
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Integration of Matlab-based controllers
with ROS for autonomous agricultural

vehicles

Supervisors

Ing. Fabrizio DABBENE

Dott.ssa Martina MAMMARELLA

Dott. Antonio PETITTI

Candidate

Gerardo DETTA

DECEMBER 2022

Summary

In agriculture automation, Robot Operating System (ROS) is one of the platforms
mainly used for robot software development, thanks to its capability of integration
with other tools. In particular, ROS offers the versatility of implementing control
algorithms in different programming languages. The traditional approach is to use
directly Python or C++. In this work, the integration between ROS and Matlab
has been investigated, to explore the possibility to combine the potentialities of both
environments: versatility and re-usability of ROS, and richness of tools, especially in
control systems, for Matlab. In particular, this thesis focuses on the comparison of
control performance for an autonomous ground vehicle achieved implementing the
same control laws, i.e. a PID and a LQR, using different programming languages.
In details, C++, Python, Matlab, and C++ obtained from Matlab coder have
been investigated, comparing their performance in terms con trajectory tracking
and execution time. As simulation environment, the Gazebo simulator, integrated
with ROS, has been exploited. The results suggest that Matlab tools and support
functions add a great contribution to ROS, simplifying the controller development
and also helping to get a better optimized code. Moreover, using C++-compiled
Matlab code also allows to significantly reduce the computational burden.

ii

Acknowledgements

I would first of all thank my thesis supervisors Ing. Fabrizio Dabbene, Dr.ssa
Martina Mammarella and Dott. Antonio Petitti for the great opportunity to work
on these topics, the continuous support and understanding in the most difficult
moments.

I’m extremely grateful to my family, my parents, my brother Antonio, my
grandparents, my aunts and uncles, for supporting me during these years and never
making me miss anything. I remember five years ago, getting on the train to Turin
for the first time, with suitcases full of food, jars, fears and hopes. Now a first
milestone has been reached, but it is only the start. However, I have more certain-
ties than in the past, because I know that I will always bring with me your teachings.

I would like to thank my long friends, particularly Michele, Antonio and Italo,
who have been physically far, but have always supported me.

This endeavor would not have been possible without the family of (S)Quarto
Piano, that welcomed me when I moved to Turin, and has become a second home
for me. Living in this dynamic environment gives me serenity, being able to focus
on the studies, but also encouraged me to grow, learning from many interesting
people.

I do not want to forget also all the other people met in Turin during these 5
years, they too have become part of my life, and helped me to become what I am
now.

“Learn from yesterday, live for today, hope for tomorrow. The important thing is
not to stop questioning”

Albert Einstein

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 Mobile robots in agriculture . 1
1.2 Thesis goals and objectives . 2
1.3 Thesis organization . 3

2 Theoretical background 4
2.1 Mathematical model . 5

2.1.1 Differential-Drive Model . 5
2.1.2 Unicycle Model . 7
2.1.3 Unicycle model linearization 8
2.1.4 Discrete time analysis . 8
2.1.5 Controllability . 9

2.2 PID Controller . 10
2.2.1 Introduction to PID Controllers 10
2.2.2 PID architecture . 11

2.3 LQR Controller . 14
2.3.1 Introduction to LQR Controllers 14
2.3.2 Solution of LQR problem . 15
2.3.3 LQR architecture . 17

3 ROS manual 18
3.1 ROS introduction . 18
3.2 ROS architecture . 19
3.3 Gazebo introduction . 21
3.4 ROS setup . 23

v

3.5 Integration between ROS and Gazebo 26
3.6 Integration between ROS and Matlab 28
3.7 C++ code generation with Matlab Coder 31
3.8 Data visualization . 32
3.9 Controller node structure . 32

4 Simulations 34
4.1 Reference trajectories . 34

4.1.1 Straight line trajectory . 36
4.1.2 Sinusoidal trajectory . 38
4.1.3 PID and LQR parameters tuning 39

4.2 PID tuning . 40
4.3 Simulation results . 42

4.3.1 Straight line trajectory, with θ = π/4 rad and controlled
with a PID . 42

4.3.2 Straight line trajectory, with θ = π/4 rad and controlled
with a LQR . 45

4.3.3 Straight line trajectory, with θ = 0 rad and controlled with
a PID . 48

4.3.4 Straight line trajectory, with θ = 0 rad and controlled with
a LQR . 50

4.3.5 Sinusoidal trajectory, controlled with a PID 51
4.3.6 Sinusoidal trajectory, controlled with a LQR 53
4.3.7 Final analysis . 56

5 Conclusion and future work 58

A ROS Manual files 60
A.0.1 Launch file example . 60
A.0.2 Message file example . 60
A.0.3 Matlab launcher icon.

Content of file "matlab_r2022a.desktop" 61

vi

List of Tables

4.1 Table of PID coefficients chosen for each trajectory 40
4.2 Table of LQR weights chosen for each trajectory 42
4.3 Table of mean and variance of tracking error 56
4.4 Table of execution time, with mean, minimum and maximum values 57

vii

List of Figures

2.1 Symbols for differential-drive model 5
2.2 Control configuration of PID controller 11
2.3 Control configuration of LQR controller 17

3.1 ROS graph structure . 21
3.2 ROS graph structure (for server) 21
3.3 Example of rqt_graph output . 22
3.4 TurtleBot waffle - Image from [42] 26
3.5 TurtleBot3 Waffle in Gazebo Empty_world 27
3.6 Waffle in movement along straight trajectory 29
3.7 Integration between Matlab and ROS. Image from [43] 30
3.8 Matlab Coder settings . 31
3.9 Control node flowchart . 33
3.10 ROS graph for the simulation setup 33

4.1 Tangential and angular velocity . 36
4.2 Straight reference trajectory, with aligned initial orientation 37
4.3 Straight reference trajectory, with non-aligned initial orientation . 38
4.4 Sinusoidal reference trajectory . 39
4.5 In order: Reference direction, Reference linear velocity, Reference

angular velocity for sinusoidal trajectory 39
4.6 Simulink implementation of LQR controller 41
4.7 Straight, π/4 rad, PID: trajectory 43
4.8 Straight, π/4 rad, PID: Tracking error 44
4.9 Straight, π/4 rad, PID: Linear and angular velocity commands . . 44
4.10 Straight, π/4 rad, PID: execution time 45
4.11 Straight, π/4 rad, LQR: trajectory 46
4.12 Straight, π/4 rad, LQR: tracking error 46
4.13 Straight, π/4 rad, LQR: Linear and angular velocity commands . . 47
4.14 Straight, π/4 rad , LQR: execution time 47
4.15 Straight, 0 rad, PID: trajectory . 48

viii

4.16 Straight, 0 rad, PID: tracking error 49
4.17 Straight, 0 rad°, PID: Linear and angular velocity commands 49
4.18 Straight, 0 rad, PID: execution time 50
4.19 Straight, 0 rad, LQR:trajectory . 50
4.20 Straight, 0 rad, LQR: tracking error 51
4.21 Straight, 0 rad, LQR: Linear and angular velocity command 51
4.22 Straight, 0 rad, LQR: execution time 52
4.23 Sinusoidal, PID: trajectory . 52
4.24 Sinusoidal, PID: tracking error . 53
4.25 Sinusoidal, PID: Linear and angular velocity command 53
4.26 Sinusoidal, PID:: execution time . 54
4.27 Sinusoidal, LQR: trajectory . 54
4.28 Sinusoidal, LQR: tracking error . 55
4.29 Sinusoidal, LQR: Linear and angular velocity command 55
4.30 Sinusoidal, LQR: execution time . 56

ix

Acronyms

ROS Robotic Operating System

PID Proportional Integral Derivative

LQR Linear Quadratic Regulator

UGV Unmanned Ground Vehicle

DDMR Differential Drive Mobile Robot

RDE Robotic Development Environment

CoG Center of Gravity

MIMO Multiple-Input Multiple-Output

ODE Open Dynamic Engine

URDF Unified Robotic Description Format

SDF Simulation Description Format

LTS long-term Support

xi

Chapter 1

Introduction

1.1 Mobile robots in agriculture

In recent years there has been an increasing trend in the usage of autonomous
robots in agriculture. Several reasons are behind the evolution of agricultural
work, i.e. the growth of global population, that caused an increment of produc-
tion levels of primary goods, the reduction of human impact on environment,
with the necessity of maximising the harvest using smaller portion of land, the
reduction of pesticides usage or the lack of workers in this sector, as described in [1].

Autonomous robots can represent a solution to these problems thanks to their
potential in terms of repeatability, accuracy and durability, as reported in [2], being
able of increasing the production efficiency, improving its quality and reducing the
production time.

The most common autonomous robots for agriculture purposes are the Unmanned
Ground Vehicles (UGV) that are used to move within fields and performing farming
tasks along the route, i.e. harvesting, weeding, disease detection and seeding, as
explained in [3]. From these examples it can be deduce that path tracking is one of
the main functionalities to be provided by UGVs in agriculture.

However, robot’s potential in agriculture is not yet fully exploited, since there
are serious challenges to overcome, i.e. agriculture environment not well structured,
low grip conditions, problems in sensor data acquisition and localization, that cause
low accuracy in estimating the orientation and speed of the vehicle. This limits
their usage in high-precision tasks and also in human-machine interaction, due
to safety reasons. Trying to solve these issues with conventional methods is not
suitable in most of the cases, since it requires high technological knowledge and

1

Introduction

high costs.

Some Robotic Development Environments (RDE) have been proposed to poten-
tially solve these problems, as stated in [4] and [5]. The Robot Operating System
(ROS) is one of the most popular one, thanks to its many great features, such as
distributed computing, software sharing and reusability, hardware support and
integration with other platforms. ROS gives the opportunity to use a vastness of
libraries of open-source software regarding the main fields of robotic research, like
navigation, control and sensor data processing, so it provides a source of knowledge
based on past experience, and solutions to common problems, that can be shared,
without "reinventing the wheel each time". This allows to provide a reliable and
cost-effective solution to the agriculture automation challenges.

It is possible to find in literature some examples of ROS integration in agricultural
robotics, like the results of CROPS project [6] reported in [5], which aims at
developing robots for agriculture and forestry use. In this project, most of software
development has been carried out in ROS, using C++ as programming language,
and it has been used for many subsystems, like sensing, perception, and mission
control. One problem emerging by the usage of ROS is that it is not a real-time
framework, while for robot motion, is very common to use real time systems. There
are many approaches to integrate real time processes with ROS, and the solution
chosen for the CROPS project is a real-time control unit, running the commercial
operating system xPC Target [7], integrated with Matlab/Simulink, that handles
control and low-level communication with robot’s actuators. It communicates with
ROS using the Matlab integration, thanks to the ROS Toolbox [8], that is fully
supported and with good documentation.

Another good reason for integrating ROS with Matlab is the richness of tools in
data processing and control system design that the latter provides, and that allows
to simplify the robotic system design. In [9] also another advantage of the ROS
Toolbox has been analysed, that is the implementation of a ROS node directly
inside the Matlab environment, even using a Windows operating system, increasing
the possible applications.

1.2 Thesis goals and objectives
This thesis has the goal to compare the control performances of some control laws
for trajectory tracking of an UGV, using different programming approaches. In
particular, the classical approach used with ROS, that involves the usage of C++ or
Python for programming nodes was compared with a Matlab-integrated approach,
in which the control algorithm is designed in the Matlab environment, tested, using

2

Introduction

the integration with ROS, and then exported in a C++ stand-alone node. Then,
the results are compared, focusing mainly on trajectory tracking performances and
execution time.

As UGV, a Differential Drive Mobile Robot (DDMR) has been used, i.e. the
TurtleBot3 package, taking advantage of one of the libraries offered by ROS. This
is one of the most used platforms for ROS among developers and students [10],
offering extensive documentation.

About controllers, two different techniques have been designed and tested. i.e.
a PID and LQR, since they are two of the most used approaches in trajectory
tracking for DDMR, as shown in [11] or [12].

To test the different approaches, Gazebo has been used as simulation environ-
ment, being the major graphical interface of ROS.

1.3 Thesis organization
The rest of the thesis is organized as follows. Chapter 2 focuses on the design of
the DDMR model and the theoretical background about PID and LQR controllers.
Chapter 3 provides an introduction to ROS and its integration with Matlab. It
is conceived in the form of a manual, containing the researches and experience
gained with this work. In Chapter 4, the simulation setup is outlined, with the
definition of the reference trajectories used for the path tracking, the controllers’
implementation and tuning, the Gazebo setup, and result’s analysis. In Chapter 5,
conclusions are drawn with a focus on future works.

3

Chapter 2

Theoretical background

This chapter presents the theory used for the trajectory tracking controllers design.
The first section introduces the mathematical model of the differential-drive

robot: we start from the wheel kinematics to obtain the unicycle model.
Finally, the last two sections are dedicated to the PID and LQR controllers,

describing the mathematical theory and the discrete time implementation.

4

Theoretical background

2.1 Mathematical model
The system considered for this work is a Differential-Drive Mobile Robot (DDMR),
that is a mobile robot that moves thanks to two controllable wheels. If the relative
rate of rotation of the wheels is the same, it moves in straight direction, while
varying the relative rotational velocity it is able to change direction. For stability
purposes, an additional castor wheel is also added, which is an undriven wheel that
turns in the movement direction.

2.1.1 Differential-Drive Model
To describe the motion of these types of robots, it is possible to use the differential-
drive model described in [13] and represented in Fig. 2.1.

xglo

yglo

xloc

yloc

x

y

θ

L

rw

Figure 2.1: Symbols for differential-drive model

To represent the robot model, two sets of Cartesian reference frames are consid-
ered: the local, or body, reference frame f(xloc, yloc, zloc) and the global, or fixed,
reference frame f(xglo, yglo, zglo). The local frame is a non-inertial reference system,
originated from the robot center of gravity (CoG), with the x axis aligned with
the robot forward direction, while the y axis points on the left. Together with the
z axis exiting from the x-y plane, they form a right-handed reference frame. The
global reference frame is an inertial frame, that has its origin in a fixed point of
the space. It is possible to represent a vector defined in the local frame into the

5

Theoretical background

global frame through a rotation about zglo axis of angle θ and the rotation matrix
that relates the two reference frames is defined as

Rloc,glob =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (2.1)

The differential-drive model is based on the kinematic of the wheels, assuming
that there is no slippage and the surface is perfectly flat. Hence, we have that the
linear velocity of one wheel vw is defined as

vw = ωwrw (2.2)

where ωw is the wheel angular velocity and rw is the wheel radius.
Since the two wheels can rotate with different velocities, i.e. ωL (left wheel) and

ωR (right wheel), then the velocity v of the robot CoG can be computed as

v = (ωL + ωR)
2 rw (2.3)

Moreover, having that the surface is perfectly flat, it is possible to consider the
robot motion in a 2D Cartesian plane, i.e. robot position is described by x and y
coordinates in global frame, such that the two components of the linear velocity of
the robot along the x and y axes are defined with respect to the robot orientation
θ as

ẋ = (ωL + ωR)
2 rw cosθ (2.4)

ẏ = (ωL + ωR)
2 rw sinθ (2.5)

Moreover, we have that the angular velocity of the robot ω, expressed in the
fixed frame, is related to the difference of angular velocities of the wheels, i.e.

ω = θ̇ = (ωR − ωL)
L

rw (2.6)

where L is the distance between the wheels.
From reference frame definition, angles are measured counter-clockwise from x

axis. In this way, if ωR is higher than ωL, the angular velocity is positive, since the
orientation angle is increasing.

6

Theoretical background

2.1.2 Unicycle Model

Starting from the differential-drive model and substituting expression (2.3) in
equations (2.4) and (2.5) we have

ẋ = v cosθ (2.7)

ẏ = v sinθ (2.8)

Together with (2.6) we obtain the unicycle model [14], that can be written in
matrix form as

ẋ
ẏ

θ̇

 =

cosθ 0
sinθ 0

0 1

 C
v
ω

D
(2.9)

which is the model used in the controller design.

It is important to remark that the unicycle model is non-holonomic, i.e. the
number of controllable degree of freedom are less than the total degree of freedom.
In fact, there are kinematic constraints on velocity, like the relation between ẋ and
vc, or ẏ and vc that makes the two velocities not independent. From a physical
point of view it means that some directions of motions are not feasible, like the
motion in the direction lateral to the wheel, but the robot is limited to move in
straight direction or simply rotate. This means that non-holonomic constraints do
not prevent any configuration, so not reduce the configuration space, but limits
the generalized velocities of the robot.

It is also possible to notice from the obtained model that the differential-drive
robot is a nonlinear dynamical system. It has three state variables, which are
assumed to coincide with the system outputs (x,y,θ) and two inputs (vc,ω), so it is
a multiple-input multiple-output (MIMO) system.

REMARK: the presented model represents a first order kinematics model. If
we neglect the assumption of no slippage or we consider high velocities, the model
should be upgraded including dynamics properties like inertia, mass and slippage.
However, in practice, the control of mobile robots using only the unicycle model
is very common, due to its simplicity and also because it is quite accurate since
robots are mainly used at low speed.

7

Theoretical background

2.1.3 Unicycle model linearization
One of the controller analyzed in this work, i.e. the LQR, requires a linear system,
in this section we show how the DDMR model can be linearized with respect to a
nominal trajectory to obtain a system of the form (2.34).

We start from the unicycle model in (2.9), which is of the form

ẋ = f(x, u, t) (2.10)

then we compute the Jacobian matrices of f(x, u, t) with respect to the state vector
x and the control input u and we evaluate them at the nominal trajectory, in
details:

A. We first compute the partial derivatives of f(x, u, t)

df
dx

(x(t), u(t)) :=

∂ẋ
∂x1

∂ẋ
∂x2

∂ẋ
∂x3

∂ẏ
∂x1

∂ẏ
∂x2

∂ẏ
∂x3

∂θ̇
∂x1

∂θ̇
∂x2

∂θ̇
∂x3

 =

0 0 −v(t) sin(θ(t))
0 0 v(t) cos(θ(t))
0 0 0

 (2.11)

df
du

(x(t), u(t)) :=

∂ẋ
∂u1

∂ẋ
∂u2

∂ẏ
∂u1

∂ẏ
∂u2

∂θ̇
∂u1

∂θ̇
∂u2

 =

cos(θ(t)) 0
sin(θ(t)) 0

0 1

 (2.12)

B. Then we evaluate the Jacobian matrices at the reference state xr(t) and input
ur(t), obtaining the time varying state matrices A(t) and B(t), i.e.

A(t) =

0 0 −vr(t) sin(θr(t))
0 0 vr(t) cos(θr(t))
0 0 0

 (2.13)

B(t) =

cos(θr(t)) 0
sin(θr(t)) 0

0 1

 (2.14)

2.1.4 Discrete time analysis
The linear system considered in Section 2.1.3 is defined in continuous time, whereas
in ROS implementation we have to realize a discrete time controller. For this
reason, we have to define a discrete time model of the system.

8

Theoretical background

For this purpose the Euler forward method can be used for discretization [15],
which is based on the usage of finite differences for time derivative computation.
In particular the derivative of the state can be written as

ẋ ∼=
x(k + 1) − x(k)

Ts

(2.15)

where k represents the finite step, and Ts the step size.
Substituting (2.15) in (2.34) we obtain

x(k + 1) = A(k) x(k) Ts + B(t) u(k) Ts + x(k) (2.16)

Moreover, it is possible to incorporate Ts in matrices A(k) and B(k) having

Adisc(k) = A(k) Ts , Bdisc(k) = B(k) Ts (2.17)

2.1.5 Controllability
Before proceeding in the controller design it is necessary to verify that the system
is controllable. Controllability is a property that guarantees the existence of a
control function that moves the system from any initial state to any final state in a
finite time interval.

Studying the controllability of non-linear systems is quite complex, but for
some classes of systems it is possible to derive some general considerations that
simplify the controllability study. In particular, the controllability of a drift-less
system can be studied using the Rashevsky-Chow theorem as shown in [16] and
[17]. In particular the theorem states that if all the constraints of the system are
non-holonomic, like in the unicycle case, the system is controllable.

It is also possible to verify the controllability considering the linearization of
the system around some equilibrium points or nominal trajectory. In this case,
given the Jacobian matices otained from the linearization, we can build the Kalman
controllability matrix

C = [B, AB, A2B] (2.18)

and verify if the system is fully controllable, i.e. if C is full-rank.

9

Theoretical background

2.2 PID Controller
2.2.1 Introduction to PID Controllers
There are different types of controllers for DDMR, but Proportional-Integral-
Derivative controller (PID) is one of the favourite in robot control applications, in
particular for trajectory tracking applications [18] [19] [20] [21].

PID controllers are error-based controllers where the control input u(t) of the
system is computed evaluating a feedback signal, that in general is the error e(t)
between the measured state and the reference one. There are several versions of
PID controllers, from the simplest ones, in which is not necessary to know the
model of the system, to the more sophisticated and accurate versions, in which are
reached better performances introducing the model of the system in the controller
design, like for example in the tuning process [22].

Beyond the different versions of PID controllers, all of them are founded on the
same base principle of a control action u(t) composed of three main contributions:

• proportional

• integral

• differential

that also give the name to the controller [23].
Proportional action is defined as

KP e(t) (2.19)

and it is proportional to the feedback error e(t). Using only the proportional
contribution, this may lead to some controllability issues. In particular, the
controller could be not able to perfectly track a constant reference, with the
possibility of introducing a steady-state error, or not being able to reject a constant
disturbance.

To cancel the steady state error, integral action can be introduced, defined as

KI

Ú t

0
e(t) dt (2.20)

and it is proportional to the integral of the error, over the interval [0, t]. This
contribution bring to zero the tracking error.

Last, there is the derivative term that is able to reduce the oscillatory behaviour
of the response, increasing the damping and obtaining a better stability. The

10

Theoretical background

derivative contribution is defined as

KD
d

dt
e(t) (2.21)

and it is proportional to the derivative of the error.

Combining all the three contributions, the total control action is obtained as

u(t) = KP e(t) + KI

Ú t

0
e(t) dt + KD

d

dt
e(t) (2.22)

2.2.2 PID architecture
The configuration of the PID controller inplented in this work is shown in Fig. 2.2.

Figure 2.2: Control configuration of PID controller

For non-holonomic systems, usually a feed-forward control is used, in which
the control inputs are derived from the reference trajectory [17]. However, in real
practice, it is also added a feedback action, realizing a closed-loop control scheme
that is robust to errors and disturbances.

As it can be seen in Fig. 2.2, the nominal inputs for the feed-forward action are
computed from the reference trajectory, and then are corrected by the outputs of
the controller before being sent to the robot.

For the feedback action, the robot actual pose q(t) = [x(t), y(t), θ(t)]T is com-
pared with the reference one qr(t) = [xr(t), yr(t), θr(t)]T and consequently, the
error vector e(t) in the global frame is defined as

e(t) = qr(t) − q(t) = [ex, ey, eθ]T (2.23)

11

Theoretical background

To transform e(t) from global frame to the local one we have
eloc(t) = [exloc

, eyloc
, eθloc

]T = RT e (2.24)
where the rotation matrix R is defined as in (2.1).

Once defined the error vector in the local reference frame, the PID control law
is chosen as shown in [21] and [11]

uv = Kpxexloc
+ Kix

s
exloc

dt + Kdx

d
dt

exloc

uω = Kpyeyloc
+ Kiy

s
eyloc

dt + Kdy

d
dt

eyloc
+

+Kpθ
eθloc

+ Kiθ

s
eθloc

dt + Kdθ

d
dt

eθloc

(2.25)

With this choice, the control input related to linear velocity uv depends only by
the error on x coordinate. The reason is that in DDMR the linear velocity has only
a component along x axis of robot’s frame, due to the non-holonomic constraints
of the robot. On the other hand, the control input in terms of angular velocity
uω, is related to the error on y axis and orientation θ, because angular velocity
depends by the orientation angle, but also by the component perpendicular to
linear velocity, that is the y component of position in robot’s frame.

This control action represents the correction to the nominal input of the feed-
forward action (vr(t), ωr(t)) and for this reason it is subtracted from it. Then the
obtained control is given as input to the robot, as shown in Fig. 2.2.

This control law is defined in continuous time, while in the ROS node it is
implemented in discrete time. For this reason, the PID control law is written in
discrete form [24]: the error vector e is computed at each step k, obtaining

ek = [exk
, eyk

, eθk
]T (2.26)

while the integral of error is approximated as summation of previous errors, i.e.Ú t

0
e(t)dt ∼= Ts

kØ
j=0

ek (2.27)

and the differential error is defined as difference between previous and actual error,
i.e.

d

dt
e(t) ∼=

ek − ek−1

Ts

(2.28)

With these considerations, the actual PID control law implemented in the ROS
node is defined as:

uvk
= Kpxexk

+ Kix

qk
j=0 exk

+ Kdx(exk
− exk−1)

uωk
= Kpyeyk

+ Kiy

qk
j=0 eyk

+ Kdy(eyk
− eyk−1)+

+Kpθ
eθk

+ Kiθ

qk
j=0 eθk

+ Kdθ
(eθk

− eθk−1)
(2.29)

12

Theoretical background

where Ts is incorporated in the PID coefficients.

One of the problems of PID controllers is the integral windup, that occurs
when there is a large change in reference input, that cause a large error, which is
accumulated in the integral contribution [25]. To have better performances, it is
possible to implement an anti-windup mechanism [26] [23], that works saturating
the integrator when the integral term reaches a certain threshold and the integrator
output has the same sign of PID input. The integration restarts when integrator
output and PID input have opposite sign.

We want to remark that the mechanical constraints on the max v and ω reach-
able by the robot are ensured by a saturation function after the PID block.

13

Theoretical background

2.3 LQR Controller
2.3.1 Introduction to LQR Controllers
Together with PID controllers, Linear Quadratic Regulator (LQR) is one of the
technique most used for trajectory tracking of DDMR [12].

LQR controllers are developed in the field of optimal control, that is a branch
of mathematical optimization aimed to find a control for a dynamical system
optimizing an objective function [27]. In particular, LQR controllers are applied to
linear systems, minimizing a quadratic objective function.

LQR problem can be formulated in a finite horizon, considering as final time a
finite value, or can be defined in an infinite horizon if the final time tends to infinity.
Considering the finite horizon case, the cost function J to minimize is expressed as

J = ϕ(x(tf), tf) +
Ú tf

t0
L(x(t), u(t), t)dt (2.30)

where t0 is the initial time instant and tf is the final time. The first function
ϕ(x(tf), tf) represents the contribution of the final state x ∈ Rn of the system at
time tf , so it is a weight related to the error between the initial and final state. Its
is expressed as a quadratic function of the final state x(tf)

ϕ(x(tf), tf) = 1
2xT (tf) F x(tf) (2.31)

where F ∈ Rn×n , F ≻ 0 is the weight matrix related to the final state, and it is
also a design parameter.

The function L(x(t), u(t), t) is related to the entire control interval [t0, tf] and
it takes into account both the state x(t) and the control input u(t) ∈ Rm. It can
be written as a quadratic function of the form

L(x(t), u(t), t) = 1
2xT (t) Q(t) x(t) + 1

2uT (t) R(t) u(t) (2.32)

where Q ∈ Rn×n, Q ⪰ 0 is the weight matrix related to the state x(t), while
R ∈ Rm×m, R ≻ 0 is the one related to the input u(t).

Correspondingly, the cost function can be explicitly written as

J = 1
2xT (tf) F x(tf) +

Ú tf

t0

1
2xT (t) Q(t) x(t) + 1

2uT (t) R(t) u(t)dt (2.33)

A practical interpretation of LQR approach is following: we want to chose the
control action u(t) that minimize the cost function (2.33), leading the final state

14

Theoretical background

x(tf) to zero and enforcing the weighted energy due to the state and the control
input to be as low as possible for the entire control time. Matrices F, Q(t) and
R(t) define the weight of each contribution and represent the design parameters of
the controller, to be tuned for obtaining the desired performances. Q(t) and R(t)
can be time-varying, but in general are chosen fixed values.

In many cases, the cost function is defined with zero terminal cost, so considering
a null matrix for F. In this case, the only design parameters of the controller are
matrices Q and R.

The system state x(t) and input u(t) enter the problem considering the state
space representation of the system, i.e.

ẋ = A(t)x(t) + B(t)u(t) (2.34)

Then, the LQR design is achieved through the solution of an optimization
problem formulated as

Find u(t) that minimizes: (2.33) in t ∈ [t0, tf]
subject to: (2.34),

x(t0) = x0

2.3.2 Solution of LQR problem
The LQR optimization problem in section 2.3.1 can be solved using Lagrange
multipliers method, as shown in [28]. It is a technique for finding the local minima
and maxima of a function with equality constraints.

In this problem, the optimization variable is the input u(t) : [t0, tf] → Rm

and there are an infinite number of equality constraint, one for each t ∈ [t0, tf],
represented by the state space equation of the system in (2.34).

The Lagrange multiplier function is defined as λ(t) : [t0, tf] → R3. It can be
used to define the Lagrangian function L as

L(x, λ) = J +
Ú tf

t0
λ(τ)T (Ax(τ) + Bu(τ) − ẋ(τ))dτ (2.35)

The stationary points of L can be computed considering the points where its
gradient is null, i.e.

∇u(t)L = R u(t) + BT λ(t) = 0 (2.36)

∇x(t)L = Q x(t) + AT λ(t) + λ̇(t) = 0 (2.37)

from (2.36) we get
u(t) = −R−1BT λ(t) (2.38)

15

Theoretical background

while from (2.37) we get

λ̇(t) = −AT − Qx(t) (2.39)

(2.34) and (2.39) are called co-state equations.

The control input u(t) in (2.38) is the one that minimizes the performance index
and using it we can write the co-state equations in matrix form, called Hemiltonian
matrix, as

d

dt

C
x(t)
λ(t)

D
=

C
A −BR−1BT

−Q −AT

D C
x(t)
λ(t)

D
(2.40)

with initial condition
x(t0) = x0 (2.41)

The relationship between x(t) and λ(t) can be expressed defining a value function
K(t), for which

λ(t) = K(t)x(t) (2.42)

such that
−K̇ = AT K + KA − KBR−1BT K + Q (2.43)

(2.43) is satisfied if a K(t) can be found such that

K̇ = KBR−1BT K − KA − AT K − Q (2.44)

and it is called algebraic Riccati equation. This equation can be solved by backwards
numerical integration, and it is independent of initial conditions x0. The solution
K(t) is a positive semi-definite matrix and can be used to design the optimal
control law as a state feedback, i.e.

u(t) = −R−1B(t)T K(t)x(t) (2.45)

If we define the LQR gain Klqr(t) as

Klqr(t) = −R−1B(t)T K(t) (2.46)

then (2.45) becomes
u(t) = Klqr(t)x(t) (2.47)

This is the optimal control law used to construct the feedback system.

16

Theoretical background

Figure 2.3: Control configuration of LQR controller

2.3.3 LQR architecture
The block scheme of the LQR controller is depicted in Fig. 2.3.

As shown in Fig. 2.3, the LQR has beed designed for the error dynamics. Indeed,
the error between the reference robot’s pose and the actual one is considered as
state, i.e.

e(k) =

ex(k)
ey(k)
eθ(k)

 := [xr(k) − x(k)] =

x(k) − xr(k)
y(k) − yr(k)
θ(k) − θr(k)

 (2.48)

In this way, rather than the system state, the controller allows to steer to zero the
tracking error.

As shown for the PID controller, also in this case the obtained control input
is subtracted from the nominal inputs ur generated from reference trajectory. In
fact, the control action represents a correction around the feed-forward action. In
conclusion, the optimal feedback control law becomes

u(k) = −Klqr(k)[xr(k) − x(k)] + ur(k) (2.49)

This is translated in the block scheme in Fig. 2.3, with the actual robot pose
that is fed back and compared to the reference pose to compute the state error
e(k) in (2.48).

17

Chapter 3

ROS manual

This chapter presents an overview about the tools used to accomplish this project
thesis. The large part of the work is based on ROS, but it is also integrated with
other software, i.e. Gazebo for the simulation part and Matlab for the control
algorithm development.

This section is conceived as a manual for a reader that is approaching ROS
for the first time, offering a presentation of the most important features of this
environment and a practical guide for the initial setup of a ROS project, and the
integration with Gazebo and Matlab.

This manual does not have the presumption to replace the official ROS manual,
that can be found at [29] or other valid guides like [30] or [31], because also this
work contains code snippets from The ROS Wiki at [29], available under Creative
Commons Attribution 3.0.

In the first part of this chapter, an introduction to ROS is presented, showing
its strong points, then the main elements of ROS architecture are analyzed. After
that, the Gazebo simulator and its components are introduced. The next section
explains the basic steps to setup ROS, based on the experience gained with this
work. Later, the integration between ROS and Gazebo is discussed and the chapter
ends with a presentation of integration between ROS and Matlab, based on the
use of ROS Toolbox.

3.1 ROS introduction
ROS stands for Robot Operating System and it is a software framework for robotics.
It is similar to an operating system, so provides similar services, i.e. error handling,
processes management and communication, file system and user interface, but it is

18

ROS manual

not a standard one, because it can not run stand-alone, but requires an existing
operating system, like Linux. In addiction to operating system services, it provides
also other functionalities and libraries, that are specific for robotic development,
suitable for algorithm design, test, simulation, data saving and debugging.

ROS is not the only robotic frameworks, like shown in [32]; however, nowadays
ROS can be considered the standard for robot platforms. Below are listed some of
the main reasons that lead to this result. A key element is the open-source nature
of the ROS project, that allow it to have widespread collaborations with universities
and research institutes and so a lot of contributes to its development. For this
reason, it can be considered a community-driven project, supported worldwide.
Another important feature is the code modularity, reusability and sharing of ROS
projects. In this sense, a wide repository of projects has been developed, that
are disposable for all the ROS uses. This allows to reduce developing time and
encourage collaboration. Another strength of ROS is the language independence, i.e.
each code part can be designed using different supported languages and the most
used are C++ and Python, for which is ensured the support to ROS libraries. ROS
provides also a hardware abstraction layer, allowing developers to build robotics
applications without considering the underlying hardware.

A ROS project is organizes in packages, that group piece of code and processes
with same functionalities. Packages can be published to public repositories in order
to guarantee their distribution. Sets of ROS packages are organized in distributions,
that are released with progressive versions. The last release of ROS, considering
actual year 2022, is called "Noetic" and it will be supported until 2025.

There are also two different versions of ROS, called "ROS" (or "ROS1") and
"ROS2". ROS2 is the newer version, developed from the first one, adding the
required modifications to improve the environment [33]. ROS2 was developed from
scratch and not modifying ROS1, to avoid many changes and making it unstable.
ROS2 is being developed to satisfy industrial requirements, like real-time, safety,
certification and security. In this thesis we have been focused on ROS1, since it is
still the most used until now, but it is not an useless job, since ROS2 is backward
compatible with ROS1 and we could easily make some ROS2 nodes communicated
with old ROS1 nodes.

3.2 ROS architecture
ROS represents a middleware framework for process communication, allowing
exchange of data between them.

19

ROS manual

It is structured as a distributed framework, since the processes, called nodes,
can be designed and executed individually and can run also in different machines,
even far from each other.

The ROS communication network is called "graph" as described in [34], and its
main elements are:

• Nodes: the processes that compose the graph. Robot projects are based on
many nodes with specific functions, like path planning, sensor data acquisition
or motors control.

• Master: main node that manages the communication between processes. It
enables a node to locate another one, and then they communicate peer-to-peer.
It acts like a DNS server in a computer network, providing look-up information
for the other nodes. Like computer networks, also in ROS protocols are used
to manage the communication, such as the TCPROS transport layer, based
on TCP/IP sockets.

• Parameter server: a shared dictionary, provided by the master. It is used by
the nodes to store parameters at run-time.

• Messages: data structures that are exchanged between nodes, allowing their
communication. There are different types of messages, and some of them are
designed for specific sensors, like radars or cameras. It is also possible to
define a custom messages, with a custom data structure.

• Topics: busses over which nodes exchange messages. Each topic has a name
and it is associated to a specific type of message, so only the selected type
can be sent over the topic. A node that send messages on a topic is called
"publisher", while one that receives messages is called "subscriber". Both of
them needs to be registered to the master before sending or receiving messages.
Topics are designed for a communication paradigm based on many-to-many
and one-direction transport.

• Services: other communication channels as well as topics, but they are designed
for request-reply paradigm, that is commonly used in a distributed system. A
service is defined by a pair of messages, i.e. one for the request and one for
the reply, and it is implemented in a certain node, that receive the request by
a client node, and send back the reply.

• Bag files: files used to save ROS messages. They can be used to store data
from sensors or commands, that can be played back, to simulate a certain
input for example.

20

ROS manual

To better understand the ROS graph architecture, a simple scheme is reported
in Fig. 3.1 and Fig. 3.2

Figure 3.1: ROS graph structure

Figure 3.2: ROS graph structure (for server)

ROS presents a specific graphical plugin for visualizing the computation graph,
called rqt_graph. It shows all the node in execution, the connections with topics,
and services, in form of a graph. Considering a simple graph with a publisher and
a subscriber on two topics, the rqt_graph output is reported in Fig. 3.3.

3.3 Gazebo introduction
Simulators are very important to design and test a robotic system. They allow to
design a robot, model the sensor behaviour, and test algorithms.

Gazebo is one of the most used simulators in robotics, especially because it is
well integrated with ROS. In fact it is maintained by the "Open Robotics" corpo-
ration, that is the same responsible for ROS, but at the same time, Gazebo is an

21

ROS manual

Figure 3.3: Example of rqt_graph output

independent project, that exists also without ROS.

As described in [35], Gazebo is an open source 3D simulator that reproduces
the model dynamics and its interaction with environment and obstacles using a
physical engine. Gazebo has the option to chose different engines, but the most
used is the Open Dynamic Engine (ODE).

To define a robot in Gazebo, two types of file can be used:

• Unified Robotic Description Format (URDF): is an XML format, that describes
the element of the robot. It is limited to specify only the kinematics and
dynamics of the robot, and it is not able to specify the pose, friction or other
properties.

• Simulation Description Format (SDF): is a specific format for Gazebo, created
to overcome URDF limitations. It allows to completely describe a robot, but
can be used also to describe a world environment. SDF is the main file format
used in Gazebo, and also URDF files are automatically converted to SDF to
be used.

Another component of Gazebo are the plugins, that can be considered as shared
libraries used to connect the simulator with ROS. In general, plugins are defined
using a URDF file. Plugins can be used to access the simulated model and extract
data about the physics of the robot model or sensors, and share them with ROS,
other than converting ROS messages into physical commands in the simulation
environment.

There are also many libraries of robots and environments that can be integrated

22

ROS manual

in Gazebo that allow to reduce the developing effort, using resources already work-
ing and tested.

3.4 ROS setup
ROS is not a stand-alone operating system, but needs to run on an existing one. It
is possible to install ROS on different operating systems, but the most common
choice is to use Ubuntu, because it is the only one, together with Debian, to be
officially supported. ROS can run on a full installation of Ubuntu, but also on a
virtual machine. For this work we have used a full installation of Ubuntu 20.04,
that is the last LTS (long-term support) version in the period of this work (2022).

After installation, it is possible to use ROS commands in bash terminals, but to
do so we have to run a specific script in each terminal, as highlighted in [36]. To
avoid this, we can add this command in the bash source file ".bashrc", in this way
the script is automatically sourced at every shell launched.

To create a first ROS project, we defined a workspace where all the ROS files
are stored. The most used approach is to use a catkin workspace, represented by a
folder, in general called "catkin_ws", created in the home directory. This folder is
not already present, but needs to be created manually. Catkin is the build system
for ROS, as indicated in [37], that has the function of compiling code to create
an executable file. Catkin uses cmake to generate build files, and each package
has a CMakeLists.txt, where are configured the files to build. To build the files in
the workspace, the bash command catkin_make is used inside its folder. At the
first execution, this command created also all the folders and files necessary for the
workspace.

Catkin workspace is composed by four main folders, called spaces, that are:

• src: source space, which contains the source code of packages;

• build: build space, that stores cache information and intermediate files of the
catkin build process;

• devel: development space, containing the built targets before the installation;

• install: install space, that is the space where the built targets are installed.

It is important to remark that the development phase is fully performed in the src
space.

23

ROS manual

At this point we can start a new project, creating a ROS package. Packages are
folders that contains all the files related to a project, and they are stored in the
src folder. To create a package there is a specific bash command, as shown in [38].
In the command, the package name and the list of dependencies, like Python or
specific ROS messages, are included.

Each package contains some folders created by default:

• include: where are placed additional files to include during the building

• src: contains the C++ source files of nodes

In addition other folders are added manually in general, for a better organization
of the package, i.e.

• launch: to store launch files, used to run multiple nodes

• scripts: to store Python source files of nodes

• bagfiles: to store topics data, saved in bag form

After this overview of ROS file-system it is possible to analyze the usage and
design of ROS nodes, as shown in [39]. A node contained in a certain package can
be run using the command

rosrun [package_name] [node_name]

Before running any node, we have to run the ROS-based system, that is a collection
of nodes that perform the basic functions of the ROS environment. This is done
using the bash command

roscore

which will start-up the ROS master, the parameter server and a logging node,
called "rosout".

If a project is composed by many nodes, there is a faster way to start all the
processes at same time, that is the usage of a roslaunch file, using the command

roslaunch [package] [filename.launch]

A launch file is similar to an xml file, and an example is reported in appendix A.0.1,
where it is shown a launch file used in this work for the simulation of sinusoidal
trajectory, using PID controller. It is possible to notice that in a launch file we
can call also a service, for example to reset the Gazebo environment before each
simulation. We can also start the Rosbag data saving, allowing to do it at the

24

ROS manual

same time of a node launch. We can specify the time interval to save and select
the topics whose message are stored.

When we start a node in a launch file, there are also some parameters to set,
and one of them is

output="screen"

that is used when a node prints something on the terminal.

One of the key feature of ROS is the communication between nodes. This is
done exchanging messages through the topics. Messages are specific data structures
defined in ROS, stored in .msg files. Standard messages are able to represent all
the most common data used in robotics. For example V ector3 is able to represent
a vector, containing the data of the three vector components, Twist to represent
a velocity, with linear and angular components, Twist_stamped in which it is
added also a header with a timestamp. In appendix A.0.2, the structure of some
commonly used messages is shown as an example.

As anticipated before, nodes are the main core of a ROS project. There are
two main approaches to design a node: using C++ or Python. In both cases, a
client library is provided that enables the programmers to interface with ROS. For
C++, the library is called roscpp, and it is designed to be an high-performance
library, while for Python is rospy, that favors implementation speed over runtime
performance. In both cases the node structure is characterized by:

• node initialization, in which the node name is defined

• definition of node type, e.g. publisher or subscriber. We want to remark
that the same node can be also publisher & subscriber at the same time.
Moreover, for each node we also need to define the topic on which messages
are exchanged.

Specific commands are defined in [40] for C++ and [41] for Python. The only
difference between C++ and Python is that in the first approach the initialization
of the node is performed by a handle, in addition to the initialization definition, so
there is an additional command to consider.

To build the node there are two different approaches between C++ and Python.
A C++ code needs to be build before execution, since it is a compiled language.
ROS code is build using catkin, and the configuration file is the "CMakeLists.txt"
contained in the package folder. This file should be configured in the section "Build",
with the functions

add_executables(<exec_name> <src_path>)
target_link_libraries(<exec_name \${catkin_LIBRARIES}>)

25

ROS manual

where the executable name, the folder path, and the target libraries are specified.
In case of a node written with multiple files, in the first function, in < src_path >
all the files .cpp are written, while the second function is written in the same way.
It is not needed to add the .h files, that are already included in .cpp files.

Then the code is built using the command catkin_make in catkin workspace.
Python, instead, is an interpreted language, so it is not needed to generate an

executable, but also in this case we have to run the catkin_make command to
make sure that the autogenerated Python code for messages and service is created.
In this case it is not needed to modify the "CMakeLists.txt" file.

Every Python node should start with the line

#!/usr/bin/env python

that makes sure that the script is executed as a Python script.

3.5 Integration between ROS and Gazebo
Gazebo is a stand-alone simulator, but can be integrated with ROS using a set of
ROS packages, called gazebo_ros_pkgs. They provide the interface to simulate a
robot in Gazebo using ROS messages and services.

A simulation setting consists of two main parts: the robot model, that can be
designed manually or imported from one of the packages available on repositories,
and the environment, with possible obstacles.

In this work, for example, a model called "Waffle", from the TurtleBot3 package
was used. It is shown in Fig. 3.4.

Figure 3.4: TurtleBot waffle - Image from [42]

TurtleBot is a robot platform with an open-source software, that is one of the
most used platforms for ROS among developers and students [10]. It is an hardware
platform but for simulation purposes it is provided also the Gazebo model, that
allows to make realistic tests before using the real robot. The choice of this model

26

ROS manual

derives from its large usage and extensive documentation, that allow to be more
supported during the development.

There are different versions of TurtleBot, but it is chosen TurtleBot3 because is
one of the last developed and more complete packages.

The Waffle model can be imported in Gazebo, setting an environment variable
with a bash command and then the simulator is launched with a launch file, also
provided in the chosen package, loading the world with the spawned model. The
used bash command is

$ export TURTLEBOT3_MODEL=waffle
$ roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch

For the environment, the Empty_world model is considered, i.e. a basic sce-
nario containing only an infinite flat ground, that allows to simulate the interaction
with robot’s wheels.

In Fig. 3.5 is reported a view of the Gazebo environment with robot model.

Figure 3.5: TurtleBot3 Waffle in Gazebo Empty_world

In the launch file there are different options to set the initial conditions for
the robot spawning, like the starting position and orientation. Another important
option is to set

<arg name="use_sim_time" value="true"/>

that allows to use as reference time for ROS the Gazebo simulation time, in this
way the two environment are synchronized.

27

ROS manual

Once the simulation environment is set, a control algorithm is required to
guarantee that the robot follows the desired path. This is done using the ROS
integration with Gazebo. In fact Gazebo can communicate with ROS acting like
a normal node, with some plug-ins that allow to subscribe to certain nodes, for
receiving commands, or to publish to other nodes, for sending information about
the simulation state, like the output of sensors applied to the robot. Hence, the
communication between Gazebo and ROS occurs exchanging messages on topics
between nodes, like in any other ROS application.

For what concern the Waffle robot for example, it can be controlled publishing
the velocity command on the cmd_vel topic. This command is defined using
the ROS message geometry_msgs/Twist, that contains the linear and angular
component, as shown in appendix A.0.2. This command input is very common to
a lot of mobile robots.

A problem with this input can be the absence of an header in the message type
Twist, so the lack of a time reference in the data. This can be a problem for data
visualization, since after being saved in a rosbag file, the only time reference is the
header, and in this case it is not present.

A possible solution can be the publication of the same command input on
two topics simultaneously, i.e. cmd_vel, already described, and a new one,
cmd_vel_stamped, in which the ROS message geometry_msgs/TwistStamped
is published. This message is a variation of the normal Twist in which an header
with a time stamp is added, containing the time reference of the message creation.
In this way cmd_vel is still the input of the robot, while cmd_vel_stamped is
used only for data visualization.

In addition, the Waffle robot publishes its state on the topic odom in which
sends its pose and velocity, obtained from its sensors. This information is insert in
the message nav_msgs/Odometry, that can be find in appendix A.0.2.

Hence, from ROS topic odom it is possible to read the robot’s pose, while
on topic cmd_vel it is possible to send the command input. These topics can
be used by a control algorithm implemented in a ROS node to make the robot move.

An example of simulation view in Gazebo is shown in Fig. 3.6 where we have
tried to give the movement idea superimposing different simulation frames.

3.6 Integration between ROS and Matlab
Integration between ROS and Matlab is achieved using a specific toolbox, i.e. the
ROS Toolbox, in which specific functions to create a publisher or subscriber node

28

ROS manual

Figure 3.6: Waffle in movement along straight trajectory

inside a Matlab script are developed. In this way, Matlab can be connected to a
ROS network, and explore available topics and services, allowing to send commands
and receive data from any node on the ROS network. A scheme of the integration
between Matlab and ROS is reported in Fig. 3.7

ROS Toolbox was included for the first time on the R2015A Matlab’s release, and
it has been a great innovation, because before the most common way of connecting
ROS with Matlab, was using a bridge developed in Java, as clarified by [9]. ROS
Toolbox is suitable also for integration between ROS and Simulink, since the same
functions developed for Matlab are also available as Simulink blocks.

The advantage of integrating Matlab and ROS is to have the possibility to
develop a control algorithm using all the power-full Matlab tools and integrate
them with the versatility of ROS. ROS Toolbox supports also C++ code generation
using the Matlab Coder, in this way the developed controller can be used as a
stand-alone ROS node.

29

ROS manual

Figure 3.7: Integration between Matlab and ROS. Image from [43]

The toolbox also supports all ROS messages, that are included as a library. ROS
messages are stored in Matlab as message structures or objects, but structure is
the recommended format since has better performances and is the only supported
format in Matlab Coder.

REMARK: Installing Matlab on Ubuntu can be a bit tricky, since after simple
installation there can be some settings to fix. Here are some tips: during installation,
select "create Symbolic link". In this way,the link to the executable is created,
allowing Matlab’s launch from terminal.

Then Matlab is installed, in general, at location (for version R2022a)

/usr/local/MATLAB/R2022a

If we want to install other toolbox or add-ons after the first installation, we
have to modify permissions of this folder, to allow Matlab to change its content.
This is done with the bash command

sudo chown -R \$LOGNAME: /usr/local/MATLAB/R2022a

where the last part is related to the Matlab installation path.

In some cases, it may happen that, after installation, the Matlab icon is not
present in the Ubuntu app launcher. This can be solved adding, at path

$/usr/share/applications/$

30

ROS manual

a file that can be called, for version 2022a, "matlab_r2022a.desktop", which content
is reported in A.0.3. The section related to "Exec" is aimed to solve a possible error
relative to graphic drivers.

3.7 C++ code generation with Matlab Coder

To generate a code from Matlab script, we must respect some requirements. One of
them, as cited before, is the usage of only structure messages, because objects are
not supported. Another requirement to remark is that it is possible to export only
a function, so the code needs to be written in this form, or another constraint is
the ban on the use of global variables, because they are not optimized. Information
on compatibility to Matlab Coder is reported in the documentation of each function.

Then the function can be exported in C++ selecting some build options. Matlab
Coder support directly the code generation for ROS, since it is possible to select
as target hardware board the ROS option. This option presents some restrictions,
since the function to convert should not have any input or output, but should
contain the publisher or subscriber definition to communicate with ROS network.
In some cases, this can be limiting, since a common approach is to export only
the controller function, that has some input and output, and so the ROS option
can not be selected as hardware. In this case, it is still possible to use as option
"MATLAB Host Computer", that allows the target function to have inputs and
outputs.

The Matlab Code generator options used for this work are shown in Fig. 3.8

Figure 3.8: Matlab Coder settings

31

ROS manual

3.8 Data visualization
Data from ROS topics can be saved using rosbag files. ROS offers several tools
for data visualization and debugging of these files. The most used are RV iz, that
allow to visualize a 3D data of messages of specific sensors, like cameras, and rqt
that is more suitable for visualization of single-dimension messages, plotted over
time.

Rosbag files can be also imported in Matlab using specific functions of ROS
Toolbox. After importation, it is possible to filter and extract message data, that
can be used as normal Matlab data. This allows to use all the Matlab functionalities
for data visualization, like the usage of plot functions.

3.9 Controller node structure
As shown in the previous sections, there are four main alternatives to write a ROS
control node, i.e. using C++, Python, Matlab or C++ from Matlab, and the goal
of this work is to compare these approaches to underline the different performances.
To do that, the control algorithm is implemented with the same structure in the
four cases, to have a fair comparison.

The basic structure of all the algorithm is shown in Fig. 3.9

• Initialization part, in which the Gazebo environment is reset, making a call
to a specific service. In this way the robot re-spawn with the starting pose
and the simulation time is reset to zero. This is done to have the same initial
conditions at each simulation.

• Start of Rosbag data saving, that allow to store in a file the messages published
to the topics of interest.

• Subscription to the odom topic, to receive messages on robot’s pose, and
registration as publisher on cmd_vel topic, to send the computed control
input. With this setting, each time a message is published on odom topic,
a callback function is activated. In this one the variables of actual robot’s
position and orientation are updated, and used later in the control command
computation. Odom messages are published with a rate of 30 Hz, that depends
by the robot model definition in Gazebo.

• Control action computation, which is implemented in a loop running at 20
Hz, that compute the control action, according to the PID or LQR algorithm.
Then the command is sent to the robot’s input, publishing on cmd_vel topic.

32

ROS manual

Figure 3.9: Control node flowchart

The simulation setup can be represented also from the point of view of the ROS
graph. The output of the rqt_graph command is shown in Fig. 3.10

Figure 3.10: ROS graph for the simulation setup

there are three main nodes:

• gazebo: is the node of the simulator, that receive as input the messages on
topic cmd_vel and has as output the robot odometry state on topic odom;

• nodo_sin_cpp: is the controller node, considering the case of sinusoidal
trajectory and C++ node. It receives the robot odometry from topic odom and
publishes the velocity commands on topics cmd_vel and cmd_vel_stamped;

• record: saves messages from odom and cmd_vel_stamped topics as bag files.

33

Chapter 4

Simulations

In this chapter, we show the simulation setup for this work. The first part is related
to the trajectories choice and computation of nominal inputs. Then, we present
how the controllers are tuned to ensure the best performances for each trajectory.
Later, the robot model used in Gazebo simulations is introduced and then the
structure of the control node is presented. The chapter ends with a discussion on
the simulation results.

4.1 Reference trajectories
Two main approaches can be applied to control the movement of a mobile robot
[17]: a point-to-point control and a reference path approach. In the first method
only the initial and final pose of the robot are set, while the intermediate path is
not important so, in general, this case is used in obstacle-free environments. On
the other hand, defining a reference path is more suitable in environments with
obstacles, so it is a more appropriate solution in the agriculture framework and it
is also the choice made for this works.

In the path control method there is also another distinction between path follow-
ing and trajectory tracking. The path is defined as a geometric entity representing
the series of points that the robot should reach during its movement and can be
defined with a function or a set of interpolated way-points. On the other hand, the
trajectory is represented by a path plus a time reference that defines at which time
each point should be reached. Therefore, for trajectory tracking the robot pose is
controlled both in space and time.

In this work we have selected two paths, i.e.

1. Straight line trajectory

34

Simulations

2. Sinusoidal trajectory

with a relative velocity profile. These trajectories are representative of a wide
range of applications and allow to test the controllers in a scenario similar to a real
application.

Once defined the nominal trajectory in term of coordinates xr(t) and yr(t), it is
possible to derive the reference orientation for the robot θr(t) as described in [44].
Since its heading direction should be tangent to the trajectory in each point, the
desired angular position is defined as

θr(t) = tg−1(ẏr(t)/ẋr(t)) + bπ (4.1)

where b define the motion direction, with b = 0 to move forward and b = 1 to
move backwards. In this study, only the case with b = 0 is considered. Then, the
reference pose of the robot is defined as qr(t) = [xr(t), yr(t), θr(t)]T

The common approach for non-holonomic robots is to use a feed-forward action
in which robot inputs are obtained from the reference trajectory. The nominal
inputs of the robot, i.e. the linear and angular velocities, that are used in the
feed-forward action, can be derived as described in [45], [11]. In particular, the
reference linear velocity vr(t) is defined considering the linear velocity vector vr(t),
obtained from trajectory coordinates i.e.

vr(t) = (d

dt
x(t), d

dt
y(t)) (4.2)

and then computing the magnitude, i.e.

vr(t) = (−1)b
ñ

ẋ2
r(t) + ẏ2

r(t) (4.3)

On the other hand, the reference angular velocity ωr(t) is obtained considering
for each time instant the movement as a rotation along a circular trajectory, which
center is called instantaneous center of curvature and can change at each time
instant, as shown in Fig.4.1. In this way the reference angular velocity, is computed
as the ratio between the linear velocity, tangential to the path, and the radius of
instantaneous curvature ρ(t), i.e.

ωr(t) = θ̇r(t) = vr(t)
ρ(t) (4.4)

The radius ρ(t) is the distance between the instantaneous center of curvature
(IcC) and the CoG of the robot, and it is defined as

ρ(t) = (ẋ2
r(t) + ẏ2

r(t))3/2

ẋrÿr − ẏrẍr

(4.5)

35

Simulations

ρ(t)

ρ(t)

vr
vr

IcC

ω

Figure 4.1: Tangential and angular velocity

So, substituting (4.3) and (4.5) in (4.4) the reference angular velocity is given
by

ωr(t) = θ̇r(t) = ẋrÿr − ẏrẍr

ẋ2
r(t) + ẏ2

r(t) (4.6)

From these results, it follows that the desired path should be twice differentiable
with respect to time and should have non-zero tangential velocity vr(t) /= 0. In
fact, if for some time instants vr(t) = 0, the robot has only a rotational velocity,
and in this case it is not possible to compute the reference orientation.

4.1.1 Straight line trajectory
For straight trajectory the path is defined between the origin (0m,0m) and point
(2m,2m) and the total path length is 2

√
2 m. Considering the maximum linear

velocity of the robot, that is 0.2 ms−1, the trajectory is defined such that the velocity
is always lower than this limit, i.e.

xr(t) =
0, if t < 1 s

0.111(t − 1), if t ≥ 1 s
(4.7)

yr(t) =
0, if t < 1 s

0.111(t − 1), if t ≥ 1 s
(4.8)

with initial conditions:

[x(0), y(0), θ(0)] = [0 m, 0 m, π/4 rad] (4.9)

that correspond to the robot orientation aligned with the trajectory in the starting
point.

36

Simulations

0 0.5 1 1.5 2
x (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
 (

m
)

Straigh trajectory

Initial pose

Figure 4.2: Straight reference trajectory, with aligned initial orientation

The choice of starting the trajectory tracking from t ≥ 1 s is due to ensure
that all the controllers are able to start at same time. In fact, after starting the
simulation, each of the analysed control approaches takes a different time to reset
the Gazebo environment and for starting the data saving. This time is lower than
a second, so at t = 1 swe are able to synchronize all the controllers.

According to the geometry of the path and the velocity profile selected, for the
first scenario we have

θr(t) = π/4 rad (4.10)

vr(t) = 0.157 m s−1 (4.11)

ωr(t) = 0 rad s−1 (4.12)

For the second subcase, the vehicle is initially oriented such that θ(0) = 0 rad,
as shown in Fig. 4.3. We want to remark that the reference θr, vr and ωr for this
case are the same of the previous one.

37

Simulations

0 0.5 1 1.5 2
x (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y
 (

m
)

Straigh trajectory

Initial pose

Figure 4.3: Straight reference trajectory, with non-aligned initial orientation

4.1.2 Sinusoidal trajectory
For the second scenario, a sinusoidal trajectory is defined, i.e.

xr(t) =
0, if t < 1 s

0.07(t − 1), if t ≥ 1 s
(4.13)

yr(t) =
0, if t < 1 s

2sin(x(t)), if t ≥ 1 s
(4.14)

with initial conditions:

[x(0), y(0), θ(0)] = [0 m, 0 m, 1.1071 rad] (4.15)

that corresponds to the robot orientation aligned with the trajectory in the starting
point.

Also in this case, the trajectory is defined for t ≥ 1 s, and is chosen to ensure
the limitation of robot’s maximum speed.

From (4.1) it is possible to compute the reference orientation as

θr(t) = tan−1(2cos(0.07(t − 1))) (4.16)

Whereas from (4.3) and (4.6) reference linear and angular velocities can be
obtained as

vr(t) =
ñ

0.072 + (0.14cos(0.07(t − 1)))2 (4.17)

38

Simulations

0 2 4 6 8 10 12 14 16
x (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
 (

m
)

Sinusoidal trajectory

Initial pose

Figure 4.4: Sinusoidal reference trajectory

ωr(t) = −6.86 · 10−4sin(0.07(t − 1))
0.072 + 0.14cos(0.07(t − 1))2 (4.18)

The obtained references are shown in Fig. 4.5

Figure 4.5: In order: Reference direction, Reference linear velocity, Reference
angular velocity for sinusoidal trajectory

We can notice that the maximum value of linear and angular velocities are
within the robot’s limits, i.e. 0.2 ms−1 for linear velocity and 0.5 rad s−1 for the
angular one.

4.1.3 PID and LQR parameters tuning
Controllers performances depend on the value of their tuning parameters, but the
behaviour changes also according to the chosen reference trajectory. For this reason

39

Simulations

a proper tuning should be performed for each scenario.
Each controller has its own tuning techniques, as shown in [46] for PID or [47] for

LQR , but the simplest one is the trial-and-error method, that has been exploited
in this work.

4.2 PID tuning
The tuning coefficients of PID controller are the parameters: Kp, Ki, Kd. This
tuning process is based on an initial tuning of the proportional coefficient Kp, with
the other ones equal to zero, considering only the proportional action at a first step.
At this point it is find a value of Kp with a reasonable magnitude, chosen also with
respect to the coefficients of the other PIDs of the system. After that, the integral
coefficient Ki is tuned, choosing a value that ensures a good reduction of tracking
error. In the end, the values of differential coefficient Kp is tuned, being able to
reduce the oscillatory behaviour.

The resulting values are reported in Tab 4.1

Coefficient: Sinusoidal Straight 45° Straight 0°
Kpx 0.2 0.7 6
Kix 0.02 0.03 0.1
Kdx 0.02 0.01 0.1
Kpy 0.05 0.05 6
Kiy 0.2 0.04 0.3
Kdy 0.01 0.0 0.1
Kpθ

1 6 1
Kiθ

0.2 0.3 0.1
Kdθ

0.2 0.05 0.05

Table 4.1: Table of PID coefficients chosen for each trajectory

LQR tuning

LQR is tuned designing the penalty weight matrices Q and R, assuming that they
are both diagonal matrices, i.e.

Q =

q11 0 0
0 q22 0
0 0 q33

 (4.19)

R =
C
r11 0
0 r22

D
(4.20)

40

Simulations

As shown in Section 2.3, each diagonal element defines the contribution of a single
state or input, in particular q11 is related to the contribution of the error on x, q22
to the error on y and q33 to the error on θ. On the other hand, r11 is related to the
contribution of command input uv and r22 to command input ωr.

As starting values for Q and R are used identity matrices. Since all elements
have same magnitude there is no parameters with higher priority. After this first
choice, the values are tweaked to achieve better performances. In particular values
of Q are used to reduce the error of robot’s pose and using higher values for some
components allows to give priority to that pose components. On the other hand,
values of R are used to reduce the control effort, since using higher values allows
to reduce the control magnitude.

In the tuning, it is not important the magnitude of the matrix entries itself,
but the relative magnitude between weights. Using higher values for Q allows to
have better tracking performances, but the control effort is enlarged at same time.
Instead, increasing values for R reduces the control input magnitude, but also
reduces the system’s reactivity, so a good choice is a trade-off between accuracy
and control effort.

For tuning the LQR parameters, a Simulink model was used before implementing
the controller in the ROS node. The block scheme used in Simulink is reported in
Fig. 4.6.

Figure 4.6: Simulink implementation of LQR controller

The values chosen in the tuning process are shown in Tab 4.2 We can notice that
for sinusoidal and straight trajectories, to reach an acceptable tracking precision,
it is sufficient to use the same magnitude for each components of Q, while the
elements of R are chosen two orders of magnitude lower to ensure a good reactivity.
Instead, for the straight trajectory with initial orientation θ(0) = 0 deg, the two
components of Q relative to x and y are chosen 20 times higher than the one of θ.

41

Simulations

Coefficient: Sinusoidal Straight 45° Straight 0°
q11 1 1 1
q22 1 1 1
q33 1 1 0.05
r11 0.01 0.01 0.01
r22 0.01 0.01 0.01

Table 4.2: Table of LQR weights chosen for each trajectory

This is done to ensure the reduction of inaccuracy on x and y, compensating the
initial error due to non-aligned original orientation.

4.3 Simulation results
In this section, the simulation results obtained from the two scenarios, implementing
the selected control strategies in the different languages, are presented. To ensure
the repeatability of the results, 10 simulations have been run for each setup.

The different case studies are then compared in terms of

• actual (x(t), y(t)), vs desired (xr(t), yr(t)) trajectory

• the tracking error, defined as

et(t) =
ñ

(xr(t) − x(t))2 + (yr(t) − y(t))2 (4.21)

• the command inputs for linear and angular velocity, computed by the control
algorithm

• the execution times needed to compute each control input

On the same graph are superimposed the plot of each programming method, to
compare the behaviours.

4.3.1 Straight line trajectory, with θ = π/4 rad and con-
trolled with a PID

The first case study is the straight line trajectory, considering the case of initial ori-
entation aligned to the reference path and, as tracking controller, the PID is applied .

42

Simulations

The trajectory plot is shown in Fig. 4.7 and from this it is possible to notice
that all the controllers are able to track the reference trajectory from initial point
to final one. From the figure’s zoom around the final point, it can be noticed that
C++, Python and C++ Matlab trajectories are more close to the reference one in
most of cases, while Matlab simulations are further, resulting the one to have the
worst tracking performances.

(a) Trajectory x-y (b) Trajectory x-y zoom

Figure 4.7: Straight, π/4 rad, PID: trajectory

These results are confirmed by the tracking error plot in Fig. 4.8, where it is
possible to notice that there is a larger error at the beginning of simulation due
to the effect of the controller (overshoot). After approximately 8 seconds, the
controller is able to steer the system to the desired trajectory, with a resulting drop
of the tracking error to the order of magnitude of 10−4m for all the controllers. In
this part, the tracking error has a small ripple that is common to all the controllers.
There are also some error peaks in other points, that are not repetitive, and depends
on the single simulations. Comparing the tracking error of the different controllers,
it is possible to notice some differences in the first part of trajectory with Python
that presents a slightly smaller error, while Matlab has the larger one. Instead,
when the robot converges to the reference trajectory all controllers have the same
error.

For the command inputs in Fig. 4.9, we can notice an initial effort, higher in
both linear and angular commands. This correspond to the initial error shown
in the previous graph, because the controller tries to react increasing the control
action.

In this graph, and also in the others related to the command inputs, there are

43

Simulations

(a) Trajectory error (b) Trajectory error zoom

Figure 4.8: Straight, π/4 rad, PID: Tracking error

some miss-placed points. The cause is an error in the function used to get the simu-
lation time in command messages timestamps, i.e. in some occasions the time value
in the time stamp is wrong, and this cause the presence of random positioned points.

(a) Command linear velocity (b) Command angular velocity

Figure 4.9: Straight, π/4 rad, PID: Linear and angular velocity commands

Comparing the execution time of the controllers in Fig. 4.10, it is possible to
notice the major differences among the languages. The controller based on C++
Matlab has a lower execution time with respect to all the others. This difference is
shown also in Table 4.4, where the mean values for each controller are reported. In
particular, the C++/Matlab based controller is about 10 times faster than the on
in C++. Matlab and Python have similar values for execution time. A difference
between Matlab-Python and C++ was expected, since the first ones are interpreted

44

Simulations

programming languages, while the second is a compiled one, but what we can
observe is the difference between C++ and C++ Matlab, because both of them
are compiled in the same way. The main reason of this difference is the Matlab’s
code optimization, that allows to reach this performances.

Figure 4.10: Straight, π/4 rad, PID: execution time

4.3.2 Straight line trajectory, with θ = π/4 rad and con-
trolled with a LQR

In this section, we report the results obtained considering the LQR controller for
the same case study.

The Fig. 4.11 shows a good tracking performance of the controller as for the PID
case. On the zoom around the final point, it is possible to notice some differences
with respect to the previous case, i.e. the trajectories of C++, Python and C++
Matlab are more overlapped with respect to the PID case. It means that their
performances are more repeatible over multiple simulations. For what concerns the
Matlab case, it has trajectories completely different from each other, and this allows
to be also closer to the reference in some cases, but it has a less repeatable behaviour.

The trajectory error in Fig. 4.12 has the same global behaviour of previous PID,
with a larger error in the first part that is then reduced. The difference is that in

45

Simulations

(a) Trajectory x-y (b) Trajectory x-y zoom

Figure 4.11: Straight, π/4 rad, LQR: trajectory

this case the converging time is lower, beeing about 3 second versus 8 second of
previous case. Considering the error behaviour after the convergence, the LQR has
an higher variation in the error, that is still in the order of magnitude of 10−4m as
the PID.

(a) Trajectory error (b) Trajectory error zoom

Figure 4.12: Straight, π/4 rad, LQR: tracking error

The command input reported in Fig. 4.13 presents an higher value of linear and
angular velocity in the first part, with respect to the previous case. This is due to
an higher tracking error in the first part of the trajectory with respect to the PID
case.

Execution time in Fig. 4.14 confirms the good performances of C++ Matlab,

46

Simulations

(a) Command linear velocity (b) Command angular velocity

Figure 4.13: Straight, π/4 rad, LQR: Linear and angular velocity commands

that has the lower value also in this case, but there is an important difference
in the Matlab and C++ behavior, i.e. Matlab has better performances than
C++. The reason could be that Matlab code optimization, in the case of LQR
algorithm, has a larger impact with respect to the benefits of a compiled-language
as C++. A confirm to this hypothesis is that Python has worse performances while
C++ Matlab, that has the optimized code and it is also compiled, improves the
performances of Matlab having better results.

Figure 4.14: Straight, π/4 rad , LQR: execution time

47

Simulations

4.3.3 Straight line trajectory, with θ = 0 rad and controlled
with a PID

The next case study considers the straight trajectory with initial condition not
aligned to the reference trajectory, i.e. initial orientation of 0 deg.

The controlled trajectories are reported in Fig. 4.15. The first part of the
trajectory is characterized by the curvature that leads the robot to the reference
path, before converging to it. When the robot is approaching the nominal trajec-
tory, it is possible to notice an overshoot, that leads to an error in the opposite
direction, before the definitive convergence. The zoom section is focused around
the convergence point and it shows that the C++ Matlab case get closer to the
reference, with a faster convergence with respect to the others.

(a) Trajectory x-y (b) Trajectory x-y zoom

Figure 4.15: Straight, 0 rad, PID: trajectory

The error plot in Fig. 4.16 reflects the trajectory behaviour. There is an initial
low error, since the robots initial position is along the reference trajectory. Then,
the error is increased since the robot is moving away due to the initial orientation.
After reaching the maximum, the error reduces again when the robot is approaching
the reference. At this point, there is another error peak, that corresponds to the
overshoot of the robot. The error values after convergence are slightly larger than
the trajectory with aligned initial condition, but in both cases veery small values
of the tracking error are achieved.

For what concerns the control commands, shown in Fig.4.17, it is possible to
notice that there is an initial saturation of both linear and angular commands, due
to the initial effort that is needed to align the robot. When the robot is approaching
the reference trajectory, the command is reduced, while later increases again in

48

Simulations

(a) Trajectory error (b) Trajectory error zoom

Figure 4.16: Straight, 0 rad, PID: tracking error

correspondence of the overshoot. With respect to the aligned case, now we have a
larger command action, as expected.

(a) Command linear velocity (b) Command angular velocity

Figure 4.17: Straight, 0 rad°, PID: Linear and angular velocity commands

The execution time in Fig. 4.18 shows similar results to the aligned case with
PID, with better performances of C++ Matlab with respect to C++, Python and
Matlab. This case confirms that with PID controllers Python and Matlab time
performances are the worst, while with the previous LQR Matlab is better than
C++.

49

Simulations

Figure 4.18: Straight, 0 rad, PID: execution time

4.3.4 Straight line trajectory, with θ = 0 rad and controlled
with a LQR

The PID case is then comapared with the LQR, considering the same trajectory
setup. Trajectory in Fig. 4.19 has same behaviour of PID case, with the same
overshoot when approaching the reference. Also LQR tracking error in Fig. 4.20 is

(a) Trajectory x-y (b) Trajectory x-y zoom

Figure 4.19: Straight, 0 rad, LQR:trajectory

similar with respect to PID case, with the same order of magnitude of the error

50

Simulations

after convergence, and a similar convergence time. Control commands in Fig. 4.21

(a) Trajectory error (b) Trajectory error zoom

Figure 4.20: Straight, 0 rad, LQR: tracking error

presents an initial saturation, as in PID case. For the execution time in Fig. 4.22,

(a) Command linear velocity (b) Command angular velocity

Figure 4.21: Straight, 0 rad, LQR: Linear and angular velocity command

there is the same trend already observed in previous case with LQR, with Matlab
execution time that is comparable with C++, and it is better than Python, thanks
to the code optimization.

4.3.5 Sinusoidal trajectory, controlled with a PID
The next trajectory is the sinusoidal one, controlled using a PID controller.

The trajectory plot is depicted in Fig. 4.23. From a global point of view, the
controller is able to track the reference path for the entire simulation. From the

51

Simulations

Figure 4.22: Straight, 0 rad, LQR: execution time

zoom around the last peak of the sinusoidal path, it is possible to notice that
Matlab simulations have the lower tracking error, while all the other controllers
have higher values. This difference between Matlab and the others controllers is

(a) Trajectory x-y (b) Trajectory x-y zoom

Figure 4.23: Sinusoidal, PID: trajectory

clear also from the error plot in Fig. 4.24. Considering the zoom section, the
Matlab graphs have higher values with respect to the others, and these graphs are
also quite different between each other, highlighting a less repeatable behaviour.
The other controllers are more aligned and have similar graphs, and this is also
confirmed from the data reported in Tab. 4.3. In the same table, we can notice that
Python has a slightly better performance, with lower variance, but the difference is
very small with respect to the C++ and C++ Matlab cases.

52

Simulations

(a) Trajectory error (b) Trajectory error zoom

Figure 4.24: Sinusoidal, PID: tracking error

The plot of the system inputs are shown in Fig.4.25. It is possible to notice an
initial larger action in the first part of the trajectory due to the initial effort to
correct the error, like for the previous controllers. Then, the input becomes similar
to the theoretical one represented in Fig. 4.5.

(a) Command linear velocity (b) Command angular velocity

Figure 4.25: Sinusoidal, PID: Linear and angular velocity command

In the execution time plot in Fig. 4.26, the behaviour of the straight line cases
is confirmed, with smaller values for the C++ Matlab case. The other controllers
have similar values between each other, with quite overlapping graphs and this is a
common aspect to all PID applications.

4.3.6 Sinusoidal trajectory, controlled with a LQR
The last case is the sinusoidal trajectory where the robot is controlled using LQR.

The trajectories are reported in Fig. 4.27. In the zoom section, we can observe

53

Simulations

Figure 4.26: Sinusoidal, PID:: execution time

a difference with respect to the PID case, i.e. the trajectories of each controller are
quite overlapped each others, showing high repeatability. This is a common feature
of all the LQR cases, excluding some exceptions in the Matlab case. In addiction,
Matlab and Python are quite similar.

(a) Trajectory x-y (b) Trajectory x-y zoom

Figure 4.27: Sinusoidal, LQR: trajectory

The tracking error in Fig. 4.28 shows a better performance of C++ case, while
other controllers have slightly higher values. Another case in which C++ showed
the lower error is in the straight 0 rad trajectory with PID controller, so this
behaviour is independent by the controller type. In the first part of the trajectory,
C++ showed also a more oscillating behavior with respect to the others.

54

Simulations

(a) Trajectory error (b) Trajectory error zoom

Figure 4.28: Sinusoidal, LQR: tracking error

The oscillating behaviour of C++ is more evident in commands plot in Fig.
4.29, where in both linear and angular commands there are oscillations, mainly in
the first part of trajectory. The oscillations of C++ are present also in the PID
case of sinusoidal tracking, but are less evident. Another difference is the presence
of some peaks for the Python case, mainly in the linear command, related to the
error peaks shown in the error plot, but they are not repetitive and depend by the
execution. This behaviour can be find also in the straight π/4 rad using the LQR.

(a) Command linear velocity (b) Command angular velocity

Figure 4.29: Sinusoidal, LQR: Linear and angular velocity command

The execution time graph in Fig. 4.30 shows a similar behavior with other
LQR cases, with better performances of Matlab with respect to C++, while C++
Matlab remains the faster approach.

55

Simulations

Figure 4.30: Sinusoidal, LQR: execution time

4.3.7 Final analysis
Tracking error performances of simulations can be summarized considering the
mean value and variance of the error along the 10 simulations. The values are
reported in Tab. 4.3. From mean value comparison, it can be noticed that straight

.
PID LQR

Traj C++ Pyt C++
Mat

Mat C++ Pyt C++
Mat

Mat

Str π/4 µ[10−4m] 32 25 30 51 17 13 17 27
σ[10−6m2] 55.10 31.82 47.33 131.5 31.85 17.82 30.45 84.21

Str 0 µ[10−4m] 213 208 217 233 234 235 235 251
σ[10−6m2] 1500 1400 1500 1700 1600 1600 1600 1700

Sin µ[10−4m] 8.52 6.94 8.40 14.00 4.36 5.61 6.56 6.98
σ[10−6m2] 9.05 6.80 8.97 23.40 3.02 1.39 2.71 8.33

Table 4.3: Table of mean and variance of tracking error

line trajectory with aligned initial position has an higher error with respect to the
sinusoidal one. The main reason is that the first one is travelled with an higher
speed with respect to the second, so this penalizes the tracking performances. On
the other hand, a higher error for the straight trajectory non-aligned is expected

56

Simulations

due to its initial conditions. If we compare the mean value of PID and LQR
controllers, we can notice that, with PID, Python has slightly better performances,
while Matlab is the worst. C++ and C++ Matlab have similar values, that are
close to the Python ones. For LQR, Matlab has worst performances, while the
difference between the other controller is less evident.

Finally, the execution time performances are summarized in Table 4.4, where the
mean value, the minimum and maximum execution times are reported. We can see

PID LQR
Traj C++ Pyt C++

Mat
Mat C++ Pyt C++

Mat
Mat

Str π/4
µ[104ns] 1.21 2.83 0.46 6.71 7.83 107.66 0.48 4.39
min [104ns] 0.44 0.98 0.15 0.8 2.74 24.11 0.15 0.7
max [104ns] 6.05 17.7 6.27 1378.1 52.85 368.4 4.82 940

Str 0
µ[104ns] 1.20 2.86 0.47 10.43 1.48 8.37 0.43 4.67
min [104ns] 0.41 0.96 0.16 0.7 0.53 2.33 0.14 0.6
max [104ns] 10.29 17.16 8.59 1551.7 11.8 30.65 3.97 973.6

Sin
µ[104ns] 1.47 3.70 0.66 3.30 8.34 112.99 0.71 2.82
min [104ns] 0.52 1.18 0.22 0.60 2.80 23.87 0.20 0.60
max [104ns] 12.60 23.52 8.94 4047.7 60.47 369.21 12.40 3596.7

Table 4.4: Table of execution time, with mean, minimum and maximum values

that C++ Matlab has the lowest times. This is valid for both PID and LQR, while
for the other controllers there are some differences between the two approaches, i.e.
in PID, C++ has the second best performances, while in LQR Matlab has better
performances than C++ and Python. Instead, in the comparison between C++
and Python, C++ is better in all cases.

From these results, it is clear that, to obtain better performances from the
execution time point of view, the best approach is C++ Matlab, since for all the
controllers it has the best results. The benefits of Matlab’s code optimization
are also evident, not only in the final C++ code, but also running the controller
directly on Matlab, especially in the case of a more complex controller. On the
other hand, from a tracking error point of view, Matlab has slightly worse results,
mainly due to a low repeatability between simulations, but the magnitude of this
difference is small compared to the whole trajectory.

In conclusion, the integration of Matlab in ROS introduces many advantages for
the controller design and its optimization and is an opportunity to be exploited.

57

Chapter 5

Conclusion and future work

The goal of this thesis research was the comparison of different approaches to the
development of ROS control systems. This has been reached comparing the most
popular programming languages for ROS, i.e. C++, Python, Matlab and C++
obtained from Matlab coder, used to implement a PID and LQR controller.

The main focus was on the comparison between C++/Python, that represents
the classical approach with ROS, and Matlab/C++ Matlab, that allows to extend
the ROS functionalities with the integration of the Matlab environment.

This comparison was made realizing different simulations in the Gazebo envi-
ronment and using as robot model a DDMR, so first of all its mathematical model
has been derived. Then two reference trajectories have been chosen, i.e. a straight
line trajectory and a sinusoidal one, and the controllers have been designed and
tuned accordingly.

Simulation performances are compared from two points of view: tracking perfor-
mances and control execution time, as shown from graphs in Section 4.3.

The results obtained demonstrate that, for what concern the tracking error, all
the approaches have reached similar results, with only Matlab that in some cases
has worse performances, but the differences are small with respect to the whole
trajectory magnitude.

The main results regard the execution time, since, from all the tests, it is clear
that C++ Matlab has the best performances, with a large difference with respect
to all the other cases. Another interesting result is related to the Matlab time
performances, since in the LQR case it has better or similar performances with
respect to C++. This underlines the Matlab’s code optimization, that represents
an advantage of the integration between ROS and Matlab. In this way it shows
that it is possible to perform a first test using the code written in Matlab, running
the simulation from it, and when the code development is terminated, it is possible

58

Conclusion and future work

to export the code in C++, obtaining also better performances from the execution
time point of view. This advantage is more evident with a more complex controller,
as can be seen from the difference between PID and LQR, where in the first case
the convenience of Matlab is not evident.

Regarding the Python controller, the small better performances in trajectory
tracking does not justify the much larger execution times in all cases.

Future developments of the proposed research could aim at test more complex
controllers from the computation point of view, to see the effect on execution time
and understand if the benefits of Matlab code optimization are still evident.

Another adding to the work can be the test on a real robot, moving to the
hardware-in-the-loop approach, to see if the obtained results are still valid and how
performances changes in a real application. It is necessary to focus especially on
the tracking error, since with simulations we reached good results, with errors in
the order of magnitude of 10−4m, but in a real scenario is difficult to reach this
precision, mainly due to sensors accuracy, noise and non-linearities.

59

Appendix A

ROS Manual files

A.0.1 Launch file example

1 <launch>
2

3 <!−− Reset Gazebo −−>
4 <node name=" g loba l_ loc " pkg=" r o s s e r v i c e " type=" r o s s e r v i c e " args="

c a l l −−wait / gazebo / re s e t_s imu la t i on " />
5

6

7 <!−− ROSBAG: −p: p r i n t when s t a r t saving , −O: f i l e l o ca t i on , −
b: b u f f e r s i z e du ra t i on : o f savage , / : t o p i c to save −−>

8 <node name=" record " pkg=" rosbag " type=" record " args="−p −O /home/
gerardo /catkin_ws/ s r c / p id_con t ro l l e r / b a g f i l e s / rosbag_cpp_sin . bag
−−durat ion =250 odom cmd_vel_stamped " />

9

10

11 <!−− C o n t r o l l e r node −−>
12 <node name=" nodo_sin_cpp " pkg=" p id_con t r o l l e r " type=" cpp_pid_sin "

output=" sc r e en " />
13

14 </ launch>

A.0.2 Message file example

1 geometry_msgs/TwistStamped . msg
2

3 std_msgs/Header header
4 geometry_msgs/Twist tw i s t

60

ROS Manual files

5

6 std_msgs/Header . msg
7 uint32 seq
8 time stamp
9 s t r i n g frame_id

10

11 geometry_msgs/Twist . msg
12 geometry_msgs/ Vector3 l i n e a r
13 geometry_msgs/ Vector3 angular
14

15 geometry_msgs/ Vector3 . msg
16 f l o a t 6 4 x
17 f l o a t 6 4 y
18 f l o a t 6 4 z
19

20 nav_msgs/Odometry . msg
21 std_msgs/Header header
22 s t r i n g child_frame_id
23 geometry_msgs/PoseWithCovariance pose
24 geometry_msgs/TwistWithCovariance tw i s t

A.0.3 Matlab launcher icon.
Content of file "matlab_r2022a.desktop"

1 [Desktop Entry]
2 Vers ion =1.0
3 Type=Appl i ca t ion
4 Name=MATLAB R2022a
5 Terminal=f a l s e
6 Exec=env MESA_LOADER_DRIVER_OVERRIDE=i965 matlab22 −desktop
7 Icon=matlab
8 Categor i e s=Development ; Math ; Sc i ence
9 Comment=S c i e n t i f i c computing environment

10 StartupNot i fy=true
11 StartupWMClass=com−mathworks−u t i l −PostVMInit

61

Bibliography

[1] Jelle Bruinsma. World agriculture: towards 2015/2030: an FAO perspective.
Routledge, 2017 (cit. on p. 1).

[2] Christophe Cariou, Roland Lenain, Benoit Thuilot, and Michel Berducat.
«Automatic guidance of a four-wheel-steering mobile robot for accurate field
operations». In: Journal of Field Robotics 26.6-7 (2009), pp. 504–518 (cit. on
p. 1).

[3] Spyros Fountas, Nikos Mylonas, Ioannis Malounas, Efthymios Rodias, Christoph
Hellmann Santos, and Erik Pekkeriet. «Agricultural robotics for field opera-
tions». In: Sensors 20.9 (2020), p. 2672 (cit. on p. 1).

[4] Sami Salama Hussen Hajjaj and Khairul Salleh Mohamed Sahari. «Bringing
ROS to agriculture automation: hardware abstraction of agriculture machin-
ery». In: International Journal of Applied Engineering Research 12.3 (2017),
pp. 311–316 (cit. on p. 2).

[5] Ruud Barth et al. «Using ROS for agricultural robotics-design considerations
and experiences». In: Proceedings of the Second International Conference on
Robotics and associated High-technologies and equipment for agriculture and
forestry. 2014, pp. 509–518 (cit. on p. 2).

[6] Wageningen University & Research is a collaboration between Wageningen
University and the Wageningen Research foundation. CROPS – Intelligent
robot systems for greenhouse horticulture. 2022. url: www.crops-robots.eu/
(visited on 11/27/2022) (cit. on p. 2).

[7] Inc. The MathWorks. xPC Target, For Use with Real-Time Workshop. 2022.
url: http://www.bmed.mcgill.ca/reklab/archive/xPC/xPC_documenta
tion/xpc_target_ug[1].pdf (visited on 11/27/2022) (cit. on p. 2).

[8] Inc. The MathWorks. Robotic System Toolbox. 2022. url: https://it.
mathworks.com/products/ros.html (visited on 11/27/2022) (cit. on p. 2).

62

www.crops-robots.eu/
http://www.bmed.mcgill.ca/reklab/archive/xPC/xPC_documentation/xpc_target_ug[1].pdf
http://www.bmed.mcgill.ca/reklab/archive/xPC/xPC_documentation/xpc_target_ug[1].pdf
https://it.mathworks.com/products/ros.html
https://it.mathworks.com/products/ros.html

BIBLIOGRAPHY

[9] M. Galli, R. Barber, S. Garrido, and L. Moreno. «Path planning using Matlab-
ROS integration applied to mobile robots». In: 2017 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC).
2017, pp. 98–103. doi: 10.1109/ICARSC.2017.7964059 (cit. on pp. 2, 29).

[10] Inc. Open Source Robotics Foundation. What is TurtleBot? 2022. url: https:
//emanual.robotis.com/docs/en/platform/turtlebot3/overview/
#notices (visited on 11/23/2022) (cit. on pp. 3, 26).

[11] Hoang Thien Nguyen Hong Thai Trinh Thi Khanh Ly and Le Quoc Dzung.
«Trajectory Tracking Control for Differential-Drive Mobile Robot by a Vari-
able Parameter PID Controller». In: International Journal of Mechanical
Engineering and Robotics Research 11 (Aug. 2022), pp. 614–621 (cit. on pp. 3,
12, 35).

[12] Amin Abbasi and Ata Jahangir Moshayedi. «Trajectory Tracking of Two-
Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On
Computational Model of KHEPERA IV». In: 3 (Mar. 2017), pp. 42–47 (cit. on
pp. 3, 14).

[13] Steven M. LaValle. Planning Algorithms, 726-29. New York: Cambridge
University Press, 2006 (cit. on p. 5).

[14] Spyros G. Tzafestas. Introduction to Mobile Robot Control, 41-43. London:
Elsevier Insights, 2014 (cit. on p. 7).

[15] BN Biswas, Somnath Chatterjee, SP Mukherjee, and Subhradeep Pal. «A
discussion on Euler method: A review». In: Electronic Journal of Mathematical
Analysis and Applications 1.2 (2013), pp. 2090–2792 (cit. on p. 9).

[16] Héctor J Sussmann and Velimir Jurdjevic. «Controllability of nonlinear sys-
tems». In: Journal of Differential Equations 12.1 (1972), pp. 95–116. issn:
0022-0396. doi: https : / / doi . org / 10 . 1016 / 0022 - 0396(72) 90007 -
1. url: https : / / www . sciencedirect . com / science / article / pii /
0022039672900071 (cit. on p. 9).

[17] G. Klancar, D. Matko, and S. Blazic. «Mobile Robot Control on a Refer-
ence Path». In: Proceedings of the 2005 IEEE International Symposium on,
Mediterrean Conference on Control and Automation Intelligent Control, 2005.
2005, pp. 1343–1348. doi: 10.1109/.2005.1467211 (cit. on pp. 9, 11, 34).

[18] N. Leenaa and K. K. Saju. «Modelling and trajectory tracking of wheeled
mobile robots». In: Procedia Technology 24 (2016), pp. 538–545 (cit. on p. 10).

[19] B. D. Hirpo and W. Zhongmin. «Design and control for differential drive
mobile». In: International Journal of Engineering Research & Technology 6
(2017), pp. 327–334 (cit. on p. 10).

63

https://doi.org/10.1109/ICARSC.2017.7964059
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/#notices
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/#notices
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/#notices
https://doi.org/https://doi.org/10.1016/0022-0396(72)90007-1
https://doi.org/https://doi.org/10.1016/0022-0396(72)90007-1
https://www.sciencedirect.com/science/article/pii/0022039672900071
https://www.sciencedirect.com/science/article/pii/0022039672900071
https://doi.org/10.1109/.2005.1467211

BIBLIOGRAPHY

[20] et al. L. Kinam. «Design of Fuzzy-PID controller for path tracking of mobile
robot with differential drive». In: International Journal of Fuzzy Logic and
Intelligent Systems 18 (2018), pp. 220–228 (cit. on p. 10).

[21] et al. P. K. Padhy. «Modeling and position control of mobile robot». In:
Proc. 11th IEEE International Workshop on Advanced Motion Control (2010),
pp. 100–105 (cit. on pp. 10, 12).

[22] Rames C Panda. Introduction to PID controllers: theory, tuning and applica-
tion to frontier areas. BoD–Books on Demand, 2012 (cit. on p. 10).

[23] Filippo Arbinolo. «Modelling and Control of a Skid-Steering Mobile Robot for
Indoor Trajectory Tracking Applications». In: http://webthesis.biblio.polito.it/
id/eprint/14632 (2020), p. 186 (cit. on pp. 10, 13).

[24] Ibrahim A El-Sharif, Fathi O Hareb, and Amer R Zerek. «Design of discrete-
time PID controller». In: International Conference on Control, Engineering
& Information Technology (CEIT’14).,(hal. 110-115). 2014 (cit. on p. 12).

[25] Luca Zaccarian and Andrew R Teel. Modern anti-windup synthesis: control
augmentation for actuator saturation. Vol. 36. Princeton University Press,
2011 (cit. on p. 13).

[26] Ahmad Taher Azar and Fernando E Serrano. «Design and modeling of anti
wind up PID controllers». In: Complex system modelling and control through
intelligent soft computations. Springer, 2015, pp. 1–44 (cit. on p. 13).

[27] Locatelli and Sieniutycz. «Optimal Control: An Introduction». In: Applied
Mechanics Reviews 55.3 (June 2002), B48–B49 (cit. on p. 14).

[28] Stephen Boyd. Continuous time linear quadratic regulator. Stanford University,
2009 (cit. on p. 15).

[29] Open Robotics. Getting started with ROS. 2022. url: http://wiki.ros.
org/it (visited on 11/24/2022) (cit. on p. 18).

[30] M. Quigley, B. Gerkey, and W.D. Smart. Programming Robots with ROS:
A Practical Introduction to the Robot Operating System. O’Reilly Media,
2015. isbn: 9781449325510. url: https://books.google.it/books?id=
Hnz5CgAAQBAJ (cit. on p. 18).

[31] The Construct. The Beginner’s Guide to ROS. 2022. url: https://www.
theconstructsim.com/about-ros-robot-operating-system/ (visited on
11/24/2022) (cit. on p. 18).

[32] Zandra B Rivera, Marco C De Simone, and Domenico Guida. «Unmanned
ground vehicle modelling in Gazebo/ROS-based environments». In: Machines
7.2 (2019), p. 42 (cit. on p. 19).

64

http://wiki.ros.org/it
http://wiki.ros.org/it
https://books.google.it/books?id=Hnz5CgAAQBAJ
https://books.google.it/books?id=Hnz5CgAAQBAJ
https://www.theconstructsim.com/about-ros-robot-operating-system/
https://www.theconstructsim.com/about-ros-robot-operating-system/

BIBLIOGRAPHY

[33] Omar Elmofty. ROS2 vs. ROS1— key differences and which one is better?
2022. url: https://medium.com/@oelmofty/ros2-how-is-it-better-
than-ros1-881632e1979a (visited on 11/24/2022) (cit. on p. 19).

[34] Open Robotics. ROS Computation Graph Level. 2022. url: http://wiki.
ros.org/ROS/Concepts (visited on 11/24/2022) (cit. on p. 20).

[35] Open Robotics. About Gazebo. 2022. url: https://gazebosim.org/about
(visited on 11/24/2022) (cit. on p. 22).

[36] Open Robotics. Ubuntu install of ROS Noetic. 2022. url: http://wiki.ros.
org/noetic/Installation/Ubuntu (visited on 11/24/2022) (cit. on p. 23).

[37] Matthew Elwin. Catkin and Packages. 2022. url: https://nu-msr.github.
io/me495_site/lecture02_catkin.html (visited on 11/24/2022) (cit. on
p. 23).

[38] Open Robotics. Creating a catkin Package. 2022. url: http://wiki.ros.
org/ROS/Tutorials/CreatingPackage (visited on 11/24/2022) (cit. on
p. 24).

[39] Open Robotics. Understanding ROS Nodes. 2022. url: http://wiki.ros.
org/ROS/Tutorials/UnderstandingNodes (visited on 11/24/2022) (cit. on
p. 24).

[40] Open Robotics. Writing a Simple Publisher and Subscriber (C++). 2022. url:
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber
(visited on 11/24/2022) (cit. on p. 25).

[41] Open Robotics. Writing a Simple Publisher and Subscriber (Python). 2022.
url: http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscrib
er (visited on 11/24/2022) (cit. on p. 25).

[42] Inc. Open Source Robotics Foundation. Waffle robot. 2022. url: https:
//www.turtlebot.com/ (visited on 11/24/2022) (cit. on p. 26).

[43] Inc. The MathWorks. ROS Toolbox. 2022. url: https://it.mathworks.com/
help/ros (visited on 11/24/2022) (cit. on p. 30).

[44] Gregor Klančar, Drago Matko, and Sašo Blažič. «Mobile Robot Control on a
Reference Path». In: Proceedings of the 2005 IEEE International Symposium
on, Mediterrean Conference on Control and Automation Intelligent Control,
2005. (2005), pp. 1343–1348 (cit. on p. 35).

[45] Amin Abbasi and Ata Jahangir Moshayedi. «Trajectory Tracking of Two-
Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On
Computational Model of KHEPERA IV». In: Journal of Simulation and
Analysis of Novel Technologies in Mechanical Engineering 10 (2018), pp. 41–
50 (cit. on p. 35).

65

https://medium.com/@oelmofty/ros2-how-is-it-better-than-ros1-881632e1979a
https://medium.com/@oelmofty/ros2-how-is-it-better-than-ros1-881632e1979a
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts
https://gazebosim.org/about
http://wiki.ros.org/noetic/Installation/Ubuntu
http://wiki.ros.org/noetic/Installation/Ubuntu
https://nu-msr.github.io/me495_site/lecture02_catkin.html
https://nu-msr.github.io/me495_site/lecture02_catkin.html
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber
https://www.turtlebot.com/
https://www.turtlebot.com/
https://it.mathworks.com/help/ros
https://it.mathworks.com/help/ros

BIBLIOGRAPHY

[46] Wen Tan, Jizhen Liu, Tongwen Chen, and Horacio J Marquez. «Comparison of
some well-known PID tuning formulas». In: Computers & chemical engineering
30.9 (2006), pp. 1416–1423 (cit. on p. 40).

[47] Daniele Masti, Mario Zanon, and Alberto Bemporad. «Tuning LQR controllers:
A sensitivity-based approach». In: IEEE Control Systems Letters 6 (2021),
pp. 932–937 (cit. on p. 40).

66

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Mobile robots in agriculture
	Thesis goals and objectives
	Thesis organization

	Theoretical background
	Mathematical model
	Differential-Drive Model
	Unicycle Model
	Unicycle model linearization
	Discrete time analysis
	Controllability

	PID Controller
	Introduction to PID Controllers
	PID architecture

	LQR Controller
	Introduction to LQR Controllers
	Solution of LQR problem
	LQR architecture

	ROS manual
	ROS introduction
	ROS architecture
	Gazebo introduction
	ROS setup
	Integration between ROS and Gazebo
	Integration between ROS and Matlab
	C++ code generation with Matlab Coder
	Data visualization
	Controller node structure

	Simulations
	Reference trajectories
	Straight line trajectory
	Sinusoidal trajectory
	PID and LQR parameters tuning

	PID tuning
	Simulation results
	Straight line trajectory, with =/4 rad and controlled with a PID
	Straight line trajectory, with =/4 rad and controlled with a LQR
	Straight line trajectory, with =0 rad and controlled with a PID
	Straight line trajectory, with =0 rad and controlled with a LQR
	Sinusoidal trajectory, controlled with a PID
	Sinusoidal trajectory, controlled with a LQR
	Final analysis

	Conclusion and future work
	ROS Manual files
	Launch file example
	Message file example
	Matlab launcher icon. Content of file "matlab_r2022a.desktop"

