
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

UAVs system for autonomous indoor
flight and remote controlled

Supervisors

Prof. Alessandro RIZZO

Dr. Stefano PRIMATESTA

Dr. Orlando TOVAR ORDOÑEZ

Candidate

Christian BONOTTO

December 2022

Abstract

Nowadays, the industrial environment has strong dependencies on robotic solutions.
In fact, these represent a good investment for both major companies and small
starts ups. The implementation of robotic and unmanned systems can improve
both the efficiency and security of the production. Moreover, in critical and
threatening conditions, autonomous vehicles are necessary to limit risks for human
operators. Among UVS (Unmanned Vehicle System), drones occupy an important
and fascinating spot. The greatest feature of this class of vehicle is that, ideally,
they can be used in many different situations. In general, drones can provide
autonomous flight, both indoor and outdoor, and a great agility also in the tightest
places. In this master thesis the autonomous behaviour of the FIXIT’s drone will
be considered. The FIXIT one, is a project carried on by CIM4.0, the Competence
Centre for Industry 4.0 of Torino; such drone consists of an UAV (Unmanned
Aerial Vehicle) that can fly in an industrial environment and eventually dock on a
moving rover. The result has the aim to assist human operators in specific missions,
collecting and elaborating data. The drone should be able to provide stable flight
in GNSS (Global Navigation Satellite System) denied environment exploiting the
UWB (Ultra Wide Band) wireless technology and specific sensors. Moreover, an
obstacle avoidance algorithm is implemented. The flight controller’s program is
based on Ardupilot and run on the PixHawk board 2.4.8. In this study, the focus
is on the sensors needed in order to obtain stability for different conditions and on
the development of the flight controller code to provide personalized actions.

Table of Contents

List of Figures v

Acronyms viii

1 Introduction and state of the art 1
1.1 Localization problem generalities 1
1.2 Filtering techniques . 4

1.2.1 Kalman Filters . 4
1.2.2 Particle Filter . 7
1.2.3 Complementary Filters . 7
1.2.4 Simultaneous Localization and Mapping (SLAM) 8

1.3 Pre-processing operations . 9
1.3.1 Sensor calibration . 9

1.4 Flight configurations . 10
1.4.1 Outdoor flight . 10
1.4.2 Indoor flight . 11

1.5 Autopilot . 12

2 Hardware description 15
2.1 Sensor list . 15

2.1.1 Intel RealSense d435i . 15
2.1.2 Inertial Measurement Unit 16
2.1.3 Magnetometer . 16
2.1.4 Global Positioning System 17
2.1.5 Rangefinders . 18
2.1.6 Ultrasonic Sensor . 19
2.1.7 Optical Flow sensor . 20
2.1.8 Additional Hardware . 21

2.2 Drone configuration . 21
2.2.1 Autopilot boards . 23

iii

3 Learning the code languages 25
3.1 ArduPilot . 25
3.2 Structure of the code . 25

3.2.1 High level . 25
3.2.2 Low level . 26

3.3 Arduino . 28
3.3.1 Hardware selection . 28
3.3.2 Arduino IDE . 29
3.3.3 Processing . 30

3.4 Matlab . 30

4 Sensors data implementation 31
4.1 Raw Data . 31
4.2 Pozyx UWB . 32

4.2.1 UWB implementation on the UAV 33
4.3 Pozyx magnetometer . 34
4.4 Lidar vs Barometer . 37
4.5 RM3100 vs HMC5883L . 39

5 First set-up and performance analysis 40
5.1 Arduino setup . 40
5.2 Tests and problems analysis . 41

5.2.1 Positioning . 41
5.2.2 Heading . 45

6 Methodology and implementation 46
6.1 Origin drift problem . 46
6.2 Heading problem . 48

6.2.1 Magnetic Calibration . 49
6.2.2 Double Tag Heading . 49
6.2.3 Pozyx AHRS . 50
6.2.4 Lane Switching . 53
6.2.5 Filter Customization . 54

6.3 Final set up and experimental tests 56
6.3.1 Additive mission - Quadcopter 57
6.3.2 Digital mission - Quadcopter 63
6.3.3 Additive mission - Octocopter 67

7 Conclusions 72

Bibliography 74

iv

List of Figures

2.1 Intel RealSense camera . 15
2.2 Magnetometer RM3100 . 16
2.3 Taoglass ZED-F9P . 17
2.4 TFmini Lidar . 18
2.5 HC SR-04 sensor . 19
2.6 PX4 Optical Flow sensor . 20
2.7 Buzzer and safety switch . 21
2.8 Pixhawk 2.4.8 . 23
2.9 Cube Orange . 24

3.1 High level architecture of the code 26
3.2 The Arduino IDE environment . 29

4.1 Pozyx’s anchors displacement . 32
4.2 Autopilot connection to the UNO board 33
4.3 The paper box used for calibration 34
4.4 Not-calibrated magnetometer measurements 35
4.5 Calibration Process . 35
4.6 Calibrated magnetometer measurements 36
4.7 Altitude sensors comparison . 37
4.8 Altitude evaluation . 38
4.9 Magnetometers comparison . 39

5.1 System configuration: each yellow pin represents the relative anchor
position on the map . 41

5.2 Localization tests . 42
5.3 Shift errors . 43
5.4 Motors magnetic disturbance . 44

6.1 Shift errors solved . 47
6.2 Lane switching between two autopilot cores 54
6.3 The two final UAVs . 56

v

6.4 Path desired (red) and achieved (blue) 57
6.5 North-axis positioning difference . 58
6.6 East-axis positioning difference . 58
6.7 North-axis positioning error . 59
6.8 East-axis positioning error . 59
6.9 North-axis difference between Pozyx’s estimate and EKF’s one . . . 60
6.10 East-axis difference between Pozyx’s estimate and EKF’s one 60
6.11 Yaw innovations . 62
6.12 Yaw EKF’s test-ratio . 62
6.13 Path desired (red) and achieved (blue) 63
6.14 North-axis positioning difference . 64
6.15 East-axis positioning difference . 64
6.16 North-axis positioning error . 65
6.17 East-axis positioning error . 65
6.18 Yaw innovations . 66
6.19 Yaw EKF’s test-ratio . 66
6.20 Path desired (black) and achieved (red) 67
6.21 Yaw innovations . 69
6.22 Yaw EKF’s test-ratio . 69
6.23 North-axis positioning difference . 70
6.24 East-axis positioning difference . 70
6.25 North-axis positioning error . 71
6.26 East-axis positioning error . 71

vi

Acronyms

SITL
Software In The Loop

UAV
Unmanned Aerial Vehicle

GCS
Ground Control Station

CC
Companion Computer

MP
Mission Planner

QGC
QGround Control

KF
Kalman Filter

EKF
Extended Kalman Filter

UWB
Ultra Wide Band

AHRS
Attitude and Heading Reference System

viii

Chapter 1

Introduction and state of the
art

Autonomous movement in the robotic field is an important achievement. A robot,
which is as much as possible independent during its mission, has many advantages.
Multiple companies are moving through a gradual automatization of working places,
and unmanned robots are a fundamental piece in this sense. However, for what
drones are concerned, they are complex to manage and control because of their
aerial nature. In last years different strategies have been tested, bringing good
results. In general, making a vehicle able to move with autonomy means providing
a localization system and implementing sensors to achieve obstacle avoidance
behaviour in different conditions. Therefore, there is not the perfect configuration,
but the more appropriate for the case of interest. In fact, in this project two
different situations are considered: the indoor movement and the outdoor one. In
each environment a specific configuration is implemented.

1.1 Localization problem generalities
The first problem is the localization one, which means estimate attitude and heading
of the vehicle in the space while it is moving. This problem can be solved using
sensors and localization algorithms. The system that includes different sensors for
the evaluation of the orientation of a vehicle is referred to as Attitude Heading
Reference System (AHRS). Many autonomous vehicles, such as submarines or UAVs
use this technology. Localization is a term that must be considered in relation to the
environment we are working in. The attitude and heading of a vehicle are computed
with respect to a reference. Thus, two coordinates’ systems, at least, are described:
the first one is the world reference frame, the second one is the vehicle frame (or
body frame). Normally, any transformation between frames can be described as

1

Introduction and state of the art

a sequence of rotations and translations in the space. For what the orientation
is concerned, it is possible to consider multiple rotation around the axes of the
frame. The more general transformation is the composition of three consequent
movements; this sequence is described as the rotation of an angle ψ ϵ (−180,180]
around the z axis followed by the rotation of an angle θ ϵ [−90,90] around the y
axis and the consequent rotation around the x axis of an angle ϕ ϵ [−180,180).
These can be described using the specific matrices, as follows.

Mz =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (1.1)

My =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (1.2)

Mx =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

 (1.3)

The total transformation matrix, also called Direction Cosine Matrix (DCM),
can be obtained by multiplying in the specified order the previous matrices. Such
matrix defines the different orientation between the two frames. This orientation
can be explained also using Euler Angles. However, Euler angles are not always
the best choice to compute orientation with sensors. For example, consider the
gyroscope. This sensor works returning the angular velocities ωi of an object around
the frame axes, and it is used to understand the orientation of the body. The
relation between the derivatives of the Euler angles and the angular velocities is
the next one: ψ̇θ̇

ϕ̇

 =

0 sin(ϕ)
cos(θ)

cos(ϕ)
cos(θ)

0 cos(ϕ) − sin(ϕ)
1 tan(θ) sin(ϕ) tan(θ) cos(ϕ)

ωx

ωy

ωz

 (1.4)

At the denominator of some matrix elements there is the cos θ; if such angle is
equal to ±90, the results is a division by zero. This situation is known as gimbal
lock. In this situation, two axes of the considered object are in parallel, “locking"
the system into rotation in a degenerate two-dimensional space, and the body
loses one degree of freedom. Thus, another system for attitude representation
will be used. Such solution consists in quaternions. They are an equivalent way
to represents rotations but avoiding singularities. The generic quaternion ca be
written as q and defined as the combination of real numbers (q0, q1, q2, q3) and
hypercomplex numbers (i, j, k). In particular, given q = q0 + q1i + q2j + q3k,

2

Introduction and state of the art

qr = q0 is the real part, while qv = q1i+ q2j + q3k is the vectorial part. The general
transformation matrix ca be defined with quaternions as in equation 1.5.

M =

q0
2 + q1

2 − q2
2 + q3

2 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q0

2 − q1
2 + q2

2 − q3
2 2(q2q3 − q0q1)

2(q0q2 − q1q3) 2(q2q3 − q0q1) q0
2 − q1

2 − q2
2 + q3

2

 (1.5)

Thus, quaternions can be used to define the position and attitude of the body.
It will be considered later as state vector using filters.

Positioning information are provided by sensors. Some of them will be described
more in detail later, during the explanation of the hardware configuration for
tests. In general, most common type of sensors used for AHRS are inertial sensors
like gyroscopes, accelerometers, and magnetometers. However, the presence of
disturbances can bring errors to the measurements. Accelerometers sense the
gravitational field; thus, vibrations will affect the calculations. At the same time,
magnetometers are affected by ferromagnetic elements that can interfere with the
magnetic field measurements. For what gyroscopes are concerned, it is possible
to compute the orientation of the vehicle using a discrete-time integrator applied
to the measured angular velocities. But the zero-bias integration, in presence of
uncertainties, will lead to an accumulating error.

These facts show how it is not possible to obtain correct and reliable attitude
and heading information just from one type of sensor alone. The sensors fusion will
consider the best measurement from all the available ones at that instant, providing
better estimations. There are several methods widely documented in literature.
For a multi-sensor combination on a rigid platform, in general, its fusion can be
given by 1.6.

Db
1 = CDr

1
. . .

Db
n = CDr

n

(1.6)

Where Db
i = (Db

x,i, D
b
y,i, D

b
z,i)T denotes the vector observation of sensor i in

the body frame and Dr
i = (Dr

x,i, D
r
y,i, D

r
z,i)T represents the vector observation of

sensor i in the world reference frame. C is the DCM. The previous equation can
be converted to a least square loss function, which has to be minimized.

J(C) =
nØ

i=1

...CDr
i − Db

i

...2
(1.7)

When the DCM is represented by q = (q0, q1, q2, q3)T , the single sensor fusion error
is given by

f(q, i) =
è
Dr

x,iP1(q) + Dr
y,iP2(q) + Dr

z,iP3(q)
é

q − Db
i (1.8)

3

Introduction and state of the art

In 1.8, Pi(q)q is an alternative way to represent the i-th column of C.
The combination of all sensors can be described by an augmented form such in

1.9, where ai are the related weights. Weights are useful in specific conditions to
give relevance to a sensor with respect to the others. The final combined error’s
function is:

F (q) = f(q, {w, v, . . . , n}, {aw, av, . . . , an}) =

√
awf(q, w)√
avf(q, v)
. . .√

anf(q, n)

 (1.9)

The starting problem can be rewritten as

arg min...q...=1

...F(q)
...2

(1.10)

There are several ways to solve such optimization problem. The next paragraphs
outline some of the most common methods.

1.2 Filtering techniques
The system’s state analysis is a crucial problem in modern automation and robotics.
Some methods able to provide positioning of the robot are based on specific
probabilistic algorithms. These algorithms correct the information coming from
the odometry with the data obtained by exteroceptive sensors. In these cases,
localization becomes a problem of state estimation, where the state is a random
variable. Thus, the evolution of the robot position in time can be described as a
dynamical system, which equations are describing the process and the measurement
models.

The most common algorithms used in these cases are Kalman Filter (KF),
Particle Filter (PF) and Complementary Filter (CF).

1.2.1 Kalman Filters
The Kalman filter, also known as linear quadratic estimation (LQE), is a problem
where the estimation of the unknown variable tends to become more accurate
increasing the number of measurements, computing a joint probability distribution
over the variables. The filter is very powerful since it supports estimations of past,
present and future states, and it can do so even when the precise nature of the
model is unknown. The filter has two main phases. The first, is the prediction
of the current state exploiting a mathematical model of the system. Then, such
estimation, with the uncertainties, is updated with a weighted average of the sensors

4

Introduction and state of the art

measurements. The assigned weight is related to the precision of the estimation.
Such filter works well when noises have Gaussian distribution.

However, there are several variants to this linear estimator; this is quite impor-
tant since most of the measurements from the real world comes with nonlinear
uncertainties. Such variants are the Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF).

Extended Kalman Filter

The EKF has differentiable functions as transition and observation models. It can
linearize the current mean and the covariance. Let assume that the system has
a state vector x ϵ Rn, and that the process is lead by the nonlinear stochastic
differential equation:

x = f(xk−1, υk−1, wk−1) (1.11)

With measurement z ϵ Rm described as:

zk = h(xk, νk) (1.12)

In the previous equations wk and νk represent respectively the process and mea-
surement noises, and they are assumed to be zero mean multivariate Gaussian
noises with covariances Qk and Rk. This can be written as follow:

w(t) ≃ N(0, Q(t)) (1.13)
ν(t) ≃ N(0, R(t)) (1.14)

Furthermore, the function 1.11 relates the state at instant k with the state at
instant k − 1, plus it has as parameters the driving function u and the zero-mean
process noise w. Also, h in formula 1.12 is a nonlinear differential equation, and it
relates the state x with the measurement z.

However, in practice, the actual values of the noises w and v are not known at
each time instant. Therefore, the following approximations are considered:

x̃k = f(x̂k−1, uk−1,0) (1.15)
z̃k = h(x̂k,0) (1.16)

Where x̃k is a posteriori estimate of the state, and z̃k is its relative measurement.
In this case, both functions can not be applied to the covariance directly, instead a
matrix of partial derivatives (the Jacobian) is computed. First, for each time step,
is computed the Jacobian Ak of partial derivatives of f with respect to x, and the
Jacobian Wk of partial derivatives of f with respect to w. The partial derivatives
of h with respect to x and v lead to the respective Jacobian Hk and Vk.

5

Introduction and state of the art

At this point let’s define a new notation for the prediction error and the measurement
residual:

ẽxk
= xk − x̃k (1.17)

ẽzk
= zk − z̃k (1.18)

However, the actual state is not known, but it is possible to define an error process
like:

ẽxk
= A(xk−1 − x̂k−1 + ϵk (1.19)

ẽzk
= H(˜exk

) + ηk (1.20)

Where ϵk and ηk are independent random variables with zero mean and covariances
WKWT and V RVT . From here it is possible to obtain a-posteriori state estimate:

êk = Kkẽzk
(1.21)

Where K is the Kalman gain that must be computed during the measurement
update phase. The final formula to be used in this update phase will be:

x̂k = x̃k +Kkẽzk
= x̃k +Kk(zk − z̃k) (1.22)

The complete set of EKF equations are shown in the following groups of equations.
The EKF time update step, described by equations 1.23, projects the state and
covariance estimates from the previous time step to the actual one. While, in
the EKF measurement update phase, equation 1.24, there is the correction of the
estimations with the measurement zk.I

x̂−
k = f(x̂k−1, uk−1,0)

P−
k = AkPk−1A

T
k +WkQk−1W

T
k

(1.23)

Kk = P−

k H
T
k (HkP

−
k H

T
k + VkRkV

T
k)−1

x̂k = x̃k +Kk(zk − h(x̂−
k ,0))

Pk = (I −KkHk)P−
k

(1.24)

Unscented Kalman Filter

Whenever the transition and update equations are highly nonlinear, the EKF
doesn’t work well, the UKF instead, uses a deterministic sampling technique to pick
a minimal number of points among the mean and then propagate such points via
the nonlinear functions, from which a new mean and covariance estimate are then
computed. A quaternion based unscented Kalman filter is used in [1], to provide
good heading estimation. The proposed multi sensor implementation includes

6

Introduction and state of the art

an accelerometer, a gyroscope, and a magnetometer. The first measurement is
provided by the magnetometer and accelerometer, but the signal is cleared using
the gyroscope data. The result shows accuracy in heading estimation with errors
less than 5° and 10°. However, the goodness of the result depends also on the fact
that the drone was moving at constant velocity; more critical conditions could have
changed the final measurements. For what Kalman filters are concerned, additional
research is explained by [2]. In this paper an algorithm based on the filter is tested
and evaluated. Such algorithm exploits the Wireless Sensor Network implemented
for tracking a mobile target moving at low dynamics. The results show better
accuracy of the Kalman filter compared to other Least Square estimators. The
good behaviour of the filter was due also to the choice of Received Signal Strength
(RSS) measurements. Furthermore, the paper reveals that with high nonlinearity,
the EKF doesn’t always guarantee convergence of the solution; in such cases the
UKF was used, since it does not need to calculate the Jacobian.

1.2.2 Particle Filter
The particle filter can be used for non-linear systems, it is considered a better
option than the Kalman filter with non-Gaussian distributions, but it requires
higher computational effort. Probability densities are approximated by a set of
weighted particles; higher weights indicate a higher probability that the particle
is representative of the real pose of the robot. It has some similarities with UKF
because both transform a set of point through known nonlinear equations and
combine the result to estimate the mean and covariance of the state. However, in
Particle filter the points are chosen randomly. Particle filter localization is also
known as Monte Carlo Localization. The method consists of three consecutive
steps:

1. prediction: where a new set of particles is determined from the previous one.

2. update: where each particle is assigned a weight.

3. resampling: when a new set of particles is determined to approximate the
robot pose.

1.2.3 Complementary Filters
Kalman and Particle filter, thus, are a good and wide used option when comes
to clean disturbances from signals, however, they are both quite complex from a
computational point of view. On the other hand, another common solution is the
Complementary Filter, which is a simple algorithm that uses the frequency domain
methods to filter out the signal and obtains the estimation without any stochastic

7

Introduction and state of the art

assumptions. There are many ways to realize a complementary filter, depending
also on the strategy used to solve the optimization problem of equation 1.10.

In [3] the Madgiwick method described in [4] is revisited. The original algorithm
is based on a fixed gain filter to estimate attitude expressed in quaternions using
AHRS observations. Using such filter as base core, the quaternion estimation of the
attitude was computed using an optimized Levenberg-Marquardt (LM) algorithm.

In [5] the complementary filter is realized using strap-down vector observations
via gradient descent algorithm (GDA) instead of LM. Moreover, the two method,
LM and GDA are compared. It is noticed that the final results are similar, however,
the LM technique provides a smoother response. In fact, the Levenberg-Marquardt
is cable of adapting the convergence rate of the iterations.

At the end, the flight controller chosen has an EKF algorithm implemented,
which is able to estimate vehicle position, velocity and angular orientation based
on the sensor’s measurements. Its parameters can be tuned depending on the
preferences of the pilot or on the requirements of the mission. Its code will be
explained in the proper section later.

Independently on the case, any Extended Kalman Filter must be set in such a
way to provide good stability. To do this, the combination of sensors and in which
phase (prediction or update) they are used become an important choice. In [6]
cameras and inertial sensors (accelerometers and gyroscopes) are fused together
with an EKF for 3D tracking. Independently on the combination, what is known is
that the camera data are improved with fused accelerometer data for the position
estimation, while the gyroscopes help more the attitude estimation. Although the
two types of measurements can be merged in either the first stage of filtering or in
the second one, there are some differences between the eight possible combinations.
One option is to use inertial information at the prediction stage, the second option
is to use them in the correction phase. The considered paper analyses with both
real data and simulated ones the eight combinations for sensor fusing, and at the
end it concludes that the best results are obtained using both inertial sensors during
the second step of the filtering process. Moreover, the paper demonstrate that, the
accelerometer is more useful for 3D positioning, while the gyroscope is better for
3D orientation estimate.

1.2.4 Simultaneous Localization and Mapping (SLAM)
Indoor navigation presents multiple difficulties, such as the heading problem and the
limitation in coverage of wireless localization. Some possible solutions, implementing
sensors fusion, have been defined previously. However, there is a different way
to solve these problems; such solution is Simultaneous Localization and Mapping
(SLAM). SLAM is a computational problem of constructing the map of the unknown
environment surrounding the robot. Given a series of control and sensor observation

8

Introduction and state of the art

over a certain time, the purpose is to compute the estimation of the state variable
and of the environment. The problem can be solved in different ways, like set-
membership identification methods, expectation-minimization algorithms or with
the already presented probabilistic filters. An example is presented in [7] where a
SLAM augmented UWB localization is used to provide autonomous flight in an
indoor environment; the quadcopter of the paper was able to map the room and
recognize heading itself.

1.3 Pre-processing operations
Kalman filter, Complementary filter, personalized filter exploiting the methods
and algorithms explained in the previous paragraphs are possible and valuable
approaches for data fusion and outliers’ elimination in attitude estimation. However,
the accuracy of the estimation is reduced if the measurement and data are considered
as raw as they come from sensors. To solve this problem a filtering action is needed.
In the already cited paper [3], the magnetic distortion was treated applying a
low pass filter for the magnetometer raw data. This filter reduces the effect of
magnetic disturbances on yaw evaluation. Another possible solution requires the
implementation of a pass band filter. Nevertheless, this filter must have a narrow
band, and this is achievable just with a high order filter, increasing the complexity
of the system and, in navigation cases, longer delays on the actions.
An example is presented in [8], where the raw data coming from inertial sensors are
pre-processed using an adaptive variable bandwidth filtering via sinusoidal data
estimation. Their solution can be presented in three consecutive steps:

1. 1: raw data from sensors are approximated as sinusoids at pre-set frequencies.

2. 2: the error between the original raw data and their approximation is computed
by SSE (sum of squares error).

3. 3: the final filtering action is realized based on the operating frequency.

The sinusoidal technique is applied to guarantee less computational demand and
making the filter suitable for real time applications. With this implementation, low
frequency vibration influences are eliminated, making the signal smoother.

1.3.1 Sensor calibration
Another important operation, to improve the quality of the sensor measurement,
is the calibration of raw data. This operation is critical both for magnetometer
and accelerometer. There are several techniques available. One possibility is to use
after-production calibrated sensors, but this solution requires the use of expensive

9

Introduction and state of the art

equipment like Gauss magnetic chambers or Maxwell coils. A more interesting
approach consists of specific algorithms to solve the calibration problem. Especially
in the case of magnetometer, the noises can be distinguished in two categories. The
first one is the soft-iron distortion, which belongs to the sensor reference frame
and directly affects the measurement of the magnetic field. The second one is
referred to as hard-iron distortion and is due to the presence near the sensor of
magnetic material, which causes a permanent bias to the measured output. For
3-axis accelerometer calibration, the constant magnitude of gravity is mostly used
as a reference. For 3-axis magnetometer calibration, the constant magnitude of the
Earth’s magnetic field is exploited. Nonetheless, in applications like autonomous
navigation, or sensor fusion, the data coming from accelerometer and magnetometer
are merged. Thus, the sensitivity axes of the sensors must be aligned together.
This operation can be done using specific algorithms; in [9], the author exploits a
gyroscope to compute the misalignment between sensitivity axes, in [10] a more
personal algorithm is exploited. Alternatively, to decrease the complexity of the
operation, just one sensor at time instant can be treated. In [3], the accelerometer
is just calibrated using the sensitivity gains provided by the manufacturing sheet,
without any deeper algorithm. However, the magnetometer is calibrated using
the ellipsoid fitting method. This method is explained in [11], but in few words,
without interferences, raw magnetometer data should form a perfect sphere, with
diameter equal to intensity of the magnetic field. The presence of distortions affects
the magnetic field shape, making it more like an ellipsoid. The interference can be
collected during tests measurement in matrix form as corrective parameters to be
used later during the effective measurements.

1.4 Flight configurations

1.4.1 Outdoor flight

For what outdoor flight is concerned, 2D localization is achieved thanks to the GNSS
system. This returns the spatial coordinates of the vehicle, enabling localization
and the possibility to program autonomous flight. Heading information in this case
are generally provided by magnetometers, in this way it is possible to understand
the orientation of the drone while moving, which is an important feature when
comes to make the vehicle to follow a specific waypoints path. Heading is very
important also for the obstacle avoidance system, since in our configuration, the
more precise camera (able to identify obstacles) is placed on the front of the
drone. In addition to GNSS and magnetometer, an IMU is used, to collect data
regarding the acceleration around the pitch and roll axes (yaw is mainly given by
the compass).

10

Introduction and state of the art

1.4.2 Indoor flight

Indoor, things are more complex. In fact, in this situation the environment is
limited in space, and the risk of causing damages to things or people increases.
Moreover, the presence of ferromagnetic disturbances inside the room makes the
magnetometer based heading system unreliable. Finally, indoor, the GNSS system
doesn’t work. There are several possible implementations to achieve autonomous
flight and correct positioning for the drone in such environments. A first approach is
the realization of a room with OptiTrack cameras, these can provide 6DoF tracking
with very high precision and low latency. However, this solution is quite expensive
and limited by the fact that the required setup must be fixed, and thus cannot be
implemented easily in multiple environments. Lately, in the market is spreading
new low-cost wireless systems, one of these is the UWB. Ultra Wide Band is a radio
technology for transmitting communications across a wide bandwidth enabling
modulation of the signal. It can be used to determine the time of flight of the
transmission, and, thanks to the low power characteristic, it is used for localization
in different environments. An example of UWB application is the use of drones for
inspecting close environments like oil tanks and vessels. This is explained in [12],
where an ad-hoc algorithm, the Vision Aided Self-Localization Two-way Time of
Flight (VASTWTOF) was implemented for the achievement of UWB anchors self-
localization in GPS-denied situations. Ultra Wide Band represents a good solution,
but it does not always return perfect results. In order to improve the measurements
of the position, a sensors fusion is needed. Furthermore, localization is not just
based on positioning, but also on heading (orientation). This problem is handled
with the magnetometer in outdoor situations; but like GNSS, magnetometers
suffer of indoor ferromagnetic problems. The reliability of this instrument must be
tested merging the data with the ones of the IMU. Alternatively, to compute the
orientation, two UWB tags can be placed, one on the front and one on the rear
of the drone, but in this way the space needed on the quadcopter would increase.
Another solution consists of exploiting UWB and LiDAR technologies together
with map information of the environment [13]; in this case UWB is used to estimate
the robot location and then the LiDAR to detect the direction of the robot along
with the map data, the entire algorithm follows a least squared approach. In [14],
an alternative to the LiDAR and RangeFinders, which are generally ToF (Time
of Flight) sensors, is considered. The paper verifies three different indoor heading
methods, where are used two cameras (one pointing forward, the second downward)
and a magnetometer. The tests show how the downward camera highly depends on
the surface characteristic, in fact, if the floor is rather monochromatic or reflective
or moving, the measurements lose reliability. On the other hand, forward camera
shows good results, exploiting a visual-based navigation technique. Furthermore,
fusing the camera and the magnetometer together, will increase the accuracy; but it

11

Introduction and state of the art

is important to remember that this fusion is not trivial, because it requires to place
many sensors on the drone, and this is not always possible. Finally, autonomous
flight is challenging matter also for the obstacle avoidance behaviour, to do this
the drone must be able to sense what it has around in the space. The ability for
an UAV to detect near obstacles is based on the exploitation of specific sensors.
In this case, there are different solutions and configurations that can return good
results. Generally, for this purpose, rangefinders, ultrasonic sensors and camera
are implemented. To avoid overload of information the multithread behaviour of
the flight controller is exploited: it is possible to use each time instant the most
reliable sensor among the one available, obtaining the best possible performances.

1.5 Autopilot

The autopilot running on the copter is chosen between PX4 and ArduPilot. They
are very similar, however the main two differences are that ArduPilot is older and,
as a consequence, with a slightly more progressed and stable code. The second
big difference is the license. ArduPilot has a GPL one, while PX4 has the BSD
one. Thus, every change made to the ArduPilot code must be push on Github
and made public, while the code cloned by PX4 can be maintained private. The
latter is also one of the reasons for which the ArduPilot code is the more updated
between the two. ArduPilot is a trusted, versatile, and open-source autopilot system
supporting many vehicle types. The source code is developed by many professional
figures and experts. It is constantly evolving based on rapid feedback from a large
community of users. ArduPilot does not provide a specific hardware, however, the
code works in many different boards available in the market. In this project case
is used the PixHawk 2.4.8, which can receive information from the sensors and
send commands to the copter devices like ESC, motors, camera etc. The features
of the firmware depend on the type of vehicle that is considered. Anyway, some
libraries are common to different vehicles. The pilot can interface with the UAV
with a software called Ground Control Station (GCS); it can be downloaded in
PC or mobile devices. For this project the GCS chosen are Mission Planner with
Windows and QGroundControl with Linux. In addition, especially when simulation
time comes, MAVProxy is preferred to the previous two because of its minimalist
design and its characteristic to be used as a command-line based GCS; these facts
make it also a good developer instrument. It is used with SITL for testing new
builds. ArduPilot uses the MAVLink serial protocol for communication between the
Ground Station and the UAV (either the main autopilot board or the Companion
Computer) . MAVLink supports a wide range of messages, these can be found in
common.xml and ardupilot.xml. Data can be sent over almost any serial connection
not depending on the technology. Although MAVLink is reliable, the operator

12

Introduction and state of the art

must always check the status of the vehicle and if the required command has been
executed. This protocol will be useful especially when some calculations will be done
by the CC and at the end comes to send the resulting instructions to the autopilot.
The Ground Control Station for windows users is Mission Planner, it can be used
with Google Maps to create a Point and Click waypoint/fence for the drone. As
the name suggests it is used for mission planning, but it can additionally download
mission log files and analyse them (in order to realize in-flight and post-flight
monitoring), configure autopilot settings and interface with a PC flight simulator
to create a SITL simulation of many frame types for all the ArduPilot vehicles.
Furthermore, Mission Planner source code can be downloaded and compiled, since
the code is written in C. ArduPilot developer guide presents some instructions on
how to modify the Mission Planner platform; this can become useful to build a
custom ground station. Previously, it has been noticed how the Pixhawk board
is not enough powerful to compute all the data elaboration. The companion
computer is an additional unit to the autopilot used to obtain more power in terms
of processing data and instructions. This is fundamental during flight, especially
when autonomous behaviour is needed. The used CC is the Nvidia Jetson Nano,
it communicates with the PixHawk autopilot via MAVLink protocol over a serial
connection. They should be alimented separately. The CC software refers to the
programs and tools that run on the companion computer, they can read and run
the telemetry data. Among different softwares, the Robotic Operating System
(ROS) is very common and flexible. ROS is an open-source, meta operating system
for the robot, it provides libraries, tools, hardware abstraction, low-level device
control, message-passing between processes, visualizers and packages management
to help software developers in creating robot applications. MAVROS is a ROS node
that can convert between ROS topics and MAVLink messages allowing Ardupilot
vehicles to communicate with ROS. The operating system has some specific terms
which are very important to understand the different operations. A ROS node is
an application, and it belongs to a package. The most important node in ROS
is the Master node, it initializes the system and enables communications. Nodes
communicate with each other via topics, which can be understood as a channel
for exchanging async information. Such information is contained in messages, a
message belongs to a package. In node communication, there is one node who send
the message via topic, such node is called publisher. All nodes interested in that
published data have to subscribe to that topic, these nodes are called subscribers.
Moreover, synchronous communication between nodes is possible thanks to services.
The node referred to as service server advertise the service, the one accessing the
service is called service client. Testing new features can be dangerous, especially
for the integrity of the copter. Therefore, new changes on the code should first be
tested by simulations. The SITL (software in the loop) simulator allows to run the
desired vehicle without any hardware. It is built from the ArduPilot code using a

13

Introduction and state of the art

C++ compiler. This is possible thanks to the portable nature of ArduPilot. When
running the simulation, the sensors (like antennas, Lidars and optical flow sensors)
data come from a flight dynamic model. The simulation allows the developer to
exploit directly specific tools available such as interactive debuggers, static and
dynamic analysers; in this way testing the functionality of the code becomes faster
and easier. SITL can run in parallel with Gazebo and the simulation can be
controlled by MAVProxy or directly with the classical GCS of the PC. Gazebo is
another important virtual environment. It is a well-known and respected robotic
simulator. At the time of the thesis, there is not an official built-in-support for
Ardupilot, but on GitHub is available a custom version of ArduPilot with plugin
for Gazebo. Such plugin can be used with or without ROS.

14

Chapter 2

Hardware description

2.1 Sensor list
In this work, both indoor and outdoor autonomous flights are analysed. Stability of
the UAV is determined, as it has been written in previous chapters, by the correct
combinations of different sensors. Some of them, like accelerometer, magnetometer,
gyroscope, are already described, even if from a more theoretical and marginal
perspective. In order to better understand the final implementation, a list of the
main available sensors in the drone market is provided.

2.1.1 Intel RealSense d435i

The Intel RealSense d435i is a RGB depth camera that is implemented beacuse
it is able to measure distances and thus it is considered as a reliable component
for obstacle avoidance. The camera has its own microprocessor and IMU, in this
way it can understand its position. It could be used also for object recognition. In
addition, it has a shutter sensor able to guarantee a low-light sensitivity, which is a
very important feature for a drone that is expected to move indoor.

Figure 2.1: Intel RealSense camera

15

Hardware description

2.1.2 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is the basic sensor of the vehicle. The
project’s IMU is based on the accelerometers and gyroscopes of the Pixhawk board.
The flight controller hardware has also a barometer. The IMU is used to detect
rotation and movements around the three main axes, in particular, it is possible to
define the angles for yaw, roll and pitch. Eventually, such angles can be converted
into quaternions depending on the final algorithm implementation.

2.1.3 Magnetometer

During the sensors fusion analysis, Micro Electro-Mechanical Systems (MEMS)
IMU presents, further than accelerometer and gyroscope, magnetometers. In fact,
the Pixhawk board has an internal compass, however, its precision decreases con-
siderably in indoor applications. Therefore, the heading of the drone is guaranteed
by the RM3100 magnetometer. It provides no drift, low noise, high sensitivity, no
hysteresis, and it can be integrated with either I2C or SPI interfaces. Although
it represents a good element for outdoor missions, and even if it shows better
accuracy than the internal board magnetometer, in closed environments it can have
some problems due to ferromagnetic material. Additionally, in [12], is shown the
dependencies of height on the indoor positioning precision. Such uncertainties must
be taken into account during the analysis and validation of the sensor accuracy.

Figure 2.2: Magnetometer RM3100

16

Hardware description

2.1.4 Global Positioning System
The GPS (Global Positioning System) is the reference sensor for positioning in
outdoor environment. GPS is one of the GNSS systems that provide geolocation
and time information to a GPS receiver. GPS is owned by the USA government
and exploits the satellites in the space. It does not require the user to transmit
any data, and it operates independently of any telephonic or internet reception.
Nonetheless, the signal is relatively weak, and it can be disturbed by obstacles like
mountains or buildings. The Taoglass ZED-F9P positioning module is the one used
for the final implementation, it features the new u-blox F9 receiver platform and it
can reach accuracy of centimetres. This precision is due to the implementation in
the sensor of the Real Time Kinematic positioning (RTK), which is the application
of surveying for common errors using measurement of the phase of the signal carrier
wave, ignoring the information carried within.

Figure 2.3: Taoglass ZED-F9P

17

Hardware description

2.1.5 Rangefinders
Rangefinders are laser sensor to measure distances between objects. The most
common principle that is exploited by rangefinders is time of flight (ToF), which
consists of sending a laser in a narrow beam and measuring the time taken by
the pulse to be reflected by surrounding objects. Some different sensors are
tested for height measurements. The first was the VL53L1X sensor. The original
implementation wanted two of these sensors on the drone, one on the top of it, and
one on the bottom. The data coming from these two rangefinders were merged
thanks to the Kalman Filter. This solution is good in indoor environment since
it is possible to monitor both the distance to the floor and the one to the ceiling.
Moreover, the VL53L1X has a ready interface with ArduPilot and PixHawk board.
Another similar sensor, with good integration with ArduPilot is the Benewake
TFmini lidar. This should have a better accuracy of the VL53L1X both indoor
and outdoor, in fact, it can measure up to 12 meters in closed environments, and 7
meters when outside. Furthermore, both are very convenient in terms of weight.

Figure 2.4: TFmini Lidar

18

Hardware description

2.1.6 Ultrasonic Sensor
Ultrasonic sensors are cheap alternatives to Lidars to achieve the capability for
the drone to be aware of what are the surroundings, but their range of function is
very limited. In this case the HC SR-04 chip emits high frequency sound wave (40
kHz) via one of its piezoelectric transducers and detects the returning pulse (echo)
and converts it to a proportional voltage variation. The affinity depends on the
light conditions, a parameter that can become critical both indoor and outdoor,
furthermore, it is affected by the absorptivity of the reflecting material. Other
parameters that can affect the measurements are noise, temperature and humidity.
Because of these drawbacks, the sensor is neither use as main device for obstacle
avoidance nor for height measure, but it should be eventually implemented to avoid
lateral collision with unseen elements.

Figure 2.5: HC SR-04 sensor

19

Hardware description

2.1.7 Optical Flow sensor
For what indoor flight is concerned, one of the most used sensors in terms of
accuracy and cost is the optical flow one. This consists of a camera module that
uses ground texture and visible features to determine aircraft ground velocity. More
than that, it is often used for non-GPS navigation. The one considered in this
thesis is the PX4FLOW optical flow sensor, since it is well documented in the
Ardupilot webpage. Such sensor is a specialized high resolution downward pointing
camera module and a 3-axis gyro. Although this sensor is supplied by an internal
sonar to measure height, this has not been reliable over multiple surfaces during
testing. Thus, an external rangefinder like the one discussed above is suggested.

Figure 2.6: PX4 Optical Flow sensor

20

Hardware description

2.1.8 Additional Hardware
In addition to the previous sensors, a buzzer and a safety switch are used. These
are not directly needed for the drone and its autonomous behaviour but help the
operator to better interface with the vehicle and understand the different flight
modes.

Figure 2.7: Buzzer and safety switch

2.2 Drone configuration
Until now, nothing has been said about the basic components of the drone. Es-
sentially, any existing drone has the following elements: batteries, Electronics
Speed Controllers (ESCs), electric motors and propellers. Moreover, there are
many possible configurations for a copter, which can have from three to (normally)
eight arms, the motors can be in a planar displacement or vertically aligned in
pairs. The final drone for the FIXIT project is an octocopter (with eight motors),
two motors per each arm, displaced in a counter rotation way. This configuration
is chosen to maintain the spatial size of a quadcopter but with double thrust.
Nowadays, the drone motors are only brushless. These are synchronous DC motors
using direct current electric power supply. This uses an electronic controller to
switch DC currents to the motor windings producing rotating magnetic fields which
the permanent magnet rotor follows. Such controller is the ESC, and it must be
chosen depending on the amount of maximal current that the motor requires. This
quantity can be approximately estimated considering the size of the motor, its
KV (speed constant, [rpm/V]) and the size of the propeller. The KV is one key
parameters on the choiche of the motor, and it indicates the speed per volts of the
rotor without any attached propeller. In general, grater KV tends to move faster
the rotor, thus are used with small propellers; using bigger propellers will require
higher currents. The important fact is that the current flowing is not too high,
in order to avoid overheating. However, once the motor is chosen, the productor
suggests specific ESCs and propellers. The motor is selected depending on the

21

Hardware description

guaranteed thrust, which should be enough to contrast the total weight of the
drone and to allow certain agility. The total weight is computed considering the
copter itself plus the payload, which is everything on the drone that is not directly
correlated to the propulsion system. The LiPo battery has to be able to provide
the correct amount of current, moreover it is characterized by two parameters, the
discharge rating C and the capacity in mAh:the first one is the speed at which it
can be charged completely, the second is the time of flight for a drone mission. The
max current draw can be computed as follow:

MaxCurrentDraw [A] = Capacity [mA] × Crating [C] (2.1)

Throughout the tests, the small spaces available for indoor flight causes some
difficulties with the octocopter model, in fact, it has a 450mm diagonal and weights
almost 3kg. Thus, in order to limit the damages to the UAV and to the surrounding
devices in the room, a smaller copter is built. This latter, is similar to race
quadcopters, it has a 250mm diagonal and weights more or less 700g. Both drones
will be tested in different conditions. Between these two copter models, apart
from the size and the type of the propulsion elements, the biggest difference is the
on-board autopilot. The smallest mounts the Pixhawk 2.4.8 while the other has the
Cube Orange. However, both boards can have external companion computers (CC).
The two drones have an Arduino each for UWB implementation, the octocopter
has also the Jetson Nano, which can be used to handle the Intel RealSense depth
camera.

22

Hardware description

2.2.1 Autopilot boards
Pixhawk 2.4.8

The 2.4.8 board is not the newest, however, it is relative cheap, and it has everything
is needed. Moreover, it is highly documented, which makes it the perfect one for
starting a new project. Its main characteristics are:

1. ARM Cortex M4;

2. 168 Mhz/256 KB RAM;

3. MPU6000 as main IMU;

4. ST Micro gyroscope;

5. ST Micro accelerometer/compass;

6. MEAS barometer

Figure 2.8: Pixhawk 2.4.8

Cube Orange

At a certain point, the Pixhawk board has been replaced by the Cube Orange
flight controller. The two devices differ, rather than in dimension, by the number
of interfaces, the quality of the internal sensors and the processor features. The
Cube has some additional I/O ports, which allow to add external accessories to the

23

Hardware description

board, increasing the UAV potentials. In addition, the Cube has three redundant
IMUs compared to the single one of the Pixhawk. This will be commented in later
paragraphs (6.2.4). The onboard available sensors are:

1. ICM 20649 (IMU) and MS5611 barometer;

2. ICM 20602 (IMU) and MS5611 (temperature controlled barometer);

3. ICM 20948 (IMU) and MS5611 (temperature controlled barometer);

In addition, the board has a bigger RAM (1MB versus 256KB of the Pixhawk)
and a higher rate (400Mhz versus 168Mhz), these features are fundamental for
some advanced implementations. Finally, the Cube has the Cortex M7 processor.
Compared to the Cortex M4 available in the Pixhawk board, the newest is more
expensive, but executes branches faster and read memory twice as fast.

Figure 2.9: Cube Orange

24

Chapter 3

Learning the code languages

3.1 ArduPilot
As already explained, the ArduPilot firmware was the starting point for this thesis
project. However, the code may have some errors which must be corrected to
improve the performance of the UAV. In order to debug the code, is important to
be able to understand it deeply. In this chapter a brief description of the code is
granted.

3.2 Structure of the code

3.2.1 High level
The entire code is organized into five main parts, which are:

1. the vehicle directories: these contains the code related to one specific vehicle
type; there are .cpp files and the list of library dependencies;

2. shared libraries: which are the parts that contain the code shared among all
vehicle types;

3. the Hardware Abstraction Layer (AP_HAL): is used to interface the code
with many different boards;

4. tools directories: are miscellaneous support directories. For example, the Pozyx
code running inside the arduino board is copied in one of these directories;

5. external support code: used generally to provide board support.

25

Learning the code languages

Figure 3.1: High level architecture of the code

3.2.2 Low level

More in detail, each one of the part listed before, can be analyzed deeply. Through-
out this work, the main firmware required some changes; this means to handle the
code at a lower level. Among all the libraries and folders of the ArduPilot project,
the most important are the ones concerning the beacon system implementation
and the Extend Kalman Filter tuning. However, except for solving some bugs and
adding few personalized parameters for monitoring, the ArduPilot code remained
almost the same as the one available on Git.

Although the new additional functions are implemented via Arduino, to bet-
ter understand what’s coming next, it is fundamental to describe some libraries
characteristics of the code. Thus, the AP_NavEKF3_RngBcnFusion function,
responsible for the UWB data fusion in the Extended Kalman Filter, is described.

26

Learning the code languages

This method works in a very peculiar way; every k instant it receives as inputs the
North, East, Down positions of one anchor and the relative measured range. As a
consequence, the filter doesn’t work computing the position error but the range
error. In this way, the estimated position is done just using one anchor each time,
not the entire set. The filter variables are listed.

• bcnrng: measured range between the tag and the beacon

• pn: North position of the UAV

• pe: East position of the UAV

• pd: Down position of the UAV

• pos: is a vector which components are (pn, pe, pd)

• bcnpn: North position of the beacon

• bcnpe: East position of the beacon

• bcnpd: Down position of the beacon

• bcnpos: is a vector which components are (bcnpn, bcnpe, bcnpd)

Then, recalling 1.2.1, the EKF is realized first by defining the range prediction
(3.1) and innovation (3.2).

rngPred = |pos − bcnpos| (3.1)

innovRngBcn = rngPred− bcnrng (3.2)
Since the innovations (ranges) are not the desired system states (NED position),
the transformation matrix H must be computed. This is done for each one of the
North, East, Down components.

temp = {
ñ

[(bcnpn − pn)2 + (bcnpe − pe)2 + (bcnpd − pd)2]}−1 (3.3)
Hn = −temp(bcnpn − pn)2 (3.4)
He = −temp(bcnpe − pe)2 (3.5)
Hd = −temp(bcnpd − pd)2 (3.6)

Once this is done, the variance of the range innovation is computed, and from
here, the Kalman gain is defined as in 1.24. Actually, during the state update, the
Down component is not changed if the primary source chosen is different from the
beacon system. As already discussed, in this project the height of the UAV is given
either by the barometer or by the Lidar, thus the third component of the position
can be neglected.

27

Learning the code languages

3.3 Arduino
Arduino IDE will be used a lot in the following operations. Thus, is important to
evince its main characteristics. Basically, Arduino is an open source electronics
platform based on easy-to-use hardware and software. In fact, it is intend for a
large diversity of clients so that everyone can be able to realize small projects.
However, expert users have the possibility of doing their own code and/or improve
already exiting libraries on the basis of their willingness.

3.3.1 Hardware selection
In the previous chapters were presented both the Arduino and the Jetson Nano
boards. However, up to know, the FIXIT UWB system is implemented with the
Arduino UNO board. As a consequence, it is important to highlight the differences
between the two solutions. Instead of the Arduino, a more general USB could be
used, this leads to:

1. Advantages:

(a) Very cross platform serial protocol;
(b) Exploit Python for flexible functionality and extendability;
(c) Computers (Jetson or Raspberry) can be as powerful as desired;
(d) Serial communication can be implemented in any programming lenguage.

2. Drowbacks:

(a) Arduino is cheap and small, compared to other hardwares.

In addition, it can be said that if the user is more comfortable using C++ as
programming language, it can be better to use Arduino rather than Jetson or similar,
since the latter runs with Python. The choice should be done also considering the
final mission, in fact, the computers listed above have a RAM of at least 2GB,
while Arduino Uno has 2kB. Moreover, Arduino stores just 8-bit instructions in
stead of the 32-bit available with computers.
Nonetheless, since the Arduino board would be directly connected to the Pozyx
module for controlling its features and send data to the flight controller, it is
preferred with respect to the Jetson computer.

28

Learning the code languages

3.3.2 Arduino IDE

The Arduino programming environment can be divided in two parts, which are
called "Setup" and "Loop". As their names may suggest, the first is run just one
time when the code is launched into the hardware, while the second one has the
main instructions which are execute repeatedly. In addition, generally there is an
upper area where global variables are declared, while at the end of the page the
functions are collected. The described way, displayed in figure 3.2, is how have
been written the codes for this projects.

Figure 3.2: The Arduino IDE environment

Arduino has several features that must be listed in order to fully understand the
procedures in the following chapters. First of all, Arduino has a libraries cloud, with
ready-to-use functions. These can be downloaded and included in the code. Besides,
some interesting code is available on platforms such as GitHub; from here is often
possible to obtain zipped libraries for more advanced code. Regarding this fact,
the Pozyx group shares codes and libraries with their clients in order to provide a
simple software implementation and a ready-to-use product. These examples are
listed in the Arduino IDE menu, in section "Examples". These referenced operation
can be called as follows "Pozyx.name_of_the_function".
Another useful Arudino’s tool are the Serial monitor and the Serial plotter. Both
can be used for debugging and displaying results. However, the monitor simply
shows the values of the variables of interest, while the plotter just provides the
time evolution through a visual representation.

29

Learning the code languages

3.3.3 Processing
Often, understanding data scrolling on the serial monitor of the Arduino IDE could
be very difficult because of the fast rate. Unfortunately, the situation does not get
any better even with the serial plotter. In this cases, Processing comes in hand.
Processing is not subjected to Arduino, it is a flexible sketchbook provided by
Processing Foundation, but it can be used to read serial data elaborated in the
Arduino COM port and plot the results. It was used especially for testing and
visualize UWB performances: the master tag was connected to the Arduino and
then to the ground station (which had processing installed), while the slave tag
was the one used for collecting data. The variables were passed to the master tag
and then elaborated. Eventually, the results were available in the serial port, and
use by Processing to realize better graphs.

3.4 Matlab
Even if it isn’t listed in previous chapters, Matlab is a very powerful tool for analysis
of data. It will be used for plotting and data manipulation. More in details, the
logs collected during flight are downloaded and converted into .mat files using
Mission Planner. Whats is returned is read by Matlab as a struct element. Such
objects can be analyzed and compared with simple Matlab script. Eventually, the
log variables list will be modified with some custom adds.

30

Chapter 4

Sensors data implementation

Sensors have been already listed in chapter 2, however, some of them need to
be further discussed. In fact, sensors need to be calibrated, in a similar way as
explained in paragraph 1.3. Moreover, before their implementation on the drone is
important to test their performances.

4.1 Raw Data
Raw data, sometime also called source data, are non-processed information, directly
evaluated by the sensors. These quantities are difficult to understand, and it is
quite complicated to use them directly for processes development. In fact, raw data
need to be converted into physical reasonable quantities. However, this conversion
is not as trivial as it could seems. In order to obtain useful values is important
to understand the contest the raw data are collected from, as a consequence, the
physical data will be extrapolated differently from one sensor and another. Luckily,
in both Ardupilot and Pozyx libraries there are specific sections where conversion
units for each used sensor are listed as global variables. In this way, such data are
accessible from every part of the remaining code, and can be used to obtain useful
data.

31

Sensors data implementation

4.2 Pozyx UWB
The Pozyx tag is mainly used for indoor localization, however, it has some additional
features such as an internal IMU and a magnetometer. Its characteristics are
evaluated in this chapter. The system consists of four anchors, which are displaced
in the corner of a square. The height of the devices is not critical for the copter
positioning. In fact, the Pozyx provider suggests to place the anchor not at the
same level from the ground whenever the user needs a greater accuracy for altitude
estimation. Nonetheless, in this project, altitude is measured with the Lidar and
barometer. However, the measure of the height of the anchors should be as precise
as possible to increase the Pozyx algorithm accuracy. For all the tests in this
project, the anchors are displaced with their ID increasing through an N-path, such
as in figure 4.1.

Figure 4.1: Pozyx’s anchors displacement

In this work, the anchors ID are 0x6805, 0x680C, 0x6823 and 0x683C. This
set-up determines a 2D local reference system which origin is the first anchor
(0x6805). The X and Y axis are respectively the one between anchors 0x6805-
0x680C and 0x6805-0x6823. The distance between the anchors is changed in order
to understand the capabilities of the system. The results of the test are discussed
later but, all changes require just little adaptations in terms of code. This fact
makes the Pozyx system adaptable to different working conditions.

32

Sensors data implementation

4.2.1 UWB implementation on the UAV
It is recommended to mount the tag vertically, however, for convenience, the tag
is connected to the Arduino board, where the positioning algorithm is running,
and both devices are placed at the top of the UAV. The connection between the
Arduino and the autopilot is done via the telemetry port, however, the modality
changes accordingly to the selected board. In the Pixhawk 2.4.8 the plugging is
displayed in figure 4.2. Actually, the wiring is not established between the tag and
the Telem1 port as shown in the figure, but with the Telem2 one. Regarding the
Cube Orange, the Telem1 port is exploited.

Figure 4.2: Autopilot connection to the UNO board

For each sensor the code requires some adaptations. Such changes are done
working on the parameters, which can be modified through Mission Planner. To
exploit the Pozyx tag for indoor localization, this is the set-up:

1. set BCN_TYPE to 1: means use Pozyx as beacon system.

2. set BCN_LATITUDE, BCN_LONGITUDE and BCN_ALT to match the
location of the flight tests (this is done exploiting Google Tools).

3. set BCN_ORIENT_YAW:angle between the true North and the local x-axis.

4. set GPS_TYPE to 0: this disables the GPS for positioning.

5. set ARMING_CHECK to disable GPS pre-arm checks.

6. set SERIAL2_BAUD to 115.

7. set SERIAL2_PROTOCOL to 13.

8. set BRD_SER2_RTSCTS to 0.

33

Sensors data implementation

4.3 Pozyx magnetometer
The Pozyx device, in addition to localization, can compute its own orientation
in the space. In fact, the tag has an on-board 3-axes magnetometer, a 3-axes
accelerometer and a 3-axes gyroscope. These sensors will have an important role
in further solutions, so it is important to treat them accordingly. Among the
three listed sensors, the one which requires the higher level of attention is the
magnetometer. In fact, it must be calibrated. In paragraph 1.3.1 were enunciated
several possible methods to achieve this task; in this case a specific method from
[15] is used. To complete this, the programs MagMaster and MagViewer are needed,
plus some Arduino code and a paper box, as the one in figure 4.3.

Figure 4.3: The paper box used for calibration

The sensor must be placed on top of the paper box. Its surfaces have the reference
system x, y, x according to the orientation of the sensor. This will increase the
accuracy during the following steps.
Before starting, the Arduino code must be written, it would be very easy. The
main point is to call the Pozyx.getRawData to obtain the raw measures from all
the tag’s sensors. From these, only the raw_sensor.magnetic array is printed by
the Serial monitor. At this point, the MagViewer tool is used to observe the behave
of the magnetic fields strength on the 3-axes; this is shown in figure 4.4.

34

Sensors data implementation

Figure 4.4: Not-calibrated magnetometer measurements

Then, MagMaster is opened, the Arduino Serial port is selected, and the x, y, x
magnetic measurements are displayed on the top of the program page (figure
4.5b).The paper box with the magnetometer attached to it, should be positioned
as indicated in figure 4.5a, and after each step, the measurements must be inserted
in the proper space in MagMaster.

(a) Calibration steps (b) MagMaster view

Figure 4.5: Calibration Process

35

Sensors data implementation

When all the above procedure is complete, the transformation matrix and the
bias are computed by MagMaster. The results are displayed at the bottom of figure
4.5b.

Finally, the Arduino code must be upgraded with two more functions:

1. transformation(raw_magnetic_data);

2. vector_length_stabilization().

The first one is used for the correction of the measures, starting from the not
calibrated raw data while the second normalizes the radius of the magnetic sphere.
To be more precise, the first one computes the following operation:Xc

Yc

Zc

 =

M1,1 M1,2 M1,3
M2,1 M2,2 M2,3
M3,1 M3,2 M3,3

Xnc

Ync

Znc

−

Bx

By

Bz

 (4.1)

In equation 4.1 (Xc, Yc, Zc)T and (Xnc, Ync, Znc)T are respectively the calibrated and
not calibrated vectors of magnetic measurements, while the Mi,j and (Bx, By, Bz)T

are the transformation matrix and bias vector from MagMaster.
Eventually, the calibrated results is shown in figure 4.6.

Figure 4.6: Calibrated magnetometer measurements

36

Sensors data implementation

4.4 Lidar vs Barometer
The altitude in the copter can be evaluated in different ways. The main source
generally is the barometer. However, especially indoor, this sensor is not always
reliable. Moreover, it is very noisy, which is not a good feature. As a consequence,
the Lidar is added, this was described in 2.1.5. Especially indoor, this sensor can
work in a range from 1 cm up to 12 meters. However, since the drones of this
project are tested both outdoor and indoor, the filter is fed with the two sensors
together. The final altitude estimation takes into account also the IMU data. The
performances are compared in the images below.

Figure 4.7: Altitude sensors comparison

Figure 4.7 shows in green the barometer measure, the red line is the Lidar
measurement while the blu one is the estimated altitude computed by the EKF.
The main source is the Lidar, in fact, the blue line has a behaviour similar to the
red one, however, its value is corrected each time with the barometer measurement.

37

Sensors data implementation

Figure 4.8: Altitude evaluation

Instead, figure 4.8 represents the desired altitude (red line), which can be
assigned either by an AUTO mission command or by the throttle level stick of the
pilot, compared to the actual altitude estimated by the filter (blue line). In this
case, the desired altitude is established in-flight by the pilot, the UAV behaves
quite well, following the trace.

38

Sensors data implementation

4.5 RM3100 vs HMC5883L
Both Pixhawk 2.4.8 and Cube Orange boards come with internal compasses.
However, these magnetometers cannot provide reliable heading information alone.
As already anticipated, external compasses are added to the UAV, these are the
RM3100 and the HMC5883L. The following pictures (4.9) show more in details
the differences between the available magnetometers. It is very clear how the
internal one is the worst. Moreover, the RM3100 shows a more stable behaviour
and lower amplitude oscillations than the HMC5883L (which is cheaper). These
facts determine why the RM3100 is the chosen one, although, the MC5883L will
be used too in further applications.

Figure 4.9: Magnetometers comparison

39

Chapter 5

First set-up and
performance analysis

5.1 Arduino setup

As explained before, Pozyx team provides an online source of code in order to start
testing their devices. Initially, the system performances were evaluated using the
ReadytoRange function, which computes the distance of the tag to each single
anchor. Then, once the hardware setup was completed, the ReadytoLocalize
function was tested with good results in positioning. However, at the end, the code
running on the Arduino was something provided by ArduPilot developers. Such
algorithm, exploits the same function of ReadytoLocalize. For this study, some
modifications were made. First of all the first lines of the code must match the
actual anchor ID in the correct order. Then, in order to obtain a more reliable
result, the automatic function for the computation of the distances among anchors
was disabled. Instead, the manual configuration was activated, measuring by hand
the perimeter of the local system identified by the anchors. The available code
works sending position information every two seconds. This is done since the
autopilot exploits the distances from the anchors and not the computed position.
Still, in order to improve post flight analysis, the position messages rate between
Arduino and the board is increased up to the maximum available, which is around
90 milliseconds.
The Arduino is connected to the ArduPilot board as explained in paragraph 4.2.1.
In this first part, the Arduino is loaded with the custom code, while the autopilot
is the one latest version of ArduCopter available online. First, the octocopter is
used, but, for the reasons explained before in section 2.2, it is sided by the smaller
quadcopter.

40

First set-up and performance analysis

5.2 Tests and problems analysis

5.2.1 Positioning
The anchor configuration respects the guidelines in paragraph 4.2; the following is
a reconstruction of the reference system using Google Earth. Anchor 1 is 0X6805,
anchor 2 is 0X680C, anchor 3 is 0X6823, anchor 4 is 0X683C.

Figure 5.1: System configuration: each yellow pin represents the relative anchor
position on the map

To start, the drone is displayed on the map at its initial position, then it is moved
by hand by an operator around the local reference system. In Mission Planner the
drone path is visualized and can be compared with the actual one. In figure 5.2,
the UAV follows the perimeter of the anchors with two different paths.

41

First set-up and performance analysis

In figure 5.2a the copter is moved along the perimeter, it can be noticed that in
the top right, there are some disturbances that affect the localization system. The
path is way more clear in figure 5.2b, where the critical area is avoided, passing by
the center of the anchors system.

(a) Path 1 (b) Path 2

Figure 5.2: Localization tests

This previous attempt returns a first problem. It can be noticed that even if the
copter in the reality is placed at the center of the squared anchor system shown in
figure 5.1, its position on the ground station map is shifted to the right. Additional
trials are done, initializing the drone from different points inside the perimeter. In
this way, it is understandable that this shift is related to the position of the UAV
with respect to the first anchor. Image 5.3 shows this dependency.

In figure 5.3a the drone is started under anchor 1, and there are no problems
on the origin location setting. In the case represented by figure 5.3b, there is a
certain shift with respect to the actual position of the drone, that should be near
the waypoint number two.

Just like in image 5.3b, figures 5.3c and 5.3d represent two critical cases where
the UAV is represented on the map far away from its real position. Moreover, in
all the cases the shift error is proportional with respect to the distance from the
origin, and the direction of the virtual movement is the same of the one the drone
would have if it was moving from anchor 1.

42

First set-up and performance analysis

(a) Shift error when near anchor 6805 (b) Shift error when near anchor 680C

(c) Shift error when near anchor 6823 (d) Shift error when near anchor 683C

Figure 5.3: Shift errors

Despite this origin shift, the movements of the copter after the initialization are cor-
rect. The previous problem is not considered in a first moment, since is something
that affects the user interface and the return to launch automatic action rather
than the in-flight performances. As a consequence a couple of flights are tried just
to understand the behavior of the copter. The mission difficulty will increase step
by step. Initially, the UAV has to take off, reach two meters altitude and suddenly
land. This, is more a way to check that the motors work and the communication
between autopilot and ground station is good.

43

First set-up and performance analysis

Then, the drone has to take off, reach two meters of altitude, maintain the position
for a few seconds, and then land. This last mission is repeated several times. Unfor-
tunately, despite the magnetometer calibration, the indoor magnetic disturbances
affect the autopilot and thus, the stability of the flight. This noises are due to
the presence of electromagnetic devices, but their intensity is not uniform around
the room. Thus, in some points of the space, the UAV has no problem, but in
others, the compass variance fed to the EKF is too high, causing the copter to
eventually start a toilet bowling behavior. This error is limited in position holding
mode (such as Loiter and PosHold), but is critical during waypoints missions, as
will be explained later. This is due to the high dynamic requested to the filter. In
addition, it can be noticed in figure 5.4 that during take off, the magnetometer
has a lot of disturbances with respect to its land period. This indicates a certain
dependence on the motors working condition.

Figure 5.4: Motors magnetic disturbance

44

First set-up and performance analysis

5.2.2 Heading
The heading problem of the UAV is further considered. Thus, in this case multiple
tests were done. The overall behaviour can be resumed in three main characteristics.
As expected, outside, no strong magnetic disturbances are present, thus no problems
were registered with the orientation. The observed behavior is that the magnetic
field in three different axes oscillates with a maximum variations of more or less
0.05 Gauss between consecutive peaks if the copter maintains the heading, while
during yaw rotation, a variation of intensity depending on the angle performed is
noticed.
The second trial of tests are organized in a small room, with a cage of 2 meters x 5
meters; in this condition, the magnetometer takes approximately one minute to
stabilize, but with even small movements, the stability of the yaw measurement is
corrupted by the magnetic disturbances. This leads to a vibration behaviour and to
the unstable movement of the drone even in loiter mode. In this room, the magnetic
field oscillates more than the 0.05 Gauss needed for a stable yaw alignment. The
flight gained benefit in the third case scenario, an indoor environment but bigger
with respect to the first one (10 meters squared area) and with less magnetic
disturbances; despite the performance improves rather than the previous case, the
heading continues suffering from motors action.

Actually, the Pozyx provider suggests a minimum distance between the anchors,
also to improve the positioning measurements, thus prefer a bigger operating space
should be the optimal solution. Eventually, different areas will be exploited for the
final flights and tests. The solutions implemented to improve the performance of
the UAV are described in next chapter.

45

Chapter 6

Methodology and
implementation

In paragraph 5.2 the first tests highlighted some problems affecting the UAV
performances. In this chapter are developed the possible solutions to improve the
drone behavior.

6.1 Origin drift problem
One of the difficulties that the tests presented is the origin shift of the drone
during set-up. This condition is shown in 5.3. More in details, the UWB tag
needs more or less 30-40 seconds to setting up and start collecting measurements,
nonetheless, during this amount of time the drone filter is working and tries to
localize itself in the space. Since neither GPS nor UWB is available, the copter
gives priority to a dead reckoning system for positioning, causing the initial origin
drift. To solve this error, it is necessary to analyse the ArduPilot code. The
reference libraries are the ones concerning the beacons implementation and the
fusion of UWB measurements into the EKF. These were described in paragrph
3.2.2. Some modifications are tried, first acting on the AP_Beacon library, then on
the AP_NavEKF3_RngBcnFusion.cpp method. Unfortunately, nothing of these
solved the problem. Thus, several other attempts are made, like changing the origin
offset manually, or imposing the global coordinates computed exploiting Google
Earth programs. Still, none of these worked. Another attempt was made changing
the reference for the AHRS of ArduPilot. This orientation system is based on the
Extended Kalman Filter. However, there are two versions of this filter. The newest,
is the so called EKF3, which is the stable one for developers. Although this filter
is the most updated, it has the mentioned problem for what UWB positioning is
concerned. Thus, the previous version, EKF2, is exploited.

46

Methodology and implementation

The results are actually quite good.

(a) Situation near anchor 6805 (b) Situation near anchor 680C

(c) Situation near anchor 6823 (d) Situation near the center

Figure 6.1: Shift errors solved

47

Methodology and implementation

Compared to images 5.3, the new conditions in figures 6.1 look way better. This
should help the drone performance during the mission, plus it is a critical aspect
for monitoring condition; indeed the human operator now has a clear idea of the
actual position of the UAV on the map.
Nonetheless, downgrading from the EKF3 to the EKF2 is not a light operation.
The first one has some improvements in multiple aspects. Moreover, it can work
with many additional sensors and functionalities that EKF2 cannot support. This
aspects are not relevant for this project, however, it could be interesting to solve
the drift directly on the latest filter version, looking at the difference with the
EKF2.

Eventually, the EKF3 turns out to have an additional feature compared to EKF2.
This is an automatic and repeated origin computation done by the filter. Actually,
there is a function in the AP_NavEKF3_core.cpp file called moveEKFOrigin,
which is used to move the EKF origin to the current position at 1Hz, while the
public origin doesn’t move. This function is called as soon as the GPS measurements
are available, and it is needed to keep distortions due to spherical shape of the
Earth to a minimum. Anyway, in this project GPS is not used, so the EKF origin
should be defined manually via GCS. Since the origin marker is not easy to establish
manually, the moveEKFOrigin function is deleted. In this way, the drift problem
is solved, and the EKF3 is maintained rather than EKF2, with all the benefits of
the new version.

6.2 Heading problem

The second documented difficulty during the first tests is the one related to the
magnetometer. The presence in indoor environments of devices such as monitors,
PCs, other robots and special machines, in addition to the walls, is very critical for
the compass behavior. Moreover, the UAV is known to be highly affected by the
on-board electronics; in fact, the magnetometer should be placed somewhere far
from the motors, ESCs and battery cables. Mission Planner presents a technique
for the computation of magnetic interference due to the current flowing in the
propulsion devices. This interference depends, as already said, by the proximity
of the magnetometer to electromagnetic sources and the type of this elements. In
fact, the motors of the smaller quadcopter has an higher KV than the ones of the
octocopter; this means that the amount of current flowing during throttle is higher
in the first one, causing a bit more interference for singular motor. In order to try
to improve the heading computation, different solutions are exploited.

48

Methodology and implementation

6.2.1 Magnetic Calibration
The first and more obvious thing to do is to calibrate the magnetometer each time
the flying space is changed. This is achieved using the MP calibration method. The
algorithm fixes autonomously the magnetic offsets, however, the order of relaxation
of these elements can vary, making the calibration more or less strict. Furthermore,
MP has an advanced set-up function called "CompassMot" which determines the
amount of magnetic interference affecting the UAV referring to the current drawn
by the system (linear dependence). At the end of the calibration, new offset are
applied to the filter, in order to account as much as possible for the interference.

6.2.2 Double Tag Heading
As noticed during the tests, even if a magnetometer is calibrated it is not sufficient
for providing reliable heading in indoor environments. Thus, the idea is to exploit
the UWB to achieve orientation. More in detail, the reference is the virtual axis
starting from the anchors origin and pointing to anchor 0x6823. The second axis,
is the rotating one, and it is identified as the virtual line connecting the master tag
0x6833 with the slave tag 0x6815. These tags are placed on the drone, with a fixed
distance of 16cm. The heading is the angle between the reference axis and the one
related to the tags. Obviously, with this method the orientation is not subjected
anymore to the magnetic disturbances characterizing the indoor environment. On
the other hand it is affected by the precision of the UWB positioning and ranging.
As noticed, the original precision in positioning is about 10cm, which is already a
critical value for the final results. This because the Double Tag Heading (DTH)
algorithm is based on the distances between the two tags. As a consequence, if the
tags were at at least 150cm, no problems would occur; unfortunately, both devices
must lay on the UAV, so the maximum distance could be 45cm in the octocopter,
causing some problems on the measures.

Initially, the DTH algorithm consisted in computing the local x, y coordinates of
each tag using the Pozyx.doPositioning and Pozyx.doRemotePositioning func-
tions; the heading angle ψ was obtained from:

ψ = arccos
5
y1 − y2

d

6
(6.1)

In 6.1 yi are the y-coordinates of the master tag (y1) and slave (y2), while d is the
manually measured distance between the tags. In this way, ψ was always defined
between [0,180]Deg. To solve this error, the final yaw was declared as ψ in 6.1 if
x1 <= x2, else the yaw was 360 − ψ. As commented in the previously, this simple
code didn’t not work when the two tags were placed quite near to each other.
This because of the measurement error: often the algorithm did not even return a
heading angle since in the arcosine argument in 6.1 the measured numerator was

49

Methodology and implementation

bigger than the denominator.
To solve this problem, the first approach required to use the distance between tags
computed by Pozyx functions doRanging and doRemoteRangin instead of the one
measured manually. Unfortunately, this didn’t lead to a better result.
Another solution tries to automatically correct the difference between measured
spatial coordinates, so that the algorithm returns always a heading. This is
implemented considering the first tag position, computed by the Pozyx algorithms.
Such position is intended as the center of a circumference of radius the actual
manually measured distance between the tags. At this point, the second tag
position is obtained through Pozyx methods, but this point, is projected to the
first tag circumference. In this way, the arcosine’s argument problem was solved.
However, the algorithm didn’t behave very correctly, this always because of the
precision of the position measurements. In fact, even if the second tag position
is projected to the right radial distance from the master tag, if it is too shifted,
the heading angle will results up to 40 degrees different from the real one. These
results, clear up the fact that this solution cannot be the main tool for heading
estimation; something more powerful is needed.

6.2.3 Pozyx AHRS
The attitude and heading reference system has been introduced in section 1.1. This
system is implemented to calculate the orientation of the drone in the space. An
AHRS is already present in ArduPilot firmware, however, because of the problems
concerning the heading, a new AHRS, running on the Arduino board and exploiting
the Pozyx tag information, is implemented and tested. Generally, such systems
are realized using very complex filters like Kalman or Extended Kalman ones,
but in this case, from the moment the final algorithm will be launched through
an Arduino UNO board, a custom Complementary Filter is preferred. This type
of filters has been explained in paragraph 1.2.3; briefly resembling that content,
complementary filters combine low pass filters and high pass filters. In fact, the first
are used to operates on high frequency signals (such as vibrating accelerometers)
while the second are used to cut low frequency signals (such as gyroscopes drfits).
The following AHRS is made of three parts:

1. Roll and Pitch calculation;

2. Yaw calculation;

3. Quaternion filter.

The first two parts are used to obtain a first filtering action on Euler angles. The
latter, on the other hand, is used to obtain the orientation of the drone by means of

50

Methodology and implementation

quaternions, apllying an additional filter action. The input data for this program
are the raw_sensor_data collected by the Pozyx tag sensors.

Roll and Pitch

For the moment, the main interest is to create a good AHRS, thus the body frame
will be simply considered as the frame fixed on the Pozyx tag, without no further
translations. Thus, the Roll angle is defined as one describing the rotation around
the UWB tag x-axis, while the Pitch angle is the one related to the rotations around
the tag y-axis. These angles are obtained using the ComputeRollPitch function, by
passing as parameters the accelerometer and gyroscope raw data. For both Roll
and Pitch, a suited complementary filter is realized. Roll (θ) can be obtained from
the accelerations on the y and z axes or from integrating angular velocity around x
axis:

θaccelerometer = arctan 2(ay, az)
3180
π

4
(6.2)

θgyroscope = θgyroscope +
A

−gx

16.0f

BA
dt

1000

B
(6.3)

In previous equations, ay, az, gx where accelerometer and gyroscope raw data,
while dt is the time between consecutive operations defined in Arduino as dt =
millis() − last_millis where millis() is the actual time instant, last_millis is the
previous time instant. 16.0f is one the conversion factor discussed in paragraph
4.1.
The final Roll angle is obtained by means of the filter action in equation 6.4 , which
is characterized by the parameter αroll. The higher is this parameter, more the
final Roll will be computed based on the gyroscope instead of the accelerometer.

θ = αroll ∗ θgyroscope + (1 − αroll) ∗ θaccelerometer (6.4)
The behaviour is tested using the serial plotter of Arduino.
For what Pitch (ϕ) is concerned, a similar procedure to the one of the Roll will
be followed. First, the accelerometer contribution is considered, accounting for all
three axes contributions:

ϕaccelerometer = arctan 2(ax,
ñ
a2

y + a2
z)
3180
π

4
(6.5)

While the computation with angular velocities is:

ϕgyroscope = ϕgyroscope +
A

−gy

16.0f

BA
dt

1000

B
(6.6)

Eventually, the Pitch filtered is obtained using a specific parameter called αpitch for
the weighting of the two inertial contributions:

ϕ = αpitchϕgyroscope + (1 − αpitch)ϕaccelerometer (6.7)

51

Methodology and implementation

Yaw

Yaw angle (ψ), is obtained from magnetometer measurements on the three axes
combined with the already computed roll and pitch angles. Raw magnetic data
are first corrected with the biases obtained from the calibration process in section
4.3, then converted using the apposite constants listed in 4.1 and finally used as
described by the following equations.

ψmagnetometer = arctan 2(−by, bx)
3180
π

4
(6.8)

In details:

bx = mx cos(θ) +my sin(θ) sin(ϕ) +mz sin(θ) cos(ϕ)
by = my cos(ϕ) −mz sin(ϕ)
bz = −mx sin(theta) +my cos(θ) sin(ϕ) +mz cos(θ) cos(ϕ)

(6.9)

However, Yaw measurements are improved considering also the gyroscope data.
This is accomplished with a new complementary filter described in 6.10.

ϕ = αyawψgyroscope + (1 − αyaw)ψmagnetometer (6.10)

ψgyroscope = ψgyroscope +
A

−gz

16.0f

BA
dt

1000

B
(6.11)

Once completed the previous implementations, the filters must be tuned correctly,
this is done with a trial and error evaluation, changing the αroll, αpitch, αyaw param-
eters.

Quaternion filter

Euler angles have some limits that can cause errors in terms of precision. Thus,
the orientation of a robot is often provided in terms of quaternions. In this case, a
more complex analysis is done starting from Euler angles obtained as described in
the previous paragraphs and exploiting an additional complementary filter based
on αquaternion parameter. This filter behaves similarly to the one in 6.10 but instead
of the Yaw, the action has the quaternion as subject. The first component of the
attitude is given by the dynamic quaternion qω computed with the gyroscope added
to the previous orientation qt−1 = [qw, qx, qy, qz]T , in formulas:

qω =

1 −dt

2 ωx −dt
2 ωy −dt

2 ωz
dt
2 ωx 1 dt

2 ωy −dt
2 ωz

dt
2 ωx −dt

2 ωy 1 dt
2 ωz

dt
2 ωx

dt
2 ωy −dt

2 ωz 1

qw

qx

qy

qz

 (6.12)

52

Methodology and implementation

Then, there is the computation of the static quaternion, from the Euler angles
computed before:

qam =

cos(ϕ) cos(θ) cos(ψ) + sin(ϕ) sin(θ) sin(ψ)
sin(ϕ) cos(θ) cos(ψ) − cos(ϕ) sin(θ) sin(ψ)
cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) cos(θ) sin(ψ)
cos(ϕ) cos(θ) sin(ψ) − sin(ϕ) sin(θ) cos(ψ)

 (6.13)

Finally, the orientation is given by:

qt = αquaternionqω + (1 − αquaternion)qam (6.14)

At the end, unfortunately, this Pozyx AHRS system had the same problem of
the one of the autopilot. In fact, due to magnetic disturbances indoor it is even
worst than the ArduPilot. Thus, other solutions should be considered.

6.2.4 Lane Switching

The possibility to keep the EKF3 rather than EKF2 brings some advantages in
terms of performances. Besides, the EKF3 instantiates multiple cores of the filter
called "lanes". The primary one is used for the state estimate, the rest remains in
the background and ready for switching to. The main purpose is to have multiple
sensors working in separate ways but on the same subject, so that the filter can
select each time the one with the best performance. However, the number of
possible lanes is equal to the number of available IMUs, this means that such
feature can be exploited just on the Cube Orange autopilot and not on the Pixhawk
one. The lane switch is implemented so that each IMU refers to a different external
magnetometer. This should partially solve the heading problem from the moment
that the lane change resets the compass covariance error.
Figure 6.2 shows that when the difference between the magnetic strength computed
by the two magnetometers is greater than a threshold value (in this case fixed to 0.1
Gauss) the autopilot switches the main lane. When the primary lane is stabilized
again, it is restored. Nevertheless, this solution is not as good as it should be.
This implementation depends on several aspects. Using a relatively low threshold
(such as in this case), makes the filter more dynamic in avoiding the magnetic
interference, still, this is risky if the second IMU has a low quality magnetometer.
In this project configuration, the two sensors have different characteristics, thus
switching from the RM3100 and the HMC833L is not always safe. In order to
improve this fact, two identical and well performing sensors should be used together
in the future.

53

Methodology and implementation

Figure 6.2: Lane switching between two autopilot cores

6.2.5 Filter Customization
Eventually, the magnetometer interference can be handle in a more custom way.
The AHRS of the autopilot is provided using the EKF. In paragraph 1.2.1 this
filter is briefly explained in its fundamentals. About the process and measurement
noises (equation 1.13). The measurement noise has covariance R, and is something
that can be easily determined depending on the sensor. The process noise has
covariance Q, this matrix is tricky to estimate. The best possibility is to realize an
algorithm that updates the Q matrix instant by instant. This is not available yet,
so the covariance is set in such a way the magnetic distortion in the test room can
be reduced. In ArduPilot each element of this matrix can be modified using MP.
In particular, the interested parameters for heading are:

1. MAGB_P_NSE: body magnetic process noise;

2. MAGE_P_NSE: Earth magnetic process noise

3. MAG_M_NSE: magnetic measurement noise;

4. BCN_M_NSE: beacons measurement noise.

As already said, the EKF combines prediction and measurement. When the
prediction is weak (very uncertain, high covariance), the result of the combination

54

Methodology and implementation

is closer to the measurement. On the other hand, when the prediction is very good
(small covariance), the combination is closer to this rather than measurements. First
of all, the measurement noise matrix is adapt to the indoor use, this is mainly done
analyzing the behaviour of the sensor and with a trial and error method. Referring
to paragraph 5.2.2, it was noticed that the indoor compass measurements has
wider variations than outdoor, so the MAG_M_NSE is increased as consequence.
Then, the process noise is modified so that it can follow the vehicle dynamics. The
MAG_P_NSE is decreased. In fact, the copter will fly slowly for two reasons:
the first one is for safety, since there could be other people in the room. The
second is that the UAV has shown the greatest problem during fast and rapid
movements, thus instead of making the filter more reactive, it is decided to make
is more accurate but slower.
Eventually, the filter can compute heading in two different ways. Generally, for
outdoor mission, the UAV uses the yaw computed from the quaternions for a first
evaluation and, once the take-off phase is completed, it switches to a three axes
magnetometer innovation. Although, it is well known that indoor the magnetic
disturbances are dangerous, thus this last method is not reliable. For sure, the
second one is better in terms of performances for a normal use, but the critical
conditions imposed by the magnetic interference forced the implementation of the
first way for the entire mission. The two algorithms are evaluated, and the practice
underlines that the heading computed from the yaw innovation is better and more
stable than the one obtained with the magnetic field strength innovations.

55

Methodology and implementation

6.3 Final set up and experimental tests
Eventually, each UAV is flight in both the CIM4.0 Additive and Digital laboratories.
The Additive space consists in an 8x8 meters perimeter. The Digital one is a 4x4
meters area, with more electrical devices, thus with a higher magnetic disturbance.
In these tests, the custom version of the EKF3 is used to provide both positioning
and attitude. Both RM3100 and HMC8553L compasses are used. The final
parameters for the copters in terms of EKF’s noise tuning are:

• EK3_BCN_M_NSE = 1.3

• EK3_GYRO_P_NSE = 0.03

• EK3_MAG_M_NSE = 0.15

• EK3_MAGB_P_NSE = 0.00001

• EK3_MAGE_P_NSE = 0.0001

• EK3_YAW_M_NSE = 0.6

(a) Octocopter (b) Quadcopter

Figure 6.3: The two final UAVs

56

Methodology and implementation

6.3.1 Additive mission - Quadcopter

Figure 6.4: Path desired (red) and achieved (blue)

Figure 6.4 resumes the behaviour of the UAV during its autonomous mission.
The copter has to follow a few waypoints defined by the operator on the map of
the GCS. Such waypoints can be taken either with Google Earth or manually by
the human pilot; this means the safety operator can fly the UAV and save the
desired positions to be reached during the next autonomous mission, then such
data are uploaded into the flight controller to be used. Figures 6.5 and 6.6 show
the error between the target position and the estimated one computed by the EKF.
The innovation is reported in a clearer way in 6.7 and 6.8. The mean error is less
than 5cm, which is actually quite good. On the other hand, figures 6.9 and 6.10
represent the improvement between the starting position computed by the Pozyx
and the one estimated by the EKF.

57

Methodology and implementation

Figure 6.5: North-axis positioning difference

Figure 6.6: East-axis positioning difference

58

Methodology and implementation

Figure 6.7: North-axis positioning error

Figure 6.8: East-axis positioning error

59

Methodology and implementation

Figure 6.9: North-axis difference between Pozyx’s estimate and EKF’s one

Figure 6.10: East-axis difference between Pozyx’s estimate and EKF’s one

60

Methodology and implementation

It can be noticed how the estimate is more linear, which obviously increase the
precision of the measure. It would be interesting to calculate the error between the
estimated position and the real one in the space; however, this would be possible
exploiting advanced systems such as the camera one, not available for this project.

During the flight the Yaw is stable, the UAV is programmed so that it points
toward the next waypoint of the mission. The innovation between the target and
estimate yaw, showed in 6.11, is less than 15deg. It is important to remember
that the lower is the innovation, the better is the flight behaviour. Moreover,
the magnetometer test ratio (figure 6.12), that is a parameter of the filter that
describes the quality of the innovation variance, is lower than 0.3, which means the
measurements coming from the sensors are qualitative good.

61

Methodology and implementation

Figure 6.11: Yaw innovations

Figure 6.12: Yaw EKF’s test-ratio

62

Methodology and implementation

6.3.2 Digital mission - Quadcopter
A new flight, similar to the previous one is attempted. Its path is represented in
figure 6.13.

Figure 6.13: Path desired (red) and achieved (blue)

The same considerations done during the Additive flight are repeated in this case.
First of all, the difference between the target position of the navigation controller
and the estimated one by the filter are compared in figures 6.14 and 6.15.

Although, the UAV has, from a qualitative point of view, similar performances
to the one had during the Additive mission. Figures 6.16 and 6.17 analyse the
error between the target position and the filter estimate. Compared to images 6.7
and 6.8, the mean error now is around 10cm rather than 5cm. This shows how the
environmental conditions in the Digital labs are more critical. Despite this fact,
the copter was still able to complete its flight. For what the heading is concerned,
the yaw innovations are always less than 15deg, which is an acceptable error. In
addition, the yaw test-ratio of the filter is shown in figure 6.19, and is lower and
0.3, which is the classic threshold which indicates good sensor lectures.

63

Methodology and implementation

Figure 6.14: North-axis positioning difference

Figure 6.15: East-axis positioning difference

64

Methodology and implementation

Figure 6.16: North-axis positioning error

Figure 6.17: East-axis positioning error

65

Methodology and implementation

Figure 6.18: Yaw innovations

Figure 6.19: Yaw EKF’s test-ratio

66

Methodology and implementation

6.3.3 Additive mission - Octocopter
Finally, also the octocopter is tested. Because of its dimensions, it is just used
in the Additive spaces. Just like previous missions, it is tested both in position
hold mode and waypoints flight. This UAV has three IMUs, as a consequence, the
filter’s innovations and test ratios are three: the one of the main core, and the two
running in the background. In this case, referring to figures 6.25 and 6.26, it is
possible to notice that the error between the target position and the estimated one
have very different mean values compared to the previous missions. This could
be connected to the heading problem that the octocopter faces during the first
phase of the mission. In fact, the UAV is configured with the compass calibration
accounting for the motor interference, still it has a problem during the takeoff. In
the first thirty seconds, the octocopter should have reached the desired altitude
and keep the position for ten seconds. However, in figure 6.20 the first part of the
mission has an undesired movement toward North.

Figure 6.20: Path desired (black) and achieved (red)

67

Methodology and implementation

This can be seen better in the graphical representations 6.23 and 6.24: in the
time interval between 140 and 170 seconds there should have been an horizontal
line (such as the ones at 180 and 210 seconds). In particular, observing the East
position, there are rapid variations rather than the more uniform characterizing
the North position; looking at 6.21 this is caused by the high innovations in terms
of Yaw. Everything is confirmed by the message sent by the GCS: "EKF3 IMU
MAG ground mag anomaly, yaw re-aligned", which means that during the take off,
the magnetic variation affects the yaw, but this change is not felt neither by the
gyroscope nor by the accelerometer, thus the heading should be re-aligned between
the two sensors. Despite this fact, that causes the UAV to drift of about half a meter
from the desired position, once the copter reaches the right altitude, it stabilizes
and the next part of the mission is accomplished without any problems. Anyway,
the difficulties affecting the heading measures are noticed also since sometimes the
test-ratio overcomes the 0.3 standard value in 6.22 and the innovations are wider
in 6.21 rather than in the previous flights.

68

Methodology and implementation

Figure 6.21: Yaw innovations

Figure 6.22: Yaw EKF’s test-ratio

69

Methodology and implementation

Figure 6.23: North-axis positioning difference

Figure 6.24: East-axis positioning difference

70

Methodology and implementation

Figure 6.25: North-axis positioning error

Figure 6.26: East-axis positioning error

71

Chapter 7

Conclusions

Autonomous robots and vehicles represent the future. Among all, drones have
versatile characteristics which make them perfectly fit for many different operations.
CIM4.0 wants to investigate the potential of UAV for autonomous flights in indus-
trial environments. The final aim is the realization of a system able to explore the
surroundings and which can monitor the space autonomously. The thesis required
the realization of a prototype for tests: both a quadcopter and an octocopter are
used. Different indoor localization technologies are available, however, Ultra Wide
Band (UWB) represents a good trade off between costs and accuracy. In fact,
it is relatively cheap compared to vision systems and the Pozyx version offers a
10cm accuracy in positioning. The x,y positions of the UAV are expressed as two
elements of the system state vector. These are estimated exploiting an Extended
Kalman Filter, which is fed with the ranges between the master tag and each
anchor. At the end, the estimated accuracy of the position is lowered from 10cm to
5cm with the quadcopter. A major problem during autonomous flight indoor is the
toilet bowling behavior (the UAV starts to follow circular trajectories of increasing
diameter) caused by magnetic disturbances due to walls and to the presence of
electrical devices (such as computers, monitors, other robots ecc.). In order to avoid
this problem a good magnetometer calibration is needed; however, the real solution
consists on the perfect tuning of the EKF. More in details, the measurements of
the compass are not reliable, thus the filter gives priority to the system model
estimation. In other words, the Kalman Gain of the filter is lowered, and this
is done increasing the measurement noise covariance and decreasing the process
noise covariance. While the small quadcopter flies quite good depending on the
amount of disturbances present in the room, the octocopter still presents a problem
during the take off. In fact, the motor interference, added to the environment
one, causes first a discrepancy between inertial and magnetic sources, and thus,
a certain drift of the UAV from the starting desired position. This fact could
be solved adopting a more custom and well-designed frame, in order to reduce

72

Conclusions

the negative influence of the motors and battery on the sensors during take off.
Eventually, the final performances of the UAVs are good (especially considering that
these are prototypes mounted without a well-fitting design), but could be improved
in different ways. First, the process noise covariance matrix, can be established
continuously each instant; this should improve the filter estimation during more
dynamic maneuvers. Furthermore, the drones, in particular the quadcopter, don’t
have anymore too dangerous problems with the magnetometer. Although, the
heading can be provided also using cameras. This solution removes completely the
possibility of toilet bowling, but is more expensive. In addition, cameras enable the
implementation of dynamic obstacle avoidance algorithms. At the end, for what
the localization method is concerned, UWB has interesting features, but it cannot
be used for exploration, since this system relies on the anchors. These must be
already placed before the flight. Thus, the UWB can be exploited for industrial
uses, but the situation gets more tricky in unknowkn environments. In addition, if
the system is set in a human-dangerous space, for both UWB and non-onboard
cameras (like VICON’s motion capture), maintenance is more complex. To avoid
this difficulty, other solutions such as Lidars can be exploited.

73

Bibliography

[1] Xuebing Yuan, Shuai Yu, Shengzhi Zhang, Guoping Wang, and Sheng Liu.
«Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading
Estimation Using Wearable Multi-Sensor System». In: Sensors 15.5 (2015),
pp. 10872–10890. issn: 1424-8220. doi: 10.3390/s150510872. url: https:
//www.mdpi.com/1424-8220/15/5/10872 (cit. on p. 6).

[2] Mauricio A. Caceres, Francesco Sottile, and Maurizio A. Spirito. «Adaptive
Location Tracking by Kalman Filter in Wireless Sensor Networks». In: 2009
IEEE International Conference on Wireless and Mobile Computing, Network-
ing and Communications. 2009, pp. 123–128. doi: 10.1109/WiMob.2009.30
(cit. on p. 7).

[3] Amjed Al-Fahoum and Momtaz Abadir. «Design of a Modified Madgwick
Filter for Quaternion-Based Orientation Estimation Using AHRS». In: 10
(Oct. 2018), pp. 174–186. doi: 10.17706/IJCEE.2018.10.3.174-186 (cit. on
pp. 8–10).

[4] Sebastian O. H. Madgwick, Andrew J. L. Harrison, and Ravi Vaidyanathan.
«Estimation of IMU and MARG orientation using a gradient descent algo-
rithm». In: 2011 IEEE International Conference on Rehabilitation Robotics.
2011, pp. 1–7. doi: 10.1109/ICORR.2011.5975346 (cit. on p. 8).

[5] Jin Wu, Zebo Zhou, Hassen Fourati, R. Li, and Ming Liu. «Generalized
Linear Quaternion Complementary Filter for Attitude Estimation from Multi-
Sensor Observations: An Optimization Approach». In: IEEE Transactions
on Automation Science and Engineering 16 (July 2019), pp. 1330–1343. doi:
10.1109/TASE.2018.2888908 (cit. on p. 8).

[6] Arif Tanju Erdem and Ali Özer Ercan. «Fusing Inertial Sensor Data in an
Extended Kalman Filter for 3D Camera Tracking». In: IEEE Transactions on
Image Processing 24.2 (2015), pp. 538–548. doi: 10.1109/TIP.2014.2380176
(cit. on p. 8).

74

https://doi.org/10.3390/s150510872
https://www.mdpi.com/1424-8220/15/5/10872
https://www.mdpi.com/1424-8220/15/5/10872
https://doi.org/10.1109/WiMob.2009.30
https://doi.org/10.17706/IJCEE.2018.10.3.174-186
https://doi.org/10.1109/ICORR.2011.5975346
https://doi.org/10.1109/TASE.2018.2888908
https://doi.org/10.1109/TIP.2014.2380176

BIBLIOGRAPHY

[7] Janis Tiemann, Andrew Ramsey, and Christian Wietfeld. «Enhanced UAV
Indoor Navigation through SLAM-Augmented UWB Localization». In: 2018
IEEE International Conference on Communications Workshops (ICC Work-
shops). 2018, pp. 1–6. doi: 10.1109/ICCW.2018.8403539 (cit. on p. 9).

[8] Mushfiqul Alam and Jan Rohac. «Adaptive Data Filtering of Inertial Sensors
with Variable Bandwidth». In: Sensors 15.2 (2015), pp. 3282–3298. issn:
1424-8220. doi: 10.3390/s150203282. url: https://www.mdpi.com/1424-
8220/15/2/3282 (cit. on p. 9).

[9] Yuanxin Wu and Shitu Luo. «On Misalignment Between Magnetometer and
Inertial Sensors». In: IEEE Sensors Journal 16 (Aug. 2016), pp. 6288–97.
doi: 10.1109/JSEN.2016.2582751 (cit. on p. 10).

[10] Konstantinos Papafotis and Paul P. Sotiriadis. «Accelerometer and Mag-
netometer Joint Calibration and Axes Alignment». In: Technologies 8.1
(2020). issn: 2227-7080. doi: 10.3390/technologies8010011. url: https:
//www.mdpi.com/2227-7080/8/1/11 (cit. on p. 10).

[11] D. A. Turner, I.J. Anderson, J.C. Mason, and M. G. Cox. An Algorithm for
Fitting an Ellipsoid to Data. 1999 (cit. on p. 10).

[12] Beiya Yang, Erfu Yang, and Leijian Yu. «Vision and UWB-Based Anchor
Self-Localisation System for UAV in GPS-Denied Environment». In: Journal
of Physics: Conference Series 1922.1 (May 2021), p. 012001. doi: 10.1088/
1742- 6596/1922/1/012001. url: https://doi.org/10.1088/1742-
6596/1922/1/012001 (cit. on p. 11).

[13] Bekir Bostanci, Sercan Tekkok, Emre Soyunmez, Pinar Oguz-Ekim, and
Faezeh Yeganli. «The LiDAR and UWB based Source Localization and
Initialization Algorithms for Autonomous Robotic Systems». In: 2019 11th
International Conference on Electrical and Electronics Engineering (ELECO).
2019, pp. 900–904. doi: 10.23919/ELECO47770.2019.8990648 (cit. on p. 11).

[14] A. Salib, A. Moussa, M. Moussa, and N. El-Sheimy. «Visual Heading Estima-
tion for UAVs in Indoor Environments». In: 2020 International Conference on
Communications, Signal Processing, and their Applications (ICCSPA). 2021,
pp. 1–5. doi: 10.1109/ICCSPA49915.2021.9385709 (cit. on p. 11).

[15] YuriMat. «Easy Hard and Soft Iron Magnetometer Calibration». In: (). web-
site: https://www.instructables.com/Easy-hard-and-soft-iron-magnetometer-
calibration/ (cit. on p. 34).

75

https://doi.org/10.1109/ICCW.2018.8403539
https://doi.org/10.3390/s150203282
https://www.mdpi.com/1424-8220/15/2/3282
https://www.mdpi.com/1424-8220/15/2/3282
https://doi.org/10.1109/JSEN.2016.2582751
https://doi.org/10.3390/technologies8010011
https://www.mdpi.com/2227-7080/8/1/11
https://www.mdpi.com/2227-7080/8/1/11
https://doi.org/10.1088/1742-6596/1922/1/012001
https://doi.org/10.1088/1742-6596/1922/1/012001
https://doi.org/10.1088/1742-6596/1922/1/012001
https://doi.org/10.1088/1742-6596/1922/1/012001
https://doi.org/10.23919/ELECO47770.2019.8990648
https://doi.org/10.1109/ICCSPA49915.2021.9385709

	List of Figures
	Acronyms
	Introduction and state of the art
	Localization problem generalities
	Filtering techniques
	Kalman Filters
	Particle Filter
	Complementary Filters
	Simultaneous Localization and Mapping (SLAM)

	Pre-processing operations
	Sensor calibration

	Flight configurations
	Outdoor flight
	Indoor flight

	Autopilot

	Hardware description
	Sensor list
	Intel RealSense d435i
	Inertial Measurement Unit
	Magnetometer
	Global Positioning System
	Rangefinders
	Ultrasonic Sensor
	Optical Flow sensor
	Additional Hardware

	Drone configuration
	Autopilot boards

	Learning the code languages
	ArduPilot
	Structure of the code
	High level
	Low level

	Arduino
	Hardware selection
	Arduino IDE
	Processing

	Matlab

	Sensors data implementation
	Raw Data
	Pozyx UWB
	UWB implementation on the UAV

	Pozyx magnetometer
	Lidar vs Barometer
	RM3100 vs HMC5883L

	First set-up and performance analysis
	Arduino setup
	Tests and problems analysis
	Positioning
	Heading

	Methodology and implementation
	Origin drift problem
	Heading problem
	Magnetic Calibration
	Double Tag Heading
	Pozyx AHRS
	Lane Switching
	Filter Customization

	Final set up and experimental tests
	Additive mission - Quadcopter
	Digital mission - Quadcopter
	Additive mission - Octocopter

	Conclusions
	Bibliography

