
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Person-aware autonomous navigation for
an indoor sanitizing robot in ROS2

Supervisor

Marcello CHIABERGE

Candidate

Vittorio MAYELLARO

December 2022

To my mother, for showing
me what it means to have
unwavering strength of will.
Have courage and keep smiling.

ii

Summary

In recent decades, intelligent systems have increasingly become part of our everyday
lives to the point that robots able to perceive their surrounding environment and
interact with it are not a dream anymore. With the advent of Industry 3.0, IT and
computer technology were used to automate processes, but this is already the past
because, nowadays, in the era of Industry 4.0, manufacturers are integrating new
technologies, including IoT (Internet of Things), cloud computing and analytics,
AI and machine learning into their production facilities and throughout their
operations. For centuries people have been interested in building machines that
mimic living beings. In living beings, perception and action are tightly coupled,
which is also fundamental for the development of autonomous mobile robots.
With the widespread use of robotic arms in industrial manufacturing, robotics
has seen its greatest success to date. Despite their success, unfortunately, these
commercial robots suffers from a fundamental disadvantage: lack of mobility. As
intelligent agents capable of engaging actively with the industrial environment,
mobile autonomous robots are being created in order to better achieve the level of
flexibility envisioned by the Industry 4.0 revolution.
In many fields, including manufacturing, assembly, packing, transportation, search
and rescue, healthcare and surgery, robots are used extensively. The usage of robots
in social contexts, on the other hand, is still in an earlier stage. [1]. An extensive
amount of research has been carried out in the area of localization, mapping, and
exploration for autonomous mobile robots and almost all of the work has been
aimed at environments where the robot is able to build 2D map based on its
sensor’s output. In particular, in the last few years, an increasingly number of
research about autonomous navigation in social contexts has been carried out,
which is significant in terms of how much this topic is currently being considered.

iii

Person-aware indoor navigation focuses on the ability of the robot to automatically
detect a person, its position and velocity in real time. Indeed, this is crucial for
people-aware indoor mapping, obstacle avoidance and path planning.
This thesis project project aims to improve the navigation strategy of a sanitizing
robot by introducing a person-aware module. Through the usage of ROS2 the local
and global costmap of Nav2 are modified to address the presence of people and
maintain an acceptable social distance. The goal is to create an approach that
makes it possible for autonomous robots to navigate indoors without relying on
GPS or other external signals, which often fail in indoor environments.
A research about the autonomous navigation problem in social contexts has been
carried out and the solution we propose uses computer vision to detect people and
distinguish them from static obstacles. The developed algorithms are subsequently
used to determine the optimal path through the environment by combining multiple
probabilities of success based on each sensor’s output.
This project is linked to a collaboration between the Interdepartmental Centre for
Service Robotics of Politecnico di Torino (PIC4SeR) and the Innovation Centre of
Intesa San Paolo. The proposed solution intends to build the groundwork for more
extensive and focused approach to tackle the issue of autonomous navigation in
social contexts.

iv

Acknowledgements

First of all I would like to thank my supervisor Prof. Marcello Chiaberge, who
supported me and helped me achieve this goal. With these few words, I would like
to express my appreciation for good advice and helpfulness during both the thesis
work and team activities.

None of this would have been possible without the great contribution of An-
drea, Chiara and Mauro who have accompanied me along this journey. A genuine
thank you for your teachings that have been and will always be an inspiration for
my work. Thank you for showing me that it is always possible to improve.

There are no words to express my gratitude to the entire PIC4SeR, an extremely
inspiring and stimulating environment that has become my second home for more
than a few months. Sincere thanks to all PhD students and researchers of PIC4SeR
for always being helpful and teaching me to look at the world from a new perspective.

My heartfelt thanks go to Team RoboTO, thank you for changing my life. In this
environment I had the opportunity to experience what it means to passionately
pursue and truly live my dreams. In particular, I would like to thank Francesco P.,
Luca, Francesco G., Corrado, Marco and Jiang; you have been more than university
colleagues, thank you for being trusted companions. I hope we will be able to build
a solid future together, this is just the beginning.

I would also like to sincerely thank Giuseppe, Alessandro, Daniele, Vito, Martina,
Sabrina, Francesca, Mirko and Ilaria for being my second family here in Turin. Since
we arrived in this new city, we have experienced many new adventures together

v

and we still have many more to come. Thank you for always being present in my
life, never leaving me alone.

The most important thanks goes to my family. Entire pages would not be enough
to express my gratitude to you. Thank you for making me the man I am today and
thank you for all the sacrifices you have made for me, I have reached this milestone
mainly thanks to you.

Lastly, I would like to thank all the people who are persistently pursuing their
ambitions: do not give up, the world belongs to those who never stop dreaming.

vi

Table of Contents

List of Tables xi

List of Figures xii

Acronyms xv

1 Introduction 1
1.1 Overview . 1
1.2 Robotics for sanification and disinfection 2
1.3 Robots in social contexts . 3
1.4 Indoor navigation technologies . 5
1.5 Related works . 6

1.5.1 Visual Perception . 8

2 ROS2 Framework 9
2.1 Overview . 9
2.2 The ROS 2 Graph . 11
2.3 RViz . 13
2.4 Gazebo . 14
2.5 ROS2 Navigation Stack . 15

2.5.1 Costmap2D . 17

3 Hardware architecture 21
3.1 Overview . 21
3.2 Ventilation and purification system 22
3.3 KUKA youBot Platform . 22

viii

3.4 RPLIDAR A2 . 23
3.5 Time-of-Flight sensor . 24
3.6 OAK-D stereo camera . 25
3.7 Intel RealSense T265 . 26
3.8 CO2 sensor . 27

4 Implementation 28
4.1 Overview . 28
4.2 Nodes, custom messages and topics 29

4.2.1 Messages . 29
4.2.2 Nodes and topics . 30

4.3 People detection and tracking . 32
4.3.1 MobilenetSSD . 32
4.3.2 Object tracking . 33

4.4 Social Costmap Plugin . 35
4.4.1 Costs assignment . 39

5 Simulations and tests 42
5.1 Overview . 42
5.2 Environment configuration on Gazebo 43
5.3 Simulation scenarios . 45
5.4 Social layer parameters . 48
5.5 Set of metrics . 49
5.6 Simulation results . 50

5.6.1 Front passing test . 51
5.6.2 Diagonal passing test . 52
5.6.3 Orthogonal passing test . 54
5.6.4 Wall test . 55
5.6.5 Cut test . 57
5.6.6 X test . 58
5.6.7 Tab test . 61

6 Conclusions and future developments 64

ix

Bibliography 66

x

List of Tables

1.1 Social zones in proxemics according to [6] 4

2.1 Ported and new packages in Nav2 16

4.1 Virtual methods for the implementation of new costmap layers [30] 37

5.1 Parameters of the Gaussian function 48
5.2 Set of metrics for front passing test 52
5.3 Set of metrics for diagonal passing test 53
5.4 Set of metrics for orthogonal passing test 55
5.5 Set of metrics for wall test . 56
5.6 Set of metrics for cut test . 58
5.7 Set of metrics for X test . 60
5.8 Set of metrics for Tab test . 63

xi

List of Figures

1.1 Some mobile robotics application examples 2
1.2 Mobile robotics in the Healthcare 3
1.3 EMIEW2 by HITACHI . 4
1.4 Indoor navigation in an office-like environment 6
1.5 Example of objection detection results using MobileNet SSD [12] . . 8

2.1 ROS2 distributions and their EOL 10
2.2 ROS 2 Foxy Fitzroy layered architecture [15] 10
2.3 PoseStamped message . 11
2.4 ROS2 topic . 11
2.5 ROS2 service . 12
2.6 ROS2 action . 12
2.7 rqt_graph visualization for a basic turtlesim example 13
2.8 Example of RViz visualization . 14
2.9 Example of Gazebo visualization 14
2.10 Nav2 architecture [20] . 15
2.11 A stack of costmap layers, showing the numerous contextual behav-

iors achievable with the layered costmap approach [8] 18
2.12 Assignment of Inflation Layer costs [21] 20

3.1 Mobile robot deployed for air sanitation 21
3.2 VORT ARIASALUS 200 ventilation and purification system 22
3.3 KUKA youBot omni-directional mobile platform 23
3.4 RPLIDAR A2 360° Laser Scanner 24
3.5 RViz visualization of lidar measurements in simulation 24

xii

https://www.hitachi.com/rd/research/mechanical/robotics/emiew2_01/index.html

3.6 VL53L5CX multizone ranging sensor [23] 25
3.7 OAK-D stereo camera [24] . 26
3.8 Intel RealSense T265 Tracking Camera [25] 26
3.9 Infineon Technologies XENSIV™ PAS CO2 [26] 27

4.1 General pipeline to understand the system elements’ interactions . . 29
4.2 Various applications of MobilNet models [12] 32
4.3 MobilenetSSD layered architecture [28] 33
4.4 Object tracker inputs and outputs [29] 34
4.5 Visualization of the detections in our solution 35
4.6 Social Layer virtual methods main tasks step by step 38
4.7 Local reference frame for costs assignment according to an asym-

metric 2D Gaussian function . 40
4.8 Visualization of a person moving towards the robot in a simulated

world . 41

5.1 Cafe world visualization in Gazebo (left) and its map (right) 43
5.2 Visualization of the spawned actor in Gazebo 44
5.3 Visualization of the spawned Nexus 4WD Mecanum robot in Gazebo 44
5.4 Front passing qualitative schematization 45
5.5 Front passing qualitative schematization 45
5.6 Orthogonal passing qualitative schematization 46
5.7 Wall test qualitative schematization 46
5.8 Cut test qualitative schematization 47
5.9 X test qualitative schematization 47
5.10 Tab test qualitative schematization 48
5.11 Front passing test robot and person path representation 51
5.12 Front passing test person-robot distance over time graph 51
5.13 Diagonal passing test robot and person path representation 52
5.14 Diagonal passing test person-robot distance over time graph 53
5.15 Orthogonal passing test robot and person path representation . . . 54
5.16 Orthogonal passing test person-robot distance over time graph . . . 54
5.17 Wall test robot and person path representation 55
5.18 Wall test person-robot distance over time graph 56

xiii

5.19 Cut test robot and person path representation 57
5.20 Cut test person-robot distance over time graph 57
5.21 X test robot and person path representation 58
5.22 X test person1-robot distance over time graph 59
5.23 X test person2-robot distance over time graph 59
5.24 Tab test robot and person path representation 61
5.25 Tab test person1-robot distance over time graph 61
5.26 Tab test person2-robot distance over time graph 62

xiv

Acronyms

AI

artificial intelligence

DNN

deep neural networks

ROS

robot operating system

BT

behaviour tree

IMU

inertial measurement unit

TOF

time-of-flight

xv

Chapter 1

Introduction

1.1 Overview

To date, mobile robotics is one of fastest growing areas of scientific research. Due
to their capabilities, mobile robots can nowadays replace humans in several tasks.
A robot is autonomous when it has the ability to determine the actions to be
taken to perform a task, using a perception system that helps it. It also needs a
cognition unit or a control system to coordinate all the subsystems that comprise
the robot. The domains of locomotion, perception, cognition, and navigation make
up the foundation of mobile robotics [2]. One of the most important tasks of an
autonomous system of any kind is to acquire knowledge about its environment. This
is accomplished by taking measurements with a variety of sensors, then deriving
meaningful data from those results [3]. Signal analysis and specialized fields like
computer vision and sensor technology are involved in perception. To accomplish
the goals of the mobile robot, cognition is in charge of evaluating the input data
from sensors and taking the appropriate actions. Thus, It is responsible for the
control system architecture. Navigation requires knowledge of planning algorithms,
information theory, and artificial intelligence [2]. Navigation ability is thus the
result of the combination of perceptual data, localization, cognition, and motion
control.

1

Introduction

(a) BACCHUS by Robotnik
https://robotnik.eu/projects/bacchus-
en/

(b) MiR250 Hook by Mobile Indus-
trial Robots https://www.mobile-
industrial-robots.com/solutions/mir-
applications/mir-hook-250/

(c) KMR QUANTEC by KUKA
https://www.kuka.com/en-
de/products/mobility/mobile-
robots/kmr-quantec

(d) Spot by Boston Dynamics
https://www.bostondynamics.com/products/spot

Figure 1.1: Some mobile robotics application examples

1.2 Robotics for sanification and disinfection

From a technical standpoint, the use of robots is a part of the proactive strategy to
stop the spread of infectious diseases and shield healthy individuals from infection.
In an effort to combat the challenges and hardships brought on by the COVID-19
pandemic, the development of service robots in the healthcare industry has been
sparked. Over the past year, a variety of robots have been used to carry out a

2

https://robotnik.eu/projects/bacchus-en/
https://robotnik.eu/projects/bacchus-en/
https://www.mobile-industrial-robots.com/solutions/mir-applications/mir-hook-250/
https://www.mobile-industrial-robots.com/solutions/mir-applications/mir-hook-250/
https://www.mobile-industrial-robots.com/solutions/mir-applications/mir-hook-250/
https://www.kuka.com/en-de/products/mobility/mobile-robots/kmr-quantec
https://www.kuka.com/en-de/products/mobility/mobile-robots/kmr-quantec
https://www.kuka.com/en-de/products/mobility/mobile-robots/kmr-quantec
https://www.bostondynamics.com/products/spot

Introduction

number of crucial duties and functions using a variety of techniques [4].

(a) Mobile Robot for Air Disinfection by
NOLL Sondermaschinenbau
https://www.noll-
sondermaschinenbau.de/

(b) ARIS-K2 by Shenzhen Youibot
Robotics https://en.youibot.com/

Figure 1.2: Mobile robotics in the Healthcare

Currently, human personnel carried out the majority of indoor disinfection in
contaminated environments, including hospitals. Despite wearing protective gear,
frontline healthcare workers are still exposed to the infection when they have direct
patient contact. This unquestionably raises the possibility that a healthy individual,
either working in the health sector or not, will be exposed to contagious virus.
In contrast, disinfection robots might result in a more safe, efficient and effective
disinfection process [5].

1.3 Robots in social contexts

Nowadays, every industry has undergone a fundamental change as a result of the use
of robots in industrial settings. In many fields, including manufacturing, assembly,
packing, transportation, search and rescue, healthcare, surgery, and laboratory
research, robots are used extensively. On the other hand, the use of robots in social
contexts is still in its early stages [1]. Robots are gradually entering into public

3

https://www.noll-sondermaschinenbau.de/
https://www.noll-sondermaschinenbau.de/
https://en.youibot.com/

Introduction

areas to help people with their duties and while coming into contact with them it
is crucial that their general motion behavior inspires confidence and causes people
the least amount of distress possible. The robot should move in a way that is
perceived as safe and should make people feel at ease. [6]

Figure 1.3: EMIEW2 by HITACHI

There are social norms that govern how people should move past one another in
public contexts. A robot should, at the very least, exhibit motion behavior that
adheres to identical rules and it takes meticulous planning to make the robot behave
in a way that is convincingly human-like and encourages confidence. According
to Pacchierotti et al. [6], who studied the rules from proxemics used to design a
passing strategy, the space around a person is divided into four distance zones:

Social Zone Distance

Intimate distance up to 45 cm

Personal distance from 0.45m to 1.2m

Social distance from 1.2m to 3.5m

Public distance beyond 3.5m

Table 1.1: Social zones in proxemics according to [6]

4

https://www.hitachi.com/rd/research/mechanical/robotics/emiew2_01/index.html

Introduction

Pacchierotti et al. also suggest three parameters as the most significants for the
robot passing behaviour:

• Robot speed: the average forward speed of the robot during the passing
maneuver.

• Signaling Distance: the person-robot distance along the robot direction of
motion.

• Lateral Distance: the distance that the robot maintains from the person at
the passing point along the direction perpendicular to that of the corridor

Estimating the human’s location and pose in the frame is the initial step in
several pipelines for understanding human behavior. Furthermore, the capability
of robots to predict future actions is crucial for understanding human behavior.
Early research on trajectory forecasting for social robot navigation among humans
achieved impressive results. From Kalman filters to solutions that use deep learning
and reinforcement learning, a lot of innovation is being carried on in this context.

1.4 Indoor navigation technologies

Autonomous indoor navigation is a subfield of the study of autonomous robotics and
it is one of the greatest challenges of the coming decades in robotics. It is becoming
increasingly necessary for mobile robots to be able to navigate autonomously in a
variety of different environments and without a GPS, such as in dense urban areas,
homes, tunnels, office buildings etc.
Autonomous systems must be able to navigate by responding and adapting to their
changing environments; they must be robust to failure of sensors and/or control
methods and they must adapt as the environment changes. LiDAR could be used
to identify common obstacles, but what if we wanted to distinguish between how
a robot behave when it encounters specific impediments, such as people? The
most obvious solution for this would be to use video data from a camera mounted
on the robot. Computer vision is a technique of processing information from a
video sequence or image sensor to recognize objects, determine their 3D shape and
motion, and track their positions. Computer vision provides a potentially powerful

5

Introduction

Figure 1.4: Indoor navigation in an office-like environment

tool for developing mobile robots that are able to navigate indoors on their own.
However, occlusion and shadows of obstacles, huge computational demands by
models for optimal control and obstacle avoidance together with high sampling
rate requirements for vision sensors are still huge challenges to be solved.

1.5 Related works

For a long time, the navigation of mobile robots, both remotely controlled and
autonomous, has been of considerable academic interest. In recent years, the
robotics research community is extensively working on autonomous navigation of
robots, more specifically on person-aware solutions. Although numerous problem
scenarios are either devoid of people or merely consider them to be static impedi-
ments, they are nevertheless useful for studying general navigation skills, which are
essential for social robots. Additionally, many traditional navigational techniques
have been modified to incorporate a social component while still utilizing the same
underlying algorithms, as also proposed in our solution. The long-term objective is

6

Introduction

to develop robots that can comprehend human behavior and social conventions,
using these inputs to communicate in a way that is intuitively understood by
humans [1]. In addition to the standard obstacle avoidance challenges, navigating
around people presents unique challenges. For instance, a chair perception of the
robot’s path around it is not of interest; nevertheless, a person who believes the
robot is approaching too closely may react negatively.
Robots can now navigate around people using a variety of techniques. Kirby [7]
addressed social navigation issues by adjusting the robot’s path in consideration
of people’s personal space and other social norms. His method adds values to the
costmap in the vicinity of the human’s identified location in accordance with a 2d
Gaussian, presumably accounting for the person’s direction of travel. In general,
this strategy works effectively since it directs the robot to follow smooth paths
far from people. Unfortunately, the laser-based tracking technology for person
detection and tracking employed by Kirby didn’t work very well in practice. Indeed,
a better solution would have been employing a multi-sensor strategy to locate
people more accurately. In other words, even if a laser can offer rather precise range
readings, it might be challenging to identify which signals are related to people.
The tracker might reach more accuracy by combining the laser ranges with, for
instance, a vision system that recognizes people and their positions.
David V. Lu et al. created and implemented a new method in the ROS Naviga-
tion Stack called layered costmaps [8]. It records different types of constraints or
obstacles by processing costmap data in semantically distinct layers, and then it
alters a master costmap that is used for path planning. A significant reason for
including more complex costs in the costmap is modelling limitations brought on
by human-robot interaction. They devised a Proxemic Layer that employs Kirby’s
mixture of Gaussians model to prevent robots from approaching people too closely
using their location and velocity (as determined by laser scans of the person’s legs)
[9]. In contrast, we implemented the proxemic layer in the ROS2 Navigation Stack
employing the Gaussian functions as proposed by Kirby and using the computer
vision to detect and track people in the area of interest.

7

Introduction

1.5.1 Visual Perception

To date, robotics relies heavily on visual perception, which enables a full and
detailed knowledge of the surrounding environment. The development of Deep
Neural Networks (DNN) and Artificial Intelligence (AI) is still ongoing on a global
scale. The employment of visual perception on robots is, together with the ever-
present need to entrust robots with tasks that would normally be performed by
human operators, what is bringing autonomous navigation in social contexts so
much in vogue. Indeed, the increasingly evident improvement of computer vision
technique for real-time people detection is fundamental for the accuracy of the
developed solution in social contexts. For instance, G. Doisy et al. [10] developed
an adaptive person-following algorithm based on depth images and mapping. In the
proposed solution, they used depth images for real-time human pose recognition,
using the position of the head joint to estimate the ground coordinates of the
detected person.
Standard deep learning-based object detection algorithms such as SSD [11] networks
inform the robot about the presence of objects, in our context, people, in its field of
view. Our pipeline combines both RGB and depth images, employing mobilnet-ssd
and a built-in tracker of our depth camera to detect and track humans in the field
of view of the robot in order to treat people differently from static obstacles.

Figure 1.5: Example of objection detection results using MobileNet SSD [12]

8

Chapter 2

ROS2 Framework

2.1 Overview

The Robot Operating System (ROS) is an open-source middleware that has under-
gone rapid development and has been widely used for robotics applications. It was
built almost entirely from scratch and has been maintained by Willow Garage and
the Open Source Robotics Foundation since 2007. It provides numerous libraries
and tools to help software developers create robotics applications. ROS, on the
other hand, must meet the increasing demands of real-time distributed embedded
systems and only runs on a few operating systems. To satisfy these requirements,
it has undergone a significant upgrade to ROS2. [13]. There are numerous ROS2
versions, and the most of them receive ongoing updates and support until their
EOL date (End of life). In this thesis project ROS2 Foxy has been used. ROS2 was
developed in order to leverage what is great about ROS1 and improve what is not.
The most intriguing aspect of this updating process is that it is always possible to
utilize a bridge to connect the most recent ROS2 version in use with ROS1 such that
neither one loses any functionality. Greater control over the condition of the ROS 2
system is possible with Lifecycle (or Managed) nodes [14], which are one of the most
important novelties of ROS 2. A managed node can be thought of as a "black box"
because it offers a known interface and operates in accordance with a known life
cycle state machine. This gives node developers flexibility in how they implement
managed life cycle features and guarantees that any tools developed for managing

9

ROS2 Framework

Figure 2.1: ROS2 distributions and their EOL

nodes can be used with any compliant node. Currently, ROS 2 is employed in a
variety of applications, including autonomous cars, industrial robots, and humanoid
robots mainly for the purposes of navigation, control, motion planning, vision, and
simulation. One of the most useful characteristics of ROS 2 is that it provides an
high level of abstraction of the hardware from the software which means that users
create robotics applications without needing physical hardware on hand. ROS 2
Foxy Fitzroy and its basic layered architecture is shown in Figure 2.2.

Figure 2.2: ROS 2 Foxy Fitzroy layered architecture [15]

10

ROS2 Framework

2.2 The ROS 2 Graph

Developers get access to a diverse number of communication patterns using
RCLCPP. These are intended to encapsulate typical node-to-node communication
patterns. The ROS 2 graph [16] is a network of ROS 2 elements that process data
concurrently. If all of the executables were mapped, it would include all the links
between them. This graph is composed by the following elementary components:

• Nodes: A ROS node is basically a process running inside the application,
usually responsible for a single purpose (e.g. acquire camera data), that can
send and receive data to other nodes via topics, services, actions or parameters.

• Messages: A ROS message is a simple data structure used to store data
useful for nodes communication. They can be standard-type (e.g. String, Int,
Bool) or specifics for the application of interest as shown in figure 2.3.

Figure 2.3: PoseStamped message

• Topics: ROS topics are the means through which nodes can communicate
by exchanging messages. Since topics use anonymous publish/subscribe logic,
the creation and acquisition of information are separated and each node is not
aware of the "identity" of the nodes it is communicating with. In general, a
node may simultaneously subscribe to any number of topics while publishing
to others topics. Each topic can only receive messages of the same type.

Figure 2.4: ROS2 topic

11

ROS2 Framework

• Services: Unlike ROS topics, where the publisher-subscriber model is used,
ROS services are built on a call-and-response synchronous model. Indeed,
services only deliver data when they are specifically requested by a client.
Services are defined using srv files.

Figure 2.5: ROS2 service

• Actions: ROS actions are another way to perform node communications
particularly suited for long running tasks. Action clients communicate with an
action server in a manner similar to services in order to accomplish a task and
receive a response. Furthermore, feedback is useful to implement a mechanism
to communicate the small steps a goal has taken whereas the result is sent
when the goal has been completed. Unlike services, an action server notifies
the client of its progress as the action is being carried out.

Figure 2.6: ROS2 action

12

ROS2 Framework

• Parameters: A ROS parameter is a node’s configuration value. In general,
parameters can be seen as node settings. Indeed, a parameter server is best
used for static data.

These basic building blocks allow us to create extremely complicated systems, and
using the command rqt_graph to represent all the system’s nodes and topics is
extremely useful to understand its overall behaviour.

Figure 2.7: rqt_graph visualization for a basic turtlesim example

2.3 RViz

RViz [17] is a ROS graphical interface that allows to visualize numerous of infor-
mation published on topics. To create a custom RVIZ configuration, such as in
figure 2.8, a lot of plugins can be employed:

• Global Options: allows to choos general settings like the background colour
and fixed frame.

• Grid: allows to visualize a grid laying on the xy plane.

• RobotModel: allows to visualize the Robot Model according to its description
from the URDF model.

• TF: shows the position and the orientation of all the frames that compose
the TF Hierarchy.

• Laser Scan: shows data from a laser scan, with various options for rendering
modes, accumulation, etc.

• Grid Cells: shows cells from a grid, usually obstacles from a costmap from
the navigation stack.

13

ROS2 Framework

Figure 2.8: Example of RViz visualization

2.4 Gazebo

Gazebo is an open-source 3D robot simulator widely used in both industry and
academics. It does physics calculations, provides sensor data, and allows actuator
control. The simulation environment offered by Gazebo includes a full set of
development libraries and cloud services. It is also particularly well suited for
testing control strategies safely. Indeed, the primary uniqueness of this software is
that it enables robot system development without the need for physical hardware
and, consequently, without endangering the robot and the surrounding environment.

Figure 2.9: Example of Gazebo visualization

14

ROS2 Framework

2.5 ROS2 Navigation Stack

In general, odometry and sensor data are gathered by a navigation stack, which
then produces velocity signals to be sent to a robot. Furthermore, for a robot’s
shape and dynamics to operate at a high level, the navigation stack must be set up
properly. In this thesis project, the ROS 2 navigation stack (also known as Nav2)
has been employed. The core middleware employed for Nav2 [18] is ROS 2. Actions
are widely used in the ROS 2 navigation stack to manage ongoing processes. In
this stack, action servers are utilized to send and receive NavigateToPose action
messages from the top-level BT navigator, which is the true novelty of Nav2. In
order to plan paths, control efforts, and recoveries, the BT navigator also uses
them to connect to the ensuing smaller action servers. Behavior trees (BT) are
used more frequently in sophisticated robotic tasks since they are better suited for
these tasks compared to the single process state machine that was employed for
the ROS 1 navigation stack. They are organized as a tree of tasks to be performed.
It creates a framework that is more scalable and easy for people to understand for
defining multi-step or many-state applications. The planner, behavior, smoother,
and controller servers are four of Nav2’s action servers. [19] To sum up, comparison

Figure 2.10: Nav2 architecture [20]

between the new and ported packages from ROS1 navigation stack to Nav2 are

15

ROS2 Framework

listed in table 2.1 [20].

Nav2 ported and new packages

amcl −→ nav2_amcl

map_server −→ nav2_map_server

global_planner −→ nav2_planner

Navfn: −→ nav2_navfn_planner

DWA: −→ DWB

nav_core −→ nav2_core

costmap_2d −→ nav2_costmap_2d

NEW: nav2_bt_navigator: replaces move_base state machine

NEW: nav2_lifecycle_manager: Handles the server program lifecycles

NEW: nav2_waypoint_follower: Execute navigation through waypoints

NEW: nav2_system_tests: Set of integration tests and basic tutorials

NEW: nav2_rviz_plugins: RViz plugin to interact with Nav2

NEW: nav2_experimental

NEW: navigation2_behavior_trees

Table 2.1: Ported and new packages in Nav2

16

ROS2 Framework

2.5.1 Costmap2D

By means of the ROS 2 navigation stack, the robot uses a costmap representation of
the environment as a foundation on which planner and controller servers compute a
preferred path through obstacles while minimizing a cost function. This is possible
in Nav2 thanks to the specific package nav2_costmap_2d , which subscribes to
the sensor data topics and builds a 2D or 3D space representation as an occupancy
grid: each cell can assume an integer value value between 0 and 255 depending on
the sensor data. In a classic costmap, which we refer to as a monolithic costmap,
all the data is kept in a single grid of values. Due to its simplicity (there is only
one area to read from and write values to), in the past the monolithic costmap has
become the dominant technique. As a result, the costmap’s values lost a lot of
their semantic context. David V. Lu et al. [8] developed and fully implemented
the layered costmaps approach, which divides the processing of costmap data
into levels that are separated by semantics in order to boost the capability to
deal with numerous and different contexts. The layered costmap is introduced in
order to overcome the restrictions the monolithic costmap imposes, which can be
summarized as follows:

• Most of the information in the costmap is stored in one location, a conflict
between the sensor data and the values in the global costmap (i.e. provided
by the static map) cannot be easily solved since the costmap update strategy
depends on the origin of the data and other semantic information.

• It is challenging to determine how long any specific cost value has been
present in the monolithic costmap due to the absence of semantic information.
Regardless of how much of that space was really updated, in practice this
means to conservatively estimate a region of the map that encompasses the
whole area that may have been updated and update it roughly in a square
around the robot.

• It is infeasible as the number of data sources increases.

• It limits the varieties of information that can be used, allowing for only one
interpretation of the costmap’s values.

Indeed, the layered costmap approach guarantees the following benefits:

17

ROS2 Framework

Figure 2.11: A stack of costmap layers, showing the numerous contextual behaviors
achievable with the layered costmap approach [8]

• Clearer Update Step: the layered costmap approach adds various types of
costmap information to distinct levels, separating the update phase more
clearly and removing discrepancies between the competing costmap information
sources.

• Dynamic Update Areas: Only areas of the map that each layer deems required
is updated by the layered costmap. As only values inside a predetermined
bounding box are updated, the costmap is more stable and efficient.

• Ordered Update Process: The explicit ordering of the layered costmap allows
each costmap to be designed to combine the value from the previous layer
with the value from the subsequent layer as a maximum, minimum, or other
mathematical function of the two.

The 2D costmap implementation provided by nav2_costmap_2d gathers sensor

18

ROS2 Framework

data from the outside environment, creates a 2D or 3D occupancy grid from the
data, and then inflates costs depending on the occupancy grid and a user-specified
inflation radius. The basic costmap layers are:

• Static Layer: Gets static map provided at launch and loads the corresponding
occupancy information into the costmap

• Obstacle Layer: Updates continously a 2D costmap using raycasting from 2D
laser scans to empty spaces detected as free

• Inflation Layer: Inflates lethal obstacles in costmap out from occupied cells
with exponential decay. In order to accomplish this, 5 distinct symbols for
costmap values are defined [21]:

– A "lethal" cost indicates that a cell contains a genuine impediment. The
robot would clearly be in collision if its center were in that cell.

– A cell has a "inscribed" cost if it is closer to an actual obstacle than the
robot’s inscribed radius. Therefore, if the robot center is in a cell that is
at or over the written cost, the robot is undoubtedly colliding with some
obstacle.

– Similar to "inscribed," "possibly circumscribed" cost uses the robot’s
circumscribed radius as the cutoff distance. It thus depends on the
orientation of the robot whether it collides with an obstruction or not if
the robot center is located in a cell at or above this value.

– "Freespace" cost is zero, meaning that the robot shouldn’t be prevented
from travelling in that zone.

– A cell’s "unknown" cost indicates that there is no information available.

– Depending on how far they are from a "Lethal" cell and the decay function
the user provides, all other costs are given a value between "Freespace"
and "Possibly restricted."

19

ROS2 Framework

Figure 2.12: Assignment of Inflation Layer costs [21]

20

Chapter 3

Hardware architecture

3.1 Overview

This chapter focuses on providing a general overview of all the hardware required
for the thesis project. A wide range of sensors are needed to accurately sense the
surroundings so that the robot can operate in the indoor environment. The mobile
robot to be deployed for air sanitation is shown in figure 3.1.

Figure 3.1: Mobile robot deployed for air sanitation

21

Hardware architecture

3.2 Ventilation and purification system

The mobile robot’s ventilation and purification system [22] draws in air and purifies
it by passing it through a filter system that retains the impurities in it. In
addition, the sanitizing device (photocatalysis) with which it is equipped exerts
an antibacterial and antiviral action, ensuring high levels of room healthiness.
When in ventilation mode, it restores the optimal oxygen concentration while
reducing relative humidity and carbon dioxide levels to provide the required air
exchange. Furthermore, the purification unit is also effective against the SARS-
CoV2 responsible for the COVID-19 pandemic.

Figure 3.2: VORT ARIASALUS 200 ventilation and purification system

3.3 KUKA youBot Platform

The KUKA youBot platform guarantees a 360-Degree freedom of movement (x, y,
θ) with its omnidirectional wheel system. Despite the limitations on the surface
they can be deployed on, onmnidirectional wheels are particularly beneficial to
use in intelligent and small autonomous robots, especially in indoor environments.

22

Hardware architecture

The most significant advantage of omniwheels is the holonomic movement (i.e. the
controllable degree of freedom is equal to total degrees of freedom).

Figure 3.3: KUKA youBot omni-directional mobile platform

3.4 RPLIDAR A2

The RPLIDAR A2 360° Laser Scanner uses a low-cost laser triangulation mea-
surement technique created by SLAMTEC, performing very well in a variety of
indoor and outdoor conditions. LiDAR (Light Detection and Ranging) systems
produce point clouds (i.e. a set of 3D points) and measure distances using laser
light waves. The distance is calculated by timing the flight of a light pulse, and
gyros measure the laser’s direction as it is being transmitted. An object can be
located by comparing the measured point cloud with one that is recorded in a
database. In figure 3.5 it is possible to observe the implementation of a LiDAR on
RViz.

23

Hardware architecture

Figure 3.4: RPLIDAR A2 360° Laser Scanner

Figure 3.5: RViz visualization of lidar measurements in simulation

3.5 Time-of-Flight sensor

When emitting light, Time-of-Flight (ToF) is particularly effective for range-finding
and distance sensing. It offers much wider range, quicker readings, and more
accuracy as compared to ultrasound. In our robot, a VL53L5CX [23] time-of-Flight
8x8 multizone ranging sensor with wide field of view is employed to achieve the
best ranging performance. Its most significant features are:

• easy integration thanks to the flexible power supply options

24

Hardware architecture

• small dimensions and low power consumption

• fast and accurate distance measurements

Figure 3.6: VL53L5CX multizone ranging sensor [23]

3.6 OAK-D stereo camera

In this thesis project we have employed the Luxonis OAK-D camera [24] to acquire
image data, estimate depth, and execute the people detection and tracking model.
OAK—D is a spatial AI powerhouse that can run complex neural networks simul-
taneously while obtaining depth from two stereo cameras and color information
from a single 4K camera in the middle. It is worth to highlight that the algorithm
used to compute the depth is often run on the host platform. A stereo camera
operates on the same foundation as a human eye: binocular vision. The depth of
an item is determined by stereo disparity, which is the process of estimating the
distance to an object comparing its locations as perceived by two separate cameras.
Furthermore, the cameras resolution is directly related to the depth measurements
accuracy. Our OAK-D stereo camera consists in:

• Two monocamera with a 1280x800p resolution for depth estimation

• A color camera with a 4032x3040p resolution

25

Hardware architecture

• An Intel Movidius Myriad X Vision Processing Unit that can run AI models
on the camera

• An inertial measurement unit (IMU) that can be used to determine the
orientation of the camera in the 3D space.

Figure 3.7: OAK-D stereo camera [24]

3.7 Intel RealSense T265

Intel RealSense T265 Tracking Camera [25] is employed for self-localization of the
mobile robot. It has two fisheye lenses for feature detection but it is not a depth
camera. Furthermore, it has low power consumption and a small form factor which
allows to put it in the bottom front of the robot to better exploit its functionalities.

Figure 3.8: Intel RealSense T265 Tracking Camera [25]

26

Hardware architecture

3.8 CO2 sensor

Infineon Technologies XENSIV™ PAS CO2 [26] is a compact carbon dioxide (CO2)
sensor, designed on the basis of the photoacoustic spectroscopy (PAS) concept,
that saves more than 75 percent space of current genuine CO2 commercial sensors.
Its high accuracy and robust performance together with its small form factor allow
for an easy integration into both low and high-volume applications.

Figure 3.9: Infineon Technologies XENSIV™ PAS CO2 [26]

27

Chapter 4

Implementation

4.1 Overview

This chapter is intended to indicate the general approach we pursued for the
implementation of our solution. The work presented in this chapter refers partially
to [27] which offered me a great way to start the implementation of a "proxemic
layer" in ROS2. The OAK-D camera will be used for people detection and tracking
and the people position and velocity will be transformed from the camera reference
frame into odom reference frame. These information will be published on the
ppl_odom topic to which the global and local costmap are subscribed. The
social layer will use those information to assign costs around each detected person
according to a 2D Gaussian shape with variances proportional to the people velocity
and oriented in the direction of their movement. In Figure 4.1, it is possible to
observe a general pipeline schematization useful to give a high-level overview of
the proposed solution. It is worth to highlight that a first implementation has
been carried out in simulation in order to get a qualitative idea of the general
performance of the social layer regardless of the people detection technique, and
this will be discussed in Chapter 5. Then, an implementation of our solution on
the real robot has been carried out and led to promising but not sufficient results,
which will be the main scope for future improvements.

28

Implementation

Figure 4.1: General pipeline to understand the system elements’ interactions

4.2 Nodes, custom messages and topics

4.2.1 Messages

The communication of the detected people information occurs through two message
types:

• Person.msg

int16 id
geometry_msgs/Point position
geometry_msgs/Point velocity
bool islost

• People.msg

std_msgs/Header header
Person[] people

The id of a person is an identifier directly related with the id of the bounding
box got from the tracklets data. A person position and velocity are expressed

29

Implementation

as three-dimensional vectors (i.e. x,y,z) with components in the reference frame
of interest. Due to the limited field of view of the camera, during the movement
of the robot, people will not be detected anymore even if they are near the robot
(e.g. when passing on the side of a person). A possible solution would be creating
custom heuristics for the planner or employing more than one camera on the robot
to get an overall wider field of view. However, a very elementary solution, that
is employed in the real case solution taking into account simplicity and hardware
limitations, is to suppose that the person has virtually remained in the last position
it was detected in, for a certain amount of time. That’s the main reason for the
introduction of the flag islost in the Person.msg . When a person is not detected
anymore its id will be set to a new value and the trasformation camera −→ odom
will not be performed for the remaining time (otherwise, since the virtual person is
spawned by people_detector before publishing the detected people, its position
would be fixed in the robot local coordinates system, moving along with it).

4.2.2 Nodes and topics

According to the general pipeline depicted in figure 4.1, two are the fundamental
packages to ensure that our solution is properly implemented: people_pub and
nav2_social_costmap_plugin . The package people_pub has two fundamentals
node that are able to provide the people position and velocity in the odom reference
frame to the social layer:

• people_detector : by means of the camera, we can acquire positions and
velocities of detected people referenced to the camera reference frame. Inside
this node, before publishing to the topic /people we are transforming people
positions and velocities into the robot reference frame. As previously explained
in section 1.2.1, when a person get out of the camera field of view, it will be
"marked" as lost and its information will keep to be transmitted for a certain
amount of time.

• ppl2odom : after getting the detected people information from the topic
/people this node is meant to transform people positions and velocities from
the robot reference frame to odom .

30

Implementation

The composition of the package people_pub is the following:

∼/dev_ws/src/people_pub

models

mobilenet-ssd_openvino_2021.4_5shave.blob

msg

People.msg

Person.msg

src

__init__.py

ppl_tracker.py

ppl2odom.py

CMakeLists.txt

package.xml

The composition of the package nav2_social_costmap_plugin is the following:

∼/dev_ws/src/nav2_social_costmap_plugin

include

nav2_social_costmap_plugin

social_layer.hpp

src

social_layer.cpp

CMakeLists.txt

package.xml

social_layer.xml

31

Implementation

4.3 People detection and tracking

By means of the OAK-D stereo camera we are able to acquire image data, estimate
depth, and execute the people detection and tracking model.

4.3.1 MobilenetSSD

Object detection is a computer technology that, thanks to computer vision and
image processing allows to detect objects of a certain class (e.g. humans) in images
and videos. MobilenetSSD is an object detection model able to determine the
bounding box and category of an object given an image. This Single Shot Detector
(SSD) object detection model can accomplish quick object identification, leveraging
Mobilenet as its structural support. A single convolutional network constitutes the
SSD architecture, which learns to predict bounding box coordinates and classify
these regions in only one "shot". The SSD [11] method relies on a feed-forward
convolutional network that produces a fixed-size collection of bounding boxes
and scores for the occurrence of object class instances in those boxes. The final
detections are then obtained by a non-maximum suppression step. Offset values
(cx, cy, w, h) from the default box are contained in boxes. For each of the object
categories, scores include a level of confidence. Each prediction has a bounding box
and 21 scores for all of the classes; the class with the maximum score is determined
to be the bounded object’s class. MobileNet [12] is a class of efficient models using

Figure 4.2: Various applications of MobilNet models [12]

32

Implementation

depth-wise separable convolutions that, compared to a network with conventional
convolutions of the same depth, dramatically reduces the number of parameters.
Basically, depthwise separable convolution is a depthwise convolution followed by
a pointwise convolution. The SSD network is composed of the Mobilenet base
architecture and some convolution layers following it (Figure 4.3. Thanks to the
combination of MobileNet and the SSD method, MobilenetSSD takes in input
a 3x300x300 image and outputs 1x3000x4 boxes and 1x3000x21 scores. In our

Figure 4.3: MobilenetSSD layered architecture [28]

solution, only people are detected and tracked since other objects are not of our
interest.

4.3.2 Object tracking

DepthAI OAK-D camera incorporates a robust object tracker that is able to track
detected objects from the image detections using Kalman filter and hungarian
algorithm. Its inputs and outputs are depicted in Figure 4.4. We can distinguish
two categories of tracking [29] supported in the above-mentioned DepthAI object
tracker, which are:

• Zero term tracking: it carries out object association, therefore it doesn’t
conduct prediction or tracking based on earlier tracking data. Object asso-
ciation would entail mapping tracked objects that have been detected and
are being tracked from earlier frames with detected objects from an external
detector.

33

Implementation

Figure 4.4: Object tracker inputs and outputs [29]

• Short term tracking: By tracking objects between frames, short-term
tracking eliminates the requirement to perform object recognition on each
frame. This works well with neural network models that can’t run at 30 frames
per second since tracker can supply tracklets when there was no inference,
allowing the entire system to operate at 30FPS.

The DepthAI object tracker allows to use four different types of trackers [29], two
per each category:

• SHORT_TERM_KCF: Kernelized Correlation Filter tracking employs
circulant matrix to enhance the processing speed.

• SHORT_TERM_IMAGELESS: Short-term tracking enables to track
objects on frames where object detection was not performed, by extrapolating
object trajectory from previous detections.

• ZERO_TERM_COLOR_HISTOGRAM: performs object tracking us-
ing the position, shape, and input image data, such as the RGB histogram.

• ZERO_TERM_IMAGELESS: It employs only the rectangular shape
of the identified object and its position to track it. It doesn’t use the color
information of the objects it is tracking. Compared to ZERO TERM COLOR
HISTOGRAM, it has a better throughput but lower accuracy.

In our solution we use, as object tracker, the ZERO_TERM_COLOR_HISTOGRAM

34

Implementation

that guarantees good performances. Furthermore, in Figure 4.5 it is possible to
observe a visualization of the detections from our camera.

Figure 4.5: Visualization of the detections in our solution

4.4 Social Costmap Plugin

In the first place, the plugin class nav2_social_costmap_plugin::SocialLayer is
inherited from the basic class nav2_costmap_2d::Layer . The class Layer pro-
vides a set of virtual methods API for the implementation of new costmap layers
[30]. These methods are stated in table 4.1.

35

Implementation

Virtual Method Method description

onInitialize() This method is called at the end of plugin ini-
tialization and it is employed to execute any
required initialization.

matchSize() This method is called when the map size is
changed.

onFootprintChanged() This method is called when the footprint is
changed.

reset() It can contain any code to be executed during
costmap reset.

updateBounds() This method is called to get information from
the plugin about which portion of the costmap
layer requires updating. To ask the plugin which
portion of the costmap layer requires updating,
a method is called. Robot position and orien-
tation are the method’s two input parameters.
Its four output parameters are pointers to the
boundaries of the window. These boundaries
are utilized for performance purposes in order to
update the portion of the window when new in-
formation is available rather than updating the
entire costmap every time an iteration occurs.

36

Implementation

updateCosts() Every time a costmap recalculation is neces-
sary, the method is called. It only updates
the costmap layer within of the bounds of its
window. The method takes 4 input parame-
ters, including the computation window bound-
aries, and outputs 1 reference to a costmap mas-
ter grid as a result. A costmap_intrinsic to
the Layer class is made available to the plugin
for modifications. One of the update methods
listed below—updateWithAddition(), update-
WithMax(), updateWithOverwrite(), or update-
WithTrueOverwrite—should be used to update
the master grid with values that fall within the
window bounds.

Table 4.1: Virtual methods for the implementation of new costmap layers [30]

The most important virtual methods, that are obviously employed in our solutions
are onInitialize() , updateBounds() , updateCosts() since they are essential for a
proper functioning of our solution. In particular, these methods, in our solution,
perform the following tasks:

• onInitialize() : contains the declaration of some useful ROS parameters with
their default values and execute the subscription to the topic /ppl_odom
containing the position and velocity information of all the detected people in
the odom reference frame.

• updateBounds() : it is devoted to update the computation window boundaries
according to the people data received from the topic it subscribed to in the
initialization phase.

• updateCosts() : in this method the gaussian costs are computed and their
values are written directly to the resulting costmap.

37

Implementation

The pipeline depicted in figure 4.6 describes the fundamentals steps that our layer
follows:

Figure 4.6: Social Layer virtual methods main tasks step by step

38

Implementation

4.4.1 Costs assignment

The final and most important stage for the implementation of our "social layer"
has been to meaningfully integrate into the costmap the information about people
that have been detected. In particular, the two-dimensional Gaussian distribution,
which is widely used, is the subject of our investigation. In general, the mean
and variance of a typical one-dimensional Gaussian function are required for its
definition in (4.1).

f(x) = A · e
−

(x − µ)2

2σ2 (4.1)

Instead, for a symmetric two-dimensional Gaussian, the mean is the center of the
function (x0, y0):

f(x) = A · e
−

C
(x − x0)2 + (y − y0)2

2σ2

D

In our solution, we want the cells to be inflated more in the direction that people
are moving to. As a consequence, as proposed in [7] and [9], we are implementing
an asymmetric two-dimensional Gaussian through the combination of two such
functions with differing variances σx and σy:

f(x) = A · e
−

C
(x − x0)2

2σ2
x

+
(y − y0)2

2σ2
y

D
(4.2)

This function simply ensures symmetry along one axis (instead of two), which
in general doesn’t need to be parallel to the x or y axes. In particular, given a
person P centered in C(xc, yc) referring to the map reference frame, we define a
local coordinate frame with origin in C, X’-axis oriented along the direction of
the velocity vector, Z’-axis outgoing the costmap plane and Y’-axis defined in
accordance with the right-hand rule as depicted in figure 4.7. Therefore, according
to (4.2), we can rewrite the asymmetric two-dimensional Gaussian function as
stated in (4.3).

f(x) = A · e
−

C
(r · cos(θ − θc)2

2σ2
x

+
(r · sin(θ − θc)2

2σ2
y

D
(4.3)

39

Implementation

Figure 4.7: Local reference frame for costs assignment according to an asymmetric
2D Gaussian function

At first, since we want the cells to be inflated more in the X’-axis direction, we
compute a "speed factor" that modulates how "stretched" the Gaussian shape is,
in the motion direction. This factor is the sum of a constant component and a
component that is directly related to the velocity vector magnitude: factor =
a + mag · b. In our solution we choose as reasonable values a = 1.0, b = 6.0.
Subsequently, we compute the shortest angular distance between θ and θc in order
to understand if the cell of interest is in the front region (to be inflated more) or
in the rear region. Indeed, if the shortest angular distance is less than π/2 the
considered cell is in the front region (in our solution this implies σx = 0.25 · factor,
σy = 0.25) whereas in the other cases the considered cell is in the rear region (in
our solution this implies σx = 0.25, σy = 0.25). The final results obtained from the
implementation of the social layer is shown in Figure 4.8 in the simulated world
(on the left) a person is moving towards the robot and on RViz (on the right) it is
possible to notice the costmap layer addition.

40

Implementation

Figure 4.8: Visualization of a person moving towards the robot in a simulated
world

41

Chapter 5

Simulations and tests

5.1 Overview

Before deploying our solution on the robot we set up a simulation to understand
how good was the behaviour of the robot when dealing with a gaussian shape
inflated around people moving. This chapter explains how the simulation was set
up and the results obtained using the assumptions from the previous chapters and
configurations for ROS 2, Gazebo, and RViz. The software used for the simulation
are:

• Gazebo: used to generate of the simulation environment with one or more
people, the robot and the simulation world.

• RViz: used as visualization software tool, especially to monitor the local and
global costmap.

It is worth to denote that, both in the simulation and in the real tests, map
and odom reference frame were assumed to be coincident. Indeed, the command
ros2 run tf2_ros static_transform_publisher 0 0 0 0 0 0 map odom has been ex-
ecuted.

42

Simulations and tests

5.2 Environment configuration on Gazebo

To begin with, a launch file has been set up to ensure that all entities within the
Gazebo description file and the robot model were spawned together, and all the
nodes of interest for the autonomous navigation of the robot could be launched just
by executing one command on the terminal. Taking this into account, to prevent
all sort of anomalies, the environment needed to be properly configured. The world
used for the simulation is the cafe.world (Figure 5.1) proposed in the Gazebo
tutorial about making an animated model (actor). Here, we spawn an actor (Figure

Figure 5.1: Cafe world visualization in Gazebo (left) and its map (right)

5.2) that is intended to follow a predetermined trajectory and, calling the service
get_entity_state , we are able to get its position and velocity over time.
In the simulation, the pipeline people_detector.py −→ /people −→ ppl2odom.py
is replaced by ppl_publisher.py which is the node designated for the publication
of people data, acquired by getting the state of the "actor" entity, in the topic
/ppl_odom .
The mobile robot employed for the simulation (Figure 5.3) is a Nexus 4WD
Mecanum robot [31], which is different from the mobile platform we employed in
our sanitation robot but it is equivalent from a qualitative point of view for the

43

Simulations and tests

Figure 5.2: Visualization of the spawned actor in Gazebo

evaluation of the performance of the implemented "social layer" since both have a
mecanum wheel based platform.

Figure 5.3: Visualization of the spawned Nexus 4WD Mecanum robot in Gazebo

44

Simulations and tests

5.3 Simulation scenarios

For performance evaluation purposes, some prototypical "social" encounters have
been considered, and in particular the following tests have been carried out:

• Front passing test: the robot and the person start their "navigation" in two
different points of the environment having intersecting trajectories since both
are heading "against" each other.

Figure 5.4: Front passing qualitative schematization

• Diagonal passing test: similar to the front passing test but the robot is
intercepting the person trajectory diagonally.

Figure 5.5: Front passing qualitative schematization

45

Simulations and tests

• Orthogonal passing test: similar to the front passing test but the robot is
intercepting the person trajectory orthogonally.

Figure 5.6: Orthogonal passing qualitative schematization

• Wall test: similar to the front passing test but with a wall on one side.

Figure 5.7: Wall test qualitative schematization

• Cut test: passing with a person walking next to the robot in its same direction
and suddenly cutting in front of it.

46

Simulations and tests

Figure 5.8: Cut test qualitative schematization

• X test: two people starting their navigation from adjacent corners of the room
crossing it diagonally to get to the opposite corners; also the robot is crossing
diagonally the room.

Figure 5.9: X test qualitative schematization

• Tab test: similar to the front passing test with a further person walking next
to the robot.

47

Simulations and tests

Figure 5.10: Tab test qualitative schematization

5.4 Social layer parameters

A substantial performance assessment of our approach would require a lot of
time and this is out of the scope of this work, which instead intends to build the
groundwork for more extensive and focused future approaches at PIC4SeR. For this
reason, we are assuming some reasonable parameters in table 5.1 for the Gaussian
function. It is worth to highlight that increasing values of σ lead to wider Gaussians

Name Description Value

Cutoff Min cost value to publish on costmap 10.0

Amplitude (A) Max cost, at the peak of the Gaussian 200.0

Covariance (σ) Covariance for the definition of σx and σy 0.25

Speed factor Gaussian stretching in the motion direction 1.0 + 6.0 · mag

Table 5.1: Parameters of the Gaussian function

whereas bigger values of the speed factor lead to a more "stretched" Gaussian along
the motion direction. We have chosen σ = 0.25 since we noticed that this value is

48

Simulations and tests

enough to guarantee more or less the robot-person distance to be around 1 metre
during "social" encounters.

5.5 Set of metrics

A first study of the literature has been carried out in order to gather some of
the metrics relevant for the evaluation of the performance of the human-aware
navigation. Indeed, the proposed set of metrics includes some of the metrics found
in the literature [32] [33] (some metrics are identical while some are modified) plus
some more. To date, the metrics implemented are the following:

• Time to reach the goal: time in seconds from when the robot started its
navigation till it successfully reached the destination.

Tp = Tgoal − Tinit

• Path length: the distance in metres traveled by the robot from its starting
location to its destination.

Lp =
N−1Ø
i=1

||xi
r − xi+1

r ||2

• Path length no people: the straight line distance in metres among the initial
and final position of the robot (it is the distance the robot would have traveled
if no person was encountered during the navigation).

Lp0 = ||xgoal
r − xinit

r ||2

• Human-aware path efficiency: the ratio of the path length without people
(Lp0) and the path length (Lp).

η = Lp0

Lp

• Minimum, maximum and average distance to people: the minimum, maximum
and average distance in metres between the robot and each person.

49

Simulations and tests

RPDmin = min||xi
r − xi

p||2 ∀i ∈ N

RPDmax = max||xi
r − xi

p||2 ∀i ∈ N

RPDavg = avg||xi
r − xi

p||2 ∀i ∈ N

• People space intrusions. The Proxemics theory, which establishes personal
spaces around people for interaction, serves as the foundation for this metric.
These areas are defined as:

– Intimate: distance shorter than 0.45m.

– Personal: distance between 0.45 and 1.2m.

– Social: distance between 1.2 and 3.6m.

– Public: distance longer than 3.6m.

Thus, these metrics classify the distance between the robot and each person at
each time step in one of the Proxemics spaces in order to obtain a percentage
of the time spent in each space for the overall trajectory:

RPDk
prox = 1

N

NØ
i=1

F (||xi
r − xi

p||2 < δk) · 100

where N is the total number of time steps during the robot navigation, δk

defines the distance range for classification of the space, and F(·) is the
indicator function (a function that maps elements of the subset of a set to
one, and all other elements to zero).

5.6 Simulation results

This section is intended to showcase the results obtained in the different simulation
scenarios depicted in section 5.3. Each subsection is dedicated to charts and metrics
for a single simulation scenario.

50

Simulations and tests

5.6.1 Front passing test

This section is intended to show the results obtained through the simulation of a
front passing test that is qualitatively depicted in figure 5.4.

Figure 5.11: Front passing test robot and person path representation

Figure 5.12: Front passing test person-robot distance over time graph

51

Simulations and tests

Metric Value Metric Value

Tp [s] 36.6 RPDavg [m] 5.756

Lp [m] 7.908 RPDintimate
prox 0.0%

Lp0 [m] 7.313 RPDpersonal
prox 5.15%

η 0.9247 RPDsocial
prox 17.07%

RPDmin [m] 0.858 at t = 9.55 s RPDpublic
prox 77.78%

RPDmax [m] 9.281 at t = 0.0 s

Table 5.2: Set of metrics for front passing test

5.6.2 Diagonal passing test

This section is intended to show the results obtained through the simulation of a
diagonal passing test that is qualitatively depicted in figure 5.5.

Figure 5.13: Diagonal passing test robot and person path representation

52

Simulations and tests

Figure 5.14: Diagonal passing test person-robot distance over time graph

Metric Value Metric Value

Tp [s] 27.35 RPDavg [m] 4.532

Lp [m] 8.268 RPDintimate
prox 0.0%

Lp0 [m] 7.679 RPDpersonal
prox 4.0%

η 0.9288 RPDsocial
prox 35.27%

RPDmin [m] 1.164 at t = 13.25 s RPDpublic
prox 60.73%

RPDmax [m] 10.1 at t = 0.0 s

Table 5.3: Set of metrics for diagonal passing test

53

Simulations and tests

5.6.3 Orthogonal passing test

This section is intended to show the results obtained through the simulation of a
orthogonal passing test that is qualitatively depicted in figure 5.6.

Figure 5.15: Orthogonal passing test robot and person path representation

Figure 5.16: Orthogonal passing test person-robot distance over time graph

54

Simulations and tests

Metric Value Metric Value

Tp [s] 23.8 RPDavg [m] 3.969

Lp [m] 7.138 RPDintimate
prox 0.0%

Lp0 [m] 6.763 RPDpersonal
prox 0.0%

η 0.9474 RPDsocial
prox 42.92%

RPDmin [m] 1.683 at t = 10.3 s RPDpublic
prox 57.08%

RPDmax [m] 7.046 at t = 0.0 s

Table 5.4: Set of metrics for orthogonal passing test

5.6.4 Wall test

This section is intended to show the results obtained through the simulation of a
wall test that is qualitatively depicted in figure 5.7.

Figure 5.17: Wall test robot and person path representation

55

Simulations and tests

Figure 5.18: Wall test person-robot distance over time graph

Metric Value Metric Value

Tp [s] 37.1 RPDavg [m] 5.356

Lp [m] 7.958 RPDintimate
prox 0.0%

Lp0 [m] 7.308 RPDpersonal
prox 4.07%

η 0.9183 RPDsocial
prox 23.58%

RPDmin [m] 1.037 at t = 13.55 s RPDpublic
prox 72.36%

RPDmax [m] 10.491 at t = 0.0 s

Table 5.5: Set of metrics for wall test

56

Simulations and tests

5.6.5 Cut test

This section is intended to show the results obtained through the simulation of a
cut test that is qualitatively depicted in figure 5.8.

Figure 5.19: Cut test robot and person path representation

Figure 5.20: Cut test person-robot distance over time graph

57

Simulations and tests

Metric Value Metric Value

Tp [s] 35.75 RPDavg [m] 2.157

Lp [m] 10.97 RPDintimate
prox 0.0%

Lp0 [m] 10.278 RPDpersonal
prox 0.0%

η 0.9369 RPDsocial
prox 100.0%

RPDmin [m] 1.348 at t = 15.6 s RPDpublic
prox 0.0%

RPDmax [m] 3.52 at t = 27.15 s

Table 5.6: Set of metrics for cut test

5.6.6 X test

This section is intended to show the results obtained through the simulation of an
X test that is qualitatively depicted in figure 5.9.

Figure 5.21: X test robot and person path representation

58

Simulations and tests

Figure 5.22: X test person1-robot distance over time graph

Figure 5.23: X test person2-robot distance over time graph

59

Simulations and tests

Metric Value

Tp [s] 36.6

Lp [m] 7.873

Lp0 [m] 7.39

η 0.9387

PERSON 1

RPDmin [m] 1.97 at t = 10.6 s

RPDmax [m] 9.927 at t = 0.0 s

RPDavg [m] 6.006

RPDintimate
prox 0.0%

RPDpersonal
prox 0.0%

RPDsocial
prox 19.41%

RPDpublic
prox 80.59%

PERSON 2

RPDmin [m] 1.011 at t = 12.15 s

RPDmax [m] 10.773 at t = 0.0 s

RPDavg [m] 5.163

RPDintimate
prox 0.0%

RPDpersonal
prox 4.58%

RPDsocial
prox 26.42%

RPDpublic
prox 69.0%

Table 5.7: Set of metrics for X test

60

Simulations and tests

5.6.7 Tab test

This section is intended to show the results obtained through the simulation of a
Tab test that is qualitatively depicted in figure 5.10.

Figure 5.24: Tab test robot and person path representation

Figure 5.25: Tab test person1-robot distance over time graph

61

Simulations and tests

Figure 5.26: Tab test person2-robot distance over time graph

62

Simulations and tests

Metric Value

Tp [s] 34.85

Lp [m] 10.773

Lp0 [m] 10.292

η 0.9553

PERSON 1

RPDmin [m] 1.499 at t = 1.5 s

RPDmax [m] 6.315 at t = 16.55 s

RPDavg [m] 3.946

RPDintimate
prox 0.0%

RPDpersonal
prox 0.0%

RPDsocial
prox 43.77%

RPDpublic
prox 56.23%

PERSON 2

RPDmin [m] 0.959 at t = 9.55 s

RPDmax [m] 13.244 at t = 34.45 s

RPDavg [m] 7.725

RPDintimate
prox 0.0%

RPDpersonal
prox 4.43%

RPDsocial
prox 14.4%

RPDpublic
prox 81.16%

Table 5.8: Set of metrics for Tab test

63

Chapter 6

Conclusions and future
developments

The topic of autonomous robot navigation is very extensive. The initial state-of-the-
art study, which helped identify the issue in the context of indoor navigation, has
been very useful in order to identify which were theoretically the best approaches to
tackle this problem. We were able to succesfully integrate a social layer in the local
and global costmap that could render "human-aware" the navigation of robots. The
proposed social layer approach presents a method for considering people differently
from classical objects, that is simple to integrate with the existing ROS2 Navigation
Stack. A first implementation of the social layer has been carried out in simulation
in order to get a qualitative idea of its overall performance regardless of the people
detection technique as discussed in Chapter 5. Then, an implementation of our
solution on the real robot has been carried out and led to promising but not
sufficient results, which will be the main scope for future improvements. Indeed,
we were able to successfully implement the detection and tracking of people in
the robot’s environment using a stereo camera. The biggest problem encountered
during the implementation on the robot was the limited field of view of the camera.
Indeed, during the movement of the robot, people could not be detected anymore
even if they were near the robot (e.g. when passing on the side of a person). There
are numerous solution useful to tackle this issue (i.e. creating custom heuristics
for the planner, employing more than one camera on the robot to get an overall

64

Conclusions and future developments

wider field of view or using sensor fusion with lidar data to have more reliable
information). The proposed solution, was to suppose that the person had virtually
remained in the last position it was detected in, for a certain amount of time. This
was theoretically a good solution, however due to computer vision technological
limitations also "false" detections remained virtually on the costmap for some time,
which is undesirable. In summary, the proposed solution is a solid groundwork for
more extensive and focused approach to tackle the issue of autonomous navigation
in social contexts using ROS2. Indeed, the modularity of this solution makes the
integration of a "social module" easy for service robots that are intended to coexist
with humans and to fulfill various tasks, from manufacturing to human assistance.

65

Bibliography

[1] Ronja Möller, Antonino Furnari, Sebastiano Battiato, Aki Härmä, and Gio-
vanni Maria Farinella. «A survey on human-aware robot navigation». In:
Robotics and Autonomous Systems 145 (2021). issn: 0921-8890. doi: https:
/ / doi . org / 10 . 1016 / j . robot . 2021 . 103837. url: https : / / www .
sciencedirect.com/science/article/pii/S0921889021001226 (cit. on
pp. iii, 3, 7).

[2] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. «A review of
mobile robots: Concepts, methods, theoretical framework, and applications».
In: International Journal of Advanced Robotic Systems 16.2 (2019). doi:
10.1177/1729881419839596 (cit. on p. 1).

[3] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. Introduction
to Autonomous Mobile Robots. 2nd. The MIT Press, 2011. isbn: 0262015358
(cit. on p. 1).

[4] Jane Holland, Liz Kingston, Conor McCarthy, Eddie Armstrong, Peter
O’Dwyer, Fionn Merz, and Mark McConnell. «Service Robots in the Health-
care Sector». In: Robotics 10.1 (2021). issn: 2218-6581. url: https://www.
mdpi.com/2218-6581/10/1/47 (cit. on p. 3).

[5] Guang-Zhong Yang et al. «Combating COVID-19-The role of robotics in
managing public health and infectious diseases». In: Science Robotics 5.40
(2020). doi: 10.1126/scirobotics.abb5589. eprint: https://www.scie
nce.org/doi/pdf/10.1126/scirobotics.abb5589. url: https://www.
science.org/doi/abs/10.1126/scirobotics.abb5589 (cit. on p. 3).

66

https://doi.org/https://doi.org/10.1016/j.robot.2021.103837
https://doi.org/https://doi.org/10.1016/j.robot.2021.103837
https://www.sciencedirect.com/science/article/pii/S0921889021001226
https://www.sciencedirect.com/science/article/pii/S0921889021001226
https://doi.org/10.1177/1729881419839596
https://www.mdpi.com/2218-6581/10/1/47
https://www.mdpi.com/2218-6581/10/1/47
https://doi.org/10.1126/scirobotics.abb5589
https://www.science.org/doi/pdf/10.1126/scirobotics.abb5589
https://www.science.org/doi/pdf/10.1126/scirobotics.abb5589
https://www.science.org/doi/abs/10.1126/scirobotics.abb5589
https://www.science.org/doi/abs/10.1126/scirobotics.abb5589

BIBLIOGRAPHY

[6] Elena Pacchierotti, Henrik I. Christensen, and Patric Jensfelt. «Evaluation
of Passing Distance for Social Robots». In: ROMAN 2006 - The 15th IEEE
International Symposium on Robot and Human Interactive Communication.
2006, pp. 315–320. doi: 10.1109/ROMAN.2006.314436 (cit. on p. 4).

[7] Rachel Kirby. Social robot navigation. Carnegie Mellon University, 2010 (cit.
on pp. 7, 39).

[8] David V Lu, Dave Hershberger, and William D Smart. «Layered costmaps for
context-sensitive navigation». In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. 2014, pp. 709–715 (cit. on pp. 7,
17, 18).

[9] David V Lu and William D Smart. «Towards more efficient navigation for
robots and humans». In: 2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. IEEE. 2013, pp. 1707–1713 (cit. on pp. 7, 39).

[10] Guillaume Doisy, Aleksandar Jevtic, Eric Lucet, and Yael Edan. «Adaptive
person-following algorithm based on depth images and mapping». In: Proc.
of the IROS Workshop on Robot Motion Planning. Vol. 20. 12. 2012 (cit. on
p. 8).

[11] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. «Ssd: Single shot multibox detector».
In: European conference on computer vision. Springer. 2016, pp. 21–37 (cit. on
pp. 8, 32).

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. «Mobilenets:
Efficient convolutional neural networks for mobile vision applications». In:
arXiv preprint arXiv:1704.04861 (2017) (cit. on pp. 8, 32).

[13] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. «Exploring the Perfor-
mance of ROS2». In: Proceedings of the 13th International Conference on
Embedded Software. EMSOFT ’16. Pittsburgh, Pennsylvania: Association for
Computing Machinery, 2016. isbn: 9781450344852. doi: 10.1145/2968478.
2968502. url: https://doi.org/10.1145/2968478.2968502 (cit. on p. 9).

67

https://doi.org/10.1109/ROMAN.2006.314436
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1145/2968478.2968502

BIBLIOGRAPHY

[14] Managed nodes. url: https://design.ros2.org/articles/node_lifecyc
le.html (visited on 11/10/2022) (cit. on p. 9).

[15] ROS 2 Foxy Fitzroy: Setting a new standard for production robot development.
url: https://aws.amazon.com/blogs/robotics/ros-2-foxy-fitzroy-
robot-development/ (visited on 11/10/2022) (cit. on p. 10).

[16] Understanding nodes. url: https://docs.ros.org/en/foxy/Tutorials/
Beginner-%20CLI-Tools/Understanding-ROS2-Nodes/Understanding-
ROS2-Nodes.html (visited on 11/05/2022) (cit. on p. 11).

[17] RViz User Guide. url: http://wiki.ros.org/rviz/UserGuide (visited on
11/05/2022) (cit. on p. 13).

[18] Steve Macenski, Francisco Martín, Ruffin White, and Jonatan Ginés Clavero.
«The Marathon 2: A Navigation System». In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2020. url: https:
//github.com/ros-planning/navigation2 (cit. on p. 15).

[19] Navigation concepts. url: https://navigation.ros.org/concepts/index.
html#ros-2 (visited on 11/07/2022) (cit. on p. 15).

[20] ROS to ROS 2 Navigation. url: https://navigation.ros.org/ (visited on
11/07/2022) (cit. on pp. 15, 16).

[21] Costmap2D Package Summary. url: http://wiki.ros.org/costmap_2d
(visited on 11/09/2022) (cit. on pp. 19, 20).

[22] VORT ARIASALUS 200. url: https://www.vortice.it/it/trattamento-
aria/depuratori/centralizzati/25044 (visited on 11/10/2022) (cit. on
p. 22).

[23] VL53L5CX Time-of-Flight sensor. url: https://www.st.com/en/imaging-
and-photonics-solutions/vl53l5cx.html (visited on 11/12/2022) (cit. on
pp. 24, 25).

[24] OpenCV AI Kit: OAK—D. url: https://store.opencv.ai/products/oak-
d (visited on 11/10/2022) (cit. on pp. 25, 26).

[25] T265. url: https://www.intelrealsense.com/tracking-camera-t265/
(visited on 11/10/2022) (cit. on p. 26).

68

https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html
https://aws.amazon.com/blogs/robotics/ros-2-foxy-fitzroy-robot-development/
https://aws.amazon.com/blogs/robotics/ros-2-foxy-fitzroy-robot-development/
https://docs.ros.org/en/foxy/Tutorials/Beginner-%20CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-%20CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-%20CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
http://wiki.ros.org/rviz/UserGuide
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/navigation2
https://navigation.ros.org/concepts/index.html#ros-2
https://navigation.ros.org/concepts/index.html#ros-2
https://navigation.ros.org/
http://wiki.ros.org/costmap_2d
https://www.vortice.it/it/trattamento-aria/depuratori/centralizzati/25044
https://www.vortice.it/it/trattamento-aria/depuratori/centralizzati/25044
https://www.st.com/en/imaging-and-photonics-solutions/vl53l5cx.html
https://www.st.com/en/imaging-and-photonics-solutions/vl53l5cx.html
https://store.opencv.ai/products/oak-d
https://store.opencv.ai/products/oak-d
https://www.intelrealsense.com/tracking-camera-t265/

BIBLIOGRAPHY

[26] XENSIV™ PAS CO2 sensor. url: https://www.infineon.com/cms/en/
product/sensor/co2-sensors/pasco2v01/ (visited on 11/12/2022) (cit. on
p. 27).

[27] social_navigation_layers. url: http://wiki.ros.org/social_navigation
_layers (visited on 11/13/2022) (cit. on p. 28).

[28] Object Detection using SSD Mobilenet and Tensorflow Object Detection API.
url: https://medium.com/@techmayank2000/object-detection-using-
ssd- mobilenetv2- using- tensorflow- api- can- detect- any- single-
class-from-31a31bbd0691 (visited on 11/23/2022) (cit. on p. 33).

[29] ObjectTracker. url: https : / / docs . luxonis . com / projects / api / en /
latest/components/nodes/object_tracker/ (visited on 11/23/2022) (cit.
on pp. 33, 34).

[30] Writing a New Costmap2D Plugin. url: https://navigation.ros.org/
plugin_tutorials/docs/writing_new_costmap2d_plugin.html (visited
on 11/13/2022) (cit. on pp. 35, 37).

[31] Nexus 4WD Mecanum Wheel Mobile Robot. url: https://www.nexusrobot.
com / product / 4wd - mecanum - wheel - mobile - arduino - robotics - car -
10011.html (visited on 11/20/2022) (cit. on p. 43).

[32] Noé Pérez-Higueras, Roberto Otero, Fernando Caballero, and Luis Merino.
«HuNavSim: A ROS2 Human Navigation Simulator for Benchmarking Human-
Aware Robot Navigation». In: () (cit. on p. 49).

[33] Abhijat Biswas, Allan Wang, Gustavo Silvera, Aaron Steinfeld, and Henny
Admoni. «SocNavBench: A Grounded Simulation Testing Framework for
Evaluating Social Navigation». In: J. Hum.-Robot Interact. 11.3 (July 2022).
doi: 10.1145/3476413. url: https://doi.org/10.1145/3476413 (cit. on
p. 49).

69

https://www.infineon.com/cms/en/product/sensor/co2-sensors/pasco2v01/
https://www.infineon.com/cms/en/product/sensor/co2-sensors/pasco2v01/
http://wiki.ros.org/social_navigation_layers
http://wiki.ros.org/social_navigation_layers
https://medium.com/@techmayank2000/object-detection-using-ssd-mobilenetv2-using-tensorflow-api-can-detect-any-single-class-from-31a31bbd0691
https://medium.com/@techmayank2000/object-detection-using-ssd-mobilenetv2-using-tensorflow-api-can-detect-any-single-class-from-31a31bbd0691
https://medium.com/@techmayank2000/object-detection-using-ssd-mobilenetv2-using-tensorflow-api-can-detect-any-single-class-from-31a31bbd0691
https://docs.luxonis.com/projects/api/en/latest/components/nodes/object_tracker/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/object_tracker/
https://navigation.ros.org/plugin_tutorials/docs/writing_new_costmap2d_plugin.html
https://navigation.ros.org/plugin_tutorials/docs/writing_new_costmap2d_plugin.html
https://www.nexusrobot.com/product/4wd-mecanum-wheel-mobile-arduino-robotics-car-10011.html
https://www.nexusrobot.com/product/4wd-mecanum-wheel-mobile-arduino-robotics-car-10011.html
https://www.nexusrobot.com/product/4wd-mecanum-wheel-mobile-arduino-robotics-car-10011.html
https://doi.org/10.1145/3476413
https://doi.org/10.1145/3476413

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Overview
	Robotics for sanification and disinfection
	Robots in social contexts
	Indoor navigation technologies
	Related works
	Visual Perception

	ROS2 Framework
	Overview
	The ROS 2 Graph
	RViz
	Gazebo
	ROS2 Navigation Stack
	Costmap2D

	Hardware architecture
	Overview
	Ventilation and purification system
	KUKA youBot Platform
	RPLIDAR A2
	Time-of-Flight sensor
	OAK-D stereo camera
	Intel RealSense T265
	CO2 sensor

	Implementation
	Overview
	Nodes, custom messages and topics
	Messages
	Nodes and topics

	People detection and tracking
	MobilenetSSD
	Object tracking

	Social Costmap Plugin
	Costs assignment

	Simulations and tests
	Overview
	Environment configuration on Gazebo
	Simulation scenarios
	Social layer parameters
	Set of metrics
	Simulation results
	Front passing test
	Diagonal passing test
	Orthogonal passing test
	Wall test
	Cut test
	X test
	Tab test

	Conclusions and future developments
	Bibliography

