
POLITECNICO DI TORINO

Master of Science Degree in
Mechatronic Engineering

MASTER’S THESIS

In collaboration with

California State University Los Angeles

Deep learning and data augmentation
techniques for indoor environment

characterization via UWB technology

Supervisors Candidate
Prof. Chiaberge Marcello MORIN Mattia
Prof. Mondin Marina

ACADEMIC YEAR 2021-2022

Abstract

Ultra-wideband is a radio-based communication technology for short-range use
and fast and stable transmission of data. Its main characteristics are extremely
large bandwidth, very low signal power density, robustness against fading, and
low cost. These features make ultra-wideband suitable for indoor localization
applications. Referring to the positioning accuracy, it is around five and twenty-
five times better than adopting Bluetooth Low Energy (BLE) beacons or Wi-Fi,
respectively. Despite these promising results, ultra-wideband localization accuracy
robustly degrades when moving to non-ideal conditions, including Non-Line-Of-
Sight and the presence of dynamic environmental factors. This work aims at
characterizing an indoor environment via channel impulse responses retrieved by
ultra-wideband technology, opening the doors to future research in terms of sensor
fusion techniques for improving indoor localization accuracy and indoor channel
characterization.

As a first step of this work, a sufficiently large dataset is collected in a typical
indoor scenario, including static, dynamic, Line-Of-Sight and Non-Line-Of-Sight
conditions. In this regard, data augmentation techniques are exploited to enlarge
and enrich the dataset. Then, a deep neural network in the context of deep learn-
ing is chosen to classify a certain number of positions from the channel impulse
responses. In parallel, a class activation map algorithm is considered to provide
model explainability, a crucial missing aspect in many deep learning projects.

Results show channel impulse responses carry enough information about the
multipath delays in an indoor environment, at least in the static case. When a
realistic dynamic environment is considered, indoor environment characterization
becomes harder. As well known, a very large dataset is needed when dealing with
deep learning models. In this regard, data augmentation comes in hand, leading
to better results in terms of network generalization. The last chapter draws the
conclusion of the presented work, including suggestions for future research and
objectives to be pursued.

i

Contents

1 Introduction 1
1.1 Thesis objective . 1
1.2 Thesis organization . 1

2 Ultrawide-band 3
2.1 History and regulation . 3
2.2 Definition . 3
2.3 Characteristics . 5
2.4 Basics . 6

2.4.1 Transmission . 6
2.4.2 Modulation . 8

2.5 Wireless channel . 10
2.5.1 Indoor environments . 10
2.5.2 Channel modelling . 10
2.5.3 UWB Channel Impulse Response model 11
2.5.4 Channel Impulse Response 12

2.6 Ranging . 16
2.6.1 Single-sided Two-way Ranging 16
2.6.2 Double-sided Two-way Ranging 17

3 Artificial Intelligence 19
3.1 Machine Learning . 20

3.1.1 Challenges . 20
3.2 Deep Learning . 22
3.3 Deep learning for time series classification 24

3.3.1 DNN architecures for TSC 25
3.4 Time series data augmentation techniques 31

3.4.1 Basic approaches . 31
3.4.2 Advanced approaches . 33

3.5 Explainable Artificial Intelligence 34
3.5.1 Class Activation Mapping 34

ii

Contents Contents

4 Experimental set 36
4.1 Hardware and Software . 36

4.1.1 Decawave EVK1000 kit . 36
4.1.2 Mileseey X6 laser distance meter 37
4.1.3 DecaRanging . 38

4.2 Board issues and calibration . 40
4.3 Measurement campaign . 41

4.3.1 Board configuration . 42
4.3.2 Measurement scenario . 42
4.3.3 Data extraction . 44

5 Data collection and analysis 45
5.1 Collected dataset . 45
5.2 Channel impulse response analysis 48

5.2.1 Samples selection . 49
5.2.2 Point-to-point analysis . 49
5.2.3 Environmental factors influence 53
5.2.4 Principal Component Analysis 55

6 Classification 58
6.1 Preprocessing . 59

6.1.1 Data augmentation . 59
6.1.2 Scaling . 60
6.1.3 Normalization . 62
6.1.4 Shuffling . 63
6.1.5 Splitting . 63

6.2 Adopted model . 64
6.2.1 Gaussian noise . 65
6.2.2 Batch normalization . 66
6.2.3 Dropout . 66

6.3 Learning strategy . 66
6.3.1 Optimizers . 66
6.3.2 Loss functions . 70
6.3.3 Hyperparameters . 72

6.4 Results . 72
6.4.1 Confusion matrices . 73
6.4.2 Grad-CAM . 78

7 Conclusions 81

A MoDecaRanging PC application 83

iii

List of Figures

2.1 PSD comparison - UWB and other narrowband systems 4
2.2 UWB spectral masks - Indoor environment 5
2.3 UWB pulse shape . 6
2.4 UWB Gaussian pulse shape . 7
2.5 PSD of different order derivatives of the Gaussian pulse 8
2.6 UWB modulation schemes . 9
2.7 Multipath components induced by single or multi reflectors 14
2.8 (a) floor plan representing LOS and MPCs; (b) multipath reflections

with BW = 900 MHz (top) and BW = 50 MHz (bottom) 15
2.9 Two-step ranging approach . 16
2.10 SS-TWR scheme . 17
2.11 DS-TWR scheme . 18
2.12 Three messages DS-TWR scheme 18

3.1 Artificial Intelligence and its subfields 19
3.2 ”Garbage in, garbage out” clichè 21
3.3 Overfitting, underfitting problems 22
3.4 A simple Artificial Neural Network 23
3.5 Generic deep learning framework for time series classification 25
3.6 Generic convolution operation on an image 27
3.7 Different pooling operations . 28
3.8 Fully Convolutional Neural Network for Time Series Classification . 29
3.9 Comparison between the ResNet building block (left) and standard

ANN implementation (right) . 30
3.10 ResNet architecture for TSC . 30
3.11 Window warping data augmentation method on an example CIR . . 32
3.12 (a) Block diagram of network components and objective functions;

(b) Training scheme: solid lines indicate forward propagation, dashed
lines indicate backpropagation of gradients 33

3.13 Class Activation Mapping: graphical-based representation of the
algorithm . 35

iv

List of Figures List of Figures

4.1 EVB1000 board: back and front views 37
4.2 Mileseey X6 laser distance meter 38
4.3 DecaRanging PC application . 39
4.4 Channel Impulse Response view - 64MHz PRF 40
4.5 Effect of range bias on the reported distance 41
4.6 Measurement environment (a), EVK1000 setup in the measurement

scenario (b) . 43
4.7 Floor plan grid - 80x100cm . 44
4.8 Extracted data - structure of each point samples 44

5.1 Highlight on a grid portion - dataset Real, Realv2, Realv3 47
5.2 Number of samples per point - dataset Real, Realv2, Realv3 (from

left to right) . 48
5.3 Channel impulse response samples number selection 49
5.4 Channel impulse response and power delay profiles comparison for

points 1,2,10 - Ideal dataset . 50
5.5 Average channel impulse response - Real dataset 51
5.6 Power Delay Profiles computed on the average CIR - Real dataset . 52
5.7 Reference point location in the test environment 53
5.8 Environmental factors influence on the channel impulse response . . 54
5.9 Principal component analysis considering static CIR samples 56
5.10 Principal component analysis considering dynamic and NLOS CIR

samples . 57

6.1 Complete machine learning pipeline of the presented work 58
6.2 Synthetic CIR via linear combination of adjacent points - α = 0.8 . 60
6.3 Number of samples per point used for training - Original vs Aug-

mented dataset . 61
6.4 Adopted FCN model for the presented TSC task 64
6.5 Effect of dropout regularization on a FCN 67
6.6 Gradient Descent algorithm with small learning rate (left) and large

learning rate (right) . 68
6.7 Log loss function . 71
6.8 Confusion matrix - Test set: extracted 10% test set for the aug-

mented dataset . 75
6.9 Confusion matrix - Test set: Realv3 dataset 76
6.10 Misclassification analysis on the two test dataset 77
6.11 Grad-Class Activation Map algorithm results - Test set: 10% ex-

tracted from the augmented dataset 78
6.12 Grad-Class Activation Map algorithm results - Test set: Realv3

dataset . 79

v

List of Figures List of Figures

A.1 General software framework of DW1000 device driver 83
A.2 Register file 0x12 - Rx Frame Quality Information 84
A.3 LOG file heading structure . 85
A.4 CIR first path amplitude points - zoom 85

vi

List of Tables

4.1 UWB IEEE 802.15.4 UWB channels suported by the DW1000 . . . 37
4.2 Mileseey X6 laser distance meter technical specifications 38
4.3 Calibration distance for DW1000 channels and PRF of 64 MHz . . 41
4.4 EVB1000 configuration settings . 42

6.1 Network layers description and parameters 65
6.2 Key hyperparameters in the CNN design 73
6.3 Adopted hyperparameters in the FCN design 74
6.4 Adopted FCN model obtained accuracies 75
6.5 Misclassified locations with neighbors results 76

vii

Acronyms

AI
Artificial Intelligence

CAM
Class Activation Map

CIR
Channel Impulse Response

CNN
Convolutional Neural Network

DL
Deep Learning

DNN
Deep Neural Network

EIRP
Effective Isotropic Radiated Power

IR
Impulse Radio

GPS
Global Positioning System

ML
Machine Learning

MLP
Multi Layer Perceptrons

MTS
Multivariate Time Series

NLOS
Non Line Of Sight

PRF
Pulse Repetition Frequency

PSD
Power Spectral Density

viii

List of Tables List of Tables

ReLU

Rectified Linear Unit

SNR
Signal-to-Noise Ratio

TSC
Time Series Classification

TWR
Two-way Ranging

UWB
Ultrawide band

XAI
Explainable Artificial Intelligence

ix

Chapter 1

Introduction

1.1 Thesis objective

The objective of the proposed work is to validate the idea of characterization of
an indoor environment via Channel Impulse Responses based on ultrawide-band
technology. Therefore, an overview of the UWB and CIR is presented first. Then,
a dataset collection and analysis is carried out, together with a data augmentation
stage. Finally, the exploitation of a Deep Learning model is shown to prove the
thesis, together with limitations of the presented approach.

1.2 Thesis organization

The thesis is structured in five main chapters, here briefly summarized.

1. Ultrawide-band The first chapter describes the ultrawide-band technol-
ogy, together with its history and regulation. Moreover, an overview about
channel modelling in an indoor environment is presented and discussed in
detail.

2. Artificial Intelligence This section briefly describes what AI actually is
and the difference between Machine Learning and Deep Learning. Addition-
ally, it presents the most common classifiers for time-series data. Finally, it
introduces the concept of Explainable Artificial Intelligence.

3. Experimental Set In this chapter the software and hardware resources are
presented. Together with that, the measurement setup for data collection is
illustrated.

1

Introduction 1.2. Thesis organization

4. Dataset Collection and Analyses Any ML or DL model needs data. This
section reports the collected datasets and relative inspections. Furthermore,
data augmentation techniques are presented and discussed in detail.

5. Classification In this chapter the whole pipeline for environment charac-
terization via CIR is presented. In addition, the data pre-processing stage,
the adopted DNN model and learning strategies are discussed as well. This
section also reports the obtained results in terms of metrics and confusion
matrices. Furthermore, it shows the outcome of the Grad-CAM algorithm
on a test dataset.

2

Chapter 2

Ultrawide-band

2.1 History and regulation

UWB systems were born at the end of XIX century when Guglielmo Marconi,
obsessed by the idea of a wireless connected-world, built the first radio communi-
cation apparatus. Beside that, the first UWB communication system started in
London few years later, linking two post offices at a distance greater than one mile
[1].

The interest in UWB was then renewed after the Second World War, when
subnanosecond instruments became to be available. Today, thanks to the research
activities carried out in the last decades in the fields of analog and digital elec-
tronics, commercial UWB systems are accessible worldwide.

In 1998, the Federal Communication Commission (FCC) recognized the im-
portance of the UWB technology and a substantial change occurred in February
2002 when the FCC issued a ruling pointing out that UWB could be used for data
communications as well as radar and safety applications [2].
Consequently of the cited regulation, the UWB technology has been authorized
for the commercial uses with different applications, operating frequency bands and
transmitted power spectral densities.

2.2 Definition

In accordance with the definition given by FCC, a UWB transmission is any signal
which shows a fractional bandwidth (Bf) larger than 0.20, or which occupies a
bandwidth greater than 500 MHz, i.e.,

3

Ultrawide-band 2.2. Definition

Bf ≥ 0.2 or BW > 500 MHz (2.1)

The fractional bandwidth is defined as follows:

Bf =
BW

fc
=

(fH − fL)

(fH + fL)/2
, (2.2)

where fH and fL are the highest and the lowest transmitted frequencies at the
-10 dB emission point, respectively, BW is the signal bandwidth and fc is the
center frequency.

As shown in Fig. 2.1 the conventional radio transmission systems (i.e. narrow-
band and wideband systems) have small fractional bandwidths if compared to the
UWB signals.

Figure 2.1: PSD comparison - UWB and other narrowband systems

The band the FCC allocated to UWB communications is 7.5 GHz between
3.1 and 10.6 GHz, which is perhaps the largest allocation of bandwidth to any
commercial terrestrial system.

If the entire band is utilized, the maximum power available to a transmitter
is approximately 0.5 mW. This is just a minute fraction if compared to what is
available for the 2.4 GHz and 5.8 GHz ISM (industrial, scientific and medical)
bands used by WLAN standards such as IEEE 802.11 a/b/g. The power limita-
tion relegates UWB to indoor, short-range communications for high data rates, or
very low data rates for longer link distances.

4

Ultrawide-band 2.3. Characteristics

Because UWB systems operate with such a very large bandwidth, they share
the frequency spectrum with the others existing communication systems. To avoid
interference, different regions of the spectrum have different allowed power spectral
densities. These are regulated by the FCC which has assigned the EIRP allowed
for each frequency band.

Figure 2.2 shows the FCC and ECC (Electronic Communications Committee)
masks for an indoor UWB device, respectively valid for the US and the European
Union.

Figure 2.2: UWB spectral masks - Indoor environment

2.3 Characteristics

Unlike other communication systems, the UWB transmitter produces a very short
time-domain pulse (typically in the order of sub-nanoseconds) which is able to
propagate without the need for an additional RF (radio frequency) mixing stage.
It makes the UWB a potentially low complexity and low cost system.

In addition, thanks to the low energy density of the transmitted signal, it ap-
pears that the low-power, noise-like UWB transmissions do not cause significant
interference to existing radio systems.

Because of the large bandwidth of the transmitted signal, very high multipath
resolution is achieved. This aspect, together with the discontinuous transmission
makes the UWB resistant to multipath propagation and jamming.

5

Ultrawide-band 2.4. Basics

Finally, the very narrow time-domain pulses make the UWB able to offer very
precise timing, much better than GPS and other radio systems, also motivating
its use for indoor localization.

2.4 Basics

2.4.1 Transmission

A type of UWB communications system able to transmits such narrow-band UWB
pulses is called impulse radio. In a IR UWB system, UWB pulses are transmistted
in a discontinuous way.
On the basis of the employed UWB pulse shape, a certain banwdwidth is occupied
by the signal.

This type of transmission does not require the use of additional carrier modula-
tion as the pulse will propagate well in the radio channel. The technique is therefore
a basebad signaling technique and this radio concept is known as impulse radio [2].

The UWB pulse waveform can be any function as long as it satisfies the spec-
tral mask regulatory requirements shown in Fig. 2.2.

An example of UWB pulse shape is illustrated in Fig. 2.3.

Figure 2.3: UWB pulse shape

6

Ultrawide-band Transmission

The typical signal used for UWB transmission is the Gaussian pulse, defined
by:

p(t) =
A√
2πσ2

e(−
t2

2σ2) (2.3)

where, in (2.3), A denotes the amplitude and σ denotes the spread of the
Gaussian pulse.

In Fig. 2.4 a typical shape of a Gaussian pulse is shown.

Figure 2.4: UWB Gaussian pulse shape

To be compliant with the FCC mask, usually higher derivatives of the Gaussian
shape are exploited for the UWB transmission. The n-th derivative of a Gaussian
pulse can be computed in a recursive way from the following equation:

p(n)(t) = −n− 1

σ2
p(n−2)(t)− t

σ2
p(n−1)(t) (2.4)

The PSD shape of different derivatives of the Gaussian pulse is depicted in Fig.
2.5.

According to this figure, to comply with the FCC indoor emission limits, at
least the 4-th derivative should be transmitted.

7

Ultrawide-band Modulation

Figure 2.5: PSD of different order derivatives of the Gaussian pulse

2.4.2 Modulation

Modulation is required to carry information together with the signal.
There are a few modulation schemes that may be used with UWB systems, below
concisely described.

Pulse amplitude modulation (PAM)

In this modulation scheme, the transmitted binary pulse amplitude-modulated
signal str(t) can be written as:

str(t) = dkwtr(t) (2.5)

where wtr(t) is the UWB pulse waveform, k represents the transmitted bit (”0” or
”1”) and

dk =

{
−1 if k = 0

+1 if k = 1
(2.6)

is used for the antipodal representation of the transmitted bit k.

On-Off Keying (OOK)

The OOK scheme is based on the PAM one with the only difference that no signal
is transmitted in the case of bit ”0”, i.e.,

dk =

{
0 if k = 0

1 if k = 1
(2.7)

8

Ultrawide-band Modulation

Pulse Position Modulation (PPM)

With Pulse Position Modulation, the bit to be transmitted influences the position
of the UWB pulse, instead of the amplitude. It means that bit ”0” is represented
by a pulse at the initial time instant 0, while bit ”1” is shifted in time by an
amount δ from 0. In mathematical terms:

str(t) = wtr(t− δdk) (2.8)

where dk is defined as in (2.7).

Pulse Shape Modulation (PSM)

Among all modulation schemes, PPM and PAM are the most common in IR UWB
systems. PSM is an alternative and more complicated scheme where different pulse
shapes are used to represent information bits.

Fig. 2.6 depicts all modulation schemes graphically [3]:

Figure 2.6: UWB modulation schemes

9

Ultrawide-band 2.5. Wireless channel

2.5 Wireless channel

The medium between the transmitting antenna and the receiving antenna is gen-
erally termed as channel [4].

In wireless transmission, the characteristics of the signal change and evolve as
long as it travels through the channel. It is due to several phenomena, including
reflection, refraction, the transmitter-receiver relative motion and signal attenua-
tion.
In addition, wireless channels are more susceptible than cabled channels to noise
and interference.

Before explaining the adopted UWB channel model for wireless communication,
an overview about indoor channel modelling is presented.

2.5.1 Indoor environments

Since this work focuses on an indoor environment scenario, a brief description of
channel modelling in this regard is presented.

The indoor environment is a dynamic one with distinctive characteristics. The
presence of walls makes the indoor coverage constrained and diffraction plays an
important role, especially in NLOS.
Additionally, even in case of stationary transmitter and receiver, the movements
of people make the indoor channel to be time-variant [5]. In addition to that, the
indoor propagation analysis also strictly depends on the building’s geometry and
indoor channels are perhaps very sensitive to the location of the antenna.
All these aspects make the indoor channel characterization an hard task to tackle.

2.5.2 Channel modelling

There are two main approaches to model wireless indoor channel propagation,
known as stochastic and deterministic.
In stochastic modelling (as the name suggests), the model is obtained from data.
First data are collected from real measurements, then via statistical analysis chan-
nel coefficients are extracted to turn the data into parametric equations.
On the contrary, deterministic modelling is based on laws of physics.

While deterministic models are built for a specific environment, stochastic mod-
els adapt to environments which share similar characteristics to the one used to

10

Ultrawide-band UWB Channel Impulse Response model

construct the model. Since our work does not want to be site-specific, the focus is
placed on stochastic models.

There are many stochastic models for indoor wireless channels. Among them,
the Saleh-Valenzuela (SV) model [6] is a popular model used to describe the be-
haviour of multipath in indoor environments and it has been adopted in the IEEE
802.15.3a and IEEE 802.15.4a.
The indoor channel based on the SV model can be described by:

h(t) =
∞∑
l=0

∞∑
k=0

βkle
jϕklδ(t− Tl − τkl) (2.9)

where βkl is the multipath gain, ϕ is the phase associated with the lth cluster and
kth ray, l is the number of clusters, k is the number of arrival rays within the lth
cluster, Tl is the arrival time of the lth cluster and τkl is the arrival time of the
kth ray within the lth cluster.
The SV model was originally developed for wideband systems, but it is valid for
UWB systems as well.

2.5.3 UWB Channel Impulse Response model

In UWB communication, denoting with wtr the transmitted pulse (forgetting for a
while about modulation), the received signal r(t) after the channel can be written
as:

r(t) = Awrec(t− τ) + n(t) (2.10)

where τ is the propagation delay between transmitter and receiver and n(t) is the
additive noise. Among other things, note that due to the UWB channel nature,
the transmit waveform changes from wtr to wrec. It is then delayed by τ and at-
tenuated by A.

The UWB wireless channel can be entirely described by its impulse response
function h(t), expresses as follows:

h(t) =
N∑

n=0

anδ(t− τn)e
jθn (2.11)

11

Ultrawide-band Channel Impulse Response

where an , τn , θn , N are the parameters of the nth path and they represent
amplitude,delay,phase and number of multipath components, respectively.
When a UWB signal is a baseband one (e.g. in case of IR UWB signals), the phase
θ in (2.11) can be omitted and the equation becomes easily interpretable.
Note that the equation in (2.11) is a simplification of the more complex SV model
discussed in Section 2.5.2.

This equation is crucial for the thesis objective since it explains the multipath
distribution in an indoor environment, via the channel impulse response.

2.5.4 Channel Impulse Response

In order to accurately illustrate the Channel Impulse Response, a review of the
transmit and receive signal models is presented first.
Bandpass signals are frequently employed to model transmitted and received sig-
nals in communication systems. Since the transmitter circuitry is built so as to
produce real sinusoids only, these bandpass signals are real.

A bandpass signal s(t) at a carrier frequency fc can be expressed in the following
form:

s(t) = sI(t)cos(2πfct)− sQ(t)sin(2πfct) (2.12)

Conventionally, sI(t) and sQ(t) are called the in-phase and quadrature components
of s(t), respectively. Defining the complex signal u(t) = sI(t) + jsQ(t), it implies
sI(t) = Re{u(t)} and sQ(t) = Im{u(t)}. On the basis of this definition,

s(t) = Re {u(t)} cos(2πfct)− Im {u(t)} sin(2πfct) = Re
{
u(t)ej2πfct

}
(2.13)

As a natural consequence, the received signal will have a similar form,

r(t) = Re
{
v(t)ej2πfct

}
+ n(t) (2.14)

The received signal in (2.14) is made up of two components: the first corresponds
to the transmitted signal after propagation through the channel, the second mod-
els the noise added by the channel.

12

Ultrawide-band Channel Impulse Response

In a typical indoor environment, a transmitted wireless signal, modelled as
in (2.13), runs into multiple objects in the surroundings, producing reflected and
diffracted copies of the original transmitted signal. These additional copies are
known as multipath signal components (MPCs) which can be attenuated in power,
delayed in time and shifted in phase with respect to the LOS signal path at the
receiver side.
If the transmitter (TX), receiver (RX) and reflectors are all stationary (i.e., immo-
bile), then the characteristics of the multiple received paths are fixed. Conversely
and rationally, if the transmitter or the receiver are moving, the MPCs vary over
time.

Due to multipath, a single pulse trasmitted over a multipath channel appears,
at the receiver side, as a pulse train. Each received pulse corresponds to either
the LOS component, or a distinct multipath component associated with a dis-
tinct reflection or cluster of reflections. Furthermore, the multipath channel is
time-varying by its nature [7]. This characteristic arises from the fact either the
transmitter or the receiver is unfixed, or the environment is a dynamic one, i.e.,
it is evolving over time because people and/or objects are moving over time. As
a result, the relative location of the reflectors in the transmission path (elements
which give rise to multipaths) will change over time as well.

Considering the transmitted signal as modelled in (2.13) and neglecting the
noise induced by the channel, the signal at the RX side is the sum of the LOS
path and all resolvable multipath components. It can be expressed by:

r(t) = Re

N(t)∑
n=0

αn(t)u(t− τn(t))e
j(2πfc(t−τn(t))+ϕDn

 (2.15)

where n=0 corresponds to the LOS signal path, αn, τn, Dn are the amplitude,
delay, Doppler phase shift of the nth multipath component and fc is the carrier
frequency.
It is essential to draw attention to the fact the nth resolvable multipath component
may correspond to the multipath associated with:

1. a single reflector

2. multiple reflectors grouped together which generate MPCs with similar de-
lays

The two cases are depicted in Fig. 2.7.

13

Ultrawide-band Channel Impulse Response

Figure 2.7: Multipath components induced by single or multi reflectors

In the former case, everything is simple and intuitive. Suppose to consider the
case where the nth multipath component is the outcome of multiple reflectors. By
definition, two MPCs with delay τ1 and τ2 are said to be resolvable if:

|τ1 − τ2| ≫ B−1
u (2.16)

where Bu refers to the signal bandwidth.
Multipath components which do not satisfy the resolvability criteria expressed in
(2.16) cannot be separated at the receiver side and we call them nonresolvable mul-
tipath components (NMPCs). These NMPCs are grouped into a single multipath
with delay τ ≈ τ1 ≈ τ2 and amplitude and phase equivalent to the summation of
the different components.
It leads to a significant conclusion. With reference to a static environment with
immobile TX and RX, τ1 and τ2 are fixed in value. In a narrowband system, the
bandwidth is relatively small. As a consequence, the second term in the resolv-
ability equation is high, leading to the generation of NMPCs. On the contrary,
wideband channels tend to have resolvable multipath components.

On the basis of this conclusion, the employment of the ultrawide-band tech-
nology (being its wireless channel a ultrawide-band one) allows to retrieve the
multipath components (MPCs) from the use of the characteristic tiny pulse, as
shown in Fig. 2.8, [8].

14

Ultrawide-band Channel Impulse Response

(a) Rectangular floor plan (b) Multipath reflections

Figure 2.8: (a) floor plan representing LOS and MPCs; (b) multipath reflections
with BW = 900 MHz (top) and BW = 50 MHz (bottom)

In detail, Fig. 2.8a depicts an example of a rectangular floor plan where a TX
sends pulses to a RX. The solid line shows the LOS signal, whereas the dashed
lines represent the first-order MPCs (i.e., the pulse that is reflected by a single
object only).
The theoretically received signals for BW = 900 MHz (reasonable value for a UWB
signal) and BW = 50 MHz (narrowband system) are illustrated in Fig. 2.8b.

Fig. 2.8b motivates the adoption of the UWB technology for indoor environ-
ment characterization (the objective of this work). In fact, the multipath reflec-
tions at 50 MHz are highly overlapping and it is not possible to extract multipath
components, according to (2.16). On the contrary, UWB systems are resistant to
multipath fading, making the received multipaths well separated.

When the bandwidth is sufficiently high, the received pulse (as well as the
transmitted one) is extremely tiny and Fig. 2.8b resembles the Channel Impulse
Response, carrying the information about the multipath propagation consisting of
reflections from walls, objects and moving people, typical elements of an indoor
environment.
The CIR can be modelled as in (2.11) and will be exploited as input in a classifi-
cation algorithm, so as to provide a location-based indoor environment character-
ization.

15

Ultrawide-band 2.6. Ranging

2.6 Ranging

Having investigated the UWB signal and channel modelling, this section focuses on
the main ranging methods to compute the distance between two (or more) UWB
modules.
The distance estimation can be either computed directly from the signal travelling
between the two nodes (i.e., direct positioning), or by a two-step procedure. In the
latter, at first one or more parameters are extracted from the signals, then these
parameters are exploited to estimate the distance (see Fig. 2.9).
In the following, two-step approaches are considered only.

Figure 2.9: Two-step ranging approach

The most common two-step approaches to compute the distance between two
UWB modules are:

• Received signal strength (RSS), which computes the distance on the
basis of the received amplitude (strength) of the signal. The main assumption
behind this approach is that a relation between the distance and power loss
has to be known;

• Angle of Arrival (AOA), based on the direction (angle) of the incoming
signal;

• Time of Arrival (TOA), which provides the distance between two nodes
by estimating the time of flight of the signal travelling from the transmitter
to the receiver;

• Time Difference of Arrival (TDOA), where the difference between the
arrival times of two signals travelling from the target node to two reference
nodes is estimated. It requires to have at least three UWB modules.

The ToA-based ranging method is among the most popular ones and the SS-
TWR ranging techniques implements it.

2.6.1 Single-sided Two-way Ranging

In a SS-TWR scheme the two devices exchange one message only and it involves
the measurement of a round-trip delay of such message. It is depicted in Fig. 2.10,
from [9].

16

Ultrawide-band Double-sided Two-way Ranging

Figure 2.10: SS-TWR scheme

The device A (initiator) initiates the exchange and device B (responder) re-
sponds to complete the exchange. More precisely, the initiator transmits a POLL

packet and stores the corresponding TX timestamp t1. Then the receiver replies
back with a RESPONSE packet after a certain delay Treply. On the basis of the RX
timestamp t4, the initiator can calculate the round-trip delay as Tround = t4 − t1.
Since the RESPONSE packet includes also the RX timestamp t2 of the received
POLL and the TX timestamp t3 of the RESPONSE , the device A is able to compute
the actual response delay of the responder as Treply = t3 − t2.

The Time of Flight (Tprop in Fig. 2.9, with reference to the fact it is the
propagation time of the signal) can be computed as:

Tprop =
Tround − Treply

2
=

(t4 − t1)− (t3 − t2)

2
(2.17)

And from (2.17) the distance between the two devices can be easily calculated
as:

d = Tprop · c (2.18)

where c is the speed of light in the air.

2.6.2 Double-sided Two-way Ranging

SS-TWR is the simplest but not the best approach to compute the Time of Flight
between two UWB nodes. In fact, the error in the computation in the propaga-
tion time increases as the clock offset of the two devices increases. A preferred
technique to lower this error is DS-TWR. In this case, the inaccuracy in the ToF

17

Ultrawide-band Double-sided Two-way Ranging

estimate is constant with reference to the clock offset.

The DS-TWR is an extension of the SS-TWR in which two round-trip mea-
surements are performed and combined to result in a reduced-error ToF, even for
quite long response delays and high clock offsets [10].
Considering Device A as initiator and Device B as responder, Fig. 2.11 shows the
operation of this scheme:

Figure 2.11: DS-TWR scheme

The DS-TWR can be further simplified into a three-message scheme, simply
using the first reply of the responder as the initiator for the second round-trip
measurement, as shown in Fig. 2.12:

Figure 2.12: Three messages DS-TWR scheme

With reference to the three-message scheme, the Time of Flight can be esti-
mated as:

Tprop =
Tround1 · Tround2 − Treply1 · Treply2

Tround1 + Tround2 + Treply1 + Treply2

(2.19)

The equation in (2.19), together with the three-messages DS-TWR ranging
scheme are implemented in the EVK1000 Evaluation Kit [11] employed in this
work.

18

Chapter 3

Artificial Intelligence

Artificial Intelligence (AI) is a field of computer science devoted to solve problems
by taking inspiration from the human intelligence.

Computers and software have been programmed to execute tasks by applying
a certain number of pre-defined rules, sometimes in a relatively straightforward
way, other times in a more challenging one.
Until 2012, AI was limited to advanced technological companies, government in-
stitutions and research agencies. Since then, thanks to the wide availability of
GPUs (Graphics Processing Units) and to the almost infinite storage of data of
every type, it has broken the boundaries becoming available into real-world busi-
ness everyday solutions [12].

The subfields of Artificial Intelligence are Machine Learning and Deep Learning,
as depicted in Fig. 3.1.

Figure 3.1: Artificial Intelligence and its subfields

19

Artificial Intelligence 3.1. Machine Learning

3.1 Machine Learning

As already pointed out, until recently most computer programs have been coded
as a rigid set of rules. However, there are problems for which this is not possi-
ble. Imagine to write a software able to predict the weather for the next days or
to classify images according to a specific set of classes. The former may depend
on a pattern that evolves over time, the latter involves relationships which are
really complicated. In problems like these, even the greatest software engineers
might struggle in coding solutions. This is where Machine Learning comes in hand.

Machine Learning (ML) can be conceived as the ability of making computers
able to learn and perform tasks without being explicitly programmed. It turns
the deterministic approach characteristic of the standard programming, into a
statistical, data-based one.
Every machine learning problem needs:

1. A model to handle and transform the data

2. The data from which the model can learn

3. An objective function to quantify how much the model is doing well

4. A learning algorithm to adjust the model’s parameters to improve the ob-
jective function

This is all but simple and it poses several challenges into ML problems. The
most common ones are briefly discussed in the next section.

3.1.1 Challenges

Although Machine Learning is widely used in almost every industry and field, there
exist a lot of challenges in the development of a ML application that can not be
ignored.

Lack of training data

Consider to make a newborn learn how to say ”mum”. All you have to do, it is
just to say him ”mum” over and over again. If you do it enough, the child can
absorb that word.

This is exactly what is needed for many Machine Learning models to properly
work as well. ML models needs a lot of data (even thousands for a simple task and
millions for harder ones). On the other hand, if the data availability lacks during

20

Artificial Intelligence Challenges

training, even the best ML model can fail.
This is even more true for Deep Learning models, as it will be pointed out later.

Poor data quality

Even in case the data availability is enough, if the training data contains a lot of
outliers, errors and noise, it makes the ML model infeasible in detecting a correct
pattern during training. As a consequence, the model will perform badly.
This explains why Data Scientists spend a relevant percentage of their time in
data cleaning.

Irrelevant features

Having lots of data and pre-processing them correctly is not enough. It is funda-
mental to have the right data as well. Learning will be surely unsuccessful if the
selected features are not predictive of the target quantity of interest [13].
Once again, no matter how much the adopted ML model is valid, if the model is
fed with garbage data, the model output will be garbage as well. This is the reason
why feature engineering (i.e., the process of selecting and transforming the most
relevant features from raw data to make an effective ML model) is a key ability of
any Machine Learning engineer.
Fig. 3.2 shows the commonplace ”Garbage in, Garbage out” in this regard.

Figure 3.2: ”Garbage in, garbage out” clichè

Nonrepresentative training data

The training data must be an accurate representation of the new cases so as to
obtain a model which generalizes and performs successfully. If the model is trained
by using a nonrepresentative training set, it will never be accurate in predictions,
causing it to be biased against one class or a group of classes (in case of classifica-
tion).

21

Artificial Intelligence 3.2. Deep Learning

Overfitting and underfitting

There are many ways to introduce the concept of overfitting. Consider the training
performances as the results of the football matches of a certain team preparing
for the Champions League final. Even if these results are promising, it does not
guarantee the team is going to win the tournament. The team may either have
played versus low-level teams during training, or may have some injured players
for the final match.

It is easy to draw the conclusion that a model is overfitting the training data
when it performs well on training set but fails to generalize to new, unseen data.

Underfitting is the oppostite of overfitting, and it typically happens when the
model is too simple to learn something from the data. Fig. 3.3 depicts the different
cases.

Figure 3.3: Overfitting, underfitting problems

3.2 Deep Learning

Deep Learning is a complex evolution of Machine Learning. If ML is about com-
puters able to perform tasks without being explicitly programmed, DL goes one
step further. In fact, in ML algorithms computers still think and act like machines,
whereas DL takes the challenge of analyzing data and solving problems drawing
conclusions in a similar way to how a human thinks.
To achieve this, DL uses a layered structure of algorithms called Artificial Neural
Network (ANN). The design of ANNs is inspired by the biological neural network
of the human brain, explaining the reason why we refer to DL as a subset of ML
used to solve problems in a human-like way. A simple example of ANN is shown
in Fig. 3.4.

22

Artificial Intelligence 3.2. Deep Learning

Figure 3.4: A simple Artificial Neural Network

In between the input and output layers, there are the hidden layers, so called
because their values cannot be observed in the training set. In other words, the
hidden layers are trained weights used by the network to perform its job. The
more hidden layers constitute an ANN, the deeper the network (from which the
name Deep Learning). Any ANN with at least two hidden layers is defined as
Deep Neural Network (DNN).

Why Deep Learning? What motivates its adoption in a large field of contexts
like automated driving, object detection, NLP and many more? Firstly, in a tra-
ditional ML algorithm, the responsible engineer would have to select and extract
the relevant features (see Section 3.1.1). On the contrary, the ANN, because of its
nature, performs automatic features engineering, requiring less human interven-
tion. Secondly, DL can work with images, video and unstructured data in a way
ML cannot simply do.
What about the drawbacks of Deep Learning? Above all, it requires a huge amount
of data and considerable computer power. The former reveals the need of large
training datasets, the latter the necessity of high-performance GPUs to speed up
the model training. In addition, the deep non-linear transformations performed
by an ANN make the model interpretability extremely abstract. To overcome this
issue, Explainable Artificial Intelligence is rising interest in research in the last
years, helping humans to understand the decisions made by an AI model. XAI
will not be described here, as it is discussed in one of the next sections.

23

Artificial Intelligence 3.3. Deep learning for time series classification

3.3 Deep learning for time series classification

Any classification problem, using data that is registered taking into account some
notion of ordering, can be cast as a time series classification (TSC) problem [14].
Time series are present in many real-world scenarios, ranging from quantitative
finance (with stocks) to medicine (in human activity recognition tasks) and cyber-
security (to spot patterns via darknets, for example). Before diving into the deep
learning models for the TSC task, a set of definitions is presented first.

Definition 1

A univariate time series X = [x1, x2, ..., xT] is an ordered set of real values.
The length of X is equal to the number of real values T.

Definition 2

A multivariate time series (MTS) with M dimensions, X = [x1, x2, ..., xM] is
made of M different univariate time series with X i ∈ RT .

Definition 3

A dataset D = {(X1, Y1), (X2, Y2), ..., (XN , YN)} is a collection of pairs
(Xi, Yi) where Xi could either be a univariate or multivariate time series
with Yi as its corresponding one-hot label vector. For a dataset containing
K classes, the one-hot label vector Yi is a vector of length K where each
element j ∈ [1, K] is equal to 1 if the class of Xi is j and 0 otherwise.

The magnitude of the channel impulse response can be seen as a univariate
time series and every location in an indoor environment (in accordance with a
selected accuracy) represents one of the K classes, referring to Definition 3.
Training a classifier on a dataset D is the objective of TSC, which aims to map
the input space to a probability distribution over the values of the class variable
(labels).

A strong baseline in TSC has been proved to be a nearest neighbor (NN) clas-
sifier coupled with the Dynamic Time Warping (DTW) distance function [15]. Re-
cently, the interest moved to the development of ensemble methods, like the COTE
[16], an ensemble of 35 classifiers. An extension of the COTE is the HIVE-COTE
which has been proven to outperform the COVE by leveraging a new hierarchi-
cal structure with probabilistic voting [17]. HIVE-COTE has been considered the
start-of-the-art algorithm for time series classification [15] in the year 2016, when
evaluated on the UCR/UEA archive, one of the most popular time series dataset.

24

Artificial Intelligence DNN architecures for TSC

Even if HIVE-COTE reaches very high accuracy, it suffers from two main draw-
backs. At first, it requires to train and optimize 37 classifiers, which may be really
time consuming and even infeasible in certain circumstances. In addition, the NN
is one of the key ingredient of the HIVE-COVE. By its nature, at a test time,
the NN must first scan the training set before making a prediction. It causes the
HIVE-COVE to require high classification time, making its deployment in real-
time applications very limited.
All these reasons, together with the wide availability of GPU resources and the
supreme feature of ANNs of automatic feature engineering, motivate the adoption
of deep learning models for time series classification.

The deep learning framework for a generic M-dimensional TSC is depicted in
Fig. 3.5.

Figure 3.5: Generic deep learning framework for time series classification

3.3.1 DNN architecures for TSC

As described in Section 3.1, any ML (or DL, being a ML subset) problem needs
a model. Deep learning approaches for TSC can be divided into two categories:
the generative and discriminative models [18]. The former generally shows an
unsupervised training step preceding the learning stage of the classifier, so as to
find a reliable representation of a TS pre-training (e.g., encoders). The latter refers
to a DL model which is a classifier able to directly learn the mapping between the
raw input of a TS and the output probability distribution over the K classes. In

25

Artificial Intelligence DNN architecures for TSC

this work, the most common discriminative models for TSC are presented and
discussed in detail.

Multi Layer Perceptrons

The MLP architecture represents the oldest and uncomplicated architecture among
all deep learning models. Its structure is more or less equivalent to the ANN
depicted in Fig. 3.4, except for an additional bias term not represented here. It
is perhaps widely known as fully connected network (FCN). The network name is
not random. In fact, we say it is fully connected because each neuron in a generic
layer li is connected to every neuron in the previous layer li−1. The connections
between layers are modelled as weights and they represent the way for a neural
network to learn from data.

The non-linear transformation in an MLP, according to Fig. 3.5, can be written
as:

Ali = f(wli ·X + bli) (3.1)

where X refers to the input time series, wli being the weights of the connections
linking layers [li−1, li], bli the bias term, f the adopted non-linear function, Ali the
output of neurons of layer li.
The number of hidden layers in an MLP is a choice, as well as the number of
neurons in each layer, which represents a hyperparameter for the network.
If the number of hidden layers can be selected, the final layer of an MLP for TSC is
commonly a softmax layer. It is an FC layer with softmax function1 as activation
function and a number of neurons equal to the number of classes K to be classified.
It guarantees the sum of probabilities over the K classes to be equal to 1.
The output of the softmax function is computed as follows:

Probj(X) =
eAj−1·wj+bj∑K
k=1 e

Ak−1·wk+bk
(3.2)

where Probj(X) represents the probability of input X (having class Y) to belong
to class j over the K classes. The weights wj and the bias bj are connected to the
activation in layer lj−1.

1The softmax function converts a vector of K real numbers into a probability distribution of
K possible outcomes.

26

Artificial Intelligence DNN architecures for TSC

The main drawback of an MLP is that it does not show any invariance. It means
that the network does not preserve the temporal information of the time series,
processing the TS elements independently. This may cause to fail the classification
when the time series appearance varies in some way (e.g. delayed in time). The
MLP network represents in any case a strong baseline for TSC and deep learning in
general, which has lead to the development of more complex and effective models.

Convolutional Neural Network

As any ANN, a CNN consists of an input layer, a certain number of hidden layers
and an output layer. In a MLP, any neuron in a certain hidden layer is connected
to all neurons in the previous one. On the contrary, in a CNN the hidden layer
is generally a convolutional layer, the core building block of any CNN. Differently
from MLPs, where weights are trained and modelled as interconnections between
neurons, in a CNN there is a filter (or kernel) which slides over the input per-
forming convolutions. The result of a convolution is a feature map. A graphical
representation of the convolution operation over an image is shown in Fig. 3.6,
taken from [19]. The optimal values for the filters (weights of the network) are
computed via network training, as for any other DL model.

Figure 3.6: Generic convolution operation on an image

Differently from images, the filter in a convolution operation over a univari-
ate time series slides along only one dimension (time → Conv1D) instead of two
dimensions (width, height → Conv2D). Denoting with X the input time series,
the output of the convolution on X is another time series X’ which has under-
gone filtering. As a consequence, applying n convolutions (filters) over a time series

27

Artificial Intelligence DNN architecures for TSC

X results in a MTS X’ whose dimension is equal to the number of applied filters n.

A CNN is not made of convolutional layers only. In between the input and
output layers, other operations generally occur. The output feature maps are
potentially sensitive to the location of the features in the input. To reduce this
issue, a pooling operation may be employed, so as to down sample the feature
maps, making them more robust to changes in the location in the input, promoting
the invariance. Pooling layers down sample the feature maps by condensing the
features in blocks. Two common methods are average pooling (Fig. 3.7a) and
max pooling (Fig. 3.7b) which compress the average existence of a feature and the
most activated one, respectively.

(a) Average pooling (b) Max pooling

Figure 3.7: Different pooling operations

Average and max pooling are local pooling techniques. Global pooling opera-
tions exist too. Making use of a global pooling operation on a time series results
in a down sampling to a single real value. Usually a global aggregation is adopted
to reduce drastically the number of parameters in a model thus decreasing the risk
of overfitting, while enabling the use of CAM to explain the model’s decision [20].
A CNN that does not contain any local pooling and with a GAP layer instead
of a traditional FC layer before the output softmax layer is traditionally referred
as Fully Convolutional Neural Network (FCN), firstly proposed in [21]. Since a
FCN does not contain any local pooling, the input time series length remains un-
changed throughout all the convolutions, under the assumption of same padding
in the network configuration.

In the middle of convolutional layers, batch normalization2 layers are typically
included in DL architectures. For time series data, the batch normalization opera-
tion is performed over each channel preventing the internal covariate shift3 across

2Batch normalization is a procedure employed to train ANNs in a faster and more robust way
through normalization of layers’ inputs by re-centering and re-scaling.

3The Internal Covariate Shift is defined as the change in the distribution of network activations

28

Artificial Intelligence DNN architecures for TSC

one mini-batch training of time series [22].

An example of FCN is depicted in Fig. 3.8. It is constituted of an input

Figure 3.8: Fully Convolutional Neural Network for Time Series Classification

layer (accommodating a univariate time series), three convolutional layers (with
a progressively increasing filters number n < m < j), a Global Average Pooling
layer and a final softmax layer with K neurons (classes).

Residual Neural Network

A Residual Neural Network (ResNet) can be seen as an extension of a standard
CNN. A standard CNN (or ANN in general) ”simply” tries to find the direct map-
ping between input and output via weight layers and applying non-linear activation
functions (commonly a ReLU). On the contrary, the ResNet implements the skip
connection mechanism, or identity mapping. It is used to jump over some layers,
adding the original input to the output of the weight layer. Fig. 3.9 shows the
comparison between any ordinary ANN implementation (right) and the ResNet
building block (left):

due to change in network parameters during training. In an ANN, the output of a layer feeds
the next one. This is from input to output. When the parameters of a layer change, the
distribution of inputs to subsequent layers does the same. These shifts in input distributions
may be problematic during the network training, even more if the number of layers is large.
Batch normalization helps to mitigate this effect.

29

Artificial Intelligence DNN architecures for TSC

Figure 3.9: Comparison between the ResNet building block (left) and standard
ANN implementation (right)

ResNets help preventing the vanishing gradient problem4, making the training
of the neural network much easier.

With reference to Fig. 3.8, the residual building block can be added as follows:

Figure 3.10: ResNet architecture for TSC

4In ML, the vanishing gradient problem is faced when training ANNs with a gradient-based
learning technique and backpropagation. In these methods, the ANN’s weights are updated
proportionally to the partial derivative of the error function with respect to the current weight,
via the chain rule. Sometimes the gradient vanishes just a little, causing the weights to change
in a tiny way.

30

Artificial Intelligence 3.4. Time series data augmentation techniques

3.4 Time series data augmentation techniques

The top-notch performance of deep neural networks extremely relies on large train-
ing dataset to avoid overfitting issues. However, in many real-world cases, data
may be limited either because can not be collected (e.g. in the medical field) or
because their collection is really time consuming (as in the task treated in this
work). As a consequence, data augmentation is of primary importance to enrich
the size and quality of the training dataset so as to make the DNN successfully
working.

The basic idea of data augmentation is to generate synthetic dataset covering
unexplored input space while maintaining correct labels [23]. Data augmentation
techniques are task dependant (some methods may apply for classification but not
for regression) and input type dependant (time series are intuitively different from
image data, since they exhibit the temporal dependency property).

Time series data augmentation methods can be divided into basic and advanced
approaches. The former include time series manipulation in time and frequency
domains. The latter are more complicated and typically learning-based ones, tak-
ing into account the data augmentation methods should be capable of mimicking
the features of the real data while generating synthetic ones. In the following,
some of these methods are presented and detailed for the classification task.

3.4.1 Basic approaches

Window slicing

A first basic method is known as window slicing. As the name suggests, it consists
in extracting slices from the raw time series and performing classification with
the extracted slice. The synthetic generated dataset is composed of N sliced time
series where each slice is extracted from a random raw time series and labelled
with the same class of the original one. The size of the slice is the only parameter
of this technique. The classifier is then learned on the augmented dataset.

Window warping

A second basic technique is named window warping. It works in time domain and
manipulate the time series directly. It consists in warping a randomly selected slice
by speeding it up (up-sampling) or down (down-sampling). Of course, it generates
synthetic time series of different lengths, according to the chosen sampling. To
deal with that, a cropping window is then used on the artificial time series to have

31

Artificial Intelligence Basic approaches

all the same length. The working principle is shown in Fig. 3.11, with reference
to a UWB channel impulse response.

Figure 3.11: Window warping data augmentation method on an example CIR

Gaussian noise

Even if one typically refers to the addition of Gaussian noise on top of a raw time
series as a way to improve network generalization, injecting noise to the input of a
neural network can also be seen as a form of data augmentation [24]. The addition
of Gaussian noise to the inputs of a neural network is traditionally referred as
jittering, after the use of the term in signal processing to refer to the uncorrelated
random noise in electrical circuits.

The amount of added noise (i.e. the spread of standard deviation, considering
zero mean value) is a configurable parameter. Too little noise has no effect, whereas
too much noise makes the input time series exceedingly different from the original
raw one. For this reason, the amount of noise has to be carefully chosen so as to
avoid to make the mapping function too challenging to learn on one hand, and to
make it effective on the other.

Linear combination

Another possible data augmentation technique is performing linear combinations
between samples. In particular, for each pair of neighboring samples, a new sam-
ple is generated which is the linear combination of them (according to a chosen
multiplication factor, hyperparameter of the method). This technique is exploited
in [25], where the data augmentation is performed in the learned embedding space.
This technique is proven to be particular useful for time series classification, which
is perhaps the same task to be carried out in this work.

32

Artificial Intelligence Advanced approaches

3.4.2 Advanced approaches

Advanced approaches can be further subdivided in: decomposition methods, statis-
tical generative models and learning methods. Even if they have not been adopted
in this work, the most recent and effective advanced method for time series data
augmentation is presented for completeness.

TimeGAN

Deep generative models (DGMs) have recently risen a lot of interest in the research
community, being able to generate near-realistic high-dimensional data, especially
for images and sequences (text, audio). They can be extended to time series as
well. Among DGMs, the generative adversarial networks (GANs) are the most
popular AI technique to produce synthetic samples, increasing the training set
preserving the real characteristics of the data. In this regard, recently the authors
in [26] proposed Time-series Generative Adversarial Network (TimeGAN), a new
framework for generating realistic time-series data. TimeGAN consists of four
network components: an embedding function, a recovery function, a sequence
generator and a sequence discriminator. The key feature of TimeGAN is that
the autoencoding components (first two) are trained jointly with the adversarial
components (latter two), such that TimeGAN simultaneously learns to encode
features, generate representations and iterate across time, preserving the temporal
dynamics of the time series. It uses both supervised and unsupervised losses. Fig.
3.12 shows the TimeGAN block diagram and training scheme, according to the
nomenclature defined in [26].

Figure 3.12: (a) Block diagram of network components and objective functions; (b)
Training scheme: solid lines indicate forward propagation, dashed lines indicate
backpropagation of gradients

33

Artificial Intelligence 3.5. Explainable Artificial Intelligence

3.5 Explainable Artificial Intelligence

Because of their highly non-linear structure, one of the main drawbacks of deep
learning models is that they are usually black-box models. It means that, even
if they are successful, it is unclear what information the model uses to make its
predictions. Explainable Artificial Intelligence (XAI) is the subset of AI which
attemps to provide interpretability to these black-box structures. The main goals
of XAI are:

• system verification, since in many applications one cannot trust a black-box
model;

• learning from the system, because today’s AI agents may observe patterns
undetectable by humans;

• regulation: who has the responsibility when the AI makes a wrong decision?

• system improvement, since to enhance the model performances, it is crucial
to make it more interpretable

Among all XAI objectives, this work includes a XAI algorithm for system improve-
ment.

3.5.1 Class Activation Mapping

The class activation map (CAM) algorithm was firstly introduced in [27] to iden-
tify the image regions which contributed most to a certain classification. It can be
basically extended to TSC as well, since the only assumptions are to deal with a
CNN adopting a GAP layer preceeding a softmax output layer. If the hypotheses
are satisfied, the weights of the output softmax layer can be projected back onto
the convolutional feature maps to identify the importance of certain features over
others (e.g., most significant image or time series regions for a certain classifica-
tion). This is what it is meant by class activation mapping. Fig. 3.13 shows the
CAM for a network which last convolutional layer is made of 3 filters.

As described in Section 3.3.1 and represented in Fig. 3.13, the GAP layer
averages the whole feature map of the last convolutional layer into a single value.
Then, a weighted sum of the GAP output is used to generate the final output via
the softmax layer.
Considering the TSC problem, let b(t) be the activation of the last convolutional
layer. It is a MTS with N variables, where N is the number of filters of the last
convolutional layer. As a consequence, bn(t) is the univariate time series obtained
by applying the nth filter, where n ∈ [1, N]. The result of GAP on bn(t) is

34

Artificial Intelligence Class Activation Mapping

Figure 3.13: Class Activation Mapping: graphical-based representation of the al-
gorithm

Bn =
∑

t bn(t). So, for a given class k, the input to the softmax is Sk =
∑

nw
k
nBn.

The weight wk
n simply denotes the relevance of Bn for class k. By merging all

together:

Sk =
∑
n

wk
n

∑
t

bn(t) =
∑
t

∑
n

wk
nbn(t) (3.3)

Finally, the class activation map (CAM) explaining the region of the TS used
most to perform the classification for the class k is given by:

CAMk =
∑
n

wk
nbn(t) (3.4)

The result of the CAM for a TSC task is a univariate time series where each value
(at every time stamp t) is equal to the weighted sum of the N data points at t,
with the weights being learned by the neural network [14].

35

Chapter 4

Experimental set

The objective of this work is to validate the idea of indoor environment charac-
terization via CIR obtained adopting the UWB technology, under the hypothesis
that every environment is characterized by its own electromagnetic firm. To do so,
at first a set of data is needed to perform analyses. Furthermore, other data are
required for network training and testing. To accomplish this task, a set of UWB
sensors has been selected and some software has been used to collect and store
such data. In the following sections, the chosen hardware is shown, together with
its characteristics and issues. The software used to collect the data is presented
as well. Finally, the measurement scenario is shown, as well as the UWB boards
configuration.

4.1 Hardware and Software

4.1.1 Decawave EVK1000 kit

Among all the UWB devices available in the market, it has been selected the
EVK1000 evaluation kit from Decawave. As demostrated in [28], this system
shows the best performances when compared to other commercially available UWB
systems like the ones of Ubisense and BeSpoon. Each EVK1000 kit contains two
EVB1000 boards (see. Fig. 4.1) equipped by a DW1000 CMOS radio tranceiver
IC compliant with the IEEE 802.15.4 UWB standard, a STM32F105 ARM Cortex
M3 µprocessor, a USB interface, an LCD display, an antenna and a set of jumpers
and switches for board configuration. The system reaches an accuracy of ±10 cm
using TWR TOF measurements [10]. It spans 6 RF bands from 3.5 GHz to 6.5
GHz and supports data rates of 110 kbps, 850 kbps and 6.8 Mbps.

Using the dip switches it is possible to choose between two channels (2 and 5)
among the 6 available ones. They have two different centre frequencies (3.99 GHz

36

Experimental set Mileseey X6 laser distance meter

Figure 4.1: EVB1000 board: back and front views

and 6.49 GHz, respectively) and the same bandwidth (499.2 MHz). The default
board configuration is for channel 2. More details about channel configuration are
reported in Table 4.1.

Channel Number
Centre Frequency Bandwidth Band

(MHz) (MHz) (MHz)

1 3494.4 499.2 3244.8 - 3744

2 3993.6 499.2 3774 - 4243.2

3 4492.8 499.2 4243.2 - 4742.4

4 3993.6 1331.2* 3328 - 4659.2

5 6489.6 499.2 6240 - 6739.2

7 6489.6 1081.6* 5980.3 - 6998.9

*The DW1000 has a maximum receive BW of 900 MHz

Table 4.1: UWB IEEE 802.15.4 UWB channels suported by the DW1000

4.1.2 Mileseey X6 laser distance meter

In order to collect the Channel Impulse Responses for a certain number of locations
in an indoor environment, a laser distance meter is needed. In particular, the
Mileseey X6 one has been selected. Fig. 4.2 shows the instrument and Table 4.2
reports the technical specifications.

37

Experimental set DecaRanging

Figure 4.2: Mileseey X6 laser distance meter

Measuring accuracy ±2 mm

Measuring range 0.16m - 70m

Measuring speed < 0.5 seconds

Measuring units m/ft/in

Laser class II

Laser type 635 nm < 1mW

Table 4.2: Mileseey X6 laser distance meter technical specifications

4.1.3 DecaRanging

The DecaRanging PC application offers an alternative to the embedded DecaRang-
ing application preinstalled on the on-board ARM microntroller of each EVB1000
board. The DecaRanging PC application drives the DW1000 UWB IC allowing to
perform TWR with another DW1000 module, defining how to exchange messages
between the pair of devices, calculate the ToF, display the resultant distance and
much more. The ranging method used by the DecaRanging software is the three
messages DS-TWR explained in Section 2.6.2. Fig. 4.3 shows the software GUI.

When the application is run, it is set in listener mode. First of all, the pairing
between the two boards is needed, so as to set one board as the tag, and the other
one as the anchor. Once the pairing is done, the ranging algorithm can be started.
At the top of the main window, some statistics are reported. They include the
count of successfully sent and received frames (TX, RX), the instant ToF, the
average distance over 8 or long-term measurements.
The configuration button allows to select the channel (among the 6 available ones),
the preamble length, the data rate, the PRF and the timing the two DW1000
modules use to exchange messages during the TWR measurement.

38

Experimental set DecaRanging

Figure 4.3: DecaRanging PC application

Similarly, the view button gives the possibility to enable the view of the Channel
Impulse Response (detailed in Section 2.5.4). The DW1000 measures the CIR
upon RX packets with a clock frequency of fs = 998.4 MHz corresponding to a
sampling period of Ts = 1/fs = 1.0016 ns and it stores it in an internal buffer.
The time span of the CIR is the duration of the preamble symbol, corresponding
to 1016 samples for a 64MHz PRF or 992 for a 16MHz PRF. Each sample is a
complex number whose real and imaginary parts are 16-bit signed integers. An
example of extracted CIR from the board for a 64MHz PRF is depicted in Fig.
4.4.

39

Experimental set 4.2. Board issues and calibration

Figure 4.4: Channel Impulse Response view - 64MHz PRF

The debug button allows to automatically record the measurements in a .log
file. The way the .log file is formatted is reported in Appendix A.

4.2 Board issues and calibration

There are two fundamental sources of error in a DW1000 based TWR scheme. The
first one is related to clock drift in the two nodes. In a typical TWR scheme, the er-
ror is proportional to Treply (see Section 2.6.1). It can be reduced adopting the three
messages DS-TWR scheme (SDS-TWR), as it is in the DecaRanging software. In
this case, the error in the ranging becomes proportional to ∆reply = Treply2−Treply1,
making it much smaller (refer to Section 2.6.2).
The second source of error depends on the incident signal level at a node. Ideally
there should be no relationship between the timestamp of a received signal and the
Received Signal Level (detailed in Appendix A). In practice, one can observe a bias
which varies with the Received Signal Level (RSL). This behaviour is illustrated
in Fig. 4.5 for channels 1,2,3,5 having 500 MHz bandwidth.

Since the effect of range bias is actually dependant on the RSL level at the pins
of the chip, this error is affected by the antenna gain. For this reason, a precise
antenna delay calibration is needed. Table 4.3 below lists the calibration distances
used for the different channels and for a PRF of 64 MHz.

To collect measurements, channel 5 has been selected with a PRF of 64 MHz.
The obtained antenna delay value, positioning the two boards 5.0m apart, has
been 516.025 ns. According to Fig. 4.3, it can be configured in the DecaRanging
application before starting to take measurements.

40

Experimental set 4.3. Measurement campaign

Figure 4.5: Effect of range bias on the reported distance

Channel Number
fc Bandwidth Calibration distance

(MHz) (MHz) (m)

2 3993.6 499.2 12.9

3 4492.8 499.2 7.2

4 3993.6 900 8.7

5 6489.6 499.2 5.0

7 6489.6 900 5.3

Table 4.3: Calibration distance for DW1000 channels and PRF of 64 MHz

The DecaRanging souce code includes a range bias adjustment to compensate for
this effect.

4.3 Measurement campaign

Having clarified the hardware and software adopted to collect the measurements,
the measurement campaign carried out to collect the dataset is now presented.
At first, the boards configuration is detailed. Next, the measurement scenario
is shown. Finally, the data extraction is presented. After that, everything will
be ready for data analysis and network training and testing, detailed in the next
chapters.

41

Experimental set Board configuration

4.3.1 Board configuration

Before starting to collect the measurements, the two EVB1000 boards have to
be configured. It is possible to configure the board via either the dip switches
or the DecaRanging PC application. The former allows to a lower number of
possibilities. Depending on the configuration, it is possible to maximise the range
of communication, to allow for more energy through the channel, to increase the
data rate and much more. For the thesis objective, it is important to retrieve the
CIR, ToF and SnR in a robust way. In principle, it can be with any configuration.
For this reason, the boards have been configured with the default values, despite
the channel (allowing for a higher centre frequency) and the antenna delay. Table
4.4 reports the details about the configuration of each EVB1000 board.

Channel number 5

Centre frequency 6498.6 MHz

Bandwidth 499.2 MHz

Antenna delay 516.025 ns

PRF 64 MHz

Data Rate 110 kbps

Preamble length 1024

Tag blink period 1000 ms

Tag poll period 1000 ms

Tag response delay 200 ms

Anchor response delay 150 ms

SFD Non standard

Table 4.4: EVB1000 configuration settings

In order to collect the measurements, two EVB1000 boards are used. One is
power supplied and set to be the tag, the other is connected to the laptop via a
USB cable and set as anchor, working with the MoDecaRanging PC application
detailed in Appendix A. This is needed to store the measurements.

4.3.2 Measurement scenario

The dataset have been collected in the hall of the Department of Electrical and
Control Engineering of the engineering building of the California State University,
Los Angeles. This room has been chosen because it includes some of the typical
features of an indoor environment (see Section 2.5), including static elements (walls

42

Experimental set Measurement scenario

and objects) and dynamic ones (people walking around interacting with doors and
elevators). Fig. 4.6a shows the environment and Fig. 4.6b shows the boards
configurations.

(a) Measurement environment (b) Boards setup in the measurement scenario

Figure 4.6: Measurement environment (a), EVK1000 setup in the measurement
scenario (b)

In a typical scenario where UWB is exploited for indoor positioning localization,
the tag moves and the anchor does not. In the measurement scenario considered in
this work it is the opposite, because the CIR reconstruction happens at the anchor
side. In the measurement setup, the tag is fixed on the glass cabinet while the
anchor is moved all around the room. Nevertheless, it does not matter since the
interest is just to collect enough measurements in a robust way, so as to validate
the hypothesis of characterization of an indoor environment via channel impulse
responses.

In order to cover the whole area, a grid has to be defined. It has been chosen
a 80x100cm grid where every point has been numbered (1-to-41) from the lower-
right corner, referring to the floor plan in Fig. 4.7. It has been found to be a
trade-off between the density of points and the time needed to collect the data.

43

Experimental set Data extraction

Figure 4.7: Floor plan grid - 80x100cm

4.3.3 Data extraction

The MoDecaRanging PC application produces a .log file in a specific format, ac-
cording to Appendix A. Collecting thousands of measurements for every point,
and collecting them for many points (according to the grid defined in Fig. 4.7), an
automatic extraction of the useful data is needed. To do so, a Python script reads
the .log file, saves the valuable data into a dictionary structure and a pickle1 file
is generated, so as to have the dataset ready for later analyses.
For each point, defining n as the number of successfully recorded frames with no
errors, the dictionary is structured as in Fig. 4.8.

Figure 4.8: Extracted data - structure of each point samples

Since the SDS-TWR ranging method is implemented, there are half ToF mea-
surements with respect to the reconstructed channel impulse responses. Every CIR
is composed of 1016 samples with a sampling period of Ts = 1.0016 ns, according
to Section 4.1.3 and 4.3.1.

1The pickle module implements binary protocols for serializing (pickling) and de-serializing
(unpickling) a Python object structure.

44

Chapter 5

Data collection and analysis

Having clarified the measurement scenario and the data structure of the samples,
the next step is about analysing the collected data. At first, a description about the
collected dataset is presented. Then, a channel impulse response analysis is carried
out to show the differences between one point and another in the environment,
also varying with the introduced dynamics. Finally, a the results obtained from a
Principal Component Analysis are shown.

5.1 Collected dataset

The measurements have been recorded according to the grid defined in Fig. 4.7. In
particular, measurements from four different days compose four different dataset.
Of course, it is possible to merge all these ones in a single one but it has been
preferred to leave them separated for certain reasons that will be detailed later.
In the following, it is possible to refer to such dataset as:

1. Ideal, the first collected dataset, composed of 41 points, n ≈ 800;

2. Real, the second dataset, made of 13 points, n ≈ 2800;

3. Realv2, the third one, constituted of 13 points, n ≈ 1000;

4. Realv3, the last one, composed of 13 points as well, n ≈ 1000.

where n is the number of successfully recorded frames with no errors for each
point, as in 4.3.3. For instance, the total number of samples for the Ideal dataset
is around 41× 800 = 32800.

The Ideal dataset covers the whole grid in Fig. 4.7 and it has been recorded
in static conditions only, i.e., no dynamics is introduced in the environment. Dif-
ferently, the Real, Realv2, Realv3 dataset have been collected in both static and

45

Data collection and analysis 5.1. Collected dataset

dynamic conditions, i.e., the recorded samples include most of the typical indoor
environment features (reflections from walls and objects and people-environment
interactions).

The Ideal dataset has been used to carry out a first analysis only, in terms of
distributions and power delay profiles. The indoor characterization of the environ-
ment in static conditions is definitely easier. Each CIR is more or less the same,
since the environment does not change and there is no external factor influencing
it.

Of course, the CIR changes as the environment changes. The channel impulse
responses for different environments are intuitively different, being different the
environment itself. At the same time, the presence of dynamics makes the CIR
dissimilar one to each other, even considering the same location. To collect mea-
surements in a more robust and realistic way, the dynamics introduced by people
is needed. This reason motivates the collection of the other dataset Real, Realv2,
Realv3.
In particular, the Real dataset will be used for the analyses in the next sections.
The samples, for each point, have been collected in the following way:

• The first 800 samples are in static conditions (same as in the Ideal dataset);

• The next 800 samples have been recorded in a dynamic condition, with people
walking around the room;

• The following 400 samples refer again to a static condition, this time having
introduced new static elements (e.g. person sit on a bench, employee waiting
for the elevator, student refilling the bottle at the sink, opened door);

• The next 400 samples have been taken rotating the antenna of the anchor
(clockwise for the first 200, anti-clockwise for the others);

• The last 400 samples include the dynamics introduced by people in the envi-
ronment and around 100 samples refer to NLOS conditions where a human
body was immobile in between the theoretically LOS of the two boards.

The Realv2 dataset has been collected some days after the Real one and it includes
both static and dynamic conditions, this time in a random way. Finally, the Realv3
is even more random, being collected after the fall semester began. It means many
more people were introducing dynamics interacting with the environment, making
the collected samples realistic of an indoor scenario.

The thirteen locations of the Real, Realv2, Realv3 dataset are a subset of the
41 locations of the Ideal one, according to Fig. 5.1.

46

Data collection and analysis 5.1. Collected dataset

Figure 5.1: Highlight on a grid portion - dataset Real, Realv2, Realv3

Collecting measurements is particularly time consuming. This is the reason
behind the choice to reduce the analysis from the 41 points to 13 only. According
to Fig. 5.1, the analysis include part of the hall and the corridor (points 16-29) and
point 5, which is partially in NLOS because of the presence of a wall obstructing
the LOS between the tag and the anchor. All other points are in LOS.

Fig. 5.2 shows the number of samples n for each of the 13 points (classes) for
the Real, Realv2, Realv3 dataset. Note that every class has more or less the same
number of samples. It is because particularly attention has been placed to avoid
any class-imbalance in the dataset collection.

In the following chapter, Real and Realv2 dataset are merged together, data
augmented and used for network training. The entire Realv3 dataset is used as a
test set for the network, so as to feed the DNN by totally unseen data. The Ideal
dataset will be no longer considered, since it refers to static conditions only.

47

Data collection and analysis 5.2. Channel impulse response analysis

Figure 5.2: Number of samples per point - dataset Real, Realv2, Realv3 (from left
to right)

5.2 Channel impulse response analysis

As already highlighted many times, the channel impulse response is the key ele-
ment of this work, since it is used as input for a DNN in order to characterize an
indoor environment. For this reason, an analysis about the minimum number of
CIR samples carrying the information of the indoor environment electromagnetic
firm has been performed. Furthermore, the differences of CIRs among different
points and the influence of the dynamic factors on the channel impulse responses
has been investigated.

The CIR is stored in an internal buffer of the DW1000 and published in the
.log file in the form of (real,imag) samples via the MoDecaRanging PC application.
Then it is extracted and saved via a Python script as detailed in 4.3.3. The real
and imaginary components of the CIR simply corresponds to the in-phase and
quadrature parts of the signal (refer to 2.5.4). The proposed method uses the
amplitude of the CIR, computed as:

|CIR| =
√

CIR2
Real + CIR2

Imag (5.1)

48

Data collection and analysis Samples selection

5.2.1 Samples selection

According to 4.1.3 and 4.3.1, the length of an entire CIR is 1016 samples. Looking
at Fig. 4.4, it is possible to intuitively conclude that just a portion of the extracted
CIR matters. In fact, all samples before Fphw1 and after a certain index are noise
floor. The number of bins holding most of the information available about the
propagation characteristics in the environment is equal to 152, starting from the
first path index [29]. It is validated in Fig. 5.3 where neither point 5 (the ”worst”
one in terms of multipath propagation) exceeds the threshold considered by the
LDE algorithm2 after the 152th bin.

Figure 5.3: Channel impulse response samples number selection

From now on, the channel impulse response is cut according to a cropping
window long 152 samples, starting from the first path index.

5.2.2 Point-to-point analysis

As detailed in 2.5.4 the channel impulse response retained from UWB technology
carry the information about the multipath distribution of an indoor environment.

1First path index. It corresponds to the first time index when the CIR amplitude exceed the
energy threshold. This threshold is calculated based on an estimate of the noise made during
the LDE algorithm’s analysis of the accumulator data.

2LDE is a proprietary Decawave algorithm. It reads the pulse data at the RX side and
estimates the first path, looking at the output accumulated over a number of UWB pulses,
trying to set the Fphw around 745. Details on the operation of the LDE algorithm are protected
by IP and so are not publicly available.

49

Data collection and analysis Point-to-point analysis

In other words, the reflections from walls and objects appear as peaks in the CIR
with different amplitudes and delays. In this regard, consider Fig. 5.4 where the
average CIR (together with the PDPs3) are compared for points 1,2,10 of the Ideal
dataset.

(a) Normalized PDPs comparison (b) Over-imposed normalized PDPs

(c) Average CIR

Figure 5.4: Channel impulse response and power delay profiles comparison for
points 1,2,10 - Ideal dataset

As expected, point 2 shows the lowest number of multipath, being in the ”best”

3The power delay profile (PDP) gives the signal power received through a multipath channel
as a function of time delay. For small scale channel modelling, it can be computed taking the
spatial average of the CIR, i.e. |CIR(t)|2 over a local area [30].

50

Data collection and analysis Point-to-point analysis

LOS conditions. On the contrary, points 1 and 10 exhibit an higher number of
multipath components, probably because of the reflections generated by the bench
and the walls at their right side (see Fig. 4.7). Despite this analysis might be
extended to all points of the dataset, here only points 1,2,10 have been considered
to lighten the discussion. Fig. 5.5 reports the average channel impulse response
for each point of the Real dataset and Fig. 5.6 the corresponding power delay
profiles.

Figure 5.5: Average channel impulse response - Real dataset

51

Data collection and analysis Point-to-point analysis

It is important to remember that the Real dataset has been collected as detailed
in 5.1 so as to include in the sample collection more or less the same number of
static, dynamic and NLOS channel impulse responses for every point.

Figure 5.6: Power Delay Profiles computed on the average CIR - Real dataset

52

Data collection and analysis Environmental factors influence

5.2.3 Environmental factors influence

This section aims to analyse the change in the channel impulse response amplitudes
due to the introduction of either dynamic elements (e.g. people walking around
the room), or static ones (e.g. person sit on a bench) in the test environment. To
do so, a reference point is considered, taken 5m far from the tag in direct line of
sight (shown in Fig. 5.7). Then, a certain number of samples (from 200 to 400)
has been collected for each case, so as to get a consistent average result. The static
case is compared with all others, since the goal was to analyse the influence of the
environmental factors on the easiest case (i.e., the static one, where the multipath
components are generated by fixed objects and walls only). Fig. 5.8 shows the
obtained outcome.

Figure 5.7: Reference point location in the test environment

Fig. 5.8a shows the change in the average CIR by rotating the antenna either
clockwise or counter-clockwise. As expected, the retrieved CIR does not change
with the antenna rotation, since the UWB antenna of each EVB1000 board is
an omnidirectional one. Curiously, the CIR amplitude changes a bit, even if the
multipath distribution (in terms of delays) remains more or less similar.

Fig. 5.8b compares the static CIR with the dynamic one, when people walk
around the room, open the doors, take the elevator and so on. As one can notice,
in this case the CIR changes a lot both in terms of amplitude and multipath delays,
raising the question: ”will the AI model be still able to make the CIR → location
classification correctly, even in the dynamic case?”.

Fig. 5.8c depicts what happens to the average CIR when a person is immobile
in NLOS between the two EVB1000 boards (around 2.5m from both). Differently

53

Data collection and analysis Environmental factors influence

(a) Static vs rotated antenna (b) Static vs dynamic

(c) Static vs NLOS (d) Static vs mod. static environment

Figure 5.8: Environmental factors influence on the channel impulse response

from the dynamic case, the first path remains the same, both in terms of ampli-
tude and delay. On the contrary, the subsequent multipath components change,
especially in amplitude. The same conclusions can be drawn for the case when a
person is sit on a bench in the test environment, referring to Fig. 5.7 and 5.8d.

Unexpectedly, the channel impulse response maximum amplitude (obtained
for the first path) shows almost the same amplitude in all cases. The same can
be noticed in Fig. 5.5 where the average CIR is computed for all points of the
Real dataset. In principle, the amplitude of the first path should decrease with
the distance, as well as in NLOS case. It leads to the conclusion the Decawave
LDE proprietary algorithm performs some sort of internal normalization in the
CIR reconstruction. This aspect will be taken into account later, during the data
preprocessing stage.

54

Data collection and analysis Principal Component Analysis

5.2.4 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most popular unsupervised
machine learning techniques for exploratory data analysis. It is useful to analyse
dataset containing a high number of dimensions per observation (say n). It is a
technique for dimensionality reduction, since it transforms the data from a high-
dimensional space n into a low-dimensional space m < n. It does so by linearly
transforming the data into a new coordinate system where most of the variation
(i.e. the information in the data) is described with fewer dimensions than the
initial data, increasing data interpretability.

In this work the cropped channel impulse response made of 152 features (con-
sidering each time-stamp as a feature) is projected down into a 3D space. In this
regard, the Tensorboard Projector by Tensorflow is used, after generating embed-
dings from the CIR samples. Despite many studies use PCA to transform the data
into a 2D space, it has been chosen to keep one dimension more to preserve more
information, since 152 → 3 is already a strong dimensionality reduction. Although
PCA is an unsupervised technique, the transformed samples in the 3D space have
been labelled with the purpose of visualizing the distribution of the clusters of
each class.

The obtained results from PCA are shown in Fig. 5.10 and 5.9. In the former
case, channel impulse responses from dynamic and NLOS conditions are consid-
ered only (people interacting with the environment and in between the two UWB
modules). In the latter case, static CIR samples are selected (LOS conditions,
reflections given by walls and objects only). In particular, Fig. 5.10a shows the
projected CIRs in the 3D space for all points (i.e., for all 13 classes considered in
the dataset). Similarly, Fig. 5.10b, 5.10c, 5.10d show the same highlighting the
cluster distribution for classes (points) 5,24,27 respectively. The same structure is
adopted in Fig. 5.9. The clusters in the static case are much more compact than
the ones in the dynamic and NLOS case.

For instance, consider the class denoted by point 5 in the environment. The
corresponding projected samples in the 3D space are highlighted in red and rep-
resented Fig. 5.9b (static CIRs) and 5.10b (dynamic and NLOS CIRs). The
static samples are densely concentrated, with one sample only far from the oth-
ers (representing most probably an outlier). On the contrary, Fig. 5.10b reveals
that dynamic and NLOS samples are sparser, occupying an higher volume in the
3D space. This represents a plausible result for two reasons. First, if reflections
are produced by walls and objects only, it is reasonable to get channel impulse
responses similar one to each other. Second, interactions with the environment
produce different reflections and attenuation, leading to changes in the channel
impulse response. This is an accordance with what presented in Section 5.2.3.

55

Data collection and analysis Principal Component Analysis

(a) PCA of static CIR samples for
all classes

(b) PCA of static CIR samples -
Highlight on point 5

(c) PCA of static CIR samples -
Highlight on point 24

(d) PCA of static CIR samples -
Highlight on point 27

Figure 5.9: Principal component analysis considering static CIR samples

Similar reasons can be drawn for points 24 and 27, represented in Fig. 5.9c,
5.9d, 5.10c and 5.10d. Special attention has to be paid on the dynamic and NLOS
samples. It it straightforward to notice that clusters strongly overlap in this case,
making the channel impulse response of one point (e.g. point 27) possibly much
more similar to the CIR of another (e.g. point 24), if compared with the static case.

It is crucial to observe that the fact the projected samples occupy the space
in a sparse way with overlapping clusters has two consequences. On one hand,
it means the dataset has been collected in a robust way, with channel impulse
responses different enough to cope with the real-world scenario. On the other
hand, the fact the CIRs may differ a lot even for the same point could make the
learning process of the AI model much more difficult, raising the risk the DNN
is not able to classify the location correctly anymore. The adopted DNN for the

56

Data collection and analysis Principal Component Analysis

(a) PCA of dynamic and NLOS
CIR samples for all classes

(b) PCA of dynamic and NLOS
CIR samples - Highlight on point
5

(c) PCA of dynamic and NLOS
CIR samples - Highlight on point
24

(d) PCA of dynamic and NLOS
CIR samples - Highlight on point
27

Figure 5.10: Principal component analysis considering dynamic and NLOS CIR
samples

classification task, as well as the learning stategy and the results in this regard are
reported and detailed in the next chapter.

57

Chapter 6

Classification

This chapter focuses on the development of the ML pipeline to characterize the
indoor environment of test through the channel impulse responses collected in the
dataset detailed in the previous section. In particular, the problem can be cast
as a classification task where a DNN attemps to extract features from the input
pre-processed CIR to classify it correctly, according to a specific number of classes
(corresponding to the locations in the environment).

As first step, data augmentation is carried out to enlarge and enrich the dataset.
Then, a set of data preprocessing stages have been considered to properly train
the deep neural network while improving generalization. Next, the adopted DNN
model is shown and detailed, together with the learning strategy. The obtained
results in terms of accuracy and confusion matrices are presented as well. Finally,
the CAM algorithm is exploited to show which are the most discriminative samples
of the input CIR in order to characterize one location rather than another. The
complete pipeline is schematically described in Fig. 6.1.

Figure 6.1: Complete machine learning pipeline of the presented work

The chosen development environment for the project is Google Colaboratory,
a Jupyter notebook environment that runs entirely in the cloud. It allows to
write and execute arbitrary Python code and is especially well suited to machine
learning and data analysis. Despite it is free of charge to use, its free version
has some limitations. Firstly, the Colab resources are not guaranteed and not

58

Classification 6.1. Preprocessing

unlimited, fluctuating with the users’ usage of the platform. Secondly, it is limited
in RAM and GPU and it does not support the background execution. For these
reasons, Google Colab Pro+ has been adopted. The Pro+ subscription makes
available Nvidia P100, T4 or V100 GPUs, 2x vCPU and up to 52GB of RAM.
The adoption of Google Colab Pro+ as a development environment speeds up the
training process, allowing a background execution of the code up to 24 hours. It
requires no setup to use and supports famous libraries like NumPy, Pandas and
Keras, a simple and powerful API for Tensorflow, enabling fast experimentation
and development of deep neural network models.

6.1 Preprocessing

Data preprocessing includes the steps to follow to transform and encode data so
that they can be easily digested by the AI model. It is also important to improve
the overall data quality, since quality predictions must be based on quality data.
In addition, the easier the features to be interpreted, the better the result. In
the following, the data preprocessing stages carried out in the presented work are
presented and discussed in detail.

6.1.1 Data augmentation

In the presented work only basic data augmentation approaches have been ex-
ploited. In particular, linear combination has been used to produce synthetic
channel impulse responses. Differently from [25], where the data augmentation is
performed in the latent space, here it is carried out in the input space directly.
Consider a generic location i and one of its adjacent locations j (horizontally,
vertically, diagonally). Let m,l be the m-th and l-th random CIR for location i
and j respectively. The synthetic channel impulse response syntCIRi,m,l can be
computed as:

syntCIRi,m,l = α · CIRi,m + β · CIRj,l

α > 0.5

β = 1− α

(6.1)

where α > 0.5 is set to consider the synthetic generated CIR belonging to location
i (i.e. it is labelled according to the i-th class), i ∈ [16, 27]. Note that the channel
impulse responses of point 5 are not augmented since it is an isolated point, i.e.
there is not any adjacent point in the considered dataset. It does not represent
a drawback, since point 5 shows a fairly different multipath distribution from all

59

Classification Scaling

others, making its characterization an easy task for the DNN. An example of
artificial CIR generated from two randomly picked CIRs for i = 16 and j = 17 is
depicted in Fig. 6.2. Notice that the synthetic CIR is much more similar to the
CIR of point i, being α = 0.8 and β = 1− α = 0.2.

Figure 6.2: Synthetic CIR via linear combination of adjacent points - α = 0.8

As detailed in 5.1, the data augmentation stage has been performed on the
dataset obtained by merging together Real and Realv2 collection of measurements.
The augmented dataset is much larger than the original one, recalling the need of
large dataset when training deep neural networks to improve generalization. Fig.
6.3 shows the number of samples per class for both the original (the concatena-
tion of the Real and Realv2 dataset) and the augmented dataset, considering the
portion of data used for network training only. Notice some locations (e.g. point
24,25) are characterized by an higher number of samples with respect some others
(e.g. point 26,27) in the augmented dataset. This occurs because some points in
the test environment have a larger number of adjacent locations than others. Even
for those points, the number of samples is at least 10 times larger if compared to
the original dataset.

6.1.2 Scaling

The final goal after all preprocessing stages is to feed the DNN by the channel im-
pulse responses, checking its capability to classify them correctly, according to the
pre-defined locations in the environment depicted in Fig. 5.1. As already detailed
in 2.5.4, the multipath distribution carries the information about the reflections.
At the same time, locations characterized by similar reflections at different dis-
tances should show nonidentical amplitudes. Intuitively, the amplitude of the CIR

60

Classification Scaling

Figure 6.3: Number of samples per point used for training - Original vs Augmented
dataset

(especially at the first path) should decrease with the distance, since the CIR am-
plitude is related to the energy detected at the receiver side. The channel impulse
responses retrieved from the EVB1000 boards are somehow internally scaled by
the proprietary LDE algorithm of Decawave, as already described in 5.2.3. It is
sufficient to notice that the maximum amplitude of Point 27 is higher than the one
of Point 24, despite it is farther from the tag. To deal with this issue, the Signal-
to-Noise-Ratio is used to scale the CIR amplitude accordingly. Note that, the
information of the Signal-to-Noise-Ratio comes together the reconstructed chan-
nel impulse response. As a consequence, the SNR is always avaiable to scale the
CIR accordingly. Recalling the EVB1000 board implements a TWR method to
compute the ToF, it is important to highlight also that the maximum packet du-
ration of a DW1000 module is in the order of a few milliseconds [31].

The Signal-to-Noise-Ratio1 (SNR) is related to the CIR amplitude as in Eq.
6.2, where Ai represents the amplitude of a generic CIR and Pm is the average
noise power level.

1The Signal-to-Noise-Ratio is the ratio between the desired information (or the power of
a signal) and the power of the background noise. It is often expressed in dB and for UWB
communications is likely below 0 dB since the transmitted power is very low, according to the
FCC mask.

61

Classification Normalization

SNRi
∼=

A2
i

Pm

−→ Ai ∝
√

SNRi (6.2)

The defining equation for the SNR in dB is given by:

SNRdB = 10 · log10
(
Psignal

Pnoise

)
(6.3)

Consider two locations producing similar ToF, either because at the same
anchor-tag distance or due to an incorrect ToF computation in NLOS conditions.
Scaling the CIR via the SNR value may help the differentiation, being the two
cited points in different conditions. This motivates the idea of scaling the CIR
amplitude the SNR.

Since the SNR value extracted from the .log file is expressed in [dBm]2, and
recalling the relation in 6.2, the linearly scaled CIR amplitude Ai,j is computed
as:

Ai,j =

√
10

SNRi,dB
10 · Ai,j (6.4)

where the scaling coefficient is the linear SNR transformed from its dB represen-
tation.

6.1.3 Normalization

Normalization is a data preparation techniques that is frequently used in Ma-
chine Learning. It typically improves the performance and training stability of
the model. This is necessary when dealing with multiple features ranging in dif-
ferent intervals, so as to transform all of them into a linear scale, for instance in
the range [0,1]. Popular normalization techniques are Min-Max Scaling and Stan-
dardization. In the presented work, each CIR sample represents a feature and all
channel impulse responses more or less range in the same amplitude intervals. For
this reason, the dataset is normalized so as to preserve the information in the CIR
amplitude. Mathematically, we have the following:

kscale = max
k

max
i

Ai,k (6.5)

2dBm is defined as the dB using a reference Pnoise of 1 mW

62

Classification Shuffling

where, i ∈ [1, nCIRs in Dk
], j ∈ [1, K] and Ai,k is the scaled amplitude of the i-th

CIR of class k, computed as in Eq. 6.4. Dk represents the set of training samples
for class k and K is the total number of classes (equal to 13). Then, kscale is used
as normalization coefficient for all remaining samples of both the validation and
test dataset of the augmented dataset, and for the Realv3 dataset as well.

6.1.4 Shuffling

The collected and extracted dataset is originally sorted by their class, since a .log
file is produced for every location in the environment and the relevant data are
automatically extracted via a Python script scrolling one .log file at a time. Here,
shuffling is needed to make sure the training, validation and test sets are represen-
tative of the overall distribution of the data. If the dataset is split before shuffling,
the model is trained for some classes only and tested on others, completely failing
the process. By rearranging the data, it is ensured that each data point influences
the model in an ”independent” manner and is not influenced by the values that
came before it. Shuffling the data also helps in reducing the variance and overfit-
ting issues. It is implemented by randomly permutating the data samples in the
dataset.

6.1.5 Splitting

The splitting procedure is used to train and then estimate the performance of any
machine learning algorithm. In order to build a solid model there is a specific
protocol of splitting the data into three sets: one for training, one for validation
and one for final evaluation. In particular,

• Training dataset is the set of examples used for learning, that is to fit the
weights of the model;

• Validation dataset, composed of data samples used to provide an evaluation
of a model fit on the training dataset, while tuning model hyperparameters;

• Test dataset, used only to evaluate the performance of the final model on
new, unseen data.

Note that the training dataset is only one used for training the model. During
each epoch, the model is trained on samples taken from the training set. Instead,
the model is validated on each sample of the validation set. Although there is
no optimal split percentage, most practitioners in Deep Learning suggest to take
at least the 60% of the dataset for training. In the presented work, 70% of the
dataset is used for training, 20% for validation and 10% for the final evaluation.

63

Classification 6.2. Adopted model

The split refers to the augmented dataset, detailed in 6.1.1. Furthermore, the
model is tested on the Realv3 dataset, representing totally unseen data from the
network perspective and useful to test the network generalization performance in
a real robust way.

6.2 Adopted model

The choice of a deep learning model is not an easy task almost in every application.
It has to be a trade-off among many aspects, including network complexity, gen-
eralization performance, training time, scalability of the model and many more.
For example, a very complex model may work efficiently when run in cloud but
completely unfeasible if one wants to bring the ML model capabilities locally to
an edge device (e.g. an embedded platform). In section 3.3.1 the most common
DNN models for the TSC task are reported and detailed. Actually, many others
may be considered, including Echo State Networks and Long-Short Term Memory
networks. In this work, a Fully Convolutional Neural Network has been adopted,
taking inspiration from the one proposed in [14]. In particular, it is inspired from

Figure 6.4: Adopted FCN model for the presented TSC task

the one depicted in Fig. 3.8 with the addition of three different layer types: Gaus-
sian noise layer, Batch Normalization layer and the Dropout layer, detailed in the
following subsections. The input layer has a (152,1) shape in accordance with the
windowed channel impulse response detailed in 5.2.1. The output layer is a softmax

64

Classification Gaussian noise

Layer (type) Output shape Param #

Input (152,1) 0

Conv 1D (152,8) 72

Batch normalization (152,8) 32

Activation (ReLU) (152,8) 0

Conv 1D (152,16) 656

Batch normalization (152,16) 64

Activation (ReLU) (152,16) 0

Conv 1D (152,32) 1568

Batch normalization (152,32) 128

Activation (ReLU) (152,32) 0

Global Average Pooling (,32) 0

Dropout (,32) 0

Dense (softmax) (,13) 429

Total # of parameters: 2949

Trainable parameters: 2837

Non-trainable parameters: 112

Table 6.1: Network layers description and parameters

layer with K = 13 classes, since 13 is the number of locations considered in the
acquired dataset. The intermediate layers are mainly a sequence of convolutional
and batch normalization layers and the length of the CIR remains unchanged over
the convolutions because same padding is applied. The final adopted DNN model
for the presented work is shown in Fig. 6.4. The hyperparameters configuration
is instead reported in Table 6.3. Finally, the description of each layer in terms of
output shape and number of parameters is detailed in Table 6.1.

6.2.1 Gaussian noise

The addition of a Gaussian noise on top of the input can be seen as a form of
data augmentation, as detailed in 3.4.1. This is useful to mitigate overfitting
and is a natural choice as corruption process for real valued inputs. The Keras
API employed to build the DNN in the Tensorflow framework allows to apply
an additive zero-centered Gaussian noise via the inbuilt GaussianNoise class [32].
Since it acts as a regularization layer, it is only active at training time. The only
required argument is the standard deviation (stddev) of the noise distribution. It

65

Classification Batch normalization

represents the amount of added noise which has to be chosen so as to sufficiently
alter the input data avoiding to make it exceedingly different from the original
one. Different tests have been carried out and, at the end, it has been found the
best value equal to 0.0035.

6.2.2 Batch normalization

Batch normalization is employed to train deep neural networks in a more robust
way, helping to reduce the problem of internal covariance shift, as discussed in
3.3.1. It does so by standardizing the inputs to a layer for each mini-batch. This
has the effect of stabilizing the learning phase and reducing the required number of
training epochs. The Keras Batch normalization layer [33] applies a transformation
that takes the output of the previous layer and maps it into a mean output close
to 0 and a standard deviation close to 1.

6.2.3 Dropout

Deep neural networks with large number of parameters are very powerful but they
strongly suffer from overfitting. In this regard, dropout represents an efficient
regularization technique to prevent overfitting. The key idea is to randomly drop
units (along with their connections) from the neural network during training. In
particular, the term dropout refers to dropping out the nodes (input and hidden
layer) in a neural network, thus creating a new network architecture out of the
parent network according to a chosen probability p [34]. The effect of dropout is
shown in Fig. 6.5. It can be easily implemented via the Dropout class in the Keras
API, recalling the dropout layer only applies during training such that no values
are dropped during inference [35].

6.3 Learning strategy

This section analyses the learning strategy adopted to properly train the adopted
model for the presented work, together with the hyperparameters selection.

6.3.1 Optimizers

Every deep learning model consists of an input layer, a certain number of hidden
layers and an output layer. The way the network tries to generalize the data is
by using an algorithm that maps the examples of inputs (training dataset) to the
outputs. This is done by adopting an optimization algorithm which attempts to
find the best model’s parameters that minimize the loss when mapping inputs to

66

Classification Optimizers

(a) Standard Fully Con-
nected Network

(b) New architecture after
dropout

Figure 6.5: Effect of dropout regularization on a FCN

outputs. It is possible to generalize the concept saying that an optimizer is an
algorithm used to try to minimize an error function or to maximize the efficiency
of the considered problem. Since the model’s parameters cannot be computed
analytically in a deep learning model, an optimization algorithm is needed. Many
optimization algorithms have been proposed over the years; the most common and
effective ones are reported in the following.

Gradient Descent

The Gradient Descent (GD) is a first-order optimization algorithm which attempts
to find the model’s weights by minimizing a loss function. It reduces the loss
function in an iterative way by moving in the opposite direction to the steepest
ascent (i.e. the opposite direction to the gradient) and stops in a local minima.
It is straightforward to understand and easy to implement but it is not feasible
for large dataset since it uses the data of the entire training set to calculate the
gradient, requiring large amount of memory and slowing down the training process.
The recursive model weights update can be expressed as:

θt+1 = θt − η · ∂(loss)
∂(θt)

(6.6)

where η is the learning rate parameter of the GD algorithm and controls how much
the weights can change on each update. Fig. 6.6 shows the Gradient Descent
algorithm in a graphical way, highlighting the effect of the learning rate choice.

67

Classification Optimizers

Figure 6.6: Gradient Descent algorithm with small learning rate (left) and large
learning rate (right)

Stochastic Gradient Descent

Gradient Descent may be slow when run on very large dataset, since one iteration
of GD requires the computation of the gradient on the whole dataset. To overcome
this issue, Stochastic Gradient Descent (SGD) has been proposed. This variation
takes a random selected batches of data to compute the gradient and update the
model’s weights (from which the name ”stochastic”). Because the algorithm does
not use the whole dataset but only a batches of it at each iteration, the model
weights update may be noisy. To tackle this problem, typically SGD uses a higher
number of iterations to reach the local minima of the loss function if compared to
GD. Regardless this aspect, if the dataset is large, SGD should be preferred over
the GD optimization.

AdaGrad

A limitation of both GD and SGD algorithms is that they use the same learning
rate for each input variable during the optimization phase. This may represent a
problem when the objective function has a large dimension and different curva-
tures, requiring different step sizes to properly reach the local minima. Adaptive
Gradients, or AdaGrad for short, is an extension of the Gradient Descent algo-
rithm allowing for a different learning rate in each dimension tuned automatically
by the algorithm on the basis of the computed gradient at each step of the op-
timization. The parameters with the largest partial derivative of the loss have a
correspondingly rapid decrease in their learning rate, while parameters with small
partial derivatives have a relatively small decrease in their learning rate [24]. The
update of the model’s parameters can be written as:

68

Classification Optimizers

θt+1 = θt −
η√

Gt + ϵ
× gt (6.7)

where Gt is a matrix containing the sum of the squares of the gradients with
respect to all parameters θ up to time step t along its diagonal, ϵ is a smoothing
term that avoids division by zero, gt is used to denote the gradient at time step t
where gt,i =

∂(loss)
∂(θt,i)

and × denotes the cross-product operator.

One of the main Adagrad’s benefit is that it eliminates the need to tune the
learning rate. At the same time, since the accumulated sum of gradients keeps
growing during training, its main weakness is that the learning rate may become
infinitesimally small, causing the dead neuron problem (i.e. the algorithm is no
longer acquiring knowledge).

RMS-Prop

The Root Mean Square Propagation (RMS-Prop) is a special version of Adagrad
in which the learning rate is not taken as the cumulative sum of squared gradients,
while the exponential average of gradients is considered instead. This attempts to
solve the Adagrad’s vanishing learning rate problem. In mathematical terms the
update rule looks like the following:

E[g2]t = βE[g2]t−1 + (1− β)g2t (6.8)

θt+1 = θt −
η√

E[g2]t + ϵ
× gt (6.9)

where E[g] is the moving average of squared gradients and β is the moving average
parameter. Typical default values are 0.9 and 1e− 3 for β and η respectively.

Adam

Adaptive Moment Estimation (Adam) is another algorithm designed to take the
benefits of both AdaGrad and RMS-Prop optimization methods. The Adam al-
gorithm computes individual adaptive learning rates for different parameters from
estimates of first and second order moments of the gradients [36]. In addition to
the computation of the exponential average of gradients, the notion of momen-
tum3 is taken into account. Firtly, the decaying averages of past and past squared
gradients is computed, as follows:

3Formally, the n-th moment of a random variable is defined as the expected value of that
variable to the power of n, i.e. mn = E[Xn]

69

Classification Loss functions

mt = β1mt−1 + (1− β1)gt (6.10)

vt = β2vt−1 + (1− β2)g
2
t (6.11)

where, β1 and β2 are the exponential decay rates for the first and second moment
estimates respectively. Since mt (the first moment - the mean) and vt (the second
moment - the uncentered variance) are initialized as vectors of 0’s, they are biased
towards zero. To tackle this issue, the bias-corrected first and second moments are
estimated as:

m̂t =
mt

1− βt
1

(6.12)

v̂t =
vt

1− βt
2

(6.13)

then, the first and second order bias-corrected moments m̂t and v̂t are used to
update the model weights as in the AdaGrad and RMS-Prop optimization algo-
rithms:

θt+1 = θt −
η√

v̂t + ϵ
m̂t (6.14)

The Adam optimizer is easy to implement, computationally efficient and has lit-
tle memory requirements. In addition, empirical results demonstrate that Adam
works well in practice even using large models and dataset, proving it can effi-
ciently solve practical deep learning problems. For all cited reasons, the Adam
optimizer has been the choice for the presented work in the training phase of the
adopted DNN model.

6.3.2 Loss functions

The loss function is a method to quantify how well the AI model is performing. In
other words, it is a way to measure how good the model is predicting the output
with respect to the expected outcome. The loss function is the function minimized
by the optimizer and a low value means the model is providing good results. During
the training phase, it is evaluated on both the training and validation dataset.

Loss functions can be grouped into two main categories referring to the types of
problem one may encounter in the real-world: classification and regression. Since
the presented work is about a TSC task, the regression problem is taken away from
the discussion. In classification problems, the task is to identify which category
(class) an observation (input) belongs to. In the following, the most common loss
functions for the classification task are detailed.

70

Classification Loss functions

Hinge Loss

Primarily developed for the Support Vector Machine (SVM) classifier, the Hinge
Loss function is computed as:

L = max(0, 1− y · f(x)) (6.15)

where y is the actual outcome and f(x) is the output of the classifier.

Binary Cross-Entropy

Also called logarithmic loss or log loss, this is the most common loss function
used in classification problems. Considering a classification model whose predicted
output is a probability value between 0 and 1, it measures the performance of the
model on how far it is from the actual expected value. For a binary classification
problem:

L = − 1

m

m∑
i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (6.16)

where, yi is the actual class and ŷi is the predicted class for the i-th training sample
and m is the number of training samples. Fig. 6.7 depicts the log loss function for
a classification task where the ”true” label is identified by value 1.

Figure 6.7: Log loss function

71

Classification Hyperparameters

Categorical Cross-Entropy

It is an extension of the Binary Cross-Entropy for multi-class classification, when
a softmax layer is employed as output layer of the DNN. It is the loss function
adopted in the presented work to evaluate the model performance and for a TSC
task it can be computed as:

L(X) = −
K∑
k=1

YklogŶk (6.17)

with L denoting the loss when predicting the class for the input time series X,
K the total number of classes, Yk and Ŷk representing the actual and predicted
probability (output of the softmax layer) for the k-th class.

6.3.3 Hyperparameters

Tuning the hyperparameters for deep neural networks is not an easy task as the
best combination may vary a lot depending on the specific domain of applica-
tion and because of the high number of parameters to configure. Following the
taxonomy proposed in [37], the key hyperparameters related to the design of a
Convolutional Neural Network are reported in Table 6.2. Some of those have been
considered in the hyperparameters tuning for the adopted model. A large num-
ber of tests have been carried out with a grid search tuning in order to find the
best trade-off between model complexity and performance. In particular, for the
adopted model shown in Section 6.2, the range of the hyperparameters in the grid
search approach and the adopted ones are reported in Table 6.3.

6.4 Results

After having investigated the dataset collection, data distribution, data prepro-
cessing, network decision and training, this section aims to show the obtained
results for the presented work. In this regard, various metrics can be adopted to
evaluate the performance of an AI model. Among them, there is the quite popular
accuracy. It generally describes how the model performs across all classes and
it is useful when all classes are of equal importance. Since every location in the
environment has the same relevance, it has been adopted as metric to evaluate the
network performances in the current research. Formally, it is computed as:

Accuracy =
Number of correct predictions

Total number of predictions
(6.18)

72

Classification Confusion matrices

Hyperparameters Symbol

Number of convolutional layers Nc

Number of kernels of each convolutional layers kNi,i∈Nc

Kernel size in each convolutional layer kSi,i∈Nc

Activation function in each convolutional layer aFi,i∈Nc

Pooling size (if any) after each convolutional layer pSi,i∈Nc

Number of dense layers Nd

Connectivity pattern of each dense layer Pi,i∈Nd

Number of neurons of each dense layer nNi,i∈Nd

Weight regularization in each dense layer Ri,i∈Nd

Dropout Rdropout

Batch size Sbatch

Learning rule Lrule

Learning rate Lrate

Table 6.2: Key hyperparameters in the CNN design

Despite the accuracy, which is useful to evaluate the fraction of predictions the
model got right, other evaluation methods can be considered. Among them, the
confusion matrices are surely a useful way to get insight about how the network is
doing the classification. In particular, a confusion matrix is a KxK matrix used
for evaluating the performance of a classification model, where K is the number
of target classes. The matrix compares the instances in an actual class (along
the rows) with those predicted by the model (along the columns), or viceversa.
This gives a graphical view of how well the classification model is performing and
”where” the model is failing most. In the following, the confusion matrices and
the accuracy are evaluated on both the test dataset split from the augmented
one (equal to the 10% of the total dataset cardinality) and on the entire Realv3
dataset, representing totally unseen data from the network perspective.

Finally, the results obtained from the implementation of the Class Activation
Map algorithm are shown and detailed, highlighting which samples of the channel
impulse responses are used most for characterizing the different locations in the
environment.

6.4.1 Confusion matrices

In this section the obtained results in terms of confusion matrices and accuracy are
presented and discussed in detail. In this regard, it is important to recall that the
network has been tested on two different set of data. A first test has been carried

73

Classification Confusion matrices

Hyperparameter range Adopted value

Nc ∈ (1, 2, 3) 3

kNi,i∈Nc ∈ (2, 4, 8, 16, 32) (8, 16, 32)

kSi,i∈Nc ∈ (2, 3, 4, 5, 6, 8, 10) (8, 5, 3)

aFi,i∈Nc ReLU

Nd 1

nNi,i∈Nd
K = 13 classes

Ri,i∈Nd
− L2 ∈ (5e− 2, 5e− 3, 5e− 4) 5e− 3

Rdropout ∈ (0.1, 0.2, 0.3, 0.4, 0.5) 0.3

Sbatch ∈ (2, 4, 8, 16, 32, 64, 128) 4

Lrate ∈ (1e− 3, 4e− 3, 5e− 3, 1e− 4, 5e− 4, 1e− 5, 5e− 5) 4e− 3

Table 6.3: Adopted hyperparameters in the FCN design

out on the test portion of the augmented dataset. As in any deep learning project,
the dataset has been split in training, validation and test portions where the test
portion has been chosen equal to the 10% of the overall dataset cardinality, as
detailed in Section 6.1.5. A second test has been performed on the Realv3 dataset.
As discussed in Section 5.1, this dataset is composed of around 13000 samples
including both static and dynamic environmental factors. More importantly, it
really represents totally new and unseen data from the network perspective. In
fact, the extracted test set from the augmented dataset (which is just the 10% of
the overall dataset cardinality after shuffling) may contain some similar channel
impulse responses which are already in the training and validation sets, lead-
ing to false better results. This is even more true in the case of the presented
work, where a deep learning location-based indoor environment characterization
via UWB channel impulse response is analysed for the first time. Figures 6.8 and
6.9 show the confusion matrices for both test datasets and Table 6.4 reports the
obtained accuracies. Some important considerations can be drawn on the basis
of the obtained results. Naturally, one hopes to get confusion matrices which are
strong on the main diagonal, meaning the network fails the classification just in a
few cases. This is the case of Fig. 6.8, when the network is evaluated on the test
set extracted from the augmented dataset. In this case, results are promising. The
network classifies correctly the locations in the environment on the basis of the
input CIR at least 8 times of 10 (check the accuracy reported in Table 6.4). When
the model fails the classification, it does so by misleading close points. It is is a
reasonable result, since close locations in the environment are expected to have
similar channel impulse responses. On the contrary, the network shows difficulties
to generalize when tested on the Realv3 dataset. In fact, the obtained confusion

74

Classification Confusion matrices

Adopted model Test dataset Cardinality Accuracy

FCN 10% of the aug. dataset 54950 82.73%

FCN Realv3 11554 52.56%

Table 6.4: Adopted FCN model obtained accuracies

matrix in Fig. 6.9 is much more sparse if compared to the one in Fig. 6.8. At the
same time, the accuracy drops down to 52.56% as reported in Table 6.4.

Figure 6.8: Confusion matrix - Test set: extracted 10% test set for the augmented
dataset

This result raises several considerations, including the overfitting of the aug-
mented dataset by the adopted model and the fact the collected dataset may be
not completely representative of the indoor test scenario. These considerations,
together with possible solutions, are discussed in detail in the next and final chap-
ter. Notice that in both cases point 05 is almost always correctly classified, being
its multipath distribution much more different from all others, as it can be clearly
noticed in Fig. 5.5.

It is also relevant to heavily investigate the meaning of the obtained confusion
matrices so as to understand if the network misclassifies a point with one of its
neighbors most times or not. Table 6.5 provides some results in this regard. As one
can clearly notice, the network misclassifies a point with one of its neighbors around
8 times of 10 and 6 times of 10 for the augmented and Realv3 dataset respectively.
This is a meaningful result, highlighting the fact that when the network fails, it

75

Classification Confusion matrices

Figure 6.9: Confusion matrix - Test set: Realv3 dataset

Test dataset Dim # of misclassifications

% of

misclassifications

with neighbors

10% of the aug. dataset 54950 9490 81.16%

Realv3 11554 5481 63.16%

Table 6.5: Misclassified locations with neighbors results

mostly does so without confusing the CIR of a location with the one of a completely
different location. As an example, referring to Fig. 6.9, point 16 is almost always
misclassified with point 17. Similarly for point 18 with locations 17 and 19. This
is not the case for the location numbered as 22 which is confused most of the times
with location 19. An in-depth analysis regarding the misclassified points is shown
in Fig. 6.10. It reports both the overall percentage of misclassification (i.e. how
many times a specific location has been misclassified in percentage with respect
to the total number of misclassifications) and the percentage of misclassifications
with neighbors, describing how often the network confuses the CIR of a location
with the CIR of a neighbor one. Firstly, notice how much often some locations
are misclassified than others (as an example, consider points 17-18 with respect
to 26-27 in the augmented dataset). As a second insight, it is also straightforward
to note that there is not a clear relation between the misclassifications on the
augmented dataset and the ones on the Realv3 dataset. In fact, points which

76

Classification Confusion matrices

are mostly classified uncorrectly by the network in the augmented dataset are not
the same in the Realv3 dataset (refer to points 16-17 for example). Finally, the
network shows a more constant behaviour when misclassifying points with neighbor
locations on the augmented dataset. In fact, the dashed line represented in Fig.
6.10a is much more smoothed if compared to the one in Fig. 6.10b which shows a
jagged behaviour. The highlighted behaviour is in accordance with the percentage
of misclassifications with neighbors reported in Table 6.5. These results point out
a clear difference in terms of network performances on the two datasets: the model
fails the classification less than 20% of cases on the augmented dataset and when
it fails, it does so in most cases (more than 80%) with a neighbor location. On
the other hand, the network misclassifies the Realv3 dataset around 47% of times
and in such cases only around 6 times over 10 is done by misleading the location
with a neighbor one.

(a) Augmented dataset

(b) Realv3 dataset

Figure 6.10: Misclassification analysis on the two test dataset

77

Classification Grad-CAM

6.4.2 Grad-CAM

Which are the most crucial samples of the channel impulse response in characteriz-
ing a specific location in the test indoor environment? This section aims to provide
an answer to the posed question, opening the black-box model of the deep learning
model via the implementation of the Class Activation Map algorithm described in
3.5.1. In particular, the Grad-CAM algorithm has been considered so as to show
a coloured representation of the input CIR according to a chosen colormap.

To produce the results of the Grad-CAM algorithm, a subset of both the test set
extracted from the augmented dataset and the Realv3 dataset has been considered.
In particular, the algorithm has the aim to show the subsequences of the channel
impulse response that contributed most to a certain classification. For this reason,
the output of the CAM is produced only in case the predicted label matches
the actual one. Recalling Section 3.5.1, employing the CAM is only possible for
networks with a GAP layer preceding the softmax output classifier. Referring to
Fig. 6.4, it is clear the adopted model shows a dropout layer in the middle of
those. This aspect does not represent an issue, since the dropout layer is used
during the training phase only.

(a) Grad-CAM - Point 05 (b) Grad-CAM - Point 17

(c) Grad-CAM - Point 20 (d) Grad-CAM - Point 27

Figure 6.11: Grad-Class Activation Map algorithm results - Test set: 10% ex-
tracted from the augmented dataset

Fig 6.11 and 6.12 depict the obtained outcome of the algorithm on a subset of

78

Classification Grad-CAM

(a) Grad-CAM - Point 05 (b) Grad-CAM - Point 17

(c) Grad-CAM - Point 20 (d) Grad-CAM - Point 27

Figure 6.12: Grad-Class Activation Map algorithm results - Test set: Realv3
dataset

locations (classes) of the augmented and Realv3 dataset, respectively. Red regions
represent the most discriminative CIR samples used for the classification, while
blue regions refer to the less discriminative ones (according to the colormap). It
is interesting to highlight that just a few samples are mostly used to perform the
classification and they are close to the first path (refer to points 17,20,27). It means
the information retrieved by the next multipath components is not widely exploited
by the network to distinguish one location from another. At the same time, as
expected the model uses more or less the same regions for both the augmented
and the Realv3 dataset for the classification. If points 17 and 27 show a similar
trend, this is not the case for points 5 and 20. In fact, an higher number of peaks
(multipaths) is used by the network to classify location 5. This is probably related
to the presence of a larger number of MPCs with greater amplitude for the specific
channel impulse response. On the contrary, particular attention has to be posed
on the results obtained for point 20, shown in Fig. 6.11c and 6.12c. Differently
from all other cases, the classification for such points exploit the entire channel
impulse response. In addition, despite the fact the most discriminative regions are
close to the first path for both the augmented and the Realv3 dataset, it is clear
the network strongly relies on most of the multipath components to perform the
classification. This aspect is even more evident when the Grad-CAM algorithm

79

Classification Grad-CAM

is run on the CIRs belonging to the Realv3 dataset where, apart from the third
multipath, all others are coloured in orange.

The Class Activation Map algorithm has clearly posed the basis to get insights
about the decisions taken by the DNN model during the classification. It is clear
that in most cases the network relies on the first multipath components and ”ne-
glects” all others. This aspect may represent an issue, since most of the MPCs
should characterize every specific location in an indoor environment. Nevertheless,
this is an open research problem which may be addressed in future researches. The
next and final chapter proposes some suggestions and draws the conclusion of the
presented work.

80

Chapter 7

Conclusions

The main objective of the presented work has been inspired by the question ”Does
an indoor environment have its own electromagnetic firm? In other words, could
a specific location within an indoor environment be somehow identified by its own
propagation characteristics with respect to a reference point?”. To tackle the prob-
lem of characterizing every location in an indoor environment, the channel impulse
responses (CIRs) retrieved from an ultrawide-band transponder has been used, ex-
ploiting the potentiality of the current deep learning algorithms. The decision of
adopting UWB modules for the presented research relies on two main aspects.
First, the ultrawide-band technology is already widely adopted in indoor position-
ing applications (which is the working scenario selected for this work). Second, the
channel impulse responses carry the information about the multipath components
(MPCs) of an indoor enviroment (i.e., the reflections generated by walls, objects
and people). The large bandwidth of UWB schemes allows resolving a large num-
ber of MPCs and generates a better characterization of the multipath environment
with respect to narrowband transmission schemes.

In order to train the network in a robust way, particular attention has been
posed in the dataset collection. In this regard, the chosen indoor environment
included most of the typical elements of an indoor scenario including both static
elements (walls, doors, and many others) and dynamic ones (the presence of peo-
ple interacting with it). A balanced dataset with over 49′000 samples have been
collected. Then, a data augmentation technique in the input space has been per-
formed to augment it by around 7 times, trying to tackle the problem of the dataset
cardinality when training deep learning models. A fully connected convolutional
neural network (FCN) has been adopted to prove the validity of the presented
idea. The obtained results show that a high classification accuracy is obtained
when the model is fed by the test set extracted from the augmented dataset. In
fact, an accuracy of 82% is obtained. In addition, when the network misclassifies
a location with another, it does so with neighbor locations in at least the 80% of

81

Conclusions

cases, which represents both a reasonable and promising result. To have a more
restrictive benchmark, another test has been carried out testing the network on a
new set of measurements collected much time after the previous one and totally
unseen during the network training. Results show the accuracy drops to around
53% and also in the misclassification cases, the model fails the classification with
neighbors in lower instances, around the 63% of times. The main cause of error
may be attributed to the consistent presence of dynamic factors introduced in
the environment by the people interacting with it. In fact, reflections and NLOS
conditions generated by the human body cause a relevant change of the channel
impulse response, even considering the same location in the environment.

Despite the obtained results may pose the basis for the validity of the model,
some critical aspects of the presented work have to be reported and discussed in
detail. First, regardless a lot of attention has been posed in the dataset collection,
it surely presents a weakness in terms of completeness and it does not include
the whole statistics of the indoor test scenario. This is evident by the fact the
accuracy drops down when evaluating the network on a new, completely unseen
set of measurements. This suggests even more time and consideration has to be
taken in the dataset collection and analysis. Second, another weakness of the
presented research is that too short time has been spent in the optimization of
the deep learning model, both in terms of network design and hyperparameters
and learning. The results obtained from the Grad-CAM algorithm show that
in most cases a few samples are used to perform the classification of a location,
given the input channel impulse response. Designing a more complex and accurate
network may result in the extraction of more hidden and deep features, helping
the differentiation of a specific indoor location from another.

From the analysis performed up to this point the author believes that the
proposed localization technique is viable only when the complete statistics of the
environment is represented in the collected dataset. The obtained result can be
attributed to the extremely large statistical variability of the considered scenario,
which may vary enormously from one day to the next. The rich statistics of
the problem may however require an extremely long data collection phase, which
may take this characterization method very costly in absence of other sensory
information that may facilitate the localization. The use of additional sensory
information, together with transfer learning techniques and mixed-inputs deep
neural networks can be tackled in follow-up researches.

82

Appendix A

MoDecaRanging PC application

The debug section of the DecaRanging PC application has been used to collect
the dataset. In particular, the source code of the DecaRanging PC application
has been modified and a new version has been built in Visual Studio so as to
store additional values in the .log file produced by the software during the TWR
measurements. One can refer to it as MoDecaRanging PC application.
The EVK1000 uses STMicrolectronics STM32 ARM cortex M3 µcontroller and
employs the STM32 USB driver from STMicrolectronics. It allows the DecaRang-
ing PC application to communicate to the DW1000 on the EVB1000 board over
the Virtual COM port (over USB) interface via ”USB-to-SPI”. In this way, there
is the possibility to read and write data from/to the DW1000 IC accessing the
registers.

Figure A.1: General software framework of DW1000 device driver

83

MoDecaRanging PC application

With reference to Fig. A.1, the DW1000 device driver controls the DW1000 IC
through its SPI interface. More precisely, the DW1000 device driver abstracts the
target SPI device by calling it through generic functions writetospi() and readfrom-
spi(). The control of the DW1000 IC through the DW1000 device driver software
is achieved via a set of API functions, provided by Decawave (details can be found
in [38], [39]). In particular, the uint16 dwt read16bitoffsetreg(int regFileID, int
regOffset) is used to read a 16-bit DW1000 register that is part of a sub-addressed
block. As an example, the SNR can be obtained from the receive signal power,
computed as:

RXLevel = 10× log10

(
C × 217

N2

)
− A [dBm]

and,

SNR = RXLevel + delta

where A and delta are constants, N is the preamble accumulation count and C is
the Channel Impulse Response Power (CIR PWR), stored in the register file 0x12.

Figure A.2: Register file 0x12 - Rx Frame Quality Information

Referring to Fig. A.2, it is possible to retrieve C as dwt read16bitoffsetreg(0x12,
0x6), since every octet spans 8 bit.

Having clarified how to extract additional data from the registers of the DW1000
IC, some of those values have been included in the .log file generated via the MoD-
ecaRanging PC application, which heading structure is depicted in Fig. A.3. The
data included in the file are then extracted by a Python script to perform data
analysis and network training and testing.

84

MoDecaRanging PC application

Figure A.3: LOG file heading structure

Considering that FP AMPL1, FP AMPL2, FP AMPL3 are the amplitude of
the 1st, 2nd and 3rd point after ceiling Fphw respectively, a sub-portion of the
Channel Impulse Response extracted from the .log file is shown in Fig. A.4.

Figure A.4: CIR first path amplitude points - zoom

85

Bibliography

[1] H. Nikookar and R. Prasad, Introduction to ultra wideband for wireless com-
munications. Springer Science & Business Media, 2008.

[2] M.-G. Di Benedetto, UWB communication systems: a comprehensive
overview. Hindawi Publishing Corporation, 2006.

[3] S. M.-S. Sadough, “A tutorial on ultra wideband modulation and detection
schemes,” Shahid Beheshti Univ. Fac. Electr. Comput. Eng, Tehran, IR Iran,
no. April, pp. 1–22, 2009.

[4] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. USA:
Cambridge University Press, 2005.

[5] H. Obeidat, A. Alabdullah, E. Elkhazmi, W. Suhaib, O. Obeidat, M. Alkham-
bashi, M. Mosleh, N. Ali, Y. Dama, Z. Abidin, et al., “Indoor environment
propagation review,” Computer Science Review, vol. 37, p. 100272, 2020.

[6] A. A. Saleh and R. Valenzuela, “A statistical model for indoor multipath prop-
agation,” IEEE Journal on selected areas in communications, vol. 5, no. 2,
pp. 128–137, 1987.

[7] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[8] B. Großwindhager, C. A. Boano, M. Rath, and K. Römer, “Concurrent rang-
ing with ultra-wideband radios: From experimental evidence to a practical
solution,” in 2018 IEEE 38th International Conference on Distributed Com-
puting Systems (ICDCS), pp. 1460–1467, 2018.

[9] P. Corbalán and G. P. Picco, “Ultra-wideband concurrent ranging,” ACM
Trans. Sen. Netw., vol. 16, sep 2020.

[10] Qorvo, “Dw1000 user manual.” https://www.qorvo.com/, 2017.

[11] “Evk1000 evaluation kit.” https://www.qorvo.com/products/p/EVK1000.

86

https://www.qorvo.com/
https://www.qorvo.com/products/p/EVK1000

Bibliography Bibliography

[12] P. Ongsulee, “Artificial intelligence, machine learning and deep learning,”
in 2017 15th international conference on ICT and knowledge engineering
(ICT&KE), pp. 1–6, IEEE, 2017.

[13] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,”
arXiv preprint arXiv:2106.11342, 2021.

[14] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data mining and
knowledge discovery, vol. 33, no. 4, pp. 917–963, 2019.

[15] A. J. Bagnall, A. Bostrom, J. Large, and J. Lines, “The great time series
classification bake off: An experimental evaluation of recently proposed algo-
rithms. extended version,” CoRR, vol. abs/1602.01711, 2016.

[16] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification with
cote: The collective of transformation-based ensembles,” IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 9, pp. 2522–2535, 2015.

[17] J. Lines, S. Taylor, and A. Bagnall, “Hive-cote: The hierarchical vote collec-
tive of transformation-based ensembles for time series classification,” in 2016
IEEE 16th International Conference on Data Mining (ICDM), pp. 1041–1046,
2016.

[18] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature
learning and deep learning for time-series modeling,” Pattern Recognition Let-
ters, vol. 42, pp. 11–24, 2014.

[19] Towards Data Science, “Applied deep learning - part 4: Convolutional neural
networks.” https://towardsdatascience.com/applied-deep-learning-p

art-4-convolutional-neural-networks-584bc134c1e2.

[20] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep
features for discriminative localization,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 2921–2929, 2016.

[21] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International joint
conference on neural networks (IJCNN), pp. 1578–1585, IEEE, 2017.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167,
2015.

87

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Bibliography Bibliography

[23] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu, “Time
series data augmentation for deep learning: A survey,” arXiv preprint
arXiv:2002.12478, 2020.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[25] T. DeVries and G. W. Taylor, “Dataset augmentation in feature space,” arXiv
preprint arXiv:1702.05538, 2017.

[26] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative adver-
sarial networks,” Advances in neural information processing systems, vol. 32,
2019.

[27] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Learning deep
features for discriminative localization,” CoRR, vol. abs/1512.04150, 2015.

[28] A. R. Jiménez Ruiz and F. Seco Granja, “Comparing ubisense, bespoon,
and decawave uwb location systems: Indoor performance analysis,” IEEE
Transactions on Instrumentation and Measurement, vol. 66, no. 8, pp. 2106–
2117, 2017.

[29] K. Bregar and M. Mohorčič, “Improving indoor localization using convolu-
tional neural networks on computationally restricted devices,” IEEE Access,
vol. 6, pp. 17429–17441, 2018.

[30] T. S. Rappaport et al., Wireless communications: principles and practice,
vol. 2. prentice hall PTR New Jersey, 1996.

[31] “Maximum permitted speed of dw1000 nodes for correct operation.” https:

//www.decawave.com/wp-content/uploads/2018/10/TB001_Max_DW1000_

Speed.pdf.

[32] Keras, “Gaussian noise layer.” https://keras.io/api/layers/regulariza

tion_layers/gaussian_noise/.

[33] Keras, “Batch normalization layer.” https://keras.io/api/layers/norm

alization_layers/batch_normalization/.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” J.
Mach. Learn. Res., vol. 15, p. 1929–1958, jan 2014.

[35] Keras, “Dropout layer.” https://keras.io/api/layers/regularization

_layers/dropout/.

88

http://www.deeplearningbook.org
https://www.decawave.com/wp-content/uploads/2018/10/TB001_Max_DW1000_Speed.pdf
https://www.decawave.com/wp-content/uploads/2018/10/TB001_Max_DW1000_Speed.pdf
https://www.decawave.com/wp-content/uploads/2018/10/TB001_Max_DW1000_Speed.pdf
https://keras.io/api/layers/regularization_layers/gaussian_noise/
https://keras.io/api/layers/regularization_layers/gaussian_noise/
https://keras.io/api/layers/normalization_layers/batch_normalization/
https://keras.io/api/layers/normalization_layers/batch_normalization/
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/regularization_layers/dropout/

Bibliography Bibliography

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[37] W. Zhu, W.-C. Yeh, J. Chen, D. Chen, A. Li, and Y. Lin, “Evolutionary
convolutional neural networks using abc,” pp. 156–162, 02 2019.

[38] “Dw1000 software api guide.” https://usermanual.wiki/Pdf/DW1000Soft

wareAPIGuiderev2p4.1120642274/html.

[39] “Decaranging pc source code guide.” https://forum.qorvo.com/uploads/

short-url/fPJbrN3ctkaWvPsatdg33N6qxLA.pdf.

89

https://usermanual.wiki/Pdf/DW1000SoftwareAPIGuiderev2p4.1120642274/html
https://usermanual.wiki/Pdf/DW1000SoftwareAPIGuiderev2p4.1120642274/html
https://forum.qorvo.com/uploads/short-url/fPJbrN3ctkaWvPsatdg33N6qxLA.pdf
https://forum.qorvo.com/uploads/short-url/fPJbrN3ctkaWvPsatdg33N6qxLA.pdf

	Introduction
	Thesis objective
	Thesis organization

	Ultrawide-band
	History and regulation
	Definition
	Characteristics
	Basics
	Transmission
	Modulation

	Wireless channel
	Indoor environments
	Channel modelling
	UWB Channel Impulse Response model
	Channel Impulse Response

	Ranging
	Single-sided Two-way Ranging
	Double-sided Two-way Ranging

	Artificial Intelligence
	Machine Learning
	Challenges

	Deep Learning
	Deep learning for time series classification
	DNN architecures for TSC

	Time series data augmentation techniques
	Basic approaches
	Advanced approaches

	Explainable Artificial Intelligence
	Class Activation Mapping

	Experimental set
	Hardware and Software
	Decawave EVK1000 kit
	Mileseey X6 laser distance meter
	DecaRanging

	Board issues and calibration
	Measurement campaign
	Board configuration
	Measurement scenario
	Data extraction

	Data collection and analysis
	Collected dataset
	Channel impulse response analysis
	Samples selection
	Point-to-point analysis
	Environmental factors influence
	Principal Component Analysis

	Classification
	Preprocessing
	Data augmentation
	Scaling
	Normalization
	Shuffling
	Splitting

	Adopted model
	Gaussian noise
	Batch normalization
	Dropout

	Learning strategy
	Optimizers
	Loss functions
	Hyperparameters

	Results
	Confusion matrices
	Grad-CAM

	Conclusions
	MoDecaRanging PC application

