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Abstract

Nowadays, there is a growing interest in those people with a lack of limb movement
ability, with the aim of giving them the capacity to perform voluntary movements,
for instance, through supporting exoskeletons or through electrical muscle stimula-
tion. In some cases, these are people who have undergone amputations of one or
more limbs, in other cases they are patients with SCI. The MMG group at Uppsala
University, which hosted the development of this project, aims to open the door
to a new way of developing BCIs, as suggested by their work in B-CRATOS, an
ambitious interdisciplinary project of which several partners are part. The present
work falls within this context, with the objective of simulating the muscular stim-
ulation through Functional Electrical Stimulation (FES) technique starting from
decoding intracranial signals with Artificial Intelligence (AI). The methodology of
this project starts from the processing of spiking activity and hand movement data
collected from a macaque monkey while performing the task of grasping objects
with different shapes and sizes. The data were collected by the German Primate
Center in the context of the B-CRATOS project and made available for this work.
Following in the methodology is the analysis of the muscles of the hand and arm
involved in the grasping and release task of the objects used in the experiment
and then the simulation of the FES signals with the definition of the electrical
parameters (waveform, amplitude, frequency, pulse duration, relative delay of the
specific muscle in relation to the other muscles). The last stage of the methodology
is the search and choice of a proper architecture to decode intracranial input signals
and give as output electrical stimulation parameters. After an in-depth literature
search, eleven hand and arm muscles were selected, and simulations of the FES
signals were performed. Then, electrical parameters to achieve the correct combi-
nations of stimuli were generated for each type of grasping present in the dataset.
The preliminary investigation of a suitable Neural Network architecture suggested
using a decoder architecture mixing Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) as in previous work in the MMG group. This
work, based on the simulation of FES signals, seems to be optimistic in the context
of muscle stimulation, which for those who still have undamaged limbs and muscles
but not the capacity for voluntary movement is a viable option to be able to perform
basic movements.
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Chapter 1

Introduction

1.1 Context

Complications in voluntary movement and even severe paralysis can result from
various pathological or traumatic conditions. The damage can be at the level of
the brain, the spinal cord, peripheral nerves or at the level of the muscles [1]. To
give an example, there are between 250,000 and 500,000 people suffering from
SCI every year in the world [2]. In 2017 there were 57.7 million people with limb
amputation worldwide [3]. In most cases, the damage that leads to a motor deficit
is due to traumatic events, such as car accidents, and it is estimated that cases will
increase in the coming years. The development of motor neuroprostheses fits into
this context as a means of trying to restore the ability of voluntary movements to
this class of patients. The aim of the neuroprostheses is not just to aesthetically
recreate the shape of the missing limb, but to restore the functionality of the limb
itself [4, 5].
Over the last decade, several projects have been initiated with the aim of devel-
oping neuroprostheses: NeuraViPeR, which focuses on visual neuroprostheses [6],
MoreGrasp project, which focuses on grasping using non-invasive EEG signals
[7], BCINET, which focuses on developing BCIs to make them more suitable for
neuroprosthetic applications [8], B-CRATOS, which aims at the construction of a
brain-controlled, wireless prosthetic arm [9].
The B-CRATOS (Brain-Connect inteRfAce TO machineS) project, in particu-
lar,which wants to expand the boundaries of neuroprostheses, aims at the de-
velopment of a bidirectional intra-body battery-free wireless brain-machine-body
communication, which decodes brain signals and transforms them into signals for
a biomechatronic prosthetic upper limb. The B-CRATOS project’s parteners are
Uppsala University, SINANO Institute, Scuola Superiore Sant’Anna, Blackrock
Microsystems Europe GmbH, LINKS FOUNDATION, Deutsches Primatenzentrum
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GmbH, Norwegian University of Science and Technology (NTNU).
The thesis project was developed at the MMG group, Uppsala University, in the
context of the B-CRATOS project, and is based on the previous work of Federico
Fabiani, a master student from Politecnico di Torino who also carried out his thesis
project at the MMG group. His work focused on the implementation of different
types of decoders with the aim of actuating a biomechanical arm. In particular,
Fabiani developed different types of decoders for decoding neural signals in his
project and implemented the best of them in real time for the actuation of the
mechanical arm.
However, there are cases in which the limbs are intact and the nerves are not com-
pletely damaged. In this case, an alternative approach to biomechanical prosthetics
may be direct stimulation of the muscles using electrodes.
In the present work, the type of neuroprosthesis considered is the one that uses
functional electrical stimulation (FES), a technique used to stimulate specific mus-
cles with the aim of performing a specific function, in this case grasping objects.
This type of neuroprosthesis requires that the motor neuron is undamaged.
The field of neuroprosthetics is full of difficulties to overcome, starting with the
recording of brain signals. Neural recording techniques are diverse, some invasive
and others non-invasive, and, in the choice, one must always make a trade-off
between different requirements (cost, signal noise, invasiveness, etc.). Moreover,
the stimulation of muscles, as mentioned, requires their structure and innervation
to be intact. If these requirements are not met, the FES technique is not applicable.
In such cases, it may be convenient to use mechanical prostheses.

1.2 Objective
The main objective of this thesis project is to develop a first approach for muscle
stimulation using the Functional Electrical Stimulation technique from the decoding
of intracranial signals from a macaque monkey. The FES technique is used in
neuroprosthetics to restore muscle movement. The FES treatment consists of
applying an external current to stimulate the muscle and thus its movement. In
this work, in particular, the goal is not the stimulation of a single muscle, but of a
group of muscles in the hand and arm to enable the action of grasping different
types of objects. The way to achieve this goal involves the development of several
steps.

1. The first step is the study of the dataset containing data on the neural activity
captured by the motor cortex of a macaque monkey during the grasping task
[10], and the study of the analysis work carried out on this dataset in a
previous work at the MMG group [11]. It is expected to eliminate certain
elements of the dataset according to what is needed for the purposes of this
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project.
Output of the step: preliminary filtration of the dataset.

2. Secondly, a study of the literature must be carried out on the muscles involved
in the action of grasping objects and select a limited number of them to
compose an elementary group of muscles involved in the grasping action.
Output of the step: the group of muscles that are supposed to be stimulated
to achieve certain types of grasping.

3. A literature search must be carried out on FES signals to understand their
general characteristics and the electrical parameters involved in the stimulation
of the muscles and then simulating them according to the stimulation purpose.
Output of the step: set of parameters to be programmed for the FES technique
and the values decided for these parameters.

4. After completing the previous objectives, there is the step of constructing new
labels for the dataset. At this stage, the goal is to have a dataset containing
the intracranial neural signals of the macaque monkey and a label type for
each task that is suitable for the final goal of using the FES technique. We
will no longer have the object types as labels for each task, but a description
of the muscles to be stimulated and the way to do it.
Output of the step: new labels, consisting of as many entries as there are
muscles and each corresponding to a set of stimulation parameters.

5. The last phase of the work is the adaptation to the purpose of stimulation
with the FES technique of different types of decoders previously developed
at the MMG group that had as their objective the actuation of a mechanical
arm.
Output of the step: choice of decoders, their adaptation to new labels and
offline testing.
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Chapter 2

Background

2.1 Brain signals recording techniques

Recording techniques used for BCIs and neuroprosthetics are classified in non-
invasive and invasive. In Tab.2.2 the main differences between the techniques
presented in this section can be observed.

• Electroencephalography (EEG) is the most popular non-invasive method when
it comes to BCIs and neuroprosthetics. Indeed, EEG is an inexpensive tech-
nique, the device is very portable, and does not require surgery to implant
the electrodes. In EEG, electrodes are placed directly on the scalp with
the international 10-20 system, as shown in Fig.2.1. The electrodes placed
on the scalp are sensitive to voltage potentials from current flows between
neurons. The end result obtainable with the EEG is not the recording of
action potentials, but of electrical activity in large portions of the brain [12].
The signals obtained are classified according to their frequency, amplitude,
and the area from which they were recorded. This variety of characteristics
is informative of the type of action performed and the area from which the
signal originates. A classification of EEG signals by frequency is observed in
Tab.2.1. A strong limitation of EEG signals is contamination by artifacts due
to ECG, EMG, EOG signals, which have large amplitudes at low frequencies,
and power-line noise [13]. However, part of these disturbances is removed in
the preprocessing phase of BCIs. In addition, EEG does not enjoy good spatial
resolution, which is on the order of centimeters. Nevertheless, EEG remains
an attractive technique for real-time BCIs and neroprosthetics because of its
high temporal resolution of the order of milliseconds [14].
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Figure 2.1: 10-20 international system of electrode placement.

EEG signal Frequency band Function
δ < 4Hz Deep sleep
θ 4 − 7Hz Sleep stages
α 8 − 13Hz Quiet waking
β 14 − 20Hz Activated cortex
γ 20 − 60Hz Cognitive

Table 2.1: EEG frequency bands. [15]

• Functional Magnetic Resonance Imaging (fMRI) is a non-invasive brain imag-
ing technique based on the BOLD (Blood Oxygenation Level Dependent)
effect [16]: neuronal activity requires oxygen, which is sent to the brain via
hemoglobin in capillary red blood cells. Hemoglobin is diamagnetic when
oxygenated and paramagnetic when deoxygenated. These magnetic properties
of hemoglobin are used to track brain activity by taking advantage of the
fact that the level of blood oxygenation depends on neural activity. Despite
good spatial resolution (one can discriminate down to 0.5mm using a 7T MR
scanner), fMRI has low temporal resolution (few seconds) mainly due to the
delay of the physiological response. With accurate analysis methods, however,
100ms resolution can be achieved [17].
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• Functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive optical tech-
nology that monitors the hemodynamic response in the cerebral cortex. It has
local measurements of oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb)
concentration changes in cortical areas of the brain. Within this technique, one
works with optodes (emitters and detectors) and uses at least 2 wavelengths
in the near-infrared spectrum. The penetration capacity of the near-infrared
light through tissue and bone is 2-3 cm. It is a technique that is becoming
increasingly popular in the world of BCIs because of the high portability and
limited cost. However, the temporal resolution is on the order of hundreds of
ms, as with fMRI, while the spatial resolution is even worse for physiological
response [17].

• Intracranial electroencephalography (iEEG) is an invasive brain signal record-
ing technique. It is performed using intracranial electrodes. It is called ECoG
(Electrocorticography) when using grids of electrodes implanted in the subdu-
ral space. The temporal resolution that is achieved with EEG is in the order
of ms, since a sampling rate of 1000-3000 Hz is used.The temporal resolution
is therefore similar to that of EEG. What you have more in compared to EEG
is the spatial resolution (order of mm) since you have a high localization of
the signal origin, and the signal to noise ratio (SNR). In fact, many of the
sources of noise such as tissue thickness, cardiac and respiratory artifacts,
and electromagnetic noise disappear as you get closer to the signal source
of interest.In addition, used during experiments it allows you to avoid the
overtraining that is necessary when you have a lot of noise to handle [18].

Technique Type Temporal resolution Spatial resolution
EEG non-invasive ∼ ms ∼ cm
fMRI non-invasive 100 ms ∼ mm
fNIRS non-invasive 100 ms 1 cm
iEEG invasive ∼ ms ∼ mm

Table 2.2: Brain signals recording techniques comparison.

As can be seen in the summary table2.2, the best performances in terms of temporal
and spatial resolution can be obtained with iEEG, which, unlike the others proposed,
is an invasive recording technique. The experiment that originated the dataset
used in this thesis is based on the recording of brain signals using iEEG.
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2.2 Muscle stimulation
The muscles type of interest in this thesis project is the skeletal muscle (Fig.2.2),
which consists of elongated muscle fibres, whose cytoplasm contains bundles of
myofibrils that have the function of making the muscle contract and relax. The
basic unit of the myofibril is the sarcomere. Contraction of the sarcomeres leads to
macrocontraction of the muscle. Each sarcomere is composed of thick filaments
(consisting of myosin) and thin filaments (consisting of actin). The sliding of the
thin filaments over the thick ones is what we call muscle contraction [19]. Several
muscle fibres are innervated by the same motor neuron (motor unit). The number
of motor units influences the strength of the contraction. The contraction of the
muscle fibres occurs through neural control, thanks to action potentials triggered
by the summation of electrical potentials on the postsynaptic membranes, and
transmitted through excitable cells [20] that depolarise the muscle cell membranes.
This effect can also be achieved by external stimulation, by transmitting trains of
electric pulses to muscles and nerves [21].

Figure 2.2: Skeletal muscle composition[22].

2.3 Functional Electrical Stimulation
Functional Electrical Stimulation (FES) is a muscle stimulation technique based
on the use of low-energy electrical pulses that interact with nerves and muscles to
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generate movement or sensation [23] (Fig.2.3). It is a technique that originated in

Figure 2.3: FES stimulation.

the 1960s and since then its potential has developed in various fields of application.
In rehabilitation, the FES technique is a potentially good solution to paralysis, its
ambition being to restore the possibility of voluntary movement to people with
paralysis. FES is a subcategory of NMES (NeuroMuscular Electrical Stimulation)
techniques. NMES consists of applying an electric current to produce muscle con-
traction. The way NMES works is based on the forcing of membrane depolarisation:
when an electric current is supplied to the tissue, an electric field is generated in
the vicinity of the motor axons that is able to depolarise the membranes of the
axons. This leads to the generation of action potentials that propagate leading
to muscle contraction. Since the technique is based on the depolarisation of the
motor axons, the peripheral nerves must be intact for the stimulation to work.
Therefore, the applications of this technique are limited to subjects who do not
have muscle weakness or peripheral nerve damage, i.e. patients with SCI, traumatic
brain injuries, multiple sclerosis or stroke patients [24]. FES is a type of NMES in
which stimulation is aimed not at contracting and reducing muscle damage, but at
functional movements, such as grasping objects [25]. This makes the FES technique
a very valuable tool in the design of motor neuroprostheses.
The fundamental elements of an FES-based neuroprosthesis are the stimulator, the
electrodes through which stimulation pulses are transmitted to the tissues, and
the sensors for controlling the stimulation, which can be voluntary or automatic
[25]. The stimulator is the part of the system where the stimulation parameters are
defined (waveform, current amplitude, frequency and duration of stimulation) and
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can be characterised by several channels, consisting of pairs of anode and cathode,
each dedicated to the stimulation of a muscle.
Stimulation electrodes can be either invasive (implanted or percutaneous electrodes)
or non-invasive (transcutaneous electrodes). The main advantages of non-invasive
electrodes are the absence of surgery and the possibility of changing the position
of the electrodes, making this type of electrodes a rather flexible solution. With
implanted or percutaneous electrodes, on the other hand, the position of the elec-
trodes is definitive following surgery and there is no possibility of calibration in
the event of incorrect position for stimulation. On the other hand, transcutaneous
electrodes require higher currents in order to reach the tissue, with values of up to
120mA, whereas invasive electrodes require currents around 25mA [25].
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Chapter 3

Dataset

The dataset used for this thesis was produced by researchers at the German Primate
Center and Department of Biology, University of Göttingen, following an experiment
conducted on two macaque monkeys (animal Z, female, and animal M, male). The
experiment is described in "Decoding a Wide Range of Hand Configurations from
Macaque Motor, Premotor, and Parietal Cortices" [10] and a summary is presented
in this section.

3.1 Experiment description
After being trained to grasp different objects while wearing a kinematic data glove,
electrode arrays were implanted in the cortical areas AIP, F5 and M1, as shown in
Fig.3.1. A total of 192 electrodes were implanted. With these, while the macaque
monkeys performed the tasks, spiking activity was recorded using a sampling rate
of 24kHz. The experiment can be described through several epochs, also shown in
Fig.3.2c for object grasping and Fig.3.2e for precision and power grips. The main
epochs are listed below.

• Fixation epoch: the monkey sitting in the dark on a chair in front of a turntable
containing objects in a pseudo-random order 25cm from the chest level, presses
a button near the chest. While continuing to keep his hand on the button,
he must continue to stare at a red LED light. The average duration of this
epoch is 650 ms.

• Cue epoch: a light is switched on to illuminate the object. The monkey
continues to stare at the object during this epoch. Its duration is 700 ms.

• Planning epoch: The monkey continues to stare at the object without moving
until the red LED light flashes. The average duration of this epoch is 800 ms.

10
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• Movement epoch: The LED light blinks giving the signal to the monkey to
move to grasp the object.

• Hold epoch: the monkey must hold the object for 500 ms, after which it is
given juice.

After a inter-trial duration of 1000ms, a new trial begins.
There are 8 turntables used in the experiment, with 6 objects on each turntable.
When each object has been grasped on the turntable, the next turntable is presented
to the monkey until all turntables are shown. In addition to grasping objects, power
and precision grips were also performed on a handle. Specifically, after grasping all
objects on all turntables, 10 trials were performed on precision and power grips.
The whole setup of the experiment can be seen in Fig.3.2.

Figure 3.1: Arrays implantation. [10].

3.2 Dataset format
The data used in this project are those recorded by the male monkey. Of the
original 759 trials, only 628 were correct, while the remained ones were eliminated
due to monkey errors during the experiment. These data were pre-processed with
spike sorting algorithms, resulting in 552 isolated firing neurons. In the original
format, each neuron unit was represented by a series of timestamps, corresponding
to the instants at which the neuron fired, but the dataset was then reshaped to
have a structure more suitable to become an input for the neural network. The final
form of the dataset provides for each trial a matrix in which the rows correspond
to the neurons and the columns correspond to the time bins into which the total
time of the trials was divided. In each cell is the number of times the neuron
fired in that time bin. The label of each matrix is the object grasped during the
corresponding trial. The duration of each time bin was set at 40 ms in the previous
work[11], following the suggestion from researchers from German Primate Center
and the average duration of an entire trial is 5.57 s. The total number of time bins
per trial and thus columns in the corresponding matrix is 139. In Fig.3.3, a scheme

11



Dataset

Figure 3.2: Experiment setup. [10].

of the structure of the dataset is shown.

3.3 Preliminary dataset filtering
Of the dataset containing only correct trials, which were therefore not eliminated
due to monkey error, not all trials are actually considered. In fact, trials labelled
with the object type ’special2’ are eliminated, as the association of the objects with
these trials is unclear. In addition, it was decided not to use the trials corresponding
to grip precision and power, and to keep only the trials corresponding to the objects
listed below.

• Ring, six sizes.

• Cube, six sizes.

• Ball, six sizes.

12
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Figure 3.3: Dataset structure.

• Horizontal cilinder, six sizes.

• Box, six sizes.

• Vertical cilinder, six sizes.

• Special shapes.

• Mixed shapes, from the ones before.

In total, there are 46 different possible objects in the filtered dataset, if we exclude
the objects belonging to the ’Mixed’ group. Tab.3.1 presents the numeric codes
associated with each object in the dataset. Each object is identified by a two-digit
number: the first digit indicates the shape of the object and the second identifies
the size, where "1" corresponds to the smallest size and "6" corresponds to the
largest size. In the case of the horizontal cylinder, we have 8 different labels in the
dataset, which might suggest that there are 8 different sizes. In reality, this is due
to the fact that labels "57" and "58" relate to two different ways of grasping the
cylinder with the largest size, identified by label "56". In addition to the filtering
of tasks, a cut was also made on the duration of the trial then actually used in
this work. In fact, since different hand conformations are to be realised, starting
with the intention to grasp objects, it was decided to use only the data preceding
the epoch "Hold" for prediction purposes. Thus, the dataset filtered so far actually
consists of 472 trials, each containing the number of activations for 552 neurons in
74 time bins (Fig.3.4).
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Dataset

Object type Sizes

Mixed "11" "12" "13" "14" "15" "16"
Rings "21" "22" "23" "24" "25" "26"
Cubes "31" "32" "33" "34" "35" "36"
Balls "41" "42" "43" "44" "45" "46"

hCylinder "51" "52" "53" "54" "55" "56 57 58"
Boxes "61" "62" "63" "64" "65" "66"
special "71" "72" "73" "74" "75" "76 77 78"

Table 3.1: Objects and corresponding original labels in the dataset.

Figure 3.4: Preliminary filtered dataset.
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Chapter 4

Methodology

4.1 Muscle selection

The operation of muscle selection was guided in its entirety by the experiment
described in [10] that originated the dataset used in this thesis. In this experiment,
the monkey had to grasp objects of different shapes and sizes (Fig.3.2b). By
examining each object, a hypothesis was made of the type of grasping used to
grasp each object. Subsequently, a literature study was carried out to identify the
muscles of the hand and arm whose contraction and relaxation enable the grasping
action of the objects described in the experiment.
A study that considered the action of grasping a macaque monkey of objects
emphasises that during the grasping action, coordinated activation of the distal
muscles is required [26]. They investigated the EMG recordings of different muscles
during grasping. Each object was represented with a vector of muscles in order to
characterise it from the point of view of muscle activity. In the study, some objects
are similar in shape to the objects considered in the dataset used for this thesis:
small and large cylinder, large disc, small and large plates, large sphere. In the
grasping of these objects, the muscles that presented activation in the different
phases of the movement are mainly the thenar muscles (Fig.4.1), active during
grasping and when releasing the object, the flexor digitorum superficialis (Fig.4.2)
and extensor digitorum communis muscles, both active in the first grasping phase.
In particular, the thenar muscle is a muscle group comprising three muscles: the
abductor pollicis brevis, the flexor pollicis brevis and the opponens pollicis. The
abductor pollicis brevis is the muscle that makes the thumb move away from the
index finger. The flexor pollicis brevis is the muscle that allows the thumb and
little finger to move closer together. The opponens pollicis is the muscle that
allows the thumb to move away from the other fingers, so as to allow the action of
grasping objects. It is therefore one of the most important muscles when it comes
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to grasping. In addition to the muscles highlighted in the study described above,

Figure 4.1: Thenar muscles group [27].

Figure 4.2: Flexor digitorum superficialis muscle [28].

other muscles of the hand have been identified that have a central function during
grasping [30]. The adductor pollicis muscle (Fig.4.4), a muscle outside the thenar
group, has the function of adducting the thumb.
The hypothenar is a group of three muscles involved in the movement of the little
finger (Fig.4.5).
An important muscles group are the interossei, which consist of four dorsals and
three palmar muscles (Fig.4.6): the dorsal interossei have the function of the
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Figure 4.3: Extensor digitorum communis muscle [29].

abudction of the second, third and fourth digits, while the palmar muscles have
the function of the adduction of the same.
The lumbrical muscles (Fig.4.7) are a group of four muscles that have the function
of flexion of the metacarpophalangeal joint and extension of the proximal interpha-
langeal (PIP) and distal interphalangeal (DIP) joints.
The muscles described so far are extrinsic muscles, located superficially and there-
fore also suitable for stimulation. In addition to these, there are the intrinsic
muscles are smaller muscles located more deeply, such as in the joints between the
phalanges.

The flexor digitorum superficialis and extensor digitorum communis muscles, on
the other hand, are muscles located in the arm. The flexor digitorum superficialis
is the largest of the flexors in the forearm [31]. Its tendon inserts into all fingers
and its function is to be the primary flexor of the proximal interphalangeal joints
of the middle phalanges [32]. The extensor digitorum communis is another muscle
located in the forearm that has the function of contributing to the extension of the
wrist and digits two, three, four and five.
In the grasping movement, it is often necessary to also perform a rotation of the
wrist, in particular to grasp vertically extended objects, such as the cylinders in
Fig.3.2. Therefore, a study of wrist movements was also carried out. In particular,
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Figure 4.4: Adductor pollicis muscle. [27].

Figure 4.5: Hypothenar muscles. [27].

the circular movement of the wrist is given by the composition of several move-
ments: flexion, extension, abduction and adduction of the hand (Fig.4.8). These
movements are performed by different muscles: flexor carpi radialis and flexor carpi
ulnaris [33], extensor carpi radialis and ulnaris [34], flexor digitorum superficialis
[32], flexor pollicis longus [35], extensor digitorum longus [36] and extensor pollicis
longus [37].

4.2 FES signals
At this stage of the methodology, the goal is to set the parameters of the stimulator,
the part of the FES system responsible for generating the stimuli to be transferred
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Figure 4.6: Dorsal and palmar interossei. [27].

Figure 4.7: Lumbrical muscles. [27].

to the muscles in charge of performing the desired movements. In Fig.4.9 the
parameters to be defined for the stimulation signal are shown.

4.2.1 Waveform
Since direct current is not suitable for this type of application and its effect is the
production of a potential action in the moment and not a stimulation over time that
allows movement, there is a need to look to alternating current waveforms for this
type of stimulation [21]. Then, the main types of waveforms for FES applications
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Figure 4.8: Wrist movements.

Figure 4.9: FES stimulator parameters [25].

are shown in Fig.4.10.

• Monophasic waveform is not recommended as it leads to a build-up of current
in the tissue, whereas the optimum would be to have a zero balance between
incoming and outgoing current [21].

• Biphasic waveforms are waveforms that ensure that the current transferred to
the tissue is then removed.

– Biphasic balanced waveforms generate a contraction under both the anode
and the cathode. Usually, the first phase occurs under the cathode, while
the second takes place under the anode. The latter aims to reverse the
electrochemical process due to the first phase. Time is usually left between
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the biphasic stimulations for the action potential to propagate correctly
[23].

– Asymmetric balanced biphasic waveforms ensure that contraction occurs
only under the cathode [23].

Figure 4.10: Waveforms for FES [25].

4.2.2 Pulse amplitude
Current intensity is what influences membrane depolarisation in stimulation. A
higher intensity results in a higher depolarisation. In the parameters setting of
the stimulator, the current intensity corresponds to the pulse amplitude (Fig.4.9).
The current level depends on the particular muscle (size and properties). For
applications similar to the one considered in this thesis, which is the stimulation
of hand and arm muscles, typical current levels are 10-20 mA [21]. The choice
of amplitude affects the type of nerve fibres recruited [25]. When choosing the
stimulation current, attention must be paid to the effect of muscle fatigue. In fact,
excessive current levels can either lead to no contraction effect in addition to that
already achieved, or to muscle fatigue, thus decreasing the maximum contraction
achievable [38].
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4.2.3 Pulse duration
The pulse duration is the parameter identifying the time interval over the entire
stimulation period for which the current intensity is on (Fig.4.9). The duration can
be different depending on the targets: a high selectivity in muscle nerves is given
by a very small pulse duration of the order of 10µs [39] and a very high current
amplitude, while larger amplitudes result in stronger contractions with a lower
current. Therefore, typically the pulse duration chosen in the FES environment is
between 200µs and 500µs [21].

4.2.4 Frequency
Frequency is a parameter that influences the intensity of the transmitted signal: the
higher the frequency, the higher the number of action potentials transmitted in the
unit of time. Since FES is synchronous stimulation, unlike the physiological way of
propagating action potentials, which results from the asynchronous recruitment of
motor units to avoid fatigue, a higher frequency than the physiological one must
be used. Typical values for obtaining upper limb movement range from 20 to 50
Hz. Above these values, there is less discomfort in the patient, but also faster
achievement of muscle fatigue [21].

4.3 Dataset labels construction
After having defined the muscles to be stimulated and the signals through which
to stimulate them, the following step was the construction of new labels in the
dataset.
The original labels consisted of two-digit numbers identifying objects of different
shapes and sizes. The aim is to change the two-digit number to a vector containing
as many elements as muscles to be stimulated. Each element of the vector will
consist of an integer value representing a set of electrical parameters with which
the muscle has to be stimulated.
To achieve this, this phase of the methodology consists of several steps:

1. Each object in Fig.3.2a has been associated with an assumed movement to
achieve grasping, as shown in Fig.4.11.
Depending on the shape and size of the object, the grasping dynamic changes.
For example, in most cases, two successive movements are required for larger
objects: starting with the relaxed hand, the first movement is the opening
of the hand or specific fingers, so there is an abduction of the muscles; the
second movement is the closing of the fingers to grasp the object in the hand,
which is performed by adduction of the muscles (Fig.4.12). Therefore in these
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Figure 4.11: Labels creation - first step. [40].

cases the abduction muscles are activated before the adduction muscles.
For smaller objects, on the contrary, it has been hypothesised to achieve
grasping with only the flexion movement starting from the relaxed hand.
In addition to the diversity of movement due to the diversity of sizes, there
is variation due to the diversity of shape. A significant example of this is
the large vertical cylinder, to grasp which requires first a twisting movement
of the wrist combined with an opening movement of the fingers and then a
bending movement. Grasping in this case requires the hand to be rotated
approximately 90 degrees from the horizontal.

2. Once the dynamics of the different grasping types were understood, the muscles
to be stimulated in the different phases of the movement or in the only phase
and the muscles that do not need stimulation were defined within the chosen
group of muscles (Fig.4.13).
For smaller objects, since it is not necessary to involve all the fingers in the
movement (Fig.4.14), it can be assumed that only the thumb, index and
middle finger can be used.

3. After defining the muscles to be activated in the two phases, one type of
stimulation was associated to each muscle (Fig.4.15). Taking into account
that for different objects the movement dynamics may be the same, it can be
figured out a finite number of possible configurations.
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Figure 4.12: Two phases grasping movement.

Figure 4.13: Labels creation - second step. [40].

4. At this point, signals are generated to obtain the different motion dynamics. In
this step, account is taken of the fact that in some cases the signals cannot all
be sent at the same time. In the case described above, where the movement is
divided into two phases, the stimulation signals corresponding to the abduction
muscles (and possibly the torsion muscles of the wrist) will have to be sent
earlier than the signals stimulating the adduction muscles. Each signal is
defined by its stimulation parameters.
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Figure 4.14: Grasping type example for small objects.

Figure 4.15: Labels creation - thrid step.

5. The last step is necessary to facilitate the work of the decoder. To avoid having
N parameters for C channels, which would lead to NxC outputs from the
decoder, the choice was made to encode a set of parameters with an integer.
Each possible parameter set therefore corresponds to an integer number. This
makes it possible to have as output of the decoder a vector of M integer
values, where M is the number of muscles of which the chosen set is composed
(Fig.4.16).

4.4 Brain signals decoder
Once the new labels had been constructed, a new database was in fact defined.
The signals to be decoded are still signals processed by iEEG records. However,
the outputs are no longer objects encoded by two-digit numbers, but electrical
parameters to be sent to 11 muscles on 11 independent channels.
Four decoders were examined to compare their performance and identify the one
with the most potential for this type of application. At the suggestion of the
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Figure 4.16: Example of original label and corresponding new label.

research group in which this thesis was carried out, the selection was made from
among the decoders developed previously with the objective of object classification
and subsequent implementation of the mechanical arm, in order to observe their
capabilities in this new application, namely muscle stimulation through the FES
technique. The decoders selected for comparison were therefore those based on
DNN, RNN, LSTM and Ensemble Neural Network constructed by combining CNN
and LSTM, respectively.
As the available decoders were developed with the objective of classification, first
of all, a readjustment of the neural networks to a regression was necessary, as the
values to be predicted in the case of this work are electrical parameter sets. In a
first step, the decoders were tested using the optimised parameters using the old
labels, i.e. the coded objects. In a second step, the optimisation of the parameters
was re-performed using the new dataset, after which the decoders were tested again.
Since in the previous work, the most successful neural network was the Ensemble,
it was expected that it would also perform better than the others in this case. The
steps of the work are explained in detail below.

4.4.1 Decoders selection
Previous work consisted of decoding the same signals for the implementation of
the mechanical arm. The labels of the neural networks were the grasped objects
encoded by two-digit numbers. The decoders tested were based on the following
types of neural networks: Dense Neural Network (DNN), Convolutional Neural
Network (CNN), Gated Recurrent Unit (GRU) Neural Network, Simple Recurrent
Neural Network (RNN) , Long Short-Term Memory (LSTM) Neural Network, En-
semble (CNN+LSTM). Ensemble NN was the one that performed best in previous
work, so the expectation was that it would perform better than all of them in this
case as well. Of these, only DNN, RNN, LSTM and Ensemble neural networks
were taken into account.
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• The Dense Neural Network is one of the most famous neural networks and
is inspired by the way the human brain processes information. This type
of architecture is characterised by the fact that the layers are full-connected
(Fig.4.17). This means that each neuron receives as input the output of all the
neurons that make up the layer. The neurons optimise themselves through
the learning process. The dense layer is capable of matrix multiplication,
where the elements in the matrix are parameters that are updated through
the process of backpropagation [41].

Figure 4.17: Dense Neural Networks.

• The Recurrent Neural Network is a type of neural network in which the output
of a node can influence the input of the same node. Thus, cycles can occur
within the neural network (Fig.4.18). RNNs are characterised by the fact that
nodes of the same layer share parameters and the way to update parameters
is a particular type of back propagation, which is back propagation through
time (BPTT). This type of network is used when there are time series to be
predicted, or more generally when dealing with temporal problems. RNNs are
massively implemented for speech recognition and language translation.
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Figure 4.18: Recurrent Neural Network vs Feed Forward Neural Network [42].

• Long short-term memory (LSTM) neural network is a type of RNN that
is more robust than a simple RNN with respect to the vanishing problem,
as it handles long term dependencies by understanding when some learned
information may be forgotten [43]. LSTMs are constructed in cells (Fig.4.19),
in which the processes of information updating or elimination take place.
These cells take as input two elements: cell state and hidden state. There
are several gates in the cell: sigmoid gates are the gates through which the
decision is made whether to add information or delete it. The sigmoid gates
are present in two steps: in the first step they decide whether to delete part
or all of the information from the previous unit; the second step is to take
the new input and decide whether or not to keep the information and decide
whether or not to update the new state. In the second step there is another
operation obtained by a tanh gate, which gives the weight to the values that
pass [44].

• Finally, the Ensemble Neural Network, created by combining CNN and LSTM,
has the characteristic of separating spatial features from temporal features.
The convolutional layer reduces the channel size and extracts the spatial
features, while the LSTM layer handles the temporal dependencies.

4.4.2 Adaptation to new outputs
The neural networks with which the decoders selected from the previous work
were constructed are classification neural networks. The outputs consisting of the
number codes of the objects were encoded with the one-hot encoding.
With the new outputs, the problem becomes multi-class multi-label, since there
are several parameter sets and at the same time, for each output there are 11
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Figure 4.19: LSTM Neural Network structure [44].

parameter sets. The one-hot encoding approach can theoretically be extended to
the new outputs by using multi-hot encoding. However, multi-hot coding leads
to the identification of 7 configurations as outputs, transforming the objective of
attributing one parameter set to each muscle for each trial considered into the
attribution of one parameter configuration for each trial. Since the intention in this
project is to treat each muscle individually, it was decided not to use the multi-hot
approach.
At this point, the chosen solution was to treat the problem as a multi-label re-
gression problem. The values output by the neural network are therefore not
integer values, but float numbers that do not correspond to any of the constructed
parameter sets. To transform these float numbers into integers, we chose to round
them to the nearest integer value and consider the rounded value as the identifier
of the parameter set to be assigned to each muscle.
Since the problem cannot be one hot encoded, but you have 11 labels per output
with 6 possible values, further modifications had to be made to the neural networks,
such as the activation function in the output layer. First, since each of the eleven
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labels per output must be treated independently, the activation function ’sigmoid’
was used [45] in first place:

σ(z) = 1
1 + e−z

(4.1)

.
However, since this type of function is suitable for binary classification, and multi-
hot encoding was not used in this project, the chosen activation function was linear,
since the problem was eventually treated as a regression problem.
In addition, since we in fact consider the problem a regression, the metric to be
used within the optimisation is the mean squared error. Accuracy is only calculated
later, after all outputs have been transformed into integers. The original labels are
then compared with the outputs of the neural network and compute the accuracy
for each stimulated muscle and finally the mean accuracy over all muscles.

4.4.3 Hyperparameters optimization
The starting neural networks are characterised by hyperparameters chosen using
TPE (Tree Parzen Estimator). Before making the same choice for the optimisation
of the hyper-parameters with the new dataset, a literature search was carried out
of the different methods of optimising hyper-parameters and establishing which is
preferred in the state of the art. At this stage, the major contribution was made
by a 2020 review, "Hyper-parameter optimisation: A review of algorithms and
applications" [46].

• The grid search is a very simple method based on the combined use of a
number of parameters in a range decided by the user. This method is therefore
tied to the experience of the user, who defines the ranges of values to search
from based on prior knowledge.

• Random search is a technique similar to grid search, but which in general seems
to perform better in the case of non-uniformly distributed hyperparameters.
It is a search for hyperparameters within certain distributions. The search
continues until the defined condition (e.g. accuracy) is fulfilled.

• Bayesian optimisers are more efficient than the previous two, as the optimisa-
tion process is guided by experience from previous trials. However, they are
more computationally demanding than grid search and random search.

• Tree Parzen Estimators are derived from Bayesian Optimisers, but in deep
learning they are more widely used than the originals as they are more flexible
on data types. This technique selects subsequent hyperparameters based on
the expected improvement. In this algorithm, once a hyper-parameter is found
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that performs well, it continues to search for a value in the vicinity of that
parameter.

Since, compared to the time of the precedent work, there do not seem to have been
any noticeable improvements in the development of optimisation techniques and
the library available in python ’hyperopt’ makes the TPE method easily usable, it
was decided to retain it in this work as well. However, the number of conformations
to be tested was reduced, as the output data is more complex than in the old
dataset and the search time for optimal hyperparameters increases considerably.
For each neural network, the number of configurations tested was 100.
The hyperparameters optimized by TPE are the number of units, the batch
size, the number of epochs and the dropout. The dropout, in particular, is an
hyperparameter introduced for the regularization, so to avoid overfitting and it
consists in temporally deleting units from the neural network.

4.4.4 Training, validation and test
The dataset was divided into training, validation and test. Specifically, 70% was
used as the training set, 15% as the validation set and the remaining 15% as the
test set. In addition, K-fold cross validation was applied as re-sampling procedure
since there is little data available. This method serves to ensure greater robustness
of the algorithm. For the purpose of K-fold cross validation, only the training set
and the validation set were considered. K = 5 was used, so 5 training sets and 5
validation sets were generated. The procedure is described below [47]:

1. Shuffle the dataset.

2. Split the dataset into K = 5 subsets.

3. One subset corresponds to the validation set.

4. The other four subsets together correspond to the training subset.

5. Fit the model on the training subset and evaluate it on the validation subset.

6. Save the evaluation score.

7. Switch the validation subset, repeat from 3 to 6, until all of the subsets were
validation subset once.

This split was exploited both in hyperparameters optimization and in training,
validating and testing data.
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Chapter 5

Results

5.1 Muscle selection

Most of the devices used for FES are multichannel. Therefore, several muscles
can be stimulated by sending the stimulation signals for each muscle through the
corresponding channel. Each channel receives a set of stimulation parameters from
the brain signal decoder. In particular, each output of the decoder corresponds to
a channel. The structure of the decoder is described in detail in section 5.4. The
fact that stimulators are multichannel does not mean, however, that they have an
infinite number of channels available for stimulation. Taking into account that a
channel corresponds to a muscle to be stimulated, a choice was made among the
muscles described in section 4.1. In particular, the set of muscles chosen for the
hypothesised grasping types contains 11 muscles.
Of the two forearm muscles (extensor digitorum communis and flexor digitorum
superficialis), the flexor digitorum superficialis was chosen. The reason lies in the
fact that, in the first phase of the grasping movement of the objects in the dataset,
the flexion of the fingers plays a primary role compared to their extension. We
therefore want to privilege this movement and delegate the action of extension to
the smaller muscles residing in the hand. The flexion of the fingers ensures that the
subject is able to hold the object. The release movement, in which all the muscles
associated with extension would take over in a voluntary movement, would only be
performed in this case through the absence of stimulation: once the stimulation
signals to the muscles have stopped, the hand tends to resume its naturally relaxed
conformation.
Of the three thenar muscles (flexor pollicis brevis, abductor pollicis brevis and
opponens pollicis), only the opponens pollicis was chosen, whose action is to move
the thumb away from the fingers. As explained in Methodology, this is one of the
most important muscles of the thenar muscles and intervenes in the first phase of
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grasping larger objects, in which it is necessary to slightly extend the thumb.
The adductor pollicis is another muscle that controls the movement of the thumb
but it is not part of the thenar group. This muscle has the function of thumb
adduction, which is necessary in the grasping of all objects and was therefore
selected.
All the interossei muscles were then selected: 4 dorsal and 3 palmar. This choice is
due to the fact that, for smaller objects, the movement of only some of the fingers
is necessary. Take for example the grasping of a small ball, where only the thumb,
index and middle finger are involved. There is therefore a need for selectivity in
stimulation when dealing with objects of various sizes. Again, there are muscles
assigned to abduction (dorsal) and those assigned to adduction (palmar).
For the torsion of the wrist, since it is a movement composed of the action of several
muscles, the ideal would be to create a specific and more complex stimulation in
order to perform all the movements necessary for the torsion in sequence. However,
in this first simulated approach, the group of muscles is considered as a single
muscle capable of performing the entire twisting action using the same stimulation
signals created for the other muscles. In the development of the software, each of
the chosen muscles was assigned a numerical code, as can be seen in Tab.5.1.

Code Muscle
10 Flexor digitorum superficialis
20 Opponens pollicis
30 Adductor pollicis
41 Interossei dorsal 1
42 Interossei dorsal 2
43 Interossei dorsal 3
44 Interossei dorsal 4
51 Interossei palmar 1
52 Interossei palmar 2
53 Interossei palmar 3
60 Wrist twist muscles group

Table 5.1: Chosen muscles and their codification for the software development.
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5.2 FES signals
Following the study of FES signals and considerations already presented in section
4.2 in 4, it was decided to use the same waveform for the stimulation signal
for all the muscles to be stimulated. As explained in the previous section, it is
generally preferred to use balanced bipolar signals to ensure that there is no excess
charge in the tissue, as would be the case using monophasic waveform signals. For
these reasons, the choice falls on the symmetric bipolar waveform or the balanced
asymmetric bipolar waveform.
In contrast, amplitude, duration and frequency are generally parameters that can
vary. In particular, the combination of amplitude and duration defines the intensity
of the stimulation, and therefore of the contraction.
For example, to stimulate larger muscles, such as the flexor digitorum superficialis
muscle, a higher current or duration of stimulation is required than for interossei
stimulation.
The values chosen for the stimulation parameters are therefore as follows:

• Pulse amplitude: 10 mA for small muscles and 20 mA for the flexor digitorum
superficialis muscle, the only large one compared to the others.

• Pulse duration: 0.5 s for all muscles.

• Frequency: 30 Hz for all muscles.

In addition, since in some cases, as explained in section 4.3, the movement takes
place in two phases, with stimulation of the abductor muscles before the adductor
ones, the signals are characterised by a delay: typically, the adductor muscles
is to be stimulated in the second phase, then the delay is at the beginning of
the stimulation, while for the abductor muscles, the delay is at the end of the
stimulation in the second phase, since we stop stimulating them when the fingers
are extended. In Fig.?? the stimulation signals for small muscles with symmetrical
biphasic waveform are shown. Tab.5.2 shows the stimulation parameters for all the
signals considered in this work. The set number will be also the element in the
vector which is the output of the neural network.

5.3 Dataset labels construction
Following the steps described in Sec.4.3, the groups of signals corresponding to
the 11 chosen muscles were generated. Considering that different objects in the
dataset may have the grasping conformation in common, the configurations were
grouped together, resulting in 8 configurations in total. By configuration we mean
the set of stimulated muscles and the stimulation parameters associated with them.
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Figure 5.1: Stimulation signals.

Set Pulse amplitude Pulse duration Frequency Delay in Delay out

1 10mA 0.5s 30Hz No No
2 10mA 0.5s 30Hz Yes No
3 10mA 0.5s 30Hz No Yes
4 0mA 0s 0Hz No No
5 20mA 0.5s 30Hz Yes No
6 20mA 0.5s 30Hz No Yes

Table 5.2: Set of parameters.

Each two-digit label was then replaced by a vector of 11 items, where each item
can take a value between 1 and 6. Each item corresponds to a specific set of
parameters. To understand the correspondence between each integer and the set
of electrical parameters it identifies, observe Tab.5.2. Of the eight configurations
constructed, only seven are actually used, while the eighth configuration is an
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auxiliary configuration consisting of all 0mA signals, preliminary associated with
tasks whose labels were not clear. Taking into account the encoding of the electrical
parameter sets in Tab.5.2 and the condensing of the chosen muscles in Tab.5.1, all
the generated configurations are presented in Tab.5.3. The configurations associated
with the objects related are shown in Fig.5.2

Configuration M10 M20 M30 M41 M42 M43 M44 M51 M52 M53 M60

C1 5 4 1 4 4 4 4 1 4 4 4
C2 6 3 2 3 3 3 3 2 2 2 4
C3 5 4 1 4 4 4 4 1 1 1 4
C4 5 4 1 4 4 4 4 1 1 4 4
C5 6 3 2 3 3 3 3 2 2 2 3
C6 6 4 2 4 4 4 4 2 4 4 3
C7 6 4 2 4 4 4 4 2 2 4 3
C8 4 4 4 4 4 4 4 4 4 4 4

Table 5.3: Muscle stimulation configurations.

Figure 5.2: Configurations and corresponding objects.

Since the construction of the new labels, however, a problem has arisen. Since
one configuration can correspond to several objects, the labels appear with a widely
varying cardinality in the dataset (Tab.5.4), thus generating a polarity that can
negatively affect the output of a neural network. Some configurations appear in
significantly greater numbers than others. An approach must therefore be chosen
to minimise these differences in the dataset, without decreasing the cardinality too
much.Two approaches are considered:
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• Find the lowest number of appearances among all m labels and use m trials
for each type of label.

• Average the number of times each label appears. Reduce the number of tasks
with labels that appear in the dataset more than the average to a number
equal to the average.

The first approach was discarded in this case, as the lowest number of appearances
corresponds to configuration 7, which appears only 12 times in the dataset. If one
were to reduce all tasks per label to 12, one would have 12 ∗ 7 = 84 samples in the
whole dataset, which is too few for a neural network. It was therefore preferred
to use the second approach. Although the problem remains, the impact that the
samples appearing several times now have on the entire dataset is less than before.
The new cardinality of the labels is shown in Tab.5.4

Configuration N of samples before filtration N of samples after filtration

1 97 67
2 111 67
3 32 32
4 118 67
5 81 67
6 21 21
7 12 12

Table 5.4: Occurrences of labels in the original and in the filtered datasets.

5.4 Brain signals decoder

5.4.1 Hyperparameters optimization
The neural networks were customised for the new dataset and the new problem
type. Certain characteristics were chosen with the new problem under consideration
in mind, namely regression instead of classification. These include the activation
function of the output layer, the loss rate and the metric used during training.
Other parameters were set using the TPE algorithm, as explained in 4.4.3. This
group includes the number of units, the batch size, the number of epochs and the
fractional dropout. The searching space for hyperparameters is made by discrete
numbers, but usually when TPE is used, the neighbourhood where to look for better
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values is made by a continous space. In this case, then, when the algorithm finds
a good hyperparameter, it will use the same one for the next run. The searching
spaces used for the neural networks are the following:

• DNN space:
’num neurons’: 32, 640, 32,
’frac dropout’: 0., 0.5, 0.05,
’n epochs’: 5, 50, 5,
’batch size’: 2, 26, 2.

• RNN space:
’num units’: 16, 256, 16,
’frac dropout’: 0., 0.5, 0.05,
’n epochs’: 5, 50, 5,
’batch size’: 2, 26, 2.

• LSTM space:
’num units’: 16, 256, 16,
’frac dropout’: 0., 0.5, 0.05,
’n epochs’: 5, 50, 5,
’batch size’: 2, 26, 2.

• Ensemble space:
’n filters’: 4, 64, 4,
’size’: 16, channels/2, 16,
’activation’: [’relu’, ’elu’],
’frac dropout: 0., 0.5, 0.05,
’pooling layer’: [’max’, ’avg’]),
’n units’: 16, 256, 16,
’n epochs’: 5, 50, 5,
’batch size’: 2, 26, 2.

Optimisation was carried out taking into account the average loss of each configu-
ration and trying to minimize it. In Fig.5.3, 5.4, 5.5, 5.6 the loss evolution during
the optimisation for all networks is shown. For the DNN, RNN and LSTM neural
networks, the loss did not vary much during the validation of the different configu-
rations. This may be due to the fact that after only a few configurations, good
values were found and the hyperparameters’ space was not explored extensively,
but remained around the values that performed well in the first iterations.
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The same cannot be said of the Ensemble neural network, whose loss changes con-
siderably during the validation of the 100 configurations. This is probably due to
the difficulty of the TPE algorithm in finding ’good’ values in whose neighbourhood
it searches for optimal values. It is natural to think that in this case the space was
more explored than in the other networks. In addition, one must consider that the
space of the hyperparameters in this case also has more dimensions than the spaces
of the other neural networks, as more hyperparameters have been subjected to
optimisation. This certainly creates more difficulties for the algorithm and, in order
to reach a steady state in the loss evolution, a much larger number of iterations
should be used.
For each type of neural network used, the found hyperparameters can be observed
in Tab5.5. For the Ensemble neural network, the optimised hyperparameters were
more than for the other networks. In particular, the number of filters was set to
32, the pooling layer to ’max’, activation function to ’elu’.

Network Number of units Batch size Number of epochs Fractional dropout

DNN 128 2 50 0.05
Simple RNN 176 2 45 0.2

LSTM 160 2 45 0.4
Ensemble 240 2 30 0.25

Table 5.5: Optimum hyperparameters.

5.4.2 Training, validation and test
Once the parameters optimising the performance of the neural networks had been
found, they were trailed using the K-cross validation approach to obtain greater
robustness, were then validated on the validation sets of the K=5 repetitions
and finally tested on the test set. In Fig.5.7, the accuracy plots for training,
validation and test sets for all muscles were collected. In Fig.?? the accuracy graph
corresponding to the training set can almost be intercepted, as it is almost always
close to 100% for both DNN and RNN. In contrast, validation and test sets show
much lower accuracy. This suggests that we are dealing with the phenomenon of
overfitting. These two networks, with the hyperparameters optimised using the
TPE algorithm, therefore overfitting. If we look again at Tab.5.5, we can see that
the dropout fraction values chosen for these networks is very low. Usually, to avoid
phenomena such as overfitting, the dropout fraction must have values between 0.5
and 0.8. Therefore, the accuracies for the DNN and RNN neural networks were
re-evaluated with the dropout fraction first being 0.5 and then 0.8. The same was
also done for the other two networks, for comparability. The results can be seen in
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Figure 5.3: Dense Neural Network loss evolution.

Figure 5.4: Simple Recurrent Neural Network loss evolution.
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Figure 5.5: LSTM Neural Network loss evolution.

Figure 5.6: Ensemble Neural Network loss evolution.
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Tab.5.6.The accuracy values in this table were calculated by averaging over the
accuracy of all muscles. Focusing on DNN, as the dropout fraction increases, the
accuracy on the training set decreases, while the accuracy values on validation
and test sets are rather stable. The substantial difference between accuracy on
the training set and the other two sets remains intact. Therefore, even having
introduced a regulating effect in this network, overfitting is not entirely avoidable.
As far as the Simple RNN network is concerned, the same mechanism can be
observed as just explained. What is different is only an increase in the accuracy
on the validation set, but the difference between the accuracy on the training set
and the accuracy on the validation and test set is even greater than in the case of
the DNN. Again, the overfitting phenomenon was not eliminated even when the
dropout fraction was increased to a very high value.
In the case of these first two neural networks, overfitting led to very good predictive
ability on the training data and very low performance on the validation and test set.
The average accuracy values are in fact around 50 per cent for these sets, which is
equivalent to a random choice of parameters with which to stimulate the various
muscles. Undoubtedly a not inconsiderable weight in the lowering of the average
accuracy is due to the network’s inability to assign the correct set of stimulation
parameters to the "53" muscle in particular, hence the lowest accuracy is found in
both DNN and RNN.
On the other hand, looking at Fig.5.8, one notices first of all that there is

Figure 5.7: Accuracy with optimized hyperparameters for DNN and RNN.

no overfitting in the training of the Ensemble neural network. However, the
performance is very low and, in particular, the problem on muscle ’53’ is maximised
here, resulting in an accuracy of 0 for this muscle.
A possible explanation for the network’s difficulty in assigning the right set of
stimulation parameters to this muscle could be the fact that it is part of the
interosseus palmar group and usually the three muscles are always stimulated
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together. However, there are trials corresponding to small objects and in these
cases, this muscle should not be stimulated. However, the three neural networks
are not able to differentiate these cases. On the contrary, as Fig.5.9 suggests, the
LSTM neural network not only does not exhibit the phenomenon of overfitting, but
also performs much better than the other neural networks. Although the problem
on muscle ’53’ is still present, it has less weight on the average accuracy of the
network, which is about 63% on the validation set and 67% on the test set. This is
still not a very good result, but it is reasonable and reliable in proportion to the
size of the dataset and the fact that the labels were artificially generated.

Figure 5.8: Ensemble accuracy.
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Figure 5.9: LSTM accuracy.

Dataset Acc. opt. df Acc. df = 0.5 Acc. df = 0.8
DNN Training 99.95% 93.61% 81.12%

Validation 53.21% 53.54% 51.46%
Test 57.22% 55.44% 54.19%

RNN Training 98.65% 94.70% 86.61%
Validation 43.12% 47.40% 49.22%
Test 48.13% 44.03% 42.96%

LSTM Training 73.23% 73.03% 70.76%
Validation 62.57% 63.47% 60.84%
Test 67.02% 67.91% 62.92%

Ensemble Training 52.53% 44.85% 48.69%
Validation 49.19% 46.59% 47.73%
Test 51.16% 42.96% 49.73%

Table 5.6: Accuracy for different values of dropout fraction.

44



Chapter 6

Conclusions

In this work, the decoding of intra-cranial signals for decoding grasping information
was attempted. The final goal was to predict the electrical parameters to implement
the FES technique. After simulating the muscles and the electrical parameters
with which to stimulate them, four different decoders were tested, of which the one
based on LSTM appears to be the most promising, with an accuracy of more than
60% on the test set.
However, this is a limited result, since the application under test is very sensitive.
These are in fact neuroprostheses, which must be safe in the first place and must
guarantee good function. The relative poor performance in this case is due to
several factors. Firstly, the fact that we had to remove many trials from the already
limited dataset contributed negatively to the network’s learning capacity. It is
indeed crucial for a neural network to have a lot of data available in order to be
able to learn properly how to replicate choices in the case of prediction. Having
little data available, despite the regularisation work, inevitably leads some networks
to overfitting, and in general to poor performance on new data.
Secondly, the labels were created entirely artificially. They therefore do not have
the reliability of real data and therefore no clear judgement can be made on the
quality of the results.

6.1 Future work
In order to develop the work in a more robust manner using artificial intelligence,
the dataset must be greatly expanded so as to have as many samples as possible
on which the network can learn.
In addition, the way to make the results clear and reliable is to perform the
experiment simultaneously with the recording of electromyographic (EMG) signals,
so that the muscles involved in each action during the experiment can be more
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clear.
As far as FES signals are concerned, their characteristic is that they cannot have
global parameters, i.e. that they work for all individuals indiscriminately. In order
to create the different configurations with the various parameters, it is necessary
to try out the stimulation device on the person in situ. This serves to select the
values for the parameters that definitely work for the person in exam.
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