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Abstract

Neural networks have been a big innovation field recently, with more and more
applications addressing Machine Learning algorithms. A big part of these is made
of Natural Language Processing (NLP) algorithms, which handle words, sentences
and group of sentences. Machine translation, text generation, sentiment analysis
and question and answering are just some examples of the NLP tasks. In this
scope, the model that has gained more popularity is clearly the Transformer, with
its great adaptability to different objectives.
This network architecture is based on the attention mechanism and it has ex-
ceeded the performances of previously-used recurrent and convolutional neural
networks. There are already several different models based on the Transformer: its
encoder-decoder nature gives a lot of room to explore by changing the values of
the parameters or the layer configuration. BERT (Bidirectional Encoder Represen-
tations from Transformers) and Universal Transformer network are two particular
models derived from the Transformer. However, Transformer has a big structure
and a lot of parameters and that’s why any hardware implementation is difficult
and expensive to realize. In fact these drawbacks translate into complex resources,
great memory footprint and latency.
This work analyzes state-of-the-art situation on hardware realizations of the Trans-
former and proposes some ideas to design the network as a whole. Divide-and-
conquer approach is used to design single layers and sub-layers in the architecture,
but considerations on reusing resources and different structure possibilities are still
taken into account. Quantization is key to have an integer-only architecture and
to reduce both memory requirements and resources. Starting from an entirely-
quantized model, the hardware design is developed for a single Encoder layer; it
is legit to assume that different configurations can be realized by replicating the
architecture.
Main focus is on the matrix multiplication and the non-linear functions. The
former is the most important operation since it covers majority of the network
computation, besides being heavy from the area point of view. To implement
it, the choice is a matrix of Multiply-and-Accumulate (MAC) elements, which is
simulated and synthetized for different dimensions to see the trend for estimate
bigger structures. Non-linear functions on the other hand are complex due to the
type of operations that they need. Linear algorithms approximating them are taken
from literature and translated into hardware solutions, whose behaviour has been
compared to software model to see the correctness of their results.
Connecting the separate sub-layers is duty of the control part of the design, which



is also described to see possible solutions. Eventually, adaptability of the design to
other types of Transformer is evaluated.
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Chapter 1

Introduction

1.1 Context and Problem Statement
Recently Natural Language Processing (NLP) algorithms have been executed by
means of an innovative neural network called Transformer. This network has
overcome some previously challenges and it has improved performances in quite all
benchmarks. There are a lot of Transformer models, able to process at the best
level several tasks, like text generation, sentiment analysis or machine translation.
They are all based on the Transformer structure with small differences between
them.

Transformer’s architecture is based on the attention mechanism, the true foun-
dation of its performances since it can extract the sentence’s content and the
relationship between words. The network is an Encoder-Decoder structure that
firstly elaborates the input sentence and then analyses it. Encoder and Decoder
are very similar, formed by a stack of base blocks that reuse a lot of the same
operations. By changing the parameters of these two components, different models
are generated, with different results. Further models are the BERT, which uses
only the Encoder part, and GPT (Generative Pre-Training Transformer), based
on the Decoder part. More recent works propose Universal Transformer, which
substitutes the stack forming the Encoder and the Decoder with the iteration of
the same block for a predetermined amount of times.

1.2 Research Objective
Transformer network is very intensive operation-wise, posing a real challenge for
its acceleration on limited platforms. In fact it has many parameters and many
operations that require several resources. Plus, exponential and non-linear functions
make the implementation more difficult.
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Introduction

The objective is to find a way to design a hardware accelerator for Transformers,
able to implement all of Transformer layers’ operations. This is not easy as almost
every Transformer model, for the sake of precision, use floating-point representation,
which is inefficient in terms of memory footprint and resources. Complex operations
slow down hardware execution and require a lot more components and data handling.

Looking at the literature, there are not many works with this objective; some
hardware proposals keep the floating-point computation while others run their
design on generalized hardware like GPUs or CPUs.

1.3 Thesis Contribution
This thesis proposes a design of each Transformer sub-layer, using mostly lightweight
resources like multipliers and adders.

Quantization is used to reduce data into integer representation, simplifying
operations and lighten the parameter burden. The quantized functions are based
on a previous model named I-BERT[1]. Complex functions are approximated
with polynomials to ease the computation, even though there’s a little loss in the
precision.

The design is described for all main layers of the Transformer architecture,
starting from the top level going down to the single blocks. Matrices of Multiply-
and-Accumulate are used for the most common operation in the network, that is
the Matrix Multiplication. This is the biggest component because Transformer’s
dimensions can be large and this affects primarily the linear matrix transformations.
Other than that, the other complex part is given by the non-linear functions, which
are hard to design yet essential to the network’s performance. Approximations
proposed in the above-mentioned [1] are adopted and reported onto hardware
following the entire network design concept.

These architectures are then simulated with respect to the software model and
eventually synthesized. Area, power and timing results are reported and analysed
to better understand the feasibility of such design.

1.4 Thesis Structure
Starting from an overview of the Transformer architecture and its different types,
some state-of-the-art solutions were analysed to find some already-developed ideas
and a reference model to build the design accordingly. Then the quantized model,
which this work is based on, is presented function by function, along with their
corresponding algorithm.

After these introductions, the main design is described, exploring the architec-
tures component after component. Each sub-layer has its scheme and description

2
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about the data handling and the computation flow. Furthermore, the synthesis
results are extracted and briefly analysed with some considerations about them.

Once the architecture is designed, there are some thoughts on different possible
configurations given that there are a lot of Transformer dimensions. In fact, the
design can be changed to execute other Transformers and with some parametrization
on the control part, it is legit to think that a configurable model can be realized.
In conclusion, results and possible continuations of the work are discussed.

3



Chapter 2

Types of Transformer

2.1 Transformer

Transformers networks have recently become the go-to models in different NLP tasks
such as machine translation or text generation. The main innovation compared to
previously-used RNNs is the parallelization of the architecture. In fact, by definition
RNNs process the data recurrently, where a computational step corresponds to
positions in the sequence; this becomes critical at longer sequence lengths due to
memory constraints. Correlation between distant sequence positions is also difficult
to exploit analysing them one at a time, bringing to a necessity to parallelize the
process.

Key mechanism of the network is the attention, the core of the whole network.
Attention compute representations of the input and the output, highlighting the
relation between words in the sequence. In particular, self-attention is used in the
Transformer as the inputs of the attention are all taken from the common input
through a matrix transformation.

2.1.1 Structure

The Transformer structure is formed by an encoder and a decoder, similar to each
other. In figure 2.1 the structure taken from [2] is showed.

The encoder is in charge of taking the input sequence and exploit the relations
between each sub-sequence under different criteria, representing these informations
in order to be analyzed in the decoder phase.

Main components of both parts are the Multi-Head Self Attention (MHSA) and
the Feed-Forward Network (FFN), explained below.

4



Types of Transformer

Figure 2.1: Transformer scheme

2.1.2 Input Representation

Starting from an input sentence, every word or sub-part of a word, that is named
token, can be represented by a one-hot vector. This vector has dimension equal to

5
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the vocabulary dimension (dvocabulary) with a one only in the position corresponding
to the token position in the vocabulary.

The available vocabulary denotes the recognizable tokens that can be interpreted
by the network.

Since the vocabulary dimension can be too large, one-hot vectors are transformed
into smaller vectors during what’s called Word Embedding process. In fact, through
a weight matrix multiplication an Embedding Vector is obtained, with dmodel

dimension. This vectors remove the sparse nature of the one-hot vectors and they
can also carry some more information due to the trainable Embedding weight
matrix. Different choices are possible for this weight matrix: it can be initialized
with pre-trained values and kept fixed, or initialized randomly and trained during
the network learning process.

Putting together all the token vectors, an input matrix is obtained and passed
on to the network itself starting from the Positional Encoding. Dimension of this
matrix is sequence length (here noted as m) per embedding dimension (dmodel).

2.1.3 Positional Encoding

After the Embedding no information on the relative positions of the tokens inside
the sentence is present; a word has the same embedding representation regardless if
it’s the first word or if it’s the fourth one. That’s why another input transformation
is needed before entering the encoder/decoder structure.

Here stands one of the difference between Transformer and a RNN or CNN.
Positional Encoding becomes necessary having no recurrence and processing several
tokens at the same time. In a RNN, that by definition processes one token at a
time, sentence position is implied by the processing step.

Also this step can be learned or fixed, reaching similar performances according
to [2]. The choice of fixed Positional Encoding avoid the presence of additional
parameters and allow flexibility to longer sequences than the one exploited in the
training phase.

To have fixed values, an equation is required and that’s the one in 2.1.

PE(pos,2i) = sin (pos/100002i/dmodel)
PE(pos,2i+1) = cos (pos/100002i/dmodel)

(2.1)

pos is the token position and i is the dimension. The results of this operation
have the same dimensions of the input matrix, so the two can be summed together
to obtain the final matrix (m× dmodel).

6
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2.1.4 Encoder
It is made of k identical layers connected to each other. Each encoder layer has two
sub-layers, namely the Multi-Head Self Attention and the Feed-Forward Network.

Multi-Head Self Attention As underlined before, the attention is the cru-
cial part of the whole network. It is called self-attention because the attention
components are all taken from the same input.

In this sublayer the attention itself is the inner part, as the computation is
divided in k heads each going through the attention to form the final result.

The idea behind having multiple heads is to have different representation sub-
spaces for different positions; if there was a single attention this could not be
possible.

Input X of this MHSA in the encoder is the output of the previous encoder layer.
This input X is transformed into three smaller matrix representations through a
linear layer, that is a multiplication by a weight matrix (see 2.3, 2.2, 2.4). These
three matrices are called Key (K), Value (V) and Query (Q).

K = X ∗W K W K ∈ Rm×dK (2.2)

Q = X ∗W Q W Q ∈ Rm×dK (2.3)

V = X ∗W V W V ∈ Rm×dV (2.4)

So, instead of a single dmodel dimensional query, key and value, there are multiple
versions of these matrices with reduced dimensions. Value matrix can have different
dimension with respect to Query and Key, but it is convenient to assume dV equal
to dK . Furthermore, dK is usually equal to d/k.

After obtaining Queries, Keys and Values, the attention of each head can be
computed as:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (2.5)

The first step is to multiply Queries and Keys together, with the dot products
represented as a matrix multiplication (transposing K matrix). The result is then
scaled by a reducing factor to avoid having huge numbers after products, especially
increasing the dk dimension. That’s also why the square root of this value is chosen
as the reducing factor.

Once all heads attentions are computed, the results are concatenated together
and passed to another linear combination that produces the final output of the
MHSA sublayer, as described in the formula 2.6.

7
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MultiHead(Q, K, V ) = Concat(head1, head2, ..., headk)W 0

where headi = Attention(QW k
i , KW K

i , V W V
i )

with W 0 ∈ Rdmodel×dmodel (2.6)

Figure 2.2 depicts the scheme of the MHSA sublayer and its Attention compo-
nent.

Figure 2.2: Attention (left) and Multi-Head Self-Attention (right) schemes

Softmax Another critical operation of the MHSA is the Softmax, whose equation
is 2.7. Given a N-vector of values zj, the softmax espression is:

Softmax(zj) = exp zjqN
k=1 exp zk

per j = 1, ..., N (2.7)

The sum at the denominator in the Attention is performed along the rows of
the QKT matrix, meaning the N value corresponds to dmodel.

The effect of this mathematical operation is to transform input values into a
range between 0 and 1. In the Transformer the softmax outputs represent the
probability associated to each token and focusing on the attention utilization, it is
the percentage of relation between the tokens.

Softmax, as can be seen in scheme 2.1, is used also at the output of the network,
transforming the raw numbers exiting the computation in percentage values in
order to pick the highest ones (i.e. the most probable) in the selection of the output
phrase.

8
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Exponential operations required in this part of the network can be critical and
expensive for an hardware implementation, and this will be analyzed later.

Feed-Forward Network Simpler sublayer (described in 2.3) with respect to the
Multi-Head Self Attention, it is formed by two linear transformation with a ReLU
activation in between. Mathematical expression is reported in 2.8.

FFN(x) = ReLU(xW1 + b1)W2 + b2 where ReLU(x) = max(0, x) (2.8)

with W1 ∈ Rdmodel×dff and W2 ∈ Rdff ×dmodel . dff is named the hidden dimension
and it is usually a multiple of dmodel, e.g. 2× or 4×.

ReLU is a simple activation layer, that is in charge of keeping only the useful
parts, namely activating them.

Figure 2.3: Feed-Forward Network illustrating scheme

Residual Connection These two sub-layers compute only the residual values
that have to be added to the input to obtain the final values. Putting it in an

9
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expression, 2.9 represents this passage.

Output = LayerNorm(x + Sublayer(x)) (2.9)

So, after each sub-layer (MHSA or FFN) the result is added to the input
and passed through a Layer Normalization. This operation is always the same
dimensionally-speaking, as all sub-layers (and the Positional Encoding at the
beginning) produce matrices m× dmodel. In figure 2.4 there’s the graphical scheme
of this operation to better understand the connection. In this network "Residual"
block are the MHSA or the FFN.

Figure 2.4: Residual connection illustration

Layer Normalization Normalization consists in standardizing the inputs, that
means that inputs to any layer should have approximately zero mean and unit
variance. Before Layer Normalization ([3] [4]), Normalization along batches was
used, but it implies dependencies between training cases and that’s not easy to
apply to a recurrent network. Layer Normalization on the other end allows to make
normalization within a hidden layer on a single training case, as the statistics are
calculated from the layer output.

It is proved that this passage improves the training speed and the stability of
the state dynamics.

2.10 is the formula for the Layer Normalization.

LayerNorm(X(i, j)) = X(i, j)− E[X, i]ñ
var[X, i] + ϵ

γj + βj (2.10)

As hinted above, mean (E[X]) is subtracted to inputs and standard deviation,
or the square root of the variance (var[X]), is used as the divisor.

10
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E[X, i] = 1
d

dØ
k=1

X(i, k) var[X, i] = 1
d

dØ
k=1

(X(i, k)− E[X, i])2 (2.11)

2.1.5 Decoder
Similarly to the Encoder, it is formed by N identical layers, but these layers have
one additional sublayer.

In fact, between the Multi-Head Self Attention and the Feed-Forward Network
there is the Encoder-Decoder Attention.

Encoder-Decoder Attention It is identical to the MHSA speaking of required
operation, the difference stands in the Q, K, V computation.

Queries are still obtained from the input X while Keys and Values are obtained
from the Encoder output.

This allows the output sentence that is processed in the Decoder to address the
input sentence informations produced in the Encoder in order to find the correct
tokens to compose the final sentence.

Another important difference is in the Decoder inputs handling, that are actually
the outputs of the network. Since at the position i tokens should not depend on
future positions but only to the ones up to i, the Decoder inputs are shifted to the
right by one position and the MHSA is masked. Masking the MHSA means that,
before the Softmax, results of the QKT multiplication are filtered by positions.
Values at positions after i are substituted with a 0. This is described in scheme 2.2.

2.2 Universal Transformer
Motivations Generalized tasks do not perform well with the Transformer network,
e.g. algorithmic tasks like strings copy, reverse and addition. So to have also this
possibility without giving up the Transformer features, the Universal Transformer
has been proposed. This network combines the parallelizability of the Transformer
with the recurrent inductive bias of the RNNs.

Main change, indeed, is the fact that Universal Transformer has only one
Encoder sub-layer and one Decoder sub-layer that are used continuously in a fixed
or adaptive iteration. Sub-layers are identical to the Transformer so it can be said
that a Universal Transformer with N iterations is equal to a Transformer with N
Encoder and N Decoder layers with all of them having the same parameters.

That’s the concept variation with respect to RNNs; in fact Recurrent Neural
Networks recur over positions in the sequence while Universal Transformer recurs
over vector representations of each position, namely over "depth". This way, the
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iterations are not bounded to the number of positions in the sequence and the
representations can be revised an arbitrary amount of times. Adaptive methods
are also allowed, as explained later in the Dynamic Halting paragraph.

Structure Changes As already said, there are only one Encoder and one Decoder
layer, identical to the Transformer ones. Structure is depicted in figure 2.5.

Figure 2.5: Universal Transformer structure

So the main components of the network have been already explained: Multi-Head
Self Attention and Encoder-Decoder Attention are identical to the Transformer
one as it is the Positional Encoding.

Transition Function, according to the paper [5] can be either a Separable
Convolution or the above-mentioned Feed-Forward Network, with choice depending
on the task.

The new step is the Time-Step Encoding process after the Positional Encoding
one.
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Time-Step Encoding The principle is similar to the Positional Encoding; in
fact without the stack of encoding and decoding layers the information on the
processing step can be lost. For that, a very similar Encoding is added, described
by the formulas 2.12.

TimeEnc(t,2i) = sin (t/100002i/dmodel)
TimeEnc(t,2i+1) = cos (t/100002i/dmodel)

(2.12)

The two encodings can be seen together and merged into one single expression,
2.13.

P t
(pos,2i) = sin (pos/100002i/dmodel) + sin (t/100002i/dmodel)

P t
(pos,2i+1) = cos (pos/100002i/dmodel) + cos (t/100002i/dmodel)

(2.13)

P t ∈ Rm×dmodel has same dimensions of the inputs so it is simply added to have
the final representations going into the Encoder or the Decoder layer.

Universal Transformer is autoregressive, producing one output symbol at a time,
with the Decoder feeded at every step with the previously computed symbols.

Dynamic Halting Reasonably, in a sentence there are some parts more critical
than others and therefore they can require more processing than the simpler ones.
Taking advantage of the iterating nature of this network, Dynamic Halting addresses
this possibility, trying to adapt the recursion to the symbols necessity.

The mechanism to apply this principle is called Adaptive Computation Time
(ACT): it adapts the computational steps to process each input symbol basing
on a "halting probability". This probability represents how much the symbol is
close to been interpreted, and with the help of a threshold it decides which ones
have to be stalled and which ones needs further processing. Halting probability is
predicted and updated at every step; positions that reach the halting threshold
are blocked and their state is copied onto each successive step. When every step
reach the blocking probability or after a predefined maximum number of steps the
computation is finished.

Pros and Cons According to the paper, Universal Transformer can improve
performances in some Natural Language Processing tasks with respect to the
Transformer, having as well state of the art performances in algorithmic tasks.
These are great pros to the network, but there are also some disadvantages. Most
of them are the same of the Transformer, like intensive computation (many matrix
processing), high latency due to the recurrent nature and large number of parameters
that lead to big memory usage. Moreover, to apply ACT, further resources and
processing are required.
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2.3 BERT
BERT, Bidirectional Encoder Representations from Transformers[6], is a Trans-
former based model for NLP tasks. It was developed by Google and it is used a lot,
in different configurations.

Major difference from the Transformer model is the fact that BERT is composed
only by Encoder layers. That’s because it is a language representation generator,
so it needs to analyze only the relationships between the input tokens, without
any type of decoding. In fact, for example, this model cannot be used in Machine
Translation tasks as it was for the Transformer.
Key training tasks of BERT model are the Masked Language Model and the Next
Sentence Prediction. In the former some input tokens are substituted with the
mask token and the network has to complete this spaces with a word in the correct
context. The latter is about sentences and the temporal relationship between them.
For instance, starting from two sentences the model has to identify which one
comes before the other one.
BERT is Bidirectional because it receives both left part and right part of the
sentence with respect to the unknown element, so it has the whole context in which
inserting the guessed token and it can work better than unidirectional models. This
are not the only tasks that BERT can be used on, since it is adaptable to many
objectives just like the Transformer. In fact after the pre-training phase, BERT
can be fine-tuned on other tasks and it advances state-of-the-art performances in
eleven NLP tasks, as stated in [6].

Structure BERT base and large structures are depicted in figure 2.6. As already
said, BERT has only the Encoder block of a Transformer and therefore is formed
by a certain number of stacked Encoders.

Figure 2.6: BERT architecture
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One thing that differs from the previous Encoder description is that in the
BERT model the activation function is the GELU; it substitutes the ReLU due to
a better behaviour.

GELU GELU stands for Gaussian Error Linear Unit and it is an activation
function used in the neural models, proposed in paper [7]. Differently from the
above-mentioned ReLU that selected inputs by their sign, GELU weights input
by their value. GELU is derived from the ReLU, but instead of multiplying the
input by zero or one based on the input sign, it is multiplied by zero or one based
on a probability, i.e. the cumulative distribution function (CDF) of the standard
normal distribution. Its mathematical expression is therefore the one in 2.14.

GELU(x) = xP (X ≤ x) = xΦ(x) = x× 1
2[1 + erf(x/

√
2)] (2.14)

Using different CDFs would create different activation functions, but authors
in [6] states that GELU outperforms other choices and it does not add further
hyperparameters. GELU behaviour compared to ReLU and ELU activations is
plotted in 2.7.

Figure 2.7: Behaviour of GELU, ReLU and ELU activation functions

From this plot, it can be seen that GELU is smoother than ReLU around zero
and it is also more curve and non-monotone, giving a bigger non-linearity that
is important to the network. Furthermore, GELU can be negative meaning that
some inputs are not killed and can contribute to the network, contrasting one of
the drawbacks of ReLU.
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2.4 Parameters
In the structure description many parameters were used to define dimensions of
various layers. Different type of Transformer networks are determined by these
values.

Here’s a quick recap of the parameters and what they represent.

1. m −→ Sequence length, number of symbols processed in parallel.

2. d −→ Embedding dimension, main dimension for the representation of the
symbols throughout the network.

3. dff −→ Hidden dimension, used in the Feed-Forward Network between the
two linear transformations.

4. k −→ Number of heads in the attention computation, number of inputs
subdivision to exploit different intra-symbols relation.

Hidden dimension is usually a multiple of the embedding dimension; reasonable
values are twice or four times the embedding dimension. Different combinations of
the parameters realize different Transformer models, e.g. Base Transformer has 8
heads, embedding dimension equal to 512 and hidden dimension equal to 2048.

Table 2.1 reports some combinations, taken from a pair of Github repositories
about NLP and Transformer/Universal Transformer models.

TRANSFORMER UNIVERSAL TRANSFORMER BERT
Model Base Big Tiny Base Big Tiny Base Large

m 256 256 256 256 256 256 256 256
d 512 1024 256 1024 2048 128 768 1024

dff 2048 4096 1024 4096 8192 128 3072 4096
k 8 16 4 16 16 2 12 16

d/k 64 64 64 64 128 64 64 64
Layers 6 Variable 12 24

Table 2.1: Parameters value in different Transformer, Universal Transformer and
BERT dimensions.

Last line refer to number of encoder/decoder layers used in the models. Recall
that Universal Transformer has one encoder and one decoder layer, iterated a
adaptive number of times.

These are only some examples; there are many different options to realize this
kind of network from a parameters perspective. In fact, other values can be chosen
but usually only multiple of those are used and feasible.
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Layers State-of-the-art

Transformer layers require many complex operations and that can be very critical
for an hardware implementation. Hardware resources are limited leading to a
necessity to look for alternative ways to do some things to lighten the burden on the
resources. In the literature there are different expressions for what the Transformer
need in the computation. This is the aim of this chapter: dig into papers and
articles to find alternative options to simplify operations.

Some of these ideas are also hardware-proven but majority of them are explained
only at software level since, like already said, hardware applications lack.

3.1 Softmax
Computationally speaking, one of the critical layers in the network is the Softmax
operation. Recalling formula 2.7 it has division, natural exponential and the need
to scan the input to accumulate the denominator. Furthermore, it is required both
in the encoder and the decoder as well as at the output to obtain final probabilities.

Firstly, some mathematical manipulations can be made to handle better the
equation and the resources.

As in an exponential operation range of the values can get too big, one of the
principles is to reduce the input range to obtain also smaller outputs. Subtracting
the maximum value among the inputs to all inputs allows to achieve this idea. In
equation 3.1 the concept is applied; drawback of this approach is the additional need
to compute the maximum value before doing the actual processing, but anyway
the iteration on the inputs was already required by the accumulation.

Softmax(D(i, j)) =
exp(D(i, j)−max

j
D(i, j))qN

k=1 exp(D(i, j)−max
j

D(i, j))
per j = 1, ..., N (3.1)

17



Layers State-of-the-art

where D is the input matrix, for each row i a Softmax on the columns j is applied.
Since rows represents tokens, this means that for each token, column values are
transformed into probabilities to understand connection between symbols.

Exponential properties can be also applied to this expression, leading to 3.2
where the division is replaced by a natural logarithm. This is described in [8].

Softmax(D(i, j)) = exp(D(i, j)−max
j

D(i, j)+

− log(
NØ

k=1
exp(D(i, j)−max

j
D(i, j))))

(3.2)

Avoiding divisions can be very useful because they would require special hardware
units and dividers are complex. However, this approach moves the problem from
the divider to the logarithm, that is complex as well and probably the best way to
implement it is a Look-Up Table (LUT).

[9] starts from the expression in 3.2 and approximates it neglecting the log term
(that would be the denominator of the original formula) totally or partially. The
result are in equation 3.3.

Softmax(D(i, j)) = exp(D(i, j)−m where m = max
j

D(i, j)

Softmax(D(i, j)) = exp(D(i, j)−m−
pØ

k=1
exp(mk −m) + 1)

(3.3)

The first line avoid any further computations beyond the numerator, while the
second line is a partially abortion of the logarithm term. In fact the logarithm is
linearized and only the p maximum values are taken into consideration.

First solution brings some problems as the approximation error can be very
large; this is effective only if the inputs have the right distribution to allow it. The
second one is a little more accurate but it also depends on the inputs, but the
parameter p can help to tune it and have less approximation error.

This kind of approaches are much interesting for the hardware application but
they can be unsustainable for the performances.

Paper [10] addresses the exponential and logarithmic units from a hardware
perspective. The expression that authors use is in 3.4: range reduction is not
applied.

Softmax(D(i, j)) = exp(D(i, j)− log(
NØ

k=1
exp D(i, j))) (3.4)
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Figures 3.2 and 3.3 describe the hardware units required in the proposed archi-
tecture (figure 3.1).

Figure 3.1: Example of Softmax architecture []

Figure 3.2: Exponential unit proposed
in [10]

Figure 3.3: Logarithmic unit proposed
in [10]

The interesting part of the exponential unit is that, to simplify the operations to
be made, a base transformation is applied; in fact base 2 in hardware application
is easier than base e. 3.5 describes the mathematical property that does this.

eyi = 2yi log2 e (3.5)
So after the initial multiplication by log2 e the exponent is divided into integer

and decimal parts (respectively ui and vi); if the value is a fixed point value the
separation is immediate. As ui is an integer value, 2ui is simply a shift operation,
therefore 2ui+vi = 2ui2vi = 2vi shifted by ui, where shift can be leftward or rightward
depending on the sign of the number. 2vi on the other hand is approximated to a
sum by a bias value (d1 on the first iteration and d2 on the second), because it’s in
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the range between 0 and 1. Moreover, multiplication by log2 e, being a constant
multiplication, can be optimized with numerical methods and looking it bit by bit.

Similarly, also the logarithmic unit exploits mathematical properties and some
approximations, that are in 3.6.

log F = log 2 ∗ log2 F = log(2)(w + log2 k) where k, w : F = 2w + k

log2 k ≃ k − 1 k ∈ [1,2)
log F = log(2)(k − 1 + w)

(3.6)

LOD in figure 3.3 is a Leading One Detector to divide the input value into k
and w, in fact the position of the highest one in F and the given decimal point
allow to find w and then with a shift operation k. log2k is computed with a linear
fitting, considering the range of k between 1 and 2. Eventually, k − 1 + w does not
need adders since k − 1 is the fractional part of k and w is an integer value. Final
multiplication by log2 is again a constant multiplication and can be implemented
in a customized way.

Another option for exponential unit is to avoid dedicated hardware operators
using Look-up Tables. This approach has the drawback of burdening the memory
requirements; in fact these tables can be very large and they should be entirely
stored in memory.

[11] and [12] propose two different LUT solutions, trying to lighten the memory
requirements. The former uses a exponential property, namely ex = ex1 × ex2 × ex3

with x = x1 + x2 + x3, obtaining smaller sub-LUTs computing smaller exponentials
and a final multiplier for the result. This way, tables occupy less memory space and
in some cases not all of them are required for the final multiplication. The latter
approximate the exponential function with a Piecewise Linear Function made by S
continuous pieces. f s(x) = αs ∗x + (ys

l −αs ∗xs
l x ∈ [xs

l , xs
r] ys

l = exs
l s ∈ [1, S].

Only xs
l , αs and the parenthesis term have to be stored in a LUT, that along with

an adder and a multiplier performs the whole computation.

Most interesting solution is Softermax [13]. Two main ideas are applied to this:
base replacement and online normalization computation.

Base replacement has been already explained, power of 2 is simpler than power
of e from a hardware point of view.

Online normalization computation addresses the need of scanning the input
vector to find the maximum value. This would lead to three iterations on the
vector, one to find the maximum value, one to compute the normalization value,
namely the denominator, and the last to compute the final results. In this paper the
normalization sum is continuously updated in the first iteration with the temporary
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maximum value, and whenever a new maximum is found a correction factor is
applied to compensate the error made previously. Figure 3.4 reports the passages
to reach the final algorithm for Softermax.

Figure 3.4: Softermax algorithm

To simplify corrections and computation the maximum is transformed into an
integer value, so the exponential by 2 becomes a simple shift operation. Speaking
of hardware implementation, the figure 3.5 is taken from the paper[13] and reports
the needed units to perform the Softmax.

21



Layers State-of-the-art

Figure 3.5: Softermax architecture

These units are:

• IntMax: compute local maximum and convert it into integer value.

• Power of Two Unit: splits integer and fractional part of the input value and
performs the exponential using LUTs for m and c of a piecewise linear function.
lpw = mLUT [int(xscaled)] ∗ frac(xscaled) + cLUT [int(xscaled)]
xscaled = frac(x << 2)

• Reduction Unit: it reduces the result of power of two and updates the running
sum, possibly renormalizing it if a new maximum is there.

• Normalization Unit: normalizes the final sum if necessary and implement the
division through a LPW reciprocal unit.

This proposal has the advantage of simplifying the maximum value and the
normalization value computation, even though an additional correcting mechanism
is necessary. Then the conversion to integer make this modification feasible avoiding
some complications. Critical parts can be the presence of LUTs in the Power of
Two Unit and the LPW Reciprocal to perform the division.

3.2 Layer Normalization
The other sub-layer that contains computationally expensive operation is the Layer
Normalization. In fact, recalling formula 2.10 it requires to calculate mean value
and variance along the rows of the input matrix, plus a square root operation.

In this section, two solutions are described, taken from two papers.
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First one is the RMS Normalization[14] that substitutes mean and variance
with a single statistic over the inputs, namely the Root Mean Square. Resulting
expression is the following:

RMSNorm(a) = ai

RMS(a) ∗ gi + bi RMS(a) =
öõõô 1

n

nØ
i=1

a2
i (3.7)

In other words, this is simply a Layer Normalization with a mean value equal to
zero: this is a real gain in a hardware-oriented application as it would translate to
less operations and resources.

Further optimization is the partial RMS (pRMS) Normalization, where the
authors in [14] states that, depending on the statistics of the input, not all inputs
are needed for the RMS computation.

pRMS(a) =

öõõô1
k

kØ
i=1

a2
i k = ⌈n ∗ p⌉ (3.8)

p is the percentage of inputs (starting from the first) involved in the RMS;
according to the paper, models can succeed in convergence with a partial ratio
of 6.25%. This clearly would benefit a hardware application, making the whole
computation faster. Drawbacks are on the loss of accuracy and the dependency on
the input statistics.

The other solution worthy of mention is the one proposed in [15]. In this
paper, authors discuss three normalization changes: PreNorm, ScaleNorm and
FixNorm. PreNorm is about the position itself of the layer in the network: instead
of normalizing the output of the residual connection they suggest to put the
normalization before the sublayer. Scale Norm replaces LayerNorm with a "scaled
l2 normalization", whose equation is 3.9.

ScaleNorm(x, g) = g
x
||x||

(3.9)

g is learned but it is the same for the entire vector to normalize This is similar
to the RMSNorm, in fact tying gi of RMSNorm and dividing by

√
d would bring

the two methods to correspond. FixNorm eventually is applied only to the last
linear layer and it has g fixed, leading to the expression FixNorm(w) = g w

||w|| .

3.3 Hardware references
Some hardware accelerators have already been developed and can be useful refer-
ences for any work in this direction.
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One of them is [8], where the Feed-Forward network and the Multi-Head Self
Attention are taken into account for an hardware solution.

By looking at the scheme in 3.6 it’s clear that it’s built around a Systolic
Array (SA) block of dimensions s × 64 (s is the sequence length). It is shared
between the two sublayers and it is in charge of every matrix multiplication needed.
Larger matrices are partitioned to fit into this array: this increases the number of
operations but keeps a single block.

Figure 3.6: Architecture of the MHSA and FFN accelerator

SA array is a 2D array of Processing Elements with s rows and 64 columns. It
is designed to output the result one column at a time so that the bias addition is
made by s adders, one for each column element. Moreover, it is by far the most
complex part in the architecture and, supposing that the Softmax component can
give the output while the SA is computing the Value matrix, it determine also the
latency of the architecture.

Softmax’s arithmetic manipulations have been already cited in equation 3.4,
resulting in architecture 3.7. Computation of this module is divided in four phases,
all described in the figure. Exponential and logarithmic units remain quite complex,
and authors have used solutions in [16] to realize them.
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Figure 3.7: Softmax architecture

For the Layer Normalization, figure 3.8, a way to save some cycles in the
computation is exploited. In fact, using a different expression for the variance
(3.10) and some extra resources, all contribution for the variance can be calculated
along with the mean value.

var(G, i) = E(G, i)2 − 1
dmodel

dmodelØ
k=1

G(i, k)2 (3.10)

If the resources can be afforded, this is a good solution to accelerate the
LayerNorm and reduce the delay of the layer. However, this paper performs
internal calculations with FP32 representation; the following sections will describe
a different approach to have the whole network quantized.
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Figure 3.8: LayerNorm architecture
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Chapter 4

Quantized Model

Transformer models have state-of-the-art performance in NLP tasks, but their
memory footprint, latency and power consumption make their hardware application
harder, especially for real-time inference. To simplify the implementation and
lighten the network’s burden there are many techniques and approaches. One of
them is quantization, that try to reduce the data footprint by using low precision
to store and handling parameters and activations.

4.1 I-BERT
This section is based on the reference paper "I-BERT: Integer-only BERT quanti-
zation"[1].

This paper describes the full quantization of the BERT network, in order to
have a integer-only model to be easily implemented in hardware. To achieve their
objective, authors review each layer composing the network and quantize them
using different algorithms.
Differently from many other papers where there is a lot of quantization but the final
solution requires anyway some floating-point arithmetic, I-BERT allow to use only
integer operands. Avoiding data conversion from integer to floating-point between
layers is very important for an hardware implementation, as integer arithmetic unit
are way simpler and smaller. Giving that the Transformer structure is big and
requires a lot of operations this could be a huge gain in terms of area and latency.

Most critical layers for the quantization are the non-linear ones, since the matrix
multiplication part is quantized in several other proposals. In I-BERT Softmax
and GELU are approximated through the use of second-order polynomials, while
for Layer Normalization the focus is on the square root operation, performed using
an already-known iterative algorithm. The downside of this operation is the loss of
accuracy due to the lower precision in data representation; this obviously is not
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much relevant in the matrix multiplication operation, but in the non-linear layers
the loss is bigger and more critical. The precision choice made by the authors is
to perform the integer matrix multiplication on 8 bits and accumulate on 32 bits,
that is also the parallelism of the non-linear layers. So there is the need of only
one data transformation from 32-bit integers to 8-bit integers.

One important thing to remember in the quantization method is the scaling
factor : this is the factor that allow the transformation from floating point represen-
tation to the integer one and vice versa. Given that a is the floating point value,
and qa is the quantized one, the scaling factor is defined as Sa = a/qa meaning that
a = qaSa. Scaling factor follows the steps in parallel to the quantized values. For
example it is not possible to add two numbers with different scaling factor: the
result would be useless, as it would have no mathematical sense.

In the following paragraphs there are some algorithms that involve several
coefficients whose expressions contain the scaling factor. For the inference, this
parameter is set, so these coefficients can be precomputed and used as constants.

4.1.1 Matrix multiplication

On the opposite, the multiplication between two numbers with different scaling
factor is allowed, since a ∗ b = qaSa ∗ qbSb = (qa ∗ qb)(Sa ∗Sb). So in a multiplication
step, the two quantized values can be simply multiplied with the output scaling
factor corresponding to the product of the two input scaling factors. This is legal
for all linear operations: MatMul is one of them as explained above. Therefore the
resulting expression for the matrix multiplication is MatMul(Sq) = S∗MatMul(q).

This property does not apply to the non-linear functions (e.g. GELU(Sq) /=
S ∗ GELU(q)). Now, here’s an overview of the proposed algorithms to better
understand how the non-linear operation are effectively approximated.
Refer to [1] for any mathematical explanation.

4.1.2 Second-order Polynomial

To convert each non-linear layer into an integer version, the idea is to use a second-
order polynomial that simulates the behaviour of non-linear functions as good as
possible. Obviously higher order polynomials have lower accuracy errors but they
are more complex for the eventual implementation, so the authors picked 2 as the
polynomial order. In algorithm 1 it is described the simple steps to compute the
polynomial. It only takes two addition and a multiplication, so it can be easily
used for an hardware implementation.
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Algorithm 1 Integer-only Computation of Second-order Polynomial a(x + b)2 + c

1: Input q, S: quantized input and scaling factor
2: Output qout, Sout: quantized input and scaling factor

3: function I-Poly(q, S) ▷ qS = x
4: qb ←− ⌊b/S⌋
5: qc ←− ⌊c/aS2⌋
6: Sout ←− ⌊aS2⌋
7: qout ←− (q + qb)2 + qc

8: return qout, Sout ▷ qout, Sout ≈ a(x + b)2 + c)
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4.1.3 Softmax
Using the Softmax expression in 3.1, the exponential operation is the one to
approximate in order to have an integer-based solution. It is important to reduce
input range by subtracting the input maximum value before the exponential, so
the values are not going to "explode".

By decomposing the input and reducing its range, the exponential can be
substituted by a second-order polynomial and a shift operation, as described in
algorithm 2.

Algorithm 2 Integer-only Exponential and Softmax
1: Input q, S: quantized input and scaling factor
2: Output qout, Sout: quantized input and scaling factor

3: function I-Exp(q, S) ▷ qS = x
4: a, b, c←− 0.3585, 1.353, 0.344
5: qln2 ←− ⌊ ln2

S
⌋

6: z ←− ⌊− q
qln2
⌋

7: qp ←− q + zqln2 ▷ qpS = p
8: qL, SL ←− I-Poly(qp, S) with a, b, c
9: qout, Sout ←− qL >> z, SL

10: return qout, Sout ▷ qout, Sout ≈ exp(x)

11: function I-Softmax(q, S) ▷ qS = x
12: q̃ ←− q −max(q)
13: qexp, Sexp ←−I-Exp(q̃, S)
14: qout, Sout ←− qexp

sum(qexp) , Sexp

15: return qout, Sout ▷ qout, Sout ≈ Softmax(x)

Once the exponential is approximated with an integer-only computation, the
search of the maximum value, an accumulation and a division are required to
complete the Softmax algorithm. Unless an online computation of the maximum
is performed, the whole processing requires three phases: search of the maximum
value, accumulation of the sum(qexp) and the final division.

4.1.4 GELU
Another important non-linear function used in BERT is the GELU activation
function, already described in 2.3. Authors refer to using the Sigmoid to approx-
imate the erf function but it would drop accuracy too much; so they go to the
polynomial optimization problem to find a good solution. In algorithm 3 there is
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the pseudo-code of this solution. erf function is implemented with a second-order
polynomial (1) with some sign handling and data clipping, while GELU needs only
one extra addition and one extra multiplication.

Algorithm 3 Integer-only GELU
1: Input q, S: quantized input and scaling factor
2: Output qout, Sout: quantized input and scaling factor

3: function I-Erf(q, S) ▷ qS = x
4: a, b, c←− −0.2888,−1.769, 1
5: qsgn, q ←− sgn(q), clip(|q|, max = −b/S)
6: qL, SL ←− I-Poly(qS) with a, b, c
7: qout, Sout ←− qsgnqL, SL

8: return qout, Sout ▷ qout, Sout ≈ erf(x)

9: function I-Gelu(q, S) ▷ qS = x
10: qerf , Serf ←− I-ERF(q, S/

√
2)

11: q1 ←− ⌊1/SErf⌋
12: qout, Sout ←− q(qerf + q1), SSerf/2
13: return qout, Sout ▷ qout, Sout ≈ GELU(x)

4.1.5 Layer Normalization
Last big non linear layer is the Layer Normalization (2.10), whose only element of
non-linearity is the square root operation. This is indeed the focus of the Integer-
only Layer Normalization in the paper. The proposed solution is an iterative
algorithm, described in 4, taken from [17].

It is based on the Newton’s method and it searches for the exact value of ⌊
√

n⌋.
As a consequence, to have the final value multiple cycles are required, the drawback
is that the number of these cycles is not previously known, so the execution of the
Normalization has to wait to have the correct value.
As in Softmax, the computation is divided in different phases: firstly the average
has to be calculated, then the standard deviation and eventually the layer output
can be computed.

4.1.6 Requantization
This layer is an additional operation not present in the original floating-point
architecture; in fact this is the process to represent the data back to 8 bits from
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Algorithm 4 Integer-only Square Root
1: Input n: input integer
2: Output integer square root of n, i.e. ⌊

√
n⌋

3: function I-Sqrt(n)
4: if n = 0 then
5: return 0
6: Initialize x0 to 2⌈Bits(n)/2⌉ and i to 0
7: repeat
8: xi+1 ←− ⌊(xi + ⌊n/xi⌋)/2⌋
9: if xi+1 ≥ xi then

10: return xi

11: else
12: i←− i + 1
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the 32 bits used in the accumulation and non-linear functions. Therefore this is
needed before every matrix multiplication coming from a 32-bit processing.

To perform this transformation the Dyadic Numbers concept is involved, de-
scribed in article [18]. Starting from the 32-bit representation, denoted for example
with qa so that a = qaSa, the final representation should be o = qoSo with qo on 8
bit. So, equalling a and o since the real value must not change, the expression is:

qaSa = qoSo −→ qo = qa
Sa

So

(4.1)

Remembering that the scaling factors are not integers, this expression can not
be implemented directly on integer-only resources. That’s why the scaling factor
ratio is represented with a dyadic number, that by definition are rational numbers
with the format of b/2c, where b and c are two integer numbers. The final equation
is 4.2.

qo = qa
Sa

So

= qaDN(Sa

So

) = qa ∗
b

2c
(4.2)

Required resources are now a INT32 multiplication and a bit shifting. This has
also the advantage of avoiding a division, that is substituted by a simple shifting.
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Chapter 5

Hardware Design

In this chapter the proposed architecture of the network is described, layer by
layer. This is the result of the state-of-the-art research and the reference paper
about I-BERT. Reminding the base model of the BERT, in figure 2.6, a divide-and-
conquer approach can be used to simplify the problems and the understanding of
the architecture. Firstly, the two biggest layers are the Multi-Head Self Attention
and the Feed-Forward Network, that combined with the Residual Connection and
the Layer Normalization form the entire structure. Then, inside each macro-layer,
the focus is progressively tuned on smaller parts in order to have less operations to
implement concurrently.

The idea which the whole architecture is based on comes from the paper [8] and
that is processing matrices one column at a time. Having single columns going from
a layer to the next helps in the multiplication (MatMul) blocks, that is described
below.
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5.1 Matrix Multiplication
Here the basic component is a simple Multiply and Accumulate, depicted in figure
5.1, that corresponds to a single element in the matrix product.

Figure 5.1: MAC architecture

Forming a matrix of this MAC blocks, as in figure 5.2 the matrix multiplication
is performed feeding it with columns of matrix A and rows of matrix B one at a
time.

Figure 5.2: MatMul architecture
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Doing so, at every cycle the MAC s accumulate the partial results and when
there are no more inputs they will have stored the result. Since MAC has the
accumulate register, outputs are kept in storage until the successive execution, so
the matrix can be scanned one column at a time to give correct values to the next
blocks. Multiplexers are employed to select the right column to output, so there is
one multiplexer per row taking all values coming from its row’s elements in input
and choosing the selected one.

Additional signals needed are Clock, Reset and Enable, to activate the registers
in the MAC when performing a multiplication with correct inputs.

Considering the dimensions of the matrix multiplications needed in a Transformer,
these blocks are big contributions to the network dimensions and performance.

5.2 Multi-Head Self Attention
MHSA is composed by four MatMuls and the Attention operation, as it can be
seen in figure 5.3.

One important thing to underline is that the V matrix has to be read one row
per cycle when needed, because it will go to the B input of MatMul (referring to
5.2) after the Softmax operation. For the K matrix this does not apply because
the multiplication in the Attention is Q ∗KT , so K goes to the B input but with
its columns, that are KT rows.

Bias addition is performed when the matrices are computed and exit the MatMul
component. Red dotted line represents the positions where Requantization has to
be performed to bring the values to INT8 representation.

Figure 5.3 however depict only the computation of one single head; to have
multiple heads calculated in parallel this datapath has to be replicated, with
consequences on the area and complexity. This makes a lot of room to operate in
the design of the architecture as different solutions can be adapted, affecting on
the management of other layers too. In scheme 5.4 there is an example of MHSA
architecture with 4 heads. In the block "head" the MatMul for Q, K and V and
the following Attention are grouped together.
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Figure 5.3: MHSA architecture
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Figure 5.4: MHSA architecture with multiple heads

5.2.1 Attention
As already hinted above, Attention involves the multiplication of Q and K that
produces the attention scores, which are, after going through the Softmax operation,
multiplied by V eventually. This flow is represented in figure 5.5.

This MatMuls are not followed by a bias addition because they are not linear
transformation but they involve only the three head-related matrices. Also here
a Requantization layer is required, values exiting the Softmax are on 32 bit but
in the following MatMul block the parallelism must be 8 bit. Scale stands for a
division by a constant. Recalling 2.5, this constant in a Transformer is usually is
equal to the square root of the embedding dimension (

√
d) and it is a power of two,

allowing to perform only a shifting operation. In I-BERT however, d is 768 so its
square root is around 27.
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Figure 5.5: Attention architecture
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Softmax

Softmax architecture is entirely based on the algorithm 2 and it is divided in the
main operations to execute to perform it. Three phases are required:

• Search of maximum value

• Accumulation of exp values

• Computation of the output

In a Softmax block (5.6) inputs are coming one at a time and they refer to a
single row of the matrix to be processed. So the matrix has to be scanned firstly to
find the maximum values by means of a comparator. Once stored that value, the
exp(x− xmax) elements can be calculated and accumulated into the denominator.
At last the outputs can be computed with the final division. Input matrix has
to be scanned and given in input to the block three times in total, "stalling" the
execution of the network.

Figure 5.6: Softmax unit architecture

Exponential Exponential unit (figure 5.7) is composed by some multiplications,
a polynomial unit and a shift.
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Figure 5.7: Exponential unit architecture

The polynomial component is directly implemented with two sums and a multi-
plication. For the exponential the polynomial version is the one in figure 5.8.

Figure 5.8: Polynomial unit architecture (exponential version)

In fact, by looking at the Pytorch code of the I-BERT, in this part the equation
of the polynomial is x(x + b) + c instead of the original (x + b)2 + c. To align the
hardware and the reference software model, this change is taken into account and
two different version of the polynomial component are made.

5.3 Feed-Forward Network
FFN is formed by two linear transformations and an activation, i.e. the GELU
activation. Like in the MHSA layer, a Requantization operation is needed after the
GELU activation before going into the following transformation.

41



Hardware Design

Figure 5.9: Feed Forward Network architecture
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Usually dff is a multiple of d, therefore some manipulations on the structure
can be made, e.g. folding the second transformations into the first. Any change
has its effect on the memory requirements and on the matrix handling.

5.3.1 GELU

As it can be seen in figure 5.10, GELU architecture is simple, with only an addition
and a multiplication after the Erf function unit.

Figure 5.10: GELU unit architecture

Erf Erf function, recalling 3, is built around a polynomial unit. Input sign has
to be separated by the value and used at the output; so the polynomial input is
the absolute value of the Erf input upper-limited by a scaling-factor-depending
constant.

Figure 5.11: Erf unit architecture

Polynomial unit follows the original algorithm (1), differently from the above-
explained exponential case.
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Figure 5.12: Polynomial unit architecture

5.4 Residual Connection
This could have been a simple addition (2.4) between columns of the two input
matrices if the values were not quantized and related to their scaling factor. As
already explained, two numbers with two different scaling factors cannot be added
directly, so there is the need of this block (5.13) to make the residual connection.

Figure 5.13: Residual Connection architecture

Having two inputs r = qrSr and m = qmSm and defining the output as a = qaSa

the sum is:

a = qaSa = r + m = qrSr + qmSm −→ qa = DN(Sm

Sa

)qm + DN(Sr

Sa

)qr (5.1)

The concept behind this is the same of the Requantization, so it involves the
Dyadic numbers to bring the two addends to the same scaling factor to sum them
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together. In fact Dyadic unit is identical to the one used in the Requantization
(5.16), taking two coefficients (b and c) and performing a multiplication and a shift.

5.5 Layer Normalization
From its equation 2.10 it is easy to understand that this layer has to do some
processing on the inputs, and in this architecture setup this means that, like the
Softmax, it needs three phases:

• Average computation

• Standard deviation computation

• Output computation

Figure 5.14: Layer Normalization unit architecture

Looking at the architecture scheme in 5.14, average and standard deviation have
two dedicated registers, while the accumulator and divisor to compute the average
value is shared between the two statistics involved. In fact after the input average is
saved into its register, this resources are reused for calculating the variance (defined
as the average of the (x− avg)2 elements); a multiplexer is placed at the input of
this operators to select which value to process depending on which phase is on. C
value in the structure is the number of inputs to perform the average on: in the
I-BERT case this is equal to the embedding dimension (d = 768) as the matrix that
the Normalization layer receive as input have dimension m× d and it is performed
along matrix’s rows. In other Transformer networks this parameter is a power of
two so the division can be substituted by a right shifting of log2 d positions. To
have the standard deviation a Square Root unit is needed and it is described below.
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5.5.1 Square Root

Since it is based on the iterative algorithm described in 4, this computation requires
more than one cycle to be completed. It has a constant initial value, defined as
x0, and after the first cycle the input is the previous output: this is realized using
a multiplexer selecting the right input value. At every iteration, partial result xi

is compared to xi+1 that it is equal to (xi + xi/n)/2 (division by 2 is simply a
one-position right shifting) until xi+1 is larger or equal to xi. When this happens, xi

is the final result saved into the dedicated register and a VALID signal is asserted.

Figure 5.15: Square root unit architecture

A special case is when input n is directly 0, its square root is obviously 0 and it
can be output instantly along with the Z signal.

Unknown timing of this last block make the Layer Normalization flow more
complex and variable. Once the square root of the variance is available and the
standard deviation is saved into the register, the last phase is performed by means
of one extra divider to divide the (x− avg)2 elements by σ.

5.6 Requantization

Starting from the equation of the Requantization (4.2) it is pretty straightforward
to see that a multiplication and a shift are needed.

So the architecture, scheme 5.16, is formed by this two operators, taking as
inputs the two coefficients of the dyadic number (m and c).
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Figure 5.16: Requantization architecture

5.7 Synthesis results

5.7.1 MatMul

To estimate the impact a MatMul can have on the hardware area some synthesis
were run. Using Design Compiler, some structures were synthesized to extract a
trend both in terms of area and power in order to estimate bigger structure whose
synthesis was not possible due to limitations.

Matrix dimensions were progressively increased until the synthesis was possible,
by doubling at each step either the number of rows or columns, since the different
Transformers structure differ by these kind of ratio. Plus, different parallelism were
analysed: 8 bits, 16 bits and 32 bits.

Before looking at the synthesis results, here are some initial clarifications on the
adopted method.

In figure 5.17 there’s an example of a 4x4 MatMul matrix: it is important to
point out that inputs are on n bits while accumulators and output are on 2n bits
for this analysis. In the following results the number of bits will refer to n, so
the input parallelism. Row/column inputs go to every MAC in the corresponding
row/column; there are input and output registers to help the synthesizer and to
have a more structured matrix. Mux selection signal is therefore delayed to match
the timing, recalling that also MAC elements have a delaying component in the
accumulation register.
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Figure 5.17: Example of 4x4 MAC matrix

Furthermore, to compile bigger structures, a bottom-up approach has been used,
with some simpler matrices composing a bigger one, like in figure 5.18. With Design
Compiler in fact, it is allowed to compile first the smaller blocks and then the top
one starting from the already-synthesized solutions. This overcame a little the
memory limitations of the software increasing the range of synthesizable matrices.
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Figure 5.18: Example of a MAC composed matrix

So:

• Synthesis were performed by means of Design Compiler, using UMC65 tech-
nology in typical conditions.

• Very large structures could not be directly synthesized due to memory limita-
tion of the software.

• Composed matrices were synthesized using a bottom-up approach, compil-
ing first base components and multiplexers and eventually the top entity
maintaining previously obtained designs.

• Following area and power results were obtained through report_area and
report_power commands on the top level design.

• Clock in these synthesis was fixed at 7ns, to avoid timing issues. Value was
chosen based on zero-period clock synthesis performed on small matrices; no
negative slack was encountered.

Area analysis Table 5.1 reports extracted values for base MAC matrices.
There are two contributions on the area results: combinational and non-

combinational. Comb area is given by the combinational components, i.e. the
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non-clocked ones; No Comb area on the other end is formed by all other components,
that are mainly registers and sequential elements.

MATRIX 8 BITS 16 BITS 32 BITS

Row Col Comb No Comb Tot Comb No Comb Tot Comb No Comb Tot
32 8 146088 51917 198006 515631 103618 619249 1721686 207242 1928928
32 16 287004 96943 383947 1030316 193415 1223731 3470702 387184 3857886
32 32 582080 186674 768755 2042693 373485 2416178 6965795 746802 7712597
64 16 583368 192330 775697 2044095 384443 2428538 6943486 769125 7712611
64 32 1164182 370513 1534695 4107669 741208 4848878 13922859 1482508 1540567
64 64 2531498 727425 3075923 8208363 1454797 9663160 27859092 2907490 30766582

Table 5.1: Area values for base MAC matrix

From these values there are two ratios that can be observed:

• Relationships between different parallelism on same structure. (Table 5.2)

• Relationships between different structures with same parallelism. (Table 5.3)

It can be seen that ratios when doubling the parallelism are very similar, hinting
that it could be a constant relationship useful for estimation.

MATRIX RATIO 16 BITS/8 BITS RATIO 32 BITS/16 BITS

Row Col Comb No Comb Tot Comb No Comb Tot
32 8 3.5296 1.9958 3.127 3.3389 2.000 3.1149
32 16 3.5899 1.9951 3.1872 3.3686 2.002 3.1526
32 32 3.5093 2.0008 3.143 3.4101 1.999 3.1920
64 16 3.5039 1.9988 3.13 3.397 2.001 3.1758
64 32 3.5284 2.0005 3.1595 3.3895 2.000 3.1771
64 64 3.4906 1.9999 3.1385 3.3939 1.9985 3.1839

AVERAGE 3.52 1.99 3.14 3.38 2.00 3.17

Table 5.2: Area ratios between same MAC base matrices with different parallelism

It can be seen that ratios when doubling the parallelism are very similar, hinting
that it could be a constant relationship useful for estimation. But a better way
to estimate non-synthesizable MatMul can be derived from the other table, 5.3.
In fact if parallelism is kept constant, the area variation is almost equal to the
structure variation. So, if the number of columns of a MatMul is doubled with
respect to another MatMul, its area is two times the starting MatMul area. Note
that Tot Area is simply the sum between the Comb and the No comb values, so it
is not reported anymore.
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MATRIX 8 BITS 16 BITS 32 BITS

Row Col Comb Ratio No Comb Ratio Comb Ratio No Comb Ratio Comb Ratio No Comb Ratio

32 8 146088 51917 515631 103618 1721686 207242

32 16 287004 1.964 96943 1.867 1030316 1.998 193415 1.866 3470702 2.016 387184 1.868

32 32 582080 2.028 186674 1.925 2042693 1.982 373485 1.931 6965795 2.007 746802 1.928

64 16 583368 1.002 192330 1.030 2044095 1.001 384443 1.029 6943486 0.997 769125 1.029

64 32 1164182 1.995 370513 1.926 4107669 2.009 741208 1.928 13922859 2.005 1482508 1.927

64 64 2351498 2.019 727425 1.963 8208363 1.998 1454797 1.963 27859092 2.001 2907490 1.961

Table 5.3: Area ratios between different MAC base structure with same parallelism

Composed matrices were then analysed to see if they brought some differences
to these relationship. Table 5.4 reports results for a 256x64 matrix, where it can
be seen that the ratio between a composed matrix’s area and its base block’s area
is equal to the number of base blocks required to have the top structure. 32 bits
case was not possible due to memory errors of Design Compiler.

MATRIX 256x64 8 BITS 16 BITS

Row Base Col Base # Base Blocks Comb Ratio No Comb Ratio Comb Ratio No Comb Ratio

32 8 64 9402021 64.36 3322761 64.01 33105086 64.20 6631582 64.00

64 16 16 9360801 16.05 3077307 16.00 32759352 16.03 6151119 16.00

Table 5.4: 256x64 composed matrix area values (ratio is referred to base matrix
area that can be found in 5.1)

To double-check the validity of these result, a MatMul with feasible dimensions
is estimated and confronted with actual values, extracted with Design Compiler.
This matrix is a 128x32 one, that can be directly compiled and the results are in
2.1. Estimation was made by multiplying by 2 the values of the 64x32 matrix, but
it can be made with any other base matrix with little difference.

Power analysis Using the same method power consumption of the MatMul
components is analysed too. The first step is again the base MatMul synthesis,
reported in table 5.6. In this case the two main contributions to the power
consumption are the Dynamic Power and the Leakage Power ; Total Power is
simply the sum of these two values. Note that in following tables the unit is mW.

Then, the two cases analysed are the same as before: same structure with
different parallelism and different structure with same parallelism (respectively
tables 5.7 and 5.8.

Conclusions are the same of the area case, with ratios being very similar for
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MATRIX 128x32 8 BITS 16 BITS 32 BITS

Method Comb No Comb Tot Comb No Comb Tot Comb No Comb Tot
SYNTHESIS 2359869 738479 3098348 8217431 1476691 9694123 27814588 2953000 30767588
ESTIMATED 2328363 741026 3069389 8215339 1482415 9697755 27845718 2965015 30810734

|DIFF| % 1.33 0.34 0.93 0.02 0.39 0.04 0.11 0.41 0.14

Table 5.5: Errors between estimated and synthesized area values

MATRIX 8 BITS 16 BITS 32 BITS

Row Col Comb No Comb Tot Comb No Comb Tot Comb No Comb Tot
32 8 9.521 0.011 9.53 24.269 0.034 24.302 67.346 0.121 64.461
32 16 17.866 0.022 17.888 46.749 0.066 46.816 129.487 0.242 129.721
32 32 35.355 0.043 35.398 89.229 0.139 89.368 253.337 0.484 254.178
64 16 36.302 0.043 36.345 91.818 0.140 91.929 254.103 0.482 249.958
64 32 70.835 0.085 70.921 178.650 0.279 178.877 503.701 0.966 508.249
64 64 139.731 0.183 139.968 355.009 0.558 356.126 967.236 1.927 964.515

Table 5.6: Power values for base MAC matrix

different structures. But again, the other relationship can be easier to use in the
estimation phase. This is described in table 5.8: if a matrix is doubled, it will
consume nearly two times the power it consumed before.

Remember that ratios are computed with respect to the previous row.
For composed matrices the behaviour is the same: their power consumption is

equal to the sum of the power consumption of the base matrices composing them.
In table 5.9 there’s the 256x64 example.

Eventually, a check on the estimation criteria is needed; the target matrix is
still the synthesizable 128x32 one.

Error in power estimation is a little bigger than the area one, especially with
lower parallelism, but it can still be considered negligible.

MatMul with bias Majority of the MatMul in the Transformer network are for
linear transformations in the form of X ∗W + b. W is the weight matrix and b is
the bias vector that is eventually added.

These additions can be included in the MatMul component, like in example
5.19. Bias vector is an horizontal one, so for a specific column the value to be
added is the same; therefore one bias value is received for iteration, and by means
of <number of rows> adders is summed to the column.
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MATRIX RATIO 16 BITS/8 BITS RATIO 32 BITS/16 BITS

Row Col Dynamic Leakage Tot Dynamic Leakage Tot
32 8 2.549 3.027 2.549 2.775 3.607 2.652
32 16 2.617 3.066 2.617 2.769 3.655 2.771
32 32 2.524 3.259 2.525 2.839 3.477 2.844
64 16 2.529 3.249 2.529 2.713 3.439 2.719
64 32 2.522 3.275 2.522 2.819 3.456 2.841
64 64 2.541 3.041 2.544 2.724 3.454 2.708

AVERAGE 2.55 3.15 2.55 2.77 3.51 2.76

Table 5.7: Power ratios between same MAC base matrices with different parallelism

MATRIX 8 BITS 16 BITS 32 BITS

Row Col Dynamic Ratio Leakage Ratio Dynamic Ratio Leakage Ratio Dynamic Ratio Leakage Ratio

32 8 9.521 0.011 24.269 0.034 67.346 0.121

32 16 17.866 1.876 0.022 1.949 46.749 1.926 0.066 1.974 129.487 1.923 0.242 2.000

32 32 35.355 1.979 0.043 1.979 82.229 1.909 0.139 2.103 253.337 1.956 0.484 2.000

64 16 36.302 1.027 0.043 1.008 91.818 1.029 0.140 1.006 254.103 0.983 0.482 0.995

64 32 70.835 1.951 0.085 1.980 178.650 1.946 0.279 1.996 503.701 2.002 0.966 2.005

64 64 139.731 1.972 0.183 2.149 355.009 1.987 0.558 1.995 976.236 1.920 1.927 1.993

Table 5.8: Power ratios between different MAC base structure with same paral-
lelism

Figure 5.19: 4× 4 MatMul with bias addition
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MATRIX 256x64 8 BITS 16 BITS

Row Base Col Base # Base Blocks Dynamic Ratio Leakage Ratio Dynamic Ratio Leakage Ratio

32 8 64 607.25 63.78 0.711 64.09 1575.8 64.93 2.157 64.26

64 16 16 571.85 15.75 0.690 16.01 1478.6 16.10 2.247 16.04

Table 5.9: 256x64 composed matrix power values (ratio is referred to base matrix
power that can be found in 5.6)

MATRIX 128x32 8 BITS 16 BITS 32 BITS

Method Dynamic Leakage Tot Dynamic Leakage Tot Dynamic Leakage Tot

SYNTHESIS 141.217 0.184 141.387 366.718 0.559 367.421 1023.3 1.935 1008.600
ESTIMATED 141.670 0.171 141.842 357.300 0.559 357.754 1007.402 1.933 1016.499

|DIFF| % 0.32 7.07 0.32 2.57 0.02 2.63 1.55 0.09 0.78

Table 5.10: Errors between estimated and synthesized power values

A special case is analysed in order to see the overhead caused by the bias addition
and to verify previous estimation results. This is the MatMul with 8-bit inputs
and accumulators on 32 bits, just like the suggested IBERT implementation.

From table 5.11 two things are highlighted: the area overhead due to the bias
adders and the ratio of the structure with respect to a reference structure (in
this case 32 × 8). Ratios are very similar to the results of the base component;
area increment corresponds to the structure increment, tolerating a little error for
estimation purposes. Overhead values are very little, and they decrease increasing
the MatMul dimensions, as the MAC components cover almost entirely the area.
In table 5.12 there are the power values for these blocks.

Power values don’t change much between the two components, hinting that bias
addition isn’t a relevant contribution to the power consumption.

5.7.2 Other sub-layers’ area and power
Other contributions to the hardware of the network comes from non-linear functions
and the requantization block. Here synthesis results of these functions are reported.

For combinational blocks like GELU and Requantization, register were applied
to their inputs and outputs in order to have also timing results. In fact by changing
the clock period Design Compiler gives different synthesis results. This affects the
Non Combinational part of the area, keep that in mind when analyzing following
values.

Softmax and Layer Normalization are the most complex operations as they
include also the division operator, which is not a simple block. This can be improved
with better solutions, but for this analysis it is kept as a behavioural description,
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MATRIX BASE MATMUL BIAS MATMUL OVERHEAD
Row Col Tot Area Ratio wrt 32× 8 Tot Area Ratio wrt 32× 8

32 8 286713 1 294741 1 2.80%
32 16 561600 1.96 569656 1.93 1.43%
32 32 1119432 3.90 1127348 3.82 0.71%
64 16 1129445 3.94 1145011 3.88 1.37%
64 32 2236081 7.80 2251670 7.64 0.70%
64 64 4490757 15.66 4506397 15.29 0.35%

Table 5.11: Area comparison between base MatMul block and bias MatMul block

MATRIX BASE MATMUL BIAS MATMUL
Row Col Tot Power Ratio wrt 32× 8 Tot Power Ratio wrt 32× 8

32 8 15.55 1 15.76 1
32 16 29.29 1.88 29.79 1.89
32 32 57.72 3.71 57.81 3.67
64 16 59.18 3.81 59.79 3.73
64 32 115.65 7.44 115.18 7.31
64 64 228.03 14.66 223.89 14.20

Table 5.12: Power comparison between base MatMul block and bias MatMul
block

leaving to the synthesizer the design choice.
Remember that these blocks have to be instantiated multiple times, since they

process only one element of the corresponding row. Therefore, to have better
estimation, the total area of the blocks is multiplied by the correct factor in the
last column of the tables. For Softmax and LayerNorm this factor is d while for
GELU this is m. Requantization is used in different part of the network, where
the number of block can be either m or d; the bigger one is picked to have the
bigger value that Requantization need. For example, in the following tables, these
values are picked and they are respectively 256 for m and 768 for d, as in the BERT
model.

For both area (5.13) and power (5.14) results, an indicative clock period is
chosen, larger than the minimum period that gives slack 0. In fact, in this kind
of synthesis, the tool find different solutions based on the timing constraint that
it has. Usually faster designs have bigger area and power values, but increasing
sufficiently the clock period these values become very similar. Therefore, after
finding the lowest clock period feasible, discussed in the Timing paragraph 5.7.3,
further synthesis were performed with a larger period to extract following values
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for area and power.

Component Comb Area No Comb Area Tot Area Multiple Instances

Softmax 38995 691 39686 30478848
LayerNorm 36571 1566 38137 29289216

GELU 7351 2073 9425 2412800
Requantization 8302 870 9173 7044864

Table 5.13: Area of sub-layers

Component Dynamic Power Leakage Power Tot Power Multiple Instances

Softmax 755.89 3.28 759.2 583065.6
LayerNorm 234.86 3.42 238.3 183014.4

GELU 76.57 0.551 77.2 19763.2
Requantization 51.63 0.575 52.2 40089.6

Table 5.14: Power of sub-layers

5.7.3 Timing analysis
In order to analyse the timing part of the components, minimum clock period was
searched. For each component, a synthesis with zero-period clock was performed
to see the starting violated slack: this was the reference value for the following
synthesis. Starting from this value, the period was tuned until a synthesis returned
slack 0, meaning that the fastest way to design the component was found.

By far, the slowest components are the Softmax and the Layer Normalization,
this is expected as they have the most combinational elements, including some
division operations, which are not properly optimized.

MatMul latency slightly vary on the dimension of the matrix, but the values are
around 1 and 1.5ns. Increasing the MatMul dimension the latency value does not
change a lot as the critical path is formed by the multiplier and the adder between
the input and the accumulation register. This remain practically unchanged when
modifying the matrix dimensions.

Components like GELU and Requantization module have a slightly bigger
latency, probably because they are entirely combinational. In fact the are made
by simple and few operators. GELU’s minimum clock period of 3ns, while the
Requantization’s one is 2.1ns.

As already said, Softmax and Layer Normalization have the biggest contributions
to this kind of analysis. This is because they have several operators, recalling the
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architectures 5.14 and 5.6. No registers were inserted apart from the ones needed
for the execution, but some pipelining could be applied to have better results, as
long as the network processing is modified accordingly. Without any pipelining,
Softmax has a minimum clock period equal to 17.7ns, a little larger than the Layer
Normalization one, which is 15.3ns. Softmax has more division operators and less
registers that can break the combinational paths.

Pipelining and division optimization are two of the possible improvements that
can be made in order to lower the clock period and accelerate the execution of these
blocks. Clearly, the entire network has to respect all the timing constraint given by
its layers, meaning that the slowest block should decide the whole architecture’s
speed.

5.8 Scaling factor specifics
Overflow could be an issue in the proposed architectures. Instead of dealing with it,
prevention can be an option. Many operations in fact have low overflow probability
due to data statistics: for instance matrix multiplication should not suffer from
overflow since it has inputs on 8 bits and accumulation on 32 bits. After the
multiplication between inputs in a MAC, the value is representable with 16 bits,
leaving a lot of margin in the accumulation part, given that neural network’s
matrices are often sparse.

In non-linear functions, for example, multiplications between two n-bit inputs
are made on 2n bits and eventually truncated. Different bit choices can be made
in truncation depending on the obtained result, but any shifting operation in these
results has to be made also on the corresponding scaling factor. Scaling factor is
indeed one of the overflow handling method; by changing it, out-of-range values
can be managed.

Scaling factor impacts also the coefficients of these functions, which have to be
compliant to the architecture. Therefore, some constraints have to be applied to
control coefficients’ value.

5.8.1 Softmax
In softmax computation x− xmax is processed, it is a non-positive value going to
the exponential value, so the output is limited. Therefore the only things to control
are the coefficients for the polynomial and the exponential.

• EXP(5.7): parameter qln2 should be on 32 bit.

qln2 = ⌊ ln2
S
⌋ −→ −231 ≤ qln2 ≤ 231 − 1 −→ |S| ≥ 3.23 ∗ 10−10 (5.2)
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• POLY(5.8): qb can be limited to 16 bits to reduce possible range of the square
operation. Poly input is around zero since it is qp = q + qln2 ∗ ⌊− q

qln2
⌋.

qb = ⌊ b
S
⌋ with b = 2.707 −→ −215 ≤ qb ≤ 215 − 1 −→ |S| ≥ 8.26 ∗ 10−5

qc = ⌊ c
aS2 ⌋ with c = 1 a = 0.358 −→ −231 ≤ qc ≤ 231−1 −→ |S| ≥ 3.6∗10−5

• Scaling factor is the same for both sub-blocks so the stricter condition rules.

5.8.2 GELU
• Input scaling factor is divided by

√
2 and then given to the ERF unit. Here S

is the value after this scaling.

• ERF(5.11): here the input goes through the absolute value and then it’s
clipped so its range is limited between 0 and −b/S.

• POLY(5.12): qb can be limited to 16 bits to reduce possible range of the square
operation. Poly input is around zero since it is − b

S
= −qb so 0 ≤ q + qb ≤ qb.

qb = ⌊ b
S
⌋ with b = −1.769 −→ −215 ≤ qb ≤ 215 − 1 −→ |S| ≥ 5.39 ∗ 10−5

qc = ⌊ c
aS2 ⌋ with c = 1 a = −0.2888 −→ −231 ≤ qc ≤ 231 − 1

−→ |S| ≥ 4.01 ∗ 10−5

• q1 is equal to qc −→ q1 = 1
Serf

= 1
aS2 = c

aS2 if c = 1.
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5.9 Control Unit
Along with the datapath, an hardware design requires also a Control Unit (CU), in
charge of managing the operations’ flow.

There are many ways to implement a CU, but the common starting point is the
control flow, which is analysed here. In 5.20 the encoder’s order of operations is
depicted. Apart from the Residual Connection, which is combinational and requires
the CU only to fetch the right addends, each block is described below. Residual
Connection, furthermore, can be incorporated in the last part of the sub-layers,
where they give in output the results column by column. This would allow to save
clock cycles.

Figure 5.20: Encoder control flow

In the following charts signals Start and Done can be viewed as place-holders,
in fact structure depends on which of these two choices is picked:

1. Single CU for entire Encoder

2. Separate CUs for each sub-layers, controlled by the Encoder CU

In option number 2 some interface is needed to connect the blocks; this is where
Start/Done handshaking could be a solution.
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5.9.1 MHSA
MHSA has to perform the matrix multiplications to compute Queries, Keys and
Values for all heads, then there’s the attention part and eventually the last matrix
multiplication. This part depends on how many heads can be processed in parallel
(k in the chart is number of total heads divided by number of processable heads).
Let’s see the two extreme cases:

• All heads are computed at the same time: heads computing (dotted line)
doesn’t need to be iterated and final matrix multiplication has all inputs
available.

• One head at a time: attention output can be directly processed by the last
MatMul, or stored until the whole matrix is composed. Heads computing have
to be iterated for the total number of heads.

Figure 5.21: MHSA control flow
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Attention

Attention operations are:

• Q ∗KT

• Softmax

• Softmax_output ∗ V

Softmax also needs three phases to be computed and they are included here.
There’s some room for optimizing the process. Matrix V can be calculated while
the Q ∗KT product is performed. This would change something also in the MHSA
block and can also save resources, as long as matrices Q and K are stored elsewhere.
Column selection at the end is made in order to give the attention output to the
next operator, so it can be combined into the last MHSA matrix multiplication’s
flow.

Figure 5.22: Attention control flow
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5.9.2 FFN
FFN has two linear transformations separated by a GELU activation. GELU can be
made in a single iteration, so it is combinational. Therefore there are three identical
iterations over the matrices, two for computing the two matrix multiplication and
the last one to add the biases to the FFN results and give them in output. Layer
output can be either stored or transported to the next layer, with the final iteration
corresponding to the entry one in the next layer.

Figure 5.23: FFN control flow

5.9.3 LayerNorm
LayerNorm requires three iterations over the input to compute respectively the
mean, the variance and the results. Plus, the square root unit needs an unprecised
number of cycles to compute the standard deviation, and it is handled by a VALID
signal coming from the unit.

By confronting the above charts, it is clear that one sequence is repeated:
the matrix multiplication sequence. This can be realized with a sub-procedure,
depending on what choices are made in the CU design.
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Figure 5.24: Layer Normalization control flow
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Configurability

6.1 MatMul Utilization
MatMul operation is by far the most needed one in the Transformer network, and
to see the configurability to different models this is the first element to analyse.

Keeping in mind the network’s parameters (2.4), the matrix multiplications
required by a Encoder layer are:

• m× d/k in the Q,K,V computation of the MHSA (3 of them for each head).

• m× d in the MHSA final computation.

• m×m in the attention Q ∗KT computation (1 for each head).

• m× d/k in the Attention final computation.

• d× dff in the FFN first matrix transformation.

• d× d in the FFN second matrix transformation.

The easiest way to implement them is having one different component for each
of these operations can be intensive from the area/power point of view, so in the
hardware definition some choices can be made to reuse some resources and save
area.

Since m× d/k is the smallest dimension among the listed operations, it can be
considered the base Processing Element (PE) that can be replicated to form larger
sets. Remember that subsequent sets require that the first one keeps stored its
values until they are entirely received and processed by the following one. So, if an
operation wants to reuse some PEs that are involved in the previous one, these
values that are exchanged by the two PEs should be stored elsewhere to "clean" the
MACs. For example, this can be critical for the head part where Q, K, V sets are

64



Configurability

3 for each head and their outputs have to be processed almost at the same time in
the following Attention.

Clearly there are a lot of different options in choosing the amount of PEs to
implement and how to use them to exploit all needed multiplications.

Here are some examples of configuration to better understand the problem.
Parameters are fixed in this example and each set have a color to highlight them
in the scheme:

• m× d/k = 256× 64 (Q, K, V) → 1 base PE.

• m× d = 256× 512 → 8 base PEs.

• m×m = 256× 256 → 4 base PEs.

• m× d/k = 256× 64 (Attention) → 1 base PE.

• d× dff = 512× 2048 → 64 base PEs.

• d× d = 512× 512 → 16 base PEs.

Configuration possibilities:

1. 16 base PEs → 256x64 (total 512× 512), scheme in 6.1:

• This scheme accounts for two heads computed at every cycle (1 head =
3 green PEs + 1 orange set + 1 blue set): this way their results can be
kept in loco.

• Partial results of burgundy set should be saved in order to update them
at every iteration.

• d× d is formed by all PEs.
• d× dff set uses all PEs multiple times. IN this case 4 times to reach dff

dimension.

2. 16 base PEs → 256x64 (total 512× 512), scheme in 6.2:

• this maximizes the number of heads that can be computed, in this case 4.
Since green and orange sets use same PEs, Q, K and V matrix must be
stored in memory. The same happens between orange and blue sets.

3. 64 base PEs → 256× 64 (total 512× 2048):

• This solution allocates every MAC needed in the FFN architecture, allow-
ing the d× dff multiplication to be computed in one take.

• Since a single head without reutilization requires 8 base PEs (see first
example), in this solution 8 heads can be processed simultaneously.
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4. Other options:

• Using less PEs than the first two examples leads to some more iteration
to perform MatMuls larger than the available operators.

• Keeping the same structure, other intermediate solutions between the first
and second solution can be adopted. Main changes can be made on the
number of heads processed in parallel since they require the smallest set
of all.

Figure 6.1: MatMul scheme example 1

Figure 6.2: MatMul scheme example 2

Options 1 and 2 are the example of how the same total structure can be used
differently; in fact they are identical in the datapath, but they differ in the control
part that is in charge of managing the interface between sub-layers.

m× d/k MatMul can be viewed as the fundamental block of the entire network:
in fact other than being the smallest required set of MACs, by looking at the
parameters table (2.1) this ratio is common among different type of Transformer
models. m depends on the input sequence length, so in other words, once it is fixed,
it is the maximum processable sequence length; sentences shorter than that are
padded with zeros. Fixing d/k mean that only Transformer models with that ratio
between model dimension and number of heads can be adapted to the hardware
model. Assuming this, base PE m× d/k is the reference for every model.
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Recalling the MatMul synthesis analysis, area and power values in any configu-
ration can be estimated by looking at the total dimension of the structure. Area
and power consumption are indeed two of the main criteria to choose how many
base PEs to instantiate, considering the tradeoff between area and parallelizability.

One idea to ease the reutilization of the MatMul components is adding an extra
register to the internal MACs: this can be used like a "retention register" that
can be loaded when the corresponding set is needed for another operation but the
accumulated data still has to be processed. Instead of moving the data to the
memory, it can be kept in loco while the MACs are "cleared" and can be reused
in another matrix multiplication. This obviously would have a cost in hardware
resources, like a pipeline for the entire output matrix. It is an option that can be
applied only to certain MatMul sets, depending on the design choice adopted; to
the sets that are not reused between subsequent operations.

6.2 Hardware Adaptability
Once the hardware resources are fixed for a specific Transformer model, can it be
used for different models?

This is the topic of this section, where the hardware proposed so far is analysed
in terms of parameter variation. In fact, in 2.1 it’s evident that one big difference
between Transformer models are the values of their parameters.

Structure differences As already explained, Transformer, Universal Transformer
and BERT have some little differences in the network structure. Transformer
and Universal Transformer are identical in the Encoder and Decoder structures.
However, they have two components that are not present in BERT; one is the
ReLU activation function used in the FFN. This is simpler than the GELU and its
implementation is quite direct. ReLU in fact mask every negative input, giving
in output 0 if the input is negative or the input itself if it’s positive. This can
be translated into hardware with some multiplexers with 0 and the input data as
inputs and the input’s sign bit as a selector.
It is legit to think that GELU can be the right activation function for these other
networks since the behaviour of the two functions is very similar, but it should be
verified in a software model.

The other change in the structure is in the Transformer Decoder, where there
is a additional sub-layer, namely the Masked Multi-Head Attention. This requires
the masking operation, that in a way is similar to the ReLU as it mask with a 0
output some neurons, but the choice is made through an external mask. So the
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multiplexers can be used once again but the selection signal comes from outside,
e.g. where the mask is stored.
For the Encoder-Decoder attention the operations are the same as in the normal
Attention, but Key and Query matrices are computed from the Encoder output;
therefore they should have an input different from the Value matrix.
Hence, in order to execute Transformer/Universal Transformer models, these
hardware addition have to be made, otherwise the hardware solution cannot be
flexible with respect to different Transformer networks.

Model Variations Adaptability to different model can be discussed by looking
at how the variation of the model’s parameters can be handled to fit the model
onto the available hardware. Smaller models can be adapted quite easily as there’s
no need for extra resources, and smaller matrices can processed entirely. Surely
in this case models are not optimized, with some operators that become useless,
unless the control part is complex enough to handle that and use resources at the
maximum efficiency for every model.
A big part of this feature depends in fact on the control part of the network, since
the main changes in the execution are not datapath-related. For example, any
variation on the number of columns of the to-be-processed matrices does not affect
the MatMul component itself but the number of iterations needed to complete the
multiplication; that’s because the architecture is designed to process one column at
a time.

Remind that only models with a specific ratio d/k can be taken into account,
due to simplicity and hardware limitations. So, the other parameters that can
vary between models are m, d and dff . m can be assumed constant and fixed; a
maximum sequence length can be decided not to overcomplicate things.

Therefore, the following considerations are on the required adaptation when d or
dff are increased.

1. Increasing dff : dff is used in the FFN alone (scheme 5.9), where the weight
matrix W 0 can be partitioned in vertical slices so that Y = x ∗W 0 can be
calculated with multiple iterations until all parts are covered. Partial results of
the matrix Y can either be stored or go directly to the second MatMul. Final
matrix multiplication can be made entirely when all its inputs are available
or can follow the first matrix multiplication iterations. In the latter option
whenever partitioned columns from the first MatMul are completed, they go
through the GELU operators and onto the second MatMul, that accumulates
results until all partial matrices are scanned. Also weight matrix W 1 should
be partitioned horizontally, but this affect only the fetch part of this matrix,
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since it is already scanned by rows, so it is only a problem to get the right
row for each iteration.

2. Increasing d: d is the fundamental dimension of the Transformer so it
is trickier to change. First it appears in MHSA (scheme 5.4): the final
multiplication has a weight matrix W 0 that can be partitioned like in the
previous case. This MatMul is already depending on how many heads are
processed in parallel so this add an extra variable to the control part of this
unit. For the input part of the MHSA the only thing to change is the number
of iterations to read all the input matrix, as the heads blocks are unchanged
due to the fixed m×d/k. The other sub-layer affected is the FFN (5.9), where
the matrices to be sliced are the input X and the weight W 1. Horizontal
sub-matrices of the input can be processed as a standalone producing partial
horizontal results that once in memory form the whole result matrix. They
can also go on to the successive layers like the Residual Connection and the
Layer Normalization.
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Conclusions

Hardware design of a Transformer network is something not too explored in previous
works. That’s why having some layer architectures for the Transformer’s operations
is a good way to progress. Accelerating this kind of models could become a real gain,
but it has to be weighted with the hardware costs. In this sense, the analysis given
in this work can help, with some insides on area, power and timing contributions of
each layer. Depending on the wanted model, a probable estimation of these values
can be made.

Fully-integer Transformer can lead to several advantages for hardware realization
and this design goes in that way. It integrates some algorithms proposed in previous
works with the general idea of the network to have an integer-only implementa-
tion. In fact, besides the complex sub-layers that required some mathematical
manipulation to be linearized, this design proposes a solution for each level of the
Transformer, from the top-level view to the inner components.

This work keeps also an eye on the general part of the starting problem. The
designed layers can be used for realizing different Transformer models, as long as
the precision loss is acceptable. Performances can indeed change a lot going from
model to model. Moreover, different choices can be made in the same model, with
a tradeoff in complexity between datapath and control unit.

7.1 Further Developments
This work leaves room for future developments, in almost every aspect of it. A
fundamental part is the control unit, whose implementation is not treated here and
can be realized in several ways; the choice has to be made along with the datapath
decisions. To complete an entire Transformer, control unit and memory are the
two keys. Transformer is known for having a lot of parameters and weights, so
memory can be a complex aspect, given dimension and latency constraints.
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On the architecture side, it can be worthy to try some optimizations. A lot of
works proposed different expressions to compute Softmax and Layer Normalization
and some ideas can be orthogonal to this design, even though their application
on integer hardware it is not straightforward. Furthermore, in some layers the
division operator limits the execution of the layer itself: other implementations of
this operator could give some benefit. Pipelining also is a easy way to improve the
timing results, paying an overhead for the insertion of more registers to improve
speed.

Eventually, there’s the need to see performances on the target tasks of the
Transformer. It is important to analyze accuracy loss with respect to same floating-
point model and overall score on the general benchmarks for NLP.
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