
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Subgraph isomorphism acceleration on
FPGAs using High-Level Synthesis

Supervisors
Prof. Luciano Lavagno

Prof. Mihai Lazarescu

Candidate
Roberto Bosio

December 2022

Summary

Subgraph isomorphism (or subgraph matching) is a well-known NP-hard problem
that consists of searching all the distinct embeddings of a query graph in a large
data graph. It has a wide range of applications, almost in all the domains in which
graph patterns reveal valuable information, especially in social network analysis,
chemical compound search, and computer-aided design.

Due to the relevance of the problem, starting from 1970, several algorithms
have been proposed, most of which adopt a backtracking approach by recursively
mapping query vertices to data vertices. However, due to the intrinsic properties
of graph computations, such as irregular communication patterns and little spatial
and temporal locality, these algorithms cannot be easily accelerated in hardware.

An alternative approach to address the problem consists of seeing the query
graph as a multiway join between relations, which are the edges, and where the
vertices are the attributes. In recent years, the database community has proposed
new join algorithms, typically called Worst-Case Optimal Join (WCOJ) algorithms,
which have the property of bounding the number of intermediate results generated,
in addition to showing an intrinsic concurrency.

Given these new results, the thesis studies the feasibility of accelerating the
subgraph isomorphism by using a WCOJ approach, designing a kernel able to
pre-process the graphs and evaluate the results all on FPGA. The proposed im-
plementation works around a novel parameterized data structure based on hash
tables, which has been designed to respect the complexity requirements of WCOJ
algorithms as well as leave space for parameter optimization. The algorithm has
been developed in C++ using Vitis™ HLS tool by Xilinx Inc.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Background 1
1.1 Subgraph Isomorphism . 1

1.1.1 Problem definition . 1
1.2 Algorithms in literature . 2

1.2.1 Exploration-based algorithms 2
1.2.2 Join-based algorithms . 5

1.3 Worst-case optimal join . 8
1.3.1 AGM bound . 9
1.3.2 Generic-Join algorithm . 11

1.4 Field programmable gate array . 14
1.4.1 High-Level Synthesis . 14

2 Motivation 17
2.1 Contributions . 17

3 Proposed implementation 18
3.1 Overview . 18
3.2 Pre-process data . 19

3.2.1 Data structure . 20
3.2.2 Algorithm . 22

3.3 Multiway join . 24
3.3.1 Propose . 26
3.3.2 Intersect . 27
3.3.3 Extract . 27
3.3.4 Verify . 29

iv

3.4 Testbench . 30

4 Results 32

5 Conclusion 35
5.1 Limitations . 35
5.2 Future work . 35

A Triangle query output size bound 37

Bibliography 39

v

List of Tables

4.1 Resource utilization . 32
4.2 Dataset used . 33

vi

List of Figures

1.1 Example of query (left) and data (right) graphs. 2
1.2 Refinement of candidate sets using filters. 3
1.3 Example of projections and selections on a relation 6
1.4 Triangle query . 6
1.5 Join plans . 8
1.6 Example of a hypergraph. 9
1.7 Binary join plans for the triangle query 12
1.8 Example of a simple CLB . 14
1.9 Example of reshape optimization. 15
1.10 Example of query unrolling optimization. 16
1.11 Example of dataflow optimization. 16

3.1 Producer-consumer point of view of the kernel 19
3.2 Pre-process phase . 20
3.3 Example of table after the Count collisions phase. 23
3.4 Example of table after the Counters to offsets phase. 23
3.5 Example of table after the Store edges phase. 24
3.6 Multiway join pipeline. 25
3.7 Propose pipeline. 26
3.8 Extract pipeline. 28
3.9 Verify pipeline. 29

4.1 Subgraph queries. 33
4.2 Boxplot representation of acceleration factors using six queries. . . . 34
4.3 Query evaluation changing QVOs. 34

vii

Acronyms

AGM
Atserias, Grohe, and Marx

CLB
Configurable Logic Block

DSP
Digital Signal Processing

EDA
Electronic Design Automation

FIFO
First In First Out

FPGA
Field Programmable Gate Array

HDL
Hardware Description Language

LUT
Look-Up Tables

WCOJ
Worst-case optimal join

ix

Chapter 1

Background

1.1 Subgraph Isomorphism
Asking if two graphs are isomorphic or, in simpler words, if the two have the
same “structure”, is a fundamental problem in graph theory that arises in different
scientific domains. It consists of finding a bijective function that maps one vertex
set to the other so that, if two nodes are adjacent in one graph, their corresponding
ones are also adjacent in the other graph.

A generalization of this problem is the so-called subgraph isomorphism, which
asks if one graph contains a subgraph, a subset of vertices and edges, that is
isomorphic to another graph. Practically, it can be seen as finding an instance of
a graph (throughout the thesis referred to as query graph), in another one (data
graph).

The subgraph isomorphism (or subgraph matching) problem is relevant in all
the fields in which meaningful information is stored in graph patterns, it is used in
computer-aided design as well as in social networks, Twitter for example, in their
follower graph, search for diamond patterns to give recommendations to users [1].

1.1.1 Problem definition
The thesis focus on directed, connected, and vertex-labeled graphs, but all the
techniques described can be extended to support other cases as edge-labeled graphs.
A graph is represented by a set of vertices V (g), a set of edges E(g), and a
labeling function Lg : V (g)→ Σ, where Σ is a set of labels. Given a query graph
q = (V (q), E(q), Lq) and a data graph g = (V (g), E(g), Lg), a match, or embedding,
is an injective function f : V (q)→ V (g) such that:

1. (v1, v2) ∈ E(q)⇒ (f(v1), f(v2)) ∈ E(g)

2. ∀v ∈ V (q) : Lq(v) = Lg(f(v))

1

Background

The purpose of subgraph matching is to find all distinct instances of the query
graph in the data graph, which is known to be NP-hard [2].

Figure 1.1: Example of query (left) and data (right) graphs.

1.2 Algorithms in literature
Starting in 1976, thanks to Ullmann’s work [3], several algorithms have been
developed to address the problem. Most of them use a backtracking approach,
which consists in expanding a partial result by mapping query vertices to data
vertices following a matching order, this method is referred to as exploration-based.

The other approach present in the literature is called join-based and it is more
related to the database domain: it is possible to model the query graph as a
relational join query, in which vertices and edges are respectively attributes and
relations, such that evaluating the multi-way join retrieves all the embeddings.

Although these methods can both evaluate subgraph matching, the intrinsic
differences make them suitable for different applications.

1.2.1 Exploration-based algorithms
State-of-the-art exploration-based algorithms are suitable to evaluate large queries,
up to tens of vertices, in medium-sized datasets in the order of thousands to millions
of vertices.

Several approaches have been tried in the years, and, although does not exist
an algorithm able to outperform the others with any query, it has been shown that
pre-processing the graphs to build auxiliary data structures performs better than
directly exploring the data graph to enumerate the embeddings [4].

2

Background

Pre-process

All the latest algorithms start by constructing a supplementary data structure that
contains candidates set for each query vertex, as well as the edges between the
candidates. This approach is useful to reduce the search space and filter out data
vertices that are known to be not part of any solution. Some of the filters used to
understand if a data vertex could be a candidate for a query vertex are:

1. vertex vi ∈ V (g) is a possible candidate for ui ∈ V (q) if vi’s label is equal to
the label of ui and the degree of vi is bigger than ui’s degree.

2. vertex vi is a possible candidate for ui if, for each label in the neighborhood
of ui, the number of adjacent vertices to vi with that label is bigger than the
one adjacent to ui

3. vertex vi is a possible candidate for ui if the intersection between the neigh-
borhood of vi and all the candidate sets of the vertices adjacent to ui is not
empty.

The third rule affirms something that is intuitive but not so trivial to be grasped,
that is: if two vertices are connected by an edge in the query graph, then their
respective candidate should be also connected in the data graph. Generalizing this
idea, given a query vertex u and all the adjacent vertices un with their mapped
data vertices vn, the candidates for u must be adjacent to all the vertices vn, in
other words, all the possible embeddings for u are in the intersection between the
neighbors of vn. Thus, it is possible to retrieve candidate sets starting from the
adjacent ones, and, in fact, state-of-the-art algorithms use this idea to build the
auxiliary data structure.

Pruning the candidate sets as much as possible is fundamental to achieve better
performances later in the computation, thus the algorithms spent a good amount
of time refining these data structures. Figure 1.2 represents the candidate sets for

Figure 1.2: Refinement of candidate sets using filters.

3

Background

the example in figure 1.1 after applying the filters described above. In particular,
on the left it has been applied only the label and degree filter; then using the
second filter is possible to remove the vertex v6 from C(u2) since it has not an
adjacent node labeled A, and vertex v1 which miss in its neighborhood a node
labeled D. The figure in the middle represents the candidate sets after the first
two filters. Applying the third filter, following the order u0, u1, u2, u3, node v8 is
removed, since the intersection between its neighborhood {v2, v3, v7} and C(u2) is
empty, has shown in the right figure. It is worth noticing that with another round
of the third filter it would be possible to remove also node v3, this is the reason
why state-of-the-art algorithms do more than one step to refine the auxiliary data
structure.

Query vertex order

The order used to match query to data vertices impacts the final algorithm’s
performance. Evaluate soon in the matching order the more selective query vertices
will reduce the search space for the following nodes as well as lowering the size of
intermediate results, speeding up the enumeration process.

Unfortunately, there is no exact method able to find the best search order in a
reasonable amount of time, which led to several heuristics being developed over
the years. State-of-the-art algorithms try to build a cost model based on the
selectivity of each node, in general, using information like his degree and the size
of his candidate sets. Although in literature there are several examples of cost
models, there is still room for improvements [4].

Enumeration

Given the matching order and the auxiliary data structure, the enumeration
procedure is in charge of computing the embeddings. State-of-the-art algorithms
use a backtracking approach, and even if they have some differences in the way
they enumerate the results, the behavior can be captured in a generic procedure.

In particular, for each local candidate of the current query vertex in the matching
order, the partial solution is updated with the new pair query vertex - data vertex,
then a recursive call is done on the next node in the order, and in the end, the
previously added mapping is removed from the solution in a backtracking fashion.

Differences only arise in the computation of the local candidates, i.e. the
candidates for the current query vertex given the already computed partial mapping,
because of the distinct data structures computed in the pre-processing phase.

As an example, in case of no pre-processing, local candidates must be searched
in the data graph between the neighbors of already matched vertices, instead if
supported by an auxiliary data structure local candidates can be searched inside
its respective candidate set.

4

Background

Algorithm 1 Enumeration procedure
1: procedure Recursive_enumeration(i, M)
2: if i ≥ |V (q)| then
3: output M
4: return
5: end if
6: u← Current query vertex
7: Cl ← Local candidates
8: for all v in Cl do
9: M ←M ∪ (u, v)

10: Recursive_enumeration(i + 1, M)
11: M ←M \ (u, v)
12: end for
13: end procedure

1.2.2 Join-based algorithms
State-of-the-art join-based algorithms are suitable to evaluate small queries in large
datasets which are typically in the order of millions to hundreds of millions of
vertices.

In the last years, researchers have shown that a subgraph query can be seen
as a self-join query in which every edge is a relation [5]. Every relation holds
the data graph edges that are congruent with the direction and the nodes’ labels
relative to the query edge. In other words, the relations contain the candidates for
every specific edge of the query graph. Evaluating the multi-way join between the
relations finds all the instances of the query in the data graph.

Since the thesis focuses specifically on subgraph isomorphism, in the next sections
it is always explained what the various operations in the database domain represent
in the graph one.

Useful definition

This section employs the symbols used by Todd L. Veldhuizen in his work [6]. In
relational terminology, projection (represented by the symbol π) means taking a
subset of the relation’s columns respecting given criteria, while selection (σ) means
taking the rows respecting the condition. Given the relation R(u1, u3), the set
representing πu1(R), will be referred to as R(u1, _): in the specific case of graphs,
the set is composed by all the data vertices labeled L(u1) having an edge compatible
with the one between u1 and u3. The set πu3(σu1=v5(R)) will be referred to as
Rv5(u3): it contains all the data vertices labeled L(u3) having an edge with the
same direction as the one between u1 and u3 and connected to v5.

5

Background

R πu1(R) πu3(σu1=v5(R))

Figure 1.3: Example of projections and selections on a relation

Edge-at-a-time example

Taking the triangle query in figure 1.4 it is possible to extract three instances
of the same relation R(ui, uj) which are M(u0, u1), N(u1, u2), S(u2, u0). Joining
the tables M and S on the attribute u0 will have as a result a table P storing
the information of all the data vertices which have (1) the same label as u0, (2)
an outgoing edge to a vertex with u1’s label and (3) an incoming edge from a
vertex with u2’s label. Joining P with N will discard all the entries not respecting
the edge between u1 and u2, returning the final result. This approach is called
edge-at-a-time: it uses a sequence of binary joins, each one adding a new edge to
the intermediate results.

Figure 1.4: Triangle query

Vertex-at-a-time example

The other approach is called vertex-at-a-time, the algorithm below shows the
pseudo-code to solve the triangle query, taken from the Hung Q. Ngo work on
worst-case optimal join algorithms [7]. Again the three same relations M(u0, u1),
N(u1, u2), S(u2, u0) are extracted.

6

Background

At line 1, the intersection generates the set Pu0 containing all the data vertices
labeled A with both an outgoing edge to a vertex B and an incoming edge from
a vertex C. Starting from a given vertex v0, line 3 computes the set P v0

u1 which
contains all the data vertices labeled B with (1) an incoming edge from v0 and (2)
an outgoing edge to a C vertex. Ultimately, line 5 finds the C vertices adjacent to
v0 and v1, generating valid embeddings.

Algorithm 2 Vertex-at-a-time algorithm for triangle query
1: Pu0 ←M(u0, _) ∩ S(_, u0)
2: for all v0 ∈ Pu0 do
3: P v0

u1 ←Mv0(u1) ∩N(u1, _)
4: for all v1 ∈ P v0

u1 do
5: P v0,v1

u2 ← Nv1(u2) ∩ Sv0(u2)
6: for all v2 ∈ P v0,v1

u2 do
7: Add (v0, v1, v2) to results
8: end for
9: end for

10: end for

Query vertex order

As already discussed for exploration-based algorithms, the query vertex order used
to evaluate the subgraph matching plays a fundamental role in the final performance
of the algorithm. In the case of join-based algorithms, choosing a different order
in the query vertices translates to applying a different join plan. Again, there is
no optimal solution, so different heuristic cost models are used in the literature to
estimate the goodness of a QVO.

Approaches: comparison

A thorough comparison between binary and multi-way join is the central topic
of the next section, nonetheless, some conclusions can be drawn from the above
introduction to join-based algorithms. In the example, the intermediate result from
edge-at-a-time approach P = Q ⋊⋉ S contains already all the instances of the query
in the data graph plus some entries that will be removed in the last join. This
deduction implies that the size of the intermediate result will be bigger or equal to
the size of the final one, which is not optimal. Although the above example does
not show it, since in the triangle query the number of vertices is equivalent to the
number of edges, the join plan between edge-at-a-time and vertex-at-a-time are
different. Figure 1.5 shows them for the diamond-X query, representing on the left
the binary join plan, and on the right the worst-case optimal one.

7

Background

Figure 1.5: Join plans

Approaches: state-of-the-art

State-of-the-art algorithms, such as Graphflow [8], have not wholly removed binary
join in favor of multi-way join inside their join plans, but instead have tried to build
hybrid plans mixing the two approaches. The reasons are: (1) binary join plans
are optimized by decades-long research, and (2) binary join plans are suboptimal
only for cyclic queries.

1.3 Worst-case optimal join
The computation of relational join is a well-studied problem in the database
community with decades of research behind it, resulting in finely optimized solutions
currently used in modern commercial tools. Nonetheless, recent studies have
shown that, for particular categories of queries, traditional pair-wise join plans are
suboptimal no matter the join order selected, opening space for algorithms able to
be theoretically optimal even in worst-case scenarios [9]. This section introduces

8

Background

the algorithm on which is based the implementation designed in the thesis work
mainly by summarizing the results of H. Q. Ngo, C. Ré and A. Rudra [7].

1.3.1 AGM bound

Query output size estimation is central in join processing due to the fact that
join queries are typically expected to evaluate the result in time asymptotic to
the output size. Atserias, Grohe, and Marx (AGM henceforth) recently derived a
non-trivial bound on the maximum output size of a full conjunctive query based
on the input relations’ size.

Useful definitions

A conjunctive query is a class of queries that only contains selections, projections,
and joins. The size of a query q, i.e the number of entries, is represented as |q|.

A hypergraph is a generalization of standard graphs in which edges can connect
more than two vertices and it is represented by the pair H = (V , E), in which V is
the set of nodes and E is the set of hyperedges.

Figure 1.6: Example of a hypergraph.

A query q can be modeled as a hypergraph in which the vertices V are the set
of attributes and each hyperedge F ∈ E , which is a subset of vertices, defines a
relation RF . The set of edges covering a node v is defined as vE ⊆ E .

The fractional edge cover of a hypergraph H = (V , E) is a vector x of weights
assigned to each hyperedge F such that ∀v ∈ V ,

q
F ∈vE xF ≥ 1. In other words for

each node v ∈ V , the sum of the edge’s weight covering v is bigger or equal to 1.

9

Background

The minimum fractional edge cover is the solution to the optimization problem:

ρ∗(H) = min
Ø
F ∈E

xF

s.t.
Ø

F ∈vE

xF ≥ 1 ∀v ∈ V

xF ≥ 0 ∀F ∈ E

Output size bound examples

A simple join query as q(a, b, c) = R(a, b), S(b, c) has a maximum output size of
|R| · |S|. An example of a query that reaches this bound is

R = {a0, ..., am} × {b0}
S = {b0} × {c0, ..., cm}

In this case, the join behaves as a cartesian product.
Consider the triangle query q(a, b, c) = M(a, b), R(b, c), S(c, a). A first straight-

forward bound on the output size could be |M | · |R| · |S|. But as already observed
in the last paragraph of subsection 1.2.2 the join result of two of the three relations
is already a superset of the final result, thus an even better bound is given by
min{|M | · |R|, |R| · |S|, |M | · |S|}. Since evaluating this query means counting all
the triangles in a graph, which is a relevant problem, the researchers found another
bound for the maximum query output size which is

ñ
|M | · |R| · |S|. A simple

and beautiful demonstration from H. Q. Ngo, C. Ré, and A. Rudra [7] on how to
retrieve this bound without using the AGM inequality is given in appendix A. It is
interesting to understand which of the two is the tightest one.

AGM inequality

Given a conjunctive query q with n relations, AGM demonstrates that for every
fractional cover x, the following inequality holds:

|q| ≤
nÙ
j

|Tj|xj

Since there could be several edge covers, it is relevant to compute the one that
minimizes the quantity rn

j |Tj|xj . After doing a logarithmic transformation, the
new optimization problem to find the minimum cover edge became:

min
z

Ø
j

log(|Tj|) · xj

s.t.
Ø

F ∈vE

xF ≥ 1 ∀v ∈ V

xF ≥ 0 ∀F ∈ E

10

Background

AGM bound examples

• Considering again the triangle query and relations sizes |M | = |R| = |S| = N ,
the optimization problem can be written as follow:

ρ∗ = min
x

log(N) · (x1 + x2 + x3)

s.t. x1 + x2 ≥ 1
x2 + x3 ≥ 1
x1 + x3 ≥ 1
x1, x2, x3 ≥ 0

The minimum is achieved when x1 = x2 = x3 = 0.5 which results in ρ∗ =
log(N) · 1.5. The AGM inequality in this case became

|q| ≤ |M |0.5 · |R|0.5 · |S|0.5 =
ñ
|M | · |R| · |S| = N

3
2

• Changing the input sizes to |M | = |R| = N1 and |S| = N2 with N2 ≫ N1
then:

ρ∗ = min
x

log(N1) · (x1 + x2) + log(N2) · x3

s.t. x1 + x2 ≥ 1
x2 + x3 ≥ 1
x1 + x3 ≥ 1
x1, x2, x3 ≥ 0

The minimum ρ∗ = 2 log(N1) with x1 = x2 = 1 and x3 = 0, giving a size
bound

|q| ≤ |M |1 · |R|1 · |S|0 = min{|M | · |R|, |R| · |S|, |M | · |S|} = N2
1

These two examples show that the two previously given output size bounds for
the triangle query are equally valid.

1.3.2 Generic-Join algorithm

Since for the triangle query with relations equally sized the maximum output size
is equal to N

3
2 , it is interesting to understand if traditional pair-wise join plans are

able to always run this query in time Ω(N 3
2).

11

Background

Motivating example

The triangle query q(a, b, c) = M(a, b), R(b, c), S(c, a) with relation defined as

M = {a0} × {b0, ..., bm} ∪ {a0, ..., am} × {b0}
R = {b0} × {c0, ..., cm} ∪ {b0, ..., bm} × {c0}
S = {a0} × {c0, ..., cm} ∪ {a0, ..., am} × {c0}

and sizes |M | = |R| = |S| = 2m − 1. The three possible join plan choices are
represented in figure 1.7.

Figure 1.7: Binary join plans for the triangle query

Evaluating all of the three possibilities, the intermediate results P are:

M ⋊⋉ R = {a0} × {b1, ..., bm} × {c0} ∪ {a0, ..., am} × {b0} × {c0, ..., cm}
R ⋊⋉ S = {a0} × {b0} × {c1, ..., cm} ∪ {a0, ..., am} × {b0, ..., bm} × {c0}

M ⋊⋉ S = {a1, ..., am} × {b0} × {c0} ∪ {a0} × {b0, ..., bm} × {c0, ..., cm}

Due to the symmetry used to build the query, all the partial results have the same
size, in particular, the sets before the union have size m while the second ones
have size (m + 1)2, and, since there are no overlapping entries, the total size is
P = (m + 1)2 + m ∈ Θ(m2). The final result instead is:

Q = {a0} × {b0} × {c1, ..., cm}
∪ {a0} × {b1, ..., bm} × {c0}
∪ {a0, ..., am} × {b0} × {c0}

which has a size equal to 3m + 1 ∈ Θ(m). Since join queries generally take an
amount of time asymptotic to the result size, this example shows that, for a
particular category of queries, pair-wise join plans are suboptimal. This is the
reason why a new category of join algorithms has been researched and developed,
trying to reach optimality even in the worst case.

12

Background

Algorithm

Generic-Join is a worst-case optimal join algorithm, in the sense that it is able to
always run in linear time, up to a log factor, with respect to the output size of the
worst-case scenario.

Algorithm 3 Generic-Join(⋊⋉F ∈E RF)
Input: Query Q, hypergraph H = (V , E)

1: Q ← ∅
2: if |V| = 1 then
3: return ∩F ∈ERF

4: Pick I arbitrarily such that 1 ≤ |I| < |V|
5: L← Generic-Join(⋊⋉F ∈EI

πI(RF))
6: for every tI ∈ L do
7: Q[tI]← Generic-Join(⋊⋉F ∈EJ

πJ(RF ⋉ tI))
8: Q ← Q∪ {tI} ∪ Q[tI]
9: return Q

For the sake of clarity, the Generic-Join algorithm is described from the subgraph
matching point of view, in particular, the hypergraph in input is a simple graph, in
the sense that edges are not hyperedges and so they can connect only two vertices.
This simplification also implies that relations R have only two attributes: the
source and the destination vertices of the query edge they represent.

Line 4 chooses a set I which is a subset of the query vertices V, for simplicity,
during this paragraph it is always picked a set with cardinality |I| = 1, i.e a single
vertex u.

Line 5 computes the candidate set for the vertex u by doing a recursive call on
the query ⋊⋉F ∈EI

πI(RF) which is composed by the projection on u of the relations
in which u is an attribute. In graph terms, the query is formed by the sets of data
graph vertices which are potential candidates for u in the edge represented by each
relation.

The loop at line 6 iterates through the candidates tI of u, and, for each one,
compute the Generic-Join on a query ⋊⋉F ∈EJ

πJ(RF ⋉ tI), where J is the set of
vertices V \ I. Differently from the recursive call at line 6, the term RF ⋉ tI is
doing a selection on u = tI in the relations in which u is involved, which means
removing from the relations all the candidates for vertices adjacent to u which are
not adjacent to tI . Then the algorithm will recursively compute the embeddings
for the next query vertex chosen, extending the partial solution by one embedding,
and so on.

The algorithm 2 employed to compute the triangle query can be seen as a

13

Background

specialization of the Generic-Join in which I = {u0, u1}.

Complexity and consideration

Considering a query, its hypergraph H = (V , E) with |V| = n and |E| = m,
and a fractional edge cover x of H, the time complexity of Generic-Join is
Õ(mn

r
F ∈E |RF |xF) in which the Õ hides a potential log factor. To achieve the

mentioned complexity, it is required:

• The set intersection ∩F ∈ERF to run in time complexity Õ(m ·min|RF |)

• A global attribute order and pre-indexed relations in such a way that retrieve
RF ⋉ tI is possible at max in logarithmic time.

It is worth noticing that theoretical optimality does not mean always better
performances with respect to the pair-wise join, in fact, much of the Generic-Join
computation time is dependent on the vertex query order.

1.4 Field programmable gate array
FPGAs are programmable integrated circuits formed by several arrays of logic
elements, called CLBs, which are able to compute arbitrary functions. CLBs are
typically composed of a LUT, a full adder, and a flip-flop, and the interconnections
between them are programmable, as well as the connection to the I/O blocks.
Modern FPGAs integrate also specific blocks to speed-up common operations and
save some CLBs, like DSPs, multipliers, and embedded memories.

Figure 1.8: Example of a simple CLB

1.4.1 High-Level Synthesis
FPGAs can be configured via a Hardware Description Language like VHDL or
Verilog, however writing HDL code is generally complex and require a lot of
time. High-Level Synthesis is a technique aimed to reduce the distance between

14

Background

software and hardware development, by retrieving an HDL model from a high-level
programming language like C++. The tradeoff of using HLS is to lose some
low-level optimization in favor of a much faster developing phase. The HLS tool
used in the thesis is VitisTM HLS 2021.2 by Xilinx [10].

HLS steps

• The first steps consist in writing the high-level implementation of the design.
Not all the C++ language is available to the developer, for example, all the
system calls to the operating system are not supported.

• After finishing the code development is fundamental to verify the software
functionality: the program is verified against a testbench which is in charge of
comparing the result produced by the implementation to the expected one.

• Once passed the software functionality test, it is possible to synthesize the
code to obtain an RTL model.

• The last step is to verify that the RTL model behaves in the same way as the
software description by doing a co-simulation.

HLS optimizations

HLS tool offers several optimization directives to improve the performances of the
design, exploiting the hardware advantages:

• The memory optimizations allow configuring how the arrays are stored in
memory, giving to developer the ability to optimize the resources based on
the actual usage of the array. As an example, an array can be partitioned to
increase the read and write ports or can be reshaped to read multiple elements
in a single transaction.

Figure 1.9: Example of reshape optimization.

15

Background

• The unroll optimization allows to execute in parallel all the loop iterations,
or a fraction of them, by creating several copies of the operation in the loop
body. This optimization can be used when there are no data dependencies
between the loop iterations.

Figure 1.10: Example of query unrolling optimization.

• The dataflow optimization tries to exploit task-level parallelism by inferring
data dependencies between them. In case of no dependency (or partial), two
tasks can run in parallel improving the design throughput. This optimization
comes at a cost of a small hardware overhead needed to implement the channels
between the tasks.

Figure 1.11: Example of dataflow optimization.

16

Chapter 2

Motivation

In recent years there has been a rising interest in accelerating various graph
algorithms on FPGAs. However, even if subgraph isomorphism is a well-studied
problem in literature with several algorithms proposed, most of the state-of-the-art
solutions are targeting CPUs and GPUs, without considering FPGAs as a viable
option (with the unique exception of FAST [11]). The reason behind this choice
could be searched in the intrinsic properties of graph elaboration: most of the time
is spent accessing data with little or no temporal and spatial locality, rather than
processing it [12].

This research’s deficiency in the FPGAs direction is the main motivation behind
the thesis work.

2.1 Contributions
The proposed solution tries to bring new ideas to address the subgraph isomorphism
on FPGA. Differently from the already-mentioned FAST algorithm, which is
implementing an exploration-based method and a pre-processing phase on the CPU,
the thesis work approaches the problem from another point of view, introducing:

• A new implementation with pre-processing and enumeration all on FPGA.

• A Generic-Join based algorithm executed with four fully pipelined stages.

• A parametrized data structure to store the data graph having constant access
time while not occupying a large portion of memory.

17

Chapter 3

Proposed implementation

This section thoroughly describes the proposed solution in a top to bottom fashion,
by dissecting the general structure of the kernel. Particular emphasis is given to
the motivations behind the design choices as well as the compromises accepted
during the development.

3.1 Overview
The kernel is theoretically split into two non-overlapping phases:

• The pre-processing: in charge of building all the data structure needed in the
future for the subgraph matching. It is itself formed by three non-overlapping
phases for building table descriptors, counting collisions, and storing the edges.

• The multiway join: in charge of evaluating the query against the data graph,
it is formed by four stages working in parallel connected in a loop.

The multiway join phase cannot start until the pre-processing has finished elabo-
rating the last data graph edge since the multiway join could not build consistent
partial results without completed data structures.

Kernel interface

The kernel is interfaced with the host through four input streams and one output
stream. The four input streams are used to communicate edges, for both query
and data graphs, which are composed of the source and the destination vertex and
their respective labels. The source vertex stream is also communicating the query
vertex order. The output stream is the channel dedicated to the final embeddings,
streaming the result one vertex id at-a-time in a sequential fashion.

18

Proposed implementation

The second part of the top function interface is composed of a pointer to the
whole memory, which has been allocated by the host and will be later handled
by the kernel itself. While virtually is only one array, in the actual parameters
are present five identical arrays all pointing to the same memory location, but
connected with distinct AXI4 memory-mapped interfaces. The necessity of this
arrangement comes from the fact that multiple functions in the multiway join are
reading from the same array concurrently, which is not possible with one unique
pointer.

Inputs format

The kernel does not put constraints on the format of the data graphs, edges can
be shuffled with vertex ids not starting from 0. However, the query vertices must
start from 0, with again no constraint on the order of the edges.

Figure 3.1: Producer-consumer point of view of the kernel

3.2 Pre-process data
The pre-processing phase is conceptually divided into four macro non-concurrent
functions. Before describing them, it is worth introducing some concepts extensively
used in the following paragraphs.

Useuful definition

In this section, the word table defines an instance of a relation, as the one shown
in figure 1.3. Each query edge corresponds to a table containing all the compatible
data graph edges. A table descriptor is a structure used to store the details defining

19

Proposed implementation

a specific table, which are: the source vertex label, the destination vertex label,
and the direction of the table. The two query vertices considered inside a table
take different names based on their position in the QVO, the first one in the order
is called indexing vertex, and the other one indexed vertex. The notation h(v0)
stands for the hash value of v0 while hmax stands for the maximum possible value
of the hash.

Figure 3.2: Pre-process phase

3.2.1 Data structure

The implemented solution is composed of two parts: a rectangular matrix-like data
structure storing offsets and the actual edges of the table. The offsets are used to
retrieve specific portions of edges, or, by comparing them, understand if a specific
edge is absent. As a result of the pre-processing algorithm, the array of edges is
sorted based on the hash values of its vertices.

General description

The relational operations that the data structure must efficiently support are the
ones utilized in the Generic-Join algorithm. Specifically given a table R(u0, u1), a
QVO {u0, u1}, a vertex v0 candidate for u0, and a vertex v1 candidate for u1:

• πu0(R) is done by accessing directly the edges and selecting only the indexing
vertices.

• πu1(σu0=v0R) is accomplished by computing h(v0), using it to retrieve the
range of v0 edges, and accessing the edges selecting only the indexed vertices.

20

Proposed implementation

Detailed description

Every table has, other than a table descriptor, a global memory address at which
starts the matrix and another address at which starts the array of edges. Given
a specific offset obtained by the row index h(v0) and column index h(v1), it is
possible to sum this number to the start address of the edges to obtain the location
in memory of the edges compatible with h(v0) and h(v1). This set is composed of
all the edges which share the same indexing vertex hash and indexed vertex hash
(without hash collisions this set would be at max composed by one element).

Read To be specific, every offset represents the end address of each set, and
so: read the set of edges σh(uj)=h(v1) ∧ h(ui)=h(v0)R requires to read the end offset as
specified above and read the start offset by indexing the matrix with h(v0) and
h(v1)− 1. For clarity of exposition, it is not considered the case in which h(v0) = 0
or h(v1) = 0. In the same way reading the set of edges σh(ui)=h(v0)R requires two
accesses in matrix, specifically at h(v0), hmax and h(v0)− 1, hmax.

Check It is worth noticing that if the two addresses are equal, the set is empty.
Considering this idea, it is possible to check the presence of an element in a set:
testing if v1 ∈ πu1(σu0=v0R) can be done by retrieving the two delimiters of the
set σh(uj)=h(v1) ∧ h(ui)=h(v0)R and comparing them. Due to collisions, however, false
positives are possible, but not false negatives. Since this property is at the base of
the set intersection, to reduce the accesses in memory it has been chosen to spend
the MSB of every offset to flag if a set is empty or not.

Space complexity The space complexity of the matrices is decided at compile
time, by tuning the parameters defining the hash set cardinality. Reducing the
hash bit-width will save space and reduce pre-processing time, however, it will also
increase collisions, rising the time spent by the multiway join to detect the false
positives produced by the set intersection.

Motivation to design choices

• Since no assumption is taken on the range of possible vertex ids, indexing a
matrix with them is not feasible. Two solutions were evaluated at design time:
translating them to the bounded set {0, |V |}, or using the hash of the vertex
id as the actual index. Since the former solution requires keeping a dictionary,
the latter is the one chosen, even because using hashes gives the freedom of
choosing the cardinality of the set to which vertex ids are mapped.

• Since the degree of every vertex is normally much smaller than the number of
vertices in the graph, keeping a square matrix would result in a waste of space,

21

Proposed implementation

in particular in this specific case where every table is storing only a fraction
of the total graph edges. This is the main reason behind the decision of using
two different cardinalities for the hash sets indexing rows and columns, with
the latter smaller than the former, giving the matrix a rectangular shape.

• The main advantage of this implementation is the constant time required to
execute most of the operations required by the multiway join, reducing the
linear scanning of edges only to small sets sharing the same vertices’ hash
value.

3.2.2 Algorithm
The general algorithm can be thought of as an instance of the counting sort
algorithm split on different arrays, one for each table, ordering their respective
portion of edges.

Building table descriptors

The pre-processing phase starts by reading the QVO from the input streams since
it is used to determine the direction of each table: if the source comes before
the destination then the direction is normal, otherwise is inverted. Keeping this
information is necessary to understand which vertex index the rows and which one
index the columns of the table’s matrix. The vertex indexing the rows is called the
indexing vertex, while the one indexing the columns is referred to as the indexed
vertex: this definition is the same given at the start of the chapter but seen from a
more operative point of view.

After reading the QVO, instancing a class QueryVertex for each node, and
saving the total number of query vertices, it is the turn of the query edges. For
every edge, the first operation is to understand if a table descriptor with the same
specification is already present, if so a new table is not necessary. Then the index
of the table representing the current query edge is saved in the two QueryVertex
involved, in a way that in the next steps it will be possible to retrieve for every
query vertex all the tables in which it is involved.

Counting edges

At this point, the number of tables needed is known, thus is possible to compute
the start address of each matrix, given their fixed occupation. The matrices are
located one after the other in memory, detached from the arrays of edges that they
refer to.

The first round of data edges is used to count the collisions inside the cells in the
matrix. Even if at the end the matrix will contain offsets, at this stage it is used to

22

Proposed implementation

store counters. In particular, for each edge in the data graph, first is individuated
the table in which it should be stored, then the vertices are used to compute the
hash values, which consequently are exploited to locate the correct counter and
increase it.

Figure 3.3: Example of table after the Count collisions phase.

In the figure above an example of a table at this point of the elaboration, given
h(v5) = h(v10) = 0 and h(v3) = h(v8) = h(v9) = 1. Now is possible to transform,
for all the tables, the counters to offsets. Each counter should store the number of
edges counted from 0 to that specific point, which can be done in linear time with
the number of counters by employing an additional variable to store the total sum
until that point. After this passage, the counters represent the starting address of
each bucket of edges.

Figure 3.4: Example of table after the Counters to offsets phase.

Storing edges

After the counting edge phase, the number of edges that will be contained in every
table is known, which is enough to compute the starting address of each edge array.

The second round of data edges is similar to the first one, this time however
the offset is used to store the edge and only then increased. The result is a matrix
containing the offsets representing the end address of each set of edges, and an

23

Proposed implementation

array of edges sorted on the hash value of the vertices (indexing vertex as first key,
indexed vertex as second).

Figure 3.5: Example of table after the Store edges phase.

Motivation to design choices

This kind of hash table implementation requires reading two times the edges of
the data graph, this is in order to handle collisions and use the right amount of
memory space, given the fact that data is not changing in time. Other protocols
for collision were evaluated during the design phase, for example, allocating a
predefined amount of space for each bucket of edges. This solution would have
required only one round of data edges but also the handling of an overflow area
that stores the edges exceeding the fixed space. Then the operation of retrieving a
set of edges, in some cases, would have comported searching in the overflow area.
In the end, it is a trade-off between the performance of the pre-processing and the
performance of the multiway join.

3.3 Multiway join
The multiway join algorithm proposed is based on Generic Join, expanding each
partial embedding one vertex at-a-time and adopting a more hardware-friendly
iterative process to compute the results.

The first line of the pseudo-code adds a void partial result, which is needed to
start the process. Line 5 is the actual core of the algorithm, which is executed by
four pipelined functions:

• Propose: find the set with minimum size in πu(Ru ⋉ p) and read it from
memory.

• Intersect: do an approximative set intersection based on hash values.

• Extract: retrieve the vertex ids from the result of the intersection.

24

Proposed implementation

Algorithm 4 Multiway join algorithm
Input: QVO ϕ, tables R

1: P ← (∅)
2: for all u ∈ ϕ do
3: Pu ← ∅
4: for all p ∈ P do
5: Lu ← ∩ πu(Ru ⋉ p)
6: Pu ← Pu ∪ Lu

7: end for
8: P ← Pu

9: if P = ∅ then
10: break
11: end if
12: end for

• Verify: check the new partial result correctness and store it.

The algorithm terminates when all the vertices in the QVO have been considered
or when the partial result FIFO goes empty (failed subgraph matching).

Figure 3.6: Multiway join pipeline.

25

Proposed implementation

3.3.1 Propose

The propose is composed of two functions executed in sequence: the first one is
in charge of retrieving the set sizes involved in the set intersection while keeping
track of the minimum one. Found the smallest set, the second function has to read
it from the memory.

Figure 3.7: Propose pipeline.

Propose: find minimum set

This procedure is essential since WCOJ theory requires the set intersection to be
proportional to the size of the minimum set, as stated in section 1.3.2. Since the
set intersection is done between the hash values of the nodes, the compared sizes
are relative to the set of hashes involved.

Given the current query vertex index ui, it is possible to recover the tables in
which it is involved by looking at its respective instance of the class QueryVertex.
Retrieving the size of the sets in which the vertex is indexing the table, i.e |πui

(R)|,
is simple, the information is produced by the pre-processing phase which keeps
track of how many rows in the table matrix are used.

The other kind of set is of the type πui
(σuj=vj

R) in which vj is the vertex
associated to uj in the partial solution being evaluated. Since tables are built based
on the QVO, is impossible to end in a situation in which uj has not a mapped
data graph vertex. Evaluating the sizes of this kind of set cannot be done precisely
without scanning the columns and looking for the one actually used, which is quite
an expansive task. Thus, it has been chosen to trade off the size accuracy in favor
of faster execution. In particular, as size, it is used the number of edges present
in the set σh(uj)=h(vj)R, which can be computed comparing two offsets inside the
table matrix. Due to collision, however, this number can be bigger with respect to
the actual hash set size.

After having evaluated all the correct tables, it is possible to communicate the
details of the minimum set M to the next function.

26

Proposed implementation

Propose: read minimum set

Reading the minimum set means retrieving the hash values of the vertex ids, and is
done differently based on the type of set. By convention RM is the table containing
the minimum set. In the case of an indexing set (a set from a table in which the
current query vertex is the indexing vertex), it is possible to linearly scan the rows
of the table matrix in RM and stream out the indices, i.e the hash values, which are
used. However, in the case of an indexed set, the above approach is not replicable
on the columns, since columns have indices with smaller bit-width. The solution
used is to read the edges in the set σh(uj)=h(vj)RM , for each of them check if the
indexing vertex is equal to vj, thus avoiding collisions errors, and then computing
the hash of the indexed vertex. In this way is possible to re-obtain the full-length
set of hashes.

3.3.2 Intersect
The intersection is done by one monolithic function checking, for each element of
the minimum set, if it is present in every other set. Given the current query vertex
ui, checking the existence of an element a ∈M , which is already a hash value, in a
set is done:

• For an indexed set πui
(σuj=vj

R), by testing the offset’s MSB located in row
h(vj) and column a, where vj is the vertex associated to uj in the partial
solution being evaluated.

• For an indexing set πui
(R), by checking the existance of the set πui

(σh(uj)=aR).
As already explained in section 3.2.1, it is tested the absence of an element from

a set, and not the presence, accepting a portion of false positives. The explanation
for this choice comes from the fact that, due to hash collision, checking if an element
is present in a set would have required reading a portion of edges sharing the same
hash of the element, and then comparing the vertex ids. The set of hashes that
have passed the intersection test is referred to as Minter

3.3.3 Extract
The extract phase translates the hash values in vertex ids, exploiting two overlapping
functions. The operation is required to be able to verify the correctness of new
partial embeddings generated in the next steps.

Extract: hash to vertex ids

The inputs to this function are the hash values that have passed the intersection
phase. To recover the vertex ids from the hashes it is again used the minimum set

27

Proposed implementation

Figure 3.8: Extract pipeline.

M included in the table RM , found in the Propose phase. Given the current query
vertex ui, the hash a ∈Minter, the main idea is:

• If M is an indexed set, look for the set of vertices πui
(σh(uj)=h(vj) ∧ h(ui)=aRM)

where vj is the vertex associated to uj in the partial solution being evaluated.
In other words, taking only the indexed vertex ids from the edges compatible
with (h(vj), a). In the ideal case of no hash collision this set has only one
vertex inside, in reality, is a small bag (or multiset) with possibly repeated
elements.

• If M is an indexing set, read the set of vertices πui
(σh(ui)=aRM), which are

the vertices from the edges having the indexing vertex hash equal to a. Again,
in case of no hash collision, this set would be a bag composed of the same
vertex repeated many times, and taking one of them would be enough.

The found bag contains the correct vertex ids but with some elements repeated
more than once, which must be discarded since they would cause at the end
duplicated solutions. In the end, every hash generates one bag of vertex ids.

Extract: bag to set

Passing from a bag to a set requires removing all the duplicates. This operation is
done by an iterative process: every time a new element is read it is compared to
the ones already present in the output set, if it is not part of it then it is added.
Since this procedure is in worst-case quadratic in the number of elements of the
bag (n(n−1)

2 comparisons in case of a bag of n distinct elements), it is better to
evaluate smaller but numerous bags than having a single very large multiset.

28

Proposed implementation

3.3.4 Verify
Approximate intersection and hash collision make mandatory a verification step
before generating new partial solutions. This final step is accomplished by three
pipelined functions.

Figure 3.9: Verify pipeline.

Verify: homomorphism

Subgraph homomorphism has the same definition as the one given for subgraph
isomorphism in section 1.1.1, with the only difference that instead of searching
an injective function, it is searched a mapping between query vertices and data
ones. This discrepancy implies that a data graph vertex can appear more than
once in a solution. Join-based approaches intrinsically enumerate homomorphism,
requiring an additional step to evaluate isomorphism which discards solutions with
duplicated vertices. The purpose of this function is to verify that the new proposed
candidates for the current query vertex are not already in the partial solution being
currently evaluated.

Verify: check edges

Since the intersection is done with hashes following an approximative method, it is
not guaranteed that all the vertex ids in input to the function are valid mapping
for the query vertex being evaluated. Given the current query vertex ui, verifying
the correctness of the candidate vc for ui requires checking for each edge of ui if
exists also for vc. Actually, it is enough to consider only the edges that connect ui

to already evaluated query vertices, otherwise, every edge would be verified twice.
As an example, to check if vc complies with the edge between ui and uj), with uj

mapped to vj, it is possible to look in the set σh(uj)=h(vj) ∧ h(ui)=h(vc)R and search
for the edge composed by vc and vj.

29

Proposed implementation

Verify: write

The last function of the pipeline is in charge of appending the mappings for the
current query vertex to the partial solution, writing it to the partial solution FIFO
or to the output FIFO if every query vertex has been evaluated. This function is
also in charge of keeping track of the number of partial results present in the FIFO.
It is crucial for the correctness of the kernel to know how many partial results
are still circulating in the multiway join, in order to avoid misbehavior in case
of zero matching. This function is the only one that removes and produces new
partial solutions: in fact, in case of an empty set intersection, the void solution
still proceeds through the pipeline until is dismissed here.

Motivation to design choices
Another possible solution, considered in first place, was doing a normal set inter-
section, reading the minimum set vertices from memory and probing each of them
against the other tables, spending time to avoid collision errors. This solution
would have not required the Verify phase nor the bag to set in the Extract phase.
However: (1) reading the minimum set from memory, due to collisions, still requires
translating it from a bag into a set, moving the operation only earlier in the pipeline,
and (2) avoiding collision error in the intersection requires reading the actual edges
and comparing them to the vertex id probed. In the current implementation, the
latter point is still done on the Verify phase but only on the hashes that have
passed the intersection, saving some access in memory.

3.4 Testbench
The role of the testbench is to verify the correctness of the kernel by comparing
the result to the one produced by a golden model. The testbench is accepting five
files in input:

• queryOrder.txt: contains the QVO.

• queryLabels.txt: contains the labels associated at each query node.

• queryEdges.txt: contains the edges of the query graph.

• dataLabels.txt: contains the labels associated at each data node.

• dataEdges.txt: contains the edges of the data graph.

Labels and edges have been separated into two files only for test purposes since
it was easier to modify the cardinality of the label set without having to rewrite
completely the graphs.

30

Proposed implementation

First of all, the testbench is allocating the memory space in which the kernel
will store all the data structures, this portion of memory is also initialized to all
0s. Then it reads the input files and streams to the kernel in order: the QVO, the
query edges, and two times the data edges. After these operations, it waits for
the results from the kernel. The embeddings are then counted and compared to
the result generated by a golden model, which is the NetworkX implementation of
subgraph isomorphism based on VF2, and exploration-based algorithm [13].

31

Chapter 4

Results

The design has been synthesized targeting the Ultra96 board powered by a Zynq
UltraScale+ MPSoCs, reaching a maximum frequency of 215 MHZ. The table
below reports the resource utilization.

Resource Available Used Percentage
CLB LUTs 70560 40726 57.72%

CLB Registers 141020 68881 48.81%
CARRY8 8820 774 8.78%
F7 Muxes 35280 1447 4.10%
F8 Muxes 17640 209 1.18%

CLB 8820 8147 92.37%
LUT as Logic 70560 32639 46.26%

LUT as Memory 28800 8087 28.08%
Block RAM 216 126.5 58.56%

Table 4.1: Resource utilization

Setup

The performance of the design has been tested using part of real-world datasets,
taken from reference [14]. The characteristic of the data graph used are reported in
table 4.2. Since the original graphs are unlabelled, each node has been assigned a
label chosen from a set of 4, arbitrarily small to not make the problem trivial. The
set of subgraph queries used is shown in figure 4.1.

32

Results

Name |V (g)| |E(g)| |Σ|
Facebook5 1724 5000 4
Facebook8 1820 8234 4

Wikipedia10 1826 10000 4
Wikipedia23 3048 23689 4

Table 4.2: Dataset used

Figure 4.1: Subgraph queries.

Software and hardware comparison

The software implementation of subgraph matching from NetworkX is compared to
the cosimulation of Vitis™ HLS, setting a latency for the memory equal to 64 clock
cycles. The results shown in figure 4.2 are promising, suggesting the hardware
solution as three orders of magnitude faster than the software one.

33

Results

Figure 4.2: Boxplot representation of acceleration factors using six queries.

Effects of QVO

The importance of picking a good query vertex order has been already explained in
chapter 1. As an example, figure 4.3 shows the time spent to evaluate query Q2 on
the graph Facebook5 using different QVOs. In this case, the choice of a bad order
can lead to doubling the execution time needed to retrieve the result. In particular,
the two worst QVOs are the ones in which the sequence of nodes is partially not
connected, generating a cartesian product between candidates.

Figure 4.3: Query evaluation changing QVOs.

34

Chapter 5

Conclusion

5.1 Limitations
The main limitation of the current design is imposed by the possibility of the
partial result FIFO to run out of space, deadlocking the kernel. In the current
implementation, this FIFO has a fixed amount of space decided at compile-time
that cannot be exceeded. Another current limitation is the QVO, which must be
provided by the user. The kernel, right now, misses the heuristic logic to guess a
good query vertex order.

5.2 Future work
There are several points that can be optimized in the design, as well as ideas that
can be explored, some of which are:

1. Expanding all together the partial result by one query vertex at-a-time does
not make sense, because implies saving all of them in memory. The right thing
would be to take one partial result formed by one single vertex, extend it for
all the query vertices, then output the result and starts again with another
one. This approach would require near zero memory for the partial results
FIFO. However, the described approach needs all the tables ready at the start.
The approach currently used in the kernel needs instead only the tables related
to the query vertex it is evaluating, building the base for a future version in
which pre-processing and multiway join will work concurrently.

2. Designing an efficient FIFO able to save data on DDR when full will solves
the limitation of the current design, described in the previous section.

3. Since several partial results share the same radix, finding a way to compress
them could be an idea to reduce the partial result FIFO dimension.

35

Conclusion

4. Inserting a cache between the kernel and the main memory could significantly
speed up the process. The spatial and temporal locality of the accesses in
memory should be studied in future work.

5. Every partial solution is independent from the other ones, thus they can be
expanded in parallel. This idea could be exploited by inserting more than one
pipeline computing concurrently. If in theory work, the actual feasibility in
hardware should be carefully studied.

36

Appendix A

Triangle query output size bound

Given a query Q(a, b, c) = R(a, b), S(b, c), T (a, c), it is defined a new function

✶R(a,b)

1 if(a, b) ∈ R,

0 if(a, b) /∈ R,

Then it is possible to write the size of the query as:

|Q| =
Ø

a

Ø
b

Ø
c

✶R(a,b)✶S(b,c)✶T (a,c)

=
Ø

a

Ø
b

✶R(a,b)
Ø

c

✶S(b,c)✶T (a,c)

≤
Ø

a

Ø
b

✶R(a,b)

óØ
c

✶S(b,c)

óØ
c

✶T (a,c)

=
Ø

a

Ø
b

✶R(a,b)

ñ
|σB=bS|

ñ
|σA=aT |

=
Ø

a

ñ
|σA=aT |

Ø
b

✶R(a,b)

ñ
|σB=bS|

≤
Ø

a

ñ
|σA=aT |

óØ
b

✶R(a,b)

óØ
b

|σB=bS|

=
Ø

a

ñ
|σA=aT |

ñ
|σA=aR|

ñ
|S|

=
ñ
|S|

Ø
a

ñ
|σA=aT |

ñ
|σA=aR|

≤
ñ
|S|

óØ
a

|σA=aT |
óØ

a

|σA=aR|

=
ñ
|S|

ñ
|T |

ñ
|R|

37

Triangle query output size bound

Where it is used three times the Cauchy-Schwarz inequality:

Ø
a

xa · ya ≤
óØ

a

x2
a ·

óØ
a

y2
a

It is also worth noticing that given a relation R(a, b) of attributes A and B, under
A fixed to a specific value a1, then:Ø

b

✶R(a,b) = |σA=a1R|

38

Bibliography

[1] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr
Zhabiuk, Quannan Li, and Jimmy Lin. «Real-time twitter recommendation:
Online motif detection in large dynamic graphs». In: Proc. (VLDB). 2014,
pp. 1379–1380 (cit. on p. 1).

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., 1979 (cit. on p. 2).

[3] J. R. Ullmann. «An Algorithm for Subgraph Isomorphism». In: Journal of
the ACM 23 (1976), pp. 31–42 (cit. on p. 2).

[4] Shixuan Sun and Qiong Luo. «In-Memory Subgraph Matching: An In-depth
Study». In: 2020 ACM SIGMOD. 2020, pp. 1083–1098 (cit. on pp. 2, 4).

[5] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar.
«Distributed evaluation of subgraph queries using worst-case optimal and
low-memory dataflows». In: Proc. (VLDB). 2018 (cit. on p. 5).

[6] Todd L. Veldhuizen. Leapfrog Triejoin: a worst-case optimal join algorithm.
2012. doi: 10.48550/ARXIV.1210.0481. url: https://arxiv.org/abs/
1210.0481 (cit. on p. 5).

[7] Hung Q. Ngo, Christopher Re, and Atri Rudra. Skew Strikes Back: New
Developments in the Theory of Join Algorithms. 2013. doi: 10.48550/ARXIV.
1310.3314. url: https://arxiv.org/abs/1310.3314 (cit. on pp. 6, 9, 10).

[8] Amine Mhedhbi, Chathura Kankanamge, and Semih Salihoglu. «Optimizing
One-time and Continuous Subgraph Queries using Worst-case Optimal Joins».
In: ACM Trans. Database Syst. 46 (May 2021), pp. 1–45 (cit. on p. 8).

[9] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. «Worst-case
Optimal Join Algorithms». In: PODS’12. May 2012, pp. 37–48 (cit. on p. 8).

[10] Xilinx. Vitis High-Level Synthesis User Guide. 2021. url: https://docs.xi
linx.com/r/2021.2-English/ug1399-vitis-hls/pragma-HLS-dataflow
(cit. on p. 15).

39

https://doi.org/10.48550/ARXIV.1210.0481
https://arxiv.org/abs/1210.0481
https://arxiv.org/abs/1210.0481
https://doi.org/10.48550/ARXIV.1310.3314
https://doi.org/10.48550/ARXIV.1310.3314
https://arxiv.org/abs/1310.3314
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/pragma-HLS-dataflow
https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/pragma-HLS-dataflow

BIBLIOGRAPHY

[11] Xin Jin, Zhengyi Yang, Xuemin Lin, Shiyu Yang, Lu Qin, and You Peng.
FAST: FPGA-based Subgraph Matching on Massive Graphs. 2021. doi: 10.
48550/ARXIV.2102.10768. url: https://arxiv.org/abs/2102.10768
(cit. on p. 17).

[12] Maciej Besta, Dimitri Stanojevic, Johannes De Fine Licht, Tal Ben-Nun, and
Torsten Hoefler. Graph Processing on FPGAs: Taxonomy, Survey, Challenges.
2019. doi: 10.48550/ARXIV.1903.06697. url: https://arxiv.org/abs/
1903.06697 (cit. on p. 17).

[13] NetworkX documentation. 2022. url: https://networkx.org/documentati
on/stable/reference/algorithms/isomorphism.vf2.html (cit. on p. 31).

[14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. June 2014 (cit. on
p. 32).

40

https://doi.org/10.48550/ARXIV.2102.10768
https://doi.org/10.48550/ARXIV.2102.10768
https://arxiv.org/abs/2102.10768
https://doi.org/10.48550/ARXIV.1903.06697
https://arxiv.org/abs/1903.06697
https://arxiv.org/abs/1903.06697
https://networkx.org/documentation/stable/reference/algorithms/isomorphism.vf2.html
https://networkx.org/documentation/stable/reference/algorithms/isomorphism.vf2.html
http://snap.stanford.edu/data

	List of Tables
	List of Figures
	Acronyms
	Background
	Subgraph Isomorphism
	Problem definition

	Algorithms in literature
	Exploration-based algorithms
	Join-based algorithms

	Worst-case optimal join
	AGM bound
	Generic-Join algorithm

	Field programmable gate array
	High-Level Synthesis

	Motivation
	Contributions

	Proposed implementation
	Overview
	Pre-process data
	Data structure
	Algorithm

	Multiway join
	Propose
	Intersect
	Extract
	Verify

	Testbench

	Results
	Conclusion
	Limitations
	Future work

	Triangle query output size bound
	Bibliography

