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Summary

In a world moving towards automation, research and development of new solutions

are becoming more and more important. Nowadays, electric vehicles are playing a

key role in the development of new cutting-edge technologies in the automation

field. In particular, the topic that has been discussed throughout the last 10 years,

is the charging solutions for EVs. For this reason, Innotech Systems in Los Angeles,

California, in collaboration with the Cal State University of Los Angeles, decided

to invest in the development of an Automated Robot-based Charger for EVs. Their

idea is to project a prototype while learning about this innovative technology that

has the potential to simplify and automate certain aspects of life. The aim of

this thesis is to design a charging station prototype using a robotic arm upon

a detailed market investigation to understand what other companies all around

the world are up to. The first two chapters will go through why an automated

charging station is needed, similar projects carried out by other companies and all

the theoretical background necessary to create such a system. Instead, in the last

two chapters the main work will be presented going through both software and

hardware components, and various tests and results will be discussed.
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Chapter 1

Introduction

During the past ten years, the worldwide market for electric vehicles has expanded

significantly, and in the coming years, an exponential growth is expected. Indeed,

taking a look to the industry predictions for the incoming years, this is just the

beginning. Even though 2020 did not show a growth in the electric vehicle market

share due to the COVID situation, 2021 has broken the records. As a matter of

fact, the number of EVs sold in a week was higher than EVs sold during 2012 [1].

Figure 1.1: EVs sales and % growth
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To this extent, the charging topic becomes a relevant aspect. In a world where

autonomous driving and electric vehicles are growing day by day, a new charging

technology has to be implemented. This is the idea carried out by InnoTech system

company in collaboration with California State Univerisity of Los Angeles.

1.1 The Need for Automated Charger

One of the main reasons why the electric vehicles are not becoming so widespread

is the waiting time to charge the vehicle. Indeed, for a high customer benefit, large

driving ranges combined with quick recharge intervals are crucial. Obviously, the

faster is the recharge the more powerful should be the charging station. In Fig. 1.2

is shown how many kilometers can be covered per hour load capacity and it is

quite noticeable that the covered distance increases using more powerful charging

stations [2]. The problem of such stations is the weight of the plug to be connected

to the socket of the car to start the charging phase. Indeed, inductive systems are

not able to provide such high charging capacities. Strong DC charging currents

must be realized, hence the wire diameter must increase. In turn, this makes the

cable bulky, inflexible, and difficult to handle, making it difficult for people to

charge their vehicles. This is the main reason why automated charger stations are

spreading rapidly nowadays, to make the charging procedure as easy as possible to

human beings.

Vehicles and automated chargers provide fresh alternatives for the future. This

method might provide a wealth of new services in a society that is striving to

become as automated as possible. For instance, people with disabilities would not

have to worry about traveling alone, and those running errands might keep their

car running while they recharge it at the next automated charging station.

Throughout the last decade, several companies tried to design an Automated

2



Introduction

Figure 1.2: Kilometers covered per charging hour depending on the technology

Robot-based Charging station for EVs, however up until this point, no producer has

introduced a series product to the market. Furthermore, all the solutions proposed

by the companies are compatible just with their electric vehicles. Volkswagen

company developed an Automated Robot-based Charger suitable for an e-Golf using

a LBR iiwa manipulator by KUKA company with high charging capabilities. Seven

driving axles on the robot and built-in torque sensors provide an accurate, force-

sensing, and dependable connection. Basically, the charging station communicates

with the car telling it exactly where to park to start the charging process. After

that, a camera mounted on the top part of the robotic arm gripper, computes the

goal to reach till the last centimeter. Finally, the software will tell the car to move

on upon finishing the charging phase to allow other cars to be charged [3].

Also Tesla developed its own solution to the autonomous charging problem,

coming over with a metal snake able to reach every position of the workspace with

every pose. Though, the product has not been released on the market yet, so no

further technical details have been published. The advantage is that all Tesla cars

have the same position of the socket and plugs to charge the vehicles. This enables

a certain degree of system adaptation to any Tesla vehicle [4].

3
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Figure 1.3: Volkswagen solution to autonomous charging

ALanE is a project that the Technical University of Dortmund launched. Auto-

mated Charging System for Sustainable Electric Mobility is what the abbreviation

stands for. The project’s goal is to charge an electric car while it is parked without

requiring the driver to put in the charging connection.

Figure 1.4: Tesla solution to autonomous charging

There is no need for the driver to manually intervene. As a result, as compared

to known charging methods, the ALanE system significantly improves comfort,

which stands out as a distinct selling feature when compared to conventionally

powered automobiles. The TU Dortmund’s charging system includes a stand-alone
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energy source and a Wallbox that is upgraded with a reasonably priced and small

connecting module. An app for a smartphone may be used to connect and disengage

[2].

Figure 1.5: TU Dortmund solution to autonomous charging

1.2 Robot Manipulator

As shown by different projects developed by companies all around the world, to de-

sign an Automated Robot-base Charger (ARBC) the concept of Robot Manipulator

(RM) becomes fundamental. A robot manipulator’s mechanical structure is made

up of a series of rigid bodies (links) joined by articulations (joints); a manipulator’s

arm enables movement, its wrist adds dexterity, and its end-effector completes

the work demanded of the robot. The mobility is ensured by the presence of the

joints used as connecting item between links. The joint can be either revolute or

prismatic, and each of them generates one degree of freedom (DOF) if it comes to

open kinematic chain structures (the one that will be used in this thesis work). The

revolute one, from the word itself, gives to the links it is attached to the capability

to rotate relatively, while the prismatic one allows a relative translational motion

between them. As far as degrees of freedom are concerned, whenever a task requires
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the robotic arm to be positioned in a certain position with a certain pose in the

workspace of the robot itself, then six DOF’s are required, three for positioning and

three to orientate the end effector. However, the robot could have more DOF’s than

six, in such case the manipulator is known as redundant from a kinematic point of

view. Another fundamental concept regarding RM is the workspace. Basically, it

is the environment the manipulator can reach and it depends on the structure of

the manipulator in terms of links and joints. As shown in Fig.1.6, the workspace

of the anthropomorphic manipulator is a sphere cut at the base of the manipulator

itself [5].

Figure 1.6: Workspace of an anthropomorphic robotic arm

This kind of manipulator is realized by three revolute joints allowing the robotic

arm to be the most dexterous one. The second joint is known as the shoulder joint

because to its resemblance to the human arm, and the elbow joint, which joins the

"arm" to the "forearm," is known as the third joint.

Every task to be accomplished in the robotic field needs the execution of a specific

motion. This can be done only if a mathematical model describing the robotic

system and a complete knowledge about actuators and sensors is fully achieved.

Therefore, the first important step to deal with is to model our robot manipulator

in order to study and simulate all the different situation it could be involved into
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the work environment.

Figure 1.7: Components of a robotic system

Such a goal can be reached through different design phases: Modelling, Planning

and Control.

Modelling Modelling is the first step of designing a robotic system, it should

be performed through a kinematic analysis of the system to work with. Such

analysis allows to study and solve two fundamental problems in robotics : the

direct kinematics problem and the inverse kinematics one. The former is useful to

understand, assigning a value in terms of angle or translation motion, depending on

the kind of joint to be used, the prospective position in the space of the end-effector.

The latter is exaclty the opposite: knowing a desired position the robotic arm is

requested to reach, the joint values have to be defined. Either problems have to be

solved using some linear algebra tools. Additionally, the kinematics analysis is the

initial step in a thorough investigation of the manipulator’s dynamics, enabling us

to develop an effective control scheme and make the optimal actuator selections.

Planning Planning is of fundamental importance for a manipulator since a certain

motion should be specified either to the joints or the end-effector. Obviously, it

really depends on the kind of application the manipulator has to be used. If a

material handling task is considered, just the pick-up and drop-off locations have to

be specified and a point-to-point motion can be used. In the other hand, whenever

the end-effector has to follow a desired path, a path motion technique has to be

7



Introduction

used for trajectory planning. Furthermore, in presence of obstacles we address the

problem as motion planning.

Control Control is fundamental for the manipulator to perform trajectories and to

impose velocities and acceleration properties. Actuators and sensors must be used

in order to realize the motion indicated by the control law. The motion control

system of the mechanical structure uses the computed trajectories as reference

inputs. Finding the timing behavior of the forces and torques that must be given by

the joint actuators in order to guarantee the execution of the reference trajectories

is the crux of the robot manipulator control problem.

1.2.1 Industrial Robotics

The field of industrial robotics, which deals with robot design, control, and appli-

cations, has advanced to the point that its products are now considered mature

technologies. The main feature about industrial robots is to work in a structured

environment whose primary a priori knowledge is of its geometrical or physical

features. The first industrial robots were designed to manage the handling of

radioactive materials in a remote fashion and they were characterized by:

• versatility : the robot had to be capable to adapt to different end-effectors

depending on the task to be done,

• adaptability : the robot should have managed unknown situations by a clever

usage of sensors,

• positioning accuracy : exploiting control techniques to stabilize the position

of the end-effector,

• execution repeatability : if different operations have to be executed then a

certain programmability has to be ensure.

8
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Reduced manufacturing costs, increased productivity, improved product quality

standards, and, last but not least, the potential to eliminate harmful or unappealing

tasks for the human operator in a manufacturing system are the primary factors

that have led to the spread of robotics technology in an increasingly wider range of

applications in the manufacturing industry.

Industrial robots are stiff mechanical structures to ensure accuracy and repeatability,

similar to human arms with wrist and the end-effector carrying out the work that

usually a human hand should do. Usually, five or six DOF’s are used for such a

kind of robots, including proprioceptive joint sensors. As it works surrounded by

human beings, the workspace has to be strictly safe and mostly of the time the

working environment is well-known and quasi-static.

Figure 1.8: Industrial robots in a strictly safe environment

1.3 The Goal of the Thesis

As anticipated in the previous sections, the rise in the use of electric cars and

society’s desire to replace labor-intensive manual labor with automated systems

have prompted several firms to invest money in the research for innovative charging

solutions. Among these companies, Innotech Systems located in California, decided

to invest in this prospective cutting-edge technology moving forward towards
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automation and gaining experience in this field. In particular, the idea is to design

a prototype of an automated charger for electric vehicles capable to start the

charging phase of the EV in a fully autonomous fashion. A robotic arm is used to

construct the automated charger. This arm must be able to recognize an AR tag

using a depth camera and move towards its destination using a docking algorithm

while detecting and avoiding obstacles. Numerous concerns must be addressed

in order to create such an automated robot-based charger, and the task may be

separated into several sections:

• Robotic Arm Design

• Path Planning

• Docking Algorithm

• AR Tag Identification through Depth Camera

• Hardware & Software Integration

• Obstacle Detection

• Obstacle Avoidance

As the robotic arm is already available, the first two bullets point do not need

to be developed. As far as the other points, a docking algorithm is needed to

decide how to reach the socket (goal) based on what the depth camera is able to

detect in the surrounding environment. Indeed, it should be able to detect the

goal, potential obstacles and to transmit the information to the software. The

Hardware & Software Integration part is a key point as the software part enables

the connection of different hardware parts to create a single usable system. Finally,

the obstacle detection and avoidance will be used in both fashions, when the robot

is steady and when it is moving. When the robot is steady the software is still
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trying to make a decision about whether approaching or not the goal basing on the

surrounding environment. In this part, both depth camera and ultrasonic sensors

will be used. Instead, when the robot is moving the obstacle detection will rely

just on the information given by the ultrasonic sensors.

1.4 The Organization of the Thesis

The thesis will be broken up into four chapters plus a fifth one for the conclusion, in

an effort to evaluate every single project-related element. The first one is intended

to analyze the general problem giving answers to the reader about the choice of

developing such a project, going through the historical improvements and growth

of this technology and a brief introduction about basic concepts behind it.

The second one is entirely devoted to the state of the art; first, a few actuators

and sensors employed in the robotics sector will be described, and then it will go

through the theoretical considerations involved in the development of such robotic

systems.

The third chapter will explain the project carried out and the choices taken based

on both adaptability to the available items and hardware components memory

limitations. It will discuss the necessity for an additional DOF to widen the charging

station’s workspace as well as various geometrical and algebraic considerations

regarding the established docking algorithm.

The fourth chapter, will resume the tests and results obtained while in the conclusion

chapter potential future improvements that could be carried out, deepening the

difficulties encountered and how they might be solved, will be addressed.
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Chapter 2

State of the Art

The whole background theory necessary to comprehend the project undertaken

and some current methodologies will be covered in this chapter. But first, it will

explore the core sources of robotics sensors and actuators. Indeed, every robotic

system must have sensors and actuators. The first ones make it possible for the

program and the designer to both obtain measurement data on a certain quantity or

characteristic that has to be controlled. Each control loop anticipates the presence

of a number of sensors in order to stabilize a certain aspect of the system. Actuators

are the actual mechanical components that allow a robotic system to move. During

the process of the robotic system’s operation, the control system must select what

input to give to such actuators at each moment. Finally, the robotics concepts

already involved in the robotic arm that the project is based on will be developed,

the theory inherent obstacle recognition by the depth camera (Point Cloud and K-d

Tree theory), and finally the concepts underlying a Software Processes Analysis to

prevent any race condition issues.
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2.1 Actuators and Sensors

In this section, two fundamental basic elements in robotics are covered: actuators

and sensors. The first ones make it possible for the robot to move and steady

it, which prevents the structure from shaking. They are only considered joints

in the kinematic analysis, but if the robot is to be evaluated dynamically, their

weight must be taken into account as part of the structure. On the other hand,

the information supplied by sensors enables to determine if the motion produced

by the robot using a well designed control architecture is the one required or not.

It is important to classify the sensors into proprioceptive sensors that provide to

the user information about the internal state of the robot (joint position, velocity,

torques) helping out to understand whether the system is tracking the desired

behaviour or not, and exteroceptive sensors providing the user information about

the surrounding environment (force sensors, vision sensors, etc.).

2.1.1 Motors

An actuator is a device that transforms energy and signals into the system to

generate motion. It may generate either rotational or linear motion. As the name

suggests, linear actuators generate linear motion. This means that linear actuators

have a fixed forward or backward travel distance on a linear plane before they must

come to a halt. On the other side, rotary actuators generate rotational motion,

which involves the actuator rotating on a circular plane. In the world of robotic

manipulator rotary actuators are more spread. In particular, servomotors are the

most used ones and depending on the kind of input in terms of power, they can be

classified into three different groups:

• Pneumatic motors making use of the pneumatic energy supplied by a com-

pressor and convert it into mechanical energy using pistons and turbines.
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• Hydraulic motors which, using the appropriate pumps, convert the hydraulic

energy contained in a reservoir into mechanical energy.

• Electric motors whose the principal source of energy is the electricity provided

by the electrical distribution system.

They should all adhere to certain basic standards. In fact, they should be able

to create large accelerations while having a low inertia to minimize their impact on

the mechanical structure. Additionally, they must have a broad velocity range and

great placement precision.[5]

Figure 2.1: Servomotors used in robotics

2.1.2 Stereo camera

Stereo camera, unlike standard cameras, is able to provide fundamental information

such as depth of a detected object. From the definition of Stereo camera : "A

camera with two or more lenses and a separate image sensor or film frame for

each lens is called a stereo camera." By simulating human binocular vision, stereo

photography, a technique that enables the camera to record three-dimensional
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images, is made possible [6]. Obviously, the resolution of the cameras and the

lighting conditions have an impact on how well measurements are performed. Even

though they are directly related to the computational weight, it offers a ton of

functions that allow the user to see the objective to be reached or even identify

obstacles to avoid along the road. In fact, such a camera is capable of generating a

point cloud of the observed objects and recognizing pre-established pictures using

a fairly computationally intensive machine learning process. Nowadays, stereo

camera is becoming more and more famous, mostly for self-driving. Indeed, the

Tesla CEO Elon Musk, during an interview highlighted the capability of stereo

camera of having a clear picture of what is going on in the surrounding environment,

outlining the superiority over the LiDAR technology for self-driving applications

as camera describes exactly the way we perceive reality.

Figure 2.2: Stereo camera
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2.1.3 Ultrasonic Sensor

A widely used sensor in robotic field is the ultrasonic sensor. It is a piece of

technology that uses ultrasonic sound waves to detect a target object’s distance

and then turns the sound that is reflected back into an electrical signal. The speed

of audible sound is greater than the speed of ultrasonic waves (i.e. the sound that

humans can hear).

Figure 2.3: Ultrasound sensor

The transmitter (which generates sound using piezoelectric crystals) and the

receiver are the two major parts of an ultrasonic sensor (which encounters the

sound after it has travelled to and from the target) [7]. Whenever one wants to

use this sensors to compute the distance from an object, the equation 2.1 taking

into account the speed of the sound should be considered. The distance D can be

computed as follows:

D = 1
2 T C (2.1)

where:
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• T is the time for the sound to bounce back.

• C is the sound speed 343 m/s.

It is worth noticing that this kind of sensor does not provide information about

the position in the space of an object but just how close it is. This aspect is clearly

understandable from Fig.2.4 taking a look at the propagation of sound waves. In

fact, it is frequently employed to provide the robot the ability to determine if it will

collide with an item on the way to the destination. Furthermore, ultrasonic sensors

in proximity sensing applications are less prone to interference from smoke, gas,

and other airborne particles than infrared (IR) sensors are (though the physical

components are still affected by variables such as heat).

Figure 2.4: Ultrasound sensor functioning
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2.2 Kinematics

As introduced in the previous chapter, a robotic manipulator can be fully described

by a kinematic chain. This is crucial to study and simulate the system to work with

and to control. Indeed, the kinematic analysis represent the first step towards the

software simulation of such a system and the development of a dynamic model itself.

In particular, this chapter will go through the general approach based on linear

algebra to derive the direct kinematics equation. By means of such equations, it is

possible to compute, given the joint angles of the manipulator, the final position

and orientation of the end-effector. Then, the inverse kinematic problem will be

analyzed, a key concept to understand, knowing a position in the space the robotic

arm has to reach with a certain pose, which joint angles to assign. It is worth

noting that in order to go through all these concepts an efficient way to represent

the position in the space of the end-effector should be presented. To this extent,

Euler angles and Quaternion will be introduced in order to represent the robotic

tip pose in the space. Furthermore, a systematic way to derive the direct kinematic

equations of the robot is to be defined. For this purpose, the Denavit-Hartenberg

Convetion is introduced, enabling to define the relative position and orientation of

two consecutive links and recursively to compute the kinematic equations.

Figure 2.5: DH convention kinematic parameters
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Taking into account that Axis i in Fig.2.5 is the axis connecting Link i-1 to

Link i, Frame i can be described exploiting DH convention as follows:

• Select axis z1 along Joint i-1 axis.

• Find the origin Oi at the point where axis zi and the common normal to axis

zi−1 and zi intersect. Additionally, locate the origin Oi′ at the intersection of

axis zi−1 and the common normal.

• Select the axis x1 along the common normal to axes zi−1 and z1 with direction

from Joint i to Joint i+1.

• Finally, select yi axis to complete the right-handed frame.

Then, once the link frames have been chosen, the position and orientation of Frame

i with respect to Frame i-1 can be fully specified using the following parameters

• ai distance between Oi and Oi′

• d1 coordinate of Oi′ along z1−1.

• α1 angle between zi−1 and z1 about axis x1.

• θ1 angle between xi−1 and x1 about axis z1.

Among the parameters described above, some of them are always constant as

they depend just on the geometry of the connection between the joints. Indeed, ai
and α1 will always depend on the geometry of the robot, while the variable in our

representation will be just one between θ1 and d1. It will be the former if the joint

is revolute while it will be the latter if the joint is prismatic.

In order to mathematically describe the relation between the different frames, a

matrix representation can be exploited. In particular, roto-translation matrices are

to be used such that
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Ai−1
i (qi) =



cθi
−sθi

cαi
sθi
sθi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di

0 0 0 1


(2.2)

where cθi
and sθi

are respectively, the cosine and the sine of the theta variable,

while qi is the joint variable.

2.2.1 Euler Angles and Quaternion

Here the problem of finding an efficient way to represent the attitude in the space

of the end-effector is going to be addressed. Indeed, rotation matrices have nine

parameters that can be reduced to three as they are related on each other. To this

aim, Euler angles can be introduced as three independent parameters ϕ = [φ θ ψ]T

constituting a minimal representation of the attitude of a rigid body in the space.

There are different types of Euler Angles used nowadays, but the most used one is

the Roll Pitch Yaw defining the RPY Euler Angles.

Figure 2.6: Representation of Roll Pitch Yaw angles
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For such a representation, a rotation matrix can be computed taking into account

the three indipendent paramemters

R(ϕ) = Rz(φ)Ry(θ)Rx(ψ) (2.3)

and computing the multiplication matrix by matrix it is possible to get the following

general matrix form

R(ϕ) =


cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθsψ cθcψ


As stated before, another way to represent the attitude of a rigid body with a

minimal representation (using just three parameters) is through quaternions. A

quaternion is a vector composed by a real part q0 representing the magnitude of the

rotation, and by a vectorial part [q1 q2 q3] representing the vector around which the

rotation has to happen. The base of the 4D linear space in which the quaternions

are defined is [1 i j k], where i j k are hypercomplex numbers satisying the following

anticommutative multiplication rules

i2 = j2 = k2 = ijk = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

A quaternion can be defined as a linear combination of the base as follows

q = q01 + q1i + q1j + q2k (2.4)

Noting that the following formulas can always be used to compute the corre-

sponding quaternion whenever a rotation matrix is available
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q0 = 1
2

√
1 + r11 + r22 + r33 (2.5)

q1 = 1
2 sgn(r32 − r23)

√
1 + r11 + r22 + r33 (2.6)

q2 = 1
2 sgn(r13 − r31)

√
1 − r11 + r22 − r33 (2.7)

q3 = 1
2 sgn(r21 − r12)

√
1 − r11 − r22 + r33 (2.8)

where sgn is the sign function and ri,j is the element of the matrix already shown

in 2.3.

2.2.2 Kinematics of Anthropomorphic Robot Arm

As anticipated, this subsection will go through the derivation of the direct kine-

matics equations useful to describe the end-effector pose and attitude in the space.

Every study addressing robotics has to deal with this fundamental part. In this

case, the anthropomorphic arm is to be study as it will be exploited throughout

this paperwork.

Figure 2.7: Anthropomorphic arm

To this aim, the Denavit-Hartenberg convention, that has been already presented,

will be used. The anthropomorphic arm is modeled after a human arm and is made
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up of three joints connected by regular links. In fact, the shoulder, elbow, and

wrist joints may be seen by looking at Fig.2.7 from the ground up, following the

structure. Therefore, it is useful to spot the four fundamental parameters of the

DH convention to compute the direct kinematics function. The correct choice for

such parameters is the one shown in Table 2.1.

Link ai αi di θi

1 0 π/2 0 θ1
2 a2 0 0 θ2
3 a3 0 0 θ3

Table 2.1: DH parameters for anthropomorphic arm

The computation of the matrices for each link, as stated by 2.2, yields to the

direct kinematics function:

T 0
3 (q) = A0

1A
1
2A

2
3 =



c1c23 −c1s23 s1 c1(a2c2 + a3c23)

s1c23 −s1s23 −c1 s1(a2c2 + a3c23)

s23 c23 0 a2s2 + a3s23

0 0 0 1


(2.9)

In this case, having just revolute joints in the mechanical structure of the robotic

arm, among the parameters the variable is always θi.

As it will be discussed later, it is worth to describe the spherical wrist kinematic

structure made up by three revolute joints whose rotation axis intersect in one

single point. This last feature is what makes the wrist "spherical".

Link ai αi di θi

4 0 −π/2 0 θ4
5 0 π/2 0 θ5
6 0 0 d6 θ6

Table 2.2: DH parameters for spherical wrist
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Figure 2.8: Spherical wrist

As before, also in this case it is possible to compute the direct kinematics

equation by means of homogeneous matrices as follows

T 3
6 (q) = A3

4A
4
5A

5
6 =



c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5c6 c5 c5d6

0 0 0 1


(2.10)

It is useful to think to attach the spherical wrist to the end-effector of the

anthropomorphic arm presented before. This feature would allow to get really nice

features either for dexterity and solvability of the inverse kinematic problem.

2.2.3 Inverse Kinematic Problem

As it has been discussed so far in Section 2.2, direct kinematics equation allow to

establish a relation between the joint variables in the joint space and the end-effector

position variables in the operational space. Here the problem of determining the

joint variables with the knowledge of the end-effector position in the space will be

addressed. This is what inverse kinematics is all about. Basically, it answers the

question "Which values should I assign to reach that particular position with the

end-effector?". It is not trivial to go through the solution of such a problem for

many reasons:
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• There might be infinite solutions to a particular end-effector pose in the space,

it is the case of redundant manipulators.

• No admissible solution is available studying the kinematic structure of the

manipulator.

• Generally, nonlinear equations is to be solved implying sometimes no closed-

form solution for such a problem.

There are several approaches to come up with a solution for the inverse kine-

matics problem. An inverse kinematic problem solver should have a complete

knowledge of the mechanical structure of the manipulator in order to have some

geometrical/algebraic intuition to get a closed-form solution. In the majority of

applications, numerical solution techniques are used even though they do not allow

the computations of all possible solutions to the inverse problem.

In this subsection a possible algebraic solution for the anthropomorphic arm will be

assessed. As anticipated before, the goal is to determine the variables θ1, θ2, θ3 once

the position of the end-effector to be reached in the operational space is chosen.

Before starting with some algebraic consideration taking to the final solution,

it is worth defining the position of the end-effector into the base frame of the

anthropomorphic arm shown in Fig.2.7. Hence, it follows

p⃗ =


px

py

pz

 = T 0
3 (q) p⃗3 (2.11)

where p⃗3 is the position that is to be reached in the operational space of the arm

expressed in the end-effector Frame 3, while p⃗ is the same position but expressed in

the base Frame 0. Since the problem is to position the end-effector into a particular

point in the space let the p⃗3 vector be
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p⃗3 = i⃗3 + j⃗3 + k⃗3 (2.12)

From 2.11 it follows

px = c1(a2c2 + a3c23) (2.13)

py = s1(a2c2 + a3c23) (2.14)

pz = −a2s2 + a3s23 (2.15)

Now, as introduced before some algebraic techniques will be applied. First,

squaring and summing 2.13, 2.14, 2.15 yields to

p2
x + p2

y + p2
z = a2

2 + a2
3 + 2a2a3c3 (2.16)

where just the c3 unknown appears, and so

c3 =
p2
x + p2

y + p2
z − a2

2 − a2
3

2a2a3
(2.17)

and knowing that c3 has always to hold the following inequalities −1 ≤ c3 ≤ 1,

it follows that

s3 = ±
ñ

1 − c2
3 (2.18)

and this yields to the computation of the first unknown joint variables θ3

θ3 = Atan2(s3, c3) (2.19)

that for the well-known property of angles yields to two different solutions

θ3,I ∈ [−π, π] (2.20)

θ3,II = −θ3,I (2.21)
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With the knowledge of θ3, the computation of θ2 can be addressed considering

2.13 and 2.14

p2
x + p2

y = (a2c2 + a3c23)2 (2.22)

that yields to

a2c2 + a3c23 = ±
ñ
p2
x + p2

y (2.23)

and the solution coming out from 2.23 and 2.15, taking into account the two

different possible values that θ3 can assume is

c2 =
±

ñ
p2
x + p2

y(a2 + a3c3) + pza3s3

a2
2 + a2

3 + 2a2a3c3
(2.24)

s2 =
pz(a2a3c3) ±

ñ
p2
x + p2

y+
a2

2 + a2
3 + 2a2a3c3

(2.25)

and finally, as before for θ3 the two possible solution can be computed for θ2 as

well

θ2,I = Atan2((a2 + a3c3)pz − a3s
+
3

ñ
p2
x + p2

y, (2.26)

(a2 + a3c3)
ñ
p2
x + p2

y + a3s
+
3 pz) (2.27)

θ2,II = Atan2((a2 + a3c3)pz + a3s
+
3

ñ
p2
x + p2

y, (2.28)

− (a2 + a3c3)
ñ
p2
x + p2

y + a3s
+
3 pz) (2.29)

where these two are the solutions picking s+
3 as stated in 2.18, and
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θ2,III = Atan2((a2 + a3c3)pz − a3s
−
3

ñ
p2
x + p2

y, (2.30)

(a2 + a3c3)
ñ
p2
x + p2

y + a3s
−
3 pz) (2.31)

θ2,IV = Atan2((a2 + a3c3)pz + a3s
−
3

ñ
p2
x + p2

y, (2.32)

− (a2 + a3c3)
ñ
p2
x + p2

y + a3s
−
3 pz) (2.33)

that are the solutions picking s−
3 .

Finally, the θ1 computation is possible after easily managing 2.23, 2.13 and 2.14

θ1,I = Atan2(py, px) (2.34)

θ1,II = Atan2(−py,−px). (2.35)

It is worth noticing that from 2.35 the following two solutions are possible

θ1,II =


Atan2(px, py) − π py ≥ 0

Atan2(px, py) + π py < 0.
(2.36)

The algebraic procedure studied so far, allows to come up with four different

solutions to the inverse kinematics problem as follows:

(θ1,I , θ2,I , θ3,I) (θ1,I , θ2,III , θ3,II) (θ1,II , θ2,II , θ3,I) (θ1,II , θ2,IV , θ3,II) (2.37)

The robotic arm different poses, depending on the chosen solution, are illustrated

in Fig.2.9.

2.3 Trajectory Planning

This section will go through the trajectory planning allowing the robotic arm to

receive the correct inputs in order to reach a fixed point in the space with some
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Figure 2.9: Four possible solutions to the inverse kinematics problem for anthro-
pomorphic arm

predefined features. There are different techniques to accomplish this aim. Two of

them are point-to-point motion and motion through a sequence of points. Just the

first one will be addressed throughout this section.

Whenever a robot has to reach a final assigned posture, saturation limits have to

be taken into account. There could me a limitation either on the applied force

or on the velocity that the robotic arm can reach. Furthermore, the trajectory

planning should take into account possible obstacles or path description. As the

actuators send inputs directly to the joints, it is easier to operate into the joint

space. Nevertheless, mostly of the times, whenever a particular path to follow has

to be specified, operational space is an easy way to express it. To this purpose, an

inverse kinematics problem, as described in the previous section, can be addressed

to understand which values the joints have to move to.

Furthermore, the user has the chance to choose intermediate points of the trajectory,

mostly of the times to express the maximum reachable velocity/acceleration. It is

worth noticing that having smooth trajectories is better for the sake of stability of

the robotic arm itself.

29



State of the Art

2.3.1 Trapezoidal Velocity Profile

As anticipated before, the point-to-point motion will be discussed, focusing first

on the trajectory generated solving an optimization problem and then on the

trapezoidal velocity profile widely used in industry field nowadays.

In particular, in the problem that will be deepen, the robotic arm has to move

from an initial to a final point. Obviously, such a problem would take to an infinite

number of solutions. To avoid this problem, an optimization problem can be solved

and the optimization variable can be freely chosen by the user. In this case, the

torque τ is chosen as optimization variable to design a trajectory of a body with

inertia I moving from an initial angle qi to a final one qf .

From the Newton’s second law of motion it follows that

Iω̇ = τ (2.38)

and since the robotic arm has to move from qi to qf

Ú qf

qi

ω(t) dt = qf − qi (2.39)

such that the following expression is minimized

Ú tf

0
τ 2(t) dt. (2.40)

The solution of the proposed optimization problem is

ω(t) = at2 + bt+ c. (2.41)

It follows that in the joint space the following cubic polynomial

q(t) = a3t
3 + a2t

2 + a1t+ a0 (2.42)

resulting into a parabolic velocity profile
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q̇(t) = 3a3t
2 + 2a2t+ a1 (2.43)

and into a linear acceleration profile

q̈(t) = 6a3t+ 2a2. (2.44)

From the equations just described, four parameters have to be fixed. Having

two conditions to impose on the initial and final joint angle, other two constraints

have to be chosen. Usually, a typical choice is to set the initial and final velocity

to zero, q̇i(t) = q̇f(t) = 0. This choice takes to the following system of equation

allowing to determine the trajectory unknow parameters

a0 = qi (2.45)

a1 = q̇i (2.46)

a3t
3
f + a2t

2
f + a1tf + a0 = qf (2.47)

3a3t
2
f + 2a2tf + a1 = q̇f (2.48)

If a trapezoidal velocity trajectory has to be employed, imposing a cruise velocity,

a constant acceleration in the beginning phase and a constant deceleration in the

final phase of the trajectory, the optimization variable has to be taken off. In this

case the problem would be addressed imposing

q̈ctc = qm − qc
tm − tc

(2.49)

where qm and tm are the joint variable and time at the average point of the

trajectory, while q̈c, qc, tc are the acceleration, joint angle and time when the cruise

velocity is reached. Being the position trajectory parabolic, it follows that

qc = qi + 1
2 q̈ct

2
c . (2.50)
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Considering 2.49 and 2.50, it yields to

q̈ct
2
c − q̈ctf tc + qf − qi = 0 (2.51)

Figure 2.10: Position, velocity and acceleration generated trajectories for the
analyzed case

and assigning q̈c with the following constraint

sign(q̈c) = sign(qf − qi) (2.52)
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and, as anticipated, giving tf , qi and qf it is possible to find the relation

tc = tf
2 − 1

2

öõõôt2f q̈c − 4(qf − qi)
q̈c

. (2.53)

The acceleration is then subject to the following inequality

|q̈c| ≥ 4|qf − qi|
t2f

. (2.54)

Assigning tf , qi, qf and a desired q̈c and solving 2.53 and 2.54, it yields to the

following position trajectory

q(t) =



qi + 1
2 q̈ct

2 0 ≤ t ≤ tc

qi + q̈ctc(t− tc
2 ) tc < t ≤ tf − tc

qf − 1
2 q̈c(tf − t)2 tf − tc < t ≤ tf .

(2.55)

Just to give an example and to show the trajectories in function of the time, some

random values can be assigned to see what outcome will be obtained. Assigning

[qi, qf , ti, tf , q̈c] = [0, π, 0, 1, 6π], and solving the equations described above, the

result is the following

tc = 0.12

q(t) =



3πt2 0 ≤ t ≤ 0.12

0.72π(t− 0.06) 0.12 < t ≤ 0.88

π − 3π(1 − t)2 0.88 < t ≤ 1.

and the produced trajectories of position, velocity and acceleration are shown

in Fig.2.10.
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2.3.2 Jerk Controlled Motion

As described in the previous subsection, constant acceleration profiles are widely

used in industry nowadays for real-time applications. This part of the work will

explain the benefits of using a jerk controlled motion. This technique is also called

S-curve motion planning and it turns out to have better performances than constant

acceleration. Thinking about it and looking at Fig.2.10, it is worth noticing the

"jump" that the acceleration trajectory has to do to pass from zero to the maximum

value [8]. This feature reflect on the performances of the robotic arm in terms of

vibration and accuracy. Indeed, with an S-curve profile, the robotic arm has the

chance to reach the final position in a smoother way. Among the benefits, some of

them are:

• Better surface quality - without abrupt changes in speed that cause momentary

micro-positional problems.

• Less chatter and skip due to decreased machine vibration and resonance.

• Smoother and cooler motor operation.

• Steadier movements for precision operations.

Although numerous studies on s-curve motion profiles have been conducted, no

comprehensive analysis of the general model of polynomial s-curve motion profiles

is taken into consideration. Here, a formulation about defining the trajectory in

the case of an S-curve model of degree n will be presented. As described, in the

trapezoidal velocity profile formulation, depending on the picked degree that has

been chosen for the model, different constant trajectory segments to be connected

will be generated. In the generic case of a model of degree n, 2n segments have to

be connected as shown in Fig.2.12.
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Figure 2.11: Trajectory with constant segments and n-th derivative of position

It is worth noticing that for every n-th S-curve motion trajectory, there will

always be a derivative with constant segments. Basically, the goal is to compute

Tp that is the time period the trajectory is constant.

Algorithm 1 n-th order s-curve profile
for p = n to 1 do Tp = 0

for p = n to 1 do

X0 = Xn

2n

rn
i=1[(

qi−1
j=0 2jTn+1−i+j) + Tn+1−i]

for q = 1 to (p-1) do

Xmax
q = Xn

2n−q

rn−q
i=1 [(qi−1

j=0 2jTn+1−i+j) + Tn+1−i]

if Xmax
q > Xpeak

q then Recalculate Tp from

Xpeak
q = Xn

2n−q

rn−q
i=1 [(qi−1

j=0 2jTn+1−i+j) + Tn+1−i]
end if

First, the Tp is set to be zero. Then, it is computed through Tp = 0. Then, it is

computed through the X0 equation and used to pull out the value of Xmax
q . This

value is then compare to the input peak value and if it is larger then another value

of Tp has to be selected. The algorithm keep going on till a value of Tp allowing

not to exceed the input peaks is chosen [9].

35



State of the Art

2.4 Obstacle Detection

Here, an important feature in robotics will be discussed: Obstacle Detection. This

allows to detect obstacles along the path bringing to the final position, alarming

the software to avoid them. Nowadays, there are several techniques used to spot

obstacles. It is enough to think about the automotive field, where mostly of the

cars developed right now, are equipped with such technology, helping out people

not just to park or to do tough maneuvers but also to avoid dangerous accident.

Just few techniques will be detailed in this section, just the ones which are going

to be exploited during this work.

LiDAR A key component in autonomous vehicles is LiDAR (Light Detection and

Ranging). A typical lidar sensor releases pulsed light waves into the surrounding

area from a laser. These pulses return to the sensor after bouncing off nearby

objects. The sensor determines the distance traveled by each pulse by measuring the

time it takes for it to return to the sensor. A real-time 3D map of the environment

is produced by repeating this procedure millions of times per second. This 3D

representation of the surrounding area can be used for navigation by an onboard

computer [10].

Figure 2.12: Mapping with LiDAR in autonomous vehicles
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Ultrasound Sensor Another fundamental cheap component is the ultrasound

sensor that has been widely discussed in Subsection 2.1.3. It is worth noticing

that with such a sensor (using just one of it) it is impossible to fully define the

position in the space of an obstacle, as for the nature of the ultrasound waves that

are spherical, only the information about how far the obstacle is will be provided.

This feature can be clearly seen from Fig.2.3. The propagation of spherical waves

in three dimensions is described by the following equation

1
v2
∂2q

∂t2
= ∂2q

∂x2 + ∂2q

∂y2 + ∂2q

∂z2 (2.56)

where x, y and z are the Cartesian coordinates and q is the displacement q(r⃗, t)

of the oscillator-medium at the point labeled r⃗ = (x, y, z) at time t [11].

As already discussed, the ultrasound sensor provides the distance of the detected

object. With this information, the equation of the sphere in the 3-D space to

identify the object can be defined as follows

(x− x0)2 + (y − y0)2 + (z − z0)2 = R2 (2.57)

where (x0, y0, z0) is the position in which the ultrasound sensor is located and R

is the distance provided by the sensor itself. It is worth noticing that with such a

piece of information, it is impossible to define the (x, y, z) position of the obstacle

in the space. A way to shrink the possible locations of the obstacle from every

position defined by 2.56 to few solutions is to use 2 or more ultrasound sensors and

solve the system of equations to find the intersections between the spheres. Though,

also in this way the unique solution is granted just when the spheres intersect in

one point in the space.
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Figure 2.13: Sphere in the 3-D space

Depth Camera Depth Camera plays an important role in automotive nowadays.

Also Elon Musk, CEO of Tesla, released an interview talking about the importance

of such a sensor to detect and map the surroundings. Indeed, thinking about it, all

what a car driver uses to sense and get information about the environment around

is the sight. With the same principle, depth camera is able to map exploiting the

vision features. The usage of this sensor has been widely described in Subsection

2.1.2.

Figure 2.14: Example of human being detection by a depth camera
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As shown in Fig.2.14 the depth camera has the capability to recognize a specific

object in the space through a well designed neural network [12]. Besides of this,

the depth camera is also able to generate a point cloud that will be discussed in

the following subsection.

2.4.1 Point Clouds

As anticipated before, point cloud is fundamental for a depth camera to recognize

the detected objects. In particular, whenever an object is caught by the camera, a

set of points in the 3-D space will be generated to identify such an object. This set

of points is basically a point cloud. Each point inside the mentioned set, has its

own position of Cartesian coordinates in the space [xyz]. Point clouds are typically

created by 3D scanners or photogrammetry software, which collect a lot of data

from the surrounding objects’ external surfaces. Point clouds are a byproduct of

3D scanning operations and have a wide range of uses, including the creation of

3D CAD models for manufactured parts, metrology and quality inspection, and

several visualization, animation, rendering, and mass customisation projects. The

focus of this project, involving the usage of point clouds, is about visualization and

obstacle detection [13].

Figure 2.15: Point clouds of an environment

Obviously, using point clouds to detect obstacles allows to choose among different
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options. For instance, it is possible to choose how many points are to be used to

describe an element in the picture or the precision we want the software to create

the point cloud map with. For sure, the higher will be the precision and the number

of points used to describe the object, the more complex will be our software from a

computational point of view. A fundamental tool that is directly related to point

clouds and that allows the differentiate among different objects close each other, is

optimization.

2.4.2 K-d Tree Algorithm

K-d tree is an optimization algorithm that allows to understand which points among

the data set of the point clouds belong to the same object. More specifically, a

Kd-tree (sometimes referred to as a k-dimensional tree) is a space-partitioning data

structure that organizes a collection of k-dimensional points into a tree form that

facilitates effective range searches and closest neighbor searches. When working

with point cloud data, nearest neighbor searches are a fundamental operation that

may be used to define the immediate vicinity of a point or points as well as to

identify correspondences between groups of points or feature descriptors [14].

Figure 2.16: Example of a k-d tree algorithm application
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The k-d tree is a binary tree in which each node represents a point in k di-

mensions. It is possible to consider any non-leaf node as inherently generating a

splitting hyperplane that splits the space into two equal halves, or half-spaces. The

left subtree of that node represents points that are to the left of this hyperplane,

while the right subtree represents points that are to the right of this hyperplane.

Every node in the tree is connected to one of the k dimensions, with the hyperplane

perpendicular to that dimension’s axis. This method of choosing the hyperplane

direction So, for instance, if the "x" axis is selected for a given split, all subtree

points with "x" values that are smaller than the node will be in the left subtree,

and all points with bigger "x" values would be in the right subtree. In this scenario,

the x value of the point would determine the hyperplane, and the unit x-axis would

serve as its normal.

Just to give an example of such an algorithm, it is possible to explain the procedure

showing an image. Looking at Fig.2.16, it can be seen that the root cell (white) is

first divided (by the red vertical plane) into two subcells, and then each of these

subcells is divided (by the green horizontal planes). The four blue vertical planes

finally divide four cells into two subcells. The final eight are known as leaf cells

since no further splitting occurs.

Nearest Neighbour Search The goal of the nearest neighbor search (NN)

algorithm is to locate the tree node that is closest to an input point. By swiftly

removing significant chunks of the search space utilizing the tree attributes, this

search can be completed effectively.

The procedure of applying the NN algorithm in a k-d tree problem can be described

as follows:

1. The procedure descends the tree recursively from the root node, just as it

would if the search point were being inserted (i.e. it goes left or right depending
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on whether the point is lesser than or greater than the current node in the

split dimension).

2. The method checks the node point at each leaf node it reaches and saves that

node point as the "current best" if the distance is less than the "current best".

3. The steps that the algorithm takes at each node to unwind the tree’s recursion

are as follows:

(a) The present node becomes the present best if it is closer than the present

best.

(b) The algorithm looks for spots that might be closer to the search point

than the present top point on the opposite side of the splitting plane.

The splitting hyperplane and a hypersphere with a radius equal to the

current nearest distance intersect at the search point to achieve this.

Given that all of the hyperplanes are axis-aligned, this is implemented

as a straightforward comparison to determine whether the separation

between the search point’s splitting coordinate and the current node is

smaller than the separation (overall coordinates) between the search point

and the current best.

i. If the hypersphere crosses the plane, the algorithm must move down

the opposite branch of the tree from the current node in search of

closer points, using the same recursive procedure as the entire search.

If the hypersphere crosses the plane, there may be closer points on

the opposite side of the plane.

ii. The method walks up the tree and eliminates the entire branch on the

other side of that node if the

4. The search is finished when the algorithm completes this step for the root

node.
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Generally, the algorithm described above, going through the comparison between

the current distance and the bast calculated one, uses squared distances avoiding to

compute the square roots for matter of computational cost. Moreover, a comparison

variable is usually created, holding the squared current best distance [14].

2.5 Obstacle Avoidance

Obstacle avoidance is fundamental nowadays in many sectors. In the autonomous

driving it is used to design a obstacle-free path and to make decisions upon the

detection of an object. Also in robotics, the system should be able to find out

whether the path to the final position is obstacle-free or not. In Section 2.3, the

path planning problem has been addressed. Obstacle avoidance is typically thought

of as being distinct from path planning because the former typically entails the

pre-computation of an obstacle-free path that a controller will later use to direct a

robot along.

Before going through a possible method to implement obstacle avoidance, it is im-

portant to find a way to model the obstacle along the path. Here the circumscribed

ball method will be described. Basically, it is possible to model every obstacle

following these steps:

1. Find the smallest cube wrapping the obstacle.

2. Create the cube’s circumscribed ball when the long side is no more than three

times the short side. Otherwise, a plane that cuts through the middle of each

long side divides the cube into two halves.

3. The two portions’ wrapped information is disclosed, and each is dealt with as

an impediment on its own. In other words, until the obstruction is entirely

encircled by the circumscribing ball, steps I (ii), and (iii) are repeated.
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4. Obtain the centers and radii of each circumscribed ball after the obstacle has

been transformed into one or more of them.

The manipulator’s linkages have a specific cross-sectional area. Each link is

enclosed in a cylinder to conveniently build a collision detection system. The radius

of the manipulator’s connection serves as the unit of measurement for the cylinder’s

section radius. The radius of each encircled ball of the barrier is added to the

radius of the connection of the manipulator in order to simplify the calculation.

At this point, the obstacle’s positional relationship with the manipulator’s link

is reduced to a straightforward ball-to-wire interaction. The collision detection

procedure goes like this:

A two-point equation can be established whenever the information about the

two ends of the link are available (xi, yi, zi) and (xi+1, yi+1, zi+1). It yields to the

following equation

x− xi
xi+1 − xi

= y − yi
yi+1 − yi

= z − zi
zi+1 − zi

= t (2.58)

that yields to the following system of parametric equations

x = t(xi+1 − xi) + xi (2.59)

y = t(yi+1 − yi) + yi (2.60)

z = t(zi+1 − zi) + zi (2.61)

As anticipated, the obstacle is modeled as a ball. To this extent, its equation is

defined as follows

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2. (2.62)

Substituting 2.59, 2.60 and 2.61 into 2.62, a quadratic expression about t is found.

The value of t tells a lot about the avoidance of the obstacle. Indeed, whenever
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0 ≤ t ≤ 1 the intersection is within the range of the line segment, otherwise it is

not. Thus, through the evaluation of the t parameter the intersection/position of

the ball (obstacle) with respect to the i-th link of the robotic arm can be judged.

In order to accomplish the goal of reaching the final position without interfering

with any obstacles along the path, the potential-field method will be discussed.

The artificial potential-field method is a crucial path planning technique. High

operability and efficiency are two of its standout benefits. The controlled object is

placed in an environment with an artificial potential field that is abstract in the

artificial potential field approach. The impediment and the target point in the

environment exert "repulsive force" on it, respectively, and the combined force of

the two forces propels the controlled object in the desired direction.

To this extent, an attractive potential field function has to be introduced

Uatt(Xj) = 1
2kρ

2(Xj, Xg) (2.63)

where the variable Xj = (xj, yj, zj) is the position of the controlled object

to be taken into consideration at the j-th step of the algorithm evaluation,

Xg = (xg, yg, zg) is the position coordinate of the final target, k is the coefficient

determining the attractive force as in the well-known equation for the potential

energy of a spring and ρ(Xj, Xg) = ||Xj − Xg|| is the shortest distance between

the the position coordinate of the object to be headed to the final destination and

the final destination itself.

In order to define the attractive force bringing the object to the final target, the

negative gradient has to be defined as

Fatt(Xj) = −∇(Uatt) = kρ(Xj, Xg). (2.64)

The attractive force can be decomposed along the three main coordinate axes
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Fattx(Xj, Xg) = Fatt(Xj, Xg) × cosαj,x (2.65)

Fatty(Xj, Xg) = Fatt(Xj, Xg) × cosαj,y (2.66)

Fattz(Xj, Xg) = Fatt(Xj, Xg) × cosαj,z (2.67)

where the angles αj,x, αj,yandαj,z are the angles between the controlled object Xj

and the center of the obstacle object considering the axes x, y and z, respectively.

As stated before, the obstacle is modeled as a sphere. In order to define the

repulsive force that the obstacle exerts on the controlled object, the minimum

distance between the sphere and the segment is defined as

ei = (xj − x0i, yj − y0i, zj − z0i)ñ
(xj − x0i)2 + (yj − y0i)2 + (zj − z0i)2

(2.68)

so the closest point to the object of Xj is defined as

Xi,j = (xi,j, yi,j, zi,j) = (x0i + riai, y0i + ribi, z0i + rici) (2.69)

where [ai bi ci]T is defined as


ai

bi

ci

 =



xj−x0i√
(xj−x0i)2+(yj−y0i)2+(zj−z0i)2

yj−y0i√
(xj−x0i)2+(yj−y0i)2+(zj−z0i)2

zj−z0i√
(xj−x0i)2+(yj−y0i)2+(zj−z0i)2

.

 (2.70)

At this point, the repulsive potential field function can be defined as

Urep(Xj) =


1
2η

3
1

ρ(Xj ,Xi,j)− 1
ρ0

42
ρ(Xj, Xi,j) ≤ ρ0

0 ρ(Xj, Xi,j) < ρ0

(2.71)
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where η is the gain coefficient of the repulsive force, ρ0 is the distance of the

obstacle and ρ(Xj, Xi,j) = ||Xj − Xi,j|| is the shortest distance between Xj and

Xi,j). In order to find the repulsive force, as for 2.64, the gradient can be defined as

Frep(Xj) = −∇(Urep) = η

 1
ρ(Xj, Xi,j) − 1

ρ0

 1
ρ2(Xj, Xi,j)

. (2.72)

The repulsive force can be decomposed along the three major axes as follows

Frepx(Xj, Xi,j) = Frep(Xj, Xi,j) × cos βj,x (2.73)

Frepy(Xj, Xi,j) = Frep(Xj, Xi,j) × cos βj,y (2.74)

Frepz(Xj, Xi,j) = Frep(Xj, Xi,j) × cos βj,z (2.75)

where the angles βj,x, βj,y and βj,z are the angles between the object Xj and the

center of the obstacle object considering the axes x, y and z, respectively.

Considering the body Xj , the forces applied to it are both repulsive and attractive

and combining them, it yields to

Fjx = Fattx(Xj, Xi,j) +
Ø
i

Frepx(Xj, Xi,j) (2.76)

Fjy = Fatty(Xj, Xi,j) +
Ø
i

Frepy(Xj, Xi,j) (2.77)

Fjz = Fattz(Xj, Xi,j) +
Ø
i

Frepz(Xj, Xi,j). (2.78)

Once we computed the forces applied to out body and with the knowledge of

the step size l, a prediction about the next position that our body will assume can

be done in the following way
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xj+1 = xj + l × Fjx
Fj

(2.79)

yj+1 = yj + l × Fjy
Fj

(2.80)

zj+1 = zj + l × Fjz
Fj

. (2.81)

It is worth noticing that exploiting the theory explained above, it is possible to

build more complex obstacle avoidance algorithms [15].

2.6 Software Processes Analysis

Another fundamental part to be addressed is about Software Processes. Indeed,

whenever a robotic system has to be designed and simulated, there is always a

software running into a piece of hardware doing something. The term "Software

Analysis" refers to any processes that assist in translating requirement specifica-

tions into actual implementation. All functional and non-functional expectations

for the program are laid forth in requirement specifications. These requirement

specifications are presented as texts that are legible and intelligible by humans,

and with which computers have no interaction.

The intermediary stage of software analysis and design assists in converting

human-readable requirements into actual code. Here, the importance of processes

will be discussed as they play a key role in the correct execution of the final task

to be accomplished.

As shown in Fig.2.17, as a process executes, it changes state. Each state can be

described as follows:

• New: the process is being created.

• Running: instructions are being executed.
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Figure 2.17: Process State Diagram (PSD)

• Waiting: the process is waiting for some event to occur.

• Ready: the process is waiting to be assigned to the processor.

• Terminated: the process has finished the execution

Obviously, the CPU has to be kept always busy as it would be a waste of time

keeping it doing nothing. Considering N processes and one processor, only one

process can be in the running state. The other ones can be kept either waiting for

a resource to become available or ready to be executed, as shown in Fig.2.18.

Figure 2.18: Possible states of N processes in the case of one processor

An important operation that could occur inside the CPU is the preemption.

Preemption happens when a task takes over another task that passes from the

running state to the ready one. This phenomenon can happen for different reasons,

among them the priority of the preempted task can be lower than the other task.

Whenever preemption happens, a context switch takes place and it is intended to

save all the information about the two tasks.
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Figure 2.19: Preemption phenomenon between two processes in one processor

2.6.1 Race Condition Problem

The state of an electronics, software, or other system when the behavior of the

system is dependent on the timing or sequencing of other uncontrollable events

is known as a race problem or race hazard. When one or more of the potential

actions are undesired, it turns into a bug.

Before getting into this problem, it is worth explaining what a critical section

is. Basically, the critical section is a piece of software that accesses to a shared

exclusive resource. Among the peculiarities of the mentioned resource, it is shared

between more tasks and it is protected against concurrent accesses by different

tasks [16].

The main problem a shared exclusive resource could cause is the race problem that

will be discussed here. Just to give an example, suppose that two tasks want to

change the value of a shared exclusive resource as shown in Fig.2.20.
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Figure 2.20: Two tasks sharing a shared exclusive resource

In this case the shared exclusive resource is the variable count and the problem

is that the operations shown in Fig.2.20, count+ + and count− − are not atomic

that is to say it does not happen in just one command. To be clear, Fig.2.21 shows

what happen inside the CPU whenever those operations are called.

Figure 2.21: Implementation of command count++ (right side) and count– (left
side)

In this case race condition is generated by tasks whose critical sections are

executed concurrently giving back a wrong result as shown in Fig.2.22.

Figure 2.22: Wrong result due to race condition problem

In order to solve race condition, the synchronization of the tasks shall be used.

The operating system should ensure that whenever the critical section is executed

by a task, preemption by another task sharing that resource can not happen.
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2.6.2 Multithreading Concept

In systems with multiple processors or CPU cores it could be useful to split the

work onto different software threads.

Basically, the smallest group of programmed instructions that may be independently

controlled by a scheduler, which is often a component of the operating system, is

known as a thread of execution. Operating systems implement threads and pro-

cesses differently, although a thread is typically a part of a process [17]. As discussed

previously, if just a CPU is available it is only possible to execute one task at a time.

Figure 2.23: Demonstration scheme of how threads work

This is where multithreading comes into play. In order to increase the speed

of the processor core without changing the frequency, multithreading can be

implemented to have the CPU process several tasks at once. Thus, in the case of

multithreading, multiple threads are processed more or less simultaneously [18]. It

is important to remark that in the case only one CPU is used, it is still possible to

do multithreading among multiple programs. Indeed, threads of different programs

will run sequentially and as fast as it appears that they are executed concurrently.
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Project Development

In this chapter the whole project will be discussed going through every single part

of it. As explained in the introduction, an Automated Robot-based Charger for

EVs has to be developed, taking care of both the hardware and software parts. The

first two sections will cover the software and hardware tools that have been used

to carry out this project, giving a general description of them and going through

why they have been chosen. Then, a more theoretical part comes into play into the

third section, diving deep to explain why a DOF has been added to the system to

accomplish the goal, exploiting and recalling some fundamental theoretical concepts

already discussed in Section 2.2. Finally, the software implementation and the logic

of the algorithm will be presented, also going through the explanation of some

mathematical and geometric considerations to come up with an efficient docking

algorithm. Moreover, in this last section, the obstacle detection implementation will

be addressed analyzing how it is done and which the advantages and limitations of

the implemented technology are. At the end of the section the obstacle avoidance

will be discussed as well, even though it is been implemented just into a simulation

environment.
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3.1 Software Tools

As discussed previously, developing such a system, the only theoretical concepts

are not enough. Indeed, also a deep knowledge of the software components has to

be taken into account. It is fundamental to choose the proper software to carry out

the right activity. To this extent, before getting into the project itself, the software

tools that have been implemented will be presented, explaining the choice as well.

Basically, the three main software tools that have been used throughout this project

are: ROS, RVIZ and Arduino. Nowadays, the first two are widely used in the

robotics field to control and make the robot execute different tasks and to simulate

the behaviour, respectively. Instead, Arduino is more or less spread in every sector

due to its compatibility with different Hardware and Software components.

3.1.1 ROS Environment

ROS stands for Robotic Operating System and, as anticipated before, it is widely

used in the robotics field. ROS is a collection of open-source robotics middleware.

Despite the name, it is not an operating system (OS), ROS is a collection of

software frameworks for the creation of robot software. As such, it offers services

like hardware abstraction, low-level device control, the implementation of frequently

used functionality, message-passing between processes, and package management

that are intended for a heterogeneous computer cluster. A graph architecture is

used to describe the running sets of ROS-based processes, with processing taking

place in nodes that can receive, post, and multiplex messages relating to control,

state, planning, actuators, and other topics.

In order to allow users to customize their software stacks to meet their robot

and application area, ROS was built to be open source. Users may choose the

configuration of the tools and libraries that interacted with the core of ROS. As a

result, aside from the overall framework in which programs must exist and interact,
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very little is fundamental to ROS. In some ways, message passing and nodes are

made possible by ROS. In reality, ROS is more than just that infrastructure; it

also includes a wide range of robot-agnostic capabilities offered by packages and a

larger ecosystem of ROS-related enhancements.

Although low latency and responsiveness are crucial for robot control, ROS is

not a real-time operating system (RTOS). This is a fundamental aspect from a

responsiveness point of view since operations are not executed in real time as in the

automotive sector. Real-time code can, however, be integrated with ROS. Though,

for the development of this project, processes are not hard real time. Indeed,

waiting some seconds more for the system to start the docking phase towards the

vehicle’s socket would not take any problem to the final aim. The only operation

to be treated with particular attention is the obstacle detection, where a certain

responsiveness is required.

Nodes Getting back to the way to operate of ROS, as described briefly before, it is

based on nodes. Each node has inside its own source code to execute and it could

run either waiting for an information from outside or not. Mostly of the times, it

waits for a message or an event to raise and this exchange of information between

nodes happens through topics [19].

Topics Topics are named buses over which nodes exchange messages. Since topics

use anonymous publish/subscribe semantics, the creation and consumption of

information are separated. Nodes typically have no idea with whom they are

interacting. Nodes that are interested in data instead subscribe to the pertinent

topic, while nodes that produce data publish to the pertinent topic. A topic may

have numerous publishers and subscribers [20].
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Figure 3.1: ROS functioning: nodes, topics, messages

As shown in Fig.3.1, the nodes can be recognized having an oval shape. In

particular, the /teleop_turtle node (blue) communicate the information to the

/turtlesim one (green) through the /turtle1/command_velocity topic (red arrow).

3.1.2 RVIZ Environment

RVIZ stands for ROS Visualization and is a 3-D visualization software that allows

the user to check the surroundings of the robotic system is being developed. This

dynamic visualization environment allow not just to check out around the robot

exploiting sensors, but also to simulate a possible system in order to understand

what could be possible outcomes of the implementation.

Figure 3.2: Dorna 1 robot visualization in RVIZ environment
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As shown in Fig.3.2, the robotic arm that has been used for this project is

visualized in RVIZ. Obviously, this visualization software allows to understand what

the manipulator is able to do and what tasks it is able to manage. Furthermore,

RVIZ allows to visualize the coordinate frames that, in the case shown in Fig.3.2,

are placed at each motor plus at the gripper. Beside of this, also ROS is able to

manage different coordinate frames and all the transformations between them that

have been described in Section 2.2.

As anticipated, through RVIZ it is possible to check what is going on around

the robot. It could be done both in simulation, adding a fake sensor to see the

functioning and in "real-time" to check out how the robot see the surrounding

environment and whether there are some problems related to the sensor or not.

For this project a depth camera has been used and, as a matter of fact, RVIZ has

been fundamental to understand problems at sensor-PCB communication level. As

shown in Fig.3.3, the AR_tag simulating the vehicle’s socket, is correctly visualized

and no errors should arise considering the sensor part.

Figure 3.3: Visualization on RVIZ of the AR tag with respective reference frame
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Furthermore, a blue square and the relative coordinate system have been attached

to the tag to make clearer the visualization.

Moreover, RVIZ gives the possibility of creating dynamic environment inserting

objects, obstacles, creating various environment tailored on the kind of application

of the robot.

3.1.3 Arduino Environment

The open-source Arduino platform is used to create electronics projects. With

Arduino, users can write and upload computer code to a physical programmable

circuit board (commonly called a microcontroller) using a piece of software called

the IDE (Integrated Development Environment), which runs on a computer or a

PCB.

Figure 3.4: Arduino microcontroller

With those just getting into electronics, the Arduino platform has grown rather

popular, and for good reason. The Arduino does not require a separate piece of

hardware (referred to as a programmer) in order to load fresh code onto the board;
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instead, users can do so by using a USB cable, in contrast to the majority of earlier

programmable circuit boards. Additionally, the Arduino IDE employs a condensed

form of C++ that makes learning to program simpler.

In this project, Arduino has been used as both microcontroller and IDE, to control

the stepper motor, which utility will be discussed later, and ultrasound sensors

used for the obstacle detection.

3.2 Hardware Tools

Here the importance of the hardware components will be addressed. Indeed, once

the software is ready, it has to be employed into a piece of hardware to run and

execute tasks. Moreover, mostly of the times, source codes are developed to perform

actions on physical components and to get information about a particular quantity

of interest of the system. Here, hardware-based sensors come into play, providing

the proper needed data to accomplish the final task.

In this section, the hardware components that have been used will be described

in detail. First, it will go through the Dorna 1 robotic arm used to realize the

automated charger station, describing all the main features such as resolution,

repeatability, limitations on speed and payload. Then, the sensors and PCBs used

to implement the algorithm and to get the information about the robot will be

addressed.

3.2.1 Dorna 1 Robot

To carry out the project, one of the most important parts is the robotic arm that

has been employed. Indeed, as described several times throughout writing down

the project, the automated charger is robot-based. To this extent, a Dorna 1

manipulator has been used. Among the features characterizing this robotic arm, it
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is equipped with five motors that means it has five DOF. This plays a key rule in

the positioning of the manipulator in the space that will be addressed in Section

3.3.

Figure 3.5: Dorna 1 robotic arm

It is intended to be used in both industrial and scientific applications, thanks to

its high precision, high speed and high payload capability for a robotic arm of its

dimension.

Number of Axis 5
Payload 1.1 Kg
Horizontal Reach 497.1 mm
Vertical Reach 607.9 mm
Resolution 0.1 mm
Repeatability 0.025 mm
Max Base Speed 300 deg/sec
Body Weight 5.4 Kg

Table 3.1: Main features of the Dorna 1 robotic arm

As shown in Table 3.1, the robotic arm ensures a good repeatability and
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resolution and quite high speed limits with a light body. This features allow to use

the robot in every environment for various applications.

Furthermore, a controller box is attached to the Dorna robot to control the stepper

motors so that every movement is successfully accomplished. It is also possible to

connect further sensors and actuators and make them work coordinated using the

available API through simple Python source code.

Figure 3.6: Dorna 1 controller box

It is worth noticing that, as written into the controller box in Fig.3.6, the

controller is able to support a further stepper motor. The communication between

the controller and the computer is USB-based and it is possible to send commands

through ROS and get information about the status of the robot itself.

3.2.2 Sensors and PCBs

As anticipated in Section 2.1, sensors are fundamental to get information of the

surroundings. To develop this thesis work, ultrasound sensors and stereo camera

have been used. The first ones guaranteed the obstacle detection during either

the initial phase, in which the environment is scanned and the robot is trying to

understand whether the docking phase can be started or not, and executing the

path to the final destination.
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Ultrasound sensor The model of the employed ultrasound sensor is the one

shown in Fig.2.3, that is the HC-SR04. The functioning of such a sensor is the

same already described in Subsection 2.1.3 and it is fully compatible with Arduino

board.

Operating Frequency 40 kHz
Max Range 4 m
Min Range 2 cm
Measuring Angle 15°

Table 3.2: Main features of the Dorna 1 robotic arm

As shown in Table 3.2, the sensor ensures a good working range with the only

limitation of not detecting obstacles below 2 cm.

ZED 2 camera Instead, to detect the AR tag in RVIZ environment and to

get the information about its position, as anticipated in Subsection 3.1.2, a ZED2

stereo camera has been used and its functioning has been described in Section 2.1.

This powerful depth camera comes with a SDK, software development kit that is a

set of tools for a specific platform, including different code libraries to be used to

implement a great variety of functionalities. The working principle of the whole

system ZED 2 camera plus SDK is shown in Fig.3.7.

Figure 3.7: Functional SDK diagram
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In particular, it is fully compatible with ROS and is able to provide the following

data [21]:

• Left and right rectified/unrectified images.

• Depth map.

• Colored 3D point cloud.

• Visual odometry: Position and orientation of the camera.

• Pose tracking: Position and orientation of the camera fixed and fused with

IMU data.

• Spatial mapping: Fused 3d point cloud.

• Sensors data: accelerometer, gyroscope, barometer, magnetometer, internal

temperature sensors.

Not everyone of this feature has been exploited to carry out the project. Indeed,

just the ones needed to build the 3-D depth map and the point cloud have been

implemented, not considering the simple visualization capabilities of both the right

and left cameras.

As far as the PCBs are concerned, two different printed circuit boards have been

used: NVIDIA Jetson Nano and Arduino UNO.

NVIDIA Jetson Nano NVIDIA Jetson Nano is an embedded system-on-module

(SoM) and developer kit from the NVIDIA Jetson family, including an integrated

128-core Maxwell GPU, quad-core ARM A57 64-bit CPU, 4GB LPDDR4 memory,

along with support for MIPI CSI-2 and PCIe Gen2 high-speed I/O [22]. With this

PCB it is possible to run multiple neural networks in parallel for many applications,

all of this with a power consumption as low as 5 watts.
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Figure 3.8: NVIDIA Jetson Nano hardware scheme

Another important aspect to be taken into consideration is that Jetson Nano

board comes with Linux Operating System, the optimal choice if ROS has to be

implemented. This makes this PCB the ideal board to carry out projects in the

robotics field, begin able as well to interact with many different sensors. Indeed, in

this case this board is fully compatible with the ZED 2 camera that has been used

to visualize the environment.

Arduino Mega 2560 board The other PCB implemented for this project is

Arduino , that has been already widely described as software in Subsection 3.1.3.

Arduino Mega 2560 is an exemplary development board dedicated for building

extensive applications as compared to other maker boards by Arduino. The board

accommodates the ATmega2560 microcontroller, which operates at a frequency

of 16 MHz. The board contains 54 digital input/output pins, 16 analog inputs, 4

UARTs (hardware serial ports), a USB connection, a power jack, an ICSP header,

and a reset button [23].

The Arduino Mega 2560 is perfect for this project as it is capable of handling
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Figure 3.9: Arduino MEGA 2560 hardware scheme

a wide range of robotic applications thanks to its high processing capacity. It

can operate many motors simultaneously thanks to compatibility with the motor

controller shield, making it ideal for robotic applications. Numerous robotic sensors

can be accommodated by the numerous I/O pins. In particular, this board has

been chosen because it has to control a stepper motor and several ultrasound

sensors. For such an application a quite good amount of memory is needed and

this board can provide that. Unfortunately, Arduino boards are not able to run

processes simultaneously yet. Though, it is enough for this project since an high

responsiveness is not required.

3.3 Automated Charger System

In this section the importance of implementing a further DOF to the robotic system

will be deepened. Indeed, as described in Subsection 3.2.1, the robot has just five

DOFs that are not enough to choose freely the position and the orientation of the

gripper. This is a fundamental aspect to be analyzed as the charging system at the

end of the docking phase should be completely able to start the push phase that

has not been carried out in this project. To this extent, the kinematic studies about

the robotic arm and the whole system will be discussed in the next subsections.

After a theoretical part, recalling some important concepts described in Section
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2.2, the hardware architecture will be explained, motivating every choice that has

been taken.

3.3.1 Kinematic Model of the Robotic Arm

Here the problem of adding a degree of freedom more to the robotic charge will

be addressed studying the kinematic model of the robotic arm. In Section 2.2 the

importance of carrying out a mathematical study of the system has been addressed.

In particular, the homogeneous matrix has been presented and how it is possible

to understand the influence of the different joint variables to fix the position and

attitude of the robot.

For the Dorna 1 robot and being coherent to the DH convention, it is possible to

choose the reference frames as shown in Fig.3.10.

Figure 3.10: DH convention for Dorna 1 robotic arm

For such a choice of the reference frames, the table of the DH parameters can
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be defined as in Table 3.3.

Link ai αi di θi

1 l1 π/2 d1 θ1
2 l2 0 0 θ2
3 l3 0 0 θ3
4 0 π/2 0 θ4
5 0 0 d5 θ5

Table 3.3: DH parameters for Dorna 1 robot

Thus, the homogeneous matrix or transformation matrix allowing to express

the coordinates of the end-effector frame into the base frame of the robot can be

computed through the multiplication of matrices as follows

T 0
5 (q) = A0

1A
1
2A

2
3A

3
4A

4
5 (3.1)

=



s1s5 + c1c5c234 s1c5 − c1s5c234 c1s234 c1(l1 + l3c23 + d5s234 + l2c2)

s1c5c234 − c1s5 −s1s5c234 − c1c5 s1s234 l1s1 + s1(l3c23 + d5s234 + l2c2)

c5s234 −s5s234 −c234 d1 + l3s23 − d5c234 + l2s2

0 0 0 1


In 3.1, the rotational part of the end-effector frame with respect to the base

frame is represented by

R0
5(q) =


s1s5 + c1c5c234 s1c5 − c1s5c234 c1s234

s1c5c234 − c1s5 −s1s5c234 − c1c5 s1s234

c5s234 −s5s234 −c234

 (3.2)

while the displacement can be expressed through the vector

d⃗ =


c1(l1 + l3c23 + d5s234 + l2c2)

l1s1 + s1(l3c23 + d5s234 + l2c2)

d1 + l3s23 − d5c234 + l2s2

 . (3.3)
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Just to verify the correctness of 3.5, the determinant of the matrix and the

magnitude of the column vector x5
0, y

5
0 and z5

0 have been computed. Correctly,

det(R0
5(q)) = 1 and ||x0

5|| = ||y0
5|| = ||z0

5 || = 1.

3.3.2 The Need of Adding a DOF more

The inverse kinematic problem can be addressed as shown in Subsection 2.2.3

adapting to five angle variables instead of three. Though, even without assessing

such a problem it is possible to notice that five unknown angle variables to be fixed

are not enough to freely choose either position and orientation in the space of the

end-effector to reach the final goal.

Figure 3.11: Car configuration

This is fundamental for this application as for starting the plug-in phase of the

charging cable into the vehicle’s socket, the gripper (or end-effector) holding the

cable has to be aligned to the socket. Indeed, if just the robotic arm has to be

employed, the gripper is able to reach the socket completely aligned just in the

cases sketched in Fig.3.11.

In particular, five degrees of freedom are enough whenever the vector perpendicular

to the socket plane of the car intersects the z0 axis of the robot reference frame

shown in Fig.3.10. Obviously, the car can not get always those position when it
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needs to be charged. Because of this, other cases have to be addressed and the

employment of a degree of freedom more has to be discussed.

Just to be clear, throughout this paper in order to simulate the system, the gripper

shown in Fig.3.12 will be treated as a power cable for the EV.

Figure 3.12: Dorna 1 gripper simulating the plug

To solve the position-orientation problem, two solutions have been proposed,

such as:

• Pen-stand principle: attaching the gripper (or power cable) to the mechanical

mechanism of the pen stand to exploit a nonmotorized spherical wrist to be

oriented through magnets.

• Railway: mounting the robotic arm on a railway motorized by a stepper motor.

Among the two solutions, the second one has been chosen as there is no risk

of electromagnetic influence on the charging system. Furthermore, picking the

second choice, there is the chance to extend the workspace, as shown in Fig.3.13,

of the system that is an important feature for this kind of application. Indeed, it is
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impossible to think about the car to stop always at the same point in front of the

robotic arm.

Figure 3.13: Workspace top view of the robotic arm mounted on a railway

In Fig.3.13, the red line represents the railway and A and B are the starting

and ending points, respectively. It is worth noticing that the obtained workspace is

the one shown in Fig.1.6 but repeated for every single position along the railway.

In this case, the inverse kinematic problem gives a solution to reach the socket

choosing position and attitude. It is worth noticing that not every point inside the

workspace can be reached with every orientation. Indeed, in order to reach the

socket with the needed orientation, the vector perpendicular to the socket plane has

to intersect the red line representing the railway. This last topic will be discussed

later when the software algorithm will be addressed.

3.3.3 HW & SW Integration

In order to implement the system that has been discussed throughout this chapter,

Hardware & Software Integration is needed. Indeed, as already mentioned, different

pieces of hardware running software have been employed to carry out this project.

Basically, the core part was the NVIDIA Jetson Nano running ROS through Linux

Ubuntu operating system. Thanks to ROS it was possible to run different nodes

taking care of the recognition of the vehicle’s socket, the docking algorithm and

the obstacle detection algorithm. There was an additional node running on ROS
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but written through Arduino IDE, managing the obstacle detection part and the

sliding of the robotic arm along the railway. So an Arduino board was used to

control the stepper motor that through a thread made the robotic arm move along

the railway and to get information about possible obstacles from the ultrasound

sensors. Finally, the Dorna 1 robotic arm was used as manipulator and the ZED 2

camera to spot the socket. All of them were attached together as shown in Fig.3.14.

Figure 3.14: Hardware scheme of the Automated Charger System

Going more into detail, there were two different fashions of implementing the

system basing on the ZED 2 camera position: rover and static.

Rover In the rover configuration, the ZED 2 camera was mounted on top of the

gripper using a metal rack as shown in Fig.3.15.

The camera reference frame moved along with the gripper one so that a static

transformation was enough to express the coordinates in the ZED frame into the

gripper frame. Referring to the reference frame choice for the robotic arm shown

in Fig.3.10, the ZED frame was chosen as shown in Fig.3.16.

In this case, the transformation matrix transforming the ZED coordinates into the

end-effector ones is
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Figure 3.15: Rover configuration of the ZED 2 camera

R5
zed(q) =



1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1


(3.4)

where dx, dy and dz are the displacements of the ZED camera with respect to

the origin of the gripper frame.

Static configuration In the static configuration the ZED 2 camera was fixed to

the moving platform of the railway and it was static with respect to the robotic

arm.

In this case the transformation matrix expressing the ZED coordinates into the

base frame ones is static
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R0
zed(q) =



1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1


(3.5)

Among the two configurations, the static one was implemented since in the

rover to express the coordinates from the ZED 2 camera frame to the base frame

3.1 has to be used. Indeed, the transformation matrix of the robot brings some

uncertainties on both the angle variables and the length of the robot links, implying

an uncertain position of the object detected by the camera.

Figure 3.16: Reference frame choice for the rover ZED 2 camera

Finally, the ultrasound sensors were attached at the top of the gripper to check

out the front part along the path, at the bottom part to check out whether the

docking phase can start or not and on both sides of the manipulator for possible side
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obstacles. Though, the number of the ultrasound sensors employed can be changed

depending on the application thanks to the scalability of the code managing them.

Figure 3.17: Automated Charger system

3.4 Software Development

As already mentioned the software is fundamental to accomplish the final goal

of the project and once the hardware components are defined, the Software De-

velopment part can be addressed. In particular, first the model of the vehicle’s

socket used for simulation purposes and how to get the information about the

position and the orientation inside the workspace will be discussed. Then, the

algorithm logic will be explained for both the docking and obstacle detection algo-

rithm. Also the multithreading, presented in Subsection 2.6.2, will be presented

and how it was applied to the project to get the useful information of the robotic

arm without interrupting any other process in motion. Moreover, as far as the

Software Processes management, the global variables were used very carefully

to avoid the race condition problem. Indeed, whenever a global variable was

used and modified inside a function, in the others it was set to readable fashion
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only. In the final part of this section, an obstacle recognition algorithm through

ZED 2 camera that could support an obstacle avoidance algorithm will be addressed.

3.4.1 Socket Detection

Here, the problem of modelling and detecting the vehicle’s socket will be discussed.

The idea to spot the vehicle’s socket was to use an AR tag that is a 3D marker

used in computer vision for alignment and position tracking [24]. So from now on,

whenever AR tag will be mentioned it will refer to the socket or the final position

to be reached. As far as the detection part is concerned, the ZED 2 camera along

with the ar_track_alvar package were used.

Figure 3.18: AR Tag with the respective coordinate frame

Ar_track_alvar package Ar_track_alvar package is an open source library

and a ROS wrapper widely used for tracking objects. This powerful package has

different functionalities such as:

• Creating different sizes, resolutions, and data/ID encodings for AR tags

• Locating and tracking each individual AR tag’s pose, with the option of
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including depth data from the kinect (if one is available) to improve pose

predictions.

• Recognizing and tracking the position of "bundles" made up of several tags.

This enables tracking of multi-sided objects, robustness against occlusions,

and more reliable pose estimates.

• To avoid having to manually measure and enter tag locations in an XML file in

order to use the bundle capability, camera images might be used to compute

the spatial relationships between tags in a bundle [25].

As discussed in Subsection 3.1.1, in ROS there are several nodes communicating

one each other through topics. Starting the ZED 2 node and exploiting the

ar_track_alvar package it was possible to get the position and orientation of

the socket through the published ar_pose_marker topic. The latter contained a

message which structure is shown in Fig.3.19.

Figure 3.19: AR tag message structure in the ar_pose_marker topic

3.4.2 Filtering Data

In order to filter the data received from the ZED 2 camera about the AR Tag

position and orientation, a specific node was designed. This is useful to understand

whether the system has to reach the final position or not, but also if it is reachable

or not by the robotic arm. Indeed, this node is intended to stay in the middle

between the station detection node and the docking node. Before getting into the

logic scheme of the implemented algorithm, it is better to sketch all the possible
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cases that could happen in a real-case application. In fact, as already mentioned, it

is impossible for a car to stop always in the same position oriented facing exactly

the robot. As well as, it is impossible that a car is going to stop always parallel to

the railway.

Before addressing all the possible cases that could arise, it is worth presenting a

general situation with all the variables that were used to implement the algorithm

and to differentiate the many possible situations.

Figure 3.20: General possible situation and all the useful variables

Referring to Fig.3.20, the robotic arm is placed in Odorna that is the origin of

the reference frame (xdorna, ydorna, zdorna), xtag and ytag were used to locate the AR

tag in the space and were provided by the ar_track_alvar package through the

message shown in Fig.3.19 and θ is the angle between ztag and xdorna axes. In order

to compute θ, the information about the quaternions was provided by the ZED
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camera node in the form q = [q0 q1 q2 q3]. Then, through a proper function the

respective rotation matrix was computed as

r11 = 2(q2
0 + q2

1) − 1 (3.6)

r12 = 2(q1q2 − q0q3) (3.7)

r13 = 2(q1q3 + q0q2) (3.8)

r21 = 2(q1q2 + q0q3) (3.9)

r22 = 2(q2
0 + q2

2) − 1 (3.10)

r23 = 2(q2q3 − q0q1) (3.11)

r31 = 2(q1q3 − q0q2) (3.12)

r32 = 2(q2q3 + q0q1) (3.13)

r33 = 2(q2
0 + q2

3) − 1 (3.14)

where ri,j is the element of the quaternion equivalent rotation matrix of the i-th

row and j-th column. Then, the zdornatag vector, that is ztag expressed in the base

Dorna frame, was extract from the rotation matrix being the last column so that

zdornatag =


r13

r23

r33

 (3.15)

and finally θ was computed as follows

θ = arctan(r23

r13
) (3.16)

Instead, in order to compute ygoal, that is the quantity the robotic arm should

move thanks to the railway in order to finally have the system gripper-tag aligned,

the following relation was exploited
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ygoal = ytag − xtag tan(θ) (3.17)

After the description of all the variables involved, it is possible to present various

situations that could arise. Different cases and subcases were found and studied

for the filtering node algorithm development:

• Case 1: the car is parallel (or almost) to the railway.

1. Case 1.a: there is no need to use the railway and the docking is based

on the current detection.

2. Case 1.b: there is the need to use the railway and the docking is based

on the current detection.

• Case 2: the car is not parallel to the railway.

1. Case 2.a: there is no need to use the railway and the docking is based

on the current detection.

2. Case 2.b: there is the need to use the railway and the docking is based

on the current detection.

3. Case 2.c: there is the need to use the railway and the docking is based

on the previous detection.

Case 1.a In this case the car is parallel (or almost) to the railway and there is

no need to move the railway. It is worth noticing that "almost" is used since it is

rare in a real-case application for the software to compute θ = 0deg. To this extent,

a certain tolerance ϵ = ±5 deg was applied to define whether or not the tag was

parallel to the railway. Then, to decide whether it was needed to use the railway

or not, another small variable δ = 200 mm to set the tolerance along the y axis

was defined. Thus, this situation was addressed whenever |θ| < ϵ and |ygoal| < δ.
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Case 1.b In this case the car is still parallel but in order to reach the tag with the

gripper to start the charging phase, it is needed to use the railway. Though, in order

to not waste energy in useless moves of the railway, the inverse kinematic problem

is computed upfront to understand whether reaching ygoal, then the robotic arm is

able to reach the tag. Mathematically, this situation arose whenever |θ| < 5 deg

and |ygoal| > δ.

Case 2.a Instead in such a situation the tag is not parallel to the railway but there

is no need to use the railway though. This case arose |θ| ≥ 5 deg but |ygoal| < δ.

Case 2.b Finally, in this case the robot is not parallel to the railway and there is

the need to use the railway moving the platform by the quantity ygoal. Also here

as for Case 1.b the inverse kinematic problem were solved to understand if it was

worth activating the stepper motor and using the railway. Thus, this situation was

addressed whenever |θ| > ϵ and |ygoal| > δ.

From now on, Cases 1.a, 1.b, 2.a, 2.b will be referred as standard cases and the

logic algorithm scheme is presented in Fig.3.21. THETA, Y_GOAL and Y_AR

in the scheme are the absolute values of θ , ygoal and yar respectively. It is worth

noticing that whenever the move the rail block was reached, the software was

waiting for another detection of the tag to start send the message of starting the

docking to the docking node. Furthermore, whenever the railway was used and the

tag was not parallel to ydorna, a flag variable was activated and the position of the

tag was saved into memory, to be sure that whether Case 2.c arose, it could be

addressed.
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Figure 3.21: Filtering data algorithm for the standard cases

Case 2.c Here, the worst case was experienced as the docking was based on the

previous detection of the tag. This happened because upon moving the platform,

the tag was not detected anymore by the ZED camera. To spot the so called "worst"

situation, a flag variable was activated whenever there was the need to move the

platform and the car was not parallel to the railway so that, after reaching ygoal if

no tag was detected, the docking was based on the last saved position of the tag

itself. Mathematically, this situation arose whenever |θ| > 30 deg and |ygoal| > δ.
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Figure 3.22: Worst case that could arise

For the sake of clarity, in Fig.3.22 the worst situation is illustrated, where the

dotted blue line represents the field of view of the ZED camera that is 120 deg. In

this case, the transparent Dorna block is the final position of the platform upon

moving along ydorna by ygoal. Finally, the missing part of the algorithm scheme can

be shown in Fig.3.23.

To sum up and to show how in ROS the filtering node was connected to the

other ones and which kind of information it exchanged through the subscription-

publishing mechanism, Fig.3.24 illustrates the connections.
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Figure 3.23: Worst case algorithm

It is possible to list all the used topics such as:

• /zed_pose: carrying a PoseStamped message giving position and orientation

of the ZED camera, used to understand whether the rail was moving or not.

• /ar_pose_marker: carrying a AlvarMarkers message which structure is

illustrated in Fig.3.19, giving position and orientation of the tag.

• /fitered_ar_ypos: carrying a Float32 message providing the information

of ygoal to the Arduino node to activate the stepper motor.

• /starting_docking: carrying a Boolean message giving the permission to

Dorna Docking node to start the docking phase.

• /filtered_ar_pos: carrying a Float32MultiArray message providing to Dorna

Docking node the information about x,y and z position of the tag in the space.

• /dorna_status: carrying a Bool message carrying the information about the

robot status: True it was moving, False it was not moving.
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Figure 3.24: ROS graph-like representation of filtering node publications and
subscriptions

3.4.3 Dorna Docking

The Dorna Docking node was the core of the automated charger system as it was

responsible of managing the commands to move the robotic arm. In particular,

whenever the filtering data node, described in the previous subsection, checking

out the solvability of the inverse kinematic problem and addressing one of the

presented cases, published the ar_marker_pos, the Dorna Docking node started

running trying to move the robotic arm to reach the vehicle’s socket. To be clear,

referring to Fig.3.21 and Fig.3.23, the docking node received the message about

the position and orientation of the tag from the ar_marker_pos topic whenever

the algorithm reached the "Start Docking" block. In particular, before starting the

docking phase, this node checked out whether the car was still or not tacking two

consecutive messages from the filtering node and checking that:

|xar(k) − xar(k − 1)| ≤ ϵ (3.18)

|yar(k) − yar(k − 1)| ≤ ϵ (3.19)

|zar(k) − zar(k − 1)| ≤ ϵ (3.20)

where k indicates the time instant and ϵ = 0.254cm is a small tolerance constant
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thanks to the really good precision of the ZED 2 camera. Whenever 3.18, 3.19 and

3.20 were satisfied, the docking function was called and the robotic arm started

moving passing the command as a JSON format in the form show in Fig.3.25,

where x_ar_d, y_ar_d and z_ar_d are xar(k), yar(k) and zar(k) respectively.

Figure 3.25: Robot command in JSON format

Along with this functionality, this node was responsible for publishing all the

information of the Dorna robotic arm status. Indeed, as described in Subsection

3.4.2, the filtering data node needed to check whether or not the robot was still. To

provide such a piece of information, multithreading was exploited as it is important

for the system to be as responsive as possible. To this extent, different threads

were used to manage both the function providing the robot information and the

one responsible of the robot movements.

Moreover, this node was responsible for stopping the robot whenever an obstacle

was detected. This functionality was implemented through three different tasks

activating whenever a message about the detection of an obstacle was published by

the Arduino node managing the ultrasound sensors. These functions were intended

to run a command to stop the robotic arm and to erase the movement command

shown in Fig.3.25. For the detection of side obstacles, obstacle_detection_left and

obstacle_detection_right functions were used so that if any obstacle was detected

in a range of 7 cm the robot had to stop. For the front obstacle the reasoning

was a bit more tricky as it could be either an obstacle or the car itself. Starting

with the assumption of modelling the rear part of the car with a perpendicular

plane to the ground, and with the knowledge of the ultrasound sensor provid-

ing the smallest distance to the obstacle, the robotic arm had to stop whenever

distobst ≤ 7 cm& distar−tip ≥ 7 cm. In the last condition, distobst was provided by
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the Arduino node while distar−tip was computed exploiting the euclidean distance

between the tip of the robotic arm provided by the odometry of the Dorna robot

and the position in the space of the tag provided by the filtering node.

To sum up and to show how in ROS the Dorna Docking node was connected to the

other ones and which kind of information it exchanged through the subscription-

publishing mechanism, Fig.3.26 illustrates the connections.

Figure 3.26: ROS graph-like representation of Dorna docking node publications
and subscriptions

It is possible to list all the used topics that has not been discussed before, such

as:

• /obstacle_front: carrying a Range message giving the shortest distance to

the front obstacle.

• /obstacle_right: carrying a Range message giving the shortest distance to

the right-side obstacle.

• /obstacle_left: carrying a Range message giving the shortest distance to
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the left-side obstacle.

In Fig.3.27, the algorithm flow is shown. It is important to highlight that

whenever either the docking was completed or an obstacle was detected, the homing

phase was executed to bring the robotic arm to a safe position where it will be

waiting for another detection and for a safer docking.

Figure 3.27: Dorna Docking algorithm flow
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3.4.4 Arduino Node

As anticipated before, the Arduino node was responsible for controlling the stepper

motor to start the movement of the platform, where the robotic arm was mounted,

along the rail and to get information from the ultrasound sensors. In particular,

the source code was written through Arduino IDE and the rosserial node was

responsible of running it into ROS environment.

Figure 3.28: Stepper motor behaviour plot

For the ultrasound sensors management, it was responsible of switching the

dedicated PIN the sensor was attached to from LOW to HIGH or viceversa. As

already explained in Subsection 2.1.3, the distance of the obstacle to the ultrasound

sensor was computed through 2.1. The same methodology was applied for all the
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ultrasound sensors: front, right and left one. The three different functions were

evaluated one after the other and not all together since the processing time of each

of them was almost negligible considering the application. Moreover, to avoid any

problem of responsiveness the speed of docking of the robotic arm was properly

lowered.

Along with this, the Arduino node was responsible for the stepper motor moving

the platform. First, a study was addressed trying to figure out which kind of

control law to apply to the stepper motor to be as precise as possible. Indeed,

different measurements were taken about the platform movement along the railway

to understand how to minimize the disturbances as much as possible. The nut-

screw system used to move the platform was subject to many inaccuracies such

as the friction. Different tests were performed giving different commands to the

stepper motor to understand how much time the PIN had to stay HIGH to reach a

predefined position along the rail.

The results of the tests are shown in Table A.1, where Duration is the time the

stepper motor control PIN stayed HIGH, Starting and Final positions are the

starting and final measured positions of the platform and δ is simply the position

displacement between the initial and final position. According to these data, it was

possible to plot out the behaviour of the stepper motor and it is shown in Fig.3.28.

It is clear that the control law to set the time the pin should stay HIGH is almost

linear with the displacement δ and the relation that was used by the Arduino node

was chosen as

ton = 80.5 ygoal − 11.5 (3.21)

where ygoal is the position to reach moving the platform whose information

was got through the /filtered_ar_ypos topic and k1 = 80.5 and k2 = −11.5 were

estimated using a Least Square Estimator (LSE). To sum up the connections with
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the other ROS nodes and which kind of information was exchanged Fig.3.29 can

be shown.

Figure 3.29: ROS graph-like representation of Arduino node publications and
subscriptions

3.4.5 Obstacle Recognition

As described before, a possible implementation of Obstacle Recognition for imple-

menting Obstacle Avoidance was developed. This algorithm has been just tried in

simulation and through the usage of the depth camera sensor to understand whether

it could work or not. In particular, the algorithm used for obstacle recognition

went through different processes. The first one was the Voxel Grid allowing the

PCB processing the images to save memory. Indeed, thanks to this approach it

was possible to downsample an image, provided by the depth camera using the

PointCloud library, dividing it in different voxels. The VoxelGrid class overlays

the input point cloud data with a 3D voxel grid, which basically is a collection of

tiny 3D boxes in space. The remaining points will then be downsampled with their

centroid in each voxel. While it takes a little longer, this method more accurately

captures the underlying surface than using the voxel’s center to approximate them

[26].
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After this process, the usage of the pcl::EuclideanClusterExtraction allowed to

differentiate inside the Point Cloud among different obstacles. An unorganized

point cloud model P needs to be partitioned into smaller pieces using a clustering

method in order to drastically reduce the processing time for P as a whole. An

octree data structure, or more generally, a 3D grid subdivision of the space using

fixed-width boxes, can be used to create a straightforward data clustering strategy

in a Euclidean sense. The data in each resulting 3D box (or octree leaf) can be

roughly approximated with a different structure, making this specific representation

helpful in cases where either a volumetric representation of the occupied space is

required.

From a mathematical point of view different clusters can be defined such as

Oi = pi ∈ P and Oj = pj ∈ P . Then the point evaluation can be addressed such

as if

min||pi − pj||2 ≥ dth (3.22)

then pi and pj belong to different clusters. So basically, dth can be considered

as the radius of a sphere centered into one of the two points under examination.

However, in a more general sense, we can use nearest neighbors and apply a

clustering method that is basically equivalent to a flood fill algorithm [27]. In order

to be as clear as possible, the algorithm flow will be presented in steps as follows:

1. Get a PointCloud P from a vision component like ZED 2 camera.

2. Create a K-d tree representation for the PointCloud P received from the sensor.

The K-d tree method, a neighbours search algorithm, has been discussed in

Subsection 2.4.2.

3. Declare a list of clusters C and a queue Q of the points that need to be

checked.
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4. Then a recursive algorithm has to be implement to manage the upcoming

points pi ∈ P such that:

• Add pi to the Q queue to be analyzed.

• For every point pi ∈ Q the following steps can be performed:

– Search for the P k
i of point neighbors of pi in a sphere with radius

r < dth.

– For every neighbor pki ∈ P k
i check if the point has been already

processed, if not add it to Q.

• Add Q to the list of clusters C once the list of all points in Q has been

processed, then reset Q to its initial state.

5. The algorithm stops when all the points provided by the sensors through

PointCloud representation have been set into a list of point clusters C.

Figure 3.30: Obstacle recognition by the ZED 2 left camera in RVIZ through
Point Cloud

In Fig.3.30, it is possible to appreciate the point cloud generated by the left

camera of the ZED 2 camera, the recognition of two different objects thanks to the

previously explained algorithm and the localization of the AR tag.
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Tests and Results

In this chapter some tests and results will be presented. Tests are fundamental to

understand if the system respects the requirements fixed at the beginning and to

see whether the software works in a real-case application. Indeed, mostly of the

times some simulations are carried out without taking into account the undesired

effects in real-case applications. In order to carry out some tests the automated

charger systems has been mounted as shown by the hardware schema in Fig.3.14.

All the pieces of hardware that have been used for the automated charger have

been mounted as already explained in Subsection 3.3.3. Different factors could

change in a real-case application and one has to ensure that it is going to work in

every situation. Regarding the project, for instance, so far just the case in which

the tag plane is perpendicular to the ground has been described. So basically, an

interesting situation was to test the automated charger system changing the angle

with respect to the ground of the tag and to see whether the ZED 2 camera was

still able to detect it or not. It is worth noticing that changing the inclination of the

tag does not mean that the socket is inclined too. Indeed, in all these simulations

the assumption was to keep the socket perpendicular to the ground and centered

at the center of the tag. Thinking about the real-case application, the tag could be
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put wherever close to the vehicle’s socket, such as in the above part that mostly of

the time can not be approximated by a perpendicular plane to the ground.

The idea was to perform two different tests:

• Test A: here all the cases presented in Subsection 3.4.2 changing the angle θ

illustrated in Fig.3.20.

• Test B: here all the cases will be shown as well but showing how the results

change as the angle ϕ changed. The just mentioned angle is shown in Fig.4.1.

Figure 4.1: ϕ angle between the ztag and the xydorna-plane

Test A Performing Test A, the angle between the ztag and the xydorna − plane

was ϕ = 0 deg, so the tag plane was completely perpendicular to the ground plane.

The displacement along the three main axes was measured between the end-effector

reference frame described in Subsection 3.3.1 and the center of the AR tag.

As shown in Fig.4.2, the results were quite good reaching a maximum displace-

ment of 4 cm. It is worth noticing that the figure has been divided into three part

showing as for θ ≥ 30 deg the worst case arose. Though, it is clear that the worst

results were obtained when the worst case was performed. This is what one should

expect as in this situation upon moving the platform, the ZED 2 camera was not

able to detect the AR tag and no current location of the socket was provided.
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Figure 4.2: MATLAB plot showing the displacements along the three main axes
as θ changes

It is possible to show better the performances of the system computing

δ =
ñ
δ2
x + δ2

y + δ2
z (4.1)

and the results can be shown in Fig.4.3.

Test B Instead in Test B, different values for ϕ were tried. Here it is important

to highlight an important aspect about the chosen values. Indeed, it is important

to simulate and test just the situation that could arise in the implementation of

such a technology. To this extent, as the AR tag could be put above the socket

and that part of the car if approximated by a plane, would face either the railway

staying perpendicular to the ground plane or would face a bit up with a certain ϕ

angle, no negative angles were tested. The results can be shown in Fig.4.4
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Figure 4.3: MATLAB plot showing the displacement vector magnitude as θ
changes

Figure 4.4: MATLAB plot showing the displacement vector magnitude as θ and
ϕ change

Also in this case the performances seem to be better when θ ≈ 0 deg that is

when the socket is almost parallel to the railway.
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Conclusions

In this thesis, the initial studies on the development of an Automated Robot-

based Charger for EVs has been described. This is just the beginning part of the

ambitious project that InnoTech Systems start-up has decided to invest on. With

the future heading to a more and more autonomous world this can be considered as

a starting point to get the right knowledge about the automation field and finding

new technologies to make people’s life easier.

The main goal of the project, as mentioned in the very first chapter of this work,

was to develop an autonomous docking system intended to charge an EV without

any human help. At the end, this goal has been achieved building from scratch both

the hardware component and the software. To sum up, the robotic arm has been

implemented as core part to accomplish the docking and it has been integrated with

the use of a motorized railway proposing an efficient alternative to the spherical

wrist. This aspect allowed avoiding the use of a 6-DOF robot, reducing the cost

and developing knowledge about adding a degree of freedom to a robotic system.

Then, as far the software part is concerned, the algorithm has been able to manage

different pieces of information coming from multiple sensors and to process them

in order to understand which position in the space had to be reached.

97



Conclusions

As conclusion of the described development, several future improvements may be

suggested. As far as the hardware part is concerned, the robotic arm has some

limitations in finding the connection while from a software point of view, a more

detailed analysis of the process management and of how to properly organize the

timing of the different tasks could be addressed. Moreover, the accuracy of the

system could be improved, for instance using a UWB technology to understand

how the socket is placed with respect to the plug. This would allow to create a

closed-loop system taking the displacement to zero.

All considerations and this work as well, will hopefully one day become reality

improving sustainability and automation.
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Appendix A

Test Measurements

Duration [msec] Starting Position [mm] Final Position [mm] δ [mm]
100 182 184 2
200 184 186 2
300 186 190 4
400 190 195 5
500 195 201 6
600 201 209 8
700 209 217 8
800 217 227 10
900 227 238 11
1000 238 250 12
1200 250 266 16
1400 266 283 17
1600 283 303 20
1800 303 325 22
2000 325 350 25
2500 350 382 32
3000 382 419 37
4000 419 469 50
5000 469 532 63
6000 532 607 75
8000 607 707 100
10000 707 833 126
15000 833 1019 186
20000 1019 1267 248

Table A.1: Measurements for stepper accuracy
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Test Measurements

θ [deg] δx [cm] δy [cm] δz [cm]
-2.26 1.1 0.3 0.5
28 4 0.2 2

-27.25 3.2 0.5 0.5
4.65 1.2 0.3 0.3
3.76 0.9 0.3 0.7
-35 1 0.5 3.5
18.8 2 0.5 3.2

-23.58 1.4 0.5 0.4
46.32 1.5 2.1 3.3
-27.33 4 1 0.5
7.99 1.9 0.3 0.4

-41.57 1.5 1.7 2.8
4.5 1.4 0.1 0.3
2.47 1.2 0.3 0.6
6.28 1.8 0.6 0.4
27.53 2.9 0.7 0.2
-22.94 3.8 0.6 0.4
-46.66 1 0.7 3.7
-47.76 0.8 1.8 4.2

Table A.2: Automated charger system accuracy for ϕ = 0 deg

θ [deg] δx [cm] δy [cm] δz [cm]
3.11 0.9 0.2 0.2
34.35 1 1.2 0.1
-23.59 1.2 0.9 0.2
49.27 1 1.1 0.9
-52.4 2 1.5 1.8

Table A.3: Automated charger system accuracy for ϕ = 19.18 deg

θ [deg] δx [cm] δy [cm] δz [cm]
6 0.8 0.6 0.3

40.07 0.1 0.9 0.7
-33.48 3.4 2.1 0.9
-26.75 2 1.6 0.8
-48.15 1.5 2.5 0.3

Table A.4: Automated charger system accuracy for ϕ = 31.04 deg
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Test Measurements

θ [deg] δx [cm] δy [cm] δz [cm]
0.77 0.7 0.5 0.4
34.57 1 1.8 0.4
-28.23 1 1.8 0.7
51.68 0.6 0.5 3
-40.54 1.5 2 0.7

Table A.5: Automated charger system accuracy for ϕ = 43.49 deg
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