks, if a message
is received twice, authentication fails. In the same way, it protects against message
cancellation.

Figure 3.6: It describes the TLS architecture, which is located over TCP and below the
application layer (HTTP, FTP, Telnet). The TLS architecture consists of a handshake
protocol, change Cipher specification protocol, alert protocol and record protocol.

As already mentioned above, TLS is located above the TCP transport layer and below
the application layer. As shown in Figure 3.6, the architecture of TLS consists of:

• Handshake Protocol is the protocol that is run at the beginning when the TLS
channel is created. It is the most vulnerable part because it is where an unprotected
TCP channel becomes a secured TCP channel.

• Change cypher spec Protocol used for changing keys or algorithms without closing
the channel. This is important to avoid cryptoanalysis from the attacker since,
during the handshake phase, a lot of data using the same algorithm and key are
exchanged.

• Alert protocol is the protocol utilized each time there is a problem. The error means
that there was an attack in between, so the security manager is alerted.

• Record protocol is the protocol that encapsulates the data being transmitted. The
basic data transmitted is the record.

TLS versions

TLS 1.0 [23] was the first version of Transport Layer Security that was standardized by
the Internet Engineering Task Force (IETF). It is 99.9% the same as SSL-3, but it adds
more focus on digest and asymmetric cryptography algorithms.

TLS 1.1 [24] was made to protect against CBC attacks, where some parts of the
message could be guessed. To avoid these kinds of attacks, the implicit IV has been
changed to an explicit IV, and errors in padding are now reported as bad record MAC
instead of decryption failed. This is important because if there is an error, the attacker
can not get any information.
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TLS 1.1 also added the IANA registry, which defines protocol parameters. If a session
ends for a network problem, the session can resume again, but, if the channel was closed
because of an attack (for example, an alert for a bad MAC), the session can’t be started
again because the attacker could have changed the session.

TLS 1.2 [25] is the most popular version right now, even though TLS 1.3 [26] is the
most recent. The cypher suite now says what pseudo-random function (PRF) is needed
to generate the client and server random. The hash algorithm used in the MAC can be
negotiated, SHA-256 is used by default. The protocol extensions and the AES cypher
suite are built into TLS 1.2.

3.1.4 Cyber-Attacks

This subsection presents the cyber attacks that are used in the proposed model.

Denial-of-service (DoS)

Denial-of-Service is an attack technique that attempts to overload a host so that its
service cannot be provided.
For example, you could send a lot of emails to keep the server busy until you get the
message “The destination mailbox is full.” This attack is called “Mail Bombing” [27], and
it is a DoS attack which uses mail. There is also a Ping flooding attack, also known as
“ping bombing”, in which it used a lot of ICMP echo requests, with the biggest amount
of bites (64 Kbytes) and without the timer, then the host will be too busy answering all
of these packets and it does not perform other tasks.
Another important DoS attack is the SYN flood [28], which uses the TCP of the transport
layer, described in the section above. An attacker starts a connection to a server quickly
but doesn’t finish it, then the server has to spend resources waiting for half-opened
connections and it can not perform other tasks.

In other words, Denial-of-Service is comparable to an increase in the number of users
of a service, the system is flooded with requests, and it goes down because its resources
are not sufficient to maintain its service active. Monitoring and scaling up can reduce
the consequences, but the system should have an alert system that sends an alert to the
system manager when a certain resource threshold has been exceeded.

Distributed Denial-of-Service (DDoS)

DDoS is similar to DoS, but multiplied by the number of attackers who are attacking at
the same time [29].
A number of compromised devices form a Botnet, and the attacker installs DoS software
on these devices. Each of these nodes is referred to as a daemon, a zombie, or a malbot.
Typically, a C&C (Command and Control) infrastructure, either client-server or peer-to-
peer, is used to manage a network of robots (slaves) that are managed by a master. The
communication between zombies and master is either encrypted, and this type of traffic
can be hidden to avoid future investigations, as ICMP messages are commonly present
in typical traffic.

The more demons there are, the more the effect of the attack can be amplified.
The use of a “reflector” is another way to improve an attack, which is a possibly legitimate
third-party component that increases the traffic sent to a victim. This method has two
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main benefits: it hides the attacker’s identities and makes the attack more powerful by
using an “amplification factor”.

Figure 3.7: Description of how the botnet is controlled by the attacker. At the top, there
is the attacker who controls Master nodes which control daemons.

With DDoS, there is an attack and a victim. Masters and daemons are part of
the botnet. As described in Figure 3.7, the attacker builds a network of daemons and
then picks some nodes to be botnet masters. When the attacker wants to start a DDoS
attack, he sends the victim’s IP address to master nodes that propagate information to all
daemons, which start sending traffic to the victim server. The attacker then disconnects
from the network to avoid being tracked after sending the victim’s IP address to attack
to the master nodes. The other masters propagate the victim IP over the botnet and
they coordinate the work of the demons, which must simultaneously execute the attack.
Masters do not directly participate in the attack; instead, they attempt to remain as
hidden as possible to prevent being found during an investigation. The victim is flooded
with requests and is killed by the huge amplification factors that a daemon might generate.

Infiltration

Infiltration is a sophisticated attack where the system is penetrated using certain complex
techniques and it is continuously monitored from an external Command and Control
system (C&C). It is often performed by a group of advanced attackers that are well-
funded by an organization or government [30].

As described in [30], this attack is divided into 5 stages:

1. Reconnaissance: in order to increase their success rate, attackers try gathering all
the information they need about the organization’s assets.

2. Establish Foothold: Based on what they learned in the first step, the attackers try
to use different techniques: exploit known vulnerabilities in the victim, use “spare-
phishing”, which is a type of phishing directed at a company, with malware.
After sending emails with malicious files or links to websites to malicious software,
attackers wait that the victim opens the malware in the organization’s network,
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which would let them into the organization’s system. After the attackers get the
organization’s system control and infiltrate the targeted network, attackers create
a Command and Control (C&C) communication channel after they gain control of
the organization’s system. Attackers establish a long connection to victim devices
for monitoring and stealing sensitive data.

3. Lateral Movement/Stay Undetected: once the attacker gains access to the victim
system, the attacker can spread to additional systems inside the internal network
of the target, always remaining as hidden as possible.
The attacker utilizes a variety of techniques to get access to additional hosts and
sensitive resources from a compromised system. Typically, this phase involves priv-
ilege escalation and, at times, the acquisition of sensitive data via key loggers. The
attacker can also install new backdoors on many systems, utilizing VPN credentials,
and log into web portals.

4. Exfiltration/Impediment: the attackers export the stolen information to their com-
mand and control server. This can be done, since the majority of Intrusion Detec-
tion and Intrusion Prevention Systems, described in the next section, only perform
ingress filtering, their data exfiltration may go undetected.

5. Post-Exfiltration/Post-Impediment: the objective of an APT attack is not to per-
form harmful actions, but it is to collect as sensitive data as possible. The attackers
could choose to end the attack once it is determined that the data retrieved are ac-
curate, or it could remain active for as long as the attackers continue to collect
data. In each situation, the attackers must hide their traces, if there is no need for
further exfiltration, any tools installed during the attack or logs that could provide
solid proof are uninstalled.

Heartbleed

Heartbleed is one of the attacks against TLS. It is a critical bug in OpenSSL heartbeat
extension of TLS/DTLS [31], used to read portions of the victim server memory.

Handshake is time-consuming and, because of the numerous closing and reopening
of the channel, even if the session is resumed, for a better performance this extension
maintains the channel open even if no data is being sent. It is a message sent to the
server via ’heartbeats’ that prevents the channel from being closed.

Figure 3.8: Description of how the Heartbleed vulnerability works.

Figure 3.8 shows how the Heartbleed vulnerability works. The client sends a Heart-
beatRequest, in which it sends the word “Bird” of 4 letters, and the server responds with
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HeartbeatResponse that contains the same word sent with HeartbeatRequest. At this
point, the client decides to send the word “Hat” but enters the value of 500 letters. The
server then returns not only the word Hat but also data that was present in its memory.

This extension provides two messages: HeartbeatRequest and HeartbeatResponse.
A HeartbeatRequest message can be sent at any time during the TLS connection. When-
ever a HeartbeatRequest message is received, a HeartbeatResponse message is sent in
response. The receiver, so the server, must send back with HeartbeatResponse the same
message contained in the HeartbeatRequest payload, otherwise, if the message does not
contain the same payload, the message is discarded.

This extension caused a vulnerability, which is named CVE-2014-0160, that exploited
a buffer-overflow in OpenSSL (from versions 1.0.1 to 1.0.1f)1.

An attacker can send a HearthbeatRequest, where he can set the length of the message,
which is greater than the real message contained in the payload. The attacker is able
to perform a buffer overflow, and the server returns, with HeartbeatResponse, more
characters than expected in HearthbeatRequest, without checking the real length of the
message.

By taking advantage of this vulnerability, the TLS server sends back up to 64KB more
data than was asked in the HearthbeatRequest. Attackers can get sensitive information
that is stored in RAM.

Bruteforce

A bruteforce attack is used to illegally obtain username and password pairs by trying
all existing combinations to access network services. The attack is executed as many
times as possible until it is successful [32]. It is a trial and error strategy to crack
login credentials and encryption keys, for that it is called “bruteforce”, for the attacker’s
aggressive attempts.

There are several bruteforce attack techniques:

• Dictionary Attacks, in which the attacker compares the user password with a word
list, so a dictionary containing the most common password. This form of attack is
often time-consuming [33].

• Rainbow tables are essentially enormous tables containing hash values for the most
common passwords (that are not salted, which have not been randomly sequenced),
and these tables are used to discover hashed passwords. The authentication login
uses hash functions, which are one-way functions, meaning that the hash cannot
be reversed to recover the original plaintext. When a user wants to access to the
system, a hash is computed based on the password he has inserted; if the hash value
matches, the user gains access to the system.
Rainbow tables are utilized to crack passwords in a shorter amount of time than the
simple bruteforce with a dictionary attack, however, they require a large quantity
of storage space. It is the most effective way of password cracking [34].

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
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Botnet Attacks

A Bot is a robot that generates non-human traffic to a website or mobile application.
Per se, a Bot is not malicious, because that can be a search engine or assistant, but in
some cases, a Bot can be programmed to perform DDoS or Bruteforce attacks or also to
steal credentials. In some cases this bot has so sophisticated that can act as a human
and write messages or emails to the victim, causing him phishing attacks.

Figure 3.9: It describes the bots used by the attacker and the types of attacks that they
can perform.

The malicious bot can be anything device that is connected to the internet and that
is infected by the attacker. The attacker, in Figure 3.9 is the Botmaster, controls the
botnet and sends them instructions as to what kind of attacks can generate.

It is estimated that more than 40 per cent of all Internet traffic consists of bot traffic.
This is why so many firms are searching for methods to control the amount of bot traffic
on their websites 2.

There are different kinds of bots:

• Scraper Bots are applications that extract information from a web application and
export the data in the desired format (JSON, XML, HTML, etc.). These type of
bots produces high traffic to a website and they can be used to discover different
path and hide resources inside your server. Their aim is to get all the information
possible about the server and use it for malicious purposes.

• Spam Bots are software that mimics user behaviour. These are the most danger-
ous bots because they are so sophisticated that can generate not only traffic and
perform a DDoS attack, as previously said, but can create and send messages over
social platforms and spread misinformation. Research “find that up to 66% of data
sets of known bots are discussing COVID-19”, and “the proliferation of COVID-
19 (mis)information by bots, coupled with human susceptibility to believing and
sharing misinformation, may well impact the course of the pandemic” [35].

2https://www.cloudflare.com/it-it/learning/bots/what-is-bot-traffic/
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3.1.5 Intrusion Detection System (IDS) and Intrusion Prevention Sys-
tem (IPS)

This section describes what an IDS is, the different approaches used (signature-based
and anomaly-based) and the different types (HIDS and NIDS). Then the advantages and
disadvantages of signature-based and anomaly-based approaches are also discussed with
some examples.

The concept of IPS will also be discussed in the end.

Intrusion Detection System (IDS)

Intrusion Detection System (IDS) is the process of monitoring what occurs in a computer
system or network and analyzing it to look for intrusions. Depending on its features, it
can be improved to find unauthorized access, malware or DoS-DDoS attacks, also the
system must be able to recognize and differentiate an attack from normal network traffic
[36].
Based on this definition, an Intrusion Detection System (IDS) is just the tool, whether
it’s software or hardware, that finds intrusions in a host or network.

IDSs are mostly used to find potential malicious events, record information about
them, and alert security administrators about what they found. An IDS can base its
behaviour on two strategies:

• Signature-based detection is the process of looking for potential attacks by compar-
ing signatures with events that have already happened [36]. In practice, for each
“event”, it generates a signature, and then compares that signature with a database
that contains all the signatures of malicious events, if there is a match, the system
sends an alert to the security manager.
Signature-based detection is the easiest way to find malicious events because there
is just a comparison of signatures. Signature-based IDSs can detect only known
attacks, that are in the database, but for new attacks or different versions of known
attacks (atypical attacks), they do not recognize them at all.

• Anomaly-based detection is the process of recognizing the malicious traffic from
normal traffic, using statistical data [36]. A system for finding malicious traffic has
rules that describe how users, hosts, network connections, or applications normal
act. During a period of time, these rules were made by looking at how normal
things were done.
If, for example, the rule is the average number of packets exchanged on a web
server and the IDS, using statistical methods, determines that the number of pack-
ets exchanged is much higher than expected, then an alert is sent to the system
administrator. Rules can be made for many kinds of behaviour, like how many
emails a user sends, and how many times a user tries to log in and fail.
The rules used for anomaly-based detection can be static or dynamic. Static rules
don’t change unless the system administrator changes them in the IDS, dynamic
rules are updated as new things happen. Static rules get old over time, so it needs
to be updated.
The most important advantage of anomaly-based detection methods is that they
can find new types of attacks.

There are two types of IDS:
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• Host-based IDS (HIDS), which examines logs created by the operating system, a
service, or an application on a single host. Additionally, it monitored OS tools.

• Network-based IDS (NIDS), which monitors the traffic on the network.

Using machine and deep learning, as detailed in Chapter 3.2, is intended to automate
the analysis process without human intervention. These techniques can utilize supervised,
unsupervised, and semi-supervised learning approaches. This means that the security
manager needs to check the alarms that the IDS send, investigate the problem, and find
out if there is an attack or if it is just a false positive.

The main advantage of IDS Anomaly-based is that is not dependent on a database,
which means that it behaves using statistical analysis to find known and unknown attacks,
rather than the IDS signature-based. Let’s say for example that there is a new type of
attack, the signature-based does not recognize it because there is no signature for that
attack, as it has never been discovered before, instead the anomaly-based because that
traffic was never discovered before, then that is not benign but an anomaly.

If we have an IDS anomaly-based that is trained to recognize all the benign traffic
under a threshold, then all the traffic that is over this threshold is considered malicious,
and a possible attack. This is an example of the use of an unsupervised learning model to
build an IDS. On the other hand, when the anomaly-based model is inserted in a network,
you need to train the model to recognize the benign traffic generated from that network
or it will produce a lot of false positives. If the model is trained on a small dataset, that
does not contain all the possible benign traffic, then if there is a flow that is benign, but
has never been seen by the model, that is considered malicious traffic.

Intrusion Prevention System (IPS)

An intrusion Prevention System (IPS) is a system used to automate and improve the
response to attacks. It combines the Intrusion Detection System with a dynamic firewall
[37]. The IDS sends alarms about a certain type of traffic, and when the dynamic firewall
receives the alarm, it is able to block all traffic of that type or isolate a node.

This is useful because the system can detect an attack and directly block it, on the
other hand, if the system is not accurate then IPS may block legitimate traffic or may
consider malicious traffic as normal traffic.
IPS is composed of different protection systems, and frequently they are integrated into
a single product known as IDPS [38].

3.2 Basic Concepts of Data Science

This section describes the basic concepts of Data Science.

Artificial intelligence (AI) is the machine simulation of human intelligence, mainly by
an algorithm called also as “model”. As described in [39], the term Artificial Intelligence
is used when a computer simulates “cognitive” functions associated with human minds,
such as “learning” and “problem-solving”. Understanding spoken language, excelling at
strategic game systems like chess, driving autonomous vehicles, using intelligent routing
in content delivery networks, simulating military operations, and decoding complex data.

In Artificial Intelligence, there is a subset which is Machine Learning. Machine learn-
ing is the study and creation of algorithms that can learn from and make predictions on
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data [40]. These algorithms avoid purely static program instructions by making data-
driven predictions by creating a model from the inputs, which is called a dataset.

Deeper in Machine Learning, there is another subset called “Deep Learning”, which
is the study of Artificial Neural Networks (ANN) with several hidden layers, made of
neurons, in order to describe data abstractions and build computer models [41].

This chapter describes the methods for preprocessing a dataset and how to evaluate
a model using a Confusion Matrix. In addition, it discusses the main Machine Learning
and Deep Learning strategies utilized in the building of different models.

3.2.1 Dataset and Preprocessing

A dataset is a collection of data with a specific structure, which is defined with rows and
columns. Each row of the dataset is called a record (or example) and it contains the same
structure as the dataset. Each column is called a feature (or attribute or input), this can
be numeric, categorical, text, date-time or Boolean.
A particular feature is a label, which indicates the “prediction” based on all the other
features [42].

Training, Validation and Testing

As described in [43], a dataset is splitted in Training Set, Validation Set and Test Set:

• Training Set is a collection of instances used for learning, that is, to fit the classifier.

• Validation Set is a collection of examples used to tune the parameters (hyperpa-
rameters) of a classifier, such as selecting the number of hidden layers in a neural
network.

• Test Set is a collection of instances used to evaluate the performance of a classifier.

To sum up, the Training Set is used to train the model, which means the model learns
from the data and tries to establish a relationship between the features and the labels.
The Validation Set, as already said, is used to tune the hyperparameters of the model.
When the model uses certain data, but never “learns” from them, the Validation Set can
be used to find the hyperparameters at a higher level. This dataset is useful during the
model’s development phase.
The Test Set provides a way to evaluate the final model. It is only utilized once the
training of the model is complete (After using the Train and Validation sets). Typically,
the model should be evaluated on samples that are not used to train or validate the
model.

Figure 3.10: It shows the split of the Dataset into Training Set, Validation Set, and Test
set.
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As described in Figure 3.10, data are divided according to a split ratio that is highly
determined by the type of model being constructed and the dataset itself.
If the dataset and model require extensive training, a larger portion of the data for the
training set is used and a smaller part is used for validation and test set.

Data Preprocessing

As already said, the dataset has different records that contain different features, each
feature has a different type, and it can be numeric or categorical, which is a non-numeric
value. When all of the features are categorical, this must go through a “Data Prepro-
cessing Phase” because Machine Learning models do not understand the “text”, but only
numeric values. Moreover, also the numeric features can also go through a preprocessing
phase, to make these values easier to understand during the training phase.

Data Preprocessing is the step in which the data is encoded or otherwise modified
so that it can be easy to understand by the model. In other words, the algorithm can
analyze and learn from data quickly [44].

Normalization

Data normalization is a fundamental component of data mining. It transforms or trans-
lates the data into another format that makes easier the data processing. Normalization
reduces the complexity of the data and improves the performance of model training.

Several data mining normalization approaches are utilized extensively for data trans-
formation:

• Min-Max Normalization or Min-Max Scaling performs a linear transformation on
the original data by scaling the range of features to the interval [0, 1] or [min(feature i),
max(feature i)]. The generic formula used for scaling to a new min-max [new min,
new max] is as follows:

v′ =
v −min(v)

max(v)−min(v)
(new max− new min) + new min

Where v is the value assumed by each feature.

• Standardization or Z-score Normalization is the transformation of data by the values
to a common scale in which the mean equals zero and standard deviation equals to
one.

v′ =
v − average(v)

σi
The above formula describes how to determine the Z-score with the mean (average(v))
and standard deviation of the distribution for each feature σi. The mean is sub-
tracted from each value and then, it divides the values for standard deviation.

As described in Chapter 4, Min-Max Scaling and Z-score Normalization are man-
aged by specific functions from the scikit-learn library [45], respectively MinMaxScaler3

e StandardScaler4.

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.

html

4https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html
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3.2.2 Confusion Matrix and other Metrics

For the evaluation of the performance of the models, the “Confusion Matrix” is used, it
is a table with four different combinations of predicted and real values.

Figure 3.11: Matrix Confusion. The provided classes are those predicted by the model,
while the actual classes are the correct ones.

From the confusion matrix Figure ?? is described, if the prediction of a class is correct,
for example, the model predicts that the traffic flow is a DoS attack, then it is a True
Positive (TP), whereas if the prediction is wrong, it is a False Positive (FP). If the model
predicts that traffic flow is not a DoS attack and the forecast is accurate, it is a True
Negative (TN); otherwise, it is a False Negative (FN). Then, there are four different
indicators:

• True Positive (TP): describes the number of cases predicted by the model as
positive for that class, and they are actually positive.

• False Positive (FP): describes the number of cases predicted by the model as
positive for that class, but they are not positive.

• True Negative (TN): describes the number of cases predicted by the model as
negative for that class and they are actually negative.

• False Negative (FN): describes the number of cases predicted by the model as
negative for that class, but they are not negative.

For example, with a model that is trained to recognize benign traffic from malicious
traffic, then assign classes “benign” and “malicious”. It creates the confusion matrix for
the class “malicious”, described in the Figure 3.12:

• If the model correctly predicts the “malicious” class, that is a True Positive (TP).

• If the model predicts the class “benign” to traffic and it is actually traffic “benign”,
then it is a True Negative (TN).

• If the model predicts the class “malicious” to the traffic but actuality it is “benign”,
then this is a False Positive (FP).
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Figure 3.12: Matrix Confusion for the Malicious class. It describes the performance of a
model, trained to understand the malicious flow from benign form.

• If the model predicts a class “benign” to traffic, but in actuality it is “malicious”,
then it is a False Negative (FN).

The confusion matrix is very useful for measuring Accuracy, Balanced Accuracy, Pre-
cision, Recall, F1-Score and Area Under the Curve (AUC), as described in [46]:

• Accuracy the total number of correctly predicted cases, over the total number of
cases.

Accuracy =
TP + TN

TP + FP + TN + FN

• Balanced Accuracy is it based on the sensitivity = TP
TP+FN , also known as True

Positive Rate (TPR), on the specificity = TN
FP+TN , also known as True Negative

Rate (TNR).

Balanced Accuracy =
sensitivity + specificity

2

• Precision the number of correctly predicted positive cases, True Positive (TP), of
the total number of cases classified by the model as positive, False Positive (FP)
and True Positive (TP). Precision is a measure of how many positive predictions
are correct, a high precision refers to a low False Positive (FP) number.

Precision =
TP

TP + FP

• Recall the number of cases correctly predicted, True Positive (TP), over the number
of cases predicted as positive, True Positive (TP), and False Negative (FN).

Recall =
TP

TP + FN

• F1-Score combines Recall and Precision, considering both False Positive (FP) and
False Negative (FN). A high F1-Score is only achieved if both Recall and Accuracy
are high.

F1− Score =
2×Recall × Precision

Recall + Precision
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• Area Under the Curve (AUC) is the ability of the model to distinguish the
positive classes from the negative ones, that is to distinguish the True Positive (TP)
from the True Negative (TN), if this does not happen they generate False Positive
(FP) and False Negative (FN). The higher the AUC, the better the performance of
the model is.

Figure 3.13: The Receiver Operating Characteristics (ROC) curve is a graph, based on
True Positive Rate (TPR) and False Positive Rate (FPR), that is used to evaluate the
performance of a classifier.

The Receiver Operating Characteristics (ROC) curve is drawn to calculate the
AUC. For each model prediction is calculated True Positive Rate (TPR)

TPR =
TP

TP + FN

and False Positive Rate (FPR)

FPR =
FP

FP + TN

These values are updated for each model prediction and they are marked on the
chart, Figure 3.13, to build the ROC. After generating the ROC, the Area Under
the Curve is calculated measuring the area under the entire ROC curve.

The closer the curve is near the top left corner, the more the model is performing
and can distinguish positive from negative classes, in this case, the AUC is higher
(> 0.5) and the model has better performances.

If the curve is closer to the dotted line, the model predictions are random because it
can not distinguishes the positive from negative classes, this happens with an AUC
equal to 0.5.
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If the curve is under the dotted line and closer to the bottom right corner, the
model reverses the positive classes with the negative one, this happens with a low
AUC (< 0.5).

In general, if the curve is under or is equal to the dotted line, there is a low perfor-
mance of the model and it generates a smaller AUC (<= 0.5). Instead, if it is over
the dotted line, the AUC is higher (> 0.5) and the model has better performance.

Micro and Macro

Macro-average computes the metric independently for each class and then takes the av-
erage, considering all classes equally. Instead, micro-average combines the contributions
of all classes to calculate the average metric [47].

For example, consider the following table 3.1:

Class TP TN FP FN Accuracy

A 20 15 2 1 0.92

B 105 10 85 67 0.43

C 2 5 15 7 0.24

Table 3.1: Accuracy calculates for each class.

Macro-average is the average of the all Accuracy of the different classes:

Macro− average =
AccuracyA +AccuracyB +AccuracyC

3
=

0.92 + 0.43 + 0.24

3
= 0.53

Micro Average, for accuracy, is the sum of all true classes (TP and TN) divides by
the totals elements of all the classes:

Micro− average =
TPA + TNA + TPB + TNB + TPC + TNC

All results A+All results B +All results C
=

=
20 + 15 + 105 + 10 + 2 + 5

20 + 15 + 2 + 1 + 105 + 10 + 85 + 67 + 2 + 5 + 15 + 7
= 0.47

The first distinguishing characteristic is that the macro-average is greater than the
micro-average. This is done because, in the macro-average, classes A and B contribute to
increasing the accuracy, in an effort to reduce the poor performance of class C. However,
this is an inflated metric, as a large number of examples are incorrectly classified.
Micro-average, instead, considered the number of examples and the contribution of each
class, for that reason it is recommended to use with imbalance dataset.

3.2.3 Machine Learning (ML)

As already said and described in [47], Machine learning is the study and creation of
algorithms that can learn from and make predictions on data [40]. There are two types
of learning: Supervised and Unsupervised Learning.
The main distinction is that the first uses data labelled to predict results, while the second
one uses unlabelled data, and tries to classify each record based on similar feature values.
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Supervised Learning

Using a dataset containing labelled data, Supervised Learning is an “automatic” learning
technique. This data is intended to instruct or “supervise” algorithms in order to cor-
rectly classify the data.
Using analysis of the dataset and output labels, the model can improve over time to
achieve better accuracy. Using techniques such as Classification and Regression, super-
vised learning predicts the label values of new unlabeled data based on patterns.

Figure 3.14: Difference between Classification and Regression.

As described in Figure 3.14, supervised learning is divided into two categories:

- Classification: Using an algorithm, data are sorted into various groups based on
the label. For example, in Figure 3.14, A line divides the data into two groups
based on where the majority of the same labels are located. In the real world,
algorithms of this type can be used to identify spam emails from normal ones.
Decision Tree, Support Vector Machines, Random Forests, and linear classifiers are
typical supervised learning methods.

- Regression: A technique for supervised learning that applies an algorithm to com-
prehend the relationship between dependent and independent variables.
Regression models are helpful for making predictions based on previously collected
data, such as predicting future profits or the stock market.
Common regression methods include polynomial regression, Logistic regression, and
linear regression.

Unsupervised Learning

Non-supervisionate or unsupervised learning analyzes and groups unlabelled data. These
algorithms are “unsupervised” because they discover hidden data patterns without assis-
tance.

The three primary purposes, for which these models are used, are to reduce dimen-
sionality, for the association, and/or for clustering.
With clustering, unlabeled data can be sorted according to their similarities or differences
using the data mining methodology. A clustering algorithm example is the K-means, Fig-
ure 3.15, which divides similar data into k groups. This is useful for image compression
and data set segmentation, among other things.
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Figure 3.15: It illustrates K-means with k=3, which creates three distinct groups, each
with its own centroid.

In conclusion, with Supervised learning, the model predicts data and modifies its
response iteratively in order to “learn” from the training set. The unsupervised learning
model operates independently to determine the underlying structure of unlabeled data.
Supervised learning models are more accurate than unsupervised learning models.

Underfitting and Overfitting

Figure 3.16: It describes Underfit and Overfit cases. The data points are represented by
blue dots, the model fits by the blue line, and the real function by the orange line.

Figure 3.16 describes the underfitting and overfitting problem. The left is underfit
because the model created is too simple, instead, the right is the overfit because the
model does not generalize.
Underfitting can occur when the model is too simple or when the features are insufficiently
helpful. In Figure 3.16, the Underfitting is illustrated by the left panel, in which the
model, described by the blue line, is too simple and not generalized.

Overfitting happens when the model, during the training, is based on too many pa-
rameters and the models fits only to that specific training set, then it can not generalize
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and adapts to the observed data. In Figure 3.16, it is represented by the right panel,
where the model focuses too much on training dataset data and does not generalise.

Decision Tree

Decision Trees (DTs) are a model of supervised learning used for classification and re-
gression.
The objective is to develop a model capable of predicting the value of a target variable
using simple decision rules learned from the features of the dataset [47].

A decision tree is a classifier that splits the instance space recursively.
The decision tree is composed of nodes that create a rooted tree, which is a directed
tree with a root node that has no incoming edges, instead, every other node has a single
incoming edge. A node with outgoing edges is referred to as an internal or test node. All
further nodes are known as leaves.
Each internal node in a decision tree divides the instance space into two or more sub-set
based on the input attribute values. Each leaf allocates the class that represents the
optimal target value. Instances are categorised by travelling them from the tree’s root to
its leaves based on the results of tests conducted along the journey [48].

Figure 3.17: It describes the decision tree created on a dataset to classify if a person
could be enrolled in the engineering master’s program at the Polytechnic of Turin.

Figure 3.17 describes a decision tree used to determine if someone can be enrolled in
the engineering master’s program at the Polytechnic of Turin.
The decision tree starts from the Root node, then the Internal nodes are described by
rectangles, while leaves are represented by the final answers (Yes or No). Each node has
attributes whose corresponding values are labelled on its branches.

This model is accurate for simple datasets and the model is interpretable for small
trees. It is also a fast classification and it can be scalable in training set features.
On the other hand, the decision tree can create complex trees that do not generalize the
data and it can go into overfitting. To avoid that, pruning mechanisms are used such as
setting the minimum number of samples at leaf note or setting the maximum depth of
the tree.
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The scikit-learn library [45] is used to build the decision tree with the function Deci-
sionTreeClassifier5.

Random Forest

The Random Forest is a bagging ensemble model, composed of several independently
Decision Trees [47]; each tree makes a class prediction, and the class with the most votes
becomes the model’s prediction [49].
The accuracy of the result improves as the number of trees increases.

Figure 3.18: Random Forest: The dataset is split and, for each sub-dataset, is created a
decision tree (tree #1, tree #2, tree #3, ...), each tree returns a class, then this class s
voted by majority.

As described in Figure 3.19, the Random Forest consists of 4 steps:

1. Randomly select samples from the test dataset.

2. For each sample a decision tree is created.

3. For each tree a result is produced.

4. The result of each tree is voted by the majority.

With the Random Forest, there is better accuracy and precision, with lower overfitting
of the dataset.

Random Forest is an accurate and robust method that not overfitting. It also handled
missing values appropriately. It can be used to obtain the most important features in a
dataset for higher accuracy.
On the other hand, Random Forest is not interpretable, because of the number of Decision
Trees that are created, and with large datasets, training and prediction could be slow.

5https://scikit-learn.org/stable/modules/generated/sklearn.tree.

DecisionTreeClassifier.html
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eXtreme Gradient Boosting

Extreme gradient boosting is a supervised scalable tree-boosting system that combines
the predictions of several weaker models to build a stronger model.
This method utilizes the process of “boosting”, where a weak model is combined with
several other weak models to produce a more robust, accurate, and stable model [50].

Figure 3.19: Represents the XGB algorithm Step. For each classifier, the weight of the
incorrectly predicted data is increased, and the “new dataset” is then passed to a different
classifier, which performs another classification and obtains a new dataset.

As described in [51], the XGB algorithm work as follow:

1. A weight is assigned to all independent variables.

2. A first weak model is created, and it generated a prediction with errors.

3. Predictions that are wrong are increased in weight.

4. The new dataset is used by the classifier to create a new model.

5. Continue until the entire training dataset is correctly predicted, when the maximum
number of models is reached or when the validation loss on the dataset starts to
increase (to avoid overfitting).

eXtreme Gradient Boosting is considered one of the most performed and fast algo-
rithms. Thanks to the parallelization of tree construction which uses all CPU cores during
the training, it can use also the GPU.

Based on benchmark [52], it is one of the most accurate algorithms.

3.2.4 Deep Learning (DL)

Deep Learning is a subcategory of Machine Learning that focuses on artificial neural
networks modelled over the structure and functions of the human brain.
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Figure 3.20: It is an Illustration of an artificial neuron. There is some input to which
weights are applied, then they are summed and at the end, an activation function is
applied to the output.

Figure 3.20 illustrates a neuron, the smallest component of a neural network, which is
a structure that receives input values, sums them with relative weight, and then applies
an activation function that simulates the biological stimulus to an input [53].

Depending on the neuron’s output, the activation function determines the neuron’s
behaviour. Its function is to introduce a non-linearity to the output, increasing the
selective capacity of the model and, consequently, the cognitive capacity of the neuron.
The activation functions may help to saturate neuron outputs in fixed ranges. The main
activation functions are:

• Binary Step

• Linear

• Rectified Linear Unit (ReLU)

• Sigmoid function

• Tanh function

Figure 3.21: Linear function

The linear activation function is also known as the “identity function”. This function
does not change the input data and it returns the same value.
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f(x) = x

where x is the input.

Figure 3.22: Rectified Linear Unit (ReLU) function

Rectified Linear Unit (ReLU) function, Figure 3.22, eliminates any outputs less than
zero and returns the input if it is positive; if the input is zero or negative, the function
returns zero and impedes backpropagation. The function is described as follows:

f(x) = max(0, x)

where x is the input.

Figure 3.23: It describes a Neural Network with an Input layer, Hidden layers and an
Output layer.

As illustrated in Figure 3.23, neural networks are composed of multiple layers of
interconnected nodes, each of which is designed to enhance and refine prediction or clas-
sification.
External layers refer to the neural network’s input and output layers, while internal layers
are known as hidden layers.
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The neurons in the input layer are connected to neurons in the next layer, their output
is sent to the next levels after being multiplied by a weight. Each neuron, in the second
layer, the first hidden layer, computes its output by summing its multiple inputs and
applying an activation function and so on [53].
The final prediction or classification is made at the output level layer after the data from
the input layer have been processed by the deep hidden layer of the model. The result of
the output layer depends on the activation function applied to the neurons.

Many AI applications and services rely on deep learning to improve automation with-
out human intervention.

Training

The Neural Network is trained by calculating the difference between the actual state and
the desired state. Discovering the positive or negative weights of the connections be-
tween neurons is a multidimensional optimization problem in mathematics. Training the
network is comparable to finding the minimum of this multidimensional “loss” or “cost”
function.
The Training is performed iteratively through several training runs, altering the net-
work’s state progressively, this includes making several changes to the network’s weights
depending on the outputs calculated for a collection of input samples [53].

Loss Functions

A loss function is a fundamental component of the training phase, as it compares the input
values to the predicted output values, determining how effectively the neural network
predicts the training data and providing information on how the network learns from the
training data.

Mean Squared Error (MSE) is one of the most common loss functions used for training
neural network models, its formula is as follows:

MSE =
1

M

MX
i=1

(xi − xi)
2

where M is the number of examples in the training dataset, x is the input values and x
is the predicted values.

This function is ideal for calculating loss for regression problems, as the difference is
squared, regardless of whether the predicted value is above or below the target value.
A disadvantage of this loss function is that it is extremely sensitive to outliers: if a
predicted value is significantly larger or smaller than its target value, the loss will increase
significantly [54].

Auto-Encoder (AE)

Auto-Encoder (AE) is an unsupervised Artificial Neural Network (ANN) that learns to
compress data and then learn how to rebuild them, reproducing the original input. The
auto-encoder has the function of ignoring the input noise and lowering the dimensions of
the dataset [55].

As described in Figure 3.24, the auto-encoder consists of three parts:
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Figure 3.24: Auto-Encoder (AE), there is an Input layer, an Encoder, a Bottleneck, a
Decoder and an output layer.

1. Encoder: Model learns to compress and reduce the dimensionality of input data

2. Bottleneck: is the layer with fewer neurons that you have in the auto-encoder,
contains the data compressed.

3. Decoder: The model learns to reconstruct the original input data.

At the end of the process, the Reconstruction Error (RE) is used to understand how
well it performs the autoencoder, and how similar the data that has been reconstructed
is.

In general, the autoencoder is used to detect anomalies in a dataset. For each row, the
autoencoder calculates a reconstruction error value, based on that, the anomalies have a
reconstruction error which is greater than normal values. To calculate the reconstruction
error values use the following formula:

MSE =
1

M

MX
i=1

(xi − xi)
2

where M is the number of observations in the training dataset, x is the input values
and x is the value reconstructed by the decoder. The reconstruction error (RE) is the
difference between the reconstructed input and its original version and is a metric that
indicates how well (or how poorly) the autoencoder can recreate the input [56].

Figure 3.25 illustrates the reconstruction errors, where the x-axis is the data index,
an id is the data point, and the y-axis is the reconstruction error calculated with the
MSE formula explained below. This graph clearly distinguishes anomalous data (orange
points) from normal data (blue points) (blue points). By entering a threshold, you can
distinguish between normal and anomalous values; however, all data that falls below the
threshold is considered normal, while all data that exceeds the threshold is considered
anomalous.

The Autoencoder makes a dimensional reduction of the dataset, reduces the noise in
the data and reduces the required space because the data are compressed. It is widely
used for binary anomaly detection.
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Figure 3.25: Example of reconstruction error of auto-encoder calculated with the MSE,
the threshold divide the benign data from the anomaly data.

On the other hand, to do proper self-encoder training, you need to have a lot of data,
depends on the layers, it can take a long time to do the training.
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Chapter 4

Motivation

This chapter presents the motivations of this thesis. In particular, an Auto Encoder is
selected because it can detect unknown attacks and new types of attacks and be used as
a model for an IDS Anomaly-based.

The first part defines the problem, explaining the reason for creating an IDS anomaly-
based model. In the second part, the state-of-the-art of the most important related works
is analyzed, with a focus on their conclusions.

In the end, my contribution to this thesis is described. In particular, the proposed
Auto Encoder model performs more than the one presented in the reference paper, de-
scribed in the section 2.2. This model has also been tested on the CIC-IDS2017 [3],
the TORSEC dataset [57], and the Heartbleed dataset to understand how it behaves
if the proposed model encounters new benign traffic and if it is able to distinguish the
anomalies.

4.1 Problem Definition

Starting from the Background (Section 3.1), the basic aspects of networks are analyzed,
what are the possible attacks on a network and the systems that can be defended against
these attacks. In particular, it is described the IDS, which monitors the network for
malicious activities.

As described in the Background (Section 3.1), there are two main intrusion detection
methods: signature-based and anomaly-based. The signature-based detects the attack
based on their signature, so it requires an updated database also for recognizing the new
attacks. Instead, the anomaly-based has the advantage that it does not depend on a
database, and its database must not be updated because it is based on Machine Learning
and Deep Learning techniques which know the normal behaviour of the network and are
able to detect anomalies and report them.

For this reason, using an IDS anomaly-based has more advantages than an IDS
signature-based, especially for new attacks for which there is still no signature.

The problem is that more models of the IDS anomaly-based are not enough exhaustive
and they do not recognize the unknown attack [1]. This happens, as described in the
section below because they are not trained to do that. These models are just supervised
models that need to classify the traffic based on what they learned from the training
phase, but if they encounter traffic that was not in the train set, an unknown attack,
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their accuracy drops [58].
For this reason, there is a need for a model that can find unknown attacks in the network
traffic.

4.2 State-of-Art Analysis

Established the goal to create a new model for an IDS anomaly-based, able to detect not
only known attacks but also new types of attacks, the work done by several researchers
is analyzed.

In the first paper, proposed in the Chapter Related Works 2.1, Canadian researchers
have shown how an ensemble model composed of different Decision Tree is more perform-
ing in identifying an atypical attack (attacks with different profiles), than a single model
like a Dense Neural Network (DNN) or a Linear Support Vector Classifier (L-SVC). These
models use only supervised learning techniques.
Basically, it has shown that an ensemble model is able to recognize a “variant” of the
attack with which it has trained. They used an attack tool present in the train-set and
with which the model was trained, changed some parameters and generated an atypical
attack. They do not simulate how the model behaves if there is an unknown attack,
which means an attack for which the model was not trained.
Researchers define that the motivation behind their work is the absence of exhaustive
IDS models against atypical and unknown attacks.

The paper described in 2.2, focuses more on detecting network anomalies. More
specifically, they build an Auto-Encoder and a Variant Auto-Encoder to detect unknown
attacks on the network.
The researchers do not train the model on the attacks, but only on benign traffic. This
means that the model can only recognize only the benign traffic, and anything that does
not recognize as benign is considered an anomaly.
The autoencoder, as described in Chapter 3.2, aims to compress data and learn how to
rebuild it. Doing so generates an error, said reconstruction error. So, if the autoencoder
was only trained on benign traffic, then when it sees benign traffic it knows it, making a
very small reconstruction error, but if it encounters traffic that it has not been trained
to recognize, generates a large reconstruction error and over a threshold considers its
anomaly. To be more specific, the Auto Encoder only distinguishes normal and anomaly
traffic.
In the testing process, all the classes (DoS Slowloris, DoS SlowHttpTest, Bruteforce SSH,
Infiltration, Bot, ...) are re-called “anomaly”, in order to understand if the methods can
distinguish the unknown attacks from normal traffic. For the evaluation of the single class,
they get the attack class that they want to evaluate, excluding the other attack classes,
for example, to evaluate only the DoS Slowloris attack, they get all the records with the
label DoS Slowloris, combined with benign traffic, and processed by the auto-encoder.

The results proposed by the paper 2.2 are pretty good. They proposed an Auto-
Encoder with an overall AUC of 73% and the Variant Auto-Encoder with an overall
AUC of 76%, which means that it can distinguish at 73% and 76% the Normal traffic
from Anomalous Traffic.

Therefore, the Auto Encoder has the ability to detect new types of attacks and can
be used for an IDS anomaly-based model.
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4.3 Contribution

The proposed model in this thesis is based on the paper [2], described in Section 2.2, but
more effective, in fact, as described in Chapter 8, the proposed model achieves an AUC
value of 94% against the paper AUC value of 73% on the same dataset CIC-IDS2017.
The same strategy to calculate the AUC values for each class is used.

The proposed model is also tested on the TORSEC dataset. In this case, is tested not
only if the model can recognize the anomaly, but even to understand how the model be-
haves with new benign traffics, which is completely different from the dataset with which
it was trained. For example, the model is trained with the CIC-IDS2017 to recognize
only that benign traffic, then it is tested with the TORSEC dataset, which contains new
benign traffics and anomalies traffic.

At the last the proposed model is tested on a new dataset, the Hearthbleed dataset,
described in Chapter 5, using the same strategy as described above.
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Chapter 5

Datasets

This Chapter explains the datasets used for the training, validation and testing of the
proposed model described in Chapter 6.

In the first section, the Canadian Institute for Cybersecurity tool called CICFlowMe-
ter1 is discussed, which is utilized to generate the main datasets used for this thesis.

The CIC-IDS2017 dataset2 [3], is used for the training, validation and testing phases.
This dataset is used because it is one of the most complete datasets because includes the
up-to-date types of attacks [59]. For this reason, it is widely used especially in the papers
described in the Related Works Chapter 2. In this way, it is possible to make a good
comparison with the other models proposed in the papers.

For the testing phase is also used the dataset generated by TORSEC [57] and the
dataset generated with the Heartbleed vulnerability were. These two datasets are used
to understand how the proposed model behaves with a different dataset for which it is not
trained, and they are chosen because they contain examples that are completely different
compared to the CIC-IDS2017 dataset.

5.1 CICFlowMeter

CICFlowMeter is a network traffic analysis tool created by the Canadian Institute for
Cybersecurity3. CICFlowMeter permits the calculation of statistical values in both direc-
tions (backwards and forward); these values are generated using pcap files or in real-time
by configuring the interface from which the traffic is to be obtained.

There are two modes: offline mode, used to convert a network traffic capture pcap
in a csv file, or real-time mode, used to capture real-time traffic from an interface and
convert it directly in a csv file.

After the CICFlowMeter has finished generating the file csv, it generates 84 features
described in Appendix A.

1https://www.unb.ca/cic/research/applications.html

2https://www.unb.ca/cic/datasets/ids-2017.html

3https://github.com/ahlashkari/CICFlowMeter
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5.2 CIC-IDS2017

Given the exponential increase in the size of networks between computers, there is a
significant increase in the power of attacks on a network, as described in the introductory
section, this requires new datasets to properly train Intrusion Detection System (IDS)
and Intrusion Prevention System (IPS), to counteract new recurring threats to networks.

For this need, the Canadian Institute for Cybersecurity (CIC) and the University of
Brunswick (UNB) researchers decided to create a new IDS dataset called CIC-IDS20172

[3] that covers the main threats to network systems: DoS, DDoS, Brute Force, XSS, SQL
Injection, Infiltration, Port Scan, Botnet and Heartbleed.

The dataset consists of 84 features including the label that classifies the type of traffic
created. The features of the CIC-IDS2017 dataset are described in Appendix A.

Figure 5.1: Network infrastructure created that is used as a test-bed for the creation of
CIC-IDS2017 dataset. The network on the left is the “Victim network”, and the one on
the right is the “Attack network”.

To create a working test-bed, the researchers have implemented two networks called
“Attack-Network” and “Victim-Network” Figure 5.1. The Victim-Network simulates a
common network that generates benign traffic, there is a Firewall, Routers, Switches and
hosts with common operating systems, such as Ubuntu, Mac OS and Windows. The
Attack Network is an external network, consisting of routers and switches, with a set
of machines, Windows 8.1 and Kali, with Public IP addresses. In the Victim Network,
there is the Capture server, on a port of the switch configured in mirror mode, the switch
makes a copy of all the traffic that passes through it and sends it to the mirror port, where
there is the capture server that listens to the traffic and saves it by generating pcap files.
To generate constant benign traffic in the background, they used a specific profile called
B-Profile, which is an agent that simulates human behaviour and it generates benign
traffic.

As already mentioned, the CIC-IDS2017 dataset was created for network security
and intrusion detection, for this reason, it must cover as many attacks as possible with
different attack profiles. In this dataset were created six different attack profiles, which
are the most common, already mentioned in Chapter 3.1 and here resumed:

• Dos Attack: The attacker tries to make an online machine unavailable, on which
there is a website or an open service on a port. The machine targeted by the DoS
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attack is flooded with many requests as possible, to overload the system and make
the services unavailable.

• DDoS Attack: Different systems flood the bandwidth or resources of a victim ma-
chine, making the service unavailable. Usually, this attack is generated by devices
infected by the attacker and that is part of a Botnet. The larger the botnet is, the
more traffic is sent to the server, and the greater the attack is.

• Botnet: One or more devices infected by an attacker and become part of a Botnet.
These devices are able to send data traffic generating a DDoS attack, or, because
they are under the control of the malicious user, they can be used to steal sensitive
data, such as passwords, from it.

• Brute Force Attack: It is a very common attack to crack passwords or can be used
recursively to discover pages or hidden contents on the web.

• Heartbleed Attack: This is a Buffer Overflow attack that exploits a bug in the
OpenSSL library, which is used for the Transport Layer Security (TLS) protocol.
A modified request is sent to the server with the vulnerable OpenSSL Library,
producing a buffer overflow and returning the data that is present in the server’s
memory.

• Infiltration Attack: The attacker, using a malicious file, creates a connection channel
with the victim, a backdoor, in order to take control of the machine. Subsequently,
it can carry out attacks (Nmap, Privilege Escalation, ...) on the internal network
through the victim’s machine.

The dataset is divided into several captures, which occurred at different times and
several days, each of which contains a particular type of attack. The table 5.1 summarizes
the days and types of simulated attacks.

Days Label

Monday Benign

Tuesday Brute Force-FTP, Brute
Force-SSH

Wednesday DoS Slowloris, DoS
SlowHttptest, DoS
Hulk, DoS GoldenEye,
Heartbleed

Thursday Web Attacks, Infiltra-
tion Attacks

Friday DDoS LOIC, Botnet,
PortScan

Table 5.1: This table lists the days of traffic capture of CIC-IDS2017 with the type of
Label assigned to the traffic collected on that day.

For each attack, different tools were used, in order to simulate different attack profiles.
These tools are publicly available and programmed in Python.

• DoS GoldenEye: It opens numerous connections to a victim server and, with the
keep-alive option, these connections are left open for long periods. With many
connections, the server becomes overloaded and unable to open new ones.
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• DoS Hulk: The tool sends many requests on a limited number of connections.

• Dos SlowHttptest and Slowloris: it generates attacks that belong to the category
of slow DoS, ie it generates traffic on a low band, with a low transmission speed
and a high transfer time for each packet. The HTTP protocol needs to receive
the entire request before processing it, and the server keeps the resources occupied
until the request is completed. With many incomplete HTTP requests, the server
consumes the available resources to keep them active, until it overloads and becomes
unavailable. Slowloris, unlike SlowHttptest, makes requests with an incomplete
header.

• DDoS: The tool used to simulate this attack is Low Orbit Ion Cannon (LOIC).

• Heartbleed: To simulate this attack, they used an Ubuntu 12.04 Server with the
vulnerable version of OpenSSL 1.0.1f, then the Heartleech4 python script is used to
reproduce the attack.

• Infiltration: Metasploit was used for this attack, a tool that contains the most
common vulnerabilities. After the victim downloaded a malicious file, the attacker
performs a port scan with Nmap on the Victim-network.

Labels Number of examples

BENIGN 1652527

DoS Hulk 171974

DDoS 128011

DoS GoldenEye 10281

FTP-Patator 5931

DoS slowloris 5276

DoS Slowhttptest 5186

SSH-Patator 3153

PortScan 1922

Web Attack Brute Force 1427

Bot 1337

Web Attack XSS 652

Infiltration 36

Web Attack SQL Injection 20

Heartbleed 11

Table 5.2: This table lists all labels with the total number of examples in the CIC-IDS2017
dataset.

The traffic captured, is saved in pcap files and these are processed by the CICFlowMe-
ter software described above, thus generating the dataset with the 84 features described
in the table A.1 above.

The CIC-IDS2017 dataset has several problems [60]:

4https://github.com/robertdavidgraham/heartleech
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1. The dataset generation process requires time and resources. The dataset is about
1GB in size, then to open with pandas5, it requires more than 1.7GB of memory in
approximately 10-15 minutes (5-7 minutes with multi-threading).

2. From the table 5.2, the first thing that can be seen is that the dataset is unbal-
anced, and the benign traffic is higher than the other labels. This is a problem for
the training of the model, as it only provides the label with a greater number of
examples, and never those with a smaller number. This leads to low model accuracy
and a high number of False Positive Rates (FPR) during the validation and testing
phase.

3. The dataset contains some examples with “NaN ” or corrupt values.

5.3 TORSEC Dataset

This dataset was created by the TORSEC group of the Polytechnic of Turin, and it is not
publicly available. The dataset is based on real traffic and it is divided into Benign traffic
and Malicious traffic: Benign traffic is generated by Chrome, Edge and Firefox browsers,
while Malicious traffic contains vulnerability scan, web crawler and DoS attacks generated
with GoldenEye, Hulk, Slowloris and SlowHttptest tools [57].

The TORSEC dataset is used during the testing phase of the models, mainly are used
examples of benign traffic (Chrome, Edge and Firefox), DoS attacks (DoS Slowloris, DoS
Goldeneye, DoS Hulk, DoS SlowHttpTest) and Bot attack.

To construct the dataset, CICFlowMeter was used to convert pcaps to csv files; there-
fore, the features are the same as described in Table A.1.

Label Number of example

Benign 20327

DoS GoldenEye 343258

DoS Hulk 193718

BENIGN 40514

DoS slowloris 5500

DoS Slowhttptest 3838

Bot 3598

Table 5.3: This table shows the type of traffic generated with the number of examples in
the TORSEC dataset.

5.4 Heartbleed Dataset

This dataset was created to increase the number of Heartbleed cases in the dataset CIC-
IDS2017, Section 5.2. To generate the dataset, a lab was built and the traffic generated
was captured using the TCPdump6 tool which generated three pcaps (2 benign and 1
Malicious) which were converted to .csv using the CICFlowmeter tool. The features are
the same as described in A.1.

5https://pandas.pydata.org/

6https://www.tcpdump.org/manpages/tcpdump.1.html
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Figure 5.2: Network infrastructure created that is used as a test-bed for the benign flow.

For the benign part, a 192.168.2.0/24 network has been created, as described in Figure
5.2, in which there are 3 Ubuntu virtual machines and 1 Ubuntu virtual machine server.
On the Ubuntu Server machine, there is a container docker (jas9reet/heartbleed 7) that
uses the OpenSSL version library (1.0.1) with the Heartbleed vulnerability, to open an
Apache server on port 8443. The three Ubuntu virtual machines have a script written in
bash that gets the page from the Ubuntu server at different times.

When you try to access to the web server, there is a login page. In some cases, the
Ubuntu client has requested the login credentials. In this way was simulated real traffic
with access credentials. To increase the number of benign traffic, this was combined with
some parts of the benign traffic of the TORSEC dataset.

Figure 5.3: Network infrastructure created that is used as a test-bed for the Malicious
flow.

For the Heartbleed vulnerability, a Kali8 linux machine was used with Metasploit9,
then the command for exploit the heartbleed vulnerability are used10.

>> msfconsole

>> use auxiliary/scanner/ssl/openssl_heartbleed

>> set VERBOSE true

>> set RHOSTS WEB_SERVER_IP

>> set RPORT WEB_SERVER_PORT_IP

>> run

7https://github.com/jas9reet/heartbleed-lab

8https://www.kali.org/

9https://www.metasploit.com/

10https://github.com/jas9reet/heartbleed-lab
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To make all of this more automatic, a bash script was created that repeats the Metas-
ploit commands.

Label Number of example

BENIGN 2713

Heartbleed 866

Table 5.4: This table shows the type of traffic generated with the number of examples in
the Heartbleed dataset.
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Chapter 6

Proposed Solution

This Chapter explains how the dataset is set up, the features used after the feature
selection functions, which preprocessing function I used for data and the proposed method
based on Auto Encoder to find anomalies in the traffic network.

6.1 Dataset Features Selection

For the training, validation and testing phase, the CIC-IDS2017 dataset is used. It is
divided into 80% of the train-set and 20% of the test-set, then the train-test is in turn
divided into 80% for the training and 20% for the validation phases.

As described in the next chapter, for testing the models with the unknown attack,
it is used as part of the TORSEC dataset. Then the proposed model is tested with the
Heartbleed dataset.

The reason for this choice is to create a model that is as generic as possible. There
is a need that the proposed model works with different datasets and is able to find
the majority of the anomalies inside the dataset used which corresponds to finding the
anomalies in the network, for recognizing new forms of attack.

Starting from the 84 features of the CIC-IDS2017 dataset, previously described in the
5.2, a features selection 1 is applied, based on RandomForestClassifier()2 to select the
best features, thus obtaining the following Figure 6.1.

The features of Flow ID, source and destination IP addresses, protocol, and source
and destination ports have been removed, as they do not give any important information
to the model. In addition, for this thesis, it was considered the flow of the attacks DoS
Hulk, DoS Goldeneye, DoS Slowloris, DoS SlowHttptest, SSH-Patator, FTP-Patator,
Bot, Infiltration and Heartbleed from the dataset CIC-IDS2017.

For each feature of Figure 6.1, a histogram is drawn, based on the value assumed
by a label and the normalized frequency that value is assumed, which means that the
frequency is transformed into a range [0,1], for of the difference of examples between the
labels. Based on the features histogram, if there is a distinction between benign traffic

1https://scikit-learn.org/stable/modules/feature_selection.html

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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from malicious traffic (DoS Hulk, DoS Goldeneye, Infiltration, Hearthbleed, ...), then that
feature is selected, otherwise, it is discarded.
All the histograms of the selected features are in Appendix B.

Figure 6.1: Here are described the best 50 features selected during the phase of features
selected with the Random Forest. A horizontal bar plot is a useful chart for representing
feature importance. The features are sorted in ascending order according to the score
obtained during the feature selection, from the least important to the most important.

After selecting the features, with feature selection and histograms, the following Table
6.1 is obtained.
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# Name Features # Name Features

1 Flow Duration 11 Pkt Len Max

2 Bwd Pkt Len Max 12 Pkt Len Mean

3 Bwd Pkt Len Std 13 Pkt Len Std

4 Flow IAT Mean 14 Pkt Len Var

5 Flow IAT Std 15 Bwd IAT Tot

6 Flow IAT Max 16 Pkt Size Avg

7 Fwd IAT Tot 17 Bwd Seg Size Avg

8 Fwd IAT Mean 18 Fwd Pkt Len Std

9 Fwd IAT Std 19 Fwd Pkt Len Max

10 Fwd IAT Max 20 Bwd Pkt Len Min

Table 6.1: In this table are described all the selected features after the feature selection
and the histograms analysis.

6.2 Dataset Preprocessing

One of the problems of the CIC-IDS2017 dataset, described above in Section 5.2, is the
presence of some null values. Dataset Preprocessing is needed not only to eliminate null
values, which are a big problem in machine learning and deep learning but also to make
the training and testing process easier for the model. For each csv file, after it is opened
with the panda’s dedicated functions 3, a check is made on the Nan values and on the
data type consistency in the column, to avoid the mix of discrete values (ie, integer values)
with continues values (ie, fractional value) and ordinal data (ie, strings).

After cleaning the dataset from the null values and validating each column with the
respective type, the dataset is divided into two parts: x containing all the columns of
the features described in Table 6.1 without the labels column, and y containing only the
labels column. Next, the MinMaxScaler()4, a function that transforms each feature to a
given range, is applied to x and LabelEncoder()5, that encode target labels, is applied to
y.

As already mentioned in Section 5.2, the CIC-IDS2017 dataset is unbalanced, there
is too much difference between the classes, Table 5.2, there is the need to balance it with
different solutions.

There are three solutions to rebalancing a dataset:

• Under Sampling: the label with more examples (the majority classes) is removed
randomly to reduce it to an acceptable number.

• Over Sampling: Examples are added to labels with fewer examples (the Minority
classes) to increase to an acceptable number, the same as the majority class.

• Class Weights: Weights are calculated for each class and are taken into account
during the training phase of the model.

3https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

4https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.

html

5https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.

html
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The solution chosen to rebalance the dataset is the Class Weights, weights are then
calculated using the following formula:

wi =
max(count all labels)

count labeli

It is the fraction ratio between the maximum number of all the labels and the number of
the current label.
Subsequently, the obtained values are applied during the training phase of the model to
rebalance the dataset.

6.3 Proposed Model: Autoencoder

The proposed method is an Autoencoder, described in Chapter 3.2, which uses unsuper-
vised learning techniques.

Figure 6.2: This figure describes the loss curve for the training and the validation. It is
calculated with MSE.

The Auto Encoder is divided into three parts, the first part is the encoder, the second
part is the bottleneck, and the third is the decode. The principle is that the encoding
part compresses the input data until it reaches the bottleneck, meanwhile, the decode
should reconstruct the input data, which generates an error called “reconstruction error”.
The encoding and decoding parts are symmetric, meaning the first encoder layer has the
same neurons as the last decoder layer and the number of layers is equal.

The structure of the proposed model is described in table 6.2.

To avoid overfitting, for each layer excluded the input, the output and the Bottleneck
layer, there is a Dropout layer which drops out the nodes. In this case, the dropout is set
to 0.2, which means that for each layer 20% of neurons are dropped out before passing
data to the next layer.

The training and validation phase is performed only on the Benign traffic, this means
that all the attack labels are not considered in this step. This is because the proposed
model should recognize only the Benign traffic, then, when it receives the anomaly traffic
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Layer Description
Input [19]

Encoder [512, 64, 16, 8]

Bottleneck [2]

Decoder [8, 16, 64, 512]

Output [19]

Table 6.2: In this table is described the layer of the Auto Encoder.

it will not be recognized as benign because the model does not ever meet it during the
training phase. The principle is: “The anomalous traffic is all that traffic which is not
benign”.

Figure 6.3: This figure describes the loss curve for the training and the validation. It is
calculated with MSE.

After the training phase, Figure 6.3 is obtained which describes the loss graph. The
loss curve shows what the model is trying to understand from the data, then the validation
curve indicates if the model is overfitting or not and if it is learning something from the
data. In this case, the validation curve follows the training curve, which is good, because
the model is learning how to reconstruct the data.
The loss curve is calculated with MSE, as described in Chapter 3.2.

The dimensions of the layers and the hyperparameters were determined through trial
and error. In this case, it maintained constant a parameter, such as the network layers
and neurons, and tried to change the learning rate or the batch size to see if there is an
improvement.
The neural network configuration parameters for the proposed method AE is described
below:

1. For the learning rate [5e−3, 1e−3, 5e−4, 1e−4, 1e−5] were tested and 1e−4 is chosen.
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2. For the batch size [256, 512, 1024, 2048] were tested and 512 is chosen.

The next step is the testing phase which is described in the next chapter and is based
on the reconstruction error calculated with MSE. The strategy for testing the auto-
encoder is described in the following chapter: one attack at a time is used, excluding all
others, and then the metrics are calculated based on the outcome of that attack. This
procedure is repeated for each dataset attack.
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Implementation

This Chapter presents the implementation of the proposed model. The first section
describes the frameworks used for developing the proposed model. The second describes
the implementation with the code, the function called and their description.

7.1 Frameworks

In this section are described all the tools used to develop the proposed model.

The proposed model is created using Python 3.9.01 with Tensorflow 2.9.12 and Keras
2.9.03. In particular, to reduce the training time and use the GPU, it is used the Conda
version of Tensorflow 2.9.14 with cudatoolkit 11.25.

For the data preprocessing, the creation of the confusion matrix and the ROC curve,
is used scikit-learn[45], matplotlib6 and seaborn7.

For opening the csv file it is used pandas8 and numpy9.

The tool CICFlowMeter10 is used to create the csv file from the pcap files.

7.2 Methodology

This section is described how the proposed model is developed.

Figure 7.1 describes the different phases of the workflow of the proposed model:

1https://www.python.org/downloads/release/python-390/

2https://www.tensorflow.org/versions

3https://keras.io/

4https://www.tensorflow.org/install/pip#linux

5https://developer.nvidia.com/cuda-toolkit

6https://matplotlib.org/

7https://seaborn.pydata.org/

8https://pandas.pydata.org/

9https://numpy.org/

10https://www.unb.ca/cic/research/applications.html
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Implementation

Figure 7.1: The workflow of the proposed model, from the csv of data to the display of
the results.

The first step is to open the dataset; to reduce the time it takes to open the csv, a
function that works in multi-threading is developed. The second step consists of selecting
the most significant features, which is obtained, as previously mentioned, with the ran-
dom forest classifier and the feature selection function of the scikit-learn library. Then
there is the Data Preprocessing phase, in which the MinMaxScaler11 and LabelEncoder12

functions of scikit-learn are used to preprocess the data.

After Data Preprocessing there is the split of the dataset in train-set and test-set.
To optimize the learning process of the proposed model, the test-set is used to train the
model with Tensorflow and Keras functions, which also include the validation phase and
Hyper-parameters optimization phase using a trial-and-error strategy. Finally, the test-
set is utilized during the model testing phase.
All results are displayed at the conclusion using the matplotlib, scikit-learn, and seaborn
functions.

7.2.1 Preprocessing

1 import pandas as pd

2 import numpy as np

3 import input_layer as iL

4
5 num_process = 8

6
7 cic17 = iL.openDatasetMultiprocessor(’../../Input/cic17/Friday-*.csv’,

col_CICIDS2017, num_process)

8
9 ...

11https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.

html

12https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.

html
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Implementation

10
11 ds = ds.append(cic17)

12 ds = ds.drop_duplicates()

In order to speed up the opening of the entire CSV-formatted dataset, a new function
“openDatasetMultiprocessor” has been developed that uses num process in parallel to
open the dataset and reduce the time to open the dataset.
This is performed on all CSV files that have been created for each day.
At the end, the entire dataset is in the ds variable, and then the duplicate examples are
dropped with the drop duplicates from pandas.

1 from sklearn.preprocessing import LabelEncoder, MinMaxScaler

2
3 df_Benign = df[df[’Label’] == ’BENIGN’]

4 y = df_Benign.Label

5 x = df_Benign.drop(’Label’, axis = 1)

6
7 transformer = MinMaxScaler()

8 x_ae = transformer.fit_transform(x)

9
10 labelencoder_y = LabelEncoder()

11 y_ae = labelencoder_y.fit_transform(y)

This section of code there is the main part of the preprocessing of data. After it is
selected only the benign traffic, using the panda’s operation, it is divided into x and y.
The first is the all dataset without the ’label’ feature, the second has only the feature
’label’.

x is preprocessing with the MinMaxScaler13 function by sklearn library. Each feature
is scaled and translated separately by the Min and Max of the entire column.

y is preprocessing with the LabelEncoder14 by sklearn library. It encodes the labels
in a range of 0 and n class - 1.

1 from sklearn.model_selection import train_test_split

2
3 x_train, x_test, y_train, y_test = train_test_split(x_ae, y_ae,

test_size=0.2, random_state=42) # Training - Test

This section just divides the main dataset, composed by x ae and y ae, in the train-
set and test-set using the train test split15. The dimension of the test-set is set with the
parameter test size, then can be also set a random state applied to the data before the
split.

7.2.2 Proposed Model

The proposed model is implemented as follows

13https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.

html

14https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.

html

15https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_

split.html
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1 import tensorflow as tf

2 from tensorflow import keras

3 from keras.layers import Input, Dense, Dropout

4
5 ...

6
7 neurons_hidden_layers = [512, 64, 16, 8]

8
9 i = Input(shape=(number_input_layer,))

10 h = Dense(units=neurons_hidden_layers[0], activation="relu")(i)

11 h = Dropout(drop)(h)

12 h = Dense(units=neurons_hidden_layers[1], activation="relu")(h)

13 h = Dropout(drop)(h)

14 h = Dense(units=neurons_hidden_layers[2], activation="relu")(h)

15 h = Dropout(drop)(h)

16 h = Dense(units=neurons_hidden_layers[3], activation="relu")(h)

17 h = Dropout(drop)(h)

18
19 h = Dense(units=2, activation="relu")(h)

20
21 h = Dense(units=neurons_hidden_layers[3], activation="relu")(h)

22 h = Dropout(drop)(h)

23 h = Dense(units=neurons_hidden_layers[2], activation="relu")(h)

24 h = Dropout(drop)(h)

25 h = Dense(units=neurons_hidden_layers[1], activation="relu")(h)

26 h = Dropout(drop)(h)

27 h = Dense(units=neurons_hidden_layers[0], activation="relu")(h)

28 h = Dropout(drop)(h)

29 o = Dense(units=number_input_layer, activation="linear")(h)

30
31 nn = tf.keras.Model(inputs=i, outputs=o)

32
33 nn.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=lr),

loss="mse", metrics=["accuracy"])

34 history = nn.fit(x_train, x_train, batch_size=batch, epochs=epoch,

validation_split=0.2, shuffle=True)

This section describes the proposed model’s main code. The input layer, which re-
ceives the shape of the number of features, is followed by the encoder part, which consists
of many Dense and Dropout layers ad the length of neurons hidden layers array. The
amount of neurons in each encoder layer is described on the neurons hidden layers array,
and their activation function is “relu”, Chapter 3.2. The bottleneck consists of only two
neurons and follows the encoder. Following the bottleneck, the section is the decoder,
which contains the inverse number of neurons as the encoder section. The final layer is
the output, where the number of neurons is identical to that of the input layer.

Each layer receives the precedent layer as input, this means that at the end there is
the input layer i which is composed of the only input layer, and the output layer o which
is composed by the concatenation of all the precedent layers h (encoder, bottleneck and
decoder) with the output layer which has “linear” as activation function.
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With the Model16 function, the “object” model in the nn variable can be created;
however, it is the untrained model and it consists of its structure. Then, using the
function Compile17 the hyperparameters are passed. The Optimizer18 is set, which is
the algorithm for updating the model parameters such as weights and learning rate to
minimise losses, as well as the function loss19, which calculates the error that the model
should reduce, and the referred metrics20.

In the proposed model is used as optimization the Adaptive Moment Estimation
(ADAM)21 converges much faster and is far closer to the optimal than the other algo-
rithms, such as the RMSProp[61], and as loss function MSE22.

In the end, there is the training of the proposed model with the fit23 function. The
first element x train is passed as input in the model, then the model generates some
output from the training and that output is compared with the second element x train,
and then the MSE is calculated. Here it can be established also the epochs and the size
of the validation set from the train-set.

16https://www.tensorflow.org/api_docs/python/tf/keras/Model

17https://keras.io/api/models/model_training_apis/

18https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

19https://www.tensorflow.org/api_docs/python/tf/keras/losses

20https://www.tensorflow.org/api_docs/python/tf/keras/metrics

21https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

22https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanAbsoluteError

23https://keras.io/api/models/model_training_apis/
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Chapter 8

Results

This Chapter presents the tests performed for the supervised model1 (Random Forest,
Extreme Gradient Boosting) and the proposed model. All the models are trained in this
thesis.

Moreover, this chapter discusses how the models behave when there is a new type of
attack for which they are not trained. Each model is trained with a train-set without
the rows related to the new attack, for example “DoS Slowloris”, and all the DoS variant
attacks are renamed under the name “DoS” label, then each model is tested with the
“DoS Slowloris” attack from the TORSEC dataset. This process is repeated for the
other attacks (DoS GoldenEye, Dos Hulk, Bot). This phase is called “the unknown
attack test”.

CIC-IDS2017 has insufficient examples for Heartbleed and Infiltration, but these at-
tacks are included for completeness and to facilitate comparison with the other models.

In the end, the Auto Encoder is tested on the Heartbleed dataset, formed by the
Heartbleed vulnerability. For the test phase, the CIC-IDS2017, TORSEC and the Heart-
bleed dataset are used.
The main metrics used, as described in 3.2, are AUC and Balanced Accuracy, because
the datasets are unbalanced [62].

8.1 Testing Phase: CIC-IDS2017

This section describes the first test performed with the CIC-IDS2017 dataset on super-
vised models, Random Forest and Extreme Gradient Boosting, and on the proposed
model to detect attacks (DoS GoldenEye, Dos Hulk, DoS Slowhttptest, DoS slowloris,
FTP-Patator, SSH-Patator, Heartbleed, Bot and Infiltration).

In this first test supervised models (RF and XGB) are trained to recognize the attacks
during the test phase, that is, they have examples of attacks in both the train-set and
test-set. Instead, the proposed model is trained only on recognizing benign traffic, the
rest is considered an anomaly.

While the proposed model is trained to recognize only benign traffic, everything else is
considered anomalous. To make comparisons with supervised methods and the reference

1for these models the default hyperparameters are used.
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paper [2], the same approach as the reference paper [2] is used. The strategy is to test one
attack at a time, excluding all others, and then repeat the procedure for all the dataset
attacks. For example, only a single attack class (such as DoS Slowloris) is chosen and it
is used as a test-set alongside benign traffic. After observing the results, this procedure
is repeated for each class.

8.1.1 Random Forest

Here are the results obtained from the random forest during the testing phase with the
dataset CIC-IDS2017.

Figure 8.1: Random Forest confusion matrix with CIC-IDS2017, it shows examples that
are predicted to be a particular attack class and the true labels confirms whether this
prediction is correct or not.

The first thing that can be noticed from Figure 8.1 is that the dataset is unbalanced,
there are too many BENIGN examples compared to the other labels. That is the reason
there is a need to use different metrics instead the normal Accuracy, for Balanced Accu-
racy and the AUC.
The Random Forest Classifier in the testing phase, as can be seen from Figure 8.1, can
predict most part of the examples proposed in the test-set. But with some labels, such as
Infiltration, it generates more false positives, than true positives. However, the Random
Forest Classifier has a Balanced Accuracy of 89%.

The AUC is calculated with the ROC curve for each class, as described in Figure 8.2.
It is very high for each class, but for Infiltration, it is not so high, in fact, it is just 86%.
This happens for the low number of Infiltration examples in the test-set, they are just 11.
Because the dataset is unbalanced, it is considered the micro metrics instead of the macro

70



Results

Figure 8.2: Random Forest ROC-AUC for each class with CIC-IDS2017. It shows the
ability of the classifier to distinguish the positive from the negative classes.

metrics. This is because the first is weighted, instead the second is the arithmetic average,
as described in Chapter 3.2.

Name Label AUC

Bot 1.0

DoS GoldenEye 1.0

DoS Hulk 1.0

DoS Slowhttptest 1.0

DoS slowloris 1.0

FTP-Patator 1.0

Heartbleed 1.0

Infiltration 0.86

SSH-Patator 1.0

Micro-AUC 1.0

Balanced Accuracy 0.89

Table 8.1: Summarizes the results of Random Forest Classifier for the test with CIC-
IDS2017

Table 8.1 summarizes all the results obtained for the Random Forest Classifier with
the CIC-IDS2017 dataset.
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8.1.2 Extreme Gradient Boosting

Here are the results obtained from Extreme Gradient Boosting during the testing phase
with the dataset CIC-IDS2017. This is done to know if there are better results compared
with the Random Forest.

Figure 8.3: Extreme Gradient Boosting confusion matrix with CIC-IDS2017, it shows
examples that are predicted to be a particular attack class and the true labels confirms
whether this prediction is correct or not.

The Extreme Gradient Boosting, as shown in the confusion matrix Figure 8.3, can
predict most of the attack classes, but for someone, it has also some difficulties, for
example, the DoS Slowhttptest, on 6 examples it can predict correctly only 2, the other
4 are confused with the “BENIGN” class. In general, it does not confuse the attack
classes, but it confuses them with the benign class, and for that, it gets 91% of Balanced
Accuracy.

About the AUC, Figure 8.4, it is high for all the classes, except for the Infiltration
class. From the confusion matrix, in fact, can be seen that there are low examples for
the infiltration attack, just 11 and from that it can predict only 7.

Name Label AUC

Bot 1.0

DoS GoldenEye 1.0

DoS Hulk 1.0

DoS Slowhttptest 1.0

DoS slowloris 1.0

FTP-Patator 1.0

72



Results

Heartbleed 1.0

Infiltration 0.98

SSH-Patator 1.0

Micro-AUC 1.0

Balanced Accuracy 0.91

Table 8.2: Summarizes the results of Extreme Gradient Boosting for the test with CIC-
IDS2017

Table 8.2 summarizes all the results obtained for the Extreme Gradient Boosting with
the CIC-IDS2017 dataset.

8.1.3 Results for Proposed Auto-Encoder Model

In this subsection, a test is performed on the model proposed in this thesis with the
CIC-IDS2017 dataset.

As described in Chapter 6, the first step is to train the Auto-Encoder to recognize only
the benign traffic, then, in the training and validation phase, all the anomalous traffics
are discarded. In the testing phase, two strategies are used, the first one is to consider all
the anomalous traffic under the same label “anomaly”, and the second one, as described
above, it is to consider only one attack class, excluding the others, (e.i. DoS slowloris),
test the proposed model with that attack class joined with some benign traffic and then
repeat the same process for the others attack classes.

Figure 8.5 shows the Reconstruction error for the anomaly test-set (the combination
of all the attack classes). This is divided with the index to avoid the overlap of the points
and give a better view of the graph.
This is the concept described in Chapter 6 and in Chapter 3.2. If the autoencoder is
trained to recognise only benign traffic, when it sees traffic that has never been seen
before, it generates a high reconstruction error. In this case, the error, for the anomaly
traffic reaches 0.30, instead for the benign traffic is lower than 0.10-0.15. Then I chose a
threshold with the trial and error strategy, in this case, it is 0.01, under that threshold
the traffic is considered Benign, otherwise, it is considered an Anomaly.

The Figure 8.6 show the confusion matrix after the process described above. In this
case, there is a good division of the true positive and true negative. It recognizes most
parts of the benign traffic and it can divide it from the anomalies. The balanced accuracy
is 89%.

There is a low part of benign traffic that is considered an anomaly, this happens
because, as already said, for all the traffic that the auto-encoder has never seen, it is
reconstructed with a high error and this happens also for the benign traffic. From Figure
8.5 can be noticed that there are some Benign points that have a high reconstructed error
compared to the other point. These are anomalies because even if they are benign. For
example, if the autoencoder is trained for a network that is used to generate traffic to
server A and suddenly a host generates traffic to server B, the last is an anomaly, because
it is outside the normal activity and it is correct to be reported even if it is benign. In this
case, the network administrator can indicate the anomalies as false positives and re-train
the autoencoder.
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Figure 8.4: Extreme Gradient Boosting ROC-AUC for each class with CIC-IDS2017. It
shows the ability of the classifier to distinguish the positive from the negative classes.

Figure 8.5: Reconstruction error for Auto-Encoder generated for the anomaly class for
the test with CIC-IDS2017.

Figure 8.7 shows the AUC of the proposed model during this test phase. The proposed
model obtains an AUC of 94%. In 94% of the cases, the proposed model distinguishes
the positive and negative classes.
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Figure 8.6: Confusion Matrix of the Proposed Model with CIC-IDS2017, it shows the
true positive, the true negative, the false positive and the false negative, depending on
the main class.

Figure 8.7: ROC-AUC of the proposed model with CIC-IDS2017, the curve is over the
dotted line then it is not random.

Name Label AUC

Bot 0.51

DoS GoldenEye 0.94

DoS Hulk 0.96

75



Results

DoS Slowhttptest 0.92

DoS slowloris 0.81

FTP-Patator 0.70

Heartbleed 1.0

Infiltration 0.90

SSH-Patator 0.77

Micro AUC 0.94

Balanced Accuracy 0.89

Table 8.3: Summarizes the results of the proposed model for the test with CIC-IDS2017.

From Table 8.3, can be noticed that the model has a good value to recognize the
Heartbleed attack. For this reason, this aspect is deepened below, in Section 8.3. In
certain instances, such as the Bot attack, the AUC is low, as the Bot traffic closely
resembles the actual traffic, and there are fewer examples compared to other attacks.

To classify the traffic, the same approach as the second reference paper [2] is used,
which is to perform tests considering only one type of attack, excluding the other attaches,
and then to repeat the procedure for the other attacks in the dataset. For example, select
an attack, combine it with benign traffic, observe the results, and then repeat the process
for the remaining classes.

8.1.4 Comparisons

In this subsection are summarized the tests performed with the CIC-IDS2017 on the
Random Forest, the Extreme Gradient Boosting, the proposed model and the model
proposed in the paper [2].

Name Label RF XGB Proposed Model AE [2]

Bot 1.0 1.0 0.51 0.62

DoS GoldenEye 1.0 1.0 0.94 0.75

DoS Hulk 1.0 1.0 0.96 0.83

DoS Slowhttptest 1.0 1.0 0.92 0.85

DoS slowloris 1.0 1.0 0.81 0.84

FTP-Patator 1.0 1.0 0.70 0.74

Heartbleed 1.0 1.0 1.0 0.98

Infiltration 0.86 0.98 0.90 0.89

SSH-Patator 1.0 1.0 0.77 0.68

Micro AUC 1.0 1.0 0.94 0.73

Balanced Accuracy 0.89 0.91 0.89 -

Table 8.4: Summarizes all the AUC results of this testing phase with the CIC-IDS2017.
The best results are shown in bold.

Table 8.4 summarizes all the results obtained from this first test on CIC-IDS2017.
Supervised algorithms have a higher AUC than the proposed model and the paper model
[2].
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The proposed model, for most classes, has a higher AUC value than the model that
is present in the paper [2]. This indicates that the proposed model in this thesis is more
suitable and has more potential than the model proposed in the reference paper for the
CIC-IDS2017. The micro-AUC of the proposed model is 94%, instead, the micro-AUC
of the model in the reference paper is just 73%. There is an improvement of 21% in the
performance of the model.

The proposed model has a balanced accuracy that is higher than the XGB model
and is equal to the Random Forest model. In some cases, the value of AUC between the
supervised models and the proposed model is equal, for example for Heartbleed.

It is no surprise that supervised models perform better than unsupervised models.
This is because supervised models are trained to classify the same labels that are in the
test-set. They already learned these attack classes and they recognize them from the
test-set. But, as it is explained in the paper [1] if some parameters change in the attacks,
the supervised learning accuracy drops.

8.2 Testing Phase: The Unkown Attack Test

In this section, anomalous attacks will be tested.

Supervised algorithms, such as random forest and extreme gradient boosting, are
trained on a train-set created with the CIC-IDS2017 dataset and then tested on a new
attack from the TORSEC dataset. For example, the train-set is formed by DoS (DoS
GoldenEye, DoS Hulk, DoS Slowhttptest), renamed with the “DoS” label, except for the
DoS Slowloris attack that is the new type of attack. Then the test-set consists of the
dataset TORSEC considering some parts of the benign traffic with the DoS Slowloris
attack. This process is also done for DoS Hulk, DoS GoldenEye and Bot attacks.

The proposed model, as already described above, is trained only on the benign traf-
fic of the dataset CIC-IDS2017 and then subsequently tested with the anomalies (DoS
Slowloris, DoS Hulk, DoS GoldenEye and Bot) and benign traffic from the TORSEC
dataset. After that, the proposed model is trained with the benign traffic from the
TORSEC dataset and a comparison is made with the results of the proposed model
trained with the benign traffic from the CIC-IDS2017. This test demonstrates that the
proposed model has less performance if it is used for a different network respect to which
it was trained.

As evidenced by the results, supervised models fail to recognize new attacks. Instead,
the proposed model has higher performance than the supervised models which can detect
new attacks.

8.2.1 Random Forest

This subsection presents the result obtained by the Random Forest for the unknown attack
test. Here are reported and discussed all the graphs for the DoS Slowloris, because it is a
particular case, attack, the same process is also repeated for DoS Hulk, DoS GoldenEye
and Bot attacks, creating a Random Forest model for each attack.

Figure 8.8 describes the performance of Random Forest. The Random Forest can not
classify the unknown DoS Slowloris attack and considers it as Benign traffic. In Fact, it
predicts 2496 times in the wrong way, considering it as benign traffic instead DoS traffic.
This causes a decline in performance and its Balanced Accuracy is just 48%.
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Figure 8.8: Random Forest confusion matrix for the unknown attack test of DoS Slowloris,
this shows the bad performance of the classifier.

Figure 8.9: Random Forest ROC curve for the unknown attack test, this shows that the
classifier is random because the micro and the macro curve is closer to the dotted.

This drop in performance, in identifying a new type of abnormal attack, can be also
seen in Figure 8.9. The value for the unknown DoS Slowloris attack, the micro and
macro value is closed and below the dotted diagonal. This means that the classifier acts
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randomly in classifying the unknown attack, which means it can not distinguish it from
benign traffic.

Name Label micro AUC

DoS slowloris 0.59

DoS Hulk 0.19

DoS GoldenEye 0.23

Bot 0.57

Average micro AUC 0.4

Average Balanced Accuracy 0.49

Table 8.5: Summarize the results of the Random Forest for the unknown attack test.

Table 8.5 summarizes all the micro AUC obtained from the Random Forest for each
attack. In some cases there are high values for the micro AUC, this is done because the
model guesses correctly some labels, but all the models are completely random.

8.2.2 Extreme Gradient Boosting

In this subsection, Extreme Gradient Boosting results are described for the unknown
attack test. Here are reported and discussed all the graphs for the DoS Slowloris attack,
because it is a particular case, the same process is also repeated for DoS Hulk, DoS
GoldenEye and Bot attacks, creating an Extreme Gradient Boosting model for each
attack.

Figure 8.10: Extreme Gradient Boosting confusion matrix for the unknown attack test,
this shows the bad performance of the classifier, all the traffic is predicted as Benign.
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Figure 8.10 shows the poor performance of the Extreme Gradient Boosting. In this
case, all the traffic is considered wrongly Benign, and in this case, it does not generate
false negatives, but only false positives. From the confusion matrix considering Benign
as the main class, it has Sensitivity = 1, because the False negative is 0, and Specificity
= 0 because the true negative is 0, then the Balanced accuracy is 50%.

Figure 8.11: Extreme Gradient Boosting ROC curve for the unknown attack test, this
shows that the classifier acts random.

The poor performance of the Extreme Gradient Boosting to find the unknown attack
is also described in Figure 8.11. The macro curve, the micro curve and the DoS curve
are really near to the dotted diagonal, but it is not under it, in fact, they achieve an
AUC value of 0.56. For the same principle described above, this happens because the
false negative and true negatives are 0. It does not classify correctly, considering all the
traffic as Benign.

Name Label micro AUC

DoS slowloris 0.68

DoS Hulk 0.19

DoS GoldenEye 0.30

Bot 0.59

Average micro AUC 0.28

Average Balanced Accuracy 0.50

Table 8.6: Summarize the results of the Extreme Gradient Boosting for the unknown
attack test.

Table 8.6 summarizes all the results obtained by the Extreme Gradient Boosting for
each attack. From the first look at the AUC, for example, the DoS Slowloris attack, it
seems that the Extreme Gradient Boosting has good performance, but it is not so. It
does not guess the DoS Slowloris and the other attacks, it just predicts all the traffic as
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Benign, and it is a random model. This can be also seen from the Average Balanced
Accuracy which is 0.5.

8.2.3 Results for Proposed Auto-Encoder Model

In this subsection, the proposed model results are described for the unknown attack test.
Here is shown and discussed only the graph relative to the DoS Slowloris attack, because
it is a particular case, but the process is also repeated for DoS Hulk, DoS GoldenEye and
Bot attacks.

Figure 8.12: Reconstruction error for Auto-Encoder generated for the unknown DoS
Slowloris attack.

Figure 8.12 shows the reconstruction error for the unknown test with the TORSEC
dataset. The first thing that can be noticed is that the majority of the unknown DoS
Slowloris attack is over the Threshold and then it can be considered an Anomaly. It can
be noticed also that some Benign traffic is also over the Threshold and sometimes it has a
construction error that is higher than the DoS Slowloris Anomaly. This happen because,
as already said in the precedent test, the benign traffic of the test-set is different from
the benign traffic of the train-set, so the auto-encoder looks at this traffic for the first
time, it has never seen before during the train test and it does not recognize it, for that
reason it generates a such high error.

This test is another confirmation that the auto-encoder should be trained on the usual
traffic of the network, otherwise it considers as anomalous which is not completely wrong.

Figure 8.13 shows that the proposed model, even if it was not trained on the benign
traffic of the TORSEC dataset, can recognize and distinguish the benign traffic from the
DoS Slowloris, moreover it can find most parts of the unknown DoS Slowloris attack. It
has a Balanced Accuracy of 68%.
This result depends also on the threshold, which is calculated with the trial-and-error
strategy. In a real scenario, after the auto-encoder is trained with the usual traffic, then
the threshold is established and it remains fixed because the dataset does not change. In
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Figure 8.13: Confusion Matrix for the Proposed Model for the unknown attack test.

this test, the test-set has a different origin dataset respect to the train-set (the first one is
the TORSEC dataset, and the second one is the CIC-IDS2017), so the threshold should
be revised to adapt it to the scenario.

Figure 8.14: The ROC Curve of the proposed model for the unknown attack test.

The performance of the proposed model is also shown in Figure 8.14. The ROC curve
is, for the majority, over the dotted line, which means that the model is not random and
it can distinguish the positive classes from the negative classes. This produces a value of
AUC of 0.68.
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Name Label micro AUC

DoS slowloris 0.68

DoS Hulk 0.59

DoS GoldenEye 0.61

Bot 0.53

Average micro AUC 0.60

Average Balanced Accuracy 0.63

Table 8.7: Summarize the results of the proposed model for the unknown attack test
trained with the Benign traffic from the CIC-IDS2017 dataset.

Table 8.7 describes the results obtained from the proposed model for the unknown
attack test. This model, as described above, it is trained with the benign traffic from
the CIC-IDS2017 and tested with the TORSEC dataset. The results are acceptable, but
they are not optimal, because is the same thing to train the proposed model to recognize
the benign traffic of a network and then move it to another network with new benign
traffic, that the model has never seen before.
For that reason, the proposed model is trained with the Benign traffic from the TORSEC,
repeats the test using the same procedure, and at the end makes the comparisons.

Name Label micro AUC

DoS slowloris 0.72

DoS Hulk 0.69

DoS GoldenEye 0.62

Bot 0.47

Average micro AUC 0.63

Average Balanced Accuracy 0.64

Table 8.8: Summarize the results of the proposed model for the unknown attack test
trained with the Benign traffic from the TORSEC dataset.

Table 8.8 summarizes the results obtained from the proposed method trained with
the Benign traffic from the TORSEC dataset. There is a strange effect, all the attack
performance increases, instead of DoS slowloris and Bot.

From Figure 8.15, there is a difference between the proposed model with the two
datasets. The first thing is that the proposed auto-encoder model generates more recon-
struction errors with the TORSEC dataset than with the CIC-IDS2017 dataset. This
is because the proposed auto-encoder model, described in Chapter 6, was designed and
optimized specifically for the CIC-IDS2017, and this model is too big and scattered for
being trained with the TORSEC dataset. The second reason is that the CIC-IDS2017
has more examples of benign traffic than the TORSEC dataset (1652527 examples from
the CIC-IDS2017 and 20327 examples from the TORSEC dataset).
On the other hand, because the train-test and the test-set are from the same dataset,
meaning they are built from the same network, the proposed auto-encoder model, trained
with the benign traffic from the TORSEC dataset, generates a higher reconstruction er-
ror for different attacks, and it can recognize them from the benign traffic with better
performance. The main problem remains that it is necessary to build an ad-hoc model,
following the proposed auto-encoder method, for the TORSEC dataset.
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(a) Trained with CIC-IDS2017 (b) Trained with TORSEC

Figure 8.15: Reconstruction error for the proposed Auto-Encoder method for the un-
known DoS Slowloris attack with the CIC-IDS2017 and the TORSEC datasets.

8.2.4 Comparisons

In this subsection, all the results obtained in the Unknown Attack Test for the Ran-
dom Forest, the Extreme Gradient Boosting and the proposed model (trained with CIC-
IDS2017 and TORSEC datasets) are summarized and analyzed.

Name Label RF XGB Proposed Model
(CIC-IDS20172)

Proposed Model
(TORSEC3)

DoS Slowloris 0.59 0.68 0.68 0.72

DoS Hulk 0.19 0.19 0.59 0.69

DoS GoldenEye 0.23 0.30 0.61 0.62

Bot 0.57 0.59 0.53 0.47

Average micro
AUC

0.4 0.28 0.60 0.63

Average Balanced
Accuracy

0.49 0.50 0.63 0.64

Table 8.9: Summarizes all the AUC results of the Unknown Attack testing phase. The
best results are shown in bold.

Table 8.9 summarizes all the results of the Unknown Attack Test. In this test, the
proposed model performs better than the Random Forest and the Extreme Gradient

2Trained with the CIC-IDS2017 dataset

3Trained with the TORSEC dataset

84



Results

Boosting. This test shows how performed the proposed model (trained with the CIC-
IDS2017 dataset or with the TORSEC dataset) is to find new attacks, compared to the
supervised models such as Random Forest and Extreme Gradient Boosting.

This happens because the supervised model is not trained to classify these new attacks,
even if they are trained with other attacks of the same categories (DoS GoldenEye, DoS
Hulk, DoS Slowhttptest). In some cases, only the Random Forest classifies correctly some
records, instead, the Extreme Gradient Boosting does not classify any of that records
and it predicts all the records as benign. This is why both the models achieved a low
Average micro AUC and a low Average Balanced Accuracy. In some cases, for example,
the Extreme Gradient Boosting obtains the highest value for the micro AUC of the
Bot attack and the same value for the DoS Slowloris attack. This happens because the
Extreme Gradient Boosting just assigns the Benign label to all the traffic independently
without logic, and for these cases, the Benign labels are many more than the attack
labels. Both of these supervised models act randomly.

The proposed method recognizes the most records and for that, it has a better perfor-
mance compared to the other models. It also classifies correctly the benign traffic from
another dataset that it has never seen before, because, as already said, it is trained with
the benign traffic from the CIC-IDS2017. In fact, if the model is trained to recognize
the benign traffic from the TORSEC dataset, the performance, as shown in Table 8.9,
increases because it understands the benign traffic and it is easier for the model to dis-
tinguish the anomalous traffic. This is also confirmed by the highest value of Average
micro AUC and Average Balanced Accuracy. There is also to be said that the proposed
auto-encoder model is optimized with the CIC-IDS2017, this is why some attacks have
a similar value of micro AUC, for example, the DoS GoldenEye and Bot attacks. To
achieve better results should be created an ad-hoc auto-encoder model for the TORSEC
dataset.

8.3 Testing Phase: Auto Encoder and Heartbleed

This section has described the test of the proposed model on the Heartbleed dataset,
described in Chapter 5. This test is done to understand how the proposed model behaves
with the Heartbleed attack since with the CIC-IDS2017 Test the proposed model achieved
1.0 of AUC.

In this test, the proposed model is trained with the benign traffic from the CIC-
IDS2017, and then it is tested with the Heartbleed dataset which is composed of benign
traffic and the heartbleed attacks.

The proposed model performed with this dataset is described at the end.

The first thing to be considered is the reconstruction error shown in Figure 8.16.
In this Figure 8.16 there is a distinct division between the Benign and the Heartbleed
anomaly, just a few benign records are over the Threshold, which is also set using the
trial-and-error strategy.

Figure 8.17 describes the confusion matrix of the proposed model for the testing
phase with the Heartbleed dataset. In this case, there are few false negatives, considering
the Benign class as the main class, and just some false positives. This means that the
proposed model recognizes the benign traffic of the Heartbleed dataset, considering it
has never seen that traffic before because it is trained with the benign traffic of the CIC-
IDS2017 dataset, and it distinguishes the Heartbleed anomalies from the benign traffic.
In this test, the proposed model has 88% of Balanced Accuracy.
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Figure 8.16: The reconstruction error of the proposed model for the Heartbleed dataset.

Figure 8.17: The confusion matrix of the proposed model for the Heartbleed dataset.

The ROC curve is shown in Figure 8.18. This curve is over the dotted line, so the
model is able to distinguish the positive and negative classes. It achieves an AUC value of
0.85, which means that the model recognizes the Heartbleed anomalies and it distinguishes
them from the benign traffic in 85% of cases.

To sum up, the proposed model is able to find the Heartbleed anomalies in the dataset
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Figure 8.18: ROC Curve of the proposed model for the Heartbleed dataset, the curve is
over the dotted line, then the model distinguished the positive and the negative classes.

with high performance, this means that the model can be used to find not only the Heart-
bleed attack but also if there is a new type of attack that is based on the same mechanism
of Heartbleed. In this test the proposed model recognizes also the benign traffic even if
it is not trained to do that, generating only 4 false negatives, and it distinguishes the
benign traffic from the heartbleed anomalies.
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Chapter 9

Conclusions

This thesis proposes a model using artificial intelligence techniques which is able to rec-
ognize anomalies and new attacks in a traffic network. In particular, it is chosen as an
Auto-encoder based on unsupervised learning and can be used as a model for an IDS
Anomaly-based. The proposed model is compared with two supervised models, Random
Forest and Extreme Gradient Boosting. The supervised models perform better than the
proposed model in finding the attacks for which they are trained, but they do not have
the same performance as the new attacks that are not in the train-set. In this last case,
the analysis of the proposed model results demonstrates that it performs better than the
supervised model and recognizes the new attack.

As explained in Chapter 4, there is a need to identify traffic anomalies and new types of
attacks due to the absence of models that can do that. These new types of attacks may go
unnoticed by signature-based IDS systems because they require an up-to-date database,
and if there is no signature for the new type of attack, the system can not identify it.
The anomaly-based IDS has an advantage over the signature-based IDS because it does
not require an updated dataset and employs artificial intelligence techniques to detect
anomalies and new attack types.

On the other hand, the core problem with anomaly-based IDS is that some models
are supervised, meaning they can only recognize the attack for which they were trained.
If there is a DoS GoldenEye in the train-set, it can only recognize the DoS GoldenEye.
However, if there is a variant of this attack or a new attack of the same category, such
as the DoS Slowhttptest, the supervised modes do not detect the attack. This occurs
because the model has never encountered this attack before, so it can not classify it as
generating a false positive or negative.

In Chapter 8, the proposed model’s performance compared to the supervised models
is described. First of all, this thesis uses three datasets: the CIC-IDS2017 dataset,
the TORSEC dataset and the Heartbleed dataset. For each of these datasets, a test is
performed.
In the first test, only CIC-IDS2017 is used; therefore, supervised models (Random Forest
and Extreme Gradient Boosting) perform better than the proposed model. In this case,
there are no new attacks, and the supervised models have better performance because
they are trained to recognize the examples in the test-set.
In this test, it is important to note that the proposed model is more suitable than the
model proposed in the reference paper; consequently, there is an improvement in revealing
know-attacks in CIC-IDS2017 using the same strategy but a different model.

The second test is titled “The Anomaly Attack” and examines how models respond to
an attack for which they have not been trained. For the supervised models, only DoS and
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Bot attacks from CIC-IDS2017 are used for training, excluding one attack, considered a
new type of attack. Then, all the models are evaluated using a subset of the TORSEC
dataset containing benign and new types of attack records. This process is repeated for
each attack (DoS Slowloris, DoS Hulk, DoS GoldenEye, or Bot).
In this test, the proposed model performs better than the Random Forest and the Ex-
treme Gradient Boosting. This is confirmation that the proposed model overcomes the
limitation of these supervised models (Random Forest and Extreme Gradient Boosting),
which prevents them from revealing new types of attacks.
The graph of the reconstruction error of the proposed model for this test has a particular
effect: some benign records exceed the threshold and are considered anomalies. It is not
entirely incorrect to do, even if it is a false positive, considering DoS slowloris the main
class. The proposed model is trained to recognize benign traffic from the CIC-IDS2017
dataset and not the TORSEC dataset. This means that the proposed model is observing
this traffic for the first time, producing a high error rate. If the proposed model is trained
on a network that generates traffic only to a server, and one host suddenly generates traf-
fic to a different server, the latter is an anomaly. Depending on the anomaly, the network
administrator may or may not consider it an attack. If the anomaly is considered benign,
then the proposed model should be retrained with the anomaly.
The second part of this test also demonstrates that the proposed auto-encoder model,
trained to recognize the benign traffic from the TORSEC dataset, has better results than
the proposed auto-encoder trained with the benign traffic from the CIC-IDS2017 dataset.

From the first test, the proposed model achieved the same results as the supervised
models in detecting Heartbleed attacks. Therefore, a third test is performed with the
dataset created ad-hoc named Heartbleed, Chapter 5. This is to understand how the
proposed model behaves with these attacks.
This test demonstrates that the proposed model achieves high-performance detecting and
separating Heartbleed attacks from benign traffic.

This thesis aims to identify network anomalies and new attack types using artificial
intelligence techniques.
The proposed auto-encoder model, and unsupervised learning in general, is a potent in-
strument for detecting and locating previously unknown network attacks. In this case, the
proposed model can be used to detect Heartbleed attacks with good results, as demon-
strated in the previous tests. It can also identify if there are new attacks with the same
characteristics as Heartbleed hidden from the IDS signature-based because there is no
signature yet. This is an example, but the same method can be used to find if there is
anomalous traffic generated by infiltration on the network or if the system is under a new
type of DoS or Bruteforce attack, and so on.

There are many ways one could extend this thesis in the future. This proposed model
can be improved to get better results during the testing phase, adding more layers and
neurons to the structure. The proposed model can be evaluated using other datasets
or a combination of datasets containing as many distinct benign examples as possible.
Integration with the CICFlowMeter and TCPdump tool can be developed to collect traffic
and analyze it in real-time in a real network used as a test-bed. The proposed model can
be used to build an ensemble model, where each model is specialized to recognize a single
attack.
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Appendix A

Features Datasets

Name Description

Flow ID It is the identificator of the flow, it is composed by Sr-
c/Dst IP, Src/Dst Port and Timestamp

Src IP The Source IP of the flow

Src Port The Source Port of the flow

Dst IP The Destination IP of the flow

Dst Port The Destination Port of the flow

Protocol Protocol used during the flow

Timestamp Time and date when the flow is created

Flow Duration Duration of flow in microseconds

Tot Fwd Pkts Total number of packets in forward direction

Tot Bwd Pkts Total number of packets in backward direction

TotLen Fwd Pkts Total size of packets in forward direction

TotLen Bwd Pkt Total size of packets in backward direction

Fwd Pkt Len Max Maximum size of packets in forward direction

Fwd Pkt Len Min Minimum size of packets in forward direction

Fwd Pkt Len Mean Mean size of packets in forward direction

Fwd Pkt Len Std Standard size of packets in forward direction

Bwd Pkt Len Max Maximum size of packets in backward direction

Bwd Pkt Len Min Minimum size of packets in backward direction

Bwd Pkt Len Mean Mean size of packets in backward direction

Bwd Pkt Len Std Standard size of packets in backward direction

Flow Byts/s Number of bytes of flow per second

Flow Pkts/s Number of flow packets per second

Flow IAT Mean Average time between two packets sent in the flow

Flow IAT Std Standard time between two packets sent in the flow

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow

Fwd IAT Tot Total of the variation time between two packets sent in
the forward direction

Fwd IAT Mean Mean of the variation time between two packets sent in
the forward direction

Fwd IAT Std Standard of the variation time between two packets sent
in the forward direction
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Fwd IAT Max Maximum of the variation time between two packets sent
in the forward direction

Fwd IAT Min Minimum of the variation time between two packets sent
in the forward direction

Bwd IAT Tot Total of the variation time between two packets sent in
the backward direction

Bwd IAT Mean Mean of the variation time between two packets sent in
the backward direction

Bwd IAT Std Standard of the variation time between two packets sent
in the backward direction

Bwd IAT Max Maximum of the variation time between two packets sent
in the backward direction

Bwd IAT Min Minimum of the variation time between two packets sent
in the backward direction

Fwd PSH Flags Number of times the PSH flag has been set in forward
packets (it is 0 for UDP)

Bwd PSH Flags Number of times the PSH flag has been set in backward
packets (it is 0 for UDP)

Fwd URG Flags Number of times the URG flag has been set in forward
packets (it is 0 for UDP)

Bwd URG Flags Number of times the URG flag has been set in backward
packets (it is 0 for UDP)

Fwd Header Len Total bytes used for header in forward direction

Bwd Header Len Total bytes used for header in backward direction

Fwd Pkts/s Number of packets per second in the forward direction

Bwd Pkts/s Number of packets per second in the backward direction

Pkt Len Min Minimum length of a packets (payload + header), it is
the MTU (Maximum Transmission Unit)

Pkt Len Max Maximum length of a packet (payload + header), it is
the MTU (Maximum Transmission Unit)

Pkt Len Mean Mean length of a packet (payload + header), it is the
MTU (Maximum Transmission Unit)

Pkt Len Std Standard length of a packet (payload + header), it is the
MTU (Maximum Transmission Unit)

Pkt Len Var Variance length of a packet (payload + header), it is the
MTU (Maximum Transmission Unit)

FIN Flag Cnt Total number of packets with FIN

SYN Flag Cnt Total number of packets with SYN

RST Flag Cnt Total number of packets with RST

PSH Flag Cnt Total number of packets with PSH

ACK Flag Cnt Total number of packets with ACK

URG Flag Cnt Total number of packets with URG

CWE Flag Count Total number of packets with CWE

ECE Flag Cnt Total number of packets with ECE

Down/Up Ratio Download and upload report

Pkt Size Avg Average packet size (payload only), it is equal to MSS
(Maximum Segment Size)

Fwd Seg Size Avg Average packet size (payload only) in the forward direc-
tion, it is equal to MSS (Maximum Segment Size)
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Bwd Seg Size Avg Average packet size (payload only) in the backward di-
rection, it is equal to MSS (Maximum Segment Size)

Fwd Byts/b Avg Average number of byte bulk rates in the forward direc-
tion

Fwd Pkts/b Avg Average number of packet bulk rates in the forward di-
rection

Fwd Blk Rate Avg Average number of bulk rates in forward direction

Bwd Byts/b Avg Average number of byte bulk rates in the backward di-
rection

Bwd Pkts/b Avg Average number of packet bulk rates in the backward
direction

Bwd Blk Rate Avg Average number of bulk rates in backward direction

Subflow Fwd Pkts The average number of packets in a secondary flow (same
IP, different ports) in forward direction

Subflow Fwd Byts The average number of bytes in a secondary flow (same
IP, different ports) in forward direction

Subflow Bwd Pkts The average number of packets in a secondary flow (same
IP, different ports) in backward direction

Subflow Bwd Byts The average number of bytes in a secondary flow (same
IP, different ports) in backward direction

Init Fwd Win Byts The total number of bytes sent in the initial window in
forward direction

Init Bwd Win Byts The total number of bytes sent in the initial window in
backward direcftion

Fwd Act Data Pkts Packet count with at least 1 byte in TCP payload in
forward direction

Fwd Seg Size Min Minimum size of segments in the Forward Direction

Active Mean Mean time of an active stream before becoming inactive

Active Std Standard time of an active stream before becoming inac-
tive

Active Max Maximum time of an active stream before becoming in-
active

Active Min Minimum time of an active stream before becoming in-
active

Idle Mean Mean idle time of a flow before activating

Idle Std Standard idle time of a flow before activating

Idle Max Maximum idle time of a flow before activating

Idle Min Minimum idle time of a flow before activating

Label Classification of the flow (Benign, DDoS, DoS Hulk, ...)

Table A.1: In this table are listed all the features of the datasets with its descrip-
tion, created with the CICFlowMeter tool. Source: https://github.com/ahlashkari/
CICFlowMeter
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Histograms

Figure B.1: Histograms for CIC-IDS2017 dataset attacks for the feature “Flow Duration”.
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Figure B.2: Histograms for CIC-IDS2017 dataset attacks for the feature “Bwd Pkt Len
Max”.

Figure B.3: Histograms for CIC-IDS2017 dataset attacks for the feature “Bwd Pkt Len
Std”.
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Figure B.4: Histograms for CIC-IDS2017 dataset attacks for the feature “Flow IAT
Mean”.

Figure B.5: Histograms for CIC-IDS2017 dataset attacks for the feature “Flow IAT Std”.
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Figure B.6: Histograms for CIC-IDS2017 dataset attacks for the feature “Flow IAT Max”.

Figure B.7: Histograms for CIC-IDS2017 dataset attacks for the feature “Fwd IAT Tot”.
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Figure B.8: Histograms for CIC-IDS2017 dataset attacks for the feature “Fwd IAT
Mean”.

Figure B.9: Histograms for CIC-IDS2017 dataset attacks for the feature “Fwd IAT Std”.
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Figure B.10: Histograms for CIC-IDS2017 dataset attacks for the feature “Bwd Pkt Len
Min”.

Figure B.11: Histograms for CIC-IDS2017 dataset attacks for the feature “Fwd IAT
Max”.
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Figure B.12: Histograms for CIC-IDS2017 dataset attacks for the feature “Pkt Len Max”.

Figure B.13: Histograms for CIC-IDS2017 dataset attacks for the feature “Pkt Len
Mean”.
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Figure B.14: Histograms for CIC-IDS2017 dataset attacks for the feature “Pkt Len Std”.

Figure B.15: Histograms for CIC-IDS2017 dataset attacks for the feature “Pkt Len Var”.
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Figure B.16: Histograms for CIC-IDS2017 dataset attacks for the feature “Bwd IAT Tot”.

Figure B.17: Histograms for CIC-IDS2017 dataset attacks for the feature “Pkt Size Avg”.
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Figure B.18: Histograms for CIC-IDS2017 dataset attacks for the feature “Bwd Seg Size
Avg”.

Figure B.19: Histograms for CIC-IDS2017 dataset attacks for the feature “Fwd Pkt Len
Std”.
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Figure B.20: Histograms for CIC-IDS2017 dataset attacks for the feature “Fwd Pkt Len
Max”.
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Appendix C

User Manual

This Appendix explains the steps for installing and using the software created for this
thesis.

C.1 Prerequisites

The software is written in Python 3.9; for installation and managing dependencies, you
need python pip3.

It is recommended to use Ubuntu, with at least 8GB of dedicated RAM and 20 GB
of free space. To increase the performance, installing the software using Cuda-toolkit1

and Conda2 is suggested. Cuda can only run with the use of a supported GPU3.

C.2 Installing

In this section are explained all the steps performed to install the software.

Ubuntu

Before performing any operation, make sure the package list is up to date with:

sudo apt-get update

C.2.1 Python 3.9

Ubuntu

You can use the apt package manager using the following command:

sudo apt-get install python3.9

1https://developer.nvidia.com/cuda-toolkit

2https://conda-forge.org/

3https://developer.nvidia.com/cuda-gpus
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Once the installation is complete, use the following command to verify that the in-
stallation of python3.9 is successful.

python3 --version

Windows

To install Python 3.9 for Windows, download the binary file from the site https://www.
python.org/downloads/, selecting python3.9. Then, inserts the path where python 3.9
has been installed into the system variables by:

1. Right-clicking This PC and select Properties.

2. Click on Advanced system settings.

3. Click on Environment Variables.

4. In System variables, select the variable Path and click on Edit.

5. Click on New and insert the Python install directory.

To verify the python3.9 installation, use the following command in a cmd terminal.

python3 --version

C.2.2 Pip3

Ubuntu

To install pip3 package manager, you need to run the following command:

apt-get install python3-pip

Windows

The pip3 package manager is already included on systems that have installed python 3.9
via the executable.

C.2.3 Conda and Cuda-toolkit (only supported GPUs)

These steps are for using Conda and Cuda-toolkit to increase the performance of the
software. Do not do these steps unless you have a supported GPU4. If If you donât have
a GPU that supports Cuda-toolkit and Conda, skip this step.

4https://developer.nvidia.com/cuda-gpus
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Ubuntu

First, install Conda you can choose to install Miniconda https://docs.conda.io/en/

latest/miniconda.html#linux-installers or Anaconda https://www.anaconda.com/
products/distribution. Remember to choose the correct Python 3.9 version. Mini-
conda is recommended. Execute the executable file with:

bash Miniconda3-latest-Linux-x86 64.sh

To enable the command conda, you should restart the terminal or execute the com-
mand:

source /.bashrc

To verify the successful installation of Conda, execute the following command:

conda -V

Check the NVIDIA driver with the following command:

nvidia-smi

Then, install the cuda-toolkit. You need to select the version of cuda-toolkit supported
by your GPU. You can use nvcc5 to discover it.

conda install -c conda-forge cudatoolkit=11.2 cudnn=8.1.0

Configure the system path to the variable of LD LIBRARY with the following com-
mand:

export LD LIBRARY PATH=$LD LIBRARY PATH:$CONDA PREFIX/lib/

Windows

The current Tensorflow version 2.9.1 it is not supported on the native Windows GPU.
You will need to install WSL6 and then CUDA on WSL7. For Conda, you can install the
executable of Anaconda https://www.anaconda.com/products/distribution or Mini-
conda https://docs.conda.io/en/latest/miniconda.html#windows-installers. Re-
member to choose the correct Python 3.9 version.

C.2.4 Dependencies

In both software, there is a file called requirements.txt, which contains the different python
modules necessary for the software.

This is done after the previous steps of installing python3.9 and pip3. For both
operating systems (Ubuntu and Windows) you need to open a terminal in the software
folder and run the following command:

pip install -r requirements.txt

5https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

6https://learn.microsoft.com/it-it/windows/wsl/install

7https://docs.nvidia.com/cuda/wsl-user-guide/index.html
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C.3 Usage

To run the software with the different options, you must use the following command:

python3 ./bin/model/main.py -h [-cpu NUM CPU] [-fh | -rf-xgb | -ae] [-s]

[-t] [-t-tor] [-t1] [-t2] [-t3] [-t4]

At least one of the parameters of -fh or -rf-xgb or -ae must always be present,
while the other parameters are optional. Below are explained the different options:

-h, --help: displays the help message.

-cpu NUM CPU, --cpu NUM CPU: insert the number of CPUs (NUM CPU) used to
open the datasets. Note that to insert all the CPUs of the system. The default value is
2.

-fh, --features-histogram: generate histograms for each dataset feature. this
parameter displays the histogram only; to also save them in the folder /bin/histograms,
you must also enter the parameter -s.

-s, --save-histogram: save the histograms generated with the parameter -fh,

--features-histogram in the folder /bin/histograms.

-rf-xgb, --random-forest-extreme-gb: use Random Forest and Extreme Gradi-
ent Boosting. This parameter executes all the training and the testing (test with CIC-
IDS2017, the Anomaly Attack Test) of the supervised models. It also generates the plots
of the ROC obtained and the confusion matrix for each test and for each model.

-ae, --auto-encoder: use the proposed auto-encoder model. This parameter must
be followed by the other parameters ([-t] [-t-tor] [-t1] [-t2] [-t3] [-t4]), to
train and test with different datasets

-t, --train: the parameter must be preceded by -ae, --auto-encoder. The pro-
posed model is trained with the dataset CIC-IDS2017. The graph of the loss function
of the obtained model is generated. The model is saved in the folder /bin/model/

model save/AE, and the other functional structures are saved in /bin/model/model save/.
Warning: the previously obtained model will be overwritten with this parameter.

-t-tor, --train-tor: the parameter must be preceded by -ae, --auto-encoder.
The proposed model is trained with the dataset TORSEC. The graph of the loss function
of the obtained model is generated. The model is saved in the folder /bin/model/

model save/AE anomaly test benign, and the other functional structures are saved in
/bin/model/model save/. Warning: the previously obtained model will be overwritten
with this parameter.

-t1, --test1: the parameter must be preceded by -ae, --auto-encoder. Test the
proposed auto-encoder model trained with the CIC-IDS2017 dataset and tested with the
same dataset. It shows the plot of the reconstruction error, the confusion matrix and the
ROC obtained for each attack.

-t2, --test2: the parameter must be preceded by -ae, --auto-encoder. It per-
forms the Anomaly Attack Test. Test the proposed auto-encoder model trained with the
CIC-IDS2017 dataset and tested with the TORSEC dataset. It shows the plot of the
reconstruction error, the confusion matrix and the ROC obtained for each attack.

-t3, --test3: the parameter must be preceded by -ae, --auto-encoder. It per-
forms the Anomaly Attack Test. Test the proposed auto-encoder model trained with
the TORSEC dataset and tested with the TORSEC dataset. It shows the plot of the
reconstruction error, the confusion matrix and the ROC obtained for each attack.
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-t4, --test4: the parameter must be preceded by -ae, --auto-encoder. It tests
the proposed auto-encoder model with the Heartbleed dataset. It shows the plot of the
reconstruction error, the confusion matrix and the ROC obtained for the Heartbleed
attack.

C.4 Jupyter notebook

The software is also available with Jupyter8 notebooks, which can help you better under-
stand the code, as each piece of code is run individually and is displayed under it.

C.4.1 Installation

It is recommended to use DataSpell9 by JetBrains or using JupiterLab, to open Jupyter
notebooks. To install JupiterLab:

pip install jupyterlab

C.4.2 Usage

To run JupiterLab, use the following command:

jupyter-lab

Then navigate to the software directory and open the files .ipynb. After selecting a
file, for example, autoencoder.ipynb, this will show you different parts of code in other
blocks. Under each block is his execution.

8https://jupyter.org/

9https://www.jetbrains.com/dataspell/
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D.1 The Proposed Auto-Encoder Model

This section describes the structure of the software developed in this thesis and how to
change the dataset and add new tests.

D.1.1 Structure

The structure of the software developed in this thesis is as follows:

bin

histograms

model

model save

main.py

input layer.py

features histograms.py

autoencoder.py

rf xgb.py

Input

autoencoder.ipynb

fetures histograms.ipynb

rf xgb.ipynb

In this project, there are two different files: the python files with extension .py that
are in the path /bin/model and the jupyter files with the extension .ipynb which are in
the root directory. These two files have the same code; the difference is that the jupyter
files contain the code with its execution below.

Inside the directory /bin, there are three main directories: histograms, model and
Input. The directory histograms has all the histograms generated for the selected
dataset (i.e. CIC-IDS2017). Instead, the model has all the source code of the model
written in python3.9 and the already trained models inside the directory model save.
The Input directory contains all the datasets used in this thesis.
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D.1.2 Source Files

main.py

The file main.py is the initiator of the entire program. From here all the functions of
the other files are called according to the parameter passed by the command line. In the
main.py file, there are three fundamental parameters:

• num processors: the number of CPUs used to open the dataset. The default value
is 2. This value can be set from the command line, or you can change the standard
value and put it at will without passing it from the command line.

• path name cic17: it is the path of the CIC-IDS2017 dataset. The default path is
/bin/Input/cic17.

• path name torsec: it is the path of the TORSEC dataset. The default path is
/bin/Input/TORSEC/Converted CIC.

input layer.py

It contains the function openDatasetMultiprocessor(path save, colum names2,

num process), which allows you to open any dataset in multiprocessing. This requires the
path of the dataset in .csv to open (path save), the names of the column in the dataset
(colum names2) and the number of CPUs used to open the dataset. The path save could
be a single .csv (e.g /Input/dataset.csv) or a group of .csv (e.g /Input/*.csv). Then
it returns the opened dataset in pandas.

features histograms.py

The main function is fetures histograms(num process, save histogram, path name)

that is used to generate the histograms. This function receives the number of CPUs used
to open the dataset (num process), the flag save histogram, which indicates if the his-
togram should be saved in /bin/histograms or not, and the path of the CIC-IDS2017
dataset (path name).

autoencoder.py

Here is the source code of the proposed auto-encoder model. the primary function is
proposed model call(num process, path name cic17, path name torsec, train,

train tor, test1, test2, test3, test4) which receives: the number of the CPUs
used to open datasets, the path of the CIC-IDS2017 and TORSEC dataset and then the
flags for training the model with the corresponding dataset (train, train tor) or testing
it (test1, test2, test3, test4). For each test, there is a if section of the relative
test executed on the model. If you want to add a new test, you can add it here by setting
the relative flag and loading the relative model with keras.models.load model(r’.

/model save/AE’), indicating the path of where the model is located.

The proposed model is built and trained with the function proposed model train(

x train, batch size, name model to save). It receives the dataset (x train), the
batch size and where to save the model (name model to save), this indicates the folder
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inside the directory /bin/model/model save. In the first part, you can change the hy-
perparameters of the model and its structure.

In the first part of the proposed model call, there is the path where the scaler and
the encoder are saved and loaded, for both the CIC-IDS2017 and TORSEC datasets. In
the default case, they are saved in the directory /bin/model/model save.

rf xgb.py

The primary function is rf xgb(num process, path name cic17, path name torsec)

which receives the number of CPUs used to open the dataset, the path of the datasets
CIC-IDS2017 and TORSEC. All the tests performed are handled in this function.
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