
POLITECNICO DI TORINO

Master Degree course in Computer Engineering

Master Degree Thesis

Analysis of side-channel leakages
on cryptographic circuits

Supervisors
Prof. Antonio José Di Scala

Candidate
Lorenzo Giacobbe

Company Supervisor
Security Pattern

Guido Bertoni
Maria Chiara Molteni

Academic Year 2021-2022

Abstract

The security of cryptosystems is usually evaluated using a black-box approach;
an adversary can’t access the algorithm if not through predefined interfaces, such
as the inputs and outputs of the system. Afterwards, those cryptosystems are
implemented into physical circuits, with the aim to carry out their specific tasks.
This opens up the possibility for attackers to use so-called side channels, obtaining
additional information about the internal computation of the systems, leaked by
the circuit. Attacks that exploit these information are called Side Channel Attacks.
A specific type of Side Channel Attacks (SCA) are Power Analysis Attacks (PAA);
mounting a PAA, the attacker can obtain details about the internal calculations
performed by the circuit analyzing its power consumption. Then, these information
can be used to retrieve the secret key.
The final achievement of this thesis is to generate a tool which can analyse the
weakness of a circuit towards PAA, as realistically as possible. We developed a tool,
called VoLPE (Verification of Leakages Propagation Escalation) which simulates a
synthesized circuit, obtained from OpenLane, and calculates the existing correlation
between the inputs and a model describing the power consumption of the circuit.

Contents

List of Figures 5

List of Tables 7

1 Introduction 9
1.1 Objectives . 10
1.2 Outline of contents . 10

2 State of the art 13
2.1 Mathematical context . 13

2.1.1 Binary Field . 13
2.1.2 Boolean Functions . 14
2.1.3 Hamming weight and distance 14
2.1.4 Correlations . 15

2.2 Cryptography . 15
2.2.1 Advanced Encryption Standard 17
2.2.2 Xoodyak . 19

2.3 Circuits . 22
2.4 Side Channel Attacks . 24

2.4.1 Power Analysis Attacks . 25
2.4.2 Physical Defaults . 27
2.4.3 Countermeasures . 28

Masking . 28
Threshold implementations 30
DOM . 30
CMS . 33

2.4.4 Probing security . 33
Robust probing security . 35

2.5 Verilog . 37

3 Tools 39
3.1 Exploited tools . 39

2

3.1.1 OpenLane . 39
OpenLane for VoLPE . 40

3.1.2 Icarus Verilog . 41
3.2 Tools for probing security analysis 42

3.2.1 IronMask . 42

4 Analysis of circuit security 43
4.1 Structure of the developed tool . 43

4.1.1 Configuration files . 44
4.1.2 Simulation . 46

Exhaustive simulation . 46
Partial simulation . 47
Runs of simulation . 48
Accepted Circuits . 48
Testbench . 49

4.1.3 Power consumption model 49
4.1.4 Consume model . 50

Selection function . 50
Consume model . 51

4.1.5 Correlation matrix . 52

5 Testing and results 53
5.1 Delay selection . 53
5.2 AES S-Box . 54

5.2.1 AES S-Box lookup table . 55
5.2.2 AES S-Box MUX only encryption 57
5.2.3 AES S-Box MUX encryption and decryption 59

5.3 Xoodoo . 61
5.3.1 Xoodoo without final register layer 61
5.3.2 Xoodoo with final register layer 64

5.4 CMS . 66
5.4.1 CMS without final register layer 66
5.4.2 CMS with final register layer 66

5.5 DOM . 68
5.5.1 2-DOM without final register layer 68
5.5.2 4-DOM without final register layer 70
5.5.3 2-DOM with final register layer 72
5.5.4 4-DOM with final register layer 74

6 Conclusion 77
6.1 Future imporvements . 78

3

A Tables of delay values 79

Bibliography 85

4

List of Figures

2.1 Effect of ShiftRows on the state [11] 20
2.2 State representation of Xoodoo [10] 21
2.3 χ permutation of Xoodoo [10] . 21
2.4 θ permutation of Xoodoo [10] . 22
2.5 ρeast (left) and ρwest (right) permutations of Xoodoo [10] 22
2.6 Clock signal with clock cycle . 23
2.7 Propagation delay . 24
2.8 Condition for the presence of Glitches. 29
2.9 Possible physical defaults [14] . 29
2.10 Structure of a 2-DOM [16] . 32
2.11 Structure of a 3-DOM [16] . 32
2.12 Structure of a multiplication CMS gadget [12] 34
2.13 Combination of two NI gadgets . 35
2.14 CMS-like 3-SNI but not robust 3-SNI gadget [28] 36

4.1 Structure of the developed tool. 44

5.1 Sample circuit section. 54
5.2 Input and input-state consume model chart for the AES S-Box lookup

table implementation . 56
5.3 Input and input-state consume model chart for the AES S-Box MUX

implementation performing only encryption 58
5.4 Input and input-state consume model chart for the AES S-Box MUX

implementation performing encryption and decryption 60
5.5 Input and input-state consume model chart for the Xoodoo imple-

mentation without registers . 63
5.6 Input and input-state consume model chart for the Xoodoo imple-

mentation with registers . 65
5.7 Input-state consume model chart for the CMS implementation with-

out registers . 67
5.8 Input and input-state consume model chart for the 2-DOM imple-

mentation without registers . 69

5

5.9 Input and input-state consume model chart for the 4-DOM imple-
mentation without registers . 71

5.10 Input and input-state consume model chart for the 2-DOM imple-
mentation with final registers . 73

5.11 Input and input-state consume model chart for the 4-DOM imple-
mentation with final registers . 75

6

List of Tables

2.1 and operation in F2. 14
2.2 xor operation in F2. 14
2.3 nand operation in F2. 14
2.4 xnor operation in F2. 14
2.5 not operation in F2. 15
2.6 or operation in F2. 15
2.7 Key-Block-Round combinations AES [13] 20
2.8 Substitution values for the byte xy in hexadecimal format 20
2.9 Xoodoo round constants for nr = 12 23
2.10 Logic gates and corresponding Boolean operations 24

4.1 All possible simulations for Example 4.1 47
4.2 Sample correlation matrix for a circuit with 8 inputs and n = 4 . . 52

5.1 Average and maximal correlation values for the AES S-Box lookup
table implementation . 55

5.2 Average and maximal correlation values for the AES S-Box MUX
implementation performing only encryption 57

5.3 Average and maximal correlation values for the AES S-Box MUX
implementation performing encryption and decryption 59

5.4 Average and maximal correlation values for the Xoodoo implemen-
tation without registers . 62

5.5 Average and maximal correlation values for the Xoodoo implemen-
tation with registers . 64

5.6 Average and maximal correlation values for the CMS implementation
without registers . 66

5.7 Average and maximal correlation values for the 2-DOM implemen-
tation without registers . 68

5.8 Average and maximal correlation values for the 4-DOM implemen-
tation without registers . 70

5.9 Average and maximal correlation values for the 2-DOM implemen-
tation with final registers . 72

7

5.10 Average and maximal correlation values for the 4-DOM implemen-
tation with final registers . 74

A.1 Gate and input delays for maximal correlation values for the 2-DOM
without registers . 79

A.2 Gate and input delays for maximal correlation values for the 4-DOM
without registers . 80

A.3 Gate and input delays for maximal correlation values for the AES
S-Box lookup table implementation 80

A.4 Gate and input delays for maximal correlation values for the AES
S-Box MUX implementation performing only encryption 81

A.5 Gate and input delays for maximal correlation values for the AES
S-Box MUX implementation performing encryption and decryption 81

A.6 Gate and input delays for maximal correlation values for the CMS
implementation without registers 82

A.7 Gate and input delays for maximal correlation values for the Xoodoo
implementation without registers 83

8

Chapter 1

Introduction

Cryptography is the science that studies cryptosystems, whose goal is to protect
communications from the intervention of undesired adversaries. This is done by
encrypting the messages m of a communication with a secret key k, making m
unintelligible to anyone that is not in possession of a decryption key k̃. Using
the key the encryption of the message can be reversed, making m readable again.
Any cryptographic algorithm is considered to be secure if it can not be broken in
polynomial time, or in other words, if is not possible to efficiently recover the initial
message or the decryption key. Indeed the security of any cryptographic algorithm
should hold even if the algorithm is publicly known, basing therefore its security
only on the secrecy of the used key (Auguste Kerckhoff, 1883).
Cryptanalysis, on the other hand, is the process of analysing cryptosystems with
the goal of breaching them, trying to gain access to the content of the encrypted
message without knowing the secret key.

For these cryptosystems to be used, they have to be implemented onto physical
devices called circuits. While the security of the algorithms contained in these
cryptosystems is well established, the security of their physical implementation is
not. An attacker with physical access to the device can obtain information about the
secret key and the internal state of the computation, by performing measurements
on the power consumption and electromagnetic radiations of the device. These
measurements can be performed by placing metal needles, called probes, on internal
wires of the circuit. Attacks leveraging these measurements are called Side Channel
Attacks (SCA). Side Channel Attacks that exploit the information leaked by the
power consumption are called Power Analysis Attacks. Often these leakages are
caused by the presence of glitches during the computations of the algorithms, which
in turn are caused by the different propagation times of signals in the circuits.

A very powerful approach to protect physical circuits against SCAs are masking
schemes, which aim at making the computations independent from the sensitive
data they are processing. This is done by xoring the inputs of the circuit with a
random number. Additionally a technique called threshold implementations can be

9

Introduction

implemented to further secure the sensitive variables. Threshold implementations
do that by dividing each variable v, used during computations, in n+1 random and
independent shares, whose exclusive or is equal to v. Gates performing non-linear
operations are usually more vulnerable towards SCA. Vulnerable gates have to be
replaced by a cluster of gates called gadgets, which perform the same operation of
the gate they are replacing, using however the aforementioned masking schemes
and threshold implementations.

In order to test the actual security of these countermeasures, models are created
with the aim to capture the leaked information with similar capabilities of an
attacker. In particular these models specify the information that can be captured
with every measurement taken by the attacker. These attack models, however,
cannot reproduce the actual physical implementation of the circuit and therefore
insert approximations into the verification process.

1.1 Objectives

The aim of this work is to develop a tool able to determine the weakness of circuits
towards Power Analysis Attacks as realistically as possible. Our tool does that by
simulating a synthesized circuit, using Icarus Verilog, and calculating the existing
correlation between the inputs and a model describing the power consumed during
the computation. Starting from a high level description of the circuit, its synthesis is
obtained using OpenLane and represents the actual implementation of the circuit on
the chip. The power consumption is modeled with the number of toggles performed
by the output of the circuit during the computations. Analysing the simulation of
the actual implementation of circuits, we aim at overcoming the approximations
introduced by the previously mentioned attack models.

1.2 Outline of contents

Chapter 2

In Chapter 2 we start by providing the mathematical background necessary to
understand the rest of this thesis. Thereafter we give a description of the two
cryptographic algorithms Xoodyak and AES, used later on to test our tool. We
then proceed by introducing Side Channel Attacks, with particular attention on
Power Analysis Attacks. After describing what physical defaults are and explaining
how these leak information, we continue by discussing potential countermeasures.
We conclude this chapter by giving some definitions used to identify the security
level of circuits.

10

1.2 – Outline of contents

Chapter 3
A brief explanation of third party tools used during the implementation of VoLPE
is given in Chapter 3. We continue by giving a step by step guide of the usage of
OpenLane, which is necessary for the usage of our tool.

Chapter 4
Chapter 4 gives an in depth description of every component of the developed tool.
We start by explaining the mandatory fields of the configuration file, proceeding
then to analyse how VoLPE executes the simulation of the circuit. This chapter
continues by giving an outline of the power consumption model and the consume
model, before concluding with the description of the correlation function used to
calculate the correlation matrix for the tested circuit.

Chapter 5
We conclude this work in Chapter 5 by discussing the results obtained with the tool
on several implementations of four circuits. In particular we start with the tests
performed on the AES S-Box, continuing with the tests performed on Xoodoo and
finishing with results obtained with CMS and DOM.

11

12

Chapter 2

State of the art

2.1 Mathematical context
As everything in computer science, also cryptography works mainly with bits and
functions transforming this binary data. Therefore this work will start by providing
some mathematical background about the Binary Field F2 and Boolean Functions.
Also other concepts like Hamming weight, Hamming distance and correlations are
introduced in this first Section.

2.1.1 Binary Field
Definition 2.1 (Field). A field is a set F with two composition laws + and · such
that [27] [6]

1. (F,+) is a commutative group;

2. (F∗,·), where F∗ = F \ 0, is a commutative group;

3. the distributive law holds.

The field, whose set F2 = {0,1} contains only two elements, is called binary field
and its elements bits.
For binary fields the aforementioned composition laws are called and (∧) and xor
(⊕) and are defined in Tables 2.1 and 2.2 respectively. These definitions are also
called truth tables, showing the correspondence between Binary Fields and Boolean
Logic.
In order to simplify some future definitions two additional operations are intro-
duced, even though they could be expressed as combinations of ⊕ and ∧.
Firstly the not (¬ or x, where x = ¬x) operation that returns the opposite of a
given element in F2 (Table 2.5). For simplicity we call the negation of the and
operation nand and the negation of the xor operation xnor.
Secondly the or (∨) operation whose truth table is defined in Table 2.6.

13

State of the art

∧ 0 1
0 0 0
1 0 1

Table 2.1: and operation in F2.

⊕ 0 1
0 0 1
1 1 0

Table 2.2: xor operation in F2.

∧ 0 1
0 1 1
1 1 0

Table 2.3: nand operation in F2.

⊕ 0 1
0 1 0
1 0 1

Table 2.4: xnor operation in F2.

2.1.2 Boolean Functions
A Boolean function maps a vector x = [x0, ..., xn] of length n with x0, ..., xn ∈ [0,1]
to a single binary value [30]:

f : {0,1}n → {0,1} (2.1)

Where the domain {0,1}n of the Boolean function is called binary Hamming space
of dimension n (also called binary n-cube) [7].
Since the co-domain of the Boolean functions is F2, it is possible to to apply the
operations ∧, ⊕, ¬ and ∨ to their outputs.

2.1.3 Hamming weight and distance
Two further functions over vectors of Fn

2 are relevant for the calculations discussed
in Section 4.1.3, namely Hamming weight and distance.

Definition 2.2 (Hamming distance). Given two vectors x = [x0, ..., xn] and
y = [y0, ..., yn], the Hamming distance between them is defined as the number of
indexes i, where xi and yi differ [30].

dh(x, y) = |{i : xi /= yi}| (2.2)

Definition 2.3 (Hamming weight). Given a vector x = [x0, ..., xn] its Ham-
ming weight is defined as

wh(x) = dh(x, 0) (2.3)

where 0 is the all-zero vector 0 = [0, ...,0] [7].

In other words, the Hamming weight represents the number of bits of x that
are set to 1.

14

2.2 – Cryptography

¬
0 1
1 0

Table 2.5: not operation in F2.

∨ 0 1
0 0 1
1 1 1

Table 2.6: or operation in F2.

Example 2.1. Given two vectors x = [1, 0,0, 1,1,1] and y = [0, 1,0, 0,1,1] (in bold
the elements that differ in the two vectors)

dh(x, y) = 3 (2.4)
wh(x) = 4 (2.5)

2.1.4 Correlations
Correlation is a statistical measure used to quantify the linear relation between
two variables, where the correlation coefficient defines the strength of this rela-
tion [4]. Given two variables x and y, which assume the values {x0, ..., xn} and
{y0, ..., yn}, respectively, their so-called Pearson correlation coefficient (or product
moment correlation coefficient) is given by the following equation:

r =
∑︁n

i=1(xi − E(x))(yi − E(y))√︂∑︁n
i=1(xi − E(x))2 ∑︁n

i=1(yi − E(y))2
(2.6)

E(x) and E(y) are the mean values of x and y. The Pearson correlation coeffi-
cient can assume values between 1 and −1. A value close to 1 indicates a strong
positive linear relation between the two considered variables. A value close to -1,
on the other hand, stands for a negative linear relationship. A value equal to 0, on
the contrary, indicates the absence of a linear relation between x and y.

2.2 Cryptography
Cryptography deals with the creation of cryptosystems, which are used to secure the
communication between two or more entities against an untrusted third party [21].
A cryptosystem can be defined by a tuple (P , C, K) with the following definitions:

• P is the plaintext space. Its elements are the messages that have to be sent
in a secure way.

• C is the ciphertext space. It contains the encrypted plaintexts.

• K is the key space. This finite set contains the keys that are used for encryp-
tion.

15

State of the art

and the three algorithms Gen, Enc and Dec [19]:

• Gen is the algorithm generating the keys k ∈ K.

• Enc is the encryption algorithm which takes as inputs a key k ∈ K and a
plaintext p ∈ P and generates the ciphertext c ∈ C.

• Dec is the decryption algorithm which takes as inputs a key k ∈ K and a
ciphertext c ∈ C and outputs the plaintext p ∈ P .

Based on the keys used during encryption and decryption, the cryptosystems can
be divided into symmetric-key or public-key cryptosystems.

As the name suggests, in symmetric-key cryptography the same key is used both
for the encryption of the plaintext and the decryption of the ciphertext and must
therefore be shared among all entities involved in the communication.
Given an encryption function Enck and a decryption function Dech with h, k ∈ K

Dech(Enck(p)) = p ∀p ∈ P and h = k (2.7)

Two different types of algorithms can be used in symmetric cryptography:

• Stream ciphers: In order to encrypt a plaintext using a stream cipher, the
former has to be xored bitwise with a stream of pseudorandom bits, called
keystream. The keystream is generated starting from a short secret seed and
has the same length as the plaintext that has to be encrypted. Given the
plaintext p as a sequence of bits p = p0p1...pn−1 and the keystream k as
k = k0k1...kn−1, then the ciphertext c = c0c1...cn−1 is defined as ci = pi ⊕ ki

for i ∈ [0, n−1] [33]. Since the same key is also used for decryption, it follows
that pi = ci ⊕ ki for i ∈ [0, n − 1].

• Block ciphers: As opposed to stream ciphers, block ciphers don’t work on
the entire plaintext at once, but rather on fixed sized parts, called blocks
(b0, ..., bn−1) [21]. For the encryption of each block r rounds are needed. In
order to have a different key for each round, a set of so-called round keys
(k0, ..., kr−1) is generated by an algorithm called key schedule, starting from
the key k. Let ri be the intermediate result of round i then:

ri =
⎧⎨⎩Enck0(b0) if i = 0

Encki(ri−1) if i ∈ [1, r − 1]
(2.8)

The result of the last round is the ciphertext c = rr−1. This steps must be
repeated for each block composing the original plaintext.

16

2.2 – Cryptography

In contrast to the previous case, in public-key cryptography different keys are
used for encryption and decryption, called public (k_pub) and private key (k_priv).
Given an encryption function Ek and a decryption function Dh with h, k ∈ K

Dech(Enck(p)) = p ∀p ∈ P and h /= k (2.9)

Public-key cryptography can be used in two modes [34]:

• If k_pub is used to encrypt the plaintext, then only the entity owning the
corresponding k_priv can decrypt the ciphertext, guaranteeing the confiden-
tiality of the message. Asymmetric cryptography being way slower than its
symmetric counterpart, is usually used in this way, to distribute a symmetric
key. Symmetric cryptography is then used for the rest of the communication.

• If k_priv is used to encrypt the plaintext, everybody can use k_pub to de-
crypt the message. When used in this way the origin of the message is guar-
anteed, since only the owner of k_priv can be the sender of the message,
ensuring its authenticity.

2.2.1 Advanced Encryption Standard
In response to the growing concerns about the security of the Data Encryption
Standard (DES), the National Institute of Standards and Technology (NIST) orga-
nized an open process lasting from 1997 to 2000, in order to find a new encryption
standard to substitute DES. A restricted version of the symmetric block cipher,
named Rijndael, submitted by the two Belgian cryptographers Joan Daemen and
Vincent Rijmen, was finally selected as Advanced Encryption Standard (AES) in
2001.

AES encrypts and decrypts input blocks of size 128 bits using keys of size 128-
bit, 192-bit or 256-bit length [17] and returns output blocks of 128 bits [13].
During its execution the cipher operates on a 128-bit long block, called state, in-
ternally organized as a 4x4 table of bytes:

S =

⎡⎢⎢⎢⎣
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

⎤⎥⎥⎥⎦ (2.10)

A byte is a vector of 8 bits: B = [b7, ..., b0], which can be interpreted as element of
the finite field F8

2 using its polynomial representation:

B(x) = b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0 =
7∑︂

i=0
bix

i (2.11)

17

State of the art

In this representation, the coefficients of the polynomial are equal to the value
of the corresponding bit. A given byte B = [0,1,1,0,0,0,1,0] is represented by the
following polynomial:

B(x) = x6 + x5 + x (2.12)

The sum of two bytes (denoted by ⊕8) consists in the sum of the single bits,
composing those bytes taking into consideration the carry over from the previ-
ous bit. Given two bytes A = [a7, ..., a0] and B = [b7, ..., b0], then the sum is
C = [c7, ..., c0] = A ⊕8 B, where ci = (ai ⊕ bi) ⊕ ri−1∀i ∈ [0,7], where ri−1 is the
carry over from the xor of the previous bits.
Whereas the multiplication in F8

2, corresponds with the multiplication of polyno-
mials modulo an irreducible polynomial of degree 8. A polynomial is irreducible if
it can be divided only by one and itself [13]. The irreducible polynomial chosen by
AES is:

m(x) = x8 + x4 + x3 + x + 1 (2.13)

The set of bytes F8
2 together with the sum operation ⊕8 and the polynomial mul-

tiplication form a field, as defined in Definition 2.1.
Before starting, the input block is copied into the state and the input key is

added. Thereafter a round function is applied to the state Nr times (see Table
2.7 for the values of Nr), with the last round function slightly differing from the
previous ones [31] [17].
In order to have a different key for each round AES includes a Key Expansion
step generating a key schedule. The key schedule consists of 4 ∗ (Nr + 1) bytes:
4 bytes for the initial AddRoundKey and other 4 bytes for the AddRoundKey of
the following Nr rounds.
The round function consists of four steps:

1. SubBytes: This step uses a table called S-Box (or substitution table) on each
byte of the state independently. The S-Box is invertible and corresponds to
applying a non linear inversion in F8

2, followed by an affine transformation
over F2 to the byte in input. Using the S-Box these steps are equivalent
to substituting a byte with the corresponding byte in the S-Box (see Table
2.8). For example the byte B = {01010011}2 = {53}16 would be substituted
with the value corresponding to the line with index ’5’ and the column with
index ’3’. The new value of B after SubBytes would be {ed}16. This step
represents the only non-linear function of the cipher [11].

2. ShiftRows: In this step every byte of each row is shifted cyclically to the
left by an offset corresponding to (l − 1) where l is the line number. Bytes
in the first row are therefore not shifted at all, bytes in the second row are
shifted by one position, in the third row they are shifted by two positions and
in the last row bytes are shifted by 3 positions to the left [2] (see Figure 2.1).

18

2.2 – Cryptography

3. MixColumns: Considering the columns of the state as polynomials over F8
2,

they are multiplied by a fixed matrix:⎡⎢⎢⎢⎣
s′

i,0
s′

i,1
s′

i,2
s′

i,3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤⎥⎥⎥⎦ ∗

⎡⎢⎢⎢⎣
si,0
si,1
si,2
si,3

⎤⎥⎥⎥⎦ (2.14)

This step is skipped in the last round, since it wouldn’t add any additional
security.

4. AddRoundKey: Using the ⊕8 operation, described above, each byte of the
state (S) is added to the corresponding byte of the round key (rk):

s′ = {(s7⊕rk7)(s6⊕rk6)(s5⊕rk5)(s4⊕rk4)(s3⊕rk3)(s2⊕rk2)(s1⊕rk1)(s0⊕rk0)}

The round keys are extracted from the key schedule, generated during the
Key Expansion.

2.2.2 Xoodyak
Another cryptosystem of relevance for this work is Xoodyak, which internally builds
upon the Xoodoo permutations.
As AES, Xoodoo applies a round function to an internal state for a total of nr

rounds. The number of rounds is a parameter of the algorithm. The chosen value
for a specific implementation can be indicated as Xoodoo[nr] [9].
The internal state consists of three horizontal planes, each of them composed of
four lanes of 32 bits. The state can therefore be represented as an array containing
three planes, each of which can be represented as a 4 × 32 matrix. Each plane is
indexed by y ∈ [0,2], where y[0] indicates the lowest plane and y[2] the highest
one. The bits inside a lane are indexed with z, whereas the lane inside a plane is
indexed by x. A column is composed by the the three bits in the same position
on the three planes, which can be identified by the tuple (x, z). Given an internal
state, the position of the lanes can be defined by the tuple (x, y), whereas a single
bit is identified by (x, y, z). Three lanes positioned on top of each other are called
sheets, and can be identified by x. The structure of the internal state can be seen
in Figure 2.2.

The round function performed by Xoodoo is divided into five steps:
• θ: An initial mixing layer is applied to the internal state. The results of this

layer can be seen in Figure 2.4.

• ρwest: A first shifting function is applied on the top two planes of the state.
The functioning of this permutation can be seen on the right side of Figure
2.5.

19

State of the art

Figure 2.1: Effect of ShiftRows on the state [11]

Key Length (Kl) Block Size (Bs) Number of Rounds (Nr)
AES-128 128 128 10
AES-192 192 128 12
AES-256 256 128 14

Table 2.7: Key-Block-Round combinations AES [13]

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 2.8: Substitution values for the byte xy in hexadecimal format

20

2.2 – Cryptography

Figure 2.2: State representation of Xoodoo [10]

• ι: In this step a round constant is added to the first plane of the state. The
round constants, which are added to the state in this step, are represented by
planes with only one non-zero lane at x = 0. Their hexadecimal values can
be seen in Table 2.9.

• χ: This step represents the only non linear step of the algorithm and can be
seen in Figure 2.3.

• ρeast: The last step of each round is another shift function, applied on the
same planes as ρwest (see left side of Figure 2.5).

Figure 2.3: χ permutation of Xoodoo [10]

When the nr rounds are finished, in many applications the internal state is con-
verted into a 348-bit array s, where every element si is obtained with the following
conversion formula:

si = z + 32(x + 4y) (2.15)

21

State of the art

Figure 2.4: θ permutation of Xoodoo [10]

Figure 2.5: ρeast (left) and ρwest (right) permutations of Xoodoo [10]

2.3 Circuits
The implementation of Boolean functions and cryptographic algorithms is per-
formed using Circuits. Circuits can be divided into two categories, depending on
their ability to maintain an internal state [26] [22]:

• Combinational: A circuit can be defined as combinational, if its output de-
pends only on the current inputs, applied to the circuit.

• Sequential: On the contrary a circuit is called sequential if its output is also
dependent on an internal state, saved during some previous iterations.

Circuits can also be further divided into cyclic and acyclic, based on the presence
or not of internal loops.

Any circuit is composed of a variable number of logic gates, implementing the
basic operations of Boolean algebra (see Figure 2.1.2). Optionally circuits may also

22

2.3 – Circuits

Round Round constant
0 0x00000058
1 0x00000038
2 0x000003C0
3 0x000000D0
4 0x00000120
5 0x00000014
6 0x00000060
7 0x0000002C
8 0x00000380
9 0x000000F0
10 0x000001A0
11 0x00000012

Table 2.9: Xoodoo round constants for nr = 12

contain registers, which are used to temporarily save an internal state. Logic gates
are interconnected amongst themselves and with registers through wires.

Circuits may or may not use a so-called clock for internal synchronization; a
clock is a square wave signal oscillating between a low and a high state, with a
clock cycle, defined as the interval between two subsequent rises of the signal (see
Figure 2.6). By default, the rising edge of the clock is used as activation signal
for registers, causing them to read the data on their input and transmitting their
internal value to the output.

A circuit, using a clock for the synchronization of its internal operations, is
trivially called synchronous circuit, as opposed to an asynchronous circuit, which
performs all operations asynchronously.

While ideally the circuit immediately changes its output once the inputs change,
in reality every component will introduce a so-called delay. These delays are due
to the non-zero propagation time of signals through the physical components (see
figure 2.7).

Figure 2.6: Clock signal with clock cycle

23

State of the art

Name Logic gate Boolean operation

and and(x, y) = x ∧ y

nand nand(x, y) = ¬and(x, y)

or or(x, y) = x ∨ y

nor nor(x, y) = ¬or(x, y)

xor xor(x, y) = x ⊕ y

xnor xnor(x, y) = ¬xnor(x, y)

Table 2.10: Logic gates and corresponding Boolean operations

Figure 2.7: Propagation delay

2.4 Side Channel Attacks

The security of cryptosystems is usually evaluated considering them as black boxes;
the adversary can access the cryptosystem only through predefined interfaces, i.e.
the inputs and outputs of the system [8]. In reality, cryptosystems have to be
implemented onto physical devices, which will leak some additional information
(leaks) about the internal computations, giving the adversary access to intermediate
values.

24

2.4 – Side Channel Attacks

Definition 2.4 (Side Channel). The measurements, giving the adversary access
to leaks, are called Side Channels.

Definition 2.5 (Side Channel Attacks (SCA)). Attacks performed, using the
information obtained through side channels are called Side Channel Attacks.

Some possible side channels are the execution time of the algorithm, the power
consumed during the execution and electromagnetic fields, produced by the device.
In this work only Power Analysis Attacks, which exploit leaks obtained from the
power consumption of the devices, are discussed (see Section 2.4.1).

Side channels attacks can be classified as follows [23]:

• Invasive/non-invasive: In order to perform an invasive SCA, the adversary
has to gain access to the physical device on which the cryptosystem is imple-
mented, and operate on it. An example could be the insertion of a probe on
a wire to see the transferred data. On the contrary, a non-invasive SCA uses
information available externally to the device, such as execution time.

• Active/passive: The objective of active SCAs is to tamper the usual functions
of the attacked device. An attacker could, for instance, try to inject errors
into the computation. On the other hand, passive attacks settle for observing
the normal execution, trying to extract useful information.

2.4.1 Power Analysis Attacks
Power Analysis Attacks (PAA) are a powerful type of side channel attacks, that can
be performed quite easily, making them particularly interesting for further research.
Each operation in a physical device consumes a certain amount of power, which, as
result, depends on that specific operation. Then, analysing the power consumption,
one can obtain details about the internal calculations of the device.

In order to perform a PAA, the attacker has to have access to the device and to
be able to control its execution [25]. In this way the attacker is able to map each
performed operation with the corresponding power consumption.

Definition 2.6 (Power traces). The collected measurements about the power con-
sumption of a device are called power traces. A power trace V ∈ RT , with T ∈ N,
contains the power consumption at each considered point in time t ∈ T .

After an initial step, where sufficient power traces are collected, various types
of power analysis attacks can be performed, differing in the method used to analyse
the obtained traces:

• Simple Power Analysis (SPA): Using SPA it is possible to recover the executed
operations and the order of execution [20]. This analysis method is typically

25

State of the art

used as initial information gathering step, before mounting a more complex
attack. In order to fully exploit the obtained traces, it is useful for the attacker
to have detailed information about the algorithm implementation, and the
architecture of the device it is implemented on.

• Differential Power Analysis (DPA): DPA uses statistical analysis, to gather
side channel information. A DPA attack on a given encryption algorithm A
is performed in several steps:

1. Given a set of n randomly generated plaintexts P = {p0, ..., pn−1}, the
algorithm A is executed n times. For each execution the power trace
Vpi

, generated by plaintext pi, is saved. The resulting ciphertext can be
saved as well, if needed.

2. For the next step the attacker has to choose a key-dependent selection
function S = (P, K ′). K ′ is a guess of the key, made by the attacker.
This function is then used to partition the power traces, obtained in the
previous step, into two subsets [25]:

S0 = {Vpi
|S(pi, K ′) = 0} (2.16)

S1 = {Vpi
|S(pi, K ′) = 1} (2.17)

3. The average for both sets is calculated as:

E(Si) = 1
|Si|

∑︂
Vpi ∈Si

Vpi
∀i ∈ Z2 (2.18)

4. The difference of the two obtained means M = E(S0) − E(S1) is com-
puted. If the used selection function divides the traces randomly in the
two sets S0 and S1, then the value of M should approach zero for an
increasing number of traces, indicating a missing correlation between the
chosen selection function and the actual calculations performed by the
observed device. Choosing a correct K ′ the selection function will be able
to predict the correct subset for each trace, with a higher probability,
resulting in a non-zero value for M [20].

• Correlation Power Analysis (CPA): CPA attacks are performed in the follow-
ing steps:

1. Starting with a set of n known data D = {d0, ..., dn}, for each data the
corresponding power trace ti is calculated. If each trace is considered as
a vector containing m different samples (ti = [ti,0, ..., ti,m−1]), we obtain

26

2.4 – Side Channel Attacks

the following matrix:

T =

⎡⎢⎢⎢⎢⎣
t0
t1
...

tn−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
t0,0 . . . t0,m−1
t1,0 . . . t1,m−1
...

tn−1,0 . . . tn−1,m−1

⎤⎥⎥⎥⎥⎦ (2.19)

2. The divide and conquer paradigm is used to guess the key, working only
on small portions, referred to as subkeys. For each known data di ∈ D
and each possible value of the subkey sj, an intermediate value f(di, sj)
of the algorithm is calculated, resulting in the following matrix:

V =

⎡⎢⎢⎢⎢⎣
f(d0, s0) . . . f(d0, sx−1)
f(d1, s0) . . . f(d1, sx−1)

...
f(dn − 1, s0) . . . f(dn−1, sx−1)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
v0,0 . . . v0,x−1
v1,0 . . . v1,x−1

...
vn−1,0 . . . vn−1,x−1

⎤⎥⎥⎥⎥⎦
(2.20)

3. After finding an adequate power model fpm(vi,j), it is applied to the in-
termediate values, returning a hypothetical power consumption for each
value, resulting in the following matrix:

P =

⎡⎢⎢⎢⎢⎣
fpm(v0,0) . . . fpm(v0,x−1)
fpm(v1,0) . . . fpm(v1,x−1)

...
fpm(vn−1,0) . . . fpm(vn−1,x−1)

⎤⎥⎥⎥⎥⎦ (2.21)

Two possible power models are wh(vi,j) or dh(di, vi,j) (see 2.1.3).
4. In order to find the subkey sj that is most likely to be correct, the

pearson’s correlation (see Section 2.1.4) between each column Ti of T
and each column Pi of P is computed. The column with the highest
correlation coefficient probably corresponds to the correct value of sj.

2.4.2 Physical Defaults
As discussed in Section 2.4, SCAs work with information, gathered by performing
measurements on the physical devices, cryptographic algorithms are computed on.
Some physical defaults of those devices may, however, even increase the amount of
information that can be gained. Physical defaults can be divided into one of these
types:

• Combinatorial recombinations (glitches): These physical defaults are caused
by the intrinsic propagation delays, present in physical circuits; indeed such

27

State of the art

delays may cause an input A of a gate to arrive before the input B of the
same gate. As a consequence of this delay, the output of the gate will change
as a reaction to input A and then again reacting to input B. This unex-
pected temporary change of the output, between the arrival of the two inputs
introduces a brief time span, during which the output may assume a wrong
value [24].
To generate a glitch, the delay input B has with respect to input A, needs to
be greater, than the rise time of the gate. In other words, the result generated
by the arrival of input A has to propagate to the output of the gate before the
arrival of input B. The first two waves of Figure 2.8 show how input A and an
input B change their value at different points in time. The third wave shows
the case, in which the raise time of the XOR gate is longer than the delay
between A and B. As can be seen from the red dotted line, the output of the
gate starts raising as soon as input A assumes a new value. However before
the output can finish changing its value the change of B occurs, pulling the
output down again. As a result no variation of the output can be observed.
The last wave shows how the output of a XOR gate with shorter raise time
assumes briefly a a wrong value.
In order to mitigate the effects of glitches, registers can be placed throughout
the circuit; given that a register releases all the outputs at the same time, the
delays of those signals are reset to zero.

• Memory recombinations (transitions): Memory recombinations mix and re-
combine the content of memory elements (i.e. registers), when invoked in two
consecutive clock cycles. This happens if an old value x is erased from the
memory element and a new value y is saved in the same cycle [14].

• Routing recombinations (couplings): Couplings may mix the data transferred
over two adjacent wires [29].

2.4.3 Countermeasures
With the improvement of Side Channel Attacks and an increase in their popular-
ity, new countermeasures have been created and old ones have been themselves
improved. The two main countermeasures covered in this work are masking and
threshold implementations.

Masking

With the introduction of a random mask, this countermeasure tries to randomize
the power consumption, making it independent from the intermediate values of the
computations. In order to do so a random value m is either added or multiplied to

28

2.4 – Side Channel Attacks

Figure 2.8: Condition for the presence of Glitches.

Figure 2.9: Possible physical defaults [14]

each intermediate value a of the circuit. The first, and more widespread scheme,
is called additive masking, where the masked value am is obtained by xoring a and
m: am = a ⊕ m. While the second one is called multiplicative masking. Here inter-
mediate value and mask are combined using a multiplication: am = a ∗ m.
To guarantee the correct functioning of both schemes, the mask has to be added
before starting any computation on the data and removed only when all compu-
tations are done. In order tho achieve the correct final result, while working with
modified data, the implementation of some operations in the algorithm have to be
changed.

29

State of the art

Threshold implementations

Instead, threshold implementations divides the variables used for computations
into n + 1 uniformly distributed variables, called shares [5]. Therefore the original
variable x ∈ Z2 is obtained by the addition in Z2 of the shares si, where i = 0, ..., n.

x =
n⨁︂

i=0
si (2.22)

The first n shares are generated randomly, while the last one is computed such
that Function 2.22 holds. Therefore the knowledge of n shares of x do not give any
information about the starting variable x.

Given a vector s = [s0, ..., sn] of shares of a variable x, then the set S(x) contains
all possible valid shares of x:

S(x) = {s|s0 ⊕ s1 ⊕ ... ⊕ sn = x} (2.23)

Whereas P (S = s|X = x) defines the probability of a certain vector of shares S
being equal to s, given that the un-shared variable X is equal to x. Given that
f(X)=Y in threshold implementations is a function from Zn

2 to Zm
2 , it has to be

implemented as a vector of functions f = [f0, ..., fm]. Every function contained in
the vector is called component function.

In order to protect against Side Channel Attacks, the implementation must
satisfy the following properties [29]:

Property 1 (Correctness). Given x = [x0, ..., xn] and y = [y0, ..., ym] then y =
f(x) is correct iff y = ∑︁

i fi(x) for each x ∈ S(x).

Property 2 (Uniformity). A masking is uniform iff for all x there exists a con-
stant p such that if x ∈ S(x)

P (X = x|X = x) = p (2.24)

Property 3 (Non-Completeness). For a masking to be non-complete every com-
ponent function fi of f has to be independent of at least one input share.

If these three properties are respected, each output share yi is independent of
each input variable, and each output variable making the implementation secure
against side channel attacks.

DOM

As first example of a masking scheme, in the following section an overview of the
Domain-Oriented masking (DOM) is given.
The basic idea behind DOM is the introduction of so-called share-domains; in

30

2.4 – Side Channel Attacks

domain-oriented masking each share of a variable is associated to a different do-
main [16]. This is also reflected by the different notation used to identify the shares.
Given for example two variables x and y, their shares will be identified as Ax, Bx

and Ay, By. Therefore the two variables can be retrieved as x = Ax + Bx and
y = Ay +By. In this notation A and B identify the two different domains. In order
to achieve a d-probing secure gadget, d + 1 shares have to be used, which imply
d + 1 different domains.
As long as the different domains can be kept separate during the computations
their independence is guaranteed. This is not possible during non linear opera-
tions, where different domains necessarily have to be combined. To prevent the
dependence of the shares even during non linear operations, DOM adds a fresh
random share and a register when domain borders are crossed. The latter prevents
generated glitches to propagate beyond this point.

Definition 2.7 (n-DOM). A DOM gadget is identified as n-DOM, if the two vari-
ables, with which the calculations have to be performed, are divided into n domains
each. In other words n-DOM is a (n − 1)-probing secure DOM gadget.

A 2-DOM multiplier gadget performs 3 steps to calculate the two shares of the
result q, where q = x ∗ y:

1. Calculation: Given the two input variables x = Ax + Bx and y = Ay + By,
this step calculates the actual multiplication x ∗ y = (Ax + Bx) ∗ (Ay + By),
calculating the product terms (AxAy), (BxBy), (AxBy) and (BxAy). Here
(AxAy) and (BxBy) are called inner-domain terms, while (AxBy) and (BxAy)
are called cross-domain terms. While inner-domain terms don’t present any
critical issues for the security, cross-domain terms require the variables x and
y to be independently shared. If the independence can not be guaranteed,
calculating (AxBx) would trivially leak information about the variable x, since
x = AxBx. On the other hand combining two shares of different variables
from different domains does not adversely affect the dth-order security of the
gadget. Circuit parts performing cross-domain operations are shown in red
in Figure 2.10.

2. Resharing: During this step the cross-domain terms need to be modified, in
order to allow their insertion in into an arbitrary domain. This is achieved by
adding a fresh random share Z0 to each of them. In order to prevent glitch
propagation to the next step a final register is inserted. The registers shown
with a dotted grey line in Figure 2.10, can be added to align inner-domain
with cross-domain terms.

3. Integration: In this concluding step cross-domain and inner-domain terms are
added resulting in Aq = (AxAy)+[(AxBy)+Z0] and Bq = (BxBy)+[(BxAy)+
Z0].

31

State of the art

The 2-DOM gadget can easily be expanded to a n-DOM gadget, considering
that for two cross-domain terms, dependent on a common share, a different fresh
random share has to be used. The same random share can for example be added
to (AxBy) and (AyBx), but not to (AxBy) and (AxCy), since both terms depend
from Ax. (n − 1)n/2 fresh random shares are needed for a n-DOM gadget, as can
be seen in Figure 2.11.

Figure 2.10: Structure of a 2-DOM [16]

Figure 2.11: Structure of a 3-DOM [16]

32

2.4 – Side Channel Attacks

CMS

A second example of masking scheme is given by the Consolidating Masking Scheme
(CMS) proposed in [32]. A multiplication gadget constructed with the CMS struc-
ture can be divided into several layers:

• Non-linear layer N : This layer performs the main computation, calculating
all the products of the two variables, that need to be multiplied. Given for
example two input variables, each divided into three shares, a = a1 + a2 + a3
and b = b1 + b2 + a3, N produces all product terms aibj, generating 9 terms
(a1b1, a1b2, ..., a3b3).

• Linear layer L: Working with the amount of shares generated in the previous
layer would become unpractical in higher order gadgets. For this reason this
layer is introduced, which reduces the number of shares for the following
steps, preserving the non-completeness property [12]. In a gadget working
with three shares per variable the number of intermediate terms is reduced
from 9 to 3.

• Refreshing layer R: In order to remove dependencies between the results,
generated in the previous layer, fresh random shares are added in R.

• Synchronization layer S: As for DOM a final layer of registers is inserted in
this layer, in order to prevent glitch propagation to the next layer and output.

• Compression layer C: To further reduce the number of output shares produced
by the gadget, the final compression layer can be used. This layer is useful for
the generation of multiplication gadgets with the desired number of output
shares.

In Figure 2.12 two sample CMS gadgets can be seen, using 5 shares in the left
example and 3 shares on the right.

2.4.4 Probing security
After having discussed Power Analysis Attacks in Section 2.4.1, in this section
Probing Attacks are introduced.
In order to analyze the security of masked algorithm implementations the d-probing
model was introduced by [18]. In this model an attacker has the capability of
placing t probes on the wires of the attacked circuit. Through these probes different
measurements can be performed, revealing for example the value carried on the
wire. The number of probes, the attacker is able to place on the circuit, specifies
the order t of the attack. In order to protect a circuit from a t-order Probing Attack
every sensitive value x must be divided into t + 1 shares.

33

State of the art

Figure 2.12: Structure of a multiplication CMS gadget [12]

In the following section some definitions, used to qualify the security of a circuit,
will be given.
Definition 2.8 (d-Probing Security). A circuit C is d-Probing Secure iff every
combination of q shares is independent of the corresponding sensitive variable.

An additional level of security is given by the d-Non Interference:
Definition 2.9 (d-Non Interference (d-NI)). A circuit C is d-Non Interfering
iff, given i probes on internal wires and o probes on the outputs of C, an attacker
can’t obtain information on more than i + o shares of any sensitive variable, where
i + o ≤ d.

Verifying the security of an entire circuit is often very time consuming and com-
plicated. Therefore smaller portions of the analyzed circuit are usually considered
and combined later on. These subsections of circuits are going to be referred to as
gadgets. When combining two t-NI secure gadgets, the outputs of the first become
inputs for the second one, as can be seen in Figure 2.13. In this example an attacker
might be able to bypass the protection of the two 2-NI secure gadgets, by placing
only three probes (in positions a, b and c) instead of four. This is due to the fact,
that the probe in position b can be used as output probe for gadget A, as well as
input probe for gadget B. Therefore an even stronger security definition is needed
in order to overcome this problem.
Definition 2.10 (d-Strong Non Interference). A circuit C is d-Strong Non In-
terfering iff, given i probes on internal wires and o probes on the outputs of C, an
attacker can’t obtain information on more than i shares of any sensitive variable,
where i ≤ d.

34

2.4 – Side Channel Attacks

Figure 2.13: Combination of two NI gadgets

Robust probing security

All the definitions given in the previous Section consider ideal circuits in which no
physical defaults are present. In order to model glitches, transitions and couplings
(see Section 2.4.2) the following models for extended probes are introduced:

Definition 2.11 (Extended probes for combinatorial recombinations). Given a n-
input circuit C, combinatorial recombinations (or glitches) can be modelled with
n-extended probes, so that probing an output of C allows an attacker to also obtain
the values of all its n inputs.

Definition 2.12 (Extended probes for memory recombinations). Given a memory
cell m, memory recombinations (or transitions) can be modelled with 2-extended
probes, so that probing m allows an attacker to also obtain the value contained in
m in the previous invocation.

Definition 2.13 (Extended probes for routing recombinations). Given a set of n
adjacent wires W = {w0, ..., wn−1}, routing recombinations (or couplings), can be
modelled with d-extended probes, so that probing on one wire wi allows an attacker
to obtain the values on d adjacent wires.

Considering the just defined extended probes, two stronger security definitions
are given:

Definition 2.14 (d-robust Non Interference (d-robust NI)). A circuit C is d-
robust Non Interfering iff, given i extended probes on internal wires and o

35

State of the art

extended probes on the outputs of C, an attacker can’t obtain information on more
than i + o shares of any sensitive variable, where i + o ≤ d.

Definition 2.15 (d-robust Strong Non Interference (d-robust SNI)). A circuit C is
d-robust Strong Non Interfering iff, given i extended probes on internal wires
and o extended probes on the outputs of C, an attacker can’t obtain information on
more than i shares of any sensitive variable, where i ≤ d.

Figure 2.14: CMS-like 3-SNI but not robust 3-SNI gadget [28]

Figure 2.14 shows a 3-SNI CMS implementation with 4 shares.
Positioning three standard probes in the positions marked in green by P1, P2 and
P3 the information that can be obtained are ([a1b2 + r0 + r1] + [a1b0 + r1 + r2 + q0] +
[a3b0 + r2 + r3 + q1]+ [a3b2 + r3 + r4]) from probe P1, (a2b3 + r0 + r15) from probe P2
and (a1b0 + r1 + r2 + q0) from probe P3. In this case all shares of the two sensitive
variables a and b are protected by at least two random bits, and an attacker can’t
obtain information on more than 2 shares of any sensitive variable. This gadget is
therefore 3-SNI.
On the other hand positioning three extended probes P1, P2 and P3 in the same

36

2.5 – Verilog

positions, an attacker can get (a1b2 + r0 + r1, a1b0 + r1 + r2 + q0, a3b0 + r2 + r3 +
q1, a3b2 + r3 + r4) from the external probe P1, (a2b3, r0, r15) from internal probe
P2 and (a1b0, r1, r2, q0) from the internal probe P3. By adding r0, obtained from
P2, and r1, obtained from P3, to the information obtained from P1, the attacker
has access to three shares of b, using only 2 internal probes. Share b2 is exposed
by probe P1, share b3 by probe P2 and b1 is exposed by probe P3. Therefore this
gadget is not robust 3-SNI.

2.5 Verilog
In order to analyse physical implementations of algorithms a description of the re-
sulting circuit is needed. For this purpose, in this thesis the hardware description
language Verilog is used.
Verilog, released in 2015, is mainly used for the design and validation of digital
circuits at a register-transfer level (RTL) of abstraction. At this level of abstrac-
tion, synchronized circuits are represented as signal flows between registers and the
logical operations performed on those signals.

37

38

Chapter 3

Tools

3.1 Exploited tools
Several tools have been used for the different stages of the simulations made during
this work. In the following chapter a brief introduction for every one of those tools
is given.

3.1.1 OpenLane
OpenLane is a tool, which, given a description in Verilog of a circuit, returns the
GDS2 (or GDSII) file of that circuit [1]. A GDS2 file is a binary description of
the layers of a circuit, which are used by the foundry for the production. This
process is usually used to obtain the GDS2 description of macros, and is therefore
called macro hardening. Macros are smaller portions of circuits, performing specific
functionalities, which can be combined to produce the desired chip.

In order to generate this files, OpenLane performs six steps:

• Synthesis: During this step, OpenLane generates the netlist of the circuit,
passed as input. The netlist of a given circuit contains a list of all its com-
ponents and a description of how these components are interconnected. The
components are taken from a library of standard cells contained in OpenLane.
Synthesis starts from a logical description of the operations a circuit has to
perform and returns the physical structure the circuit has to have, in order
to perform them.
The synthesis step is performed by an external tool called yosys. After the
netlist has been generated, a tool called OpenSTA performs a static timing
analysis on the obtained netlist.

• Floorplanning: This step is necessary to calculate the space needed to fit all
components, found in the previous step, onto the chip.

39

Tools

• Placement: After having calculated the surface of the chip, the different com-
ponents have to be placed in the right position. This is done during the
placement stage, by performing first a coarse placement, and then a fine
placement step. In the first step all components are placed roughly in the
correct place. Only in the fine placement the final position is found. During
this step OpenLane will also make sure that there is no overlapping between
any two components.

• Clock Tree Synthesis (CTS): The clock is one of the most important signals
in the circuit, since it is used by a large number of gates. During this step,
OpenLane ensures that this signal arrives, with the needed strength, to each
one of those gates.

• Routing: After the clock signal has been connected in a correct way, OpenLane
continues by connecting the power supply and the ground to the correspond-
ing pins of the components.

• Signoff: In this step, some final checks on the obtained results are performed,
before sending out the obtained GDS2 file.

During the CTS and Routing step OpenLane modifies the initially generated
netlist, according to the newly arisen needs. Therefore a Logic Equivalence Check
(LEC) is performed after both steps, using yosys [15]. As the name suggests, the
objective of this step is to check whether the new netlist is functionally equivalent
to the originally synthesized netlist.
In order to generate the GDS2 file, OpenLane makes also use of a Process Design Kit
(PDK). A PDK is a foundry specific set of files, which are used during the design of
the circuit, containing for example the checks, performed during the signoff stage,
or the cell library used by yosys during the synthesis step.

OpenLane for VoLPE

In order to use OpenLane for our tool, the following steps have to be executed (see
Listing 3.1 for the commands that have to be executed for each step).

1. A folder, which is going to contain the source Verilog files of the circuits, that
need to be synthesized, has to be created in the main folder of OpenLane.
This is a optional step, which simplifies finding the needed files in later steps.

2. In the designs folder of OpenLane, a new folder for the current design has to
be created. In order for OpenLane to find this folder, the source code and the
main module of the design, they have to have same name. Given for example
a source code file called aes_sbox.v, then the main module inside that code,
as well as the design folder, have to be called aes_sbox.

40

3.1 – Exploited tools

3. Back in the OpenLane root folder the docker container has to be started.

4. The flow.tcl script, contained in the docker has to be executed, which inserts
the design source code in the previously created design folder.

5. In addition to inserting the source code in the corresponding folder, the
flow.tcl also creates a configuration file for the design. This file has to be
modified, making sure that the clock name specified in the configuration file
corresponds to the name, given to the clock in the main module of the design.

6. Using the same flow.tcl the circuit can be synthesized. A specific tag can be
given to each synthesis run.

7. The result can be found in the

/OpenLane/designs/design/runs/tag/results/final/verilog/gl/ (3.1)

folder, and need to be copied into the scr folder of the VoLPE project.

Listing 3.1: Commands necessary for the usage of OpenLane

1 // Step 1
2 cd OpenLane
3 mkdir my_designs
4 cd my_designs
5 cp path/to/<design>.v
6

7 // Step 2
8 cd OpenLane/designs
9 mkdir design

10

11 // Step 3
12 make mount
13

14 // Step 4
15 flow.tcl -design <design> -src my_designs/<design>.v -

init_design_config -add_to_designs
16

17 // Step 6
18 flow.tcl -design <design> -tag <tag>

3.1.2 Icarus Verilog
To analyse the behaviour of a circuit, given specific inputs, the circuit can be
simulated. For this purpose, the Icarus Verilog tool can be used. Icarus compiles
the Verilog source code, generating a .vvp file, which can then be executed to start

41

Tools

the simulation. In addition to the circuit that needs to be simulated, Icarus also
needs a testbench, which is a file that has to be generated by the user. With this
file the user enters the sequence of input values that Icarus has to simulate.
During the simulation a .vcd file is generated, which can then be used by a wave
viewer, such as GTKWave, to display the value each wire of the circuit assumes
during the simulation.

3.2 Tools for probing security analysis

3.2.1 IronMask
The manual verification of security properties has been shown to be very error-
prone already on small gadgets. Automatic tools have therefore been introduced,
to apply formal verification methods on these gadgets and to qualify their security.
IronMask is an automatic verification tool, which can check a circuit for all probing
security properties discussed in Section 2.4.4 [3]. These checks are performed using
an internal functions called sets of input shares (SIS) function. This function takes
as inputs a high level description of the gadget and a set of probes placed on that
gadget. Performing a number of operations on the probes, it is able to determine
the input shares that are leaked.
Several optimizations are included in the tool, in order to make the verification
faster.
As other currently available automatic verification tools, IronMask performs its
computations on a high level description of the gadget. This high level description
does not take the physical implementation of that gadget into consideration. The
presence of glitches and other physical defaults in the gadget can therefore only
be assumed. It is up to the user of the tool to decide, during the verification, if
the placed probes should be considered extended or not (see Section 2.4.4 for the
definition of extended probes).

42

Chapter 4

Analysis of circuit security

Once a secure cryptographic algorithms has been developed, it is implemented into
a physical circuit, in order to carry out its specific tasks. As discussed in Section
2.4, this opens up the possibility for attackers, to exploit Side Channel Attacks, to
break that algorithm and find the secret key handled by it. It is in the best interest
of who produces such circuits to know if their product is secure, before sending it
into production.
For this reason, the probing models discussed in Section 2.4.4 where introduced.
However these models don’t take the actual structure of the circuit into considera-
tion.

The goal of this work, is to generate a tool, which can analyse the weakness of a
circuit towards SCA, as realistically as possible. The developed tool, called VoLPE
(Verification of Leakages Propagation Escalation), does that, by simulating a syn-
thesized circuit, obtained from OpenLane, and returning the existing correlation
value, between the inputs and a model, describing the power consumption of the
circuit.
The code for VoLPE can be found at the following link:
https://github.com/LorenzoGiacobbe/CodiceTesiMagistrale.

4.1 Structure of the developed tool
A general structure of the tool can be observed in Figure 4.1. After having gen-
erated a high level description of the tool with Verilog, the user has to obtain the
synthesized version of the gadget using OpenLane. The Verilog file containing the
synthesized description of the gadget is then passed as input to VoLPE, together
with a configuration file, also created by the user. The sim.sh script inside VoLPE
performs the simulations of the gadget, returning the generated simulation logs to
the main module. Using these logs VoLPE calculates the required results, which
are then saved in an Excel file.

43

https://github.com/LorenzoGiacobbe/CodiceTesiMagistrale

Analysis of circuit security

In the following Section the main components of the tool are analysed and described
more in detail. We first start by describing the meaning of the mandatory fields
contained in the configuration file. Proceeding then with an explanation of how
the gadgets are simulated and which intermediate results are generated. Finishing
this section with a description of the models used for the calculation of the final
results.

From now on, with the term circuit, the synthesised version obtained after the
execution of OpenLane is intended.

Figure 4.1: Structure of the developed tool.

4.1.1 Configuration files
Before starting the tool, some basic information about the circuit that has to be
simulated have to be specified. This is done through a configuration file, where the
following fields have to be filled:

44

4.1 – Structure of the developed tool

• full: As will be explained with more detail in the next Section, it is possible
to simulate the analyzed circuit exhaustively or only partially. By initializing
this field with the value y, the exhaustive simulation is executed. For a partial
simulation, the value n has to be given to this field.

• sim: With this field the user can specify how many simulations the tool will
perform. This number can be calculated as follows: sim = 22∗x, where x
has to be equal to in_size (see below for a description of this value), if the
previous field was set to y. Whereas, if full was set to n, then x can be any
whole number between 0 and in_size. The number of simulations that have
to be performed needs to be specified even when full is set to y.

• clk: With this field the presence or absence of a clock in the simulated circuit
can be indicated. The value y has to be assigned if a clock is needed, and the
value n otherwise.

• period: Through this field the user can set the period of the clock that will be
used during the simulations. In our tool the clock period defines also, after
how much time the inputs are changed during the simulation. This value must
be large enough, for the circuit to finish the calculations with the previous
input, before starting with the new input of the following cycle, to prevent
undefined behaviour. If for example the circuit needs 5ns to propagate the
input signal, then the value of clk should be strictly greater than that value,
in order to allow the new state to settle, before the next input is entered.
In order to calculate maximal propagation time, the slowest path inside the
circuit, has to be considered. To define the slowest path, for every possible
path the input can cross in the circuit, the delays of all gates, on that path,
have to be summed. The path with the greatest total delay, is the slowest
one.
Even if the analysed circuit has no clock, this field needs to be defined, and
will represents the time the tool waits to change the inputs of the circuit.

• cycles: The cycles field indicates, how many clock cycles the circuit needs, to
perform its calculations. This value has to be equal to the number of register
levels in the circuit, plus one.

• in_size/out_size/rand_size: These fields indicate the number of input, out-
put and random bits of the circuit.

• in_name/out_name: Here the name of the variables indicating the input and
output bits of the circuit are specified.

• input delayed_input_name: With these fields, it is possible to indicate an
arrival delay for each input. An absent delay has to be indicated with the
value 0.

45

Analysis of circuit security

• gate delayed_gate_name: As for the previous field, this one has to be used
to define the delays, introduced by each kind of gate in the circuit.

In Listing 4.1 a sample configuration file can be seen.

Listing 4.1: Sample configuration file

1 sim: 576
2 full: n
3 clk: y
4 period: 5
5 cycles: 2
6 in_size: 6
7 in_name: in
8 rand_size: 2
9 out_size: 4

10 out_name: out
11

12 input a0 0.02
13 ...
14

15 gate XNOR_DELAY 0.10
16 gate NAND_DELAY 0.20
17 gate XOR_DELAY 0.50
18 gate AND_DELAY 0.30
19 gate OR_DELAY 0.40

4.1.2 Simulation
After having discussed the steps that need to be performed before starting the tool,
the actual simulation of the circuit can be analyzed.

Definition 4.1 (State). Given a circuit C, its state is given by the values assumed
by its output bits.

Definition 4.2 (Simulation). Let C be a circuit with an initial state Si. During a
simulation, a new input i is entered and a change in the value of the output can be
detected. The simulation ends when the new state reaches a stable final value Sf .

The first step performed by the tool is the generation of the inputs and initial
states for each simulation, which are then saved on a dedicated file.
As mentioned earlier, the circuit can either be simulated exhaustively or partially.

Exhaustive simulation

The first aim is to simulate the circuit with all the possible input combinations.

46

4.1 – Structure of the developed tool

Example 4.1. Given a circuit, performing the AND operation of two inputs, the
four possible initial states are:

S = {(0,0), (0,1), (1,0), (1,1)} (4.1)

All the possible two bit combinations of its inputs are:

I = {(0,0), (0,1), (1,0), (1,1)} (4.2)

In order to perform an exhaustive simulation, starting from each initial state of S,
every input from I has to be entered (see Table 4.1).

Statei Inputi

(0,0) (0,0)
(0,0) (0,1)
(0,0) (1,0)
(0,0) (1,1)
(0,1) (0,0)
(0,1) (0,1)
(0,1) (1,0)
(0,1) (1,1)

... ...
(1,1) (0,0)
(1,1) (0,1)
(1,1) (1,0)
(1,1) (1,1)

Table 4.1: All possible simulations for Example 4.1

Partial simulation

The number of simulations, however, grows exponentially with each additional in-
put bit added to the circuit. This leads to a considerable increment in computation
time for the tool. In order to allow faster executions, the possibility to perform
only a subset of all possible simulations has been implemented. In this mode, the
initial states and the inputs that are going to be simulated are generated randomly.
Python’s os.urandom function is used for the random number generation, which
is suitable for cryptographic applications. Since not all possible initial states and
inputs are tested, the results here obtained are less realistic.

47

Analysis of circuit security

Runs of simulation

Once the initial states and inputs have been generated, the actual simulation of the
circuit, is performed. For every circuit it is possible to perform three different runs
of simulations:

• Circuit with no delays: During this run, the circuit is considered to be "ideal",
and therefore all delays are considered to be zero. Since no delays are present
in this circuit, no glitches can occur during these simulations. Therefore, all
found correlations are caused by the algorithm itself and not by the structure
of the circuit.

• Circuit with gate delays: During this run, the simulation takes gate delays
into consideration. With the addition of delays some glitches might appear.
These runs simulate a circuit which receives synchronized inputs, which arrive
with no delays.

• Circuit with gate and input delays: During this run, some delays to the inputs
are added. These runs simulate the case, in which the inputs to the circuit are
not generated synchronously and can therefore arrive with non-zero delays.

All the steps discussed in the next sections are executed in the same way for all
three runs.

Accepted Circuits

In order to perform the simulations, Icarus executes a testbench file. The testbench
internally creates an instance of the circuit, it has to simulate, retrieves the initial
states and inputs and starts the simulations of the instantiated circuit. In the
current version of the tool the testbench accepts only circuits, which have the
following ports:

• Input array of arbitrary length

• Output array of arbitrary length

• Clock (optional)
The structure of a circuit that can be simulated can be seen in Listing 4.2.

Listing 4.2: Accepted circuit structure

1 module circuit(in, out, clk);
2 input [in_size:0] in;
3 input clk; //optional
4 output [out_size:0] out;
5 ...
6 endmodule

48

4.1 – Structure of the developed tool

Testbench

The testbench performs the following steps:
1. Before starting each simulation, the testbench reads the inputs needed to

set the circuit into the correct initial state. These inputs are read from the
previously generated input file.

2. It then passes the read inputs, to the circuit (see line 4 in Listing 4.3) and waits
for the state to settle. The waited time is given by the clock period, multiplied
by the number of cycles that the circuit needs, to finish its calculations.

3. When the initial state is set, it starts the simulation. It does so by reading
the new input value from the input file and passing it to the circuit (see Line
6 in Listing 4.3).

4. At this point the state is monitored and each of its changes, is saved in a
specific log.

5. The state’s changes saved in this log will later be used to generate a power
consumption model for this simulation.

Listing 4.3: Testbench

1 inputs = get_inputs("inputs.dat")
2 states = get_states("inputs.dat")
3 for i range(number_of_simulations):
4 in = state[i]
5 wait(clk_period * cycles)
6 in = input[i]
7 monitor(out, log)

4.1.3 Power consumption model
Once all simulations have been run, the actual power consumption has to be ex-
tracted from the previously generated logs. For each simulation, the power con-
sumption is modelled through the number of toggles performed by the output,
before settling to the new state. This step generates a list (tl), containing the
number of toggles the state performs during each simulation.
Definition 4.3 (Toggle). A toggle identifies the change of a bit, from the value
0 to the value 1 or vice-versa.

Example 4.2. A change of an array of bits S = {b0, b1, b2, b3} from the values
S = {0,1,1,1} to the values S = {1,1,0,1}, implies that two toggles have occurred.
The first being b0 switching from 0 to 1 and the second one being b2 switching from
1 to 0.

49

Analysis of circuit security

This model was deemed appropriate, for this work, since the toggles of the state
bits represent a power consumption model close to reality.

4.1.4 Consume model
After having generated a power consumption model for each simulation, a model
describing the operation, which caused that power consumption has to be found.
We decided to generate two different values using two different functions:

1. Input consume model (I-CS): This model is used to find the correlation be-
tween the power consumption and the inputs that generated it.

2. Input-state consume model(IS-CS): This model is used to find the correlation
between the power consumption and the combination of initial state and input
that generated it.

Since the user may consider only a part or a certain combination of the input
and initial state bits to be of interest for the models, we implemented a selection
function for each of the two models. This function allows the user to select the
relevant bits for the creation of each consume model. Once the relevant bits have
been chosen, a second function creates the corresponding models.

Although these functions can be redefined by the user, in the following sections
the implementations proposed by us are discussed with more detail.

Selection function

For both consume models we implemented a selection function, which groups the
input and initial state bits, into groups of n adjacent bits:

• Input selection function: This function, whose pseudocode is shown in List-
ing 4.4, accepts two arguments: a list il, containing the input bits ix =
{i0, ..., im−1} of each simulation, and an integer n, which represents the di-
mension of the desired groups.
The input selection function returns m/n lists. For every element ix of il, the
corresponding element iy,x of each newly created list ily consists of the y-th
group of n bits of ix: iy,x = {i(y−1)∗n, ..., i(y∗n)−1}.
Considering for example a circuit with m = 4 inputs and a desired size for
the groups n = 2, the selection function creates 4/2 = 2 lists, il1 and il2. For
every element ix = {i0, ..., i3} of il, the corresponding values of il1 and il2 are
i1,x = {i0, i1} and i2,x = {i2, i3}, respectively.

• Input-state selection function: This function, whose pseudocode is shown
in Listing 4.5 accepts, in addition to the arguments of the input selection
function, a third argument: a list sl, containing the initial state bits sx =

50

4.1 – Structure of the developed tool

{s0, ..., sm−1} of each simulation. The input-state selection function performs
the same steps as the previous selection function, not only on il but also on
sl, and returns 2 ∗ (m/n) lists.

To guarantee the correct functioning of the selection functions m must be a
divisor of n.

Listing 4.4: Input selection function

1 input_selection_function(il, n):
2 size = m / n
3

4 for i in range(len(il)):
5 for input in range(size):
6 for c in range(n):
7 r += il[i][input*n+c]
8 result_il[input].append(r)
9

10 return result_il

Listing 4.5: Input and state selection function

1 input_state_selection_function(il, sl, n):
2 size = int(m / n)
3

4 for i in range(len(il and sl)):
5 for input in range(size):
6 for c in range(n):
7 r_il += il[i][input*n+c]
8 r_sl += sl[i][input*n+c]
9 result_il[input].append(il)

10 result_sl[input].append(sl)
11

12 return result_il, result_sl

Consume model

After having selected the desired bits with the selection functions the two consume
models are generated:

• Input consume model: This function calculates the hamming weight for each
element of the lists returned by the input selection function.
For example, given a circuit with 4 inputs and n = 2, the input consume
model receives two lists from the input selection function, whose i-th elements
contain {ii,0, ii,1} and {ii,2, ii,3} respectively. For each one of those lists a
new list is created by the input consume model, whose i-th elements are
m_hw1,i = hw({ii,0, ii,1}) and m_hw2,i = hw({ii,2, ii,3}) respectively.

51

Analysis of circuit security

• Input-state consume model: This function calculates, for each pair of slx and
ilx, the hamming distance between each of their corresponding elements.
For example, given a circuit with 4 inputs and n = 2, the input-state con-
sume model receives four lists from the input-state selection function, whose
i-th elements contain il1 = {ii,0, ii,1}, il2 = {ii,2, ii,3}, sl1 = {si,0, si,1} and
sl2{si,2, si,3}. The two lists created by the input-state consume model are
m_hd1 and m_hd2, whose i-th elements are m_hd1,i = hd({ii,0, ii,1}, {si,0, si,1})
and m_hd2,i = hd({ii,2, ii,3}, {si,2, si,3}).

4.1.5 Correlation matrix
During this last step the Pearson’s correlation is calculated, between the power
consumption model (tl) and each consume model (m_hwi) and (m_hdi):

• pearsonCorrelation(tl, m_hwi), ∀i ∈ [0, m/n]

• pearsonCorrelation(tl, m_hdi), ∀i ∈ [0, m/n]

An example correlation matrix can be seen in Table 4.2.

m_hw1 m_hd2 m_hd1 m_hd2

no delays 0 0 0.1252 0.1252
gate delays 0,0008 0,0796 0,0195 0,1263

input and gate delays 0,0004 0,0456 0,5853 0,6611

Table 4.2: Sample correlation matrix for a circuit with 8 inputs and n = 4

52

Chapter 5

Testing and results

After having given a description of the developed tool in Section 4.1, in this Section
we summarize the results obtained using the tool.
We decided to start by testing our tool on some unprotected implementations of the
cryptographic algorithms AES and Xoodoo, in order to verify the intrinsic security
of these algorithms against SCAs. We focused in particular on the non-linear parts
of both algorithms, namely the SubBytes function of AES and the χ function of
Xoodoo.
Finally we tested the vulnerability of the two masking schemes CMS and DOM,
described in Section 2.4.3 and Section 2.4.3, against SCAs.
Several implementations have been tested for each gadget, which are described more
in detail in the following sections.

5.1 Delay selection
For all gadgets the first step was to find the worst possible combination of delays,
which is the combination that maximizes the number of glitches. To do this we
analyzed the synthesized circuits and fixed the delays based on their structure.
We did this by choosing the delays in such a way, that as many sequences of
gates as possible could generate glitches. Given for example a circuit section as
in Figure 5.1, by choosing the delays in such a way that delay A > delay C and
|delay B −delay C| > delay D, both gates C and D will generate glitches. Whereas
choosing a combination of delays such that delay A < delay C and |delay B −
delay C| > delay D, only gate D will generate glitches.

While this approach allowed to find significant delay values for CMS and DOM,
it didn’t turn out to be reliable for the more complex gadgets. Given the size of the
code it was unfeasible to reconstruct in a correct way the structure of the gadget.
We therefore performed the following steps in order to obtain the desired delays:

1. We executed 50 simulations for every gadget, using different input groups and

53

Testing and results

Figure 5.1: Sample circuit section.

random delay values.

2. With the data from the obtained correlation matrices we generated two sum-
marizing matrices:

• A matrix containing the maximal correlation value for all the simula-
tions.

• A matrix containing the average of the correlation values for all the
simulations.

3. Once we found the simulation run with the highest correlation, we extracted
the used delays.

5.2 AES S-Box
For the S-Box of AES we decided to perform our tests on two different implemen-
tations. The first implementation uses a lookup table to do the byte substitution,
following the process described in Section 2.2.1. The second implementation uses a
sequence of MUX gates, to perform the same operation. The second implementa-
tion is able to perform not only the encryption but also the decryption operation.
The operation it performs is decided by setting a configuration bit to 0 for encryp-
tion or 1 for decryption. By passing it to OpenLane once with this bit set internally
to 0 and once without setting it, we obtained two different synthesized circuits. By
fixing the value of that bit to 0, OpenLane understands that the decryption part is
never accessed and removes it from the synthesized circuit. We therefore decided
to test our tool on both versions of this implementation, resulting in three different
simulated circuits. For every circuit we calculated the correlation first for every
input bit taken singularly and then for all input bits grouped together (see Section
4.1.4).

54

5.2 – AES S-Box

5.2.1 AES S-Box lookup table

AES-Sbox Version 1 Max. correlation values
1 bit
I-CS

8 bit
I-CS

1 bit
IS-CS

8 bit
IS-CS

no delays 0,0000 0,0000 0,0211 0,0345
gate delays 0,0811 0,0974 0,1334 0,1692

gate+inputs delay 0,1128 0,0485 0,3836 0,8504
(a) Maximal correlation values for the AES S-Box lookup table implementation

AES-Sbox Version 1 Avg. correlation values
1 bit
I-CS

8 bit
I-CS

1 bit
IS-CS

8 bit
IS-CS

no delays 0,0000 0,0000 0,0211 0,0345
gate delays 0,0685 0,0722 0,1257 0,1614

gate+inputs delay 0,0470 0,0189 0,3236 0,7792
(b) Average correlation values for the AES S-Box lookup table implementation

Table 5.1: Average and maximal correlation values for the AES S-Box lookup table
implementation

The first thing that can be noticed from Figure 5.1a is that the correlation of
this circuit, when the input consume model is used and no delays are introduced,
is zero. Showing how no additional information are leaked by this circuit, when
considered "ideal" and when this consume model is used. A circuit is considered
ideal when no delays are introduced during its simulation.

Comparing Table 5.2a, which shows the correlation for the various input groups,
when using the input consume model, and Table 5.2b, which shows the same data
for the input-state consume model, one can easily notice how the latter generates
significantly higher correlation values, than the first one. While the highest correla-
tion for the input consume model is 0.09, the correlation values for the input-state
consume model reach up to 0.85.

The correlation values of the input-state consume model have a more than
linear increase, when gate delays are introduced in the circuit. These values rise
from 0.02 to 0.13, for a group of 1 bit, and from 0.03 to 0.17, when all bits are
grouped together. The same is true when also input delays are added, making the
correlation values rise from 0.13 to 0.38 and from 0.17 to 0.85, respectively for the
two group sizes. These values also show how the correlation values visibly increase,
when more bits are grouped together. When the 8 input bits are grouped together
the correlation reaches a value, that is more than double the correlation reached
when the input bits are considered singularly.

55

Testing and results

(a) Input consume model chart for the AES S-Box lookup table implementation

(b) Input-state consume model chart for the AES S-Box lookup table implementation

Figure 5.2: Input and input-state consume model chart for the AES S-Box lookup
table implementation

56

5.2 – AES S-Box

When looking at the results of the input consume model, a less steep increase
in correlation values can be noticed, when gate and input delays are added. By
grouping all the input bits together the correlation value even decreases from 0.09
to 0.05, when input delays are added.

As can be seen from Table 5.1b the average correlation values are only slightly
lower than the maximal correlation values, indicating how the used delays have a
slim effect on the correlation.

The simulation run with the highest correlation values used the delays that can
be seen in Tables A.3a and A.3b.

5.2.2 AES S-Box MUX only encryption

AES-Sbox Version 2 Max. correlation values
1 bit
I-CS

8 bit
I-CS

1 bit
IS-CS

8 bit
IS-CS

no delays 0,0000 0,0000 0,0211 0,0345
gate delays 0,1427 0,0512 0,2711 0,1266

gate+inputs delay 0,1170 0,0398 0,2977 0,3181
(a) Maximal correlation values for the AES S-Box MUX implementation performing only
encryption

AES-Sbox Version 2 Avg. correlation values
1 bit
I-CS

8 bit
I-CS

1 bit
IS-CS

8 bit
IS-CS

no delays 0,0000 0,0000 0,0211 0,0345
gate delays 0,0370 0,0210 0,1262 0,0867

gate+inputs delay 0,0356 0,0197 0,1555 0,1645
(b) Average correlation values for the AES S-Box MUX implementation performing only
encryption

Table 5.2: Average and maximal correlation values for the AES S-Box MUX im-
plementation performing only encryption

As for the previous implementation of the AES-Sbox the correlation values for
the circuit without delays, when using the input consume model are zero. As for
the previous gadget no additional information are leaked with this configuration.

Also for this implementation the use of the input-state consume model results
in higher correlations, with respect to the input consume model.

In this implementation of the AES-Sbox the correlation values, when all the
input bits are considered separately, show a big increase when gate delays are
added, raising from 0.02 to 0.27. The introduction of input delays increases this

57

Testing and results

(a) Input consume model chart for the AES S-Box MUX implementation performing only
encryption

(b) Input-state consume model chart for the AES S-Box MUX implementation performing
only encryption

Figure 5.3: Input and input-state consume model chart for the AES S-Box MUX
implementation performing only encryption

58

5.2 – AES S-Box

value only slightly from 0.27 to 0.30. On the other hand, when all input bits are
grouped together the correlation values assume a similar trend to the previous case,
starting at 0.03, raising to 0.13, when gate delays are introduced, and reaching their
maximal value of 0.32, when also input delays are considered. While the correlation
values show a similar trend as the implementation discussed in Section 5.2.1, the
maximal correlation values are significantly lower. While the highest correlation
for the first implementation was 0.85, this implementation only reaches a maximal
correlation value of 0.32.

Differently from the first implementation, the average correlation values are only
half of the maximal values, as can be seen from Table 5.2b. This indicates that
the correlation values of this gadget can vary significantly depending on the chosen
delay.

The delays resulting in the highest correlation can be seen in Tables A.5a and
A.5b.

5.2.3 AES S-Box MUX encryption and decryption

AES-Sbox Version 3 Max. correlation values
1 bit
I-CS

8 bit
I-CS

1 bit
IS-CS

8 bit
IS-CS

no delays 0,0000 0,0000 0,0361 0,0470
gate delays 0,1221 0,1162 0,1532 0,1521

gate+inputs delay 0,1536 0,0511 0,3298 0,4529
(a) Maximal correlation values for the AES S-Box MUX implementation performing
encryption and decryption

AES-Sbox Version 3 Avg. correlation values
1 bit
I-CS

8 bit
I-CS

1 bit
IS-CS

8 bit
IS-CS

no delays 0,0000 0,0000 0,0228 0,0349
gate delays 0,0377 0,0187 0,0853 0,0950

gate+inputs delay 0,0339 0,0148 0,1931 0,1993
(b) Average correlation values for the AES S-Box MUX implementation performing en-
cryption and decryption

Table 5.3: Average and maximal correlation values for the AES S-Box MUX im-
plementation performing encryption and decryption

Also for this implementation the correlation values of the input consume model,
for the circuit without delays, are zero.

59

Testing and results

(a) Input consume model chart for the AES S-Box MUX implementation performing
encryption and decryption

(b) Input-state consume model chart for the AES S-Box MUX implementation performing
encryption and decryption

Figure 5.4: Input and input-state consume model chart for the AES S-Box MUX
implementation performing encryption and decryption

60

5.3 – Xoodoo

The computed correlations show high similarities with the first discussed im-
plementation. The only differences being the lower maximal correlation value this
implementation can reach and the higher difference between average and maximal
correlation values. While the first version reaches correlation values of 0.85, the
maximal correlation value of this implementation is 0.45. As for the second im-
plementation of the AES-Sbox, the maximal correlation values are bigger than the
average correlation values by a factor of more than 2. With respect to the second
implementation the correlation values of this version are slightly higher: 0.32 for
the second implementation and 0.45 for the third one. This is probably due to
the fact that third circuit contains more gates, resulting in more opportunities for
glitches to be caused.

The delays resulting in the highest correlation values can be seen in Tables A.5a
and A.5b.

5.3 Xoodoo
This gadget was tested in two different versions. We tested first a basic version of
the gadget, which does not contain a final level of registers. The second version was
obtained by adding a layer of registers, through which the results are passed before
being connected to the outputs. The considered implementations of Xoodoo take
two values, both divided into 3 shares, resulting in six input bits. Therefore we
decided to analyze the correlation of this circuit first by taking each bit individually,
then by considering the input three bits at a time and finally by grouping all 6 bits
together.

5.3.1 Xoodoo without final register layer
The first thing that can be seen from Table 5.4a is that the correlations, when
only gate delays, or when gate and input delays are present, have the same values.
This is due to the fact that this circuit contains an intermediate register level. As
explained in Section 2.4.2 registers have the effect of cancelling out all the previously
introduced delays; in this case the input delays. Therefore the introduction of input
delays does not add any additional glitches, that can be seen at the output of the
circuit. Although correlation values when using the input consume model are low,
Figure 5.5a shows how the values decrease even more when grouping more bits
together.

On the other hand when using the input-state consume model the correlation
values increase, when the size of the input groups increases. When using this
consume model, the correlations reach considerably higher values, reaching 0.86.
For each group size a big difference can be noticed, between the correlation values
of this circuit with no delays and the same circuit when delays are introduced.

61

Testing and results

Xoodoo without registers Max. correlation values
1 bit
I-CS

3 bit
I-CS

6 bit
I-CS

1 bit
IS-CS

3 bit
IS-CS

6 bit
IS-CS

no delays 0,0157 0,0152 0,0099 0,1380 0,1973 0,2781
gate delays 0,0216 0,0125 0,0102 0,4373 0,6387 0,8564

gate+inputs delay 0,0216 0,0125 0,0102 0,4373 0,6387 0,8564
(a) Maximal correlation values for the Xoodoo implementation without final registers

Xoodoo without registers Avg. correlation values
1 bit
I-CS

3 bit
I-CS

6 bit
I-CS

1 bit
IS-CS

3 bit
IS-CS

6 bit
IS-CS

no delays 0,0157 0,0152 0,0099 0,1380 0,1973 0,2781
gate delays 0,0148 0,0077 0,0053 0,3780 0,5446 0,7120

gate+inputs delay 0,0148 0,0077 0,0053 0,3780 0,5446 0,7120
(b) Average correlation values for the Xoodoo implementation without registers

Table 5.4: Average and maximal correlation values for the Xoodoo implementation
without registers

62

5.3 – Xoodoo

(a) Input consume model chart for the Xoodoo implementation without registers

(b) Input-state consume model chart for the Xoodoo implementation without registers

Figure 5.5: Input and input-state consume model chart for the Xoodoo implemen-
tation without registers

63

Testing and results

As can be seen from Table 5.5b, the correlation values of the "ideal" circuit vary
from 0.14 to 0.28. As soon as delays are introduced these values increase, ranging
from 0.44, when each bit is considered singularly, to 0.86, when all inputs bits are
considered as one group.

Comparing Tables 5.4a and 5.4b shows the small difference, between the max-
imal and average correlations, indicating that the correlation varies only slightly
when different delays are considered.

The input and gate delays causing the maximal correlation value can be seen
in tables A.7a and A.7b.

5.3.2 Xoodoo with final register layer

Xoodoo with registers Max. correlation values
1 bit
I-CS

3 bit
I-CS

6 bit
I-CS

1 bit
IS-CS

3 bit
IS-CS

6 bit
IS-CS

no delays 0,0040 0,0070 0,0099 0,1135 0,1967 0,2781
gate delays 0,0040 0,0070 0,0099 0,1135 0,1967 0,2781

gate+inputs delay 0,0040 0,0070 0,0099 0,1135 0,1967 0,2781
(a) Maximal correlation values for the Xoodoo implementation with registers

Xoodoo with registers Avg. correlation values
1 bit
I-CS

3 bit
I-CS

6 bit
I-CS

1 bit
IS-CS

3 bit
IS-CS

6 bit
IS-CS

no delays 0,0040 0,0070 0,0099 0,1135 0,1967 0,2781
gate delays 0,0040 0,0070 0,0099 0,1135 0,1967 0,2781

gate+inputs delay 0,0040 0,0070 0,0099 0,1135 0,1967 0,2781
(b) Average correlation values for the Xoodoo implementation with registers

Table 5.5: Average and maximal correlation values for the Xoodoo implementation
with registers

Since the outputs of this circuit are passed through a final register level, all
previously introduced glitches caused by the delays are zeroed out. For this reason
the correlation values don’t change when adding gates’ or inputs’ delays.

Correlation values increase when increasing the number of bits that are grouped
together for both the input and the input-state consume model. When comparing
this circuit with the version without final register level, a significantly lower corre-
lation can be noticed. The values range from 0.004 and 0.01 for the input consume
model, and from 0.11 to 0.28 for the input-state consume model.

64

5.3 – Xoodoo

(a) Input consume model chart for the Xoodoo implementation with registers

(b) Input-state consume model chart for the Xoodoo implementation with registers

Figure 5.6: Input and input-state consume model chart for the Xoodoo implemen-
tation with registers

65

Testing and results

5.4 CMS

5.4.1 CMS without final register layer

CMS without registers Max. correlation values
1 bit
I-CS

4 bit
I-CS

8 bit
I-CS

1 bit
IS-CS

4 bit
IS-CS

8 bit
IS-CS

no delays 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
gate delays 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

gate + input delays 0,0000 0,0000 0,0000 0,4472 0,8165 1,0000
(a) Maximal correlation values for the CMS implementation without final registers

CMS without registers Avg. correlation values
1 bit
I-CS

4 bit
I-CS

8 bit
I-CS

1 bit
IS-CS

4 bit
IS-CS

8 bit
IS-CS

no delays 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
gate delays 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

gate + input delays 0,0000 0,0000 0,0000 0,1997 0,3394 0,2874
(b) Average correlation values for the CMS implementation without registers

Table 5.6: Average and maximal correlation values for the CMS implementation
without registers

As can be seen from Table 5.6a, the only non-zero correlation values for this
circuit are obtained, when using the input-state consume model with gate and input
delays. In this case the obtained correlation values are rather high and increase,
when more bits are grouped together, ranging from 0.45 to 1.

Table 5.6b shows significantly lower correlations with respect to Table 5.6a,
indicating that these values vary greatly depending on the used delays and that the
maximal correlation values are rarely reached.

An example of input and gate delays causing the highest correlation values are
shown in tables A.6a and A.6b.

5.4.2 CMS with final register layer

When a final layer of registers is added to the previous circuit also the correlation
values obtained when using the input-state consume model and with gate and input
delays become zero. The resulting circuit therefore does not leak any information,
even when adding delays.

66

5.4 – CMS

Figure 5.7: Input-state consume model chart for the CMS implementation without
registers

67

Testing and results

5.5 DOM
Since this gadget can be used to protect the non linear layer of Xoodoo, we decided
to test it with our tool. In particular we decided to test a 2-DOM (see Section
2.4.3 for a description of the gadget) implementation. In order to allow a better
comparison with the CMS gadget, a 4-DOM was tested as well. As for Xoodoo tests
were executed on a version with and on a version without a final layer of registers.
On each version a first run was performed, where we calculated the correlation value
for every single input bit. In the second run, the input bits were collected in groups
of two, while in the third run all bits were grouped together for the calculation of
the correlation.

5.5.1 2-DOM without final register layer

2-DOM without registers Max. correlation values
1 bit
I-CS

2 bit
I-CS

4 bit
I-CS

1 bit
IS-CS

2 bit
IS-CS

4 bit
IS-CS

no delays 0,0412 0,0509 0,0617 0,4836 0,3565 0,2315
gate delays 0,1848 0,1516 0,1109 0,8224 0,6005 0,4876

gate+inputs delay 0,2828 0,2000 0,1392 0,8224 0,7466 0,4876
(a) Maximal correlation values for the 2-DOM implementation without registers

2-DOM without registers Avg. correlation values
1 bit
I-CS

2 bit
I-CS

4 bit
I-CS

1 bit
IS-CS

2 bit
IS-CS

4 bit
IS-CS

no delays 0,0412 0,0509 0,0617 0,4836 0,3565 0,2315
gate delays 0,1027 0,0933 0,0753 0,7166 0,5339 0,3830

gate+inputs delay 0,1046 0,1072 0,0848 0,6819 0,5349 0,3941
(b) Average correlation values for the 2 shares DOM implementation without registers

Table 5.7: Average and maximal correlation values for the 2-DOM implementation
without registers

As opposed to AES-Sbox, Xoodoo and CMS the correlation for this circuit
diminishes, when more bits are grouped together for both consume models. As
a result the maximal correlation value is obtained, when each bit is considered
separately.

Using the input-state consume model higher correlation values, which reach
0.82, are obtained, than when using the input consume model, whose correlation
values max out at 0.28.

68

5.5 – DOM

(a) Input consume model chart for the 2-DOM implementation without registers

(b) Input-state consume model chart for the 2-DOM implementation without registers

Figure 5.8: Input and input-state consume model chart for the 2-DOM implemen-
tation without registers

69

Testing and results

Table 5.7a shows how the correlation with and without input delays, when
grouping 1 and 4 bits together and using the input-state consume model, are the
same. This however is not true for all runs since these values have different average
values, as can be seen in Table 5.7b, identifying it as a coincidence and not as a
general behaviour of the circuit.

While there is not much difference between maximal and average correlation
values for the input-state consume model, the average correlation values for the
input consume model are just over half the size of the maximal correlation values.
This indicates a greater variability of the latter, depending on the used delays.

The highest correlation is reached using the delays seen in Tables A.1a and
A.1b.

5.5.2 4-DOM without final register layer

4-DOM without registers Max. correlation values
1 bit
I-CS

2 bit
I-CS

4 bit
I-CS

1 bit
IS-CS

2 bit
IS-CS

4 bit
IS-CS

no delays 0,0089 0,0071 0,0071 0,0071 0,0071 0,0071
gate delays 0,0067 0,4078 0,4613 0,4613 0,4613 0,4613

gate+inputs delay 0,0083 0,4110 0,5280 0,5789 0,5789 0,5789
(a) Maximal correlation values for the 4-DOM implementation without registers

4-DOM without registers Avg. correlation values
1 bit
I-CS

2 bit
I-CS

4 bit
I-CS

1 bit
IS-CS

2 bit
IS-CS

4 bit
IS-CS

no delays 0,0089 0,0071 0,0071 0,0071 0,0071 0,0071
gate delays 0,0039 0,1228 0,1799 0,3213 0,3213 0,3213

gate+inputs delay 0,0039 0,1308 0,1835 0,2728 0,2988 0,3126
(b) Average correlation values for the 4-DOM implementation without registers

Table 5.8: Average and maximal correlation values for the 4-DOM implementation
without registers

Both the input and the input-state consume model generate very low correlation
values, when each input bit is considered singularly. These values considerably
increase, when grouping together 4 or all 8 bits. Unlike the other circuits, the
correlation values of the input and the input-state consume model reach very similar
values (0.53 and 0.58 respectively).

Table 5.8a displays how the maximal correlation values of the input-state con-
sume model don’t change, when changing the number of inputs, that are grouped

70

5.5 – DOM

(a) Input consume model chart for the 4-DOM implementation without registers

(b) Input-state consume model chart for the 4-DOM implementation without registers

Figure 5.9: Input and input-state consume model chart for the 4-DOM implemen-
tation without registers

71

Testing and results

together. Also the average value is the same for this consume model across all in-
put group sizes, when considering no delays or when considering only gate delays.
This is not true when input delays are introduced. This implies that, as long as
no input delays are considered, the correlation value only depends on the chosen
delays; grouping bits together does not reveal additional information.

The big difference between maximal and average values shows a great variability
of the correlation values depending on the chosen delay.

The input and gate delays causing the greatest correlation for this circuit are
shown in Tables A.2a and A.2b.

5.5.3 2-DOM with final register layer

2-DOM with registers Max. correlation values
1 bit
I-CS

2 bit
I-CS

4 bit
I-CS

1 bit
IS-CS

2 bit
IS-CS

4 bit
IS-CS

no delays 0,0412 0,0509 0,0617 0,4836 0,3565 0,2315
gate delays 0,0412 0,0509 0,0617 0,4836 0,3565 0,2315

gate+inputs delay 0,0412 0,0509 0,0617 0,4836 0,3565 0,2315
(a) Maximal correlation values for the 2-DOM implementation with final registers

2-DOM with registers Avg. correlation values
1 bit
I-CS

2 bit
I-CS

4 bit
I-CS

1 bit
IS-CS

2 bit
IS-CS

4 bit
IS-CS

no delays 0,0412 0,0509 0,0617 0,4836 0,3565 0,2315
gate delays 0,0412 0,0509 0,0617 0,4836 0,3565 0,2315

gate+inputs delay 0,0412 0,0509 0,0617 0,4836 0,3565 0,2315
(b) Average correlation values for the 2-DOM implementation with final registers

Table 5.9: Average and maximal correlation values for the 2-DOM implementation
with final registers

As previously seen with the CMS gadget, when a final register level is added,
the correlation values stop depending on the used delays and become all equal to
the correlation values of the circuit when considered without internal delays.

As for other circuits before, the correlation values of the input consume model
are considerably lower than the values of the input-state consume model, with the
former reaching a maximal value of 0.06 and the latter a maximal value of 0.48.

While the input consume model reaches the greatest correlation, which is 0.06,
when all four input bits are grouped together, the input-state consume model
reaches it’s max (0.48), when every input bit is considered separately.

72

5.5 – DOM

(a) Input consume model chart for the 2-DOM implementation with final registers

(b) Input-state consume model chart for the 2-DOM implementation with final registers

Figure 5.10: Input and input-state consume model chart for the 2-DOM implemen-
tation with final registers

73

Testing and results

5.5.4 4-DOM with final register layer

4-DOM with registers Max. correlation values
1 bit
I-CS

2 bit
I-CS

4 bit
I-CS

1 bit
IS-CS

2 bit
IS-CS

4 bit
IS-CS

no delays 0,0089 0,0098 0,0027 0,0034 0,0015 0,0011
gate delays 0,0089 0,0098 0,0027 0,6035 0,3007 0,3200

gate+inputs delay 0,0089 0,0098 0,0027 0,6035 0,3007 0,3200
(a) Maximal correlation values for the 4-DOM implementation with final registers

4-DOM with registers Avg. correlation values
1 bit
I-CS

2 bit
I-CS

4 bit
I-CS

1 bit
IS-CS

2 bit
IS-CS

4 bit
IS-CS

no delays 0,0089 0,0098 0,0027 0,0034 0,0015 0,0011
gate delays 0,0077 0,0078 0,0021 0,1284 0,0701 0,0875

gate+inputs delay 0,0077 0,0078 0,0021 0,1284 0,0701 0,0875
(b) Average correlation values for the 4-DOM implementation with final registers

Table 5.10: Average and maximal correlation values for the 4-DOM implementation
with final registers

Having a final register level, the correlation values are always the same, regard-
less of the chosen delays.

Similarly to the most part of the other gadgets, also for this circuit the corre-
lation values reached when using the input-state consume model are considerably
higher than when the input consume model is used. While the former has correla-
tion values which reach 0.60, the greatest value of the latter is 0.10.

Even though high correlation values can be reached using the input-state con-
sume model, the average correlation value of that model is much lower, indicating
how these high values can be reached only with few delay values.

As for the 2-DOM with final register layer, the maximal correlation value is
reached by considering every input bit singularly. These values then strongly de-
crease when more bits are grouped together.

74

5.5 – DOM

(a) Input consume model chart for the 4-DOM implementation with final registers

(b) Input-state consume model chart for the 4-DOM implementation with final registers

Figure 5.11: Input and input-state consume model chart for the 4-DOM implemen-
tation with final registers

75

76

Chapter 6

Conclusion

The most widely used cryptographic algorithms nowadays have been studied in
depth and their security can be guaranteed mathematically to a satisfactory level.
When these algorithms are implemented onto physical devices in form of circuits,
attackers can use so-called side channels to obtain information leaked by the circuit,
which can be used to find the secret key and break the algorithm. In this thesis
we develop VoLPE, a tool able to analyze the vulnerability of circuits towards Side
Channel Attacks.

We put an initial effort into finding a significant model for the power consump-
tion of a circuit during a given calculation. During computations the main power
consumption of a circuit is due to the switching of the value of variables from 0 to
1 and vice versa. We decided therefore to use these switches, called toggles, as way
to model the power consumption during the simulation of a circuit.

Thereafter we moved our attention towards the definition of a consume model,
i.e. finding a value representing the inputs of each simulation, that could be com-
pared to the power consumption of that simulation. The Hamming weight of the
inputs has been chosen for this reason. Additionally it was deemed interesting to
find a way to calculate the correlation also between the consumed power and a
value representing the initial state of the circuit. For this case of interest we chose
the Hamming distance between state and inputs.

After having chosen all models needed for the analysis, we proceeded to define
the simulations that have to be performed on the circuits, in order to obtain relevant
results. We decided to simulate each circuit under three different configurations.
In a first configuration we consider an ideal circuit, which therefore ignores delays
and glitch generation. In the second case gate delays are applied, which start to
introduce the first glitches in the circuit; here inputs are still considered to be
synchronized. Finally also input delays are considered, during the last simulation
configuration.

Combining these choices we are able to develop the desired tool, able to quan-
tify the weakness of a given circuit, simulating it. Since our analysis is based on

77

Conclusion

the actual simulation of a synthesized circuit, whose structure corresponds to the
physical implementation of the circuit, we are able to obtain more realistic results
than tools analyzing high level descriptions of gadgets.

6.1 Future imporvements
During this work only one power consumption model has been found and imple-
mented, alongside with only a few selection functions and consume models. In
future developments of the tool, additional power consumption models, selection
functions and consume models could be analysed and included, adding as well the
possibility to choose the desired model before starting the computations. In the
course of this thesis we focus only on modelling the power consumption, leaving
therefore the opportunity to find an appropriate model for the electromagnetic
fields produced by the circuit.

In the current version of VoLPE, the correlation can be calculated only between
inputs and the power consumed at the outputs of the gadget. Another interesting
addition to the tool could therefore be the possibility to simulate probes at internal
positions of the circuit, i.e. calculating the correlation between inputs and the
power consumed in a specific sub-circuit.

Furthermore it is currently not possible to simulate circuits which need a con-
figuration phase before being able to start their computations. This is mainly due
to the structure of the currently implemented testbench. In order to guarantee a
wider spectrum of circuits that can be simulated with our tool, a more advanced
testbench could be developed, able to also handle the initial configuration steps.

78

Appendix A

Tables of delay values

Input Used delay
a0 0.48
a1 0.15
b0 0.70
b1 0.14
z0 0.83

(a) Input delays for maximal correlation
values for the 2-DOM without registers

Gate Used delay
XNOR_DELAY 0.13
NAND_DELAY 0.99
XOR_DELAY 0.27
AND_DELAY 0.05
OR_DELAY 0.04

NOR_DELAY 0.32
(b) Input delays for maximal correlation
values for the 2-DOM without registers

Table A.1: Gate and input delays for maximal correlation values for the 2-DOM
without registers

79

Tables of delay values

Input Used delay
a0 0.16
a1 0.55
a2 0.13
a3 0.29
b0 0.76
b1 0.04
b2 0.19
b3 0.95
z0 0.39
z1 0.83
z2 0.71
z3 0.97
z4 0.60
z5 0.56

(a) Input delays for maximal correlation
values for the 4-DOM without registers

Gate Used delay
XNOR_DELAY 0.01
NAND_DELAY 0.99
XOR_DELAY 0.02
AND_DELAY 0.54
OR_DELAY 0.19

NOR_DELAY 0.75
(b) Input delays for maximal correlation
values for the 4-DOM without registers

Table A.2: Gate and input delays for maximal correlation values for the 4-DOM
without registers

Input Used delay
a0 0.72
a1 0.92
a2 0.03
a3 0.27
a4 0.96
a5 0.66
a6 0.38
a7 0.31

(a) Input delays for maximal correlation
values for the AES S-Box lookup table
implementation

Gate Used delay
XNOR_DELAY 0.54
NAND_DELAY 0.14
XOR_DELAY 0.37
AND_DELAY 0.26
OR_DELAY 0.00

NOR_DELAY 0.19
(b) Input delays for maximal correlation
values for the AES S-Box lookup table
implementation

Table A.3: Gate and input delays for maximal correlation values for the AES S-Box
lookup table implementation

80

Tables of delay values

Input Used delay
a0 0.60
a1 0.92
a2 0.06
a3 0.72
a4 0.55
a5 0.23
a6 0.96
a7 0.92

(a) Input delays for maximal correlation
values for the AES S-Box MUX imple-
mentation performing only encryption

Gate Used delay
XNOR_DELAY 0.19
NAND_DELAY 0.41
XOR_DELAY 0.07
AND_DELAY 0.39
OR_DELAY 0.52

NOR_DELAY 0.61
(b) Input delays for maximal correlation
values for the AES S-Box MUX imple-
mentation performing only encryption

Table A.4: Gate and input delays for maximal correlation values for the AES S-Box
MUX implementation performing only encryption

Input Used delay
a0 0.36
a1 0.51
a2 0.36
a3 0.62
a4 0.76
a5 0.09
a6 0.47
a7 0.98

(a) Input delays for maximal correla-
tion values for the AES S-Box MUX
implementation performing encryption
and decryption

Gate Used delay
XNOR_DELAY 0.09
NAND_DELAY 0.31
XOR_DELAY 0.06
AND_DELAY 0.97
OR_DELAY 0.30

NOR_DELAY 0.08
(b) Input delays for maximal correla-
tion values for the AES S-Box MUX
implementation performing encryption
and decryption

Table A.5: Gate and input delays for maximal correlation values for the AES S-Box
MUX implementation performing encryption and decryption

81

Tables of delay values

Input Used delay
a0 0.47
a1 0.90
a2 0.51
a3 0.82
b0 0.93
b1 0.76
b2 0.78
b3 0.51
r0 0.55
r1 0.59
r2 0.73
r3 0.88
r4 0.00
r5 0.26
r6 0.30
r7 0.36
r8 0.71
r9 0.31
r10 0.09
r11 0.33
r12 0.28
r13 0.03
r14 0.67
r15 0.17

(a) Input delays for maximal correla-
tion values for the CMS implementation
without registers

Gate Used delay
XNOR_DELAY 0.03
NAND_DELAY 0.64
XOR_DELAY 0.82
AND_DELAY 0.74
OR_DELAY 0.03

NOR_DELAY 0.22
(b) Input delays for maximal correla-
tion values for the CMS implementation
without registers

Table A.6: Gate and input delays for maximal correlation values for the CMS
implementation without registers

82

Tables of delay values

Input Used delay
a0 0.31
a1 0.29
a2 0.03
a3 0.93
a4 0.83
a5 0.72
a6 0.35
a7 0.05
a8 0.72
a9 0.65
a10 0.68
a11 0.50

(a) Input delays for maximal correlation
values for the Xoodoo implementation
without registers

Gate Used delay
XNOR_DELAY 0.04
NAND_DELAY 0.40
XOR_DELAY 0.02
AND_DELAY 0.37
OR_DELAY 0.24

NOR_DELAY 0.74
(b) Input delays for maximal correlation
values for the Xoodoo implementation
without registers

Table A.7: Gate and input delays for maximal correlation values for the Xoodoo
implementation without registers

83

84

Bibliography

[1] Hardening macros.
[2] Ako Muhamad Abdullah et al. Advanced encryption standard (aes) algorithm

to encrypt and decrypt data. Cryptography and Network Security, 16:1–11,
2017.

[3] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb.
Ironmask: Versatile verification of masking security. Cryptology ePrint
Archive, Paper 2021/1671, 2021. https://eprint.iacr.org/2021/
1671.

[4] Viv Bewick, Liz Cheek, and Jonathan Ball. Statistics review 7: Correlation
and regression. Critical care, 7(6):1–9, 2003.

[5] Begül Bilgin. Threshold implementations: as countermeasure against higher-
order differential power analysis. 2015.

[6] Claude Carlet. Boolean Functions for Cryptography and Coding Theory. Cam-
bridge University Press, 2021.

[7] Irène Charon, Gérard Cohen, Olivier Hudry, and Antoine Lobstein. New iden-
tifying codes in the binary hamming space. European Journal of Combina-
torics, 31(2):491–501, 2010.

[8] Ana Covic, Fatemeh Ganji, and Domenic Forte. Circuit masking: From theory
to standardization, a comprehensive survey for hardware security researchers
and practitioners. arXiv preprint arXiv:2106.12714, 2021.

[9] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. Xoodoo cookbook. Cryptology ePrint Archive, 2018.

[10] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of xoodoo and xoofff. IACR Transactions on Symmetric Cryptology,
pages 1–38, 2018.

[11] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.
[12] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav

Nikov, and Vincent Rijmen. Masking aes with d+1 shares in hardware. In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 194–212. Springer, 2016.

[13] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced encryption standard (aes),

85

https://eprint.iacr.org/2021/1671
https://eprint.iacr.org/2021/1671

Bibliography

2001-11-26 2001.
[14] Sebastian Faust, Vincent Grosso, SMD Pozo, Clara Paglialonga, and F-X Stan-

daert. Composable masking schemes in the presence of physical defaults & the
robust probing model. 2018.

[15] Ahmed Ghazy and Mohamed Shalan. Openlane: The open-source digital
asic implementation flow. In Proc. Workshop on Open-Source EDA Tech-
nol.(WOSET), 2020.

[16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
Cryptology ePrint Archive, 2016.

[17] Owen Harrison and John Waldron. Aes encryption implementation and anal-
ysis on commodity graphics processing units. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 209–226. Springer,
2007.

[18] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Annual International Cryptology Conference,
pages 463–481. Springer, 2003.

[19] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
CRC press, 2020.

[20] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual international cryptology conference, pages 388–397. Springer, 1999.

[21] Dwi Liestyowati. Public key cryptography. In Journal of Physics: Conference
Series, volume 1477, page 052062. IOP Publishing, 2020.

[22] Sharad Malik. Analysis of cyclic combinational circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(7):950–956,
1994.

[23] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis at-
tacks: Revealing the secrets of smart cards, volume 31. Springer Science &
Business Media, 2008.

[24] Stefan Mangard, Thomas Popp, and Berndt M Gammel. Side-channel leakage
of masked cmos gates. In Cryptographers’ Track at the RSA Conference, pages
351–365. Springer, 2005.

[25] Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. Investigations of
power analysis attacks on smartcards. Smartcard, 99:151–161, 1999.

[26] L’ubica Miková, Michal Kelemen, Alexander Gmiterko, and Lukáš Kačmár.
Logical circuits and their applications. Journal of Automation and Control,
3(3):106–109, 2015.

[27] James S Milne. Fields and galois theory (v4. 60). order, 3:138, 2018.
[28] Maria Chiara Molteni, Jürgen Pulkus, and Vittorio Zaccaria. On robust

strong-non-interferent low-latency multiplications. IET Information Security,
16(2):127–132, 2022.

86

Bibliography

[29] Nicolai Müller, David Knichel, Pascal Sasdrich, and Amir Moradi. Transi-
tional leakage in theory and practice-unveiling security flaws in masked cir-
cuits. Cryptology ePrint Archive, 2022.

[30] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press,
2014.

[31] Dag Arne Osvik, Joppe W Bos, Deian Stefan, and David Canright. Fast soft-
ware aes encryption. In International Workshop on Fast Software Encryption,
pages 75–93. Springer, 2010.

[32] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Annual Cryptology Confer-
ence, pages 764–783. Springer, 2015.

[33] Matthew JB Robshaw. Stream ciphers. RSA Labratories, 25, 1995.
[34] Gustavus J Simmons. Symmetric and asymmetric encryption. ACM Comput-

ing Surveys (CSUR), 11(4):305–330, 1979.

87

	List of Figures
	List of Tables
	Introduction
	Objectives
	Outline of contents

	State of the art
	Mathematical context
	Binary Field
	Boolean Functions
	Hamming weight and distance
	Correlations

	Cryptography
	Advanced Encryption Standard
	Xoodyak

	Circuits
	Side Channel Attacks
	Power Analysis Attacks
	Physical Defaults
	Countermeasures
	Masking
	Threshold implementations
	DOM
	CMS

	Probing security
	Robust probing security

	Verilog

	Tools
	Exploited tools
	OpenLane
	OpenLane for VoLPE

	Icarus Verilog

	Tools for probing security analysis
	IronMask

	Analysis of circuit security
	Structure of the developed tool
	Configuration files
	Simulation
	Exhaustive simulation
	Partial simulation
	Runs of simulation
	Accepted Circuits
	Testbench

	Power consumption model
	Consume model
	Selection function
	Consume model

	Correlation matrix

	Testing and results
	Delay selection
	AES S-Box
	AES S-Box lookup table
	AES S-Box MUX only encryption
	AES S-Box MUX encryption and decryption

	Xoodoo
	Xoodoo without final register layer
	Xoodoo with final register layer

	CMS
	CMS without final register layer
	CMS with final register layer

	DOM
	2-DOM without final register layer
	4-DOM without final register layer
	2-DOM with final register layer
	4-DOM with final register layer

	Conclusion
	Future imporvements

	Tables of delay values
	Bibliography

