

Politecnico	di	Torino	
	

Master	of	Science	in	ICT	for	Smart	Societies	
Academic	Year	2021/2022	

December	2022	

	
	
Reinforcement	Learning	for	the	
scheduling	of	EV	charging	systems	

in	a	Smart	Grid	context	
	

	
	
	
	

Supervisors:	
	
Prof.	Michela	Meo	
Prof.	Daniela	Renga	

	 Candidate:	
	
Felipe	Spoturno	Bareño	

	

Abstract

In the last decades global warming has aroused increasing attention as new tem-
perature records are being registered worldwide and new violent and unpredictable
meteorological events occur. Italy has just registered the second hottest summer in
the last 200 years and di↵erent countries have registered the hottest temperatures
ever. Climatologists agree that these temperatures are five times more probable due to
climate change and they are caused by the increasing amount of CO2 and other green-
house e↵ect gases released on the atmosphere due to human activity. Organizations at
national and international level are constantly studying and monitoring the production
of greenhouse e↵ect gases and for both Europe and the USA it emerges that in the last
years the domestic transportation sector is responsible for about 22-27% of emissions,
and that the energy production sector is responsible for about 25% of emissions.

If combined, di↵erent enabling technologies that has been developed in the last
decades can give an enormous contribution to the reduction of emissions produced by
domestic transportation. These technologies include: the improvement of the qual-
ity and capacity of electric batteries and their use in electric vehicles, the increased
e�ciency and cost reduction of photo-voltaic panels for local energy production, the
improvement of ICT and electrical infrastructure for the operation of Smart Grids, and
the development of new computational algorithms able to control complex systems un-
der uncertainty in a reasonable time.

This work aims at studying di↵erent algorithms for scheduling the recharge of bat-
teries in a Battery Swapping Station (BSS) which are stations in which electric vehicles
drop their empty battery, and pick a fully charged one to use. These algorithms take
into account that the station may be provided a small photo-voltaic plant for local
energy production, and that it may be embedded in a Smart Grid in which the cost of
electricity varies during the day. The aim of the control algorithm is to reduce as much
as possible both the electricity consumption from the grid, and the number of cars that
cannot be served due to the lack of charged batteries in the station considering that
there is a natural trade-o↵ between these two performance indicators.

The proposed strategy, based on Reinforcement Learning techniques, introduces
improvements on all performance indicators with respect to the previously proposed
Heuristic approach. In particular, at approximately the same level of electricity costs,
this algorithm is able to reduce car losses by about 20%, to reduce the cost per service
approximately up to 5%, and provides the possibility to easily change the operating
point through a single hyper-parameter that weights the trade-o↵ between costs and
losses.

1

Contents

I Introduction and context 5

1 Environmental, economical, political and technological context 5
1.1 European green deal . 6
1.2 Enabling technologies . 7

1.2.1 Electric Vehicles . 7
1.2.2 Smart Grids . 8
1.2.3 Reinforcement Learning . 9

2 Battery Swapping Station (BSS) 9
2.1 Architecture of the BSS . 10
2.2 Battery-as-a-service (BaaS) model . 11

3 Objectives of this work 11

II Mathematical background 13

4 The mathematical framework of Stochastic Dynamic Programming 13
4.1 The basic problem . 13
4.2 Principle of optimality and the DP Algorithm 14
4.3 Infinite Horizon DP . 16

4.3.1 Discounted problems . 16
4.3.2 Value Iteration . 17

5 Approximate Dynamic Programming 17
5.1 The curse of dimensionality . 17
5.2 Some Approximate DP Strategies . 17

5.2.1 Problem approximation (Decoupling) 18

6 Model-based Reinforcement Learning 18
6.1 From Dynamic Programming to Reinforcement Learning 18
6.2 One-step lookahead and Multi-step lookahead strategies 20

6.2.1 Approximate cost-to-go functions . 22
6.3 Multi-agent policy iteration . 23

III BSS modeling and optimization 24

2

7 The BSS Simulator 25
7.1 Heuristic control algorithm . 25
7.2 Cars arrival process . 26

8 Key Performance Indicators (KPI) and step cost-function 27
8.1 Benchmarking control algorithms, cost-losses diagram 27

9 Single-socket station modeling 28
9.1 Finite-Horizon DP Algorithm . 29
9.2 Infinite-Horizon DP through value iteration 31

10 M-socket station modeling 31
10.1 Exact policy solutions (Always OFF and Always ON algorithms) 32
10.2 Approximate DP (decoupled problem approximation) 33
10.3 Reinforcement Learning (Multi-agent policy iteration + One step lookahead

+ decoupled problem approximation) . 34
10.4 Computational complexity of algorithms . 36

10.4.1 Heuristics . 36
10.4.2 Approximate Dynamic Programming 36
10.4.3 Reinforcement Learning . 37

IV Results 38

11 Dynamic Programming control tables 38
11.1 Control and cost tables . 39
11.2 Impacts of ↵ on DP tables . 40
11.3 Impacts of � on DP tables . 41
11.4 Problems with Finite-Horizon DP . 42
11.5 Value iteration tables . 43

12 Impacts of � on KPIs 44
12.1 Algorithms comparison . 45

13 Beyond KPIs 47
13.1 Batteries time on the system . 48
13.2 Number of times charging is resumed . 49
13.3 Computational time . 50

14 A study case 50

V Conclusions 52

3

15 Improvements introduced by this work and next steps 52
15.1 Possible next steps . 53

16 Final comments 54

4

Part I

Introduction and context
The actual context and motivations for this work are presented in this chapter. It will be
shown how the domestic transportation sector is highly responsible of the actual climate
crisis, and how the European Commission is designing policies for a transition towards a
carbon-neutral economy.

From the group of technologies that will for sure take a big role in the transition towards a
green economy, this work focuses on: Smart Grids, Electric Vehicles (EV) and Reinforcement
Learning (RL). These technologies will be presented in Sec. 1.2.

Battery Swapping Stations (BSS) and their use in EV recharging systems will be pre-
sented in Sec. 2, introducing the benefits it brings in terms of costs to final users, to providers
and to the environment.

Lastly, in Sec. 3 after giving a overall introduction to the problem, the specific objectives
of this work will be introduced.

1 Environmental, economical, political and technolog-
ical context

Global surface temperatures are increasing rapidly since the industrial revolution and the
evidence strongly suggests that this is caused due to the greenhous gas emissions (GHG)
produced by human activity [1]. Industrialized countries are the biggest producers of GHG
emissions, Europe was in the third place after USA and China in 2015.

-0.25

0

0.25

0.5

0.75

1

1.25

1851-60 1871-80 1891-00 1911-20 1931-40 1951-60 1971-80 1991-00 2011-20

Decadal global mean surface temperature change (°C) over industrial era

JRA-55 Berkeley Earth
HadCRUT5

NOAAGlobalTemp

GISTEMP

ERA5

IMPLEMENTED BY

Figure 1: Decadal averages of global air temperature at a height of two meters estimated
change since the pre-industrial period according to di↵erent datasets: ERA5 (ECMWF
Copernicus Climate Change Service, C3S); GISTEMPv4 (NASA); HadCRUT5 (Met Of-
fice Hadley Centre); NOAAGlobalTempv5 (NOAA), JRA-55 (JMA); and Berkeley Earth.
Credit: Copernicus Climate Change Service/ECMWF. [2]

5

Organizations at national and international level are monitoring and analyzing GHG
emissions, and suggesting policies to implement in order to slow global warming, in particular
to avoid reaching an increase of 2�C which might be extremely dangerous for the climate and
for the environment, according to experts. Apart from industry, in Europe the most GHG
emissions come from the energy supply and domestic transport sectors reaching around 50%
of total emissions and even if e↵orts are being done by Europe, carbon neutrality is still far
to be reached [3, 4].

Electrification of transport combined with renewable energy production provide a hope
in the reduction of emissions both from energy supply and domestic transport, and a set of
measures have been taken by the European Commission to boost the development of the
industrial technologies that will lead this change.

fnng fnnk geee geei geem gefg gefk gege

%.
 ˄

O
g

�+

eK

jeeK

feeeK

T,�(�- �3 IP˄˄ -��.),- #(EUTgl

Tge� Tfe� e� fe� ge� he� ie�

E(�,!3 -/**&3

D)'�-.#� .,�(-*),.

I(�/-.,3

R�-#��(.#�& �(� �)''�,�#�&

ˎ!,#�/&./,�

I(.�,(�.#)(�& -"#**#(!

��-.�

O."�, �)'�/-.#)(

I(.�,(�.#)(�& ˎ0#�.#)(

L�(� U-�; L�(�TU-� ˄"�(!� �(�:: Tggn:jgl;mm

mig:nek;lg

lgf:hel;hj

lfn:jli;nk

ihi:ngf;he

hmg:iin;le

fgg:jgm;hn

ffg:hhe;mg

mi:lii;ni

jj:mln;gn

Sec.),a& -ha,e- i(EUTgl i(gege
Kab-)&/.� a(d �L

T).�&- S��.),- G�-�- ˄)/(.,#�-

fnmm fnng fnnk geee geei geem gefg gefk gege

%.
 ˄

O
g

�+

eK

jeeK

feeeK

fjeeK

T,�(�- �3 �!!,�!�.�� -��.),- #(EUTgl

T).�& ESD GHG-

T).�& ETS GHG-

E'i--i)(-
� DiǶe,e(ce i(

E'i--i)(-
DiǶe,e(ce i(

E'i--i)(-
ˎb-)&/.e cha(ge

-i(ce fnne
Pe,ce(.age

cha(ge -i(ce fn:: I(de2 KfnnetfeeL

EUTgl ˎg,ic/&./,e ˎ&& g,ee(h)/-e
ga-e- T K˄Og
e+/i0a&e(.L

fnne

fnnf

fnng

fnnh

fnni

fnnj

fnnk

fnnl

fnnm

fnnn

geee

geef
geeg mh

mi

mj

mk

mk

mk

ml

mk

mk

ml

ne

ni

fee

Tfl;fj�

Tfj;kf�

Tfj;gf�

Tfi;hl�

Tfi;ef�

Tfh;jj�

Tfh;gi�

Tfh;jl�

Tfh;jl�

Tfg;jj�

Tfe;gn�

Tj;me�

e;ee�

Tmg:mfj:mjn

Tlj:hnn:imf

Tlh:ikf:jmj

Tkn:hmk:fkk

Tkl:kli:mej

Tkj:iih:iik

Tkh:nfi:llh

Tkj:jgj:mik

Tkj:jif:eim

Tke:kef:fne

Tin:lek:gei

Tgl:nng:iim

e

Tl:ifk:hlm

Tf:nhl:mnk

Ti:elj:ifn

Tf:lff:hkf

Tg:ghf:hjn

Tf:jgm:klg

f:kff:elh

fj:geg

Ti:nhn:mjm

Tfe:mni:nmk

Tgf:lfh:ljj

Tgl:nng:iim

Tf;mg�

Te;il�

Te;nn�

Te;if�

Te;jh�

Te;hk�

e;hn�

e;ee�

Tf;fl�

Tg;jf�

Ti;ll�

Tj;me�

iee:fei:jin

iel:jge:ngl

ien:ijm:mgh

ifh:jhi:gig

ifj:gij:keh

ifl:ilk:nkg

ifn:eej:khj

ifl:hni:jkg

ifl:hln:hke

igg:hfn:gfm

ihh:gfi:gei

iji:ngl:nke

img:nge:iem

T��&�

ˎ!,#�/&./,�

I(.�,(�.#)(�& ˎ0#�.#)(

E(�,!3 -/**&3

O."�, �)'�/-.#)(

L�(� U-�; L�(�TU-� ˄"�(!� �(� F),�-.,3

f:ˎ:f:� T P/�&#� E&��.,#�#.3 �(� H��. P,)�/�.#)(

f:ˎ:h:� T R)�� T,�(-*),.�.#)(

h:f T L#0�-.)�%

E2*&),�

F#&.�,- S
 Ge)g,a*hic e(.,3
EUTgl

 Ga-
ˎll greenhouse gases T K˄Og::

 I(dica.),
Emissions

geek geem gefe gefg gefi gefk gefm gege

%.
 ˄

O
g

�+

eM

fM

gM

E'i--i)(- f,)' .he EU E'i--i)(- T,adi(g S3-.e';
EǶ),. Sha,i(g Legi-&a.i)(a(d La(d U-e; La(dTU-e ˄ha(ge a(d
F),e-.,3 i(EUTgl KT) be /*da.ed Se*.e'be, geggL

Figure 2: Data on greenhouse gas emissions and removals in ktCO2 eq., sent by countries
to UNFCCC and the EU Greenhouse Gas Monitoring Mechanism (EU Member States). [5]

1.1 European green deal

To overcome the challenges of the climate change and the degradation of the environment,
the European Commission presented in December 2019, what is called the “European Green
Deal”. Since then, di↵erent panels have been opened to discuss on how to face di↵erent
aspects of the climate crisis, in particular, on March 2020 it was presented the proposal for
an European Climate Law that would write into a law the objectives of the European Green
Deal with the ambition of granting a “climate-neutral economy” by 2050 [6]. More precisely
the objectives of the law are:

• Set the long-term direction of travel for meeting the 2050 climate neutrality objective
through all policies, in a socially fair and cost-e�cient manner

• Set a more ambitious EU 2030 target, to set Europe on a responsible path to becoming
climate-neutral by 2050

6

• Create a system for monitoring progress and take further action if needed

• Provide predictability for investors and other economic actors

• Ensure that the transition to climate neutrality is irreversible

With transport producing around 25% of EU’s GHG [7], the European Green Deal sets the
objective for nearly all EU cars, vans, buses and heavy-duty vehicle to be zero-emission by
2050. On this direction, the EU Commission has already approved a ban on the production
and selling of new fuel cars from 2035 [8]. Di↵erent working groups inside the EU Commission
together with external stakeholders are proposing academic and industrial researches and
partnerships through the Horizon Europe Research and Innovation funding programme [9]
with the objective of boosting the development of knowledge and technologies needed to face
the green transition.

1.2 Enabling technologies

In order to meet the goals of the European Commission on the reduction of GHG emissions
and in particular to have a more green transportation, di↵erent technologies that have been
developed in the last decades may be combined to produce novel integrated and e�cient sys-
tems. In particular when talking about Information and Communication Technologies (ICT)
the term “enabling technologies” often emerges, to refer to the fact that these technologies
have the potential to integrate disciplines that traditionally where segregated and not part
of the information domain allowing to design novel, distributed and complex systems able
to solve problems in a way that would not be possible before. This work focuses on the
combination of the following technologies, from di↵erent domains, that integrated through
ICT may strongly contribute to the reduction of GHG emissions. These technologies are
Electric Vehicles (EV), Smart grids, and Reinforcement Learning (RL).

1.2.1 Electric Vehicles

The idea of using electric-powered vehicles is not new, and the principles of work for our
modern AC industrial motors have been proposed through di↵erent patents by Nikola Tesla
back to 1887. Instead, what is enabling the developing and explosion of the electric-mobility
market, is the developing of new technologies and means of production for batteries, now
capable to provide the autonomy requested by urban transportation at an a↵ordable price.
Between 2010 and 2015, electric Li-ion batteries price have more than halved and their
production is growing with an exponential trend [10].

7

0

20

40

60

80

100

120

140

2010 2011 2012 2013 2014 2015 2016 2017

Li
-io

n
ba

tt
er

y
sa

le
s

[G
W

h/
yr

]

Other
Energy storage & industry
EV
Electronics

Figure 3: Global historical annual growth Li-ion batteries in main market segments.

However, electric transportation by itself cannot solve the problem of GHG emissions
if the electrical energy used by EVs do not come from renewables. Given that renewable
energies depend on natural phenomena that are not under human control, and given that
electrical production and consumption must match each other perfectly (due to electrical
balance equations), there is the need of introducing mechanisms able to manage these con-
straints. The next Section will focus on how ICT can be used on Smart Grids to produce
and store clean energy usable by EVs.

1.2.2 Smart Grids

Electric energy distribution emerged as a field of engineering back to 1880s when energy
started being produced in power stations. Since then, energy has been produced in mass by
plants far away from consumers, which are located mostly in cities or industrial areas. These
plants (apart from hydroelectric production) have often been fossil-fuel powered. In the last
century di↵erent technologies maturated enough to allow to produce clean energy from wind
and solar, and in particular at micro-scale. Since electrical energy must be consumed or
stored at the exact moment at which it is being produced, there must be a coordination
between producers and consumers. A naive solution to the problem, often used in isolated
production systems is to turn on the power plant when needed, or modulating the production
rate to match the energy demand. Moreover, considering the fact that renewable energies
(at mass and micro scale production levels) are produced by natural phenomena that are
not under human control, it may be convenient to have a mechanism able to exploit energy
surpluses when available. Here ICT comes into place, transforming traditional electrical
grids into what is called a Smart Grid [11].

Smart Grids introduce several mechanisms that allow to have in the same electrical in-
frastructure mass production energy plants, micro-scale producers, and consumers to match
their needs collaborating thanks to ICT by exchanging information. Demand Side Manage-
ment (DSM) mechanisms aim at modifying consumers’ demand profile to match the supply,
and in particular Demand Response (DR) mechanisms aim at rescheduling the consumers’

8

profile in time. DR is a particular strategy of DSM, and this work focuses on using a price-
based approach in which the price of the electrical energy varies during the day to meet the
renewables production profile and electrical infrastructure constraints. For example, given a
Smart Grid provided with a great amount of solar energy production in which a price-based
DR is implemented, this Smart Grid would set lower electricity prices at the middle of the
day when solar production is at its maximum and would set higher electricity prices during
the night [11, 12].

To schedule the recharging of EVs batteries in a station embedded in a Smart Grid,
implies to consider the price of electricity, the expected power production from local renew-
able sources (if available), and the rate of arrival for cars, variables that vary during the
day. The computational complexity of optimizing such a system can only be faced through
Reinforcement Learning, a mathematical optimization tool that will be introduced in the
next Section.

1.2.3 Reinforcement Learning

This work focuses mainly on the design and implementation of optimization techniques for
the scheduling of EVs charging systems. When these systems are embedded in a Smart
Grid, and local renewable energy production is available, the number of variables to take
into account make practically impossible to compute an exact solution to the problem.

Reinforcement Learning (RL) is a recent branch of computer science gathering ideas that
come from di↵erent fields of engineering such as control theory, operational research, and
artificial intelligence [14]. The technical aspects about RL will be introduced in detail on Sec.
6, its objective is to solve optimization problems in which decisions are made in stages, while
the system evolves being influenced by the decision that was made at the beginning of the
stage, plus a set of external stochastical variables. As others disciplines under the umbrella
of Machine Learning, RL has strongly evolved in the last years thanks to the increased
computational capacity and reduction of costs of electronic components and processors,
allowing to solve complex problems in a reasonable time. Also the development of ICT
technologies and the possibility to coordinate distributed and communicating computational
resources is at the core of the new wave of development of RL strategies, since one of
its main contributions is the development of control strategies for distributed (or multi-
agent) systems, in which for example, remote measurements are obtained through low-power
sensors, decisions are computed in a centralized powerful computer, and then actions are sent
back through the network to low-power actuators. The most remarkable result of RL in the
last years is the development of AlphaGo Zero, a self-trained computer program capable of
playing and winning chess matches against top-level (human) professional players [15].

2 Battery Swapping Station (BSS)

Battery Swapping Stations are systems in which EVs can drop an empty battery to pick
a fully charged one. These systems avoid the recharging waiting time that traditional EVs

9

recharging stations have, at the price of implementing a more complex infrastructure. BSS
are mostly useful for fleet of public transport in a city (taxis, buses) in which EVs must
always be ready to provide the service. As regulations and standards in electric mobility
evolve, more companies are developing technologies for making battery swapping an actual
alternative to traditional charging stations, mostly for the micro-mobility segment (electric
bikes and motorcycles) [16].

Figure 4: Promotional image from Gogoro for a BSS [16].

2.1 Architecture of the BSS

This work studies a BSS embedded in a Smart Grid context, and particularly focuses on the
design of control algorithms for scheduling the recharging of batteries. The main components
present in the systems are the following (see Fig. 5):

• Electrical energy sources: in order to recharge batteries energy is obtained from a
local photo-voltaic (PV) plant, and from the electrical Smart Grid in which electrical
price varies during the day. Eventually, PV energy surpluses may be sold to other
consumers through the Smart Grid.

• Charging sockets: batteries in the system are charged by sockets that can be turned
on and o↵ by a centralized Agent. They can also measure the state of charge of the
batteries connected to it.

• Agent: it is the brain of the system and the main object of study of this work. It
takes as input the information for the forecasts for the energy cost, solar production
and batteries demand, and also it gets the actual state of the system (the state of
charge of the batteries), to produce a set of commands that decide which sockets must
be turned on and which turned o↵.

10

Agent

State	of	the	system	!! Control	 commands	"!

Charging	 sockets

Electrical energy	sources

Forecasts	 for	energy	cost	,	
solar	production	and	

demand

Internet

Figure 5: Battery Swapping Station under study.

2.2 Battery-as-a-service (BaaS) model

Battery Swapping introduces also some benefits to final consumers in terms of costs, with
the boosting of a new business model called Battery-as-a-service (BaaS). In the traditional
EV market, each EV is provided with a fixed battery, limiting users with the time it takes
to refill the battery as already mentioned, but also increasing enormously the initial and
maintenance cost of the Electric Vehicle [17].

In the BaaS model, the final user its not the owner of the EV’s battery, since the owner
becomes a service provider company. By using a BaaS provider, the user gets access to BSS
stations in which it can exchange an empty battery with a fully charged one when needed,
without having any ownership on them. BaaS reduces then both the Capital Expenditure
(CapEx) of the final consumer since the battery is not acquired by him, and the Operating
Expenditure (OpEx) since the maintenance cost of the batteries becomes a responsibility of
the service provider. On the other hand, a BaaS model can also benefit service providers
giving them the opportunity to give a second-life to aged batteries improving their economical
incomes and further reducing the environmental impacts of the overall transportation system
[19, 20, 21].

3 Objectives of this work

As previously mentioned the aim of this work is to design a scheduling algorithm for batteries
within a Battery Swapping Station, to reduce both the car losses due to the lack of charged
batteries and to reduce the electrical costs incurred by buying energy from the electrical

11

grid. In particular, this work aims at:

• Formalize the recharge scheduling of batteries as a mathematical optimiza-
tion problem: previous researchers have introduced some Heuristic algorithms that
will be introduced in Sec. 7.1. This work aims at formalizing the recharge scheduling of
batteries as an optimization problem able to represent the trade-o↵ between electrical
costs and car losses.

• Design and implement an adaptive algorithm: after formalizing the recharge
scheduling of batteries as an optimization problem, this work aims at exploring di↵erent
optimization techniques, considering that the resulting algorithm must adapt to the
changing external conditions of the system (arrival rates of cars, electrical costs, and
photo-voltaic energy production).

• Improvement of performance: the proposed algorithm should introduce improve-
ments in terms of performance (costs and losses) with respect to the previously pro-
posed Heuristic algorithm.

• Controlling the working point of the system through hyper-parameters: the
proposed algorithm should be able to provide a mechanism to easily tune its working
point and to choose the trade-o↵ between costs and losses.

• Introduce a benchmarking mechanism for future developments: this work
aims also at providing a method for benchmarking algorithms in terms of electrical
cost and car losses, enabling future researchers to objectively compare the performance
of di↵erent scheduling algorithms.

12

Part II

Mathematical background
As stated on the previous Part the aim of this work is to formalize the recharge scheduling
of batteries in the BSS as an optimization problem. In this Part Dynamic Programming
will be introduced as a mathematical tool for minimizing the accumulated cost-function of
a Markovian Decision Process (MDP). DP find exact solution for a set of MDP, but it may
become computationally infeasible for problems in which there are too many variables in
the system. This problem is also known as the curse of dimensionality. To overcome it DP
will be extended presenting what is called Approximated Dynamic Programming, a series
tools for reducing the computational complexity of DP at the price that solutions become
sub-optimal. Afterwards, Reinforcement Learning (RL) be introduces as another tool that
aims at further reducing the computational complexity for large problems. These are the
basis for understanding the mathematical models and algorithms presented in Part III for
optimizing the scheduling of the BSS.

4 The mathematical framework of Stochastic Dynamic
Programming

4.1 The basic problem

Stochastic Dynamic Programming (DP) is a mathematical tool that aims at controlling
stochastical dynamic systems in which decisions are made in stages (or time steps). The
objective is to minimize a certain cost that is accumulated at each time step, and that
depends both on the applied control and on the evolution of the system. The mathematical
model under study is also known as a Markovian Decision Process (MDP).

The basic model for DP is composed by two main features [21]:

1. An underlying discrete-time dynamic system

xk+1 = fk (xk, uk,!k) (1)

where k = 0, 1, . . . , N � 1 indexes discrete time, xk is the state of the system, uk is the
control or decision variable to be selected at time k, !k is a random variable on the
evolution of the system and its cost, and finally N is the time-horizon of the system.

2. A cost function that is additive over time

N�1X

k=0

gk (xk, uk,!k) + gN (xN) (2)

13

where gk (xk, uk,!k) is the accumulated cost at each time step (also known as step
cost-function), while gN (xN) is a terminal cost incurred at the end of the process, thus
it depends only on the final state. Note that due to the presence of !k the total cost
is generally a random variable.

The evolution of the discrete system and the accumulation of cost dynamics can be seen in
a summarized way on Fig. 6.

!
! !+1

!! is known
"! must be determined

#! !! , "! ,%!
is accumulated

!!"#!!
Random transition

Figure 6: Mathematical framework for DP.

The objective of DP is to arrive to a policy ⇡ = {µ0, µ1, . . . , µN�1} where µk maps states
xk into controls uk = µk (xk) in such a way that the accumulated cost is minimized. Under
this policy, the evolution of the system becomes:

xk+1 = fk (xk, µk (xk) ,!k) (3)

the associated expected value for the accumulated cost of the system, under the policy
⇡, starting from a generic initial state x0 is defined as:

J⇡ (x0) := E
"
N�1X

k=0

gk (xk, µk (xk) ,!k) + gN (xN)

#
(4)

An optimal policy ⇡
⇤ is then a policy that minimizes J over the set of all the possible

policies ⇧, that is:

J⇡⇤ (x0) = min
⇡2⇧

J⇡ (x0) (5)

4.2 Principle of optimality and the DP Algorithm

Dynamic Programming relies on a very simple idea, the principle of optimality [21]. The
name has been assigned by Bellman who contributed a great deal to the popularization of
DP.

14

Principle of optimality: Let ⇡⇤ =
�
µ
⇤
0, µ

⇤
1, . . . , µ

⇤
N�1

be an optimal policy for the basic

problem, and assume that when using ⇡
⇤, a given state xi occurs at time i with posi-

tive probability. Consider the subproblem whereby we are at xi at time i and wish to
minimize the “cost-to-go” from time i to time N :

E
"
N�1X

k=i

gk (xk, µk (xk) ,!k) + gN (xN)

#

Then the truncated policy
�
µ
⇤
i
, µ

⇤
i+1, . . . , µ

⇤
N�1

is optimal for this subproblem.

! !+1

Determine !!∗ by minimizing:
" #! $! ,!! + '!#$∗ $!#$ 	

!!"# !$
!!#$∗ !%&$∗

. . .

Tail subproblem
'∗ $ and !∗ $ are known

"

!$%#

"− 1

!!∗?!!

Figure 7: Principle of optimality. At time k if the tail sub-problem is solved J
⇤
k+1 (x) and

u
⇤
k+1 (x) are perfectly known so J

⇤
k
(x) and u

⇤
k
(xk) can be computed. The solution to the

problem can be constructed backwards through the DP Algorithm.

The principle of optimality suggest that an optimal policy can then be constructed by
solving the “tail subproblem” involving the last stage, then extending stage by stage the
tail subproblem until constructing an optimal policy for all the problem. This strategy of
building the solution backwards in time is known as the Dynamic Programing Algorithm.

Dynamic Programming Algorithm: For every initial state x0, the optimal cost J⇤ (x0)
of the basic problem is equal to J0 (x0), given by the last step of the following algo-
rithm, which proceeds backwards in time from time N � 1 to time 0:

JN (xN) = gN (xN)

Jk (xk) = min
uk

⇢
E
!k

[gk (xk, uk,!k) + Jk+1 (fk (xk, uk,!k))]

�

Furthermore, if u⇤
k
= µ

⇤
k
(xk) minimizes the right side of the last equation for each xk

and k, the policy ⇡
⇤ =

�
µ
⇤
0, µ

⇤
1, . . . , µ

⇤
N�1

is optimal.

In the DP Algorithm terminology gk (xk, uk,!k) is called “step cost-function” at time k,
while the term Jk+1 (fk (xk, uk,!k)) is the “cost-to-go” function [21].

15

4.3 Infinite Horizon DP

The problem of optimizing Eq. (2) is also known as “Finite horizon DP”, because the number
of stages is finite. Instead, it may be convenient in some cases, to state the problem in a
di↵erent way. Infinite horizon DP problems [21] di↵er from those studied up to now in two
respects:

1. The number of stages is infinite

2. The system is stationary (the system equation, the cost per stage, and the random
disturbance statistics do not change from one stage to the next)

From the theoretical point of view these problems are conveniently classified as:

• Stochastic shortest path problems: In which there is a terminal cost-free state xT

where the system remains blocked, thus, the problem has an horizon in practice, but
it is given in the space-state and not in the time-space.

• Discounted problems: Problems in which the cost-per-stage exponentially decays
with a factor ↵ instead of being accumulated until the end of the problem. It will be
explained in detail in Sec. 4.3.1.

• Average cost per stage problems: The function to minimize is the mean accumu-
lated cost-per-stage until the end of the problem.

On this work the focus will be on studying discounted problems, which will be presented on
the next section.

4.3.1 Discounted problems

Discounted problems are a particular subset of infinite horizon Dynamic Programming prob-
lems with a particular structure in which the function to minimize is written as:

J⇡ (x0) := lim
N!1

E
"
N�1X

k=0

↵
k · gk (xk, µk (xk) ,!k)

#
(6)

here the final cost gN (·) is not present since now the system will never reach a final
stage, and the cost-per-stage decays exponentially with a factor of ↵. In order to ensure
the convergence of this equation [21] a su�cient condition is to have a bounded cost-per-
stage function |gk (x, u,!)| < M , so that J⇡ (x0) is bounded by the decreasing geometric
progression

�
↵
k
M

.

16

4.3.2 Value Iteration

Since now the system is stationary, and the concept of time vanishes, the Dynamic Program-
ming algorithm as stated in Sec. 4.2 must be modified to take a new form that is called
“Value iteration” (VI) algorithm:

Jk+1 (xi) = min
u

(
g (xi, u) + ↵ ·

nX

j=1

pij · Jk (f (xj, u))

)
, for each i (7)

where k is now the iteration for computing the cost-to-go function, i and j are indexes for
the states, and pij are the transition probabilities [21]. It can be proved that VI converges
to the optimal cost-to-go function, and in the convergence point J⇤ (x), in fact, the system
verifies what is known as the Bellman’s equation:

J
⇤ (xi) = min

u

(
g (xi, u) + ↵ ·

nX

j=1

pij · J⇤ (xj)

)
(8)

VI is then an algorithm used to solve a functional equation for J⇤ (x).

5 Approximate Dynamic Programming

5.1 The curse of dimensionality

Solving a Dynamic Programming problem analytically is feasible and useful only for some
particular cases in which the system is very simple or with a limited amount of stages,
and the solution can be easily interpreted. Often DP is only used to produce a numerical
solution to a problem, but still in most scenarios, the computational complexity of solving
it through exact DP becomes unfeasible. The reason lies in what Bellman called the “curse
of dimensionality” which refers to a rapid increase of the required computation and memory
storage as the size of the problem increases.

Relaxing the constrains, simplifying the base problem, reducing the state-space, are ex-
amples of strategies that can be used to reduce the complexity of solving the exact DP, giving
place to what is called Approximate DP, leading to sub-optimal solutions to the problem
[21].

5.2 Some Approximate DP Strategies

Approximate DP strategies are grouped in two main categories:

• Approximation in value space: where the cost-to-go function is approximated to a
simpler function eJ which reduces the complexity of the problem. And then the optimal
control can be computed as:

u
⇤
k
= argmin

uk

n
eJk (xk)

o
(9)

17

• Approximation in policy space: the optimal control is chosen from a suitable class
of policies based on some criterion; the selection process often uses data, optimization,
and parametrical models such as neural networks. The optimal control can e computed
as:

u
⇤
k
= f (xk; ✓) (10)

Often both methods can be combined, specially when policy space approximations are
used. In this work the focus will be on using approximations in value space, in particular,
the strategy explained in Sec. 5.2.1.

5.2.1 Problem approximation (Decoupling)

Problem approximation allows to reduce the complexity of the exact DP algorithm by in-
troducing simplifications to the original problem. On this work problem approximation will
be introduced through the decoupling of variables in the studied system, to reduce both
the state and the control spaces. Note that if a system is composed by M entities, each of
which having #x possible states and capable of applying #u controls, then the state-space
and the control-space on which the optimization must be performed, have cardinalities of
#x

M and #u
M respectively. Instead, by decoupling the system and treating each entity as

a stand-alone unit, the state-space and the control-space for each one of the M optimiza-
tions, have cardinalities of #x and #u which is enormously smaller. Using decoupling as an
approximation to the system is then a convenient approach when dealing with multi-agent
systems.

Let the system state, the control variable, and the random variable for the system evo-
lution be written as vectors xk, uk and wk. In that case, using the Dynamic Programming
Algorithm implies solving:

J
⇤
k
(xk) = min

uk

⇢
E
wk

⇥
gk (xk,uk,wk) + J

⇤
k+1 (xk+1)

⇤�
(11)

Decoupling of the system allows to split the problem into its M components. In that
case it will be written a sub-problem for each component i, as following:

J⇤(i)
k

�
xk

(i)
�
= min

uk
(i)

⇢
E
wk

h
g
(i)
k

�
xk

(i)
,uk

(i)
,wk

�
+ J⇤(i)

k+1

�
xk+1

(i)
�i�

(12)

as shown in the equation this implies to be able to write a single step cost-function g
(i)
k

(·)
and a single cost-to-go function J⇤(i)

k+1 (·) for each component of the system.

6 Model-based Reinforcement Learning

6.1 From Dynamic Programming to Reinforcement Learning

Dynamic Programming and Approximate DP assume the knowledge of a control table used
to get the optimal control to apply to the system. Then, an o↵-line training generates a

18

control table, and the on-line algorithm will just apply the control.

Algorithm 1 DP and ADP Algorithms basic structure.
1. Before starting, compute the mapping control table for each k and x of the system (or

an approximation of it) using the Dynamic Programming Algorithm or a variation of
it like (e.g. value iteration).

2. Once the system starts, at each instant of time k:

(a) Get the optimal control to apply u
⇤
k
from the pre-computed look-up table given

k and xk.

(b) Apply the control u⇤
k

Model-based Reinforcement Learning (RL) introduces strategies in which the model of
the system is known, as in DP, but the computation of the solution is not made entirely
o↵-line, because it might be infeasible due to the dimensions of the problem [22]. RL relies
on the model of the system to interact with it to recommend an action, so RL strategies
are basically on-line algorithms. In Sec. 6.2 and Sec. 6.3 two algorithms will be introduced
that allow to perform an exploration of the control space to suggest a sub-optimal control
strategy for the system.

Algorithm 2 Model-based RL Algorithms basic structure
1. Before starting, run o↵-line algorithms to pre-compute/learn/train some models that

will be used on-line

2. Once the system starts, at each instant of time k:

(a) Interact with the o↵-line trained models to get a sub-optimal control euk

(b) Apply the sub-optimal control euk

Model-based Reinforcement Learning algorithms will try to minimize on an on-line basis
the following problem:

u
⇤
k
= argmin

uk

{Qk (xk, uk,!k)} = argmin
uk

⇢
E
!k

[Jk (xk, uk,!k)]

�
(13)

here Qk (·) are functions called Q-values, that are nothing but the expected value of the
cost-to-go function used in classical DP. Each one of the operations shown in the equation:
argmin {·}, E

!k

[·], Jk (·), may be computed through di↵erent approximation methods, giving

place to a wide variety of algorithms that can be used in di↵erent combinations for the final
optimization.

19

Agent

Mathematical	
Model

Test	control
3! !!

Estimated	cost
5! !!,3!

Apply	sub-optimal	 control	
3;! !!

Optimization	 loop

State	of	the	system	!!
Environment

Feedback	 for	model	improvement

Figure 8: Model-based Reinforcement Learning operating scheme.

6.2 One-step lookahead and Multi-step lookahead strategies

One-step and Multi-step lookahead are RL algorithms that explore the control space by
interacting with a mathematical model for the evolution of the system and evaluating the
associated cost-to-go function [14]. More precisely, given a current state xk of the system
at time k, the algorithm tries di↵erent controls uk in search of the one that minimizes the
cost-to-go.

In one-step lookahead strategies, the algorithm tries di↵erent controls evaluating what
will be the immediate evolution of the system (one step) and its corresponding cost. In this
case we can write Eq. (13) as:

u
⇤
k
= argmin

uk

⇢
E
!k

[gk (xk, uk,!k)] + eJk+1 (xk+1)

�
(14)

where it can be seen that the immediate impact of the control is evaluated through the
expected value of the step cost-function, and the cost associated to the future state xk+1 of
the system is approximated through an “approximate cost-to-go function”. Another way to
visualize this is through the scheme on Fig. 9.

20

!!

Lookahead tree for one step

"#!"# !!"#
Cost-to-go function
approximation

Figure 9: Deterministic one-step lookahead algorithm. Starting from xk, di↵erent controls
are applied leading to new states xk+1 from which the cost-to-go is computed through ap-
proximation.

If the system is stochastic, then for each possible control variable, di↵erent possible
states xk+1 will be reached according to the value that !k will assume. This introduces
some computational complexity to the exploration of the possible control to applies and is
represented in Fig. 10.

!!

Lookahead tree for one step
with uncertainty

"#"+1 !"+1
Cost-to-go function
approximation

Decision
Making

!!

Scenario
Revealed

"!

Figure 10: Stochastic one-step lookahead algorithm. Starting from xk, di↵erent controls are
applied and for each, di↵erent values of !k can be assumed, leading to new states xk+1 from
which the cost-to-go is computed through approximation.

The strategy of one-step lookahead gives the best solution for the problem considering
only one step in the future. The algorithm can be generalized considering l-steps in the
future, so Eq. (14) is modified in the following way:

21

u
⇤
k
= argmin

uk

(
k+l�1X

i=k

E
!i

[gi (xi, ui,!i)] + eJk+l (xk+l)

)
(15)

note that even if the system is run for l steps, the algorithm must be used at each time
step to compute only the control u⇤

k
at time k. This can be better visualized in Fig. 11.

!!
"#!"# !!"#

Cost-to-go function
approximation

Lookahead tree for l-steps

. . .

. . .

. . .

Figure 11: Deterministic l-step lookahead algorithm. Starting from xk, di↵erent controls are
applied leading to new states xk+1. The algorithm is run for each new state until arriving to
time k + l from which the cost-to-go is computed through approximation.

6.2.1 Approximate cost-to-go functions

The computation of the cost-to-go function eJk (xk) in lookahead strategies can be done
through di↵erent methods [14]. Some of these methods are for example:

• Training a parametrical model (e.g. neural networks)

• Rollout-cost obtained by applying an heuristic (so much less computational complex
algorithm) on the evolution of the system

• For discounted problems, the step cost-function may become negligible after l forward
steps so the cost-to-go function may be approximately set to zero

• Approximation of the cost-to-go obtained by solving a simpler problem

It will be shown later (see Sec. 10.3) that the method used in this work will be the last one.
In particular, given a system that is composed by M elements, its state becomes a vector xk,
and if it can be approximately decomposed into M sub-problems that can be solved through
exact DP, then a way for computing eJk (xk) is:

eJk (xk) =
X

i

J⇤(i)
k+1

�
xk+1

(i)
�

(16)

22

where J⇤(i)
k+1 stands for the decoupled cost-to-go value for the i component of the system

obtained by applying the DP Algorithm o↵-line.

6.3 Multi-agent policy iteration

For systems composed by M agents, capable to apply an independent control to the system
[14, 23], the control variable becomes a vector with M components:

uk = (u1, u2, . . . , uM) (17)

If one intends to use, for example, one-step lookahead strategies to optimally control the
system, one would need to try #u

M possible controls, where #u stands for the number of
possible controls to apply. This may become infeasible when M is large. Multi-agent policy
iteration is an algorithm that aims at exploring a subset of the control space in linear time,
by exploring uk one component at a time. In that case Eq. (13) can be written in the
following way:

uk
⇤ = seq. argmin

uk

⇢
E
!k

[Jk (xk,uk,!k)]

�
(18)

where “seq. argmin” means that the minimization is performed by varying and selecting
one component of uk at a time. This means that instead of performing an all-at-once
minimization, the procedure is to perform a one-agent-at-a-time optimization, in this case
the space to explore becomes of dimension M ·#u which is linear. The algorithm proceeds
in the following way:

Algorithm 3 Multi-agent policy iteration algorithm.
1. At each instant of time k:

(a) Initialize the optimal control as uk
⇤ := 0

(b) For a number of iterations NIT or until convergence:

i. For each component i of uk:

A. Find a new uk
⇤(i) by minimizing the cost in Eq. (18), where the rest of

the components are kept fixed to uk
⇤.

B. Update the component i of the optimal control uk
⇤

(c) Apply sub-optimal control uk
⇤.

23

Part III

BSS modeling and optimization
In this Part the basic variables, parameters and performance indicators of the system will
be presented. On Sec. 7.2 the distribution for the arrival process of cars will be introduced,
which is fundamental for the modeling of the system.

This work is entirely based on the usage of a BSS simulator that will be presented in
Sec. 7 with the work that the research team has done so far, and the Heuristic algorithm
previously proposed.

The approach used to setting up a model for the system, was to start from a very
simplified version of it. In Sec. 9 there is a simple model for a station composed by one
single socket, then in Sec. 10 there is a complete model for a generic amount of sockets. It
will be shown that trying to solve the problem may become computationally infeasible when
the number of sockets is high, so a series of modifications to the DP algorithm, based on
Reinforcement Learning will be presented on Sec. 10.2 and Sec. 10.3.

Variable Description Set of values

M Number of sockets in the station N
C Capacity of a battery R+

E0
Maximum lack of energy accepted R+

by a car when requesting a battery
�t Discrete time step R+

k Time index N
N Number of time steps within a day N
�k Arrival rate of cars at k R+

p
�(n)
k

Probability of arriving � n cars at k [0, 1] 2 R
E
�
!
PV

k

�
Expected energy from solar plant at k R+

↵ Discount factor hyper-parameter [0, 1] 2 R
� Trade-o↵ hyper-parameter [0, 1] 2 R
xk Lack of energy in batteries at k x

M = {0, · · · , C}M

uk Energy given to batteries at k u
M = {0, umax}M (OFF/ON)

Table 1: System parameters and variables.

The scope of the algorithm is to minimize the accumulated cost of the system during 24
hours (a whole day). The construction of the cost function will be presented on Sec. 8. As
input, at the beginning of the day, the algorithm is provided with the predictions for the
arrival rate, the solar energy production, and the cost of electricity from the grid, so it can
compute a dynamic scheduling according on how events occur during the day.

24

7 The BSS Simulator

In order to study the behavior and performance of di↵erent control algorithms for the Agent
on the system, an event-based simulator implemented on Python is used. This work continues
the work done by previous students R. Monti [24] who build the first version of the simulator,
and G. Centonze [25] who further improved the simulator and dimensioned a system for a
real application. G. Centonze also designed some initial Heuristic algorithms for the control
of the system that will be explained in Sec. 7.1. This works aims at formalizing the problem
as an optimization problem, so algorithms will not be Heuristic but will find optimal and
sub-optimal solutions for a formally written problem.

7.1 Heuristic control algorithm

The Heuristics algorithms already implemented on the simulator are based on postponing
strategies. Each time that a battery is fully charged, or each time that a new battery arrives
to the system the Agent will control if it is “convenient” to postpone the recharge of any
battery. Checking for the convenience of postponing a battery recharge is done only if the
solar panel is not producing energy, so the usage of the local produced energy is maximized.
Pseudocodes for the heuristics algorithms are shown in Alg. 4 and Alg. 5.

Algorithm 4 Postponing strategy control algorithm.
Given as input the actual time t, and the postponing time T :

1. Compute PV (t) which is the actual PV production

2. If PV (t) = 0 and the number of postponed batteries is not greater than Fmax:

For each battery on the system:

(a) If it is convenient to postpone the charge given t and T set a turning on timer at
t+ T

25

Algorithm 5 PV production-based convenience algorithm.
Taking as input the actual time t and a future time t

0:

1. Compute PV (t0) which is the expected PV production at time t
0

2. If the level of charge for the battery is greater than C/2 :

(a) Return PV (t0) > 0

3. Otherwise:

(a) Compute PV (t+ 1hour) and PV (t0 + 1hour)

(b) Return PV (t+ 1hour) + PV (t) < PV (t0 + 1hour) + PV (t0 + 1hour)

7.2 Cars arrival process

As in many queuing system, here it is assumed that the process of arrival for the cars respects
the memory-less property. Assuming the memory-less property implies that the inter arrival
times �T� can only follow an exponential distribution. This is partially true in the case of
an EV charging station because the arrival rate for cars varies according to the moment of
the day. The approximation will be to use and exponential distribution for the inter arrival
times that slowly changes during the day.

�T� (z, k) ⇠ �k · e��k·z (19)

Since the computational optimization of the problem is done on a discrete-time basis,
there is another important random variable for the model of the system that is strictly
linked to the inter arrival times which is the number of cars arriving in a time window. For
exponential inter arrival times, the stochastic counting process of arrivals can be proved to
be a Poisson variable. Given a time window �t (the discrete time step of the system), the
number of cars arriving to a station is computed as:

P {number of arrivalsk = n} =
(�k ·�t)n · e��k·�t

n!
(20)

the probability of arriving for more than, or equal, to n cars at time step k will be
used during the modeling of the complete system, and it will be written as p�(n)

k
. It can be

computed as:

p
�(n)
k

= P {number of arrivalsk � n} = 1�
n�1X

i=0

(�k ·�t)i · e��k·�t

(i)!
(21)

26

8 Key Performance Indicators (KPI) and step cost-
function

Several metrics could be taken into consideration to evaluate the performance of the schedul-
ing algorithm used in the system. The two top-level main indicators are the following:

1. Mean electrical cost: which includes the electrical cost incurred from buying elec-
trical energy from the grid for charging the batteries.

2. Mean car losses: which includes the number of cars that are lost by the system due
to the lack of batteries with a su�cient level of energy.

Other important indicators could be taken into consideration for the performance of the
system, that may be more related to physical constraints for the station or for preserving
batteries health. Some of them may be for example:

• Mean time of a battery in the system

• Mean number of ON-OFF switchings during a battery re-charging cycle

• Peak electrical power consumed by the station

In a scenario in which we consider only the mean electrical cost, and the mean car losses the
step cost-cost function used for the Markov Decision Processes will be constructed with an
hyper-parameter � 2 [0, 1] as following:

gk = (1� �) ·Mean cost + � ·Mean car losses (22)

8.1 Benchmarking control algorithms, cost-losses diagram

As written in Eq. (22), there is a natural trade-o↵ in trying to minimize both the mean
cost and the mean car losses. In Sec. 10.1 it will be shown that considering only the Mean
cost leads to a policy in which batteries are not charged (Always OFF algorithm), while
by considering only the Mean car losses leads to a policy in which batteries are charged as
soon as they arrive to the station with no interruptions (Always ON algorithm). These two
policies set then a limit of performances since no algorithm can be better in terms of costs
than the first one, and no algorithm can be better in terms of losses than the latter.

In Fig. 12 there is a diagram used to locate the performance of an algorithm in terms of
its mean electrical cost and mean car losses, each algorithm in this diagram will be located
on a single point. The ideal working point is to have the mean cost of an Always OFF,
and the mean car losses of an Always ON, this is practically impossible to reach, but sets a
basis to compare the performance of di↵erent control algorithms. Given a generic algorithm
for which the cost function is written as in Eq. (22), as � ! 1 then its performance must
approach the Always ON performance, and on the other hand as � ! 0 its performance
must approach the Always OFF performance. While varying � from 0 to 1, the trajectory

27

described by the performance on the cost-losses diagram will be a curve moving from Always
OFF to Always ON. The best algorithms will have a curve that will be the closest possible
to the ideal working point.

Mean cost

Mean car losses

Always ON
Performance

Always OFF
PerformanceIdeal working

point

Algorithms performance
by varying !

Figure 12: Cost-losses diagram for the benchmarking of control algorithms. No algorithm can
perform better than Always OFF in terms of costs, and no algorithm can perform better than
Always ON in terms of losses. This sets an ideal working point that is useful for comparing
the performance of di↵erent algorithms while varying � in their step cost-function.

9 Single-socket station modeling

The following model represents a single-socket station, without a waiting queue. A car
would arrive and pick the battery under charge only if is charged to a certain threshold E0,
otherwise, it leaves the station without changing the battery.

The system is represented through a discrete-time and discrete state-space model. The
time will be encoded through an integer number k, so that the time passing between k and
k+1 will be constant and equal to �t which will be the time granularity of the system. The
state is encoded as the lack of energy of the battery in the socket at each time k, so xk = 0
would be a fully charged battery, while xk = C represents an empty battery. The control
variable is the charging energy uk that is being given to the battery at each slot of time (it
could be both a binary variable on/o↵ or a variable admitting di↵erent levels of charging
powers).

The stochasticity of the system is given by two main random variables:

1. !
�

k
which is a Bernoulli variable indicating the arrival of a car, with a time-variable

probability distribution that can be simply represented as:

28

!
�

k
=

(
1 (arrival) with prob. p�

k

0 (no arrival) with prob. 1� p
�

k

(23)

2. !
PV

k
which represents the amount of energy that comes from the solar plant. This

variable takes values from the same space of xk and uk, and we assume to know at
least, its expected value at each time step.

With this, the system evolves in time according to the following state transitions:

xk+1 =

(
C if !�

k
= 1 and [xk � uk]

+ E0

[xk � uk]
+ otherwise

(24)

basically the state of the system is changed by charging the battery, and a completely
empty battery is left on the system after a car arrival if it changes its battery. It can also
be written in a summarized way as:

xk+1

�
!
�

k
, uk

�
= !

�

k
·I
�
[xk � uk]

+
< E0

·C+

�
1� !

�

k
· I
�
[xk � uk]

+ E0

 �
·[xk � uk]

+ (25)

At each time step, the system accumulates a cost, that depends on the control and events
of the system. The cost-function can be written as:

gk

�
xk, uk,!

�

k
,!

PV

k

�
= (1� �) · ak ·

⇥
uk � !

PV

k

⇤+
+ � · !�

k
· I
�
[xk � uk]

+
> E0

(26)

where I {·} stands for the indicator function, [·]+stands for a function that allows having
only positive values or 0, ak is the deterministic cost of the energy taken from the grid
at time k, � 2 [0, 1] is an hyper-parameter used to weight the trade-o↵ between the cost
of the energy from the grid and the cost of loosing a car. The Dynamic Programming
Algorithm can then be applied in order to minimize the operation cost of the system, on a
time window that starts at k = 0 and ends at k = N that could potentially be the first and
last hour/minute/second of a day.

9.1 Finite-Horizon DP Algorithm

The Dynamic Programming Algorithm aims at minimizing the accumulated cost of the
system. Since the cost-function is cumulative, the algorithm runs backwards in time trying
to minimize at each step the cost-to-go function called Jk (xk), starting at k = N and arriving
to k = 0. In that sense it is important to define a final cost that will give the initial condition
for the recurrent algorithm. In this case we can simply set JN (xN) = 0 (so every final state
is equally penalized at the end of the day). The algorithm computes the optimal cost called
J
⇤
k
(xk) as:

29

J
⇤
k
(xk) = min

uk

⇢
E

!
�
k ,!

PV
k

⇥
gk

�
xk, uk,!

�

k
,!

PV

k

�
+ J

⇤
k+1 (xk+1)

⇤�
(27)

We can apply the algorithm to our system:

J
⇤
k
(xk) = min

uk

⇢
E

!
�
k ,!

PV
k

h
(1� �) · ak ·

⇥
uk � !

PV

k

⇤+
+ !

�

k
· � · I

�
[xk � uk]

+
> E0

+ J

⇤
k+1 (xk+1)

i�

(28)
Since !

�

k
and !

PV

k
are independent random variables, we can split the expected value

arriving to:

J
⇤
k
(xk) = min

uk

⇢
E

!
PV
k

h
(1� �) · ak ·

⇥
uk � !

PV

k

⇤+i
+ E

!
�
k

⇥
!
�

k
· � · I

�
[xk � uk]

+
> E0

+ J

⇤
k+1 (xk+1)

⇤�

(29)

J
⇤
k
(xk) = min

uk

⇢
(1� �) · ak ·

⇥
uk � E

�
!
PV

k

�⇤+
+ E

⇥
!
�

k

⇤
· � · I

�
[xk � uk]

+
> E0

+ E

!
�
k

⇥
J
⇤
k+1 (xk+1)

⇤�

(30)
and since !

�

k
is a Bernoulli variable, then E

⇥
!
�

k

⇤
= p

�

k
at each time step:

J
⇤
k
(xk) = min

uk

⇢
(1� �) · ak ·

⇥
uk � E

�
!
PV

k

�⇤+
+ p

�

k
· � · I

�
[xk � uk]

+
> E0

+ E

!
�
k

⇥
J
⇤
k+1 (xk+1)

⇤�

(31)
Finally the last term can be written from Eq. 25 as:

E
!
�
k

⇥
J
⇤
k+1 (xk+1)

⇤
= p�

k
· J⇤

k+1 (xk+1 (1, uk)) + (1� p�
k
) · J⇤

k+1 (xk+1 (0, uk)) (32)

From this, the algorithm can be computationally run, to optimize the scheduling of the
charging of the battery knowing di↵erent parameters of the system that vary with time: p�

k
,

E
�
!
PV

k

�
, and ak. By the end of the “o↵-line” run of the algorithm, it would produce a lookup

table that stores (u⇤
k
, J

⇤
k
) for each discrete state xk, that can be then inspected “on-line” by

the controller to find the optimal control to apply given the current state of the system.

k = 0 k = 1 · · · k = N

x0 = 0 (u⇤
0 (x0) , J⇤

0 (x0)) (u⇤
1 (x0) , J⇤

1 (x0)) · · · 0
x1 (u⇤

0 (x1) , J⇤
0 (x1)) (u⇤

1 (x1) , J⇤
1 (x1)) · · · 0

...
...

...
. . .

...
C (u⇤

0 (C) , J⇤
0 (C)) (u⇤

1 (C) , J⇤
1 (C)) · · · 0

Table 2: Example of a control table after running the DP Algorithm.

30

9.2 Infinite-Horizon DP through value iteration

It will be shown on Sec. 11.4 that using Finite-Horizon DP on a daily basis may cause
some misbehaviors as the end of the day approaches. In order to overcome this problem,
Infinite-Horizon DP can be used.

Even if the system is not stationary in an hourly basis, it can be said that it is approxi-
mately stationary in a daily basis, since the solar radiation, car arrival rates, and electricity
price may be similar from one day to the next one. Solving Infinite-Horizon DP through
Value Iteration, as explained in Sec. 4.3.2, implies iterating to solve the Bellman equation,
and selecting a discount factor ↵ for the cost function, so Eq. (27) is simply modified in the
following way:

J
⇤
k
(xk) = min

uk

⇢
E

!
�
k ,!

PV
k

⇥
gk

�
xk, uk,!

�

k
,!

PV

k

�
+ ↵ · J⇤

k+1 (xk+1)
⇤�

(33)

In order to properly implement Value Iteration on our system, the DP Algorithm is
performed on a daily basis and once the beginning of the day is reached (k = 0) the accu-
mulated cost J⇤

0 (x) is set as the initial condition for a new DP Algorithm iteration setting
J
⇤
N
(x) := J

⇤
0 (x). This can also be visualized on Fig. 13. The iteration is performed for

limited number of times, allowing the system to “forget” the very initial condition that was
set on Sec. (9.1) that established J

⇤
N
(x) := 0.

k = 0 k = 1 ··· k = N
x0 = 0 (u�0 (x0),J �0 (x0)) (u�1 (x0),J �1 (x0)) ··· 0
x1 (u�0 (x1),J �0 (x1)) (u�1 (x1),J �1 (x1)) ··· 0
...

...
...

C (u�0 (C),J �0 (C)) (u�1 (C),J �1 (C)) ··· 0

DP Algorithm

Feedback loop for Value Iteration

Figure 13: Implementation of Value Iteration for a daily-basis stationary system.

10 M-socket station modeling

An M -socket station can be thought exactly as a single-socket station in which the state
and the control variables of the system are column vectors xk and uk. Something that is
convenient in that case is to order the state of energy demand of the batteries (xk

(i), with
0 i < M�1) in an increasing way. So the state of the system would actually be x0

k = f (xk)
where f is a permutation of the states. In this way x0

k
(i) x0

k
(j) for each i j. Note that

31

in this way, the first element of the vector x0
k
(0) will be the most charged battery, and it is

the battery that is going to be given to the customer in case of an arrival.
As an extension to the case of a single socket system, now the random variable !�

k
becomes

a binary vector w�

k indicating the amount of cars (from 0 to M) arriving in the slot of time,
so:

w�

k
(i)

=

(
1 (arrival of � i+ 1 cars) with prob. p�(i)

k

0 (arrival of < i+ 1 cars) with prob. 1� p
�(i)
k

(34)

The evolution of the system and the cost of each step becomes:

x0
k+1 = C · I

�
f
�
[x0

k � u0
k]

+�
< E0

�w�

k

⌘

+
⇥
1� I

�
f
�
[x0

k � u0
k]

+�
< E0

�w�

k

⇤T · f
�
[x0

k � u0
k]

+� (35)

gk

�
x0
k,u

0
k,w

�

k,!
PV

k

�
= (1� �) · ak ·

"
X

i

u0
k
(i) � !

PV

k

#+

+ � · I
n
f

⇣
[x0

k � u0
k]

+
⌘
> E0

oT

·w�

k

(36)
where � stands for the element-wise product (or Hadamard product), and I {·} is applied

to a vector verifying the condition for each component. Now the DP algorithm would
minimize for each state, at each time step:

J
⇤
k
(x0

k) = min
u0
k

⇢
E

w�
k,!

PV
k

⇥
gk

�
x0
k,u

0
k,w

�

k,!
PV

k

�⇤
+ E

w�
k

⇥
J
⇤
k+1

�
f
�
x0
k+1

��⇤�
(37)

This problem is computationally expensive since the number of solutions to explore for
each time is exponential on M , involving at least #x0 ·#u

M operations. The space for x0 is
composed by all the sorted combinations for x, which is:

#x0 =

✓
#x+M � 1

M

◆
(38)

For example for #x = 25, #u = 2 (for an on/o↵ controller) and #M = 20, this would
imply at least ⇠ 1.8 · 1018 operations per time step for the construction of a Dynamic
Programming lookup table. Also, there is the problem of the memory needed to hold all the
actions to take for each one of the states.

Instead of solving the complete table produced by the DP Algorithm which is clearly
infeasible, to reduce the computational complexity of the optimization, a series of strategies
will be applied and will be introduced in the following sections.

10.1 Exact policy solutions (Always OFF and Always ON algo-
rithms)

The problem can be exactly solved for the cases in which � = 0 or � = 1, and it can directly
be seen by writing down the explicit cost sum. In the case � = 0 on the cost function only

32

the electrical cost is considered and accumulated, so the discounted cost becomes:

J (xk)�=0 = lim
N!1

N�1X

k=0

↵
k · ak ·

"
X

i

u0
k
(i) � E

⇥
!
PV

k

⇤
#+

(39)

the sequence inside the sum is always positive, and can be minimized if u0
k
⇤ = 0, leading

to a system in which batteries would never be charged. This also allows to say that no other
algorithm’s performance in terms of electricity consumption can be better than u0

k
⇤ = 0,

that will be called Always OFF Algorithm.
On the other hand but analogously, by considering � = 1 the sum becomes:

J (xk)�=1 = lim
N!1

N�1X

k=0

↵
k · I

n
f

⇣
[x0

k � u0
k]

+
⌘
> E0

oT

· p�

k (40)

the sequence inside the sum can be minimized if the following condition is satisfied
f
�
[x0

k � u0
k]

+� E0, in order to satisfy it on as many slots of time as possible there is
nothing to do but to apply the maximum possible rate of charge so u0

k
⇤ = umax, that on

an ON/OFF control it means that all the batteries would always be charging. In this case,
it must be considered that the system evolves according to Eq. (35), but it can be seen
that applying u0

k
⇤ = umax can only reduce the cost for the following state. Again, no other

algorithm will perform better in terms of car losses than using u0
k
⇤ = umax which will be

called Always ON Algorithm.

10.2 Approximate DP (decoupled problem approximation)

The main idea of problem approximation is, as its name suggests, to simplify the original
problem to a simpler one. One of the strategies is to decouple variables that may be coupled
in the original problem to reduce the dimensionality of the whole. For example, ourM -socket
station, could be thought as a set of M single-socket station.

The algorithm in that case would produce, for each socket, a DP lookup table following
the classical DP algorithm. In that case the cost is also decoupled into a vector Jk (x0

k), and
the DP algorithm for each component becomes:

J⇤(i)
k

⇣
x0
k
(i)
⌘
= min

u0
k
(i)

(
E

w�
k
(i)

,!
PV
k

g
(i)
k

✓
x0
k
(i)
,u0

k
(i)
,w�

k
(i)
,
!
PV

k

M

◆
+ J⇤(i)

k+1

✓
f

⇣
[x0

k � u0
k]

+
⌘(i)

◆�)

(41)
Note that in this case, the power coming from the PV is simply distributed uniformly

between each one of the socket, eliminating the possibility of further optimization through
an intelligent distribution of it. In this case, the workflow of the controller would be the
following:

33

Algorithm 6 Decoupled problem approximation.
1. Compute M lookup tables running the DP algorithm for each one of the sockets at the

beginning of the day.

2. At each instant of time k:

(a) Re-order the states computing x0
k = f (xk)

(b) For each socket i:

i. Look in its DP lookup table the optimal control u0(i)
k to apply knowing x0

k
(i)

(c) Compute the controls to apply to each socket by performing uk = f
�1 (u0

k)

10.3 Reinforcement Learning (Multi-agent policy iteration + One
step lookahead + decoupled problem approximation)

One step lookahead strategies are a halfway between simple problem approximation and
solving the complete problem. Since, solving the complete problem is infeasible due to
its dimensionality, these strategies perform an on-line optimization over all the possible
controls to apply, given the current state of the system, and then for the cost-to-go function
use an approximation (potentially through problem approximation). At each time step the
algorithm would compute:

u0
k
⇤ (x0

k) = argmin
u0
k

⇢
E

w�
k,!

PV
k

⇥
gk

�
x0
k,u

0
k,w

�

k,!
PV

k

�⇤
+ eJk

�
x0
k+1

��
(42)

the cost-to-go approximation in Eq. (42) can be computed in several ways as already
introduced in Sec. 6.2.1. Here it is proposed to use the cost-to-go tables obtained by running
the Dynamic Programming at the beginning of the day for the decoupled system, and to
sum the associated cost for each socket as shown in Eq. (43). In this way an approximated
overall cost-to-go of the system is obtained, after applying a control u0

k.

eJk
�
x0
k+1

�
=
X

i

E
w�

k
(i)

J⇤(i)
k+1

✓
f

⇣
[x0

k � u0
k]

+
⌘(i)

◆�
(43)

At each time step, all the possible actions are evaluated starting from the actual state
of the system, which are #u

M possible controls. These kind of algorithms allow to have
“collaboration” between the agents, because for at least one time step the complete problem
is considered. Summarizing, the algorithm would work in the following way:

34

Algorithm 7 One step-lookahead + decoupled problem approximation.
1. Compute M lookup tables running the DP algorithm for each one of the sockets at the

beginning of the day.

2. For each instant of time k:

(a) Re-order the states computing x0
k = f (xk)

(b) Find u0
k minimizing the cost in Eq. (42) by brute-force (this step may take some

time to finish)

(c) Compute the controls to apply to each socket by performing uk = f
�1 (u0

k)

In the previous scenario of having #u = 2 and #M = 20 it would imply at least ⇠ 106

operations for each time step, which are several orders less than solving the complete problem
through Dynamic Programming, but it is too much time consuming yet. In order to further
reduce the search space for the optimal control, in problems like this in which the control
variable is a vector that can be thought as M -agents operating each on its own socket, the
control can be evaluated one at a time. In that case the algorithm would start with a base
policy (for example applying u0

k = 0) and then, minimizing the cost one-agent-at-a-time
instead of all-agents-at-once:

u0
k
⇤ (x0

k) = seq. argmin
u0
k

(
E

w�
k,!

PV
k

⇥
gk

�
x0
k,u

0
k,w

�

k,!
PV

k

�⇤
+
X

i

E
w�

k
(i)

J⇤(i)
k+1

✓
f

⇣
[x0

k � u0
k]

+
⌘(i)

◆�)

(44)
where “seq.” represents the fact that the minimization is performed one component of u0

k

at a time (sequentially). Under this philosophy, the complexity is reduced to #u ·#M = 40
operations, for each iteration of the algorithm, which becomes linear on #u.

35

Algorithm 8 One step-lookahead + Multi-agent policy iteration + decoupled problem
approximation.

1. Compute M lookup tables running the DP algorithm for each one of the sockets at the
beginning of the day.

2. At each instant of time k:

(a) Re-order the states computing x0
k = f (xk)

(b) Initialize the optimal control as u0
k
⇤ := 0

(c) For a number of iterations NIT or until convergence:

i. For each socket i:

A. Find a new u0
k
⇤(i) by minimizing the cost in Eq. (44), where the rest of

the components are kept fixed to u0
k
⇤.

B. Update the component i of the optimal control u0
k
⇤

(d) Compute the controls to apply to each socket by performing uk
⇤ = f

�1 (u0
k
⇤)

10.4 Computational complexity of algorithms

An important aspect on every optimization problem is the computational complexity of the
optimizing algorithm, which gives a clear idea on how the parameters of the system a↵ect
the optimization time. In the following subsection the computational complexity (worst
case) will be computed for each one of the algorithms described so far. In particular, the
on-line computation complexity of each algorithm will be computed, which is the part of the
algorithm that is ran in at the beginning of each slot of time.

10.4.1 Heuristics

Since as exposed on Alg. 4 the heuristic algorithm would try to optimize the scheduling by
exploring the possible values of time for the postponing from 0 to Tmax, then the computa-
tional complexity of the algorithm is the following.

O (M · Tmax) (45)

10.4.2 Approximate Dynamic Programming

By applying Approximate Dynamic Programming (see Alg. 6), there are two main stages,
the first one in which the batteries states are sorted, and the second one in which for each
socket the control policy is retrieved from the control table.

O (M · log (M) +M) = O (M · log (M)) (46)

36

10.4.3 Reinforcement Learning

After ordering the state of batteries, the RL algorithm would explore the control space for
each socket (see Alg. 8). For each battery, for each possible control to apply, the future
states are reordered and the cost-to-go is computed from the DP tables. The computational
complexity becomes the following:

O (M · log (M) +NIT ·M ·#u · (M · log (M) +M)) = O
�
M

2 ·NIT ·#u · log (M)
�

(47)

37

Part IV

Results
In this section the results of implementing both the ADP algorithm and the RL algorithm
will be shown. Firstly, the DP output tables will be shown since both the ADP and RL
algorithm depend on them, and then the impacts of both ↵ and � on the performance on the
algorithm will be presented. After presenting the behavior of the control tables coming from
DP, the performances for the Heuristic, the ADP and the RL algorithms will be presented
in Sec. 12.1, with also in Sec. 13, their performance in terms of other indicators that were
identified as secondary.

Each algorithm has access to the state of the system xk which is the discrete variable for
the lack of energy on each battery, and it was set to has 100 possible states, so it directly
represents the percentile lack of energy with respect to fully charged battery of capacity C.
The discrete time basis was selected to be �t = 5min. All through this work the system
has a number of sockets that is M = 20 as in the work presented by previous researchers.
Batteries are charged until a maximum value of 0.9 · C, so every socket is turned o↵ once
the state of the battery reaches xk = E0 = 0.1 · C.

All the statistical results computed in this Section were obtained by simulating the BSS
through the first two weeks of the year. Only the final result presented in Sec. 14 was
computed through a complete year since simulating the RL performance is time consuming.

11 Dynamic Programming control tables

The output of the DP Algorithm are two tables: the control table and the cost-to-go table.
The first one indicates the optimal control to apply u

⇤
k
(xk) at a given time and at a given

state (k, xk), while the latter, for the same state variable indicates the cost-to-go function
value J

⇤
k
(xk). The algorithm runs backwards in time taking as input the information for

the arrival rate for cars, the expected production of solar energy, and the cost for electrical
energy from the grid in an hourly basis. Fig. 14 shows for example the input curves for a
specific day over the year.

38

0 50 100 150 200 250 300
k

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

V
al
ue
s

Arrival rate

Grid energy price

PV power production

Figure 14: Normalized input curves for the fifth most charged battery.

11.1 Control and cost tables

The following tables were produced for the fifth most charged battery, with the hyperpa-
rameters ↵ = 0.9 and � = 0.9. It can be seen how the control table presents a very complex
behavior, with di↵erent holes for the scheduling of the battery for certain values of (k, xk).
These output tables were generated taking as input the curves shown at Fig. 14. From
input curves it can be seen that cars may potentially arrive during three main moments of
the day, this generates an increment in the cost-to-go function values, specially for low levels
of charge. On the control table, it can be seen that a battery at low level starts its charging
cycle at around k = 50 preparing it for the arrival rate peak at k = 100.

39

0 50 100 150 200 250
k

0

20

40

60

80

x
k

ON

OFF

Figure 15: Control table obtained through Finite-Horizon DP Algorithm for the fifth most
charged battery with ↵ = 0.9 and � = 0.9.

0 50 100 150 200 250
k

0

20

40

60

80

x
k

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 16: Cost-to-go values table obtained through Finite-Horizon DP Algorithm for the
fifth most charged battery with ↵ = 0.9 and � = 0.9.

11.2 Impacts of ↵ on DP tables

Hyper-parameter ↵ as initially shown in Eq. (4.3.1), regulates the “visibility” of the DP
algorithm. As ↵ ! 1 the algorithm weights more heavily step cost-function values for future
time steps. Its impact can better be seen on the cost-to-go value table computed by DP as
shown in Fig. 17. It can be seen how for great values of ↵, the cost-to-go function assumes
larger values (see the scale reference on each plot), and how accumulation starts at earlier
values of time k. In this work it was selected to have a value of ↵ = 0.9, which gives a
visibility for the algorithm (assuming that once ↵

k = 0.1 it can be neglected) of about:

kH = log
↵
(0.1) ⇡ 22 (48)

40

with a time step of �t = 5min, it means that the algorithm has a visibility of about
tH = �t · kH = 109min, so nearly 2 hours of visibility, which is the recharging time for a
battery.

0 50 100 150 200 250
k

0

20

40

60

80

x
k

0.000

0.005

0.010

0.015

0.020

0.025

0 50 100 150 200 250
k

0

20

40

60

80

x
k

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Figure 17: Cost-to-go tables obtained through Finite-Horizon DP Algorithm for di↵erent
values of ↵. From top to bottom ↵ = 0.95 and ↵ = 0.5. It can be seen how as ↵ varies
from 1 to 0, the visibility of the algorithm decreases and the cost-to-go function takes more
concentrated values.

11.3 Impacts of � on DP tables

Hyper-parameter � regulates the trade-o↵ between buying the needed electrical energy from
the grid, and losing cars in the system. In Fig. 18 it can be seen how as � ! 1, on the cost
function the probability of losing a car becomes heavier, so the algorithm tends to charge
the battery mostly always, while as � ! 0 the algorithm prioritizes not buying energy from
the grid, so it turns on the sockets only when the solar energy is available.

41

0 50 100 150 200 250
k

0

20

40

60

80

x
k

ON

OFF

0 50 100 150 200 250
k

0

20

40

60

80

x
k

ON

OFF

Figure 18: Control tables obtained through Finite-Horizon DP Algorithm for di↵erent values
of �. From top to bottom � = 0.9 and � = 0.2. It can be seen how as � varies from 0 to 1,
the number of sates in which the socket is turned on decreases.

11.4 Problems with Finite-Horizon DP

The DP Algorithm solves the optimization problem starting at k = N that in this case is
the end of the day. In order to run the algorithm the starting condition which is gN (xk)
must be known for each possible final state xk. In the system, it was set gN (xk) = 0 since
it was not assigned a particular cost for the state of the battery by the end of the day, but
this introduces some problems. Since the final cost is zero, as the end of the day approaches,
some batteries will not be charged because they will not be able to arrive to E0. This can be
seen clearly on Fig. 19 in which output tables were generated with � = 1 which corresponds
to the Always ON algorithm.

To overcome this problem, a value iteration approach was used and its impacts are shown
in Sec. 11.5.

42

0 50 100 150 200 250
k

0

20

40

60

80

x
k

0

1

2

3

4

5

6

0 50 100 150 200 250
k

0

20

40

60

80

x
k

ON

OFF

Figure 19: Cost-to-go and control table obtained through Finite-Horizon DP Algorithm for
di↵erent values for ↵ = 0.9 and � = 1.

11.5 Value iteration tables

To overcome the boundary conditions e↵ect of Finite-Horizon DP, value iteration was used.
This also has an actual interpretation on the optimization problem, considering a time
horizon on the system in senseless since it has to operate every day of the year. The BSS
is a continuous system that has to operate every day, so using value iteration for computing
DP control and cost-to-go tables is as solving the problem for a system in which every day
has the same input curves. This is to say that at the beginning of each day, input curves are
interpreted as stationary.

In Fig. 20 it can be observed how cost-to-go values are all non-zero, and that values at
k = 0 are the same that are present at k = N . Also the control table does not present the
boundary e↵ect that was present in Fig. 19 for Finite-Horizon DP, and the control table
presents also the same control policy at the beginning of the day and at the end of the day.

43

0 50 100 150 200 250
k

0

20

40

60

80

x
k

1

2

3

4

5

6

0 50 100 150 200 250
k

0

20

40

60

80

x
k

ON

OFF

Figure 20: Cost-to-go and control table obtained through Infinite-Horizon DP Algorithm
(through value iteration) for di↵erent values for ↵ = 0.9 and � = 1.

12 Impacts of � on KPIs

Hyper-parameter � allows to tune the weight to give to the trade-o↵ between paying elec-
tricity from the grid, or accepting to lose client cars. Fig. 21 shows the normalization
against Always ON and Always OFF Algorithms of the performance of the ADP algorithm
by varying �. It is clear that when � = 0, the only cost that is taken into account is the
electricity cost, so an Always OFF algorithm is applied, this minimizes the grid cost (it is
actually zero), but maximizes the loss of cars. On the other hand, by setting � = 1, an
Always ON algorithm is applied maximizing electricity costs and minimizing car losses. In
the way between � = 1 and � = 0, the algorithm follows a trajectory that allows to choose
the working point to use.

44

0.0 0.2 0.4 0.6 0.8 1.0
�

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

K
P
I

Mean grid cost

Mean losses

Figure 21: Infinite Horizon DP Algorithm performances by varying �. KPI are normalized
with respect to the performances of Always ON and Always OFF algorithms.

12.1 Algorithms comparison

Since the interpretation and usage of � is di↵erent on each algorithm, plotting di↵erent
algorithms together as done in Fig. 21 is not useful. Instead, as described in Sec. 8.1, the
best way to compare the performance of algorithms is by plotting the normalized cost-losses
diagram. This diagram has two advantages, on one side it makes the representation of the
performance of the algorithms independent from the particular values of �, while on the
other side it allows to have a normalized representation of performances with respect to
the quotas imposed by Always ON and Always OFF algorithm. These features make this
diagram really useful when benchmarking di↵erent control algorithms.

In Fig. 22 the performance for the Heuristics, the ADP and the RL algorithm are
presented.

45

0.0 0.2 0.4 0.6 0.8 1.0
Normalized mean losses

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

m
ea
n
gr
id

co
st

RL ↵@0.9

DP ↵@0.9

Heuristics

Always ON

Always OFF

Figure 22: Performances of di↵erent algorithms by varying �.

Hyper-parameter � can be set in any value from 0 to 1, but actually the most interesting
working zone is the one near the Always ON performance. Even if there is a natural trade-
o↵ between electricity costs and car losses, the BSS must guarantee users that an charged
battery is available almost always, otherwise the system would not be used by clients. This
means that the algorithm will be set to work with values � ⇠ 1. If Fig. 22 is zoomed in near
the point (0, 1) which represents the Always ON performance, algorithms performance can
be compared by analyzing the rate of change of the normalized electricity cost, with respect
to the normalized car losses. In Fig. 23, algorithms performance are shown with the best
fitting line passing through (0, 1), showing that RL is the best algorithm to use.

46

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Normalized mean losses

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

m
ea
n
gr
id

co
st

RL ↵@0.9

DP ↵@0.9

Heuristics

Always ON

Figure 23: Performances by varying � zoomed to the working zone of interest (near to Always
ON performance).

Since as explained above algorithms can be compared through the best fitting line passing
through (0, 1), the following tables show the angular coe�cient for each algorithm.

Control algorithm m

Heuristics �1.58
Dynamic Programming �1.98
Reinforcement Learning �2.10

Table 3: Angular coe�cient for the best-fitting line passing through (0, 1), to the performance
points for di↵erent algorithms while varying their � value.

13 Beyond KPIs

This sub-section introduces other performance indicators beyond the ones used by control
algorithms. There is a price to pay in order to have a better performance system and for
the Reinforcement Learning algorithm they turn to be the number of switching on and o↵
of the sockets during the recharging cycle of batteries, and the amount of time needed to
compute decisions.

47

13.1 Batteries time on the system

An interesting metric of the system is the mean time of a battery in the system. Since as
ADP and RL algorithms order batteries according to the state of charge, one could ask if this
incur on having batteries on the system for too much time. Fig. 24 shows the Probability
Density Function (PDF) for the time on the system for each algorithm. It can be seen that
actually RL Algorithm is the one that has the shortest tail, followed by the DP Algorithm
and the Heuristics.

200 400 600 800 1000

t [m]

10�4

10�3

10�2

P

PDF for batteries time on the system

RL ↵@0.9,�@0.99

DP ↵@0.9,�@0.9

Heuristics

Figure 24: Probability Density Function (PDF) for the time of batteries on the system.

In Table 4 there are some statistics for the simulation performed. As expected from
analyzing Fig. 24, the Reinforcement Learning is the one with shortest expected value for
the times of batteries in the system, with a maximum value of 645 minutes (about 14 hours),
while the Heuristic algorithm could take as long as 1145 minutes (19 hours) to fully recharge
a battery.

48

Control algorithm E (T) [m] max (T) [m]

Heuristics 209 1145
Dynamic Programming 137 916
Reinforcement Learning 135 845

Table 4: Statistics for the time of batteries in the system.

13.2 Number of times charging is resumed

An important performance metric is the number of times that charging is resumed during
the recharging cycle of a battery in the system. Switching o↵ and on the socket during the
battery recharging may a↵ect and have negative impacts on the battery life. Fig. 25 shows
the Probability Density Function for the number of time charging is resumed during the
permanence of the battery in the system and it shows that the Heuristics algorithm has the
less number of socket switching while RL is the one that can arrive to a maximum number
of switchings of 8. This is mainly the price to pay in order to have a dynamic scheduling
algorithm.

1 2 3 4 5 6 7 8
Number of resumes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P

PDF for number of charging resumings

RL ↵@0.9,�@0.99

DP ↵@0.9,�@0.9

Heuristics

Figure 25: Probability Density Function (PDF) for the number of times that the charging
is resumed/restarted during the time in which the battery is on the system.

49

In Table 5 there are some statistics for the simulation performed. As expected from
analyzing Fig. 25, the Reinforcement Learning is the one with largest expected value for the
number of charging times, with a maximum value of 9, while the Heuristic algorithm which
is much less reactive has a maximum number of charging resumes of 3.

Control algorithm E (NC) [m] max (NC) [m]

Heuristics 1.40 3
Dynamic Programming 1.48 7
Reinforcement Learning 1.89 9

Table 5: Statistics for the time of batteries in the system.

13.3 Computational time

Computational time of complex algorithms tends to be greater with respect to simpler ones.
In particular the computational complexity (worst case) was already computed for these
algorithms in Sec. 10.4 showing that the time for RL is the greatest. In particular Table 6
shows the mean execution time for each one of the algorithms and it turns out that RL is
the most time consuming one. Here however, the actual important aspect is the execution
time to be less than �t = 5min which is the discrete time step of the system. It is clear
that even if RL is the most time consuming algorithm it is in any case usable in a real time
system.

Control algorithm E (T) [ms]

Heuristics 21.0 · 10�3

Dynamic Programming 33.7 · 10�3

Reinforcement Learning 189.4

Table 6: Statistics for the decision making time for each algorithm during the online run.

14 A study case

A one year-long simulation was done in order to better compare the performance improve-
ment introduced by the Reinforcement Learning algorithm with respect to the Heuristics one.
In particular, for the Reinforcement Learning algorithms, hyper-parameters were tuned to
be ↵ = 0.9 and � = 0.99. The control hyperparameters of the Heuristics algorithm were set
to Fmax = 17 (maximum number of concurrent postponable batteries), and Tmax = 40 hours
(maximum postponable time for batteries).

50

Control algorithm
Improvement

Metric (Mean daily values) Heuristic Reinforcement Learning

Arrivals [n] 137.32 137.32 N.A.
Losses [n] 4.25 3.34 -21.4%

Cost per service [€] 0.411 0.391 -4.86%
Grid consumption [Wh] 8.64 · 105 8.62 · 105 -0.23%
PV energy sold [€] 15.85 16.01 +1.01%

Table 7: Statistics for the decision making time for each algorithm during the online run.

From Table 7, it can be seen how all the metrics are improved through Reinforcement
Learning. The value of � = 0.99 was tuned to match the same level of electricity consumption
from the grid of the Heuristic algorithm. For both the Heuristic and RL algorithms the losses
are below 3%, the improvement introduced by the Reinforcement Learning is of about 21.4%
for car losses and of 4.86% in terms of costs per service, showing that the algorithm is capable
to use in a more intelligent way the electrical energy bought from the Smart Grid.

51

Part V

Conclusions
The previous parts have shown the historical context in which this research is being held,
and presented the principle of work of a Battery Swapping Station, particularly focusing on
a BSS embedded in a Smart Grid and provided with local solar energy generation. It was ex-
plained the mathematical background needed to design and implement control (scheduling)
algorithms for the BSS. In particular, two algorithms based on Approximate Dynamic Pro-
gramming and Reinforcement Learning were introduced, designed, implemented and tested.
This Part will present the conclusions of the work, what has been done so far and what there
is to do yet.

15 Improvements introduced by this work and next
steps

Starting from a simulator that was already developed by previous researchers, this work
aimed at designing, implementing, and testing control algorithms for the scheduling of a
Battery Swapping Station. The initial objectives set at Sec. 3 were achieved and in particular
this work contributed to this research on the following aspects:

• Formalize the recharge scheduling of batteries as a mathematical optimiza-
tion problem: a Markovian Decision Problem for theM -socket station was introduced
in Sec. 10. This general model could be also expanded introducing future considera-
tions in the step cost-function, or in the evolution of the system.

• Design and implement an adaptive algorithm: two algorithms were proposed,
implemented and tested based on Approximate Dynamic Programming (Sec. 10.2) and
Reinforcement Learning (Sec. 10.3), being able to adapt to the stochastical nature of
the system and to consider the forecasts for the changing electrical costs, cars arrival
rates, and PV energy production.

• Improvement of performance: the proposed algorithms were implemented and
tested, introducing an improvement in terms of Key Performance Indicator (KPI) with
respect to the previous existing Heuristic algorithm (Sec. 14). It was shown that on
a particular case the RL algorithm could improve losses of about 20% when the same
electrical energy is being bought from the grid, and to improve the cost per service by
about 5%.

• Controlling the working point of the system through hyper-parameters: the
Markovian Decision Process that models the evolution of the system considers a step

52

cost-function in Eq. (36) that has an hyper-parameter � that allows to weight di↵er-
ently electrical energy costs and losses, enabling engineers to fine-tune the algorithm
according to business needs.

• Introduce a benchmarking mechanism for future developments: a method for
benchmarking algorithms in terms of electrical cost and car losses was introduced, en-
abling future researchers to objectively compare the performance of di↵erent scheduling
algorithms (Sec. 8.1 and Sec. 12.1).

15.1 Possible next steps

Even if several improvements were introduced, there are a lot of directions towards which this
research may continue its path. Hereunder some weak points, and potential improvements
are listed:

• Use external estimations for solar energy, arrival rates, and electricity cost
prices: both ADP and RL algorithms are based on DP tables that are computed at
the beginning of the day. When running the DP algorithm, the agent is using the
exact same information that is used by the simulator to then run the system. This
means that the Agent has perfect information of the stochastical nature of the external
variables. One improvement for this research could be to give as input to algorithms
information about the external variables from external sources of information to have
more realistic results.

• Reduce computational complexity of algorithms: since the system is composed
by M sockets, at each time step k of the day, the algorithm tries to optimize the
control strategy for each of them with computational complexities that are expressed
in Eq. (46) and Eq. (47). They may be too time consuming if one aims at comparing
algorithms performances on a multi-year basis, so an improvement could be to explore
di↵erent strategies for further reducing the exploration of the control space to reduce
execution times.

• Explore model-free approaches: both ADP and RL algorithms are based on DP
tables that are computed through a mathematical model of the system at the beginning
of the day. Since it is not possible to compute a DP table for the whole system due to
its complexity, in this work the problem was decomposed in M simpler problems for
which DP becomes feasible. In order to overcome this limitation, di↵erent model-free
approaches could be used. Model-free approaches do not rely on a DP table that is
precomputed based on a mathematical model, but instead, they automatically “learn”
a model for the system by interacting directly with it and storing this information on
Q-tables or parametrical models like Neural Networks.

• Expanding cost function with new metrics: instead of using the Key Performance
Indicators (KPI) used in this work which were only electrical cost and car losses, the

53

cost function may be expanded to consider other indicators that may be of extreme
importance, for example to preserve the health of batteries on the long run. In that
case the cost function may have multiple hyper-parameters to construct a step-cost
function that may be written as:

gk =
X

i

�i · Performance Indicatori (49)

X

i

�i = 1 (50)

• Allow the BSS to modulate charging rates: this work focused on just scheduling
the charging of batteries, or in other words to simply apply an on/o↵ control signal
to the system. If there was the possibility to have smart sockets able to modulate the
power sent to batteries then a more sophisticated optimization may be done, introduc-
ing the possibility to charge batteries at di↵erent rates. The DP algorithm implemented
on this work is already predisposed to do such an optimization. In Fig. 26 it is possible
to se how a control table for a system with 3 possible charging levels looks like.

0 50 100 150 200 250
k

0

20

40

60

80

x
k

umax

0.5 · umax

OFF

Figure 26: Control table obtained through Infinite-Horizon DP Algorithm for the fifth most
charged battery with ↵ = 0.9 and � = 0.9 with two levels of charging power.

16 Final comments

As changes in the environment become more evident year after year, preoccupations and
concerns about global warming are raising not only from scientific and economical actors
but actually from the whole society. This work has presented di↵erent algorithms that may
contribute to the usage of renewable energies within an Electric Vehicle recharging station.
Starting from Dynamic Programming, di↵erent strategies were explored arriving to an opti-
mal algorithm based on Reinforcement Learning. The results obtained are satisfactory since

54

they introduce an improvement in terms of performance of the system with respect to the
previous controller. Also some ideas were introduced that may contribute to benchmarking
future algorithms.

Reinforcement Learning is an emerging field that proposes di↵erent strategies for con-
trolling stochastic and complex dynamical systems. Most approaches of RL are based on
exploring the control space in search of the optimal control strategy, allowing the system to
make decisions in a real-time basis without supervision. This implies a shift from a clas-
sical control theory in which a clear model of the system is available and solutions may
be computed analytically, to a new Artificial Intelligence-driven one in which decisions are
made based on cost functions without human intervention. About this last point a final
reflection may be of interest, introduced by Prof. Dimitri Bertsekas in the Preface to his
last book “Reinforcement Learning and Optimal Control” referring to the AI-driven chess
player AlphaZero [14]:

“What is frustrating about machine learning, however, is that the algorithms can’t articu-

late what they’re thinking. (...) AlphaZero gives every appearance of having discovered some

important principles about chess, but it can’t share that understanding with us. Not yet, at

least. As human beings, we want more than answers. We want insight. This is going to be

a source of tension in our interactions with computers from now on”.

55

References

[1] European response to climate change. URL: https://www.europarl.europa.eu
/news/en/headlines/society/20180703STO07129/eu-responses-to-climate-change

[2] Warmest year record in Europe. URL: https://climate.copernicus.eu/copernicus-2020-
warmest-year-record-europe-globally-2020-ties-2016-warmest-year-recorded

[3] Sources of Greenhouse Gas Emissions. URL: https://www.epa.gov/ghgemissions/sources-
greenhouse-gas-emissions#:˜:text=Greenhouse%20gas%20emissions%20from%20
transportation,includes%20primarily%20gasoline%20and%20diesel

[4] Total greenhouse gas emission trends and projections in Europe. URL:
https://www.eea.europa.eu/ims/total-greenhouse-gas-emission-trends

[5] Greenhouse gases viewer. URL: https://www.eea.europa.eu/data-and-maps/data/data-
viewers/greenhouse-gases-viewer

[6] European Climate Law. URL: https://climate.ec.europa.eu/eu-action/european-green-
deal/european-climate-law en

[7] Transport and the Green Deal. URL: https://ec.europa.eu/info/strategy/priorities-2019-
2024/european-green-deal/transport-and-green-deal en#actions

[8] EU approves e↵ective ban on new fossil fuel cars from 2035. URL:
https://www.reuters.com/markets/europe/eu-approves-e↵ective-ban-new-fossil-fuel-
cars-2035-2022-10-27/

[9] Horizon Europe. URL: https://research-and-innovation.ec.europa.eu/funding/funding-
opportunities/funding-programmes-and-open-calls/horizon-europe en

[10] MOVE, “Sustainable & Smart Mobility Strategy”, European Comission, 2020.

[11] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper, “A Survey on Smart Grid Communi-
cation Infrastructures: Motivations, Requirements and Challenges”, IEEE Communica-
tions Surveys & Tutorials, Vol. 15, No. 1, 2013, DOI: 10.1109/SURV.2012.021312.00034.

[12] R. Deng, Z. Yang, M. -Y. Chow and J. Chen, "A Survey on Demand Response in
Smart Grids: Mathematical Models and Approaches", IEEE Transactions on Industrial
Informatics, vol. 11, no. 3, pp. 570-582, 2015, DOI: 10.1109/TII.2015.2414719.

[13] J. S. Vardakas, N. Zorba and C. V. Verikoukis, "A Survey on Demand Response Pro-
grams in Smart Grids: Pricing Methods and Optimization Algorithms" in IEEE Com-
munications Surveys & Tutorials, vol. 17, no. 1, pp. 152-178, Firstquarter 2015, DOI:
10.1109/COMST.2014.2341586.

56

[14] D. Bertsekas, “Reinforcement Learning and Optimal Control”. United States: Athena
Scientific, pp. 1-20, 2019, ISBN: 978-1-886529-39-7.

[15] D. Bertsekas, "Lessons from AlphaZero for optimal, model predictive, and adaptive
control"”. United States: Athena Scientific, 2022, ISBN: 1-886529-17-5.

[16] Gogoro: Swap&Go. URL: https://www.gogoro.com/?utm source=google&utm medium
=cpc&utm campaign=bb brand generic&gclid=Cj0KCQiAg KbBhDLARIsANx7wAxF
8kIg6-YHOzvcZv22kVIBzuxUd8zWGkOyABOiEmgfgWorU RCbB0aAiuVEALw wcB

[17] K. Tahara, K. Ishikawa and M. Ishigaki, "Battery as a Service for Electric Vehicles:
Design and Optimization of Partially Swappable and Shareable Battery System" 2020
IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp.
1-8, 2020, DOI: 10.1109/ITSC45102.2020.9294582

[18] C. Zhu, J. Xu, K. Liu and X. Li, "Feasibility analysis of transportation battery second
life used in backup power for communication base station" 2017 IEEE Transportation
Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), pp. 1-4, 2017,
DOI: 10.1109/ITEC-AP.2017.8080810.

[19] E. Martinez-Laserna et al., "Technical Viability of Battery Second Life: A Study From
the Ageing Perspective" in IEEE Transactions on Industry Applications, vol. 54, no. 3,
pp. 2703-2713, 2018, DOI: 10.1109/TIA.2018.2801262.

[20] E. Hossain, D. Murtaugh, J. Mody, H. M. R. Faruque, M. S. Haque Sunny and N.
Mohammad, "A Comprehensive Review on Second-Life Batteries: Current State, Man-
ufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Busi-
ness Strategies, and Policies" in IEEE Access, vol. 7, pp. 73215-73252, 2019, DOI:
10.1109/ACCESS.2019.2917859.

[21] D. Bertsekas, “Dynamic Programming and Optimal Control”, Athena Scientific, volume
I, pp. 12-14, 402-417, 2005, ISBN: 1-886529-26-4.

[22] V. François-Lavet, “An Introduction to Deep Reinforcement Learning”, NOW, vol. 1,
no. 3-4, pp. 46-52, 2018, DOI: 10.1561/2200000071

[23] D. Bertsekas, "Multiagent Reinforcement Learning: Rollout and Policy Iteration"
in IEEE/CAA Journal of Automatica Sinica, Vol. 8, pp. 249-271, 2021, DOI:
10.1109/JAS.2021.1003814.

[24] R. Monti, “Analysis and Dimensioning of Battery Switching Stations”, Politecnico di
Torino, 2019, URI: http://webthesis.biblio.polito.it/id/eprint/13086

[25] G. Centonze, “Smart Recharging of Electrical Vehicles with Battery Switching Technol-
ogy”, Politecnico di Torino, 2021, URI: http://webthesis.biblio.polito.it/id/eprint/21281

57

