
POLITECNICO DI TORINO
Master’s Degree in Artificial Intelligence Data

Analytics

Master’s Degree Thesis

Interactive Dashboard with Predictive
system for Buffers Management

Optimization

Supervisor

Paolo GARZA

Candidate

Marco CAPUSSO

November 2022

Summary

The advent of Deep Neural Networks has shown how powerful these kinds of models
can be and how well they can perform in many different fields. Incredible results
have been obtained in Image Classification and Natural Language Processing, but
lately their usage was extended also to Time Series Forecasting. Deep Models are
able to overcome some of the main limitations of the classical Statistical models
and allow to discover hidden relations among different features.
Even though those models are widely used nowadays, they are rarely adopted in
Time Series Forecasting.
In this thesis we will see a comparison between the most widely used models in
order to predict the optimal stock quantities for the company products, as well as
a descriptive Dashboard that aims to display all the most relevant information to
the sales people at a glance.
The success of this project would bring relevant benefits to the company which will
be able to drastically cut the stock management expenses.

ii

Acknowledgements

“A tutte le persone che mi sono state affianco durante questo lungo viaggio”

iii

Contents

List of Tables vii

List of Figures viii

Acronyms x

1 Introduction 1
1.1 Business Requirements . 1
1.2 Overview to Dashboards . 2
1.3 Overview to Time Series Forecasting 2
1.4 Research Goals and Methodologies 2

2 Forecasting Approaches 4
2.1 State of Art in Forecasting . 4

2.1.1 ARIMA . 4
2.1.2 SARIMAX . 5
2.1.3 Prophet . 6

2.2 Novel Approaches Proposed . 8
2.2.1 NHiTS . 8
2.2.2 DeepAR . 9
2.2.3 Temporal Fusion Transformer 10

3 Descriptive Approach for Buffer Statistics calculation 15
3.1 Data Analysis . 15
3.2 Architecture and Framework . 17
3.3 Dashboard Data Update . 17
3.4 Authentication . 19
3.5 Dashboard details . 19

3.5.1 Buffers . 20
3.5.2 Analytics . 22

v

4 Implementation of the Predictive Model for Buffer Forecasting 25
4.1 Data Analysis and Pre-processing 25
4.2 Framework and Architecture . 28
4.3 Models Overview . 29
4.4 Feature Selection . 30
4.5 Models Comparison . 32

4.5.1 ARIMA . 32
4.5.2 Prophet . 33
4.5.3 DeepAR . 33
4.5.4 N-HiTS . 33
4.5.5 Temporal Fusion Transformer 33
4.5.6 Final Comparison . 34

4.6 Model Optimization . 34
4.6.1 Hyper-parameters . 34
4.6.2 Loss Function . 36
4.6.3 Fine-tuning Considerations 36

4.7 Predictive Implementation . 38

5 Results 42

6 Conclusions 45

Bibliography 47

vi

List of Tables

4.1 Quick trials for Models Comparison 34

vii

List of Figures

2.1 ARIMA parameters adjustment . 5
2.2 SARIMAX parameters adjustment 6
2.3 N-HiTS Structure from paper [2] 8
2.4 DeepAR Structure from paper [3] 10
2.5 TFT Structure from paper [4] . 12

3.1 Dashboard data flow . 16
3.2 Micro-services Architecture . 17
3.3 Dashboard data Update Notebook 18
3.4 Dashboard Buffer Page . 20
3.5 Buffer Statistics Popup . 22
3.6 Buffer Details Popup . 23
3.7 Buffer Filtered Critical . 23
3.8 Buffer Analytics Section . 24

4.1 Raw Data . 26
4.2 Smoothed Data . 27
4.3 Smoothed Averaged Data . 27
4.4 Predictive Architecture . 28
4.5 Sales Process Funnel . 31
4.6 Static Variables Importance . 37
4.7 Time Varying Variables Importance 38
4.8 Attention 64 steps . 39
4.9 Attention 64 steps . 40
4.10 SMAPE Comparison for Attention Sizes 41
4.11 Predictions Making Workflow . 41
4.12 Predictions Table Example . 41

5.1 SMAPE Cross-Validation . 43

viii

Acronyms

AI
Artificial Intelligence

LSTM
Long Short Term Memory

RNN
Recurrent Neural Network

CNN
Convolutional Neural Network

MLP
Multi Layer Perceptron

ARIMA
Autoregressive Integrated Moving Average

ETS
Exponential Smoothing

TFT
Temporal Fusion Transformer

ELU
Exponential Linear Unit

GRN
Gated Residual Network

x

GLU
Gated Linear Units

xi

Chapter 1

Introduction

1.1 Business Requirements

The work treated in the following thesis was made in collaboration with Avnet, an
international company that plays an important role in the distribution of semicon-
ductors and passive components at a global level.
The company has to deal with a huge number of customers that can have signifi-
cantly different needs and various problems. Some customers for example might
need to order pieces once a year in bulk and for a predefined quantity, while some
other customers might need to order some extraordinary and unexpected quantities.
In order to be able to fulfill extraordinary requests from customers, a buffering
system has been set up. It consists of private slots in the stock reserved for a
specific customer. Whenever it seems that a customer might need a reserved
amount of pieces due to possible extraordinary orders, a buffer is created and a
certain quantity is allocated to it.
The quantity reserved to a specific customer should not be consumed from orders
coming from other customers, therefore those pieces are basically locked for an
undefined amount of time. Especially in a period like the current one, afflicted
by semiconductors shortage, it is important to be able to deliver as many pieces
as possible to the customers and avoid big amounts of materials sitting in stock
for long periods, therefore it is important to handle buffers in the correct way and
reduce as much as possible the reserved pieces in stock.

The current management of the buffers relies on fixed business rules based on
a percentage of the previous year billings to choose the quantity to allocate to a
buffer, which is not optimal and leads to situations where huge amount of pieces
remain reserved for various months without ever being consumed.
The goal of this work is to provide to people that have to manage buffers, a simple

1

Introduction

and intuitive dashboard that displays the most important features and a predictive
approach that helps finding the optimal quantity to allocate to each buffer on a
bi-monthly basis.
The predictive approach should allow to reduce the management costs of the stock
in an important way by drastically decreasing the amount of pieces that remain
reserved for long time, but it should also ensure that all the orders coming from
customers can be fulfilled.

1.2 Overview to Dashboards
The Dashboard is a key element in Business analytics, it plays an extremely impor-
tant role when it comes to visually display data in an intuitive way, and when it is
necessary to display key information at a glance (such as KPIs).
Dashboards allow to take strategic decisions in an easier way by providing a general
overview of the situation and they are usually linked to a source of data. In order
to provide the highest possible flexibility, they should also allow users to select
what kind of data they want to see by the mean of filters and selections.

1.3 Overview to Time Series Forecasting
Time series forecasting is the process of analyzing some historical data using
statistics and artificial intelligence models in order to make predictions and enable
strategic decision making. Time series analysis shows how data changes over time
and a good forecasting can identify the direction in which the data is changing.
When dealing with Forecasting, it is always necessary to consider the amount of
data at hand, the more points of observation are available, the better the under-
standing of the situation will be.
It is also important the concept of time horizon in forecasting, the time horizon is
the amount of time steps that the model is trying to forecast in the future. Shorter
horizons are much easier to forecast especially when the data is limited.

1.4 Research Goals and Methodologies
The goal of this work for the descriptive part is to provide a simple and intuitive
way for the users to manage buffers and to see all the most relevant information
at a glance, in order to help them being more efficient in the management and to

2

Introduction

help their decision making by providing KPIs about market trends.
For the predictive part, many different models and approaches will be evaluated
in order to find out the best performing one which allows to allocate the optimal
quantity to buffers.
In the end, after evaluating all the results obtained during the training, some tests
will be performed in order to estimate the possible cost reduction that would be
obtained through the implementation of the predictive approach in some real case
scenarios.
In the first section of Chapter 2 we will see a brief overview of the most popular
predictive approaches and models (both statistical and deep) that are considered
the state of art in classic time-series forecasting in order to get an idea about how
the vast majority of predictions are performed nowadays.
In the second section of Chapter 2 we will see an overview of some proposed models
that can better fit the described business problem, in this case we will evaluate
the strengths provided by those models as well as some technical details that lie
beneath.
In Chapter 3 we will dive into the details of the development of the descriptive
Dashboard starting from the architectural choices, going through the frameworks
used and explaining also the management of the users.
We will then take a look at the final prototype that has also been proposed to the
stakeholders in the organization.
In Chapter 4 we will have a complete overview about the predictive model, from
the analysis of the data-set and the data pre-processing to the training of the model
with the hyper-parameters tuning.
In Chapter 5 we will evaluate all the results obtained from the different models
on which the tests were performed and make some comparations among different
metrics.
After exploiting the best performing model, we will evaluate the real impact that the
model would have weather it was applied to a real case scenario and we will evalu-
ate in percentage how much we would be able to save if the model was implemented.

3

Chapter 2

Forecasting Approaches

2.1 State of Art in Forecasting
2.1.1 ARIMA
In time series analysis, an autoregressive integrated moving average (ARIMA)
model is a generalization of an autoregressive moving average (ARMA) model.
Both of these models are fit to time series data either to better understand the
data or to predict future points in the series (forecasting).
ARIMA is an univariate model hence it can only learn and predict values consider-
ing the target feature. The parameters which are relevant in the ARIMA model are:

• p - which represents the number of autoregressive terms.

• d - which represents the number of nonseasonal differences.

• q - which represents the number of moving average terms.
In order to build an ARIMA model the first step is to stationarize the series, if
needed, by differencing. Then the pattern of autocorrelations needs to be studied
in order to determine if lags of the stationarized series and lags of the forecast
errors should be included in the equation. After that, the model needs to be fit to
the time series with the adjustment of the previously described parameters.

The AR (which stands for "Auto Regressive") part of ARIMA indicates that the
evolving variable of interest is regressed on its own lagged values, the value of AR
defines how many steps in the past we are taking into account in order to calculate
the next value (as we can see in equation: 2.1).

Xt = c +
pØ

i=1
ϕiXt−i + ϵt (2.1)

4

Forecasting Approaches

Figure 2.1: ARIMA parameters adjustment

The MA (which stands for "Moving Average") part indicates that the regression
error is actually a linear combination of error terms whose values occurred contem-
poraneously and at various times in the past (as we can see in equation 2.2).

Xt = µ + ϵt +
qØ

i=1
θiϵt−i (2.2)

The I (which stands for "integrated") indicates that the data values have been
replaced with the difference between their values and the previous values (and this
differencing process may have been performed more than once). The purpose of
each of these features is to make the model fit the data as well as possible.

2.1.2 SARIMAX

SARIMAX is used on data sets that have seasonal cycles (unlike ARIMA). The
difference between ARIMA and SARIMAX is the seasonality and exogenous factors
(seasonality and regular ARIMA do not mix well).
These are a bit complicated, but the most important thing to remember is that
SARIMAX requires another set of p, d, q arguments for the seasonality aspect as
well as an argument called “s” which is the periodicity of the data’s seasonal cycle.
When choosing an s value we need to try to get an idea of when the seasonal data
cycles. If for example, your data points are separated by a monthly basis and the
seasonal cycle is a year, then we need to set s to 12.
For all the values other than ’s’ is recommended to use a grid search approach in
order to find the optimal parameters combination that better perform with the
time-series.

5

Forecasting Approaches

Figure 2.2: SARIMAX parameters adjustment

2.1.3 Prophet
It is a model introduced by Facebook in 2018, it was originally meant to forecast
daily data with weekly and yearly seasonality by taking into account the holiday
effects. Later on it has been extended in order to cover more types of seasonal data.
It works best with time series that have strong seasonality and several seasons of
historical data.
Prophet can be considered a nonlinear regression model that can be expressed in
the following way:

yt = g(t) + s(t) + h(t) + ϵt, (2.3)
In the equation 2.3, the term g(t) describes a linear trend, s(t) describes the various
seasonal patterns, h(t) represents the holiday effects and ϵt is a white noise error
term.

• The knots for the linear trend are automatically selected if not explicitly
specified. Optionally, a logistic function can be used to set an upper bound
on the trend.

• The seasonal component consists of Fourier terms of the relevant periods.
By default order 10 is used for annual seasonality and 3 is used for weekly
seasonality.

• Holiday effects are added as simple additional variables.

As stated by Sean Taylor in [1], with Prophet we give up some important inferential
advantages of using a generative model (such as an ARIMA), but we still provide
some practical advantages:

6

Forecasting Approaches

• Flexibility: we can easily accomodate seasonality with multiple periods and
let analytss make different assumptions about trends.

• The measurements do not need to be regularly spaced and we do not need to
interpolate missing values.

• Fitting is very fast, allowing to interactively explore many model specifications.

• The forecasting model has easily interpretable parameters that can be changed
to impose assumptions on the forecast.

7

Forecasting Approaches

2.2 Novel Approaches Proposed

2.2.1 NHiTS
In this section, we will take a look at the N-HiTS model, which tries to extend and
improve the Neural Basis Expansion Analysis approach (N-BEATS) in many differ-
ent aspects, making it more accurate in the predictions and more computationally
efficient, especially in the context of long-horizon forecasting (as stated in [2]).
N-HiTS uses multi-rate sampling of the input signal and scales the forecast synthesis
in order to produce a hierarchical construction of the forecast, which results in an
important reduction in terms of computational requirements, and improvement in
forecasting accuracy.
This model basically divides the input data considering it in different ways (i.e
different time scales), and at last it reassembles the various signals produced in a
hierarchical fashion.
As we can see in figure 2.3 proposed in the paper [2], the model performs nonlinear
projections onto different basis functions in order to try to extract different charac-
teristics from the input signal.
Each projected input passes through a multi-layer perceptron (MLP) which pro-
duces the coefficients either for the forecast and for the back-cast. The forecasts
are then summed up together in order to produce the final prediction. At the input

Figure 2.3: N-HiTS Structure from paper [2]

of each block, N-HiTS implements a MaxPool layer (similar to the ones used in

8

Forecasting Approaches

the very popular CNN) with a kernel size k, which helps to focus on analyzing the
components of the input with a specific scale. Larger values for the kernel size tend
to cut out small time-scale components from the input of the MLP, forcing the
block to focus on analyzing the content on a large scale.
The term "multi-rate sampling" derives from the fact that each MLP faces a different
effective input which is generated using a specific sampling rate.
Multi-rate processing is also very useful in reducing the width of the MLP input
for most blocks, avoiding to excess in the usage of memory and the amount of
computations. Furthermore, it reduces the number of learnable parameters, which
allows to alleviate the effects of overfitting.
Given a specific block, the actions performed on the input are the following:

• MaxPool of the input is applied when the signal enters the block.
yt−L:t,l = MaxPool(yt−L:t,l, kl)

• MLP calculations are performed after the subsampling through MaxPooling.
hl = MLPl(yt−L:t,l)
θl,f = LINEARf (hl)
θl,b = LINEARb(hl)

• Hierarchical interpolation is then performed with the results obtained through
each MLP pass.

• With the constructed results obtained through Hierarchical Interpolation we
are able to build the final predicted signal from which we can extract the
future predictions.

2.2.2 DeepAR
DeepAR forecasting algorithm is a supervised learning algorithm which aims to
forecast scalar (one-dimensional) time series using recurrent neural networks (RNN).
Classical forecasting methods, such as autoregressive integrated moving average
(ARIMA) or exponential smoothing (ETS), fit a single model to each individual
time series. They then use that model to extrapolate the time series into the future
and generate predictions.
Those kind of models however are not optimal when we have many similar time
series across a set of similar units (for instance we have a different time series for
each product), because in such cases it could be beneficial to train a single model
over all of the time series.
DeepAR uses this approach and it is extremely effective when the dataset contains
hundreds of related time series, since it is able to estimate predictions in a more
robust way and can take into account relations between different materials.

9

Forecasting Approaches

DeepAR consistently outperforms the standard methods such as ARIMA and ETS
and the trained model can be also used to generate forecasts on new time series.
The input we provide to this model can be either one or more target time series
that are somehow similar. According to the input dataset, the algorithm trains a
model that learns the approximation of the time-series and uses it to predict how
the target time-series evolves.
Each time-series can be eventually associated either with a vector of time indepen-
dent categorical features (category) and with a vector of time dependent features
(dynamic features).

As we can see in figure 2.4 taken from the paper [3], the training is performed

Figure 2.4: DeepAR Structure from paper [3]

by means of an Encoding model, the data provided in input is transformed into a
sequence using a Recurrent Neural Network (RNN).
The prediction is then performed by a Decoding model which takes in input the
sequence produced by the Encoder and generates the predictions.

2.2.3 Temporal Fusion Transformer
TFT is an attention-based Deep Neural Network architecture suited for multi-
horizon time-series forecasting. It is able to achieve extremely high performances
while also enabling new forms of interpretability of the data.

10

Forecasting Approaches

It implements a lot of novel ideas compared to the standard state-of-the-art
architectures such as:

• Static covariate encoders - encode the context vectors in order for them to be
used in other parts of the network.

• Gating mechanism - allows to perform a sample-dependent variable selection
in order to minimize the contributions of inputs which are not very relevant
for the predictions.

• Sequence-to-sequence layer - in order to process known and observed inputs.

• Self-attention decoder - which is trained to learn any long-term dependency
within the dataset and it is able to generate the predictions from the encoded
vector.

Attention mechanisms are often used in language processing, image classification
or tabular learning since it is able to identify relevant portions of input for each
instance using the magnitude of the attention weights. Recently those mechanisms
have been adapted in order to be usable in the time-series, where they allow to
find the most significant portions of the time-series which are more impacting in
the future outcome.
With TFTs we can also evaluate the importance of the different variables in order to
simplify the process of feature selection. We can directly see what is the contribution
of each variable for the behaviour of the time-series.

As stated in [4], as we perform Multi-horizon Forecasting, let’s say we have
I unique entities in the dataset provided (in this case the different entities are
the couples Material/Customer). Each entity i is associated with a set of static
covariates Si ∈ Rms as well as the inputs xi,t ∈ Rmx and scalar target yi,t ∈ R at
each time-step t ∈ [0, Ti].
Time-dependent input features are subdivided into two categories xi,t = [zT

i,t, xT
i,t]T ,

which represent observed inputs (zi,t ∈ Rmz), can only be measured at each step
and are unknown beforehand, and the known inputs (xi,t ∈ Rmx) which can be
predetermined (day-of-week at time t..).
In this model we adopt a quantile regression in order to make our predictions more
reliable and take into account either worst and best cases. Each quantile takes the
following form:

ŷi(q, t, τ) = fq(τ, yi,t−k:t, zi,t−k:t, xi,t−k:t+τ , si), (2.4)
where ŷi(q, t, τ) is the predicted qth sample quantile of the τ -step-ahead forecast at
time t and fq(.) is a prediction model. In TFTs we simultaneously output forecasts
for τmax time steps.
The main components of the TFT model are:

11

Forecasting Approaches

Figure 2.5: TFT Structure from paper [4]

• Gating mechanisms - allow to skip over any unused component of the archi-
tecture, providing varying depth and network complexity in order to adapt to
different scenarios.

• Variable selection networks - allow to select relevant input variables at each
time step.

• Static covariate encoders - allow to integrate static features inside the network,
by means of context vectors encoding to condition temporal dynamics.

• Temporal processing - allows to learn long and short term temporal rela-
tionships among the data. It makes use of a sequence-to-sequence layer for
local processing and a multi-head attention block in order to spot long-term
dependencies.

• Prediction intervals - allow to generate forecasts for different prediction hori-
zons.

12

Forecasting Approaches

The Gating Mechanisms are implemented through Gated Residual Networks (GRN),
which takes as primary input a and an optional context vector c and yields:

GRNw(a, c) = LayerNorm(a + GLUw(ν1)), (2.5)

ν1 = W1,wν2 + b1,w, (2.6)

ν2 = ELU(W1,wa + W3,wc + b2,w), (2.7)

where ELU is the activation function and ν1 ∈ Rdmodel , ν2 ∈ Rdmodel are intermediate
layers, LayerNorm is a normalization layer and w represents the weights.
When W2,wa + W3,wc + b2,w >> 0, the activation function would act as an identity
function, if it is lower than zero instead the function would generate a constant
output. The model performs component gating through GLUs to provide flexibility
to suppress any part of the architecture. Given an input γ ∈ Rdmodel , the GLU
takes form:

GLUw(γ) = σ(W4,wγ + b4,w) ⊙ (W5,wγ + b5,w), (2.8)

where γ(.) is the sigmoid activation function, W(.) represents the weights and b(.)
represents the bias term.
GLU allows to control how much the GRN contributes to the original input a,
potentially skipping entire layers if necessary.
We usually provide many variables to this model but they might have different
relevance (in terms of contribution) in order to generate the predictions. TFT is de-
signed to provide a variable selection mechanism that can be applied to both static
covariates and time-dependent covariates. This mechanism allows to understand
which variables are most significant for the predictions and also allow to remove
unnecessary noisy inputs which could impact performances.
In addition, TFT employs the self-attention mechanism to learn long-term rela-
tionships across different time steps. In general attention mechanisms scale values
V ∈ RNxdV according to the relationships between keys K ∈ RNxdattn and queries
Q ∈ RNxdv :

Attention(Q, K, V) = A(Q, K)V, (2.9)

where A() is a normalization function:

A(Q, K) = Softmax(QKT /
ñ

dattn) (2.10)

in order to further improve the learning capacity, multi-head attention is proposed:

MultiHead(Q, K, V) = [H1, ..., HmH]WH , (2.11)

13

Forecasting Approaches

Hh = Attention(QWQ, KWK , V WV), (2.12)

where we have a set of weights for keys, queries and values that are head-specific.
The model then linearly combines the output concatenated from all heads Hh.

14

Chapter 3

Descriptive Approach for
Buffer Statistics calculation

3.1 Data Analysis
The Dashboard main objective is to display key data about the Buffers in an
extremely simple and intuitive way as well as performing some basic elaborations
on data in order to extract relevant KPIs such as trends.
The main data extracted for this purpose were:

• Buffers table: which contains all the data about quantity refilled, quantity con-
sumed from the buffers, material contained in the buffer, customer associated
and many other details regarding the buffers.

• Orders table: which contains all the orders of the whole company, used to
extract data about past orders in order to display a list of previous orders as
well as the trend of the orders in the past year.

• Billings table: which contains all the billings of the whole company, it was used
to display a list of previous billings and again the trend of billings. Billings
are orders for which the payment was successfully completed and the invoice
was emitted.

• Quotes table: which contains all the quotes asked from customers. Customers
might request a quote for a part number when they are interested in buying
it. A quote is often followed by an order. In the Dashboard a list of previous
quotes is displayed.

• Lead time table: which contains all the information about the Lead time. The
lead time is the amount of time needed for the supplier to provide new stock

15

Descriptive Approach for Buffer Statistics calculation

for a certain material. The higher is the lead time, the more difficult would
be to retrieve a certain part number. Those cases have to be treated very
carefully because it will be easier to remain out of stock for those materials.

• Forecast table: which contains Forecast made from customers. Customers can
communicate with Avnet what amount of pieces they will be needing probably
in the next months.

• Open Stock table: which contains information about the current available
stock for each material. It is used to display to the user the available quantity
remaining for the material contained in the Buffer.

• Materials table: which contains information about all the materials sold by
the company. This table is used to retrieve information about quality and
obsolescence of materials.

All the data was extracted from an internal source and needed to be cleaned in
order to be usable. All the necessary queries have been prepared in order to extract
the data, a cleaning process has been set up with the aim to reduce the size of the
data and to have usable information. After that, some elaborations were performed
in order to calculate some aggregate features and monthly trends.
For the calculation of the trends, a monthly aggregation was performed in order to
have a data point for each month, and out of these points, the best fitting line was
calculated in order to check whether the trend was growing or decreasing.
Out of all the elaborated data, a single table was prepared that contains all the
information retrieved so that it can be queries at a glance to retrieve all the data
from the Dashboard.

Figure 3.1: Dashboard data flow

16

Descriptive Approach for Buffer Statistics calculation

3.2 Architecture and Framework
In order to be compliant with the best practises of Web Applications development,
the Dashboard architecture relies on micro-services that interact both with the
Data source and the Dashboard front end.

The main purpose of the micro-services architecture is to have well separated

Figure 3.2: Micro-services Architecture

code in order to improve the maintainability of the code as well as the scalability.
Furthermore, the APIs provided by the micro-services can be also used for other
scopes beside the Dashboard.
The Back-end data is completely stored in some SQL tables and can be easily
queries in order to retrieve all the needed information.
Micro-services instead were build with FastAPI, a Flask based framework that
easily allows to build automatically documented APIs with Python. It is extremely
simple to pick up and to develop routes (API calls) in a clean and organised way.
For the Front-end part the framework chosen was React, a Javascript-based UI
library created by Facebook which is supported by a huge community. React is
very popular in web applications development nowadays and brings many benefits
such as reusability of the code, high flexibility, scalability, a small learning curve
and improved performances.
Besides all of the benefits given, the Dashboard will be implemented in the com-
pany’s current most popular Application which is also developed in React.

3.3 Dashboard Data Update
All the data displayed in the Dashboard needs to be constantly updated, according
to the actions takes from the users on the buffers and also according to the materials
that are purchased every day.
A continuous update is certainly not feasible so another implementation should

17

Descriptive Approach for Buffer Statistics calculation

be adopted in order to have data which is always up to date (we do not want
to remove some pieces from a buffer using the dashboard and still see the same
unmodified quantity after the page refresh).
For this data, a combination of approaches has been used in order to grant
consistency, and it is divided into 2 main phases:

• Daily Data Refresh - there are some procedures that are run on a daily basis
and they take care of extracting all the updated information that needs to be
displayed in the dashboard.

• Delta Data Cache - all the actions that perform changes on the data are
stored inside a cache database. Since there are not many actions happening
throughout the day, the cached data will not be very heavy to manage
and before displaying the information on the dashboard, we apply the delta
operations to the data that we stored from the Daily Refresh.

All the operations that needs to be performed on the data on a daily basis are
scheduled every night and are run by the means of Databricks, an online development
environment that allows to create notebooks (similar to jupyter) and automatically
trigger the run of those notebooks at a certain time.
All the operations are performed on dedicated clusters which are extremely powerful.

Figure 3.3: Dashboard data Update Notebook

18

Descriptive Approach for Buffer Statistics calculation

3.4 Authentication
Authentication plays an extremely important role in business applications, in this
case it was necessary to allow access to the application only to company members,
and users needed to be able to see different information according to their email
address.
In order to address all of this issues, and considering that the company uses a
Microsoft Active Directory System in order to manage the identities within the
organization, implementing a Microsoft SSO authentication was the best possible
choice.
Due to the fact that it is not properly documented, the implementation of the
Microsoft SSO has been very challenging but it was carried out through the usage
of the ’ADAL’ library available in Python.
Authentication phases:

• When a user access the Dashboard for the first time or after the lease time
of the authentication token has expired, an automatic redirect is triggered,
taking the user to a page where the classic Microsoft log in can be performed.

• After the Microsoft log in is performed, a token is created and the user is
redirected back to the Dashboard.

• All the information about the user are then retrieved by using the generated
token and all the subsequent interactions to the Dashboard need the user to
be logged in.

In this way, the Dashboard automatically allows only the member of the organization
and it is able to retrieve the email of the logged user in order to display the correct
information.

3.5 Dashboard details
The Dashboard has been divided into 2 main sections which allow the users to
retrieve all the key information that could help them manage the buffers in an
optimal and more efficient way:

• Buffers - where the users of the Dashboard are able to see all the buffers
assigned to them with all the most relevant KPIs, and can eventually take
some actions.

• Analytics - where the users of the Dashboard are able to see aggregated data
about the Buffers cost for each country.

19

Descriptive Approach for Buffer Statistics calculation

3.5.1 Buffers
In this section there are some filters in order to allow users to find specific buffers
(it is possible to filter according to the customer name, material, etc..).
The information is divided into 4 main categories (as we can see in fig. 3.4):
Customer, Buffer, Analysis and Proposition.
In the Customer part we can find relevant information about the customer such as
the name and the sales document.
In the Buffer part we can find relevant information about the specific buffer:

Figure 3.4: Dashboard Buffer Page

• Validity - represents the life span of the buffer in term of dates.

• Material - represents the target material.

• Remaining Quantity - represents the quantity that should be stored inside the
buffer (theoretically).

• Confirmed Quantity - represents the actual quantity inside the buffer, it might
differ from the theoretical quantity in some cases where the order coming from
the supplier has not been confirmed yet.

• Suggested Quantity - is the optimal quantity that should be stored inside the
buffer according to the AI model.

In the Analysis part we can find key information about the historical data of the
material and the customer:

20

Descriptive Approach for Buffer Statistics calculation

• Buffer Type - defines the type of contract attached to the buffer.

• ABC - represents the popularity of the target material (from A - very popular
material, to F - very customer specific material).

• Size - metric that represents the current size of the buffer compared to the
previous year billings.

• Life - represents the remaining lifespan of the buffer (in terms of a percentage).

• Forecast - represents the trend of the forecast for that specific customer in the
last 6 months.

• Bill - represents the trend of billings for that specific customer in the last 6
months.

• Lead Time - represents the trend of lead time for that specific material in the
last 6 months.

• Stock - represents the trend of stock for that specific material in the last 6
months.

In the Proposition part we can find a suggestion that the Dashboard gives to the
user for that every single buffer. The suggestion is calculated according to some
business rules and the output generated by the predictive model.
On the right of the Buffer page we can find 3 action buttons that allow to perform
different operations:

• Email Button - allows to quickly send emails to the managers of the buffer.

• Link Button - allows to open the buffer directly in the management software
used inside the organization in order to perform some modifications on the
buffer.

• Statistics Button - opens a popup which displays historical data about orders,
billings and quotes for that specific buffer (as we can see in fig.3.6).

Clicking on a single buffer card instead opens a popup which contains further
details about the buffer:

• Customer Name - the name of the customer.

• Buffer Inactivity Time - how much time has passed since the last order has
been issued from the buffer.

21

Descriptive Approach for Buffer Statistics calculation

Figure 3.5: Buffer Statistics Popup

• Customer Number - customer code.

• Material - material stored inside the buffer.

• Account Manager - external sales person in charge for the buffer.

• Inside Sales - internal sales person in charge for the buffer.

• Consumed Quantity - quantity consumed from the buffer over the total quantity
stored inside the buffer during its lifetime.

• Lead Time - lead time in days.

Besides filtering the available buffers according to the search bar, it is possible
to select a specific portion of buffers according to their criticality (whether they
need to be taken care of or not), by selecting the desired category in the switch
button. As we select the Critical ones, we will obtain a situation similar to the one
displayed in fig.3.7 (the critical buffers can be recognised by the red stripe on the
side.

3.5.2 Analytics
In the Analytics section instead it is possible to have a complete overview of the
status of the various buffers divided by country and office. As we can see in fig.3.8,
in this section we can see:

22

Descriptive Approach for Buffer Statistics calculation

Figure 3.6: Buffer Details Popup

Figure 3.7: Buffer Filtered Critical

• Buffers Value, which is calculated for each office/country. It represents the
sum of the value of all the pieces contained in all the buffers of the target
office/country.

• Percentage, represents the value of the buffers for the target office/country
divided by the value of the previous year billings for that same office/country.
This metric helps us realize how much are the currently open buffers impacting.

23

Descriptive Approach for Buffer Statistics calculation

• Buffer Trend, represents the trend of the open buffers in the last 6 months,
indicating whether the value of open buffers is increasing or decreasing.

Figure 3.8: Buffer Analytics Section

24

Chapter 4

Implementation of the
Predictive Model for Buffer
Forecasting

4.1 Data Analysis and Pre-processing
The predictive approach’s main objective is to provide optimal forecasts in order to
be able to fulfill all the requests coming from customers. In order to be able to do
that we extracted all the historical data coming from orders, billings and quotes as
well as some information about the customers and the materials. The main data
extracted in this phase were:

• Orders table: which contains all the orders of the whole company, used to
extract all the information about past orders (in terms of quantity and price).

• Billings table: which contains all the billings of the whole company, it was
used in order to extract all the information about past billings (in terms of
quantity and price).

• Quotes table: which contains all the quotes asked from customers, used to
extract all the information about past quotes (in terms of quantity and price).

• Materials table: which contains information about all the materials sold by
the company. This table is used to retrieve information about quality of the
materials which is gonna be used as a static feature during predictions.

• Customers table: which contains information about all the customers managed
by the company, it is used in order to extract some static categorical features
about the customers.

25

Implementation of the Predictive Model for Buffer Forecasting

During the data analysis phase we immediately acknowledged various issues with
the data that we needed to use, which led to the adoption of several approaches in
order to reduce the impact of those problems.
The quantity that we wanted to predict with the models proposed was the orders
value, which represents the values of the orders that we expect to receive in the
next weeks.
Since we are working at a Buffer level, we needed to evaluate data at a very high
granularity, we consider as a matter of fact every couple of Material-Customer
separately.
Working at such as a high granularity obviously leads to lower accuracy and less
robust predictions but given it was a Business requirement we could not bypass it.
The most impacting problem caused by the high granularity is represented by the
zero-data.
Since orders at a Material-Customer level are not performed very often, we face a
lot peaks in the history of the orders as we can see in figure 4.1, because for several
months we can receive no order for that specific Customer-Material combination.
The solution adopted in order to deal with this kind of issue was to smooth the

Figure 4.1: Raw Data

data using a sliding window. For each month, instead of taking the true value of
that month, we used to take the averaged sum of the preceding and the subsequent
month (as showed in figure 4.2), obtaining smoother data with less zero values
allowing to train the model more efficiently and more precisely. Furthermore, if we
would like to retain more information about the peaks without losing all the benefits
provided by the windowing, another slight transformation could be performed on

26

Implementation of the Predictive Model for Buffer Forecasting

Figure 4.2: Smoothed Data

the data (as displayed in figure 4.3) which consists in averaging the Raw Data and
the Smoothed Data, in this way we will retain more information about our data.
With all these very simple transformations we have solved the main issue affecting

Figure 4.3: Smoothed Averaged Data

our data, however we had to face some other issue during the data preparation for

27

Implementation of the Predictive Model for Buffer Forecasting

the predictive model:

• Null Data - in some cases we had to deal with null values in our dataset which
were simply replaced with zero-values.

• Duplicated Data - in some cases we had duplicated values which could not
be fed into the model, in that case we simply averaged the duplicated cases
(which were often equal in terms of value) in order to get rid of duplicates.

4.2 Framework and Architecture
In order to set up the predictive system we made use of the tools provided by the
company (Databricks) in order to prepare the predictive models and perform the
data cleaning and the prediction calculation on a daily basis.
All the calculations are performed on separated notebooks which run on a dedicated
cluster every day and, since we have many workers available, the data transformation
was performed entirely using PySpark, which allows better parallelization over
multi-worker environments. As displayed in figure 4.4, we have two different kinds of

Figure 4.4: Predictive Architecture

notebooks being run on a daily basis that produce a specific outcome subsequently
stored inside some SQL tables.
The Data Transformation notebooks are extremely important for the generation of
new predictions because the output generated by those notebooks is directly fed
into the predictive model which uses that data for the training.

28

Implementation of the Predictive Model for Buffer Forecasting

The predictions notebook instead produces the daily prediction for each active
buffer present in the database and stores the suggested quantity inside a table (the
same table that will be used from the dashboard to display that information).

4.3 Models Overview
In this document we will compare and analyze 4 different models:

• ARIMA - the statistical uni-variate model extremely popular in time-series
forecasting.

• Prophet - the statistical uni-variate model proposed by Facebook.

• N-HiTS - the multi-variate model that performs hierarchical interpolation
relying on simple MLP.

• DeepAR - the recurrent uni-variate model that implements LSTMs in time-
series forecasting.

• Temporal Fusion Transformer - a very sofisticated model that implements
Transformer networks for time-series forecasting tasks.

Since there are many factors that concur in the change of the demand coming from
a specific customer, uni-variate models (ARIMA and DeepAR in this case) can be
quite limiting and extremely prone to lead to inaccurate predictions. Being able
to feed only the target variable as input for the training might not be enough to
understand the underlying information present in the time-series.
SARIMAx was discarded from the analysis because after a first evaluation on the
data, there was no evidence about the presence of a seasonality in the extracted
data.
In the other hand, multi-variate models can accomplish a higher degree of under-
standing of the data, at the cost of a higher computational demand. Multi-variate
models allow to plug into the model several features and cross-validate the effec-
tiveness and the relevance of those features in the resulting predictions.
DeepAR and TFT rely on Recurrent Neural Networks and are computationally
more expensive than the simple N-HiTS which only performs projections of the
input data over different basis and consequently passes the results into a MLP.
Statistical models such as ARIMA, SARIMAx and Prophet are extremely suitable
for classical forecasting problems such as stock pricing.
ARIMA is the simplest model among all and it is very simple to implement and to
understand what the different hyper-parameters represent (hence the huge popu-
larity of this approach). Unfortunately this approach has some relevant down sides
such as the fact it is an uni-variate model and the low level of generalization due

29

Implementation of the Predictive Model for Buffer Forecasting

to the fact that we need to fit a different model for each time-series. SARIMAx is
very similar to ARIMA but it takes into account seasonality as well. In our case
we have noticed that time-series tend to have no seasonality at all hence the reason
we immediately discarded this method.
Prophet is another quite simple model which can be implemented through several
pre-made libraries, it presents the same down sides as ARIMA given it is a statisti-
cal model as well.
As we dive into the novel models proposed (N-HiTS, DeepAR, TFT), we face an
important increase in terms of implementation complexity. All of these models rely
on Neural Networks which come with a higher level of complexity.
Among the Deep Models, DeepAR is the older one and it is the most widely used
Deep Model in time-series forecasting. Transformers, as DeepAR, is based on RNNs
but should improve consistently the performances thanks to the more developed
architecture and the implementation of an attention mechanism.
N-HiTS instead is completely different and does not rely on RNNs, making the
training 50 times less expensive (in terms of computational effort) and in some
cases it can reach higher accuracy compared to TFTs.

Model Input Train Time Complexity
ARIMA uni-variate very fast very low
Prophet uni-variate very fast very low
DeepAR uni-variate slow quite high
TFT multi-variate slow very high
N-HiTS multi-variate quite fast quite low

4.4 Feature Selection
When we talk about feature selection we necessarily talk about the multi-variate
models since the uni-variate ones are only provided the target value as input for
the training.
The first important thing to decide was whether trying to predict the orders or
the billings. We refer as ’order’ when we talk about a client submitting a request
for a specific material. We refer as ’billing’ when the order request is confirmed
and an invoice is generated. We refer as ’quote’ when a certain customer makes an
informal request for a material in order to get to know what would be the price
proposed according to the needed quantity.
As we can see in figure 4.5, we can think about the customer purchasing process as
a ’funnel’. A customer can ask for a quote for a specific material and eventually,
if the customer is satisfied from the price offered, an order is submitted. After

30

Implementation of the Predictive Model for Buffer Forecasting

the order is submitted, it receives a confirmation and, unless an order cancellation
occurs, it is delivered to the customer. Since we need to provide the correct quantity

Figure 4.5: Sales Process Funnel

of materials in order to fulfill customers requests, we need to correctly predict the
orders, hence the reason our target variable will be related to the orders.
Once we realise that we need to predict information about the orders, we need to
understand what we want to predict. For each order we have information about
dates, quantity, sale price and unit price, our target variable needs to be chosen
among the ones proposed.
The order quantity could be at a first glance the best candidate since we want
to predict how many pieces we want to store in our buffers but, doing so, we
completely ignore the value of the target material. Since we cannot treat materials
with completely different values in the same way (for instance a material could cost
1€/piece and another one could cost 10000€/piece), we directly try to predict the
orders cost, which automatically takes into account both the unit price and the
quantity purchased.
Another option could have been to use the unit price as a static variable and predict
the quantity but this method could not be accomplished in uni-variate models so
we will just stick to the first proposal.
Once we have decided which our target variable will be, we have to define our
feature of interest for the multi-variate models. We need to find all the variables
that might have a direct impact on changes on the orders in order to exploit a
higher level of accuracy and reliability.
The data that have an immediate impact on the orders are definitely the historical
data about orders, quotes and billings. As a matter of fact, if we receive a quote
for a certain material, the customer is very likely to be submitting an order for
that specific material soon in the future.
Besides that, we tried to add some other extracted features such as the total value

31

Implementation of the Predictive Model for Buffer Forecasting

of the orders for each material without specifying the client (considering the orders
at a Material level and not a Material-Customer level), some static features such
as the value of that customer in our organization (how much does that specific
customer impact on the sales compared to the others), and the popularity of the
target material (how popular is the target material among our customers, how
many of our customers buy that specific material).

4.5 Models Comparison
Since we did not want to proceed with a deep analysis and fine-tuning of the
hyper-parameters for all the models, we performed some preliminary analysis in
order to understand which could be the most promising model for our task.
In order to do that we prepared all the models mentioned before in order to evaluate
the accuracy on the data extracted and cleaned for the training.
The first important thing that we needed to do in order to properly compare the
different models proposed was to find a good evaluation metric.
In our case the choice fell on SMAPE, a reliable metric widely used in time-series
forecasting.

SMAPE = 1
n

nØ
t=1

|Ft − At|
(Ft + At)/2 (4.1)

Where Ft represents the predicted value and At represents the actual value. SMAPE
fits very well our problem because it can manages cases where either the predicted
value or the actual value are equal to zero (unlike other metrics such as MAPE).
Furthermore, SMAPE tends to penalize more cases of under-forecasting rather
than over-forecasting, which fits very well our scenario since under-forecasting a
quantity means we are not able to provide the materials to the customers (that is
extremely harmful for the sales people).
After we selected the proper metric, we started evaluating the performances of all
the different models starting from the statistical models.

4.5.1 ARIMA

With ARIMA we performed some shallow grid-searching in order to find the optimal
set of parameters that would fit our scenario. After some trials we were able to
obtain a SMAPE around 0.94 which is not very promising in order to solve our
task. Although the accuracy was not that good, the model was able to train and
produce the predictions within 30 minutes only (very computationally efficient).

32

Implementation of the Predictive Model for Buffer Forecasting

4.5.2 Prophet
With the Prophet model we performed some shallow grid searching as well in order
to fine-tune the hyper-parameters and provide the best results. In this case we
were able to reach with the best set of parameters, a SMAPE around 0.90, which
shows some slight improvements compared to the ARIMA model but which is not
yet very promising as well. In this case the training process was quite slower and
the predictions were carried out within 36 minutes.

4.5.3 DeepAR
As we started digging into Deep Models we acknowledged that we would have not
been able to perform an accurate grid search for all the models given the wide
number of hyper-parameters that they imply.
We therefore decided to perform very few trials in order to understand in general
how well the model works with the proposed task without digging into each hyper-
parameter.
After some trials with minor tweaking on dropout, RNN layers and some other
key parameters, we obtained a minimum SMAPE of 0.84, providing a further
improvement compared to the statistical models. We assume this improvement
is due to the ability of DeepAR to generalize information coming from different
time-series in order to make predictions more reliable.
In this case the training time was much slower compared to the statistical models
and was carried out in 3 hours and 32 minutes.

4.5.4 N-HiTS
For this model, as we did for DeepAR, we performed a very shallow grid search
considering very few parameters in order to quickly estimate the performances of
the model for the specific task.
In this case we have performed different trials varying the number of hidden layers
of the MLPs and the dropout value. The minimum SMAPE obtained across the
different trials was 0.72, which represents a huge improvement compared to all the
previous models.
The training time for this model was optimal as well in fact, in order to train the
model, our cluster only took 43 minutes.

4.5.5 Temporal Fusion Transformer
Finally, we have performed the same operations also for the Temporal Fusion
Transformer. This model was the most complex among all due to the extremely
high number of hyper-parameters and the flexibility it comes with.

33

Implementation of the Predictive Model for Buffer Forecasting

As before we selected some key hyper-parameters in order to perform once again a
quick grid search and spot the general behaviour of the model.
We made some trials varying the size of the encoder and the depth of the RNN
layers and the minimum SMAPE obtained was 0.70, which is very similar to the
results obtained with N-HiTS.
In this case the training time was much longer due to the fact that unlike N-HiTS
which has a very simple architecture with simple MLPs, Transformers have a very
complex RNN architecture which increases the training cost by almost 50 times.
As a matter of fact, thanks to the high level of parallelization that our cluster can
provide (due to the nature of Transformers which rely on a fully parallelizable
architecture), we managed to run the whole training within 2 hours and 52 minutes.

4.5.6 Final Comparison
After performing those quick analysis on all the proposed model, we summarized
the results obtained from the preliminary trials, as we can see in table 4.1, noticing
that the best performances were obtained from the TFT model.
The N-HiTS model performed very well too and has extremely lower computational
time but since we do not have any constraint in terms of computations (since
we are provided of an extremely powerful cluster on the cloud environment) and
we aim for the best possible accuracy, we decided to proceed with the analysis
with the Temporal Fusion Transformer model in order to better fine-tune the
hyper-parameters and obtain optimal results for the predictions.

Table 4.1: Quick trials for Models Comparison

Model min. SMAPE Training Time
ARIMA 0.94 30m
Prophet 0.90 36m
DeepAR 0.84 3h 32m
N-HiTS 0.72 43m
TFT 0.70 2h 52m

4.6 Model Optimization

4.6.1 Hyper-parameters
After we selected the model we wanted perform the deep hyper-parameters tuning
process with, we analyzed in detail the meaning of each parameters along with

34

Implementation of the Predictive Model for Buffer Forecasting

its contribute to the model. The most relevant hyper-parameters in the Temporal
Fusion Transformer are:

• Static reals - numerical features that do not change over time. In our case we
only had one static real feature which was generated through the extraction
and the transformation of the orders performed by that specific customer. That
feature represents the impact of that customer on the global sales compared
to the other customers.

• Static categoricals - categorical features that do not change over time. In our
case we have some static categoricals related to the target material and to the
customer. For the material we have a feature that represents how popular the
material is while for the customer we have a feature that represents the "Tier"
of the customer.

• Dropout - it is used in order to reduce the phenomenon of over-fitting, according
to the value selected (between 0 and 1), the model automatically ignores the
calculations performed from certain nodes inside the model.

• Attention head size - number of attention heads used in the transformer blocks.

• LSTM layers - number of LSTM layers used in the model (usually 2 is a good
choice).

• Hidden size - hidden size of the network.

• Loss - loss functions used to train the model.

• Max encoder length - maximum number of time-steps the model takes into
account from the past.

• Time varying reals - numerical features that change over time used to train
the model.

• Learning rate - defines the step size at each iteration while moving toward a
minimum in a loss function.

• Reduce on plateau patience - defines the number of epochs after which the
learning rate will be reduced.

In the proposed scenario, considering some of the main features displayed above,
we have performed another round of trials. This time the round of trials was
more specific and more time consuming since we needed to grid search among an
extremely wide set of hyper-parameters.

35

Implementation of the Predictive Model for Buffer Forecasting

4.6.2 Loss Function
Before starting the grid search process we certainly needed to define a proper Loss
in order to train the model and evaluate the results. For this purpose, the literature
comes in handy, and the most popular loss function used for this kind of models
(Recurrent Forecasters) is the Quantile Loss (as explained in the paper [5]).
This loss function calculates different quantile losses for each observation points.
Pairs picked from this range can be used to draw percentile bands around the
forecast line to indicate the distribution of prediction errors.
Given a prediction yp

i and an outcome yi the regression loss for a quantile q is
calculated as follows:

L(yp
i , yi) = max[q(yp

i − yi), (q − 1)(yi − yp
i)] (4.2)

Different quantiles favour or penalize over-prediction rather than under-prediction.
For instance, with a quantile q = 0.75, over-predictions will be penalized by a
factor of 0.75 and the under-predictions will be penalized by a factor of 0.25.
As soon as we selected the proper loss function, we plugged it inside our model
and started with the training process setting the number of epochs for each trial
equal to 100.

4.6.3 Fine-tuning Considerations
After performing a massive number of trials for our model we made some evaluations
and hypothesis according to the results obtained during the training phase:

• Static reals and categoricals - in order to evaluate the impact of each static
feature that we added to the dataset, we analyzed the importance of each
variable in the prediction process.
As we can see in figure 4.6, the customer book normalized value that we
extracted and fed into the model seems to have a very high relevance throughout
the calculation of the predictions.

• Time varying variables - in order to evaluate the impact of each time-varying
feature that we fed into the model, we analyzed the importance of those
features as well as the static ones.
As we can see in figure 4.7, according to what we expected, the total quantity
is the most relevant feature among all (given it represents the target variable).
The relative time index certainly impacts a lot as well in the calculations given
it defines the time range we are located in.
Among the features that we added to the model, the billing quantity seems
to be the most surprising, representing a decent percentage over the total
importance, while some other features that have very low importance could
be removed from the dataset.

36

Implementation of the Predictive Model for Buffer Forecasting

Figure 4.6: Static Variables Importance

• Learning rate - in order to estimate the optimal learning rate to use for the
model we used a framework that performs a quick cross-validation in order to
spot the best possible value to initialize the learning rate with.

• Encoder length - in order to evaluate the correct encoder length we took a
look at the attention levels.
As we can see in figures 4.8 and 4.9 (in the first case using an encoder of
length 64 and 132 in the second), we noticed that with a 64 steps encoder the
attention was very high in the first time-steps, suggesting that there might be
useful information in those time-steps.
In order to evaluate our hypothesis, we extended the encoder value to 132 and
noticed that in that case the attention slowly decrease as further we go from
the present (time index = 0).

• More complex features (such as Dropout, Hidden size, LSTM layers, ecc..)
- in order to evaluate all of these features we necessarily needed to perform
cross-validation due to difficulty to make assumptions feature-related. For
example, as we can see in figure 4.10, as we compare different values for the
Attention Head Size, we are immediately able to recognize that the optimal
number of Attention Heads in our scenario is 1, which allows to reach a much
lower SMAPE compared to the other trials.
The cross-validation across all the different hyper-parameters allowed us to
reach an optimal set of values that we will evaluate in the Results chapter.

37

Implementation of the Predictive Model for Buffer Forecasting

Figure 4.7: Time Varying Variables Importance

4.7 Predictive Implementation

In order to perform the predictions on the open buffers we needed to set up a
workflow that provides all the predictions on a weekly basis.
To achieve our objective, we created an SQL table used to store the predictions
calculated for each buffer on a weekly basis making them accessible from the
dashboard.
In a normal scenario we could avoid to retrain our model every week but given the
current world-wide situation caused by COVID and War, the market trend is quite
unstable and the semiconductors shortage also heavily impacts on the sales making
it necessary to retrain the model more often than usual.
In figure 4.11, we can see how the weekly prediction workflow is implemented.
Every step of the process runs on our private cluster and updates all the interested
tables accordingly.
As we can see in figure 4.12, for each couple Customer/Material (acct, material fk)

several predictions are generated. The field "predictions" represents the quantity

38

Implementation of the Predictive Model for Buffer Forecasting

Figure 4.8: Attention 64 steps

directly forecast by the TFT model. The basic predictions then needs to be
normalized in order to fit the current status of the buffer (true prediction represents
the prediction applied to some business constraints while normalized prediction is
calculated from the true prediction through a simple normalization step).
The balancing steps in this case are necessary since we are applying a test model
to a real scenario where extremely wrong predictions could be very dangerous for
our business.
Future improvements of the model and the data we feed will result in a lower
impact on the results coming from the constraints.

39

Implementation of the Predictive Model for Buffer Forecasting

Figure 4.9: Attention 64 steps

40

Implementation of the Predictive Model for Buffer Forecasting

Figure 4.10: SMAPE Comparison for Attention Sizes

Figure 4.11: Predictions Making Workflow

Figure 4.12: Predictions Table Example

41

Chapter 5

Results

In this chapter we will evaluate the results obtained with the model trained and
optimized in the previous chapter.
First of all, as we can see in figure (which represents only a portion of trials that we
performed for the cross-validation), the SMAPE values obtained with the different
sets of values for the hyper-parameters range between 0.7 and 0.5 (on the validation
set).
The best set of parameters was able to reach a SMAPE of 0.502 therefore we
decided to configure our model using the parameters chosen in the corresponding
trial (purple line in the figure 5.1):

• Dropout = 0.11

• LSTM Layers = 1

• Hidden Size = 24

• Hidden Continuous Size = 8

• Attention Head Size = 1

• Max Encoder Length = 128

• Static Features = customer value, material type, unit price

• Variable Features = quotes, orders, billings

• Time Variables = month, time index, week

• Output Size = 7

• Learning Rate = 0.03

42

Results

Figure 5.1: SMAPE Cross-Validation

• Epochs = 100

As we configured the model with the parameters mentioned before, we were ready
to perform the simulation on our stock in order to evaluate the efficiency of our
algorithm.
In order to evaluate the results we performed 2 different tests:

• Current Stock Improvement - in the first case we performed a shallow test
where we applied the suggestions proposed by the dashboard to the current
open buffers, in this case we noticed that the stock quantity (number of pieces
we have in stock) would be reduced by 15.4% if all the suggestions were
accepted.

• In-Depth Historical Analysis - in this case we analysed how our model would
have performed in the past 2 years checking also whether we were able to
fulfill the requests coming from customers or not.
With this analysis we found out that by accepting all the suggestions for all
the buffers in the past two years we would have reduced the impact of our
inventory by 30.62% with an accuracy of 99.42% (meaning that in the 0.58%
of cases we were not able to fulfill the order request coming from the customer).

43

Results

There is certainly room for improvement thanks to the data that will be fed into the
model for the next few months but the results obtained from the trials previously
described are very promising.

44

Chapter 6

Conclusions

In this work we proposed a dashboard in order to simplify buffers management, and a
general overview over the most popular Statistical and Deep Neural models in order
to compare their performances on a real case scenario, choose the most promising
model and optimize it through the fine-tuning of all of its hyper-parameters.
The final scope of this thesis was to provide a complete tool able to empower user
decisions through KPIs and a reliable way to forecast stock quantities in order to
reduce the impact of static inventory and minimize inventory management cost.
After a brief introduction to the most popular statical models (ARIMA, Prophet),
we provided a detailed overview about all the Deep Models proposed (DeepAR,
N-HiTS, TFT) with the help of the most relevant literature about the topic.
After a first introduction to the models, we discussed about the implementation
of the project through the descriptive part (dashboard) where we display KPIs
and give users a simple way to perform management actions, and a predictive part
which consists in the generation of a forecast which represents the quantity that
we should store inside a specific buffer.
After illustrating the main features of the descriptive part we wanted to test all
the models proposed in order to make a general comparison of their performances
over the proposed scenario. The statistical model were consistently outperformed
by the Deep Models with shallow grid searching (we did not look for the best
hyper-parameters at this stage), guiding us toward the choice of a Deep Model
rather than the most popular statistical ones, showing that RNNs and attention
mechanisms can exploit much more information about the dataset through the
learning of hidden relations between different features and different time-steps.
We then selected the most promising model (Temporal Fusion Transformer) in order
to proceed with the fine-tuning process and generate some predictions to evaluate
the results. With the TFT we were able to lower the SMAPE from 0.7 provided
by the shallow grid search to 0.50 through hyper-parameters optimization.
As we finished fine-tuning our model we were ready to test it and evaluate its

45

Conclusions

performances, and in order to do so we have proposed an evaluation metric in order
to calculate the impact reduction provided by the model.
The results showed that with the adoption of the suggestions provided by the
model, the impact would be reduced consistently, resulting in a huge cost reduction
for the entire company.
With this work we have highlighted the strength of Deep Models in the domain
of time-series forecasting and how these models could be adopted in order to
consistently improve the quality of predictions in several scenarios.
We presented a shallow comparison between the proposed models since our main
objective was to fully implement a working predictive model in a real case scenario,
but the analysis could be extended to several other promising novel models which
have recently been developed and the performance comparison could be performed
more in-depth in order to better evaluate all the proposed models with an intensive
grid search on all the hyper-parameters.

46

Bibliography

[1] Sean Taylor and Benjamin Letham. «Forecasting at Scale». In: 20 (Sept. 2017),
pp. 7–8 (cit. on p. 6).

[2] Cristian Challu et al. «N-HiTS: Neural Hierarchical Interpolation for Time
Series Forecasting». In: 20 (Sept. 2022), pp. 1–5 (cit. on p. 8).

[3] David Salinas et al. «DeepAR: Probabilistic Forecasting with Autoregressive
Recurrent Networks». In: 20 (Feb. 2019), pp. 1–5 (cit. on p. 10).

[4] Bryan Lim et al. «Temporal Fusion Transformers for Interpretable Multi-
horizon Time Series Forecasting». In: 20 (Sept. 2020) (cit. on pp. 11, 12).

[5] Ruofeng Wen et al. «A Multi-Horizon Quantile Recurrent Forecaster». In: 20
(June 2018), pp. 1–5 (cit. on p. 36).

47

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Business Requirements
	Overview to Dashboards
	Overview to Time Series Forecasting
	Research Goals and Methodologies

	Forecasting Approaches
	State of Art in Forecasting
	ARIMA
	SARIMAX
	Prophet

	Novel Approaches Proposed
	NHiTS
	DeepAR
	Temporal Fusion Transformer

	Descriptive Approach for Buffer Statistics calculation
	Data Analysis
	Architecture and Framework
	Dashboard Data Update
	Authentication
	Dashboard details
	Buffers
	Analytics

	Implementation of the Predictive Model for Buffer Forecasting
	Data Analysis and Pre-processing
	Framework and Architecture
	Models Overview
	Feature Selection
	Models Comparison
	ARIMA
	Prophet
	DeepAR
	N-HiTS
	Temporal Fusion Transformer
	Final Comparison

	Model Optimization
	Hyper-parameters
	Loss Function
	Fine-tuning Considerations

	Predictive Implementation

	Results
	Conclusions
	Bibliography

