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Abstract

Near Field Communication (NFC) is a ubiquitous technology with many applications
ranging from identification to ticketing, from mobile payment to logistical solutions
and, just recently, wireless charging.

Every modem unit must be able to support multiple communication standards in
different operative conditions. In many cases, this is achieved employing an extensive
use of custom Digital Signal Processing (DSP) logic at the expense of functional
flexibility.

One way to balance chip resources with the growing need for flexibility is to consider
the adoption of microprocessors able to perform DSP operations. They provide the
wanted flexibility at the cost of potentially higher resource usage and clock rates in
order to meet the end-application performance.

In this context, starting from an open-source RISC-V based core by the OpenHW
group, a DSP hardware accelerator for NFC decoding has been designed and tested.
The work has been carried out in parallel with a colleague who focused on the
firmware/algorithmic part to be run on the developed hardware. From the inter-
action, the two parts have been improved and tailored during the months.

The accelerator implements an architecture for the efficient execution of digital fil-
tering, which turned out to be the main limit within the considered application.
The keyword is flexibility, giving the user deep customization possibilities, without
impacting significantly on the efficiency. The accelerator is implemented in a co-
processor that is coupled to the main core through a standardized interface natively
provided by the chosen OpenHW core. This approach allows an easier Instruction
Set Architecture (ISA) extension.

This work represents the starting point for a more ambitious project that will be
carried out in the next years. The outcome is promising, resulting in performance
close to the target and reasonable area-power requirements.
However, assumptions and limitations have been considered in this stage, therefore a
lot of investigations and work are needed to get a working system eventually.
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Introduction

Near Field Communication (NFC) is a ubiquitous technology with many ap-
plications ranging from identification to ticketing, from mobile payment to logistical
solutions and, just recently, wireless charging. A considerable amount of analog and
digital signal processing is required on all NFC integrated circuits to achieve high
performance and reliable communication while keeping engineering and manufactur-
ing costs low.
Every modern NFC controllers product must support multiple communication stan-
dards in different operative configurations and environmental conditions. In many
cases, this is achieved by employing extensive use of custom Digital Signal Pro-
cessing (DSP) logic, which is tuned and constrained to meet the final product
requirements, at the expense of full functional flexibility. In such a context, the
estimated engineering effort, burdened by a very high pre-silicon verification effort,
can be unacceptable from the business perspective and limit the end product
evolution.

One way to balance chip resources with the growing need for flexibility is to consider
the adoption of microprocessors able to perform DSP operations. As opposed to
more specialized signal processing made with custom digital logic, microprocessors
provide the wanted flexibility at the cost of potentially higher resource usage: above
all, program and data memory. Additionally, higher clock rates might be required
to meet the end-application performance, which impacts the total operative power
consumption.
Performance could be not suitable for time-critical applications such as the NFC
decoding, where the system shall respect very strict time requirements. In these
cases, accelerators to support microprocessor operations could be a solution. In
addition, accelerators guarantee a very short execution time, lowering energy power
consumption. As a drawback, the power absorption peaks could be much higher
and careful design has to be considered. In modern SoCs, the trend of developing
accelerators is growing and chip photos from different electronic companies show that
in some cases more than half of the die area is used by blocks other than the CPUs
[1].

The hardware platform identified as suitable for the described application is an open-
source RISC-V based core by OpenHW group. After a preliminary analysis,
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the core alone proved not suitable to meet the application requirements. To im-
prove the performance, a DSP hardware accelerator for NFC decoding has been
developed and tested to face the main bottleneck identified, namely digital filter-
ing. The work has been carried out in parallel with a colleague who focused on the
firmware/algorithmic part to be run on the developed hardware. From the interaction,
the two parts have been improved and tailored during the months.

The accelerator extends the Instruction Set Architecture (ISA) of the main core
with custom instructions. Its integration has been simplified by a standardized in-
terface developed by the OpenHW group, called eXtension interface, that allows the
implementation of custom instructions without acting on the internal architecture of
the core. In other words, it allows the development of an independent accelerator,
coupling it to the main core through the interface. This greatly reduces the design
and verification effort.
During the development, flexibility has been given to the system by defining pre-
synthesis parameters (e.g. bitwidth, filter length, desired latency) and runtime config-
uration opportunities. From a functional perspective, the accelerator allows efficient
execution of digital filtering, both FIR and IIR structures. Two intrinsic issues have
been identified: arithmetic operations to compute the result and memory access
to fetch the samples.
To face the arithmetic aspects, a Multiply-Accumulate (MAC) arithmetic unit has
been implemented. The developed architecture allows the exploitation of Single-
Instruction Multiple-Data (SIMD) parallelization to further increase the performance.
As for memory access, a buffering mechanism has been introduced to reduce memory
load operations. It is based on a series of shift registers organized in banks, in which
each bank maintains the status of a specific FIR or IIR filter defined by the user.
The accelerator supports 2’s complement integer and fixed-point numbers. A
configurable rounding unit is also present to manage fixed-point notation. The fil-
tering samples and coefficients can be taken from the core Register File (RF) or the
data memory.

The testing-verification of the developed hardware has been considered a priority.
A reference model to resemble the hardware expected behaviour has been developed
using C programming language together with a random instruction generator.
During the verification flow, random instructions are generated and the expected
output from the reference model is compared with the actual output from the RTL
simulation. The instruction generation and the reference model execution are per-
formed outside the UVM environment, while the comparison is done exploiting UVM
capabilities. To make the verification process more manageable, some custom features
have been added to the pre-existing environment by the OpenHW group.
In addition, a software-dependent verification has been performed by the firmware
colleague, comparing the output of the DSP algorithm with a MATLAB reference
model. This ensured that the software was correct and, to some extent, it added
further validity to the hardware testing.
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The results after the software execution and testing are encouraging. Exploiting the
accelerator, the number of instructions per sample has passed from the initial value
of 152 to 41. The estimations show that the performance is close to real-time
processing.
As for the hardware profiling, the area occupied by the core-only is 26 kGates. The
total estimated area (core+accelerator) spans from 62 kGates to 140 kGates according
to the chosen settings for the accelerator. The power has been estimated only nor-
malized to the power of the core: the power of the entire system spans from (2.5·Pcore)
to (3.5 · Pcore).

This work represents the starting point for a more ambitious project that will be
carried out in the next years by NXP. The outcome at this stage is promising, but a
deeper investigation is needed to reach the final aim to integrate the microprocessor
into the existing NXP implementation.

This thesis is divided into 6 chapters, plus an appendix:

• chapter 1 - RFID background: some information about the Radio Frequency
IDentification (RFID) systems is summarized. It provides background informa-
tion on the workings of RFID systems at the physical and data link level, aiding
the reader to contextualize the presented work in the following chapters.
However, the reader who is only interested in accelerator development can safely
skip it.

• chapter 2 - OpenHW group’s cores: available open-source RISC-V based
cores developed by OpenHW group are presented, with all their features and
related tools.

• chapter 3 - Preliminary analysis: an analysis about the improvement room
is performed. It starts from the performance obtained by running the algorithm
on the processor with the base RISC-V ISA. Then, the chapter moves to a
literature review to identify different alternatives to improve the performance
and meet the requirements.

• chapter 4 - Accelerator design: accelerator design process is presented.
This part is a sort of documentation for the accelerator usage and it lists all the
custom instructions implemented, their structure and working principle, giving
the programmer a clear idea of how to use the accelerator, without going too
deep into its architecture (see Appendix B for architectural details).

• chapter 5 - Accelerator testing-verification: here it is described how the
existing verification environment has been extended for the verification-testing
of the accelerator. The general approach and some details on the technical
realization of the different components are shown.

• chapter 6 - Results: obtained results, both on the software and hardware
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sides, are reported and commented on.

• Appendices:

– Appendix A - RFID Physical Principles: physical principles of in-
ductively remote-coupled systems are explained.

– Appendix B - Architectural details: all the MAC design details and
choices are reported. Notice that this part is not self-contained, but it is
the prosecution of Accelerator design.
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Chapter 1

RFID background

All the information reported in this chapter is taken from [2].

In recent years, automatic identification systems (Auto-ID) have become widespread;
they were developed to provide information about goods, people, animals.
In these systems, a transponder and a reader are present: the former is the data-
carrying device whose identity has to be checked, while the latter is in charge of
checking that identity.

The pioneer was the barcode label, representing an omnipresent element in automatic
identification. Unfortunately, it is being found to be not sufficient for some appli-
cations, due to some intrinsic issues (e.g. low storage capabilities, absence of re-
programmability features).

A good solution found was to store the data needed for the identification in a piece
of silicon, able to store a large amount of data in a negligible physical space. The
first applications of this concept (some of them still used today) need a mechanical
coupling between the reader and the transponder, which is not possible in all the use
cases and brings issues related to reliability.

For the reasons explained above, contactless approaches have been developed and
they are incredibly popular nowadays. Since in these systems the data transfer occurs
by exploiting electromagnetic fields, they are called Radio Frequency IDentification
(RFID) systems.
Some examples are the contactless cards used in a lot of fields from financial (e.g.
credit cards) to industrial (e.g. employers’ badges), anti-theft tags for goods, NFC
implemented in smartphones and many many others.

NFC is a RFID system allowing communication between two devices, usually smart-
phones and tablets. It allows for having a reliable and flexible protocol, suitable for
various applications such as electronic payments, access authentication and easy de-
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vice pairing.
Our attention will be focused on NFC systems, but most of the concepts reported
can be applied also to other RFID systems. According to the ISO/OSI model, we
will focus on the physical and data link layers. The latter, in particular, is the aspect
in which we are more interested since the digital logic that will be developed in the
remaining chapters of this thesis will work on that layer.

1.1 Differentiation
Countless variants of RFID systems exist able to fulfil a wide variety of applications.
The main differentiating features are described in the following lines.

Operating procedures and data quantity

We mainly distinguish between full/half-duplex systems and sequential systems.

For the full/half-duplex systems, the response of the transponder is broadcasted while
the field of the reader is continuously switched on, without interruptions.
If the communication is Half Duplex (HDX), the reader broadcasts an unmodulated
field (i.e. purely sinusoidal) when the transponder is responding and a modulated
field when the transponder is receiving.
In Full Duplex (FDX) communications, the field coming from the reader is always
modulated, since the two nodes exchange data at the same time, exploiting frequency
multiplexing.
This approach opens up to the possibility of having completely passive transponders,
supplied by the field of the reader, which send data through load modulation (see
subsection 1.2.1). It is not relevant if the field is always modulated (full-duplex) or
not (half-duplex), since the transponder can draw energy anyway from that field. On
the other hand, the fact that the field of the reader is always switched on during the
communication requires appropriate design and procedures for the analog front-end
(e.g. subcarrier modulation, see subsection 1.3.2), since the signal of the transponder
is typically very weak if compared to the one of the reader.

In contrast, in Sequential (SEQ) systems the field of the reader is switched off at
regular intervals, during which the transponder can send its data. The main disad-
vantage consists of the loss of power during the pauses of the reader which makes the
implementation of fully passive transponders difficult.

Figure 1.1 shows a representation of what happens in the different cases.
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Procedure:

downlink:

uplink:

FDX:

Energy transfer:

HDX:

Energy transfer:

downlink:

uplink:

SEQ:

Energy transfer:

downlink:

uplink:

Figure 1.1: Representation of Full Duplex (FDX), Half Duplex (HDX) and Sequen-
tial (SEQ) systems over time. Data transfer from the reader to the
transponder is termed down-link, while data transfer from the transpon-
der to the reader is termed up-link. Taken from [2].

The amount of data an RFID system can exchange depends on the specific imple-
mentation. It is straightforward that the more the amount of data to be exchanged,
the more performance and complexity are required for the hardware.

Programmability

The possibility of writing into the memory of the transponder and, in general, of
easily modifying its behaviour without hardware modifications are desired features in
some applications.
Some data must be read-only for security reasons, e.g. a unique serial number for
identification, but other ones can be considered useful to be modified during the
lifetime of the device. The memory can be managed by simple Finite State Machine
(FSM) that are hard-coded into the hardware giving no flexibility after the design,
or by microprocessors which make devices more flexible and simple to be updated if
necessary. In addition, the same microprocessor can be used for very different tasks
changing only the software.
The drawback is that the power needed by a general-purpose architecture could be too
high for some applications where passive and low-power transponders are required.

Power supply

The power supply for the transponder is a very important feature of RFID systems.
We can distinguish between passive and active transponders.
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Passive transponders do not have their own power supply, but the reader supplies
the required energy to the transponder through its field.

Active transponders have their own power supply (e.g. a battery) providing energy
to the internal chip and to memories for storage retention. The advantage is that the
range is extended since these devices can be able to detect weaker signals from the
reader as well. It is important to underline that even active transponders are not
able to generate a field on their own, but the communication principles are the same
as the passive transponders.

Operating frequency, range and coupling methods

The operating frequency is probably the most important criterion to differentiate
RFID systems since it widely influences the applications for which that device is
suitable. RFID systems are operated at widely differing frequencies, spanning from
135 kHz to 5.8GHz.

About the achievable range, we can distinguish three main categories, even though
the boundaries between them are blurred:

• close-coupling systems: today their role is less important on the market,
being used only in applications in which strict security requirements are present.
They can act in a range up to 1 cm, exploiting magnetic or electric field with a
frequency from DC to 30MHz, since the communication does not rely on a wave
propagation (which is not possible at very low frequencies), but on induction.
Examples of applications are electronic door locking systems and contactless
smartcards, even though most of them are operated in remote-coupling today.

• remote-coupled systems: they represent the 90% of all the RFID systems
sold today and the systems with a range up to 1m belong to this category.
Almost all of them rely on inductive coupling, but there are some exceptions
relying on capacitive coupling. An example of application are contactless smart-
cards we use everyday (ISO/IEC 14443 [3][4][5][6]).

• long-range systems: these systems can range up to 15m, operating at UHF
and microwave exploiting backscatter mechanisms and, in some cases, Surface
Acoustic Wave (SAW).

1.1.1 NFC systems

NFC is a wireless data interface between devices, exactly as Bluetooth, but operating
with an alternating magnetic field at 13.56MHz. The typical maximum operating
range is 20 cm since the transponder needs to be in the near-field region of the trans-
mitting antenna. An NFC device has both a Transmitter (TX) and an Receiver (RX)
chain, sharing a common antenna, that is a large-surface coil or a conductor loop.
The NFC interface is active since the energy is supplied by the device containing it.
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At first sight, NFC systems could not be strictly considered RFID since the reader/transponder
(initiator/target) role is not defined and each device can act either way. However, its
characteristics are of interest in relation to RFID systems.

There are two different ways of working for NFC systems:

• active mode: the device that wants to start the communication acts as ini-
tiator generating an alternating magnetic field (modulated according to the
protocol) that is detected and demodulated by the target device. Then, if the
target device has to answer, the roles are exchanged and the initiator switches
to receiving mode (becoming the new target) and the target switches to trans-
mitting mode (becoming the new initiator). This approach is very different
from the one of the RFID systems where the transponder does not generate
its own field but acts directly on the one of the reader. Moreover, the roles of
initiator/target can not be exchanged in RFID systems.

• passive mode: also in this case the communication starts when one of the
devices (initiator) starts to generate an alternating magnetic field, but now the
field is not turned off and the target can answer to the initiator through load
modulation (see subsection 1.2.1). This means that the communication is the
same as remote-coupled systems relying on magnetic coupling, such as ISO/IEC
14443 [3][4][5][6].
This opens different useful practical scenarios where the initiator/target roles
can be negotiated before the starting of the communication in such a way,
for example, that the device with the weakest power supply acts as a target
(transponder), exploiting load modulation to transmit the data.
In addition, NFC devices can interact not only with other NFC interfaces, but
they can also interact with passive transponders compliant with the same stan-
dard since the physical principle of communication is the same. This way of
working is called reader-emulation mode since the NFC interface acts as the
reader for the transponder in that case.
Symmetrical, the NFC interface can exploit load modulation to act as a transpon-
der for a reader placed nearby. A practical example is paying contactless with
your phone exploiting NFC instead of using directly your physical credit card.

1.2 Physical principles
The systems in which we are interested are half-duplex inductively coupled,
belonging to the category of the remote-coupled systems. The fact that the system
is half-duplex or full-duplex is not so relevant, since there are differences in the analog
front-end and digital controlling logic, but the same working principle applies. The
important thing to take into account is that in this kind of system, the field of the
reader is always switched on and the transponder can be passive, draining energy from
the reader field and sending data through load modulation (see subsection 1.2.1).
An inductively coupled system is made by a chip (analog+digital) needed to elaborate
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the signal and an antenna consisting of a large-area coil or a conductor loop.

About antenna and electromagnetic field generation by the reader, we can distinguish
two main space regions:

• near-field (r < λ/2π): in this region the electromagnetic field has not gen-
erated a propagating wave, yet, therefore it can be treated as a simple alter-
nating magnetic field coupled with the transponder antenna. Moreover, it can
retroact towards the generating antenna, giving the possibility to have a mu-
tual induction between the generating antenna (reader) and the receiving one
(transponder);

• far-field (r > λ/2π): in this region the field starts to separate from the an-
tenna, becoming a propagating wave. The field can not be seen as a simple
magnetic field anymore, but it behaves as a wave, with all the related effects
(e.g. reflections). The most important aspect is that this field can not retroact
towards the antenna, therefore no inductive coupling can occur between the
reader and transponder.

Inductively coupled systems work in the near-field region, exploiting the inductive
coupling. Long-range systems, for instance, work at UHF or microwave frequencies,
in the far-field region, relying on effects such as reflections to communicate.

1.2.1 Load modulation

Working in near-field region, inductively coupled systems can exploit the so-called load
modulation for data exchange. If a transponder is placed in the near-field region of a
reader and if the system is correctly designed, the transponder can draw energy from
the reader’s field. Being in the near-field, magnetic retroaction on the reader antenna
is given by the transponder. In other words, according to how the transponder draws
energy from the reader field, an equivalent varying impedance ZT (t) is seen by the
reader. This allows having passive transponders that send data varying their energy
absorption, without generating their own field.

A more detailed explanation is reported in the appendix, at section A.3.

1.3 Coding and Modulation
Coding and modulation are the most important part of this background chapter since
the digital logic that will be developed in the remaining chapters of this thesis are
based on these aspects.

The high-level block diagram of a communication system is shown in Figure 1.2.
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Coding Modulation Channel DemodulationDecoding

Input 
m(z) g(t) s(t) ŝ(t) ĝ(t)

Transmitter Receiver

Output 
m̂(z)

Figure 1.2: High-level block diagram of a communication between two nodes.

The considered system relies on digital data, therefore all the following considerations
are valid for digital transmissions only, while for analog ones things are a bit different.
Therefore, the input m(z) is a sequence of bits that has to be delivered to the receiver.

The system consists of five basic blocks:

• TX - Coding: the bit sequence m(z) is modified to improve the Bit Error
Rate (BER). Then, the bit sequence is translated into a continuous-time signal
according to the channel needs. It is important to highlight that the obtained
signal g(t) is a base-band signal that is not yet suitable to be sent on the channel.

• TX - Modulation: a high-frequency unmodulated signal called carrier is
altered (amplitude, frequency and/or phase) according to g(t). The resulting
signal s(t) is a high-frequency signal whose spectrum is centered around the
carrier frequency fT .

• Channel: physical medium on which the signal propagates. It introduces noise
superimposed to the signal usually modelled as Additive White Gaussian Noise
(AWGN) plus additional non-linear effects such as distortion. For these reasons,
the output signal is ŝ(t) and not s(t).

• RX - Demodulation: it implements the symmetric operation with respect to
its TX counterpart. The obtained signal is ĝ(t) and not g(t) due to the influence
of the channel non-idealities.

• RX - Decoding: it implements the symmetric operation with respect to its
TX counterpart. The bit string is ˆm(z) and not directly m(z) because of the
channel non-idealities. In other words, the obtained bit string could be different
with respect to the transmitted one and (in case) countermeasures are taken
according to the protocol policies.

1.3.1 Coding

With coding, the ones and zeros are translated into continuous-time signals with
different features (e.g. bandwidth) according to the chosen translation scheme. The
obtained signal g(t) is a baseband signal.
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Mathematically:
g(t) = f(m(z)) (1.1)

The different translation schemes are called line coding. Common line codes for RFID
systems are shown in Figure 1.3. The ones which we are more interested in are the
Manchester coding and the modified Miller coding that are used in the ISO/IEC 14443
Type-A protocol [4].

NRZ coding:

Manchester coding:
(bi-phase)

1 1 1 10 0 0 0

1 1 1 10 0 0 0

1 1 1 10 0 0 0

Unipolar RZ coding:

1 1 1 10 0 0 0

DBP

1 1 1 10 0 0 0

1 1 1 10 0 0 0

Miller coding:

Differential coding:

1

1 1 1 10 0 0 0

Modified Miller
coding:

Figure 1.3: Line codings frequently used in RFID systems. Taken from [2].

1.3.2 Modulation

g(t) is a baseband signal that is not suitable for direct transmission on a channel like
the magnetic induction considered before. Another point is the fact that the channel
could be shared among multiple devices, even not RFID systems, that could operate
in the same frequency region, needing a frequency multiplexing to avoid interference.
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In the modulation stage, g(t) is used to modify the parameters (amplitude, phase,
frequency) of a carrier c(t), which is an unmodulated electromagnetic wave (i.e. a
sinusoid). In other words, the information contained in g(t) is embedded into the
carrier c(t): the former brings the information while the latter makes it transferable
on a physical channel.

There are infinite possibilities for this process, but the simplest one is represented
by the so-called binary modulated signalling. Three modulations belong to this cat-
egory and they are Amplitude-Shift Keying (ASK), Phase-Shift Keying (PSK) and
Frequency-Shift Keying (FSK). According to g(t), one parameter of the carrier is
changed (respectively amplitude, phase or frequency).

More complex modulations exist and they are used in communication systems where
a high bitrate needs to be achieved (e.g. Quadrature Amplitude Modulation (QAM),
Quadrature Phase-Shift Keying (QPSK)). However, they are not used for RFID,
since in these systems the required performance is very limited and maintaining the
complexity low is preferred.
For this reason, the equations shown below are not general and they cannot be applied
to more complex modulation schemes.

The modulation used in ISO/IEC 14443 Type-A protocol is the ASK [4], that is the
purely digital version of Amplitude Modulation (AM). The amplitude of the carrier
is switched between two states u0 and u1 according to g(t). Assuming a sinusoid with
amplitude 1 as carrier, u0 and u1 are respectively the upper and lower values that
s(t) assume after the modulation.
Mathematically:

s(t) = [d · g(t) + 1− d] c(t) with d =
u0 − u1
u0 + u1

(1.2)

c(t) = sin(ωT t)

where d is called duty factor.

An example of ASK signalling is shown in Figure 1.4.

u1

u0

t

d = 0.5; (ASK 50%)

Figure 1.4: ASK working principle. Taken from [2].
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Working into the frequency domain, the operation done with ASK is:

s(t) = (d · g(t) + 1− d) c(t) = x(t) c(t) ⇒ S(ω) = X(ω ± ωT ) (1.3)

that returns the x(t) spectrum translated and centered around ωT .

At the receiver side, the signal can be translated to baseband through dedicated
analog devices called mixers and then the information can be recovered.

However, transponders in inductively coupled RFID systems often rely on two subse-
quent frequency translations, with a subcarrier and a carrier respectively. The reason
is that, at the reader side, the signal coming from the transponder (load modulation,
see subsection 1.2.1) has a magnitude that is much lower than the signal from the
reader itself, making it difficult to correctly detect it. This issue is mitigated by using
a subcarrier, since in that case the signal coming from the transponder can be easily
filtered out, being the reader/transponder spectra not superimposed.

This technique can be mathematically expressed as:

v(t) = x(t) cos (ωSt) = x(t) cos (2πfSt)

s(t) = v(t) cos (ωT t) = v(t) cos (2πfT t) (1.4)

where fS is the frequency of the subcarrier and fT is the frequency of the carrier.

A representation of subcarrier modulation is shown in Figure 1.5.

f

S
ig

n
a

l

0 dB

−80 dB

f T = 13.560 MHz

f S = 212 kHz

Carrier signal of the reader,
measured at the antenna coil

Modulation product by
load modulation with subcarrier

13.772 MHz13.348 MHz

Figure 1.5: Subcarrier+carrier modulation. Taken from [2].

The subcarrier modulation approach can be used by transponders in the case of
inductively coupled RFID systems that are based on the physical principles explained
in Appendix A. Those communications are half-duplex, therefore only one of the two
nodes transmits at a time.

14



For the reader→transponder communication, the former does not need a subcarrier
because of the sufficient power available. Therefore, it transmits on a single carrier
(as stated in Equation 1.3) using an active approach (analog front-end terminates
with a power amplifier), providing power supply and data to the transponder.

About the transponder→reader communication, the transponder is usually passive
and it relies on load modulation for the transmission. The variations given by the
load modulation are usually very weak, needing subcarrier modulation. Referring to
Figure A.5 and Figure A.4 and according to the Equation A.8, the change in the
impedance ZT due to transponder load modulation can be detected at the reader side
measuring the voltage umeas. As said, a subcarrier is present and this means that
the FET is not switched on and off by a baseband-coded signal, but a low-frequency
subcarrier is first modulated by the baseband-coded signal. The modulated subcarrier
is then used to drive the FET.
A principle scheme is shown in Figure 1.6.

Subcarrier 212 kHz

Data stream − baseband coded

Carrier signal 13.56 MHz

Modulated subcarrier

ASK-Modulation 2
= Load modulation

ASK-Modulation 1

Load modulated signal with subcarrier

Figure 1.6: Principle scheme of carrier+subcarrier generation. Taken from [2].
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1.4 ISO/IEC 14443
The RFID systems in which we are interested rely on the ISO/IEC 14443 protocol, en-
titled “Cards and security devices for personal identification — Contactless proximity
objects”, used for contactless proximity-coupling smart cards [3][4][5][6].

Considering the differentiation made in section 1.1, the systems compliant to that
protocol are half-duplex and the transponders are passive (if they are NFC systems,
they operate in passive mode).
They are inductively coupled systems with an operating frequency of 13.56MHz and
a range of 7 to 15 cm.

Two different variants have been defined, called respectively Type-A and Type-B. The
working principle and the physical layer are the same and all the differences are at
higher levels (e.g. coding, error detection), allowing the same device to work in both
modes changing a few parameters of the control part.
The variant used in the application that we will discuss in the rest of this thesis is
the Type-A.

In Type-A, for the communication reader→transponder, ASK modulation with d = 1
(100%) and modified Miller coding is used.

For the transponder→reader, a load modulation procedure with a subcarrier at fre-
quency fS =847 kHz (13.56MHz/16) is used. The modulation of the subcarrier is
made through ASK modulation with Manchester coding. The admitted baud rates
for the transmission are various, but the considered application has fbaud =106 kHz.
Here, the ASK duty factor d depends on the coupling coefficient k (see section A.1)
between the reader and the transponder since the load modulation effect is more ef-
fective if k is high (refer to Equation A.8 for a mathematical expression).
In Figure 1.7 an example of the reader’s and transponder’s waveforms is reported.
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0 1 0 0 0 1 1

0 1 0 0 0 1 0

Figure 1.7: Example of ISO/IEC 14443 Type-A waveforms.
First image: down-link (voltage at the reader antenna).
Second image: up-link (voltage at the transponder coil). Taken from [2].

The protocol is very detailed on the aspects discussed so far and it goes on with
the upper layers (e.g. initialization and anticollision, transmission protocol). Within
this thesis, a demodulator for the transponder→reader communication will be con-
sidered, therefore it would be not useful to go on with further details and the protocol
deepening is left to who is reading, if interested.
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Chapter 2

OpenHW group’s cores

2.1 Why RISC-V?
In the field of microprocessors, one of the main distinction parameters is the Instruc-
tion Set Architecture (ISA). The ISA defines aspects such as the supported data
types, which instructions the processor is able to execute, the registers and how the
hardware manages main memory. The ISA can be extended by adding instructions
or other features.
Two main design philosophies about ISA exist: RISC and CISC.

According to Reduced Instruction Set Computer (RISC), the CPUs are designed to
execute really basic instructions, relying on simple and efficient hardware architec-
tures. This means that to execute a certain program a large number of assembly
instructions could be needed; this aspect is counterbalanced by the efficiency (in
terms of clock frequencies and power) given by the hardware architecture.

On the other hand, the Complex Instruction Set Computer (CISC) approach is based
on more expensive architectures able to execute more complex instructions. As con-
sequence, the number of assembly instructions needed to execute the same program
is less than RISC, but the architecture is less efficient and a lower clock frequency
and higher power is reached.

In [7], an analysis of the RISC vs CISC debate is reported. Traditionally, RISC ISA
was used for low-power applications (e.g. mobile) while CISC for high-performance
(e.g. server). Nowadays, the computing landscape is different, since the growth of
mobile devices running RISC ISA is surpassing that of the desktops and servers run-
ning CISC ISA. Moreover, high-performance RISC and low-power CISC applications
are arising and in some cases CISC processors embed some RISC parts and vice-
versa, making the distinction quite blurred. From the analysis of various processors
emerged that RISC and CISC are two engineering design points and there is nothing
fundamentally more efficient in one ISA class or the other.
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However, that analysis focuses on general-purpose microprocessors, ARM Cortex-
A8/Cortex-A9 and Intel Atom/Sandybridge, that are not suitable for the application
considered in this thesis.

In [8], a core for IoT applications with DSP ISA extensions is presented. That ap-
plication is more similar to the one this thesis is focused on and it is based on the
RISC-V platform.

RISC-V is an open standard RISC ISA that has been developed at the University of
California, Berkeley, since 1981. It is an open-source, royalty-free ISA that can be
freely used by anyone as a base block to build their own solutions and services, even
if commercial [9].

The main reason behind the RISC-V choice for the application presented in [8] is the
open-source nature of the project that allows avoiding the dependency on IP provider,
cutting the cost and giving freedom for application-specific instruction extensions.

In addition to this, RISC-V project is 30 years old and it has been widely explored;
this means that it is likely to be mature now. Other symptoms of its maturity are the
variety of RISC-V based implementations that are arising in the last years and the
great attention that the companies are dedicating to it. In fact, leading companies in
the semiconductor field, such as NXP, are investing in RISC-V.

2.2 OpenHW group
The development of the project has been carried out starting from open source RISC-
V based cores by the OpenHW group. As one can read from the OpenHW group
website [10]:

OpenHW Group is a not-for-profit, global organization driven by its mem-
bers and individual contributors where hardware and software designers
collaborate in the development of open-source cores, related IP, tools and
software. OpenHW provides an infrastructure for hosting high-quality
open-source HW developments in line with industry best practices.

They provide a family of permissively licensed RISC-V based cores called Core-V,
with different features and intended applications.

OpenHW group’s cores are becoming popular for different reasons. They offer a
great variety of implementations suitable for different applications and the quality is
comparable to industrial products. In addition, it is not so difficult to switch from
one core implementation to another, since they share the same development approach
and verification environment.

These advantages add up to the ones of RISC-V, determining OpenHW group’s core
as a very good choice for the considered DSP application.
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In Figure 2.1 the road map for the different cores is shown. It can be seen that some
cores are in advanced status, while others are in development or just a concept.

Figure 2.1: Core-V family cores road-map updated to April 2022. Taken from
OpenHW repo [11].

The following brief descriptions are taken from [11].

Application cores

• CVA6: CVA6 is a 32-bit/64-bit 6-stage, in order, single-issue core, implement-
ing RV32GC or RV64GC extensions with three privilege levels. In addition, it has
features to support Unix-like operating systems.

• CVA5: CVA5 is a 32-bit RISC-V processor designed to support FPGAs. Mul-
tiply/Divide and Atomic extensions (RV32IMA) are present. The datapath has
been developed to support parallel, variable-latency execution units and to be
easily extended with custom ones.

Embedded cores

• CV32E40P: CV32E40P is a 32bit, 4-stage core that implements
RV32I[M][F]C[Xpulp] ISA. Among the optional extensions, there are the FPU,
multiplication/division support. In addition, custom instructions are imple-
mented for DSP operations.
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• CV32E40X: CV32E40X is a 32-bit small and efficient, in-order RISC-V core
with a 4-stage pipeline that implements the RV32[I,E][M|Zmmul][A]
[Zca_Zcb_Zcmb_Zcmp_Zcmt][Zba_Zbb_Zbs|Zba_Zbb_Zbc_Zbs][Zicntr]
[Zihpm][Zicsr][Zifencei][X] ISA. It is aimed at compute-intensive appli-
cations and it provides an extension interface to reduce the effort for custom
instructions implementation.

• CV32E40S: CV32E40S is a 32-bit small and efficient, in-order RISC-V core
with a 4-stage pipeline that implements the RV32[I,E][M|Zmmul]
[Zca_Zcb_Zcmb_Zcmp_Zcmt][Zba_Zbb_Zbs|Zba_Zbb_Zbc_Zbs][Zicsr]
[Zifencei][Xsecure] ISA. It is aimed at security applications.

• CV32E41P: CV32E41P is a 32-bit small and efficient, in-order RISC-V core
with a 4-stage pipeline. It is a fork of the CV32E40P core, supporting the same
ISA plus the official RISC-V Zfinx and Zce extensions.

The considered alternatives: CV32E40P and CV32E40X

Among the cores described above, the ones interesting for the considered DSP ap-
plication are the embedded cores since the complexity of an application core is not
needed. Among the four available, the CV32E40S has security features that are not
needed, while the CV32E41P development status is far to be usable. The CV32E40P
and the CV32E40X are good candidates because their development is advanced and
they have unique useful features that will be discussed in the following sections.

2.3 CV32E40P main features
It is a 32-bit 4-stage core compliant with the RISC-V RV32I base integer ISA and
with other RISC-V standard and custom extensions. The block diagram is shown in
Figure 2.2. We are not interested in focusing on the different blocks working principles
(for more information, refer to [12]).
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Figure 2.2: CV32E40P block diagram [12].

The RISC-V standard ratified extensions available are:

• I (v2.1, always enabled): basic instruction set;

• C (v2.0, always enabled): compressed instructions;

• M (v2.0, always enabled): integer multiplication and division;

• Zicntr (v2.0, always enabled): performance counters;

• Zicsr (v2.0, always enabled): Control and Status Registers related instruc-
tions;

• Zifencei (v2.0, always enabled): instruction-fetch fence;

• F (v2.2, optionally enabled): single-precision floating-point arithmetic op-
erations using dedicated F-registers;

• Zfinx (v1.0, optionally enabled): single-precision floating-point arithmetic
operations using integer X-registers.

The RISC-V standard not ratified extensions available are:

• Zicntr (v2.0, always enabled): performance counters.

Custom instructions available are:
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• Post-Incrementing load and store;

• Hardware Loop extensions;

• ALU extensions;

• Multiply-Accumulate extensions;

• Single-Instruction Multiple-Data (SIMD) extensions.

2.4 CV32E40X main features
It is a 32-bit 4-stage core, compliant with the RISC-V RV32I base integer ISA and
with other RISC-V standard extensions. The CV32E40X block diagram is shown in
Figure 2.3. We are not interested in focusing on the different blocks working principles
(for more information, refer to [13]).

It is similar to the CV32E40P since it is derived from it, but it has different ISA
extensions implemented and a standard interface called eXtension interface is present
to simplify the custom ISA extension through a coprocessor (look at subsection 2.4.1).

Figure 2.3: CV32E40X block diagram [13].

Notice that the specifications listed below are updated to the period in
which this thesis has been written (Q3’22) and, for now, the CV32E40X
core is not RTL freeze. This means that these instructions are the final
aim of the OpenHW project, but for now, some of them could be not
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yet implemented or their implementation modified in the future. In addi-
tion, some instructions are not even ratified by the RISC-V international
association, therefore they are more likely to be changed.

The RISC-V standard ratified extensions available are:

• I (v2.1, always enabled): basic instruction set;

• C (v2.0, always enabled): compressed instructions;

• M (v2.0, optionally enabled): integer multiplication and division;

• Zicsr (v2.0, always enabled): Control and Status Registers related instruc-
tions;

• Zifencei (v2.0, always enabled): instruction-fetch fence;

• A (v2.1, optionally enabled): atomic instructions;

• Zba / Zbb / Zbc / Zbs (v1.0.0, optionally enabled): bit manipulation;

• Zkt (v1.0.0, always enabled): cryptography-related extensions;

• Zbkc (v1.0.0, optionally enabled): cryptography-related extensions;

• Zmmul (v1.0.0, optionally enabled): subset of the standard M extension.

The RISC-V standard not ratified extensions available are:

• Zicntr / Zihpm (v2.0, always enabled): counters;

• Zc* (v0.70.4, always enabled): subset of the standard C extension.

2.4.1 eXtension Interface (CV32E40X only)

The CV32E40X core implements and supports a specific interface, called eXtension
interface, to simplify the implementation of custom instructions. It is not supported
by the CV32E40P core.

The related documentation updated to v0.2.0, which is the one used in this project,
can be downloaded from [14].

The eXtension InterFace (XIF) is an interface developed by the OpenHW group to
have a standardized manner to extend the core with custom instructions, without the
need to modify the core internal RTL. It can be used to implement standard RISC-V
extensions (floating-point support, SIMD, bit manipulation etc...) or fully custom
extensions.
Custom ALU type, load/store type or CSR related extensions can be implemented.
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Custom instructions related to instruction flow control (e.g. branches, jumps) are
not supported through the interface.

The basic idea is to have an external coprocessor to be coupled to the main core
through the XIF. The coupling is loose since the coprocessor cannot directly access
the core datapath. The coprocessor shall implement the desired custom instructions
and the logic to manage the communication core-coprocessor. The interface is based
on handshaking (control) and data signals divided among six interfaces (compressed,
issue, commit, memory, memory result, result), according to the purpose of each
signal.

A bunch of parameters can be set to use the interface with cores with different features
(e.g. memory width addressing, number of reading ports of the core register file).
Almost all of these parameters are core dependent, therefore they are fixed for the
CV32E40X and not significant for the coprocessor development.

Working principle

CPU will attempt to offload every (compressed or non-compressed) instruction that it
does not recognize as a legal instruction itself. In the case of a compressed instruction,
the coprocessor must first provide the core with a matching uncompressed (i.e. 32-
bit) instruction using the compressed interface. This non-compressed instruction is
then attempted for offload via the issue interface.

The offloading of all the uncompressed instructions is performed through the issue
interface. Together with the instruction, the core provides the required Register File
(RF) operands (i.e. rs1 and rs2), which are always encoded in the instruction bits
[19:15] and [24:20] respectively. The coprocessor shall signal for each offloaded
instruction if that instruction is accepted or rejected and it shall inform the core
about the type of instruction (e.g. load/store, writeback to RF is needed).

The core can speculatively offload instructions to the coprocessor. This means that
the core can offload an instruction without knowing if it shall be committed or killed
(e.g. due to a taken branch). The communication about the committing/killing is
performed through the commit interface. In case of killing, the coprocessor shall
ensure that the instruction is completely discarded with no remaining traces.

In the case of load/store instructions, the memory accesses by the coprocessor are
made indirectly through the memory interface and the memory result interface.
Through the former, the coprocessor requests memory access (both read/write), while
on the latter the core returns the requested value (in case of a load) or a simple ac-
knowledgement (in case of a store).

At the end of the execution of an offloaded accepted instruction, the coprocessor
shall signal its completion through the result interface. In case a writeback to the
core RF is needed, the value to be stored and the register index is sent through this
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interface. If a writeback is not needed, a simple acknowledgement by the coprocessor
is signalled.

In short: from a functional perspective, it should not matter whether an instruction
is handled inside the core or inside a coprocessor. In both cases, the instructions need
to obey the same instruction dependency rules, memory consistency rules, load/store
address checks, etc.

2.5 CV32E40P and CV32E40X comparison
The two cores are pretty similar since the X-version has been derived from the P-
version, but there are some differences, as shown in Table 2.2.

CV32E40P CV32E40X

ISA Useful standard/custom extensions
already present (e.g. FPU, SIMD)

Limited extensions present
(no FPU, no SIMD)

ISA extension Directly in the EX-stage of
the core → extension could be tricky

eXtension interface
→ easily extendable

Dev status Frozen development
→ stable

Advanced but WIP development
→ bugs can be present

Table 2.2: Summary of the main differences between CV32E40P and CV32E40X.

2.6 Verification environment
The verification environment is provided by OpenHW and it can be found on their
repository [15]. Within this thesis, details will be avoided and only a brief overview
will be given. Additional features have been implemented to support this project and
they are reported in chapter 4.

The environment is based on the Universal Verification Methodology (UVM) frame-
work to guarantee flexibility and compliance with respect to industrial working prac-
tices. It is supporting all the OpenHW group’s cores, with some elements that are
common to all the cores (e.g. UVM libraries) and others that are core-dependent
(e.g. assertion modules). Different simulation tools (e.g. Cadence Xcelium, Metrics
Dsim) are supported.
Among the core-dependent components, there are the testcases: many of them have
been defined by the OpenHW group for each core to verify their features. To start us-
ing the environment, it is sufficient to download a GCC toolchain supporting RISC-V
instructions (e.g. RISC-V Embecosm toolchain [16]) and slightly modify the makefiles
(look at the OpenHW docs for more information).
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An open-source bus called Open Bus Interface (OBI) is used within the testbench for
core-memory communication. Memory behaviour is emulated through some models.

For the core verification, an Instruction Set Simulator (ISS) is needed. They are
reference models emulating the RTL behaviour of the core exploiting high-level pro-
gramming languages. Even though it can be disabled in the testbench, without a
reference model the RTL executes the code without any checking on the correctness
of the execution.
There are two popular ISSs:

• Spike: it is an open-source ISS for RISC-V CPUs only, supporting the base
ISA and a lot of extensions. In addition, it can be easily extended with custom
instructions (even though some limitations are present);

• OVPsim: it supports a lot of different CPUs models, from different vendors.
It was born as fully open-source ISS, but during the years it has become a
hybrid: it can be used freely if no commercial aims are present (personal, hobby,
academic), while a fee is applied if it is aimed to be used for commercial projects.

At the moment, OVPsim supports the OpenHW group’s core and it is integrated into
the verification environment, while Spike is not supporting the OpenHW group’s core
specifically, but only general RISC-V CPUs. For OVPsim, we decided to not use it
to avoid possible licensing legal issues. As for Spike, a not negligible effort would be
needed to adapt it to support the OpenHW group’s cores and to integrate it into the
verification environment. For these reasons, we decided to disable the ISS support
in the verification environment and to perform a basic verification of the developed
accelerator working externally, as discussed in chapter 4.
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Chapter 3

Preliminary analysis

3.1 Starting point

3.1.1 System overview

An NFC system compliant with the standard ISO/IEC 14443 is considered. For a
high-level overview of a communication system, see Figure 1.2.

Focusing on the RX chain, a very basic scheme is shown in Figure 3.1. It is made by:

• analog front-end: it receives the radio frequency field and it performs the
carrier demodulation (i.e. the spectrum centered around ωT is translated to
baseband) and an Analog-to-Digital Converter (ADC) is exploited for sampling.
Its output is the I/Q samples to feed the digital part. It works on the physical
layer of the ISO/OSI model.

• digital baseband demodulator: it is in charge of the baseband demodulation
starting from the I/Q samples provided by the analog front-end. Its output is a
bitstring that should match with the one sent by the TX. It works on the data
link layer of the ISO/OSI model.

• additional processing: it performs additional operations on the bitstring
provided by the demodulator, such as collision detection and error correction.
It works on the data link layer and above.
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Figure 3.1: Principle scheme of the RX chain.

The block this work is focused on is the digital baseband demodulator. The
ISO/IEC 14443 standard supports many configurations, therefore one of them has
been chosen: reader mode, Type-A, 106 kHz baud rate [4].

This setting has been chosen as a starting point because it is the simplest case to
be managed, but this is not a limit since the project developed can be extended to
different use cases. Indeed, for some use cases, the hardware developed is perfectly
compatible and only some software changes are required, while for others some hard-
ware extensions could be needed. The fact that many configurations and use cases
exist is the main reason why the hardware needs to be as flexible as possible.

The existing hardware and algorithms are NXP’s Intellectual Property (IP), therefore
the details can not be explained in this work.
What is relevant for the following discussions is that the system is a chain of various
digital filters, each of them executing different tasks and having a different number
of taps and a different bitwidth.
In the end, the main operation to be performed is digital filtering.

3.1.2 Digital filtering basics

Generally speaking, two basic digital filter structures exist: Finite Impulse Response
(FIR) and Infinite Impulse Response (IIR). The general diagram is shown in Fig-
ure 3.2, while the corresponding equations are respectively shown in Equation 3.1
and Equation 3.2.
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Figure 3.2: General structure of FIR and IIR filters.

FIR equation:

y[n] =
N−1∑
i=0

bi x[n− i] (3.1)

IIR equation:

y[n] =
N−1∑
i=0

bi x[n− i]−
N−1∑
j=1

aj y[n− j] (3.2)

where:

• x[n− i]: input at the discrete time instant i;

• y[n− j]: output at the discrete time instant j;

• (N − 1): order of the filter;

• bi: feedforward filter coefficients;

• ai: feedback filter coefficients.

The arithmetic operation made by a filter is a Multiply-Accumulate (MAC). There
are data coming in, shifting through the delay line, which are multiplied by fixed
coefficients and then all the multiplication results added up.
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3.1.3 Results exploiting RISC-V base ISA

3.1.3.1 General filter expected results

If one wants to implement a filter using a processor:

• the input samples x[n− i] are usually taken from the data memory;

• the coefficients bi and aj could be taken from the data memory or provided as
immediate packed into the instruction;

• the output samples y[n− j] have to be computed by the ALU and then main-
tained into the core registers (if feasible) or stored/loaded into/from the data
memory.

Consider the FIR case (refer to Equation 3.1) and assume that the coefficients are
passed as immediate (i.e. no memory load needed for them). In a first approximation,
to compute a single value of y[n− j] the instructions needed are:

• lw: N times (N input samples x have to be loaded from the data memory);

• muli: N times (N input samples x have to be multiplied by N coefficients a,
b);

• add: (N − 1) times (results of the previous multiplications (N elements) have
to be added together).

3.1.3.2 Considered use case results

Focusing on the considered use case, an indicator of the system performance can
be obtained by comparing the number of instructions needed per sample with the
maximum number of instructions that the processor can execute in a sampling period.
The sampling period is the key part of the analysis. To be real-time, the processor
must be able to execute all the instructions needed for a sample in a time lower (or
equal) than the sampling period.

Assuming:

• a sampling frequency of 13.56MHz, with a 2x downsampling, the time interval
between two subsequent samples is:

ts =
1

13.56MHz
· 2 = 147.5 ns (3.3)

• a CPU clock frequency fclock = 540MHz, that is a reasonable value for the
processors we are considering, the number of clock cycles at the core disposal
between two subsequent samples is:

ncc,max =
ts
tclock

= ts · fclock = 79 (3.4)
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As for the number of instructions needed per each sample, running the demodulation
algorithm (NXP’s IP) exploiting the RISC-V base ISA, 152 instructions per sample
are needed.

Simulating on the RTL through the verification environment, the number of clock
cycles needed per sample is larger than the number of instructions, since the relation
(1 instruction ⇐⇒ 1 clock cycle) is not valid due to events such as pipe stalling and
memory accesses. This worsens the performance, taking the configuration further
away from the requirements.

However, even with the assumption of 1 instruction executed in 1 clock cycle, the
performance is 2 times less than the required!

3.1.3.3 Issues

Two main issues (and the corresponding solutions) can be identified:

1. arithmetic: the number of add and muli needed per each output sample grows
with the number of taps of the filter N and they could limit the performance if
N is large.
A solution could be the development of a dedicated ALU block to compute
MAC efficiently.

2. memory accesses: also for the memory accesses the dependence is on the
number of taps of the filter N . Neglecting compiler optimizations, lw should
be called N times per output sample. Compiler optimizations (e.g. reuse input
samples for more than one output sample without reloading them from the
memory) are not always feasible since the number of internal registers available
to the user in a RISC-V based processor is not so high (31 R/W registers, not
all of them dedicated to the user).
However, if we assume that all the samples used to compute y[n] are available
for the ALU (i.e. they have been loaded from the memory to some registers),
only an additional sample x[n+1] is needed to compute y[n+1], with only one
additional memory load. We can exploit this memory buffering to reduce the
memory load operations.

3.2 Related work
To improve performance, accelerators could be designed.

Accelerators are key components in many of modern SoCs and they are used to
compute intense and specific tasks with lower latency and energy consumption [1].
RISC-V has becoming an affordable choice in such systems since it is open-source,
efficient and has been widely explored over the years. One can opt for a basic RISC-
V implementation with low area-power, implementing very basic features and acting
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as a sort of control unit for accelerators, that are in charge of efficiently executing
dedicated tasks.

An example is LACore [17] , a programmable accelerator for general-purpose linear
algebra applications. It is based on a very complex architecture allowing to bring
many of the linear algebra computing capabilities typically reserved for supercom-
puters to usual SoCs form factor.
In [18] an integration of NVIDIA Deep Learning Accelerator (NVDLA) into a RISC-V
SoC is presented. NVDLA is an accelerator for deep neural networks by NVIDIA,
originally designed for its Xavier SoC, then made open source in 2018.
In [19] a coprocessor for matrix multiplication in AI applications has been devel-
oped, while in [20] an accelerator for DSP applications generated through hardware
generation algorithms is presented.

The implementations above are impressive from the complexity and functional per-
spective, being out-of-scope for this thesis work and, probably, too much and “over-
sized” also for the considered application.

More modest, but interesting implementations of core+accelerator architectures are
presented in [1] and [21]. They implement the multiply-accumulate operation, but
some desired features, such as memory buffering and the IIR support, are missing.

Besides high-level architectures, some improvements could be gained from the explo-
ration of optimization techniques at a lower level, acting on the purely arithmetic
part of the design.
Focusing on the MAC optimization, many papers are present and very efficient im-
plementations could be achieved [22][23][24][25][26].
One could also act on the filter structure optimization, as shown in [27] and [28].
Unfortunately, these approaches are often too tailored to very specific structures,
resulting very strict and not allowing the needed flexibility.

3.3 Improvement alternatives
To improve the performance of arithmetic there are different alternatives, some of
them already ratified by the RISC-V organization.

• MAC: Multiply-Accumulate arithmetic unit;

• SIMD (Single-Instruction Multiple-Data): it consists of packing multiple
data in a single register, processing them in parallel;

• Vector processing: it is based on the same principle of SIMD, but it works at a
higher level of abstraction, bringing much more flexibility and higher complexity.
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As for as memory buffering, things could be not straightforward.
Assuming one wants to implement a memory buffering mechanism using the existing
RISC-V ALU, it is difficult to define how the new memory structures (i.e. additional
registers) could be used by the RISC-V ALU. The standard Register File in a RISC-
V CPU is made by 32 registers and the instructions are defined according to this
limitation.

A good approach could be the design of a new and, overall, independent ALU block
including both an efficient arithmetic part (e.g. MAC, SIMD) and registers imple-
menting memory buffering. This is the idea that will be followed in this project.

3.3.1 MAC

The Multiply-Accumulate (MAC) arithmetic operation is the most common in DSP
since it is the foundation of digital filtering.

Mathematically:

y =
N−1∑
i=0

ci xi (3.5)

Porting the general idea to the special case of digital filtering, ci are the coefficients,
while xi are the samples (feedforward and feedback).

Considering the basic RISC-V ISA, this operation would require N multiplications
and (N − 1) additions, while a dedicated MAC could be optimized to be much more
efficient.

3.3.2 SIMD

Single-Instruction Multiple-Data (SIMD) consists of packing multiple data in a single
register and performing the same operation on them in parallel.

For instance, consider the usual 32-bit Register File (RF) of a RISC-V processor
and that one wants to perform an addition between two registers. With SIMD, each
register can be split in M equal parts (usually M is a power of 2) consisting of 32/M
bits each. On each of the M parts, the same operation can be executed (on 32/M
bits) and the result can be packed in the same way as the input. In other words, with
a single instruction, M operations are made in parallel, incrementing the throughput.

Of course, the data must have a bitwdith suitable to fit in those sub-parts. Usually,
in DSP operations, the samples have a quite low bitwidth, taking great advantage of
this kind of processing.

In Figure 3.3 the working principle with M = 2 is shown.
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Figure 3.3: Working principle of SIMD (M = 2).

A standardization proposal by the RISC-V organization is present (extension is named
P), even though it is not ratified. Many of the defined instructions are tailored to
DSP applications.

The SIMD instructions are quite simple to be implemented and they do not require
much more additional logic.
The main drawback is that these instructions are entirely hardware-dependent, bring-
ing difficulties in code porting. For instance, different CPUs could have different RF
sizes and this needs the writing of multiple versions of the same code to operate
correctly on the different processors. In addition, the number of instructions to be
implemented into the ISA increases with the RF size. These drawbacks can be avoided
by working with Vector processing.

3.3.3 Vector processing

Vector processing is based on the same principle of SIMD (i.e. parallelization), but this
strategy is based on a more flexible (and complex) hardware, allowing the programmer
to work at a higher level of abstraction.
In SIMD, for the same operation (e.g. ADD), multiple instructions to select the right
packing are coded (e.g. ADD8, ADD16), bringing to a large ISA size, even if the effective
number of operations defined is quite low. In addition, porting is almost impossible
among CPUs with different features.
In vector processing, only one instruction for each operation is defined (e.g. VADD)
and the selection of the packing, data alignment and other parameters is made by
configuring Control-Status Register (CSR). This decreases the ISA size and allows to
have a portable code among cores with different specifications since the instructions
are abstracted and a different CSRs configuration is enough to make the code work
on the different cores.

Vector instructions have a RISC-V organization’s proposal, as well, and they have
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been ratified (i.e. frozen) on November 2021 [29]. It adds 32 vector registers (v0-v31)
and seven additional unprivileged CSRs. An astonishing number of different instruc-
tions and CSR configurations are possible, bringing great flexibility to the system.
One can set a CSR to choose the number of bits for each sub-part of the vector reg-
isters (e.g. 16 bits for each sub-part) and one can even work with multiple vector
registers together. For example, considering vector registers of 32 bits each, one can
set the usage of two of them together (64 bits total) split into elements of 8 bits
(8x8bit elements) for each operation: the hardware will implement the needed logic
to perform this operation with a single instruction.
Instructions for vector-vector, vector-scalar or vector-immediate operations are im-
plemented and integer, fixed-point and floating-point numbers are supported, with
the possibility to have different rounding schemes.

It is clear that this kind of extension is really powerful and brings a lot of advantages
in terms of flexibility and portability, but the hardware required to implement it could
be really expensive. In the case we are considering, in which the code developed is
firmware for specific hardware and tasks, the porting features are not so useful. For
this reason, the vector processing extension is probably too much for our purposes
and a SIMD-like approach could be more suitable.

3.3.4 Dedicated accelerator

Since we are working with time-critical applications and the core has to be used as an
embedded product integrated into special-purpose hardware, the requirements for the
project is to achieve better performance with respect to the base RISC-V ISA, but
without needing too many different instructions. For this reason, a custom accelerator
could be a better solution: the advantage is that only the strictly needed custom
instructions are developed (and the corresponding hardware) and the flexibility can
be tailored to fit the considered application.

The hardware could be flexible enough to support different kinds of filters, with
different orders etc, meanwhile reducing at minimum the overhead that a general-
purpose extension would bring. Moreover, we can implement additional features that
the extensions cited before do not provide, such as the memory buffering, which is
one of the bottlenecks of the system.
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3.3.4.1 General filter expected results

We replicate the same analysis of subsubsection 3.1.3.1, but considering a coprocessor
able to:

• compute the MAC operation in 1 clock cycle, despite the number of taps of the
filter;

• buffer all the samples needed to compute y[n] (i.e. storing them in internal
registers) and using them to compute y[n+1], loading only an additional input
sample x[n+ 1] from the memory.

As in subsubsection 3.1.3.1, consider the FIR case (refer to Equation 3.1) and assume
that the coefficients are already available to the ALU (i.e. no memory load needed
for them).
In a first approximation, to compute a single value of y[n+1] the instructions needed
are:

• lw: 1 time (only 1 additional input sample x[n+ 1] is needed);

• mac: 1 time (the MAC arithmetic unit is able to compute all the Multiply-
Accumulate operations needed in one instruction).

We pass from (3N − 1) of the RISC-V base ISA to 2 instructions only! Notice that
ideally the number of instructions needed exploiting the accelerator does not depend
on the number of taps of the filter N . However, this is not completely true, since
higher N means higher hardware complexity (more memory for the buffering, more
logic for the MAC unit) and a trade-off could be needed.
The improvement is significant anyway.

3.3.4.2 Considered use case expected results

Here the same analysis of subsubsection 3.1.3.2 is resembled.

As said there, assuming fclock = 540MHz, the maximum number of clock cycles
available per sample is 79 clock cycles and the base ISA is not able to reach such
a performance.

Defining a dedicated accelerator with the specifications that will be explained in
chapter 4, the expected number of instructions needed by a sample spans from 29 to
45 instructions (no details are reported here due to NXP’s IP). It is more than 3
times less than the 152 instructions needed with the base ISA!

Of course, the condition (1 instruction ⇐⇒ 1 clock cycle) is not always satisfied,
therefore more clock cycles are needed due to some non-idealities such as pipe stalls
and core-accelerator interfacing. These losses could be mitigated through additional
hardware and investigations (subsection B.1.1 is an example).
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Despite these limitations, the improvement that could be reached is promising.

The final results after the coprocessor development obtained by the RTL simulations
are reported in section 6.2.
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Chapter 4

Accelerator design

In the end, the development of a custom coprocessor/accelerator (both terms will be
used throughout this document) was the choice. The development has been greatly
simplified by the eXtension InterFace (XIF) by OpenHW group, allowing to couple a
coprocessor to the main core exploiting a series of standardized interfaces, as explained
in subsection 2.4.1. The only OpenHW group’s core supporting this interface so far
is the CV32E40X and it is the one that has been used in this project.

In this part, the high-level specifications are reported. For more details, refer to
Appendix B (look at Introduction for information about the two parts’ purpose).
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4.1 Working principle
The general architecture is shown in Figure 4.1 and some elements are worth being
explained.
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Figure 4.1: ALU MAC architecture.

The system works with integer/fixed point 2’s complement numbers. The usage
of fixed-point numbers is made possible thanks to a configurable rounding unit present
in the design.

The system is tailored to optimize digital filtering, therefore the notation reported in
subsection 3.1.2 will be also used in this section.

There are two sets of shift registers (DATA_REGS and COEFFS_REGS) and they represent
the operands of the MAC arithmetic unit. The number of feedforward and feedback
elements to be stored can be set, allowing the implementation of FIR and IIR filters.
The DATA_REGS store the input samples x[n− i] and, eventually, the feedback samples
y[n− j].
The COEFFS_REGS store the coefficients bi and, eventually, aj.

Both DATA_REGS and COEFFS_REGS are made up of different independent banks that
are identified by an index that will be named bank_index throughout this document.
A bank is a series of memory locations (i.e. an array of multi-bit values) in which
data are loaded in a shift-register manner.
Each data bank has its corresponding coeffs bank, having the same number of ele-
ments (i.e. length of the shift register) and indexed together. In other words, each
bank_index denotes the pair of data bank and coeffs bank : for each bank_index, each
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sample in a data bank has its corresponding coefficient in the coeffs bank.

Each bank should be ideally devoted to a single filter, in such a way that each bank
stores the state of that filter (samples+coefficients) and that state is not modified by
operations on other filters. However, one can choose also to dedicate the same bank
to more than one filter, accepting some performance loss.
We call N_ELEM_<X> the number of elements in the data bank and coeffs bank identified
with bank_index=X.

N_ELEM_<X> can be set differently for each bank as RTL parameter: it will be fixed
after the synthesis and can not be changed at runtime. If not all the memory locations
are needed in the software, one can set the corresponding coefficients to 0.

The bitwidth of each element can be set independently for each bank and it can be
different between data banks and coeffs banks.
We call WIDTH_D_<X> the bitwidth of the samples stored into the data bank identified
with bank_index=X.
We call WIDTH_C_<X> the bitwidth of the coefficients stored into the coeffs bank iden-
tified with bank_index=X.
Take into account that the core RF and the data memory are on 32 bits: if WIDTH_*_<X>
is lower than 32, MSBs truncation will occur during the storing of new data into the
registers. This is a wanted behaviour if the values you are storing have a bitwidth
lower than 32, as often occurs in DSP applications.

Each bank contains N_ELEM_<X> elements (that are samples for DATA_REGS and coef-
ficients for COEFFS_REGS), where:

• (n_feed_<X>) are the feedback elements;

• (n_forw_<X>=N_ELEM_<X>-n_feed_<X>) are the feedforward elements.

With this structure, one can split the whole N_ELEM_<X> size between the feedforward
and the feedback elements as desired.
E.g. If one has a filter with 32 feedforward elements and 3 feedback elements, 35 total
elements are needed.

In Figure 4.2 the logical structure of a single bank is shown. The orange line separates
the part of the bank dedicated to the feedforward elements from the one related to the
feedback ones. The position of the orange line (i.e. the number of feedback elements)
can be set by the programmer at runtime.
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Figure 4.2: Logical structure of a data bank (on the right) and the corresponding
coeffs bank (on the left).

As said, those memory locations behave as a shift register, but there are some differ-
ences among the data banks and the coeffs banks.
The coeffs banks are truly shift-registers, with a single input and a single shifting
direction (from top to bottom in Figure 4.2).
As for the data banks, it can be seen as a couple of two independent shift registers, one
shifting downward (for the feedforward elements) and another one shifting upward
(for the feedback elements). The size of each of the two parts can be set by the pro-
grammer at runtime, setting n_feed_<X>. In case n_feed_<X>=0, only feedforward
elements are present, i.e. a single downward shift register. The other limit case is
when n_feed_<X>=(N_ELEM_<X>-1): in that case, a single upward shift register is
present.
The programmer can load elements only to the feedforward part of the data banks,
while the feedback part is managed by the hardware which automatically loads the
output result of the MAC arithmetic part after each execution.

Once the data/coefficients are loaded, the result of the Multiply-Accumulate operation
can be obtained through a dedicated instruction and it is stored in the feedback part
(if n_feed_<X>>0) of the data bank on which the operation has been executed. A
configurable rounding unit is also present.

The operation can be executed in a standard way or in a packed SIMD fashion,
according to a parameter that can be set at runtime. If SIMD is enabled for that
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bank, each element of the data bank and coeffs bank is seen as two packed elements
and two parallel executions are carried out (see subsubsection 4.3.1.2).

4.2 Pre-synthesis parameters
Since different configurations have to be supported, the project aimed to have a flexi-
ble architecture, without impacting significantly the performance-power-area aspects.
To this purpose, the possibilities offered by SystemVerilog and by modern synthesiz-
ers have been largely used. The obtained design can be customized through static
pre-synthesis parameters, which modify the architecture (e.g. bitwidth, number of
registers) without introducing overhead.
There are some parameters to be set in the top-level module of the design (coproc.sv)
and here their meaning is explained.

Parameter name Type Description

N_BANKS_MAC int Number of banks
for DATA_REGS and
COEFFS_REGS.

N_ELEMENTS_BANK_MAC int [N_BANKS_MAC] Number of elements
for each bank. E.g.:
N_ELEMENTS_BANK_MAC[2]
is the number of elements
of the bank identified with
the index bank_index=2.

N_ELEMENTS_BANK_MAX_MAC int Maximum value into the
N_ELEMENTS_BANK_MAC vec-
tor.

WIDTH_DATA_MAC int [N_BANKS_MAC] Bitwidth for each data bank.
E.g.: WIDTH_DATA_MAC[2]
is the number of ele-
ments of the data bank
identified with the index
bank_index=2.

WIDTH_DATA_NOSIMD_MAX_MAC int Maximum data bitwidth for
the no-SIMD operations.

WIDTH_DATA_SIMD_MAX_MAC int Maximum data bitwidth for
the SIMD operations.

WIDTH_DATA_MAX_MAC int Maximum value into the
WIDTH_DATA_MAC vector.
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WIDTH_COEFFS_MAC int [N_BANKS_MAC] Bitwidth for each
coeffs bank. E.g.:
WIDTH_COEFFS_MAC[2]
is the number of ele-
ments of the coeffs bank
identified with the index
bank_index=2.

WIDTH_COEFFS_NOSIMD_MAX_MAC int Maximum coeffs bitwidth
for the no-SIMD opera-
tions.

WIDTH_COEFFS_SIMD_MAX_MAC int Maximum coeffs bitwidth
for the SIMD operations.

WIDTH_COEFFS_MAX_MAC int Maximum value into the
WIDTH_COEFFS_MAC vector.

SIMD_MAC bit If 1, enable the SIMD sup-
port. The SIMD can be
then enabled for the desired
banks through the dedi-
cated instruction at run-
time. If SIMD is not needed
on any bank, set it to 0 to re-
duce the hardware complex-
ity.

N_BIT_NFEED_MAC int Bitwidth of n_feed. In
other words, one can set
at runtime the number
of feedback elements at
a maximum equal to
2N_BIT_NFEED_MAC − 1.

FEEDBACK_UNROUNDED_MAC bit If 1, the feedback result
from the MAC arithmetic
block to be stored into the
feedback registers of the se-
lected data bank will be
unrounded. Otherwise, it
will be rounded according
to the rounding unit config-
uration. Notice that the
result stored into the
core RF will be always
rounded.
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N_OPERANDS_MAC int Number of operands
that the MAC arithmetic
block can manage in par-
allel. If N_OPERANDS_MAC
<N_ELEMENTS_BANK_MAC[bank_index]
the execution on the bank
with index bank_index will
be performed with more
than one iteration. In other
words, by lowering this
parameter, the hardware
complexity is lower (look at
section B.3 to know more),
but the latency is higher.

BITS_CUT_MAX_MAC int Maximum number of bits
that the rounding unit can
round.

Some notes:

• parameters such as N_ELEMENTS_BANK_MAX_MAC and WIDTH_DATA_MAX_MAC could
be obtained simply using a max() function since they are the maximum values
stored into the corresponding vectors (N_ELEMENTS_BANK_MAC and WIDTH_DATA_MAC
respectively).
Unfortunately, such a function in SystemVerilog cannot be used for this kind of
parameters, therefore a manual definition for them is needed.

• WIDTH_DATA_SIMD_MAX_MAC and WIDTH_COEFFS_SIMD_MAX_MAC are related to
SIMD operations only (see subsubsection 4.3.1.2). These parameters have to be
set with the entire bitwidth of the SIMD packed elements.
E.g. if you assume to have SIMD packed elements made by two 13-bit values,
you have to set 26 here.
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4.3 Custom instructions
Twelve custom instructions have been implemented. They can be divided into five
groups according to their function:

• Configuration and clearing: configure the MAC architecture and clear the
registers.

• Loading coefficients: load the coefficients (from core RF or from data mem-
ory).

• Loading data: load the samples (from core RF or from data memory).

• Executing MAC: execute the MAC operation and store the result into the
core RF.

• Loading data and execute MAC: load a new sample and execute the MAC
operation.

The coding has been chosen to be compliant with the RISC-V standard ISA. To this
purpose, specific opcodes officially provided by RISC-V International can be used,
ensuring no conflicts with the current and future RISC-V standard extensions. The
chosen opcode is 0101011.

The chosen opcode does not belong to an existing RISC-V instruction, therefore
it defines a completely new encoding space (greenfield extension). This encoding
space has been used to code the twelve instructions developed with a brownfield
extension approach. This means that the instructions share the same opcode, being
differentiated by other fields (funct3 and funct7 in our coding).
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4.3.1 Configuration and clearing

0101011NOT USED 
rd? / imm?000rs10000000 CLEAR_DATANOT USED 

rs2? / imm?

bank_index

067111214151920242531

funct3funct7 opcode

0101011NOT USED 
rd? / imm?000rs10000001 CLEAR_COEFFSNOT USED 

rs2? / imm?

bank_index

067111214151920242531

funct3funct7 opcode

0101011NOT USED 
rd? / imm?000rs10000010 SET_NFEEDrs2

bank_index

067111214151920242531

funct3n_feedfunct7 opcode

0101011NOT USED 
rd? / imm?000rs10000011 SET_ROUNDINGrs2

bank_index

067111214151920242531

funct3n_bits_cutfunct7 opcode

0101011NOT USED 
rd? / imm?000rs10000100 SET_SIMDrs2

bank_index

067111214151920242531

funct3simdfunct7 opcode

Figure 4.3: Configuration and clearing instructions coding.

These instructions are coded with the same opcode, same funct3 field and they are
differentiated by the funct7 field. There are many more funct7 codes that can be
used for future extensions. The fields shown in red in Figure 4.3 are not used for
now.

The purpose of each instruction is:

• CLEAR_DATA: the data bank identified with the index bank_index (passed through
the GPR rs1) is cleared to 0 (feedback part included).

• CLEAR_COEFFS: the coeffs bank identified with the index bank_index (passed
through the GPR rs1) is cleared to 0.

• SET_NFEED: the number of registers to be used for the feedback elements is set
to n_feed (passed through the GPR rs2) for the bank identified with the index
bank_index (passed through the GPR rs1).

• SET_ROUNDING: the rounding unit is set to round a number of bits equal to
n_bits_cut (passed through the GPR rs2) for the bank identified with the
index bank_index (passed through the GPR rs1). See subsubsection 4.3.1.1.
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• (only available if SIMD_MAC=1)
SET_SIMD: if simd=1 (passed through the GPR rs2), the MAC is set to use
SIMD for the bank identified with the index bank_index (passed through the
GPR rs1). If simd=0, the MAC will not use SIMD for that bank. See subsub-
section 4.3.1.2.

4.3.1.1 Rounding unit details

Two types of rounding unit have been developed and one can easily switch between
them acting on the RTL modules instantiation in the SystemVerilog files.

With the SET_ROUNDING instruction, one can set the number of bits (LSBs) to round.

Consider a fixed-point number and assume we want to round this number to an
integer. Schematically:

(x(k−1) x(k−2) ... x1 x0 x−1 x−2 ... x(−l+1) x−l) → (x(k−1) x(k−2) ... x1 x0)

where each xi is a bit, k is the number of integer bits and l the number of fractional
bits. The format of the number on the left can be expressed using the following
notation Q<k>.<l>.

We call Unit of Least Precision (ulp) the LSB of the rounded output, that is x0 in
the example. It defines the precision after the rounding.

The two rounding units developed are:

• round to nearest: it rounds towards the nearest number; when exactly in the
middle, always round-up.
It is the most common rounding scheme and it ensures that the maximum
rounding error is 1/2 ulp. However, on average, a slight positive bias is present
(since it always rounds up when in the middle), which can be harmful in rare
cases for feedback systems (e.g. IIR).
Examples:
12.3 → 12
12.8 → 13
12.5 → 13
13.5 → 14

• round to nearest even: it rounds towards the nearest number; when exactly
in the middle, round towards the nearest even number.
The error is 1/2 ulp as well, but the advantage is that on average no bias is
present. It is suggested for feedback systems in which using the round to nearest
scheme, a drift during the execution is present.
Examples:
12.3 → 12
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12.8 → 13
12.5 → 12
13.5 → 14

An example can be considered:

• 8 operands (data-coefficients pairs) for Multiply-Accumulate operations;

• data (xi) represented as fixed-point Q10.6;

• coefficients (ci) represented as fixed-point Q3.2;

• output (y) wanted in fixed-point Q10.6;

• filter designed to be stable and to have an output always fitting on an integer
part of 10 bits.

The operation to be executed is a Multiply-Accumulate:

y =
7∑

i=0

ci xi (4.1)

Therefore:

1. for each ci xi multiplication (namely partial term), the number of bits is given
by the sum of the number of bits of ci and xi (in the example, each partial term
will be in the form Q(10+3).(6+2)=Q13.8).

2. adding up all the 8 partial terms ci xi, the number of bits of the integer part
increases by log2(8) = 3, giving Q(13+3).8=Q16.8.

Since we assumed that the filter is designed to be stable and to have an output always
fitting on an integer part of 10 bits, the result can be expressed with the form Q10.8.
Two bits of the fractional part have to be cut off to have the desired output format
Q10.6.

In the example above, the rounding unit has to be set with n_bits_cut=2, since two
bits have to be cut off.

4.3.1.2 SIMD details

The simd parameter can be set for each bank to 0 (SIMD off) or 1 (SIMD on) through
the dedicated instruction SET_SIMD.

With the SIMD enabled for a bank, the data and the coeffs bitwidth of that bank is
virtually split into two parts and two data/coefficients are packed into one register
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location.

The packing for the data contained into the data banks is made according to the
WIDTH_DATA_SIMD_MAX pre-synthesis parameter.
The packing for the coefficients contained into the coeffs banks is made according
to WIDTH_COEFFS_SIMD_MAX pre-synthesis parameter.
The packing for the output after a Multiply-Accumulate execution is made according
to WIDTH_DATA_SIMD_MAX pre-synthesis parameter.
In this way, feedback storing into data banks if (n_feed_<X>)>0 can occur without
issues since the packing is compliant.

If WIDTH_DATA_SIMD_MAX_MAC or WIDTH_COEFFS_SIMD_MAX_MAC is odd, the MSB is
discarded and not considered.
If (WIDTH_DATA_SIMD_MAX_MAC<WIDTH_DATA_MAX_MAC) or
(WIDTH_COEFFS_SIMD_MAX_MAC<WIDTH_COEFFS_MAX_MAC), the exceeding MSBs are
discarded and not considered.
In the end, the only parameter controlling the SIMD packing is WIDTH_*_SIMD_MAX
(where * can be both DATA or COEFFS).

In Figure 4.4, an example of packing with WIDTH_*_SIMD_MAX=24 and WIDTH_*_SIMD_MAX=25
is shown. WIDTH_*_MAX_MAC can assume whatever value, the packing will not change
and the exceeding bits will be discarded and not considered.

With SIMD turned on, the Multiply-Accumulate operation is made on both values
in parallel, speeding up the execution.

value_h value_l

23 1112 0

(a) WIDTH_*_SIMD_MAX=24

value_h value_l

23 1112 0

MSB

24

(b) WIDTH_*_SIMD_MAX=25

Figure 4.4: SIMD packing.
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4.3.2 Loading coefficients

0101011NOT USED 
rd? / imm?010rs1NOT USED LOAD_COEFF_MEMrs2

mem_addr bank_index

067111214151920242531

funct3 opcode

0101011NOT USED 
rd? / imm? 100rs1NOT USED LOAD_COEFF_REGrs2

bank_index

067111214151920242531

funct3source_reg opcode

Figure 4.5: Coefficients loading instructions coding.

One can load one new coefficient into the coeffs bank identified with the index
bank_index. The loading is performed in a shift register fashion (refer to Figure 4.2)
and the coefficient can be loaded from the memory or from core GPR.

• LOAD_COEFF_MEM: the value stored into the data memory at the memory address
mem_addr (passed through the GPR rs2) is loaded into the coeffs bank identified
with the index bank_index (passed through the GPR rs1).

• LOAD_COEFF_REG: the value stored into the GPR rs2 is loaded into the coeffs
bank identified with the index bank_index (passed through the GPR rs1).

All the coefficients (i.e. N_ELEM_<X> coefficients) should be loaded to avoid undefined
values. There are n_feed_<X> feedback coefficients and n_forw_<X> feedforward
coefficients, where (n_feed_<X>+ n_forw_<X> = N_ELEM_<X>).
These instructions only load one value in a shift register fashion, therefore one has
to perform the operation N_ELEM_<X> times to set all the coefficients.
If one bank per filter is used, one needs to set the coefficients for each filter only at
the beginning of the execution, without reloading them every time, since they remain
stored during the execution.

One must follow a precise order for the coefficients in order to load them correctly.

The order must be:

1. (skip this part if n_feed_<X>=0 for the considered bank)
feedback coefficients starting from the first one (i.e. from a1 to anfeed);

2. feedforward coefficients starting from the last one (i.e. from b(nforw−1) to b0).
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4.3.3 Loading data

0101011001rs1NOT USED LOAD_DATA_MEMrs2

mem_addr bank_index

NOT USED 
rd? / imm?

067111214151920242531

funct3 opcode

0101011011rs1NOT USED LOAD_DATA_REGrs2

source_reg bank_index

NOT USED 
rd? / imm?

067111214151920242531

funct3 opcode

Figure 4.6: Data loading instructions coding.

One can load one new data into the data bank identified with the index bank_index.
The loading is performed in a shift register fashion (refer to Figure 4.2) and the data
can be loaded from the memory or from a core GPR.

• LOAD_DATA_MEM: the value stored into the data memory at the memory address
mem_addr (passed through the GPR rs2) is loaded into the data bank identified
with the index bank_index (passed through the GPR rs1).

• LOAD_DATA_REG: the value stored into the GPR rs2 is loaded into the data bank
identified with the index bank_index (passed through the GPR rs1).

Referring to Figure 4.2, the new value x[n] is loaded from the top input. The bottom
input y[n] is up to the internal hardware logic and cannot be loaded manually, but it
is taken by the MAC output.

Only one value is loaded per each instruction call. In the beginning, one needs to
fill the buffer with a number of values determined by the taps of the filter, then the
buffering can be exploited, by loading only one new x[n+ 1] to get y[n+ 1].

4.3.4 Executing MAC

0101011101rs1NOT USED EXEC_MACNOT USED 
rs2? / imm?

bank_index

rd

dest_registerfunct3

067111214151920242531

opcode

Figure 4.7: Multiply-accumulate execute instruction coding.

MAC is executed on the values stored in data banks and coeffs banks identified with
the index bank_index (passed through the GPR rs1).
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Taking as reference the Figure 4.2, the operation executed is:

yq+1 =

(N_ELEM_<X>−1)∑
m=0

COEFFS_BANK[m] · DATA_BANK[m]

The value yq+1 is stored in the GPR dest_register (rd) and in the feedback part of
the data bank identified with the index bank_index (passed through the GPR rs1).

An example of how the state of the register changes in case of a no-SIMD operation
is shown in Figure 4.8.

COEFFS_BANK DATA_BANK

5

8

-14

24

1

b0
b1
b2
a2

a1

0

1

2

3

4

10

35

-40

-5

4

x26
x25
x24
y24
y25

0

1

2

3

4

y26 = 5*10+8*35+...+1*4 = 774

shift

(a) Phase 1: MAC computation.
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8

-14

24

1

b0
b1
b2
a2

a1

0

1

2

3

4

10

35

-40

4

774

x26
x25
x24
y25
y26

0

1

2

3

4

(b) Phase 2: feedback output loaded.

Figure 4.8: EXEC_MAC working example (simd=0 for the considered bank).

If SIMD is enabled for the selected bank, the working principle is the same, but
each data/coeffs location is treated as made by two packed values and the Multiply-
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Accumulate output will be made by two packed values as well, as explained in sub-
subsection 4.3.1.2.

4.3.5 Loading data and execute MAC

0101011110rs1NOT USED LOAD_EXEC_DATA_MEMrs2

mem_addr bank_index

rd

funct3

067111214151920242531

dest_register opcode

0101011111rs1NOT USED rs2

bank_index

rd LOAD_EXEC_DATA_REG

067111214151920242531

funct3 dest_registersource_reg opcode

Figure 4.9: Data loading + Multiply-Accumulate execution instructions coding.

These instructions can be seen as the subsequent execution of LOAD_DATA_[MEM/REG]
and EXEC_MAC.

The decision to define these instructions comes from the acknowledgement that load-
ing a new sample x[n + 1] and, subsequently, computing the new output y[n + 1] is
the most common operation in digital filtering. Defining these two instructions allows
saving some clock cycles with respect to calling a straight LOAD_DATA_[MEM/REG] and
then a straight EXEC_MAC since in that case there is an additional overhead (e.g. de-
coding, core-coprocessor handshaking). The working principle and the parameters
are the same as the two instructions taken individually.

An example of how the state of the register changes is shown in Figure 4.10.

Also for these instructions, the same SIMD considerations made for the straight
EXEC_MAC apply.
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COEFFS_BANK DATA_BANK
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x26=130

shift

(a) Phase 0: initial state.
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y26 = 5*130+8*10+...+1*4 = 124

shift

(b) Phase 1: new sample loaded and MAC computation.
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(c) Phase 2: feedback output loaded.

Figure 4.10: LOAD_EXEC_DATA_[MEM/REG] example.
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Chapter 5

Accelerator testing-verification

After the design, a phase of verification has been carried out to assess the correct
functionality of the designed system. Starting from the verification environment de-
veloped by the OpenHW group, additional features have been added and a custom
verification mechanism has been developed and integrated.

The core verification by OpenHW is not completed, yet, but it is ongoing. Some
small bugs have been discovered and fixed during this thesis project, even though its
stability and usability are really good.
However, for the coprocessor testing, it was impossible to carry out an exhaustive
verification (e.g. assertions, formal methods, ISS), but a trade-off has been chosen.
An auto-checking testing mechanism, more advanced than the simple “write some code
and test the execution manually”, was needed. Firstly, because the core-coprocessor
system is quite complex and it is impossible to excite manually a good number of cases
to test, and then because the high flexibility of the coprocessor makes the verification
much more complex since there are potentially infinite parameter combinations.

Two layers of testing have been considered:

• software independent testing: during this process, the hardware has been
tested with random stimuli not related to the specific DSP algorithm to be run.
This process is explained in this chapter.

• software dependent testing: after the software independent testing, the
DSP algorithm has been run on the system and the outcome compared with a
MATLAB reference model. This ensured that the software was correct and, to
some extent, it added further validity to the hardware testing. This process is
software related and it will not be treated within this thesis.
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5.1 Verification environment extension
The OpenHW group’s verification environment is UVM-based and its main features
have been described in section 2.6.

To simplify the algorithm testing and verification, the environment has been extended
with the possibility to pre-load data taken from a file into a region of the data memory
and to dump a memory region onto an output file. The base address, the number
of words and the filenames can be independently chosen both for the data to pre-
load and for the ones to dump. In addition, they can be independently disabled or
enabled.
All these parameters can be set as variables in one of the makefiles, resulting in
completely integrated into the OpenHW verification environment.

For their implementation, the SystemVerilog testbench has been slightly modified
introducing a few additional lines; in particular, the SystemVerilog standard functions
$writememh() and $readmemh() have been exploited.
With the former, the content of the memory can be dumped onto an output file in
hexadecimal form, while the latter performs the opposite operation, transferring the
content of a file into the memory. The input file can be a usual .txt and the data
must have a specific format (refer to the official documentation for more information).

5.2 Verification approaches
An auto-checking verification process was needed instead of a manual approach due
to the system’s (i.e. core+coprocessor) complexity and flexibility. Another important
aspect is the randomization of the testcases since manual definition rarely excites the
corner cases.

There are different approaches to verification, with different levels of effectiveness and
complexity:

• exploit the UVM features of the verification environment: this means
going on with assertions, formal methods and complex reference models. This is
the approach followed in the industry and by the OpenHW group, but it requires
a very good knowledge of verification methodologies and it is time-consuming.

Moreover, as explained in section 2.6, the reference model used is an Instruc-
tion Set Simulator (ISS) called OVPsim, already integrated into the environ-
ment and already implementing the CV32E40X features [15]. A good approach
could have been to extend it with the coprocessor features and exploit it for
verification. With an ISS, all the internal registers (GPR, CSRs), the memory
reading/writing and, in general, almost all the aspects of the system could be
checked in a very exhaustive way.
Unfortunately, extending an ISS could be tricky, requiring a great effort. In
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addition, we had to abandon the idea since OVPsim has licensing policies that
could have been not compatible with the fact that this thesis has been carried
out in a company.
The corresponding fully open-source ISS alternative was Spike, but it has some
limitations and it is not yet integrated into the verification environment [30].

• work outside the verification environment: a simpler, but limited, ap-
proach is to work outside the verification environment and then join and check
the correctness of the results somehow. The advantage is that one does not
need to face the complexity of the already present testbench, understand how it
is implemented and extend it. However, internal signal checking is less effective
and this approach is often less flexible.

5.2.1 Our approach to the verification

Working within the testbench exploiting UVM and ISS for the verification was not
feasible for the reasons explained above. Therefore, the choice was to work outside the
verification environment and to join the results in the end, checking their correctness.

The verification scheme is shown in Figure 5.1.

Random
instructions gen 

(Python)

RTL assembly (.S)

Reference model 
pseudo-asm (.c)

RTL 
(SystemVerilog) 

Reference
model (C)

register_file_ref.txt 
memory_ref.txt

Checker 
(SystemVerilog) PASS / FAIL

Figure 5.1: Verification scheme.

It is based on two parallel flows, one related to the RTL simulation and the other one
to the reference output generation:

• A C reference model implementing the basic RISC-V instructions (e.g. arith-
metic, branch, jump) and the accelerator instructions has been developed. It
implements the Assembly (ASM) instructions as C functions resembling the
system’s expected behaviour.

• A Python script generates random instructions packing them into two different
files: one assembly file (.S), to be compiled through the toolchain for the RTL
simulation, and the corresponding pseudo-ASM code in C, for the reference
model.

• The reference model executes the pseudo-ASM and generates two files with the
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expected behaviour of Register File and memory. These two files will be taken
as a reference by the checker.

• A SystemVerilog checker integrated into the testbench checks the correctness
of the result. The register file content is checked every time it is written (i.e.
rf_write_enable=1), while the memory is checked only at the very end of the
execution for efficiency reasons. A PASS or a FAIL are then generated.

Each component is configurable through some parameters: most of them are the RTL
pre-synthesis parameters (see section 4.2) to match the exact accelerator behaviour,
while others are related to some features of the verification flow.

Random instructions generator

This is a Python script able to generate random assembly instructions for the RTL
(.S) and pseudo-ASM for the reference model (.c). Headers, footers and all the
needed lines for the correct compilation plus some comments within the code are
also generated by this script, making the files compilable without additional manual
modifications.

Some RTL pre-synthesis parameters need to be set here (e.g. N_BANKS_MAC, SIMD_MAC)
in order to control the instruction generation. For instance, if SIMD_MAC=0, the SIMD-
related instructions (SET_SIMD) are not available for the RTL and they are not gen-
erated in the code.

This unit generates the following instruction types:

• RISC-V basic arithmetic instructions, both register-based and immediate-
based (e.g. add/addi, or/ori, slt/slti);

• RISC-V flow control instructions (e.g. beq, bge, j);

• RISC-V load/store from/to memory (lw, sw);

• all the accelerator custom instructions.

All the parameters are randomly generated (e.g. immediate, register index). However,
for the instructions related to load/store, the indexed memory region is randomly
generated within specific address intervals set by the user through dedicated variables
in the program. This is crucial to avoid unwanted writing in memory regions reserved
for the system, which could cause issues during the code execution.

At the beginning of the generated programs, the register file and the memory regions
are initialized at random values and the MAC is configured with random but valid
settings.

The most tricky aspect of the script is the branch/jump generation. This is a very
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relevant aspect since this kind of instruction is the most error-prone to be executed
in a processor, mainly due to control hazards. Therefore, an extensive test of them
was needed.
For this reason, the Python script allows the generation of nested branch/jump that
makes the generated ASM program more suitable for an extensive test of the control
structures of the system. For each conditional branch in ASM, an if...else block is
generated for the C pseudo-code feeding the reference model and they can be nested
until a configurable maximum nesting value is reached. In other words, the number
of nested branches one can have is limited by a parameter that the user can set.
Also, the maximum number of instructions one can have within an if...else block
can be customized by the user.
Experimentally, reasonable values are max_nesting_index=3 and
max_instr_within_branch=20.

Parts of the two randomly generated files are shown in Source Code 5.1 and Source
Code 5.2.
The print_rf_to_file() function in the C code is used for the RF reference file
generator (see Reference model).

1415 srai x20, x9, 23
1416 add x24, x8, x8
1417 // load_data_reg rs2: x6, rs1: x9
1418 .word 0x5e64bb2b
1419 beq x7, x6, start_else_3
1420 sltu x25, x29, x28
1421 slli x23, x6, 21
1422 li x31, 0x91012c
1423 lw x23, 0(x31)
1424 sll x26, x23, x8
1425 srl x18, x9, x30
1426 j end_else_3
1427 start_else_3:
1428 srl x23, x18, x30
1429 andi x18, x6, 1144

Source Code 5.1: Part of a randomly generated ASM program.

1207 SRAI(23, 9, 20);
1208 print_rf_to_file("hex", file_rf);
1209 ADD(8, 8, 24);
1210 print_rf_to_file("hex", file_rf);
1211 load_data_reg(6, 9);
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1212 if (!(register_file[7] == register_file[6])) {
1213 SLTU(28, 29, 25);
1214 print_rf_to_file("hex", file_rf);
1215 SLLI(21, 6, 23);
1216 print_rf_to_file("hex", file_rf);
1217 LUI(0x910, 31);
1218 print_rf_to_file("hex", file_rf);
1219 ADDI(300, 31, 31);
1220 print_rf_to_file("hex", file_rf);
1221 // starting lw (we need these lines to mimic the

HW behavior)↪→

1222 LW(0, 31, 23);
1223 lw_temp_value = register_file[23];
1224 register_file[23] = 0;
1225 print_rf_to_file("hex", file_rf);
1226 register_file[23] = lw_temp_value;
1227 print_rf_to_file("hex", file_rf);
1228 // ending lw
1229 SLL(8, 23, 26);
1230 print_rf_to_file("hex", file_rf);
1231 SRL(30, 9, 18);
1232 print_rf_to_file("hex", file_rf);
1233 }
1234 else {
1235 SRL(30, 18, 23);
1236 print_rf_to_file("hex", file_rf);
1237 ANDI(1144, 6, 18);
1238 print_rf_to_file("hex", file_rf);

Source Code 5.2: Part of a randomly generated pseudo-ASM C code for the refer-
ence model.

Reference model

The C reference model implements the ASM instructions listed before as C functions.
The main purpose of a reference model is implementing functionalities that could be
very complex in HW using high-level constructs that simplify the development and
reduce the possibilities of bugs. In other words, it is convenient that the reference
model is as simple as possible and for this reason, high-level programming languages
are preferred.

There are different alternatives, such as Python, C and even SystemVerilog, which is
a really powerful language not only for HW development.
However, during the definition of the specifications a C reference model was developed
to allow to the colleague developing software to integrate it into the algorithm. Its
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purpose was to test the high-level working principle of the accelerator before the
actual RTL development, to discover if it was suitable for the application. This high-
level model was developed in C because the DSP software algorithm is written in C
as well.
For this reason, after the RTL development, that reference model has been taken as
starting point and extended to perfectly mimic the HW behaviour, without starting
from scratch its development in a different programming language.

Thinking about it, SystemVerilog would have been a better choice, allowing a tighter
integration with the testbench. Moreover, SystemVerilog would have been better for
the definition of the arithmetic operations, since in C the programmer is forced to
use variables with power of 2 number of bits (8/16/32/64/128 bits) that are not so
intuitive to be used to represent RTL signals with a custom bitwidth.
As for the register file and the memories, they have been implemented as arrays in
C, making their reading/writing extremely easy.
Also for the reference model, all the RTL pre-synthesis parameters are present (see
section 4.2) to correctly mimic the HW.

The list of the available C pseudo-ASM instructions is shown in Source Code 5.3.

89 /*
90 INSTRUCTIONS THAT CAN BE CALLED BY THE PROGRAMMER IN ASSEMBLY
91 */
92 // BASIC RISCV INSTRUCTIONS
93 // they are written in upper case to avoid conflicting with C++

keywords↪→

94 void LUI(int32_t imm, uint32_t rd);
95 void LW(int32_t imm, uint32_t rs1, uint32_t rd);
96 void SW(int32_t imm, uint32_t rs1, uint32_t rs2);
97 void ADDI(int32_t imm, uint32_t rs1, uint32_t rd);
98 void SLTI(int32_t imm, uint32_t rs1, uint32_t rd);
99 void SLTIU(int32_t imm, uint32_t rs1, uint32_t rd);

100 void XORI(int32_t imm, uint32_t rs1, uint32_t rd);
101 void ORI(int32_t imm, uint32_t rs1, uint32_t rd);
102 void ANDI(int32_t imm, uint32_t rs1, uint32_t rd);
103 void SLLI(int32_t imm, uint32_t rs1, uint32_t rd);
104 void SRLI(int32_t imm, uint32_t rs1, uint32_t rd);
105 void SRAI(int32_t imm, uint32_t rs1, uint32_t rd);
106 void ADD(uint32_t rs2, uint32_t rs1, uint32_t rd);
107 void SUB(uint32_t rs2, uint32_t rs1, uint32_t rd);
108 void SLL(uint32_t rs2, uint32_t rs1, uint32_t rd);
109 void SLT(uint32_t rs2, uint32_t rs1, uint32_t rd);
110 void SLTU(uint32_t rs2, uint32_t rs1, uint32_t rd);
111 void XOR(uint32_t rs2, uint32_t rs1, uint32_t rd);
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112 void SRL(uint32_t rs2, uint32_t rs1, uint32_t rd);
113 void SRA(uint32_t rs2, uint32_t rs1, uint32_t rd);
114 void OR(uint32_t rs2, uint32_t rs1, uint32_t rd);
115 void AND(uint32_t rs2, uint32_t rs1, uint32_t rd);
116 // COPROCESSOR
117 void clear_data(uint32_t rs1_bank_index);
118 void clear_coeffs(uint32_t rs1_bank_index);
119 void set_nfeed(uint32_t rs2_nfeed, uint32_t rs1_bank_index);
120 void set_rounding(uint32_t rs2_nbits_cut, uint32_t rs1_bank_index);
121 void set_simd(uint32_t rs2_simd, uint32_t rs1_bank_index);
122 void load_coeff_mem(uint32_t rs2_mem_addr, uint32_t rs1_bank_index);
123 void load_coeff_reg(uint32_t rs2, uint32_t rs1_bank_index);
124 void load_data_mem(uint32_t rs2_mem_addr, uint32_t rs1_bank_index);
125 void load_data_reg(uint32_t rs2, uint32_t rs1_bank_index);
126 void exec_mac(uint32_t rs1_bank_index, uint32_t rd);
127 void load_exec_data_mem(uint32_t rs2_mem_addr, uint32_t

rs1_bank_index, uint32_t rd);↪→

128 void load_exec_data_reg(uint32_t rs2, uint32_t rs1_bank_index,
uint32_t rd);↪→

Source Code 5.3: Header of the defined C pseudo-ASM instructions.

The reference model executes the program file generated by the Python script and it
generates in turn the two reference text files that will be used by the checker.
The two files generated are:

• register_file_ref.txt
It is a list of the RF snapshots taken every time a writing operation is performed
(i.e. rf_write_enable=1). The checker will compare each snapshot with the
corresponding RTL behaviour.

• memory_ref.txt
It stores the very last state of the user memory region after the execution of
all the instructions. It does not store all the intermediate snapshots, as for the
RF, since the memory region could be very large, impacting the efficiency of
the checker.

Checker

The checker is implemented in SystemVerilog and integrated into the existing test-
bench. It is a module instantiated only for the coprocessor verification (some variables
are defined in the makefiles to enable it), being disabled if verification has not to be
performed.

When a RF writing operation is occurring during the RTL execution, it compares
the actual RF snapshot taken from the RTL with the register_file_ref.txt given
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by the reference model. If the snapshots coincide, it goes on with the execution
waiting for another writing operation. Otherwise, it throws a UVM error and stops
the simulation, signalling the index of the register for which there is no compliance
with the reference model.
A log file with all the snapshots taken from the RTL is generated for debugging
purposes.

A similar approach is used for the memory, but the checking occurs only one time at
the very end of the execution.
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Chapter 6

Results

As explained in chapter 3, the considered use case is the software implementation
of an NFC digital baseband demodulator, compliant with the ISO/IEC 14443
standard.

6.1 RTL parameters for the considered use-case
The HW configurations used for the considered use case are shown in Table 6.1 and
Table 6.2.

Two different configurations for the considered use case have been defined:

• no-SIMD: in this configuration, SIMD feature of the accelerator is not used,
but all the computations are made in a conventional form (i.e. one register →
one value);

• SIMD: in this configuration, some of the defined banks are managed with no-
SIMD computations (i.e. one register → one value), while other ones with SIMD
computations enabled (i.e. one register → two values).
The banks for which SIMD is enabled have been defined according to the fea-
tures of each filter. E.g. the SIMD is particularly useful in the case of I/Q
components that some filters have to manage.
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The RTL pre-synthesis parameters (see section 4.2) set for the no-SIMD and SIMD
configurations are shown respectively in Table 6.1 and Table 6.2.

Parameter name Value

N_BANKS_MAC 8

N_ELEMENTS_BANK_MAC [2, 2, 34, 34, 4, 4, 34, 2]

N_ELEMENTS_BANK_MAX_MAC 34

WIDTH_DATA_MAC [16, 16, 16, 16, 16, 16, 21, 23]

WIDTH_DATA_NOSIMD_MAX_MAC 23

WIDTH_DATA_SIMD_MAX_MAC (not relevant, since SIMD_MAC=0)

WIDTH_DATA_MAX_MAC 23

WIDTH_COEFFS_MAC [8, 8, 8, 8, 8, 8, 8, 8]

WIDTH_COEFFS_NOSIMD_MAX_MAC 8

WIDTH_COEFFS_SIMD_MAX_MAC (not relevant, since SIMD_MAC=0)

WIDTH_COEFFS_MAX_MAC 8

SIMD_MAC 0

N_BIT_NFEED_MAC 2

FEEDBACK_UNROUNDED_MAC 1

N_OPERANDS_MAC 5 or 7 or 12 or 17 or 34 (synthesis variable)

BITS_CUT_MAX_MAC 8

Table 6.1: no-SIMD configuration RTL parameters.
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Parameter name Value

N_BANKS_MAC 6

N_ELEMENTS_BANK_MAC [2, 34, 4, 4, 34, 2]

N_ELEMENTS_BANK_MAX_MAC 34

WIDTH_DATA_MAC [32, 32, 16, 16, 21, 23]

WIDTH_DATA_NOSIMD_MAX_MAC 23

WIDTH_DATA_SIMD_MAX_MAC 32

WIDTH_DATA_MAX_MAC 32

WIDTH_COEFFS_MAC [16, 16, 8, 8, 8, 8]

WIDTH_COEFFS_NOSIMD_MAX_MAC 8

WIDTH_COEFFS_SIMD_MAX_MAC 16

WIDTH_COEFFS_MAX_MAC 16

SIMD_MAC 1

N_BIT_NFEED_MAC 2

FEEDBACK_UNROUNDED_MAC 1

N_OPERANDS_MAC 5 or 7 or 12 or 17 or 34 (synthesis variable)

BITS_CUT_MAX_MAC 8

Table 6.2: SIMD configuration RTL parameters.

6.2 Software profiling
In this section, software profiling is reported. Unfortunately, due to NXP’s IP, the
software details can not be shown. The only allowed parts are explained in chapter 3
and chapter 4.

6.2.1 Codesize

The profiling is needed to check how much of the instruction/data memory is needed
for the code and all the related elements.

The instruction memory is read-only for the processor, while the data memory is
read/write.
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For our code, there are four parts to be considered:

• .text: it is the section containing the code (that is converted in ASM instruc-
tions and then in binary by the compiler). It is stored into the instruction
memory.

• .data: it is the section where the initialized variables are stored. It is stored
partially into the instruction memory (e.g. the initialization values) and par-
tially into the data memory (e.g. the actual value of the variables that can be
modified in the code).

• .rodata: it is the section containing the constant data (read-only). It is stored
into the instruction memory.

• .bss: it is the section dedicated to storing the uninitialized variables.

The size obtained for each of the four parts described above is shown in Figure 6.1
and they are reported in byte. The considered case is the no-SIMD version of the
algorithm, but the profiling differences with the SIMD one are negligible.

.text

10364

.rodata

678 .data

2096

.bss132

Figure 6.1: Codesize (values are in byte).

6.2.2 Obtained results

The expected results with the base RISC-V ISA (i.e. without the accelerator) are
shown in subsubsection 3.1.3.2. The outcome is that 152 instructions are needed
per sample, that are far away from the computed upper limit that is 79 clock cycles
per sample (assuming fclock = 540MHz).

With the accelerator, the ideal analysis has been made in subsubsection 3.3.4.2 and
we obtain that 29 to 45 instructions per sample are needed.
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Of course, the relation (1 instruction ⇐⇒ 1 clock cycle) is not always valid due to
some non-idealities, such as pipe stalls and core-coprocessor interfacing. For this
reason, an RTL simulation is needed to understand how much these aspects impact
the performance.

Unfortunately, also here it is not possible to go deeper into the algorithm due to
NXP’s IP, but only the final results can be given.

The following results are obtained simulating through the OpenHW verification envi-
ronment (see section 2.6) extended with some custom functionalities (see section 5.1).

The code has been written both without and with SIMD support and the hardware
settings are reported in Table 6.1 and Table 6.2.
The parameter N_OPERANDS_MAC=34 has been set to get the maximum performance.

Simulating, the outcome is:

• no-SIMD: without using SIMD, the result obtained is that 161 clock cycles
are needed for computing two samples. This means that the processor should
run at 546MHz to be real-time capable.

• SIMD: using SIMD, the result obtained is that 155 clock cycles are needed for
computing two samples. This means that the processor should run at 526MHz
to be real-time capable.

6.2.3 Considerations on the results

The results shown above are promising, but they are not yet valid for a real use case.

The project aims to integrate the core+coprocessor into the existing system that now
exploits custom hardware. This means that the core+coprocessor has to interface
with other devices, sharing buses and memories.

Looking at the memories, in the OpenHW verification environment, they are emulated
through a model that makes their behaviour not completely ideal (e.g. some clock
cycles are needed to access the data), giving a little more credibility to our results.
However, it is not enough and a deeper analysis is needed.
It is a not straightforward aspect to face since it means analyzing the existing NXP
system, modelling it somehow, understanding how and where our CPU should be
placed and then proceeding with the integration and the final results. Of course, this
is out-of-scope for this thesis work.

Therefore, the outcome is that the performance has been greatly improved (∼3x),
but the system is far away to be ready for integration into the existing system.
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6.3 Hardware profiling

6.3.1 Synthesis details

Tools and technological libraries

The synthesis has been performed using Cadence Genus as synthesizer.

The technological library used is a 28 nm process by TSMC containing a great variety
of cells, with different features.
Besides the strength (i.e. fan-out capability), three different threshold voltages are
available: standard VT (SVT ), high VT (HVT ), ultra high VT (UHVT ), to better
optimize the netlist from a power perspective. A low threshold voltage is beneficial
for cell performance, but it has dramatic effects on the leakage power.
The synthesizer is in charge of choosing the most suitable cell for each path.

Some notes and limits about the synthesis

The synthesis performed is just a preliminary one, since a more accurate back-end is
needed to have reliable and fully meaningful results.

The main limitations are:

• no Place and Route (P&R): without the P&R, the obtained absolute values
are not meaningful and only relative ones could be used.

• no memories: memories are not instantiated for the synthesis, since an analy-
sis has not been performed on their requirements, yet. Moreover, work is needed
to integrate them to work with the OpenHW group OBI.

• clock gating: in the OpenHW group’s core, clock gating is used to save power.
In the current implementation, the clock gating cell is an RTL module in Sys-
temVerilog containing a latch and an AND port. A better approach could be the
usage of dedicated clock gating cells that are available in the used technological
libraries, but it is a task needing further investigation.
In the end, it is not a big deal, since the clock gating implemented by OpenHW
simply turns off the entire core when it is not used, being not fine-grained. In
other words, since in our software we always use the core, the clock gating is
always disabled.

• no switching activities back-annotation: to have a first rough power es-
timation, the netlist generated by Cadence Genus should be simulated (Gate-
Level Simulation (GLS)) with a representative testcase.
Unfortunately, the GLS requires a deep modification of the testbench, since the
signal naming changes passing from the RTL to the synthesized netlist, repre-
senting a time-consuming task.
For this reason, no GLS has been performed.
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The area will be reported in Gate Equivalent (GE) that is a technology-independent
measure of area, in which the values are normalized to the area of an average logic
port, usually the two-inputs strength-one NAND (NAND2_X1). Mathematically:

GEcircuit =
Acircuit

ANAND2_X1

The power, instead, will be normalized to the core-only power to have a rel-
ative estimation and not absolute values that would be meaningless for the reasons
explained above.

The only aspect to be taken into account is that the modules hierarchy is maintained
unflatten for some components to have a better profiling insight. If we leave to
the synthesizer the possibility to make the whole design flat, the boundaries of the
different modules would be lost and all the elements would be treated as “nameless”
logic gates. If the synthesizer flats all, one can not have information, for instance, on
the arithmetic part of the MAC or on the registers, but only on the total design.

Three sub-designs are defined (i.e. their boundaries are maintained):

1. core;

2. coprocessor registers (data/coeffs/configuration);

3. coprocessor arithmetic part (e.g. MAC arithmetic, rounding).

This means that the boundaries of these parts of the design are not fully optimized
by the synthesizer, but in exchange we can get profiling information on those groups.
For the sake of curiosity, a synthesis with all the design flatten has been performed
as well and the obtained differences are negligible.

Clock frequencies and timing

The chosen clock frequencies are fclock = 356MHz and fclock = 414MHz. These two
frequencies were identified as suitable for real-time processing in a preliminary stage
of the software profiling.

Unfortunately, these values have slightly changed with the last profiling, resulting in
526MHz and 546MHz (see subsection 6.2.2). However, a new synthesis from scratch
has been considered not worthwhile and 356MHz and 414MHz have been maintained.

No timing information will be shown in the next plots since the stated clock frequency
is always met. Moreover, the critical path does not change among the different
tests, but it is always represented by the MAC arithmetic part (MAC + rounding +
MUXes).
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6.3.2 Synthesis results

6.3.2.1 Overall results

In this section, the overall results are shown. Area (blue bars) and normalized power
(red bars) are plotted both for no-SIMD (Figure 6.2, Figure 6.4) and for SIMD
configuration (Figure 6.3, Figure 6.5).

On the x-axis, the number of operands that the MAC arithmetic unit is able to
manage in parallel (see section B.3) is reported, while on the y-axis the represented
quantity.
For each of the x-axis values, three bars are shown (respectively core only, coprocessor
only, core+coprocessor), stating which part of the system the quantity is referred to.
Each plot is made for two different clock frequencies (see Clock frequencies and tim-
ing).

At glance, it can be seen that the core-only area and power are lower than the
coprocessor ones. This is due on one hand to the intrinsically expensive structure
of the coprocessor (e.g. MAC arithmetic and the registers to store all the buffered
values). In addition, the core ISA extensions (e.g. multiplication/division) have been
disabled. The control part of the core is much more complex than the coprocessor
one, but usually, the control part is less expensive than the arithmetic/memory one.

As for the area, the trend is as expected: the higher the number of parallel operands
to be managed, the higher the complexity. Of course, the core-only area remains
unchanged varying the number of parallel operands, since it is a parameter impacting
the coprocessor only.
Reporting some numbers: the area of the core-only is about 26 kGates, while the
coprocessor-only area for the no-SIMD configuration spans from 38 kGates to 62 kGates,
according to the number of parallel operands.
As expected, the SIMD implementation has a larger area than the no-SIMD one, but
the trend is exactly the same.
The entire system (core+coprocessor), considering no-SIMD and SIMD implementa-
tions, the different number of parallel operands and the different clock frequencies,
can have an area from 62 kGates to 140 kGates.
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(a) fclock = 356MHz. (b) fclock = 414MHz.

Figure 6.2: Area profiling results for no-SIMD configuration.

(a) fclock = 356MHz. (b) fclock = 414MHz.

Figure 6.3: Area profiling results for SIMD configuration.

About the normalized power, the trend is the same as the area, but with one
exception: passing from 17 parallel operands to 34, the power lowers. This is not
so intuitive, but it is due to the fact the hardware overhead needed for an itera-
tive structure (in the cases in which N_ELEMENTS_BANK_MAX_MAC > N_OPERANDS_MAC)
consumes more power than having a bigger MAC arithmetic unit and no iterations
(N_ELEMENTS_BANK_MAX_MAC = N_OPERANDS_MAC = 34). See section B.3 for more in-
formation.
Also in this case, SIMD implementation has an higher power consumption than the
no-SIMD one.
As for the area, the coprocessor consumes from 1.5 to 2.5 times more than the core.
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(a) fclock = 356MHz. (b) fclock = 414MHz.

Figure 6.4: Power profiling results for no-SIMD configuration.

(a) fclock = 356MHz. (b) fclock = 414MHz.

Figure 6.5: Power profiling results for SIMD configuration.

6.3.2.2 No-SIMD vs SIMD comparison (fclock = 356MHz)

In Figure 6.6, no-SIMD vs SIMD comparison is shown. They are the same data as the
plots above (Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5), but arranged to highlight
the differences between the two implementations.
Only values for fclock = 356MHz are reported, since for the other frequencies the
results are pretty similar and it is not worth showing all of them.

As expected, the SIMD implementation has higher area and power. Considering the
area, it is 20% higher for 5 parallel operands up to 47% for 34 parallel operands.
The power increment is more reasonable, being around 6% more for all the parallel
operands.
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(a) Area profiling comparison between no-
SIMD and SIMD configurations
fclock = 356MHz.

(b) Power profiling comparison between no-
SIMD and SIMD configurations
fclock = 356MHz.

Figure 6.6: no-SIMD vs SIMD comparison.

6.3.2.3 Coprocessor insight (fclock = 356MHz)

It is also useful to check how the coprocessor area and power are partitioned among
arithmetic, registers and overhead.
The overhead is made by the coprocessor parts not belonging neither to the arithmetic
or the registers. It is mainly represented by the control logic (e.g. FSMs) and by the
iterative structures needed if the number of parallel operands that the MAC can
manage is lower than needed (see section B.3).

The partitioned area and power results are shown in Figure 6.7, Figure 6.8, Figure 6.9,
Figure 6.10.

About the area, looking at the registers, it can be noticed that it is unchanged among
the different implementations, being around 30 kGates.
The same can not be said for the arithmetic part, which spans from 5 kGates to
75 kGates according to the chosen implementation.
The most interesting part is probably the overhead, which is around 3 to 4 kGates
for the iterative implementations (number of parallel operands lower than 34), falling
to only 1 kGates for the non-iterative implementations (number of parallel operands
equal to 34). This means that the iterative structures are more expensive than the
whole control logic.

The identical trend applies to the power.
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(a) 5 parallel operands. (b) 12 parallel operands.

(c) 17 parallel operands. (d) 34 parallel operands.

Figure 6.7: Area profiling: coprocessor insight for no-SIMD configuration
(fclock = 356MHz).
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(a) 5 parallel operands. (b) 12 parallel operands.

(c) 17 parallel operands. (d) 34 parallel operands.

Figure 6.8: Area profiling: coprocessor insight for SIMD configuration
(fclock = 356MHz).
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(a) 5 parallel operands. (b) 12 parallel operands.

(c) 17 parallel operands. (d) 34 parallel operands.

Figure 6.9: Power profiling: coprocessor insight for no-SIMD configuration
(fclock = 356MHz).
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(a) 5 parallel operands. (b) 12 parallel operands.

(c) 17 parallel operands. (d) 34 parallel operands.

Figure 6.10: Area profiling: coprocessor insight for SIMD configuration
(fclock = 356MHz).

6.3.3 Synthesis optimization: registers without asynchronous
reset

It can be possible to slightly optimize the synthesis exploiting registers without asyn-
chronous reset.

Usually, flip-flops have asynchronous reset to initialize them to a determined value
(usually ’0’) during the initial reset phase. Having asynchronous reset complicates
the microelectronic structure of the flip-flop in a not negligible way, therefore, in some
cases, flip-flops without asynchronous reset could be employed.
If the asynchronous reset is not present, the bit stored by the flip-flop at the begin-
ning of the system operation is not defined, but can be ’0’ or ’1’ with the same
probability.
Notice that the lack of an asynchronous reset does not imply the absence of a syn-
chronous one, which introduces a lower complexity.

The reset is strictly needed in some cases, such as in the status registers of the FSMs,
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in which the value stored into the registers right after the start-up must be defined
for the correct operation of the system.

Looking at the developed accelerator, having a determined value at the start-up is
not strictly needed for the data/coeffs/configuration regs, while it is mandatory for
the FSMs.

One of the few disadvantages of this approach is that the programmer can not do
assumptions about the value stored into those registers at the beginning of the op-
eration, therefore one has to initialize all the registers to ensure that a defined value
is stored. This applies only for the initial operations, while during normal working
no differences are present. In addition, the data/coeffs regs have a synchronous reset
which can be easily triggered through CLEAR_DATA and CLEAR_COEFFS instructions.

Another drawback is related to module verification. It has to be developed taking
into account the undefined initial values of those registers.

6.3.3.1 Results

Of course, almost all the data reported in the previous pages are valid in this case,
since they are not changed by this optimization. Some examples are the arithmetic
and the control parts, which do not change at all. The data/coeffs/configuration
regs are the only ones to take advantage of this optimization, being now without the
asynchronous reset.

Results are shown in Table 6.3.
The reduction on the area represents more than 11% of the total registers area and
it could be not negligible.
The power is normalized to the power of the core-only, as done for all the previous
plots, and the obtained improvement can be considered negligible.

Reduction (absolute) Reduction (percentage)*

Area ∼3.3 kGates ∼11.3%
Normalized power ∼0.0424 ∼3.6%

*Percentages referred to the registers-only area/power before optimization.

Table 6.3: Improvements using registers without asynchronous reset.
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Looking at the obtained benefit on the entire system, it depends on the ratio between
arithmetic/registers.
Two intermediate cases can be considered as representative:

• No-SIMD, 12 parallel operands:

– Area: 4.7% less.

– Power: 1.2% less.

• SIMD, 12 parallel operands:

– Area: 3.4% less.

– Power: 0.93% less.

Of course, the impact is slightly large on the configurations in which the arithmetic
part is smaller and slightly lower when it is larger.

In the end, the obtained improvement on the entire system is not so significant, but
since it can be obtained almost for free, it could be worthwhile.

6.4 Results summary
In Table 6.4, the results are summarized.

The reported results are related to a clock frequency fclock = 354MHz.
The coprocessor settings are shown in Table 6.1 and Table 6.2, for the no-SIMD and
SIMD versions respectively.
The parameter N_OPERANDS_MAC=34 has been set.

Instructions Area Normalized
per sample power

Without accelerator 152 26 kGates 1

With accelerator (no-SIMD) 45 90 kGates 2.7
With accelerator (SIMD) 41 135 kGates 2.9

Table 6.4: Results summary.
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Conclusion

This thesis works aims to start analyzing the feasibility of employing a Software-
Defined Radio (SDR) based on a microprocessor for NFC signal processing. This
allows for enhanced flexibility with respect to a custom logic implementation, at
the cost of potentially higher resource usage to meet the requirements. The hard-
ware platform identified as suitable for the purpose has been an open-source RISC-V
based CPU by the OpenHW group.
After a preliminary analysis, the core alone proved not suitable to meet the strict
requirements of the considered application. To improve the performance, an accel-
erator has been developed and tested to face the main bottleneck identified, namely
digital filtering.

The results are encouraging. Exploiting the accelerator, the number of instructions
per sample has passed from 152 to 41. The estimations show that the performance is
close to real-time processing.
As for the hardware profiling, the area occupied by the core-only is 26 kGates. The
total estimated area (core+accelerator) spans from 62 kGates to 140 kGates according
to the chosen settings for the coprocessor. The power has been estimated only
normalized to the power of the core, spanning between (2.5 · Pcore) and (3.5 · Pcore).

In the current implementation, coprocessor parallelization and pipelining have been
denied due to the great complexity introduced. In future work, the performance could
be further improved by exploiting them.

Another aspect to be faced in the future is the reliability of the results. They could
not be accurate for two main reasons:

• As for the performance, the system should be better modelled to have a good
estimation. The simulations done within this thesis have been obtained with
the core+coprocessor as the only actor in the system. In other words, all the
resources (e.g. memories) are always available, but this assumption is not valid
for more complex systems.
The core+coprocessor is meant to be integrated into the existing NFC system
by NXP, where other devices are present. This aspect shall be taken into great
account since it can degrade significantly the performance.
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• As for the area and power, the back-end flow should be completed (i.e. P&R)
to get meaningful estimations.

This thesis represents a starting point for the more ambitious project that NXP is
meant to carry on, but it is certainly not enough and further investigations will be
needed.
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Appendix A

RFID Physical Principles

In the following pages, the physical principles of inductively remote-coupled sys-
tems are explained.

A.1 Mutual inductance and coupling coefficient
Φ is the magnetic flux through a single conductor loop with area A generated by a
magnetic field B. Maintaining the same conditions, but placing N identical conductor
loops in series, the corresponding magnetic flux Ψ is:

Ψ = N Φ = N
−→
B ·

−→
A (A.1)

The inductance L is the most important parameter of a coil and it is defined as:

L =
Ψ

I
(A.2)

where Ψ is the interlinked flux generated by the current I that arises in an area
enclosed by that current.

Assuming to have a first coil through which a current I1 is flowing, if a second coil
is present and if it is close enough to the first one, it will be subject to a proportion
of the total magnetic flux Ψ, namely ψ21. The magnitude of ψ21 depends on the
geometry of the two coils, the relative position and the magnetic properties of the
medium.
Similarly to the inductance L, mutual inductance M21 can be defined:

M21 =
ψ21(I1)

I1
(A.3)

The same can be said for the symmetric case in which the second coil influences the
first one. The following relation applies:

M =M12 =M21 (A.4)
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Φ(I1), Ψ(I1)

B2(I1)

I1

Total flux Ψ2(I1)

A2A1

Figure A.1: Graphical representation of the mutual inductance concept. Taken from
[2].

A normalized coefficient k related to the mutual inductance M can be defined and it
is called coupling coefficient:

k =
M√
L1 L2

∈ [0, 1] (A.5)

Taking as reference the two boundaries, we get:

• k = 0: the two coils are completely decoupled. No effects occur in the first coil
due to the second and vice-versa.

• k = 1: full coupling. The two coils are subject to the same magnetic flux Ψ.
Transformers are examples of systems in which k ≈ 1.

A.2 Faraday’s law, resonance and power supply
Considering the two coils L1 and L2 described before, if the magnetic flux Ψ in
L1 changes, a voltage is induced into L1 itself (self-inductance) and in L2 (mutual
inductance). This effect is explained by the Faraday’s law (Equation A.6).

If the second coil is an open circuit, the voltage induced is:

ui2 =
dΨ21(t)

d t
=M

d i1(t)

d t
(A.6)

The second coil is our transponder and it is not an open circuit since it drains current.
An equivalent circuit (even though heavily simplified) is shown in Figure A.2. The
two coils are represented and R2 is the intrinsic resistance associated with L2 that is
not an ideal inductor.
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Figure A.2: Equivalent circuit for magnetically coupled conductor loops.

Writing the voltage Kirchhoff law and considering sinusoidal signals, we get that the
voltage across the resistive load, which represents the chip of the transponder, is:

u2(ω) = ui2(ω)

[
1

jωC2
∥RL

]
[

1
jωC2

∥RL

]
+ jωL2 +R2

= jωM i1(ω)
1

1 + (jωL2 +R2)

(
1

RL

+ jωC2

)
(A.7)

If L2 and C2 are designed to be in resonance at the operating frequency of the system

ω2
0 =

1

L2C2

, u2 reaches very high voltages allowing to have communications also with

low magnetic fields (i.e. large distance between the two coils).

In passive transponders, where no external battery is present, the power supply for
the chip is provided by the reader field. As said, the voltage can reach very high
voltages through resonance (even much greater than 100V if the coupling coefficient
is high), therefore a voltage regulation is needed since the chip usually works with few
volts. Shunt regulators can be used, as shown in the principle scheme in Figure A.3,
that are designed to tune the equivalent resistance seen by the LC group according
to the voltage level.

Rectifier
Shunt
regulator

Transp.
chip

Figure A.3: Operating principle for power supply in the transponder.
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A.3 Load modulation
As the transponder (coil 2) is influenced by the reader (coil 1), the vice-versa is also
true, since the mutual inductance M and, consequently, the coupling coefficient k is
symmetric. The logical cause-effect chain is: i1 varies → Ψ1 varies → Ψ2 varies → u2
varies → i2 varies → Ψ2 varies → Ψ1 varies → umeas varies → i1 varies → ...

Of course, the system will reach a steady state condition, but it is important to
highlight that the presence of the second circuit (transponder) represents a feedback
for the first one (reader).
The equivalent circuit from the reader’s point of view is shown in Figure A.4.

The resistor R1 is the intrinsic resistance associated with the coil due to non-idealities.
The capacitor C1 is chosen in such a way to be a series resonator with L1 at the

operating frequency of the system
(
ω2
0 =

1

L1C1

)
, giving Zres =

1

jω0C1

+ jω0L1 = 0.

Coil

Figure A.4: Equivalent circuit at the reader side.

The effect of the feedback can be modelled by introducing the impedance ZT , which
is called complex transformed transponder impedance.

It can be shown that the expression of ZT is:

ZT =
ω2M2

R2 + jωL2 +
RL

1 + jωRLC2

=
ω2k2L1L2

R2 + jωL2 +
RL

1 + jωRLC2

(A.8)

where the parameters related to the transponder are the same reported in Figure A.2.

ZT depends on plenty of parameters, but the very interesting dependency is RL, which
is the equivalent resistance of the transponder chip that can be changed at run-time.
The transponder can send data to the reader simply varying RL that will influence
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ZT and finally umeas. This technique is called load modulation and it is extensively
used by passive transponders to send data to the reader.

Notice that the reader can not directly access ZT since it is a “virtual” impedance
given by the Faraday’s law voltage, but the antenna terminals (R1 and L1 represent
the reader’s antenna) can be accessed and the voltage variation can be detected.

In Figure A.5, the complete system with load modulation data transmission is shown.
It is a principle scheme since the analog front-end is more complex than this, but all
the significant elements so far discussed are present. The load can be modulated
through a FET whose gate is controlled by the transponder chip with a suitable
modulating signal. That signal is binary code based (i.e. two levels alternating
signal), but its characteristics depend on the used protocol (refer to subsection 1.3.1).

Load
modulator

Transp.
chipAC/DC

Binary code signal

Figure A.5: Complete basic reader+transponder system.
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Appendix B

Architectural details

This section is a detailed dissertation on the design choices and techniques used during
the development of the MAC accelerator. These details are needed only for those who
want to understand the RTL structure of the accelerator, for debugging purposes or
just for curiosity. It is not strictly needed for those who want only to use it as a
programmer, since the specifications explained in chapter 4 should be enough.

Notice that you should read first the section dedicated to the high-level specifications
(chapter 4) since in the following sections some of the concepts explained there will
be not repeated.
In addition, all the specifications related to the eXtension InterFace (XIF) (e.g. hand-
shaking, signal naming and meaning) will be not explained here, but one can refer to
[14].
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B.1 Coprocessor architecture
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Figure B.1: Coprocessor architecture.

The high-level architecture of the coprocessor is shown in Figure B.1.
It is a 2-stage coprocessor, that is dependent on the core for the instruction offloading,
committing, data memory access and result storing (refer to subsection 2.4.1).

B.1.1 Parallelization and pipelining

The core-coprocessor couple behaves as a producer-consumer system, with the core
providing instructions to the coprocessor and the coprocessor executing them.

In this stage of the coprocessor development, some simplifications have been made
to make the development and testing feasible in a reasonable amount of time. The
main one is letting the coprocessor execute only one instruction at a time and
denying pipelining.
This means that no parallelization has been implemented, using an in-order execu-
tion with only one instruction at a time, avoiding more complex approaches (e.g.
superscalar-like).
As for pipelining, it is also denied in this phase, since the hazard management would
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have been complex. For instance, we have read/write from/to memory and RF, com-
mit/kill signals and possibly different blocks into the coprocessor ALU, which are
aspects not easily manageable.
Parallelization and pipelining could be a good starting point for future work.

B.1.2 Instruction Decoder

It is represented in purple in Figure B.1 and it is in charge of decoding the instructions
coming from the issue interface, signalling to the ID-stage Control Logic if an offloaded
instruction is recognized and can be executed or if it is unknown and has to be rejected.

Moreover, all the signals stating the properties of the decoded instruction (e.g. write-
back, the number of source registers needed) are generated and sent to the ID-stage
Control Logic.

B.1.3 ID-stage Control Logic

It works tightly coupled to the INSTR DECODER and it is in charge of managing the
core-coprocessor handshaking on the issue interface.

In addition, it dispatches to the EX-stage the required information for the correct
instruction execution (e.g. type of instruction, rs operands, rd for the writeback)
through the ID/EX pipe.

B.1.4 EX-stage Control Logic

It manages the commit interface, the memory interface, the memory result interface
and the result interface, implementing all the handshaking and data signals needed
for a correct core-coprocessor communication.

It also generates the control signals for the ALU execution (e.g. instruction kill) and
it manages the ones coming from it (e.g. memory accesses, final result providing)
acting as a core-ALU intermediary.

B.1.5 FIFOs

Being a producer-consumer system able to manage only one element (instruction) at
a time, 1-element First-In First-Out (FIFO) is needed (shown in red in the figure).
Two FIFOs are present, one managing the issue part and another one the commit
part and they are connected to the related XIF interfaces.
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The issue_FIFO stores:

• coproc_issue.issue_resp.accept: signal stating if the coprocessor has ac-
cepted or rejected the offloaded instruction;

• coproc_issue.issue_req.id: id of the current serving instruction;

• alu_block_sel: not XIF-related signal, but it is needed by the EX-stage to
select the right output among the different ALU blocks present. For now, only
the MAC block is present within the ALU and this signal is not used.

The issue_fifo_push signal is the signal to push a new value into the FIFO (if 1, a
new data is loaded into the FIFO). It is asserted when (coproc_issue.issue_valid
AND coproc_issue.issue_ready)=1, that means “when the core is offloading an in-
struction and the coprocessor is ready to receive it”.

The commit_FIFO stores:

• coproc_commit.commit.commit_kill

The commit_fifo_push signal is asserted when coproc_commit.commit_valid=1.

The fifo_pop signal is the same for both the FIFO and it is generated by the EX-
stage at the end of the current instruction execution.
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B.2 MAC general architecture
This section can be seen as a sort of continuation of chapter 4 and starting from there
the design choices will be explained.
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Figure B.2: MAC (general) architecture (same figure as Figure 4.1).
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B.2.1 Data registers
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Figure B.3: Data registers architecture.

Data registers are designed to appear as
a couple of two independent shift regis-
ters, one shifting downward (for the feed-
forward elements) and another one shift-
ing upward (for the feedback elements).
The size of each of the two parts can be
set by the programmer at runtime, set-
ting n_feed_<X> (see chapter 4).

The architecture of the data banks is
shown in Figure B.3.

The feedforward/feedback partitioning is
obtained through a series of MUXes (one
per register) allowing one to choose if
a register should take the input (next
value to store) from above or from be-
low. To split the shift registers into two
independent parts, the selection signals
SEL[<N>] needs to be a series of 0 for
the feedforward part (downshifting) and
a series of 1 for the feedback part (up-
shifting).

Consider for instance a data bank made
by 8 elements and the user wants to have
6 feedforward elements and 2 feedback
elements. The selection signals will be
SEL[1:6]=000000 and SEL[7:8]=11.
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With a more general notation we can write:

• feedforward part: SEL[1:n_forw_<X>]=000...0;

• feedback part: SEL[(n_forw_<X>+1):(n_forw_<X>+n_feed_<X>)]=111...1.

The idea is to have configurable selection signals SEL[<N>] stored into configuration
registers that can be set at runtime through the SET_NFEED instruction. The user will
provide n_feed_<X> (the number of feedback elements wanted) that will be converted
into the vector of selection signals SEL[<N>] through a decoder.

In addition, some pre-synthesis parameters are present to customize this structure,
giving to the user the possibility to instantiate only the strictly needed hardware,
avoiding useless overhead.
For instance, N_ELEMENTS_BANK_MAC[<X>] defines the number of registers instanti-
ated for each bank (notice that it applies both to data banks and coeffs banks), while
WIDTH_DATA_MAC[<X>] defines the bitwidth of the data bank with bank_index=X.

B.2.2 Coefficients registers

REG[1]

REG[2]

REG[3]

REG[N_ELEM_<X>]

[WIDTH_C_<X>]

[WIDTH_C_<X>]

[WIDTH_C_<X>]

[WIDTH_C_<X>]

...

ci
[WIDTH_C_<X>]

Figure B.4: Coefficients regis-
ters architecture.

The registers devoted to the coeffs banks are
plain shift-registers. The input is ci which is a
generic coefficient that can be loaded into the
registers through the LOAD_COEFF_[MEM/REG] in-
structions.

As explained in subsection 4.3.2, the loading or-
der of the feedforward/feedback coefficients is not
so intuitive and the user should pay attention to
it.
A more intuitive loading order could have been
provided to the user making the structure more
complex (e.g. having two different instructions
to load the feedforward and the feedback coeffi-
cients), but our final decision was to give more im-
portance to maintaining low the complexity (i.e.
lower area and power) since the coefficients are
loaded very few times into the program and pay-
ing attention to their order is not dramatic for
the programmer.

Also for the coeffs banks the number of elements
of the shift register (i.e. its length) and the bitwidth can be set for each bank as
pre-synthesis parameters (see section 4.2).
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B.2.3 Configuration registers

There are three sets of configuration registers:

• rounding: they are devoted to storing the rounding unit configuration (i.e. the
number of bits to round);

• nfeed: they are devoted to store the selector signals SEL[<N>] for the data regs ;

• simd: they are devoted to store the SIMD enable/disable configuration (only
instantiated if pre-synthesis parameter SIMD_MAC=1).

Note that each bank has its own set of configuration registers since these parameters
are independently configurable for each bank.

These registers are implemented in HW as normal register files, in which one can
write a specific location (one location per bank) through an index (bank_index).

B.2.4 Control Unit

The Control Unit is a quite complex logic since there are many signals to be managed,
most of them due to the handshaking with the main core.

It is not worth explaining all the control signals defined, since this would not add
useful details to the coprocessor working principle, but it is useful to take a look at
the FSMs.
Most of the control signals do not need a FSM, therefore only two FSMs are present:
one for the memory transactions with the core and another one for data loading to
the internal MAC registers. Mealy’s FSMs have been preferred on Moore’s ones, since
the former brings fewer states and, overall, better performance, allowing saving some
clock cycles. The advantage could seem not so relevant, but since we are working in
a DSP application where a lot of samples are managed in series, saving some clock
cycles per sample could improve the performance significantly. Moreover, the fact
that Mealy’s FSM does not cut the combinational path is not a problem in this case,
since they are not on the critical path.

Unfortunately, it is impossible to indicate the transition signals on the FSM graphs
because there are many of them. In addition, being Mealy’s FSM, the output is related
to the current state and to the input, which would make the graphical representations
even more complex.
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B.2.4.1 Memory transactions FSM

MEM_REQUEST

MEM_RESULT_WAITCOMMIT_KILL_WAIT

Figure B.5: FSM for the memory trans-
actions with the core.

In Figure B.5, the FSM for the mem-
ory transactions with the core is re-
ported.

The MAC is able to receive
data/coefficients both from the core in-
ternal register file and from the data
memory.
The operands from the RF are passed
on the XIF through the issue interface
when the instruction from the core is
offloaded. They are managed by the
ID-stage and passed to the EX-stage
through the ID/EX pipe: for this rea-
son, they are available to the MAC from
the beginning and without additional ef-
fort.
Instead, the data memory access is not

so straightforward, because the coprocessor can not directly access the memory, but
it has to exploit the memory interface and the memory result interface to obtain a
value from the data memory, with the core acting as an intermediary. Refer to [14] to
get the details about the two interfaces, but summing up we can say that the former
is devoted to the request of the value to be read by the coprocessor, while the latter
is used by the core to providing that value to the coprocessor. Handshaking signals
are present on the interfaces and they are managed by this FSM.

The role of the three states is:

• MEM_REQUEST:
This is both the idle state and the state in which the coprocessor requests a
value from the data memory through the XIF memory interface.
The next state is:

– MEM_REQUEST: if no memory request has to be performed;

– MEM_RESULT_WAIT: if a memory request has been done correctly and the
coprocessor has to wait for the value.

• MEM_RESULT_WAIT:
After a memory request on the XIF memory interface, the coprocessor passes
in this state to wait for the result that will be provided by the core through the
XIF memory result interface.
The next state is:
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– MEM_RESULT_WAIT: if no value has been received, yet;

– COMMIT_KILL_WAIT: if the value has been received, but the core has not
signalled, yet, through the commit interface if the offloaded instruction
has to be committed or killed;

– MEM_REQUEST: if the value and the commit from the core have been both
received.

• COMMIT_KILL_WAIT:
This state is used to wait for the commit/kill signal from the core, if not provided
after the memory request and the reception of the corresponding value.
If the instruction has to be committed, the received value is stored into the
internal registers; otherwise, if the instruction has to be killed, the value must
not be stored to preserve the previous state of the registers and the memory
transaction is aborted.
The next state is:

– COMMIT_KILL_WAIT: if the commit/kill on the commit interface has not
been received, yet;

– MEM_REQUEST: if the commit/kill signal has been received.
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B.2.4.2 Internal registers loading FSM

WAITLOAD

Figure B.6: FSM for the value loading
into the internal MAC reg-
isters.

In Figure B.6, the second FSM for the
value loading into the internal MAC
registers is shown.

This FSM is a Mealy’s one, as well. It
is simpler than the previous one and
it is needed only to ensure that the
write_enable/shift_enable signal of
the registers (data, coeffs or config regs)
is asserted for a single clock cycle, avoid-
ing unwanted writing/shifting. It is
needed since there are some cases in

which the write_enable/shift_enable signal could remain asserted for more than
one clock cycle.

Without going too deep with signal naming, the role of the two states is:

• LOAD:
This is both the idle state and the state in which, if the instruction has to per-
form a load-to-regs and the value to store is ready, write_enable/shift_enable
can be asserted.
The next state is:

– LOAD: if the instruction does not need to load a value into the registers;

– WAIT: if write_enable/shift_enable has been asserted during this clock
cycle and the MAC is not ready to accept a new instruction (i.e. pipe
stalling).

• WAIT:
After write_enable/shift_enable assertion, the FSM passes in this state in
order to de-assert it, ensuring its assertion for only one clock cycle.
The next state is:

– WAIT: if the MAC is not ready to accept a new instruction (i.e. pipe
stalling);

– LOAD: if the MAC is finally ready to accept a new instruction (i.e. the load
instruction served so far is over).
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B.3 MAC arithmetic architecture
The arithmetic part of the MAC (that is the orange block of Figure B.2) is in charge
of computing the final result according to the values stored in the data banks and
coeffs banks, including its rounding. It supports SIMD computation that can be set
at runtime (see Figure 4.3).
It is probably the most customizable part of the whole design with various parame-
ters controlling its structure (see section 4.2). Most of the design has been defined
behaviorally to ensure the wanted flexibility (e.g. bitwidth).

B.3.1 General structure

According to two pre-synthesis parameters, N_ELEMENTS_BANK_MAX_MAC and
N_OPERANDS_MAC, two different structures can be generated.

As said, each bank can have a different number of elements that can be set through
the vector N_ELEMENTS_BANK_MAC[<X>], therefore the MAC arithmetic unit must be
able to process them in the worst case, that is represented by the bank with the
highest number of elements, namely N_ELEMENTS_BANK_MAX_MAC.

Unfortunately, there are some cases in which N_ELEMENTS_BANK_MAX_MAC is too high
to have an efficient arithmetic part managing all those elements in parallel, therefore
we could go for an iterative approach.
In these cases, the parameter N_OPERANDS_MAC, representing the number of operands
that the MAC is able to manage in parallel, can be set to a value lower than
N_ELEMENTS_BANK_MAX_MAC and an iterative architecture is automatically generated.

Summarizing, two different architectures can be generated:

• N_ELEMENTS_BANK_MAX_MAC == N_OPERANDS_MAC:
the MAC arithmetic block is able to manage all the elements of the banks in
parallel, therefore it will compute the result in 1 clock cycle and no additional
logic is needed (Figure B.7).

• N_ELEMENTS_BANK_MAX_MAC > N_OPERANDS_MAC:
the MAC arithmetic block is not able to manage all the elements of the banks
in 1 clock cycle, but only a subset of them. In this case, the execution will be
done in more than one clock cycle through additional logic: a counter, MUXes
selecting the subset of elements to be computed in the ith-iteration, a temporary
register to store the temporary result and an adder to accumulate (Figure B.8).
If N_ELEMENTS_BANK_MAX_MAC is not a multiple of N_OPERANDS_MAC (i.e. their
division gives a fractional number), 0-elements are introduced as padding not
influencing the result.

For the banks with (N_ELEMENTS_BANK_MAC[<X>]<N_ELEMENTS_BANK_MAX_MAC), 0-
elements are introduced into the missing positions.

101



[WIDTH_D_<X>]
BANK_D_<X>[1]

...
...zero elements 

(if needed)

MAC 
[N_OP_MAC == N_ELEM_MAX] 

[WIDTH_D_<X>]
BANK_D_<X>[N_ELEM_<X>]

[WIDTH_D_<X>]
'0

[WIDTH_D_<X>]
'0

ROUNDING 
UNIT 

[WIDTH_D_<X>]
MAC_OUT_TO_CORE

[WIDTH_D_<X>]
BANK_D_<X>[2]

[WIDTH_C_<X>]
BANK_C_<X>[1]

...
...

[WIDTH_C_<X>]
BANK_C_<X>[N_ELEM_<X>]

[WIDTH_C_<X>]
'0

[WIDTH_C_<X>]
'0

[WIDTH_C_<X>]
BANK_C_<X>[2]

M
U

X

0

1CUT MSBs 

[WIDTH_D_<X>]
MAC_OUT_FEEDBACK

FEEDBACK_UNROUNDED

zero elements 
(if needed)

Figure B.7: MAC arithmetic architecture (no iterations needed).
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Figure B.8: MAC arithmetic architecture (iterations needed).
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B.3.2 Notes on the iterative structure

The iterative structure can be chosen if N_ELEMENTS_BANK_MAX_MAC is too large to
have a Multiply-Accumulate computation in one clock cycle and it gives the possibility
to have a simpler MAC arithmetic structure at the price of higher latency. However,
the design has been optimized to ensure that the minimum time needed is taken for
each operation.

In the worst case, the number of clock cycles needed is ceil(N_ELEMENTS_BANK_MAX_MAC
/ N_OPERANDS_MAC). However, since the different banks could have a different number
of elements, the design has been made in such a way that the number of iterations done
is changed according to the actual number of elements of each bank. In other words,
the number of iterations is not fixed, but it is equal to ceil(N_ELEMENTS_BANK_MAC[<X>]
/ N_OPERANDS_MAC), according to the selected bank (bank_index=X in this expres-
sion).

Putting some numbers: if you have three banks with, respectively, [3, 15, 8] elements
and N_OPERANDS_MAC=5, the number of iterations needed for the computation on each
bank will be respectively 1 clock cycle, 3 clock cycles and 2 clock cycles.

This ensures no performance losses maintaining low the HW complexity to implement
such a mechanism, since these are pre-synthesis parameters placed statically into the
design after the synthesis, therefore no strange HW is generated (e.g. no division and
ceiling).

B.3.3 MAC

The MAC arithmetic block implements the Multiply-Accumulate operation and it
supports SIMD that can be set at runtime. It is fully customizable through pre-
synthesis parameters: some of them are transparent to the user and they can be set
(see section 4.2), while others are not available to the user.

There are many papers on the efficient implementation of arithmetic operations like
this (see section 3.2), but a good trade-off is opting for a behavioural implementation
in HDL, leaving to the synthesizer the freedom to optimize it and giving the user
great flexibility. Probably this solution will not bring the best arithmetic architecture
in terms of performance-power-area, but it could be not worth going for a manual
architecture definition, since that structure could be complex to be designed and not
flexible at all.
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It is worth discussing the most significant parameters influencing the MAC operation:

• N_OPERANDS_MAC:
it is the number of operands that the MAC arithmetic block is able to process
in parallel (as discussed in subsection B.3.1).

• SIMD_MAC:
if 1, the SIMD support for the MAC is enabled. Notice that enabling the SIMD
support means that the user could use SIMD, but the actual SIMD enable must
be done with the dedicated instruction (see subsection 4.3.1) and it can be
enabled/disabled at runtime, differently for each bank.

• WIDTH_DATA_NOSIMD_MAX_MAC and WIDTH_COEFFS_NOSIMD_MAX_MAC:
they define the bitwidth used for the no-SIMD operations.
In the cases in which there are banks on which the user wants to enable SIMD
and other ones on which it wants to disable it, the bitwidth may be different
among the banks. Consider for instance two banks, one configured as SIMD
and the other one as no-SIMD, with bitwidth respectively of 32-bit (two 16-bit
packed values, SIMD) and 23-bit (a single value, no-SIMD). In a case like this,
it makes no sense for the MAC arithmetic unit to manage no-SIMD numbers
on 32 bits, but 23 bits are enough. This is the parameter the user can set to
implement this behaviour, avoiding useless HW overhead.

• WIDTH_DATA_SIMD_MAX_MAC and WIDTH_COEFFS_SIMD_MAX_MAC:
It defined the bitwidth used for the SIMD operations and it also defines the
packing of the input values (N_BIT_OP_*_SIMD is split into the parts, as ex-
plained in subsubsection 4.3.1.2).
The same discussion about bitwidth optimization done above applies also here.

B.3.4 Rounding

Two kinds of rounding units have been developed implementing round-to-nearest and
round-to-nearest even rounding scheme. The user can switch between them by chang-
ing a couple of lines in the RTL code.
They are configurable at runtime and the working principle is explained in subsub-
section 4.3.1.1, while here the HW implementation is shown.

The number of bits to be cut n_bits_cut can be set at runtime through the dedicated
instruction SET_ROUNDING.

SIMD is supported as well.
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Starting from the assumptions made in subsubsection 4.3.1.2, with the two rounding
schemes, we have:

• round-to-nearest: it rounds towards the nearest number; when exactly in the
middle, always round-up.
We need only to look at x−1:

– if x−1 = 0: round down (i.e. truncate);

– if x−1 = 1: round-up (i.e. add +1 at the ulp position).

In the end, right shift by n_bits_cut.
Examples:
1.25 (01.01) → 1 (01 + 0 = 01)
1.75 (01.11) → 2 (01 + 1 = 10)
1.50 (01.10) → 2 (01 + 1 = 10)
2.50 (10.10) → 3 (10 + 1 = 11)

• round-to-nearest even: it rounds towards the nearest number; when exactly
in the middle, round towards the nearest even number.
We need to look at x−1 and at (x−2...x−l).
The quantity OR(x−2, x−3, ..., x−l) is called sticky bit (S).

– if x−1 = 0: always round down (i.e. truncate);

– if x−1 = 1:

∗ if S = 0: we are exactly in the middle → round towards the nearest
even number (i.e. add x0 at the ulp position).

∗ if S = 1: always round up (i.e. add +1 at the ulp position).

In the end, right shift by n_bits_cut.
Examples:
1.25 (01.01) → 1 (01 + 0 = 01)
1.75 (01.11) → 2 (01 + 1 = 10)
1.50 (01.10) → 2 (01 + 1 = 10)
2.50 (10.10) → 2 (10 + 0 = 10)

The round-to-nearest even scheme is more complex, but it ensures that no drift issues
related to the rounding in the feedback systems occur (see subsubsection 4.3.1.1).

In addition, a further parameter UNROUNDED_FEEDBACK_MAC is present and it selects
the value to be sent to the feedback part of the data regs, among the rounded and
the unrounded one. It is a specific feature needed by the software part implemented
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by my colleague that does not add complexity, since UNROUNDED_FEEDBACK_MAC is a
pre-synthesis parameter, therefore the MUX shown on the right in Figure B.7 and
Figure B.8 is not present after the synthesis.
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