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Abstract

The global effort to reduce fossil fuel consumption implies massive energy storage
exploitation. The only available technology able to satisfy the required performance
is the Li-ion cell. To ensure a sustainable cycle life, it is necessary to exploit the
batteries during their overall possible lifetime.

BAT-MAN is a project by Brain Technologies to provide a product that offers
an online, real-time, and non-intrusive estimation of a lead-acid battery’s charge
status and state of health.

The thesis aims to provide an extension of BAT-MAN to Li-ion batteries. The
thesis aims to investigate the behavior of different Li-ion cells to build a general
model for simulation and identification purposes. A rigid methodology definition is
needed to standardize the experiments and collect consistent data for the successive
steps. Some different approaches are investigated to find the best trade-off model
between accuracy and computational complexity. Candidate models are tested
in closed-loop validation using an Extended Kalman Filter as an observer. The
resulting parameters models are examined to extrapolate a simple relation between
different SoC and SoH of the batteries. The last phase is the application of
the ERMES algorithm, patented by Brain Technologies, to provide a fast and
computational inexpensive estimation of the State of Health of the investigated
cell.
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Chapter 1

Introduction

Energy storage is one of the key topics for the transition to a sustainable economy.
Renewable energy is the core of future power production, but for its intrinsic
characteristics, they are not an on-demand source. The solution is the storage of
the energy over-production to exploit it in the future.

According to the Sustainable Development Goals and the Paris Agreement, the
transition to a sustainable energy production system is not sufficient to guarantee
the achievement of the goals. Transport is one of the most climate-impactful
systems globally. To reduce the dependency on fossil fuels, the automotive sector
is slowly substituting conventional heat engines with more efficient electric motors.
The transition requires huge investments in energy storage solutions, now focused
on Li-ion batteries.

Lithium batteries for automotive use have to achieve strict performance. Firstly,
the power delivery must be high, to guarantee comfort, security, and maneuverability
to the vehicle. The total capacity is one of the key aspects, to ensure enough range
for the vehicle. On the other hand, the weight and volume of the battery packs
limit the above performance index. All the previous requirements are achieved by
high-cost battery packs, that guarantee high capacity and performance. With the
actual technologies, the life of an automotive battery pack is lower than expected:
to ensure the correct achievement, it is dismissed at approximately 80% of its total
life-cycle.

On the opposite side, batteries for energy storage for daily use do have not the
same strict requirements. The currents needed are lower and the size of the pack is
not a problem. One of the key parameters for the spread of the technology is the
cost. Automotive battery packs affect over half of the total cost of the vehicle, but
storage batteries are economically unsustainable at the same price.

In the future, the entire ecological transition may depend on the use of Li-ion
batteries and their exploitation during the complete theoretical life cycle. An
automotive old battery pack could be used for years in the energy storage field.

1



Introduction

At the moment, there is not a widespread method to certify a used battery for a
re-qualification. At the same time, the first use of the battery must be stopped at
the optimal point to guarantee a long time use in the second life. To ensure the
achievement of this goal, a simple and inexpensive device to monitor and measure
the State of Health of a battery is needed. BAT-MAN project delivers a solution
to the problem, with a fast and online estimation of the required parameters.

1.1 Thesis Outline
This work aims to extend the concepts at the basis of the BAT-MAN project to
the Li-ion batteries field. The main steps followed in the thesis are:

• In-depth study of the literature to define a starting framework. The most used
techniques for the characterization and the simulation of a cell are evaluated
to find the most promising for the actual goal.

• Data generation from an experimentally-defined model. The data will be used
in the next steps. During this phase, charging and discharging algorithms are
studied to define a strict Energetic Framework.

• Identification of a simpler model that approximates the data. Some identifi-
cation methods are applied and evaluated through validation tests. All the
models are tested both in an open and closed-loop configuration.

• Multi-model approach and ERMES algorithm application to estimate the
State of Health.

2



Chapter 2

Lithium Batteries

2.1 A brief history
The first experiments on the possible exploitation of battery systems of lithium
were done by G.N. Lewis in 1912. The results were not consistent and for fifty
years the research did not consider anymore the material for this purpose. In the
late 1960s, the request for high-density energy sources for military, medical, and
consumer electronic devices sharply grew. Exploiting lithium as cathode material,
the first lithium-iodine batteries were deployed.

In the 1970s lithium batteries were common in consumer electronics. Lithium
ions were expected to plate back in metal on the anode during the charge, and the
attention was on the cathode to guarantee a long life for the component. Until 1977,
the efforts to create a rechargeable lithium-based battery fail. First batteries were
extremely unstable due to the presence of metallic lithium in the anode. In 1980,
a battery with a lithium-ion cathode is presented by Goodenough. In 1991, Sony
presented the first lithium-ion battery that exploited graphite and lithium-cobalt
oxide as lithium source and sink.

The research is focused on different materials to guarantee both higher capacity
and power capability., the electrode combination will suggest a possible path for
a new level of power density. Commercial lithium-ion batteries have a specific
power density of 150 − 250Wh/kg, and future lithium-sulphur and lithium-air cell
promise respectively 2600Wh/kg and 11400Wh/kg. [1]

2.2 How do cells work?
The operating principle of a Lithium-ion battery is the electrochemical potential.
Lithium has the highest potential (3.04V ) among all the elements. Consequently,
Lithium atoms have a high tendency to lose an electron and become ions, so it

3



Lithium Batteries

is a highly unstable materials. On the other hand, Lithium is almost stable if it
is part of a metal oxide. In the cathode, Lithium is bounded to the metal oxide.
During the charging period, the positive side of the power source removes metal
oxide’s electrons. The electrons are stored in the anode, made of graphite. The
electrolyte prevents the electrons to move freely between the anode and cathode.
The Lithium-ions are attracted by the negative charge of the anode and cross the
electrolyte. The structure of graphene avoids the lithium-ions to bond the electrons.
During discharging phase, lithium ions cross the electrolyte to return to a more
stable status. The electrons flow through the circuit and reach the cathode, to be
caught by the metal oxide. If the internal temperature of the cell rises enough, the
electrolyte will dry up and the electrons will flow freely. This condition leads to
a short circuit and the consequent explosion of the cell. To avoid this effect, an
insulating layer, called a separator, is added to the electrolyte. The separator is
permeable to the Lithium-ions because of its porosity, but its impenetrable to the
electrons. The electrolyte will be degraded if the electrons come into contact with
it. During the first charge, the electrolyte reacts with Lithium-ions and graphite,
forming a solid layer that prevents any direct contact between electrons and the
electrolyte. This layer is called the Solid Electrolyte Interface (SEI). The formation
of the layer consumes approximately 5% of the Lithium-ions and the process is
optimized during the design phase to achieve the best performance possible. A
common choice for the metal oxide is Lithium-Cobalt oxide (LiCoO2). The overall
reaction is:

C6 + LiCoO2 ⇀↽ LiC6 + CO2 (2.1)
The cathode half reaction is:

CoO2 + Li+ + e− ⇀↽ LiCoO2 (2.2)
The anode half reaction is:

LiC6 ⇀↽ C6 + Li+ + e− (2.3)
The conductivity of the anode is usually augmented by adding a copper plate, while
the same thing is done on the cathode with an aluminum one. These plates are
called collectors. Different anode and cathode materials allow the enhancement of
some intrinsic characteristics of the cell. For example, an energy cell is optimized
to achieve the maximum specific energy at a medium-low load, while a power one
offers the best peak performances. Most of the Lithium-ion cells on the market have
the structure illustrated above, with some differences in the choice of materials.

2.3 Materials
The choice of lithium is not random: it is the third lightest element, and it has the
lowest reduction potential of any element, consequentially the cells have the highest
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possible specific power. Furthermore, the global amount of lithium is sufficient
to guarantee the possibility of the electrical transition for overall global mobility.
Nevertheless, the rising price of the element is one of the major inhibitions to the
expansion of the lithium-battery market and production. Cathode materials and
the cost of processing are far more expensive than lithium itself. For this reason,
most of the research on Li-ion batteries is invested in the development of new
electrode materials, to enhance the performance of the cells. [2, 3]

2.3.1 Cathodes
An intercalation cathode material is a solid network that can store ions. The
process must be reversible. The intercalation compound can be divided into
different structures: layered, spinel, olivine, and tavorite. LiCoO2 (LCO) is the
first commercial intercalation material launched on the market. It is a convenient
cathode material due to its high specific capacity (274 mAh/g), low self-discharge,
high discharge voltage, and discrete cycling performance. The major limitation is
the high cost, low thermal stability, and fast capacity fade at a high current rate.
Other materials (Mn, Al, Fe, Cr, Al2O3, B2O3) are studied as partial substitutes
of cobalt, but the results are cells with limited performances. [2, 4] LiNiO2 (LNO)
has a similar specific capacity concerning LCO. The cells are less expensive due to
the substitution of cobalt with nickel. Against, Ni-ions tend to substitute Li-ions
and the result is a decrease in diffusion. LNO cells are also more thermally unstable
than LCO. [2, 5] LiMnO2 (LMO) seems to be promising because of the lower
cost of the manganese for the cobalt. However, the cycling performance of LMO
batteries is not consistent. [2] Li(Ni0.5Mn0.5)O2 (NMO) is an interesting material
because of its similar properties to LCO. Cobalt is substituted with less expensive
metals. The specific capacity is near 180mAh/g. [2]

2.3.2 Anodes
Anode materials are necessary to reduce the instability of the batteries caused by
a metallic lithium anode. Lithium anode could form dendrites that, under some
circumstances, cause a short circuit and the consequent thermal runaway of the
battery. [2] Graphitic anodes are used since the first Li-ion commercial battery
by Sony in 1992 and they are already the most common choices. Carbon is both
low-cost and abundantly available. The intercalation of Li-ions between graphene
planes offers good stability and high conductivity. The research is currently focused
on the limitations, such as the low volumetric capacity (330 − 430mAh/cm−3). [2]
Lithium titanium oxide (LTO) has been introduced due to its superior thermal
stability concerning graphite. On the other hand, the use of this material introduces
a reduction in cell capacity and lower cell voltage. Also, LTO active material could
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Compound
Specific Volumetric

Voltage Statuscapacity capacity
[mAhg−1] mAhcm−3]

LiT iS2 225 697 1.9 Commercial
LiCoO2 274 1363 3.8 Commercial
LiNiO2 275 1280 3.8 Research
LiMnO2 285 1148 3.3 Research

LiNi0.33Mn0.33Co0.33O2 280 1555 3.7 Research
LiNi0.8Co0.15Al0.05O2 279 1284 3.7 Commercial

Li2MnO3 458 1708 3.8 Research
LiMn2O4 148 596 4.1 Commercial
LiCo2O4 142 704 4.0 Research
LiFePO4 170 589 3.4 Commercial
LiMnPO4 171 567 3.8 Research
LiCoPO4 167 510 4.2 Research
LiFeSO4 15 487 3.7 Research
LiV PO4F 156 484 4.2 Research

Table 2.1: Characteristics of the most common intercalation cathode materials.
[2]

react with organic electrolytes. The problem can be resolved using carbon coating,
but the introduction of carbon material can accelerate electrolyte decomposition at
high temperatures. [2, 6]

2.4 Temperature effects
The effects of temperature on Li-ion batteries are due both to the migration of the
electrons and the properties of the material used in the design. Chemical reactions
are regulated by Arrhenius law, which defines the relationship between temperature
and reaction rate. While an acceptable operating range could be identified from
20◦C to 60◦C, the optimal range to reach consistent performances is limited to
15◦C to 35◦C. Outside this region, the cell can quickly degrade its performance
and increase the risk of a dangerous malfunction. [7, 8] The impact on Li-ion
batteries can be divided into effects attributable to high and low temperatures.
Low temperatures lead to a decrease in ionic conductivity and diffusivity, resulting
in a reduction of power capability. Considering low temperatures, the environment
plays a critical role, while in high temperatures, heat is usually produced inside the
battery proportional to the stress level of the operation. High internal temperatures
are common both in fast charging and discharging. Some of the processes are
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irreversible and the lack of accurate control could result in thermal runaway. [7]

2.4.1 Low temperature effects
Li-ion batteries have a strong decrease in performance below 0◦C. The influence of
temperature is traceable to different sources. The electrolyte is influenced by low
temperatures: the viscosity increases and the ionic conductivity is consequently
reduced. This effect leads to an increase in the internal impedance of the cell. The
inclusion of electrolyte additives, as LiPo2F2, is a partial solution to the problem.
Low temperatures also slow the diffusion of Li-ions through the electrodes. [7]
Another important factor is the increase of charge-transfer resistance: at −20◦C
is three times higher than at 25◦C. The kinetics of the cell is deeply affected by
this phenomenon. Also, during the charging the resistance is higher than during
a discharging cycle, so the charging of the battery becomes a critical operation
at low temperatures. [7] Cold conditions accelerate lithium plating. The anode is
polarized, and the intercalation of Li-ions is slowed during the charging. Aggregated
Li-ions are deposited on the electrodes, lowering the total capacity of the cell. Also,
lithium plates can grow up becoming dendrites, which are dangerous for possible
damage to the SEI and the consequently short circuit. [7, 9]

2.4.2 High temperatures effects
The influence of high temperature on cell behavior is more complex than the
ones imputable to low temperature. Heat generation is associated with charge
transfer and chemical reactions during the normal cycling of the battery. Heat
is produced both in reversible and irreversible processes. Entropic heating is
generated by reversible entropy fluctuations during electrochemical reactions. One
of the main sources of irreversible heat generation is the so-called polarization
process. It is a result of an excessive voltage between the operating point of the
circuit and the open circuit voltage of the batteries. Overcoming this resistance,
Li-ions generate heat. Another component of the irreversible process is ohmic
heating, present both in the charging and discharging processes. Finally, phase
changes in the cathode, due primarily to the diffusion of Li-ions, generate heat. [7]
Aging is affecting the thermal behavior of batteries. Both calendar and cycling
aging occur in combination, generating complex effects on the normal performance
of the cell. The most intuitive contribution to heat generation is the growth of
internal resistance of the cell, which produces heat through the ohmic effect. Not
only does aging influences thermal properties, but also high temperature speed
up aging both on calendar and cycling processes. [7, 10] Thermal runaway is
common under non-suitable conditions use of Li-ion batteries. In high-temperature
states, it may occur due to the trigger of exothermic reactions. The studies on the
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Figure 2.1: Heat generation processes [7]

single effects occurring on the cell are done using a synchrotron X-ray tomography
and the simulation of suitable conditions. [11] The shell temperature of 200◦C
corresponds to the trigger of the exothermic reaction. Under these conditions, the
internal temperature of a single cell can reach up to 1000◦C, damaging also the
structural components of the battery. [7] To prevent any damage to the battery, a
sophisticated thermal model is required. The easiest method is to measure the shell
temperature of the cell and estimate the internal temperature using an empirical
model. Internal temperature sensors are under study, being able to offer a more
precise measurement at the cost of a more complex construction of the cell. [7]

2.5 Aging
Aging is the most complex phenomenon to model regarding Li-ion batteries. It
involves a wide range of side effects of the principal reactions; it is strongly non-
linear and condition dependent. At the moment, there is no agreement on the
influence of this mechanism on cell performance. The aging process can be divided
into two sub-categories: calendar and cycle aging. Calendar aging is the most
investigated due to some practical reasons. After production, batteries must be
stocked in the warehouse for long periods. Also considering EVs, vehicles idle for
more than 90% of their life cycle. Research agrees that a stock charge of 40% is
optimal to reduce calendar aging, but there is contrasting proof regarding the best
temperature. Research about cycle aging is mostly focused on the reduction of
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usury due to charging and discharging processes. Cycling aging is strongly related
to the stress applied to the battery. High temperature, current, and depth of
discharge accelerate the aging process. [12, 13, 14]

The two more common consequences of aging are capacity loss and internal
resistance increase. The phenomena involved are several and difficult to investigate.
Research focuses on post-mortem methods such as X-ray photoelectron spectroscopy,
X-ray diffraction, and scanning electron microscopy. While there is no evidence
of modification of the cathode, aging is commonly attributed to lithium plating
on the anode and changes in the solid electrolyte interface. Side reactions, such
as gas production, are not considered the primary aging mechanism. [12, 15] The
first process analyzed is lithium plating. Metallic lithium is produced based on the
reaction

Li+ + e− ⇀↽ LiS (2.4)

And it deposits on the surface of the graphite layer. This process both decreases
the total active quantity of Li-ions in the cell and limits the transfer of the ions,
increasing the amount of lithium subjected to the plating. [12] SEI growth is the
secondary process that defines the aging of the cell. The thickness of the layer
reduces the mass transport of the ions and influences the kinetics of the electrons
on the anode. The phenomenon is described by the following reactions: [12]

2Li+ + 2(C3H4O3) + 2e+ ⇀↽ (CH2 = C = 2Li)2 + C2H4 (2.5)

2Li+ + C3H6O3 + 2e− ⇀↽ Li2CO3 + C2H6 (2.6)

Another process double linked to aging is thermal stability. Not only aging can be
accelerated by temperature, but also the thermal property of the battery depends
on the aging of the cell. Different operating temperatures during the life cycle
may produce different levels of aging, triggering side reactions more than in other
cases. [15] Aging is the result of a large variety of processes difficult to predict.
The overall State of Health of the battery is influenced by its cycling history. The
large number of materials used to build Li-ion cells complicates the identification
of possible side reactions and a generalization is very unlikely. Cells with different
technologies respond in different ways to the same stress. In table 2.2 it is shown
the influence of the most common stress factors on different battery technologies.
[16]
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Stress factor Cell chemistry
LCO NMC NCA LMO LFP LTO

High SoC cycling +++ +++ ++ ++ ++ +
Low SoC cycling ++ + + + + ++
High temperature +++ ++ ++ ++ + +
Low temperature +++ +++ +++ +++ +++ n.a.

High current +++ ++ + n.a. ++ +

Table 2.2: Impact of different stress factor on cell aging [16]
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Chapter 3

State of Art

3.1 Mathematical model
While in the first years of Li-ions battery studies electro-chemical model was the
most exploited, now almost all the research is focused on equivalent electric models.
Electrical models are accurate enough for simulation purposes, computationally
efficient, and simple to manage. The circuit can be modified to satisfy different
requirements, such as a higher precision or a lighter complexity for limited computa-
tional power applications. The most general circuit is composed of an independent
voltage generator, a series resistor, and one or more parallel RC branches, as shown
in figure 3.1. R0 models the static response of the cell. VOCV is the so-called open

Figure 3.1: Schematic of the circuit model with n RC groups

voltage circuit, the terminal voltage of the cell under no load condition. It is the
voltage measured after a long rest period of the battery. The RC branches model
the dynamic behavior of the cell. The input of the model is the current, taken
positive during the charging process, while the output is the terminal voltage. All
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the parameters are dependent on SoC, temperature, aging, and load current. To
reach a higher approximation of the non-linear behavior, a non-linear block can be
applied to the scheme in the so-called Wiener structure. [17] A commonly used
model presents two RC branches. The first RC has usually a small time constant,
that models double-layer capacitance and charge transfer phenomena. The second
one is significantly larger and takes count of the diffusion processes. [18, 19, 20,
21] A variation of the 2-RC model is to split the second time constant between
the charging and discharging processes. The difference between the time constants
is quite pronounced and the simulation results are improved. To achieve the sep-
aration, two ideal diodes are inserted into the circuit. [20] A major part of the

Figure 3.2: Schematic of the circuit model with a different time constant for
charge and discharge process [20]

research does not consider temperature’s influence on the parameters. A thermal
model is decisive only in a critical situation, not very common in the general use of
batteries. The dependence of the parameters on the temperature is determined
experimentally and thermal models are required to consider the self-heating of the
cell. A widespread equivalent thermal-electrical model is reported in figure 3.3.

3.2 SoC estimation
The common factor of all the techniques is the Coulomb-counting algorithm. To
evaluate SoC, the current is integrated over time and compared with the total
capacity of the cell. The resulting equation is quite standard:

dSoC(t)
dt

= 1
C

I(t) (3.1)

The process needs a periodical recalibration to avoid iterative errors due to un-
certainties in the current measurements. While the evolution of the SoC curve is
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Figure 3.3: Schematic of the thermal equivalent circuit of a Li-ion cell. [20]

easy to replicate with the above method, a precise value for the SoC to calibrate
the curve is difficult to find. To identify the SoC level of the cell under the test,
two major approaches are exploited. The easiest one is to consider the verified
relationship between open circuit voltage and SoC. The method is effective, and
the results are good, but for the intrinsic characteristics of the measurement, it is
impossible to apply it in a real-time application. Moreover, some cells present an
almost flat characteristic at a medium value of SoC, reason why the uncertainty
is not guaranteed to be acceptable. Another important drawback is the need
for a precise characterization of the cell under test, due to the differences in the
VOCV -SoC curves considering different technical solutions in the design of the cell
and the production process. The second and most used method is the inclusion
of an observer in the simulation. The SoC appears as a state in the state space
representation of the system and the convergence is usually quite fast. As an
observer, Extended Kalman Filter or its derived algorithms are used. The results
are consistent at the cost of high computational complexity. [22, 17]

An innovative approach exploits the correlation between SoC, and a new variable
called unit time voltage drop and defined as

V ′ = ∆V

∆t
(3.2)

The average correlation between SoC and 1/V ′ is 0.984 while the same between
SoC and V is 0.988. This approach provides a simple correlation between SoC and
SoH. The variable V’ is correlated with the overpotential of the cell from VOCV

during a transient. SoC equation can be written as:

SoC = aV + b(1/V ′) + c (3.3)

Where the coefficients are estimated from the data through linear regression. SoH
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can be expressed as a function of SoC and V ′ as:

SoH = α(SoC) · [A(1/V ′) + B] (3.4)

With A and B coefficients. SoC is calculated as a linear function of V and 1/V ′.
This model structure guarantees high precision where the two variables have linear
behavior, but it has poor performance at the borders of the SoC span due to their
non-linearities. [23]

3.3 SoH estimation and aging effects simulation
Aging effects are difficult to estimate because of the number of different phenomena
involved. The most used parameter to quantify the effect is the State of Health.
SoH quantifies the real capacity of the cell with the initial or nominal one.

SoH(t) = real capacity (t)
nominal capacity

(3.5)

Other parameters used are State of Function SoF, End of Life EoL, and Remaining
Useful Life RUL. All these quantities are related only to the capacity of the
batteries, other critical characteristics of the cell are not considered in the health
evaluation, but only as consequences of aging. [24] Calendar aging models are based
on the electrochemical reactions that take place inside the cell. The equations are
structured under Arrhenius kinetic and depend on temperature, time, and SoC.
However, the parameters are determined experimentally. [24, 25] To simulate cycle
aging, there is no agreement on the strategy to analyze the phenomenon. The
results are not generalizable and the efficiency of the computation is usually very
low.

3.3.1 Fatigue theory and equivalent cycle counting
Based on the equivalent cycle number, and stress parameters related to the depth
of discharge DoD, C-rate, and temperature, an aging index is calculated for each
charge-discharge cycle. The effect of cycling on the battery capacity and internal
resistance is then depicted by this aging index. The model is applicable to any type
of lithium-ion battery because it is based on physical equations and comparable
cycle counts. The number of cycles a battery can withstand before reaching EoL
when repeatedly discharged and charged at a specific DoD, C-rate, and temperature
is referred to as the maximum number of cycles. When a battery has lost 20% of
its initial capacity, it is said to have reached its end of life. The calculated stress
factor is used to evaluate the maximum number of cycles. [26] The equivalent
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number of cycles at a given DoD is defined as the number necessary to simulate
the current situation with a standard cycle beginning and ending at full SoC:

Neq(n) = 0.5
A

2 − DoD(n − 2) + DoD(n)
DoD(n − 1)

B
(3.6)

The aging index is defined as:

ϵ(n) = ϵ(n − 1) + Neq(n)
Nc(n − 1) (3.7)

where Nc is the maximum number of cycles to EoL.

3.3.2 Voltage relaxation

Voltage relaxation techniques are based on the collection of different parameters
related to the standard charging and discharging cycle. The most significant test
and parameters are reported:

• Voltage decrease rate during constant current discharging. The voltage de-
crease is faster as the cell ages. It is due to the decrease in the battery’s total
capacity.

• Voltage increase rate during constant current charging. The terminal voltage
of the cell reaches faster than the nominal voltage when the cell is old.

• Constant current charging time. The time required to reach nominal voltage
decreases when the battery ages.

• Total charging time using a CC/CV algorithm. The overall time to charge
the battery grows for older cells.

• Current decrease rate during constant voltage charge. The current decrease
rate increases for older batteries.

• Temperature decrease rate during constant voltage charge. The temperature
decreases faster in old cells than in new ones.

The above parameters are combined with a machine learning algorithm to provide
an accurate estimation of SoH. [27, 28, 29]
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3.3.3 Other methods
Another investigated method is the statistical approach. Collecting a large amount
of data, the researchers try to establish statistical connections and correlations.
Prior information or models are not necessary, and they don’t use physical or
chemical equations. [24]

The application of the Degradation-Entropy Generation Theorem provides a new
approach in the simulation field. The degradation of the cell is directly correlated
with the rate of entropy generation, using irreversible thermodynamics. [30]

3.4 Critiques
The simulation of a battery exploiting an electric equivalent circuit is quite stan-
dardized and it is consistent with most possible scenarios. It requires a previous
identification of the parameters through collected data and a calibration of the
observer used to correct the small deviations due to model error. The main draw-
back is the impossibility of including an identification of the state of health of
the cells to simplify the overall model. Using the current framework, the same
battery considered in two different instants of its life is not considered as a single
entity, because of the requirement of two sets of parameters to be simulated. A
major part of the research is focused on the application of theoretical results to
real-world data. The result is a simulation of the oncoming phenomena, but the
goal to correctly classify a battery with its state of health with a simple test is
always far. The investigated approaches are not suitable for real-time applications,
of the high complexity or the large history needed to guarantee a consistent result.
At the methodological level, accelerated aging tests are the most used. Due to the
complexity of the aging phenomenon, it is impossible to generalize results achieved
with specific and repetitive cycle tests. Cycling at high temperatures, DoD and
C-rate return the enhancement of irreversible process with a different proportion
of real-world application. To conclude, all the studies consider the end of life of a
cell when it reaches the 80% of the initial capacity. This assumption includes the
idea that a battery must be used only in the originally designed field of application.
There is an absolute lack of research that looks for a re-characterization of the cell
to designate them to a lighter use.
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Chapter 4

Energetic Framework

The need to define a rigid energetic framework rises with an accurate analysis of
the literature. Most of the considered articles do not report the assumptions on
the basis on which the work is done. Without a clear definition of such quantities
as SoC and Capacity, it is impossible to generalize the obtained results. Also, little
changes in the assumption can generate huge discrepancies during the elaboration.
In this work, when the approach to follow is not a priori clear, all the hypotheses
are investigated until one result is the best for the research. In this section, the
most relevant definitions and assumptions are reported. Some of these affirmations
will be discussed and developed in the following chapters.

4.1 Nominal or Rated Capacity
Nominal Capacity is defined as the ideal capacity of the cell. It is always provided
by the manufacturer, and, before any analysis, it is the only information available
on the battery. It is expressed in Ah and it is a constant quantity.

CN (4.1)

4.2 Real Capacity
Real capacity corresponds to the actual capacity of the cell, considering a cycle from
fully charged to completely discharged. It is expressed in Ah and it is dependent on
SoH and T. During a single charge or discharge cycle, the real capacity is considered
constant.

CR (SoH, T ) (4.2)
Despite what common sense could suggest, the relation CR ≤ CN is not always
true. The rated value is a mean value provided by the manufacturer, so the real
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quantity can be also slightly higher than that. Additionally, initial cycles can
release an additional quantity of lithium that enhances the capacity performance
of the cell. After this short period, the capacity will decrease first linearly and then
in a non-linear way.

Figure 4.1: Capacity evolution during cell lifetime [16]

4.3 Lost Capacity
It is the difference between nominal capacity and real one. It is measured in Ah,
and, excluding the first cycles, defined as positive.

CLost (SoH, T ) = CN − CR (SoH, T ) (4.3)

4.4 Coulomb Counting
It is the algorithm used to quantify the charge transfer from and to the battery.
Due to the measurement uncertainties on current and time, it needs periodical
recalibrations to be effective.

Q (t) =
Ú t

t0
I(τ) dτ (4.4)

The current is defined as positive when it is provided to the battery. Generally,
the absolute value of this quantity is considered.
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4.5 Interpretation of the Capacity
Real capacity can be divided into released and releasable capacity. [31]

CR(SoH, T ) = CReleased(t) + CReleasable(t) (4.5)

The released part is defined as the energy already extracted from the battery,
beginning the experiment with the battery fully charged. During the charging
phase, the released capacity results negative.

CReleased(t) =
Ú t

t0
I(τ) dτ (4.6)

It is clear that:
CReleased(0) = 0 (4.7)

CReleased(tf ) = CR (4.8)

with tf time when the cell is completely discharged. Releasable capacity refers to
the energy already present in the cell. In an experiment design to begin with the
battery completely charged, it can be defined as the charge that will be extracted
until the cell is defined as completely discharged.

CReleasable(t) =
Ú tf

t
I(τ)dτ (4.9)

It can be seen that:
CReleasable(0) = CR (4.10)

CReleasable(tf ) = 0 (4.11)

Also the nominal capacity can be decomposed as:

CN = CLost(SoH, T ) + CR(SoH, T ) =
= CLost(SoH, T ) + CReleased(t) + CReleasable(t)

(4.12)

4.6 State of Charge SoC
The definition of SoC is strictly dependent on the assumptions of fully charged and
fully discharged cells. The easiest approach to make the assumption is defining
one of the two points and correlating the other. For simplicity, it is fixed at the
fully charged point. A battery is considered completely charged or full when the
battery charger stops its action. Despite the simplicity of the problem, there is no
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agreement on what consider a fixed point on the characteristic of the battery. It is
not a universal assumption, but it is quite general if the algorithm used for the
charging process is the same. The importance of this assumption is to fix the point
of SoC = 1, corresponding to the full cell. At this point, the definition of SoC is
not unique. A general description is a ratio between the charge present in cell Q
and its total capacity C.

SoC(t) = Q(t)
C

(4.13)

C is considered constant across the discharging cycle. There are two workable
solutions for the choice of C. Both CR and CN can be used and no one seems to be
a better choice. The two definitions are considered together in this section. SoC
nominal is defined using CN :

SoCN(t) = Q(t)
CN

(4.14)

SoC real is defined using CR:

SoCR(t) = Q(t)
CR

(4.15)

Considering the experiments performed in this work, the starting point of the
discharging process is always SoC = 1. To allow easier data collection and
elaboration, the SoC definition is written considering the relation:

Q(t) = QReleasable(0) −
Ú t

0
I(τ)dτ = C −

Ú t

0
I(τ)dτ (4.16)

The two above equations become:

SoCN(t) = Q(t)
CN

= 1 − 1
CN

Ú t

0
I(τ)dτ (4.17)

SoCR(t) = Q(t)
CN

= 1 − 1
CR

Ú t

0
I(τ)dτ (4.18)

As seen before, the real capacity of the cell can be slightly higher than the expected
one. The result is the possibility of SoC lower than 0. The assumption has no
physical meaning, it is a consequence of fixing the point of full charge at SoC = 1.

4.7 State of Health SoH
There is no unique parameter to define the aging condition of a cell. Different
uses enhance different side reactions, resulting in different behaviors of the battery.
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SoH is defined according to the literature as the capacity fade of the cell. The
other parameters will be related to SoH to identify a clear framework for aging
phenomena.

SoH(t) = CR(t)
CN

(4.19)

Where CR is the real capacity of the cell and CN is the nominal one. Due to the
initial increasing performance of most of the batteries, SoH can be greater than 1
for a short period at the beginning of life.

4.8 Depth of Discharge DoD
Depth of discharge is a parameter used to quantify the stress due to a deep discharge
of the battery. For a given discharging cycle, it is possible to define DoD as the
difference between the initial and the final SoC.

DoD = SoC(t0) − SoC(tf ) (4.20)
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Chapter 5

Simulation and data
generation

5.1 Model
Due to the difficulties of performing many tests on real batteries, the research is
done using mathematical models found in the literature. The main obstacle to the
use of real data is the a priori definition of the experiments. This work aims to
define a strict framework also in experimental data collection.

The model used to simulate the behavior of the battery is the three RC-groups
circuit shown in figure 5.1. [32] The values of the parameters are experimentally

Figure 5.1: Schematic of the circuit model used for simulations

determined and collected in LUTs, depicted in figure 5.2. Two different aging
values are considered. The rated parameters are reported in the table: From here,
the batteries are called new and old referring to the aging values. As could be
seen, the values of the parameters are strongly influenced by SoH and SoC. The
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Cell parameters
Capacity 5.4 Ah

Minimum Voltage 2.8 V
Rated current 2 C

Table 5.1: Cell parameters provided by the manifacturer

characteristic of the circuit can be written as:

VT = VOCV + R0I + V1 + V2 + V3 (5.1)

The three dynamical voltages are resolved using Laplace transform. Considering
one of the three RC-groups:

V (s) = R

sCR + 1 I(s) (5.2)

V (s)·sCR + V (s) = RI(s) (5.3)
Defining the time constant τ :

τ = 1
RC

(5.4)

the equation can be rewritten as:

V (s)·s
τ

+ V (s) = RI(s) (5.5)

Transforming again in time-domain:

V (t) = −1
τ

·dV (t)
dt

+ Ri(t) (5.6)

To resolve the equation, the previous expression is integrated:

V (t) =
Ú t1

t0
(−τV (t) + τRi(t)) dt + V (t0) (5.7)

In real word applications, time is discretized. Considering a time sample Ts:

V (k + 1) = V (k) + [−τV (k) + τRi(k)] Ts (5.8)

Now it is possible to write the state space equation of the three RC-groups models:
VT (k) = VOCV + R0I(k) + V1(k) + V2(k) + V3(k)
V1(k + 1) = V1(k) + [−τ1V1(k) + τ1R1i(k)] Ts

V2(k + 1) = V2(k) + [−τ2V2(k) + τ2R2i(k)] Ts

V3(k + 1) = V3(k) + [−τ3V3(k) + τ3R3i(k)] Ts

(5.9)
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Figure 5.2: Parameter LUTs of the considered 3-RC groups model
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The model is enough complex to guarantee good performance also in open-loop
simulation. In the identification process, a simple model is considered: the difference
in complexity between the two models is crucial to guarantee the generalization of
the results.

5.2 Charge simulation

5.2.1 Charging algorithm
The charging process is a crucial part of the framework definition. The process
must have consistent results across different experiments to guarantee repeatability.
As depicted in the Energetic Framework, the charger is the only way to objectify
the status of completely charged battery or full battery, corresponding to SoC = 1.
Another use of charging simulation is the definition of the real capacity of the
considered cell.

To charge a Li-ion battery many different algorithms can be used. The main
differences among them are the time duration of the process and the stress applied
to the cell. In this work all of these parameters are not important, so the easiest
and most used algorithm is exploited. The constant current / constant voltage
CC/CV algorithm consists of a two-step charging profile. The cell is charged at
constant current (CC) until a suitable voltage Vpre−set is reached. Then the voltage
is kept constant (CV) until the current overpass a minimum current threshold.
In real word applications, for safety reasons, little changes to the algorithm are

Figure 5.3: CC-CV algorithm, current and voltage profiles

needed. The resulting algorithm is reported in figure 5.4 [33]
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• Lithium cells could be damaged by a charging process outside the optimal
temperature range. If the temperature is not suitable, the charge cannot start.

• A high current provided at low SoC could be dangerous. When the voltage is
below Vcutoff a lower current is needed. This process is called Trickle Charge
TC and it exploits a typical current of 0.1C.

• Particular health state of the battery could lead to constant current absorption
greater than the current threshold. This phenomenon leads to the overcharging
of the cell and the consequent irreversible damage. A limited time for the
overall process is set to avoid the problem.

The CV portion of the algorithm is performed by a PID controller to maintain a
stable voltage to the desired value.

5.2.2 Simulation
A charging process simulation is performed on the two batteries. The parameters
of the CC/CV algorithm are reported in the table.

CC/CV parameters
CC current 1C

Voltage pre-set threshold 4.2V
Voltage cutoff threshold 3.6V

Minimum Current 0.01C
Sample time 0.1s

Table 5.2: CC/CV algorithm parameters

New Battery

In figure 5.5 is reported the result for new battery. Until 5000s the TC mechanism
is prevalent. The terminal voltage is slowly increasing due to a low input current.
From 5000s to 8000s, the charger operates in CC mode. The current is maintained
at 1C and the voltage is increasing. Reaching the voltage of 4.2V , the charger
switches to CV mode, where the PID controller acts to stabilize the voltage. Here
the current is decreasing until it reaches the minimum current threshold. To
investigate the repeatability of the results, some tests are performed. Starting for
a defining SoC, the cell is completely charged. The test is repeated five times, each
time measuring the absorbed charge. The total capacity is computed by adding
the theoretical charge already present in the cell at the beginning of the charging
process. The results are consistent with the requirements. The charger defines a
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Figure 5.4: CC-CV algorithm [33]

unique point for full battery, so the association with SoC = 1 is univocal. The same
test is performed to investigate the overall charging time of the process. Again,
the results are consistent with the requirements. The charging process takes the
same amount of time for every iteration.
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Figure 5.5: CC-CV charging simulation for new battery

New battery, Capacity test
Initial SoC Charge absorbed [Ah] Mean Capacity [Ah]

0 5.4515 5.4515 5.4515 5.4515 5.4515 5.4515
0.1 4.9115 4.9115 4.9115 4.9115 4.9115 5.4515
0.3 3.8315 3.8315 3.8315 3.8315 3.8315 5.4515
0.5 2.7515 2.7515 2.7515 2.7515 2.7515 5.4515
0.7 1.6715 1.6715 1.6715 1.6715 1.6715 5.4515
0.9 0.5923 0.5923 0.5923 0.5923 0.5923 5.4515

Table 5.3: Capacity test performed on new battery

Old battery

In figure 5.6 is reported the result for old battery. Until 1000s the TC mechanism
is prevalent. The terminal voltage is slowly increasing due to a low input current.
From 1000s to 2000s, the charger operates in CC mode. The current is maintained
at 1C and the voltage is increasing. Reaching the voltage of 4.2V , the charger
switches to CV mode, where the PID controller acts to stabilize the voltage. Here
the current is slowly decreasing until it reaches an almost stationary value. To
investigate the repeatability of the results, some tests are performed. Starting for
a defining SoC, the cell is completely charged. The test is repeated five times, each
time measuring the absorbed charge. The total capacity is computed by adding
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New Battery, Charging time test
Initial SoC Charging time [s]

0 10770 10770 10770 10770 10770
0.1 7295 7295 7295 7295 7295
0.3 5010 5010 5010 5010 5010
0.5 4204 4204 4204 4204 4204
0.7 3270 3270 3270 3270 3270
0.9 1572 1572 1572 1572 1572

Table 5.4: Charging duration test performed on new battery

Figure 5.6: CC-CV charging simulation for old battery

the theoretical charge already present in the cell at the beginning of the charging
process. The results are consistent with the requirements. The charger defines a
unique point, with a tolerance of 0.08% for full battery, so the association with
SoC = 1 is univocal. The same test is performed to investigate the overall charging
time of the process. Again, the results are consistent with the requirements. The
charging process takes the same amount of time for every iteration.
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Old battery, Capacity test
Initial SoC Charge absorbed [Ah] Mean Capacity [Ah]

0 4.1221 4.1221 4.1221 4.1221 4.1221 4.1221
0.1 3.7171 3.7171 3.7171 3.7171 3.7171 4.1221
0.3 2.9071 2.9071 2.9071 2.9071 2.9071 4.1221
0.5 2.0971 2.0971 2.0971 2.0971 2.0971 4.1221
0.7 1.2871 1.2871 1.2871 1.2871 1.2871 4.1221
0.9 0.4805 0.4805 0.4805 0.4805 0.4805 4.1255

Table 5.5: Capacity test performed on old battery

Old Battery, Charging time test
Initial SoC Charging time [s]

0 17962 17962 17962 17962 17962
0.1 16393 16393 16393 16393 16393
0.3 14177 14177 14177 14177 14177
0.5 11158 11158 11158 11158 11158
0.7 7643 7643 7643 7643 7643
0.9 2882 2882 2882 2882 2882

Table 5.6: Charging duration test performed on old battery

5.2.3 Results

As expected, the old battery has a capacity lower than the new one. It can be
defined the SoH of the two batteries:

SoHNEW = 1 (5.10)

SoHOLD = CR

CN

= 4.12Ah

5.4Ah
= 0.75 (5.11)

Considering charging time, the older battery takes more time to be completely
charged. This is due to the faster increase of the terminal voltage during the CC
phase. The time distribution between CC and CV is modified with an increase in
the duration of the CV phase, which is slower than the CC one. Despite the lower
capacity, the duration of the charging process for an old battery is almost doubled
concerning a new one.
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5.3 Discharge simulations

5.3.1 Test definition
The batteries are first charged with the charging algorithm defined in the previous
section. Starting from SoC = 1, the cells are completely discharged using a sequence
of current pulses. To investigate the response of the cells, more than one current
value is used. The standard values of current are reported in table 5.7. The test

Current values
Standard value Normalized value

2.7A 0.5C
4.05A 0.75C
5.4A 1C
8.1A 1.5C
10.8A 2C

Table 5.7: Current values used in discharging simulations

aims to provide a suitable set of data for the identification phase and to define the
characteristic Vocv(SoC) of the two batteries. To accelerate the extrapolation of the
characteristic, a suitable idle time after each current pulse is needed to guarantee
the OCV measurement. The parameters used in the simulations are reported in
table 5.8. The end of the test can be determined following two approaches:

• Approach 1: The cell is considered empty when the terminal voltage reaches
a suitable threshold. It is the method used in real word applications, because
of the impossibility of the electronics working under the voltage V = 3.4V .

• Approach 2: The cell is considered empty when a charge equivalent to CR is
extracted.

In both cases, the test is immediately stopped if the safety voltage threshold (2.8V )
provided by the manufacturer is reached. To obtain a sufficient resolution, 20
pulses are used to discharge new battery and the same settings are used for the old
one. The parameters are reported in table 5.8

5.3.2 Simulation
New Battery

It could be seen as the typical characteristic of a battery under current pulses. When
the current is applied, the instantaneous response is due to the static resistance
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Simulation parameters
Time after charge 28800s

Current period 57600s
Current duty cycle IN

CN
· 0.3%

Table 5.8: Simulation parameters

of the cell. Figure 5.7 it is depicted the instantaneous response, the dynamical
one, and the asymptotic behavior of the circuit after the end of the transient.
Considering the entire discharging process, it is evident a dependency of the sharply

Figure 5.7: Example of voltage relaxation in the new battery

decreasing of the terminal voltage to the applied current: higher the current and
deeper the voltage relaxation. The phenomenon is accentuated at low SoC when
the terminal voltage is near the limit threshold. When the current is eliminated,
the battery has a fast response and the OCV is reached in a short time. In figure
5.8 are reported only the results referring to Approach 2.

Old Battery

When the current is applied, the instantaneous response is due to the static
resistance of the cell. In figure 5.9 it is depicted the instantaneous response
and the dynamical one. Considering the entire discharging process, it is evident
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Figure 5.8: New battery, discharge simulation exploiting Approach 2

a dependency of the sharply decreasing of the terminal voltage to the applied
current: higher the current and deeper the voltage relaxation. When the current
is eliminated, the battery has a slow response and the OCV is reached in a non-
negligible time. In figure 5.10 are reported only the results referring to Approach 2.
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Figure 5.9: Example of voltage relaxation in the old battery

5.3.3 Results
The difference between Approach 1 and Approach 2 is evident in figure 5.11.
The extractable charge from the batteries in Approach 1 is current dependent.
This is due to the deeper relaxation appearing in the older battery. In real word
applications, this is a physical limitation due to the design choice of the circuit
powered by the cell, but for research, the purpose is a clear limitation. To avoid
possible ambiguity on the definition of empty battery, Approach 2 only is now
considered. The capacity is consistent with the SoH value defined in the previous
paragraph. The dynamical transient of the new battery result shorter than the
old one. This phenomenon leads to a slower response to the current pulses and a
slower reaching of the steady-state terminal voltage. The voltage relaxation is more
pronounced in the old battery and less dependent on the SoC value compared to
the new one. The deeps are almost constant across all the SoC intervals, while in
the new battery a low SoC, the relaxation is more pronounced. This result suggests
a similar behavior of a new battery at low SoC and an older battery at high SoC.

5.4 OCV-SoC characteristic
The following consideration is done based on the results obtained by Approach 2.
One of the advantages of the previous test is the possibility to extrapolate the OCV-
SoC relation directly from the terminal voltage characteristic. The Open Circuit
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Figure 5.10: Old battery, discharge simulation exploiting Approach 2

Voltage is equal to the terminal voltage if the cell was idle for a sufficient period.
The time interval needed for a correct measure is determined experimentally. In the
previous test, the shorter period is equal to 57254s and the results are consistent
with the required precision. After each current pulse and the consequent idle time,
the voltage measurement is collected. Now there are two possible choices for the
definition of SoC, as described in chapter 4:

• SoCN
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Figure 5.11: Comparison on the releasable charge between new and old battery,
exploiting Approach 1 and Approach 2

• SoCR

The solutions appear to be equivalent. The choice of SoCN redistributes the
influence of the SoH on the capacity of the cell model, while SoCR does not need a
correction of the parameters. Both approaches are followed in the next steps. In
figure 5.12 are reported the consequent characteristics. The first approach suggests
the use of a unique OCV-SoC characteristic for all the batteries. The second one
suggests a rotation of the characteristics around the point SoC = 1
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Figure 5.12: Comparison between SoCN and SoCR choice in the OCV-SoC
characteristic
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Chapter 6

Identification

The aim of this section is the detection of the simplest model consistent with
the simulation performance required by a multi-model approach. The approach
consists of the choice of a mathematical model and a fine-tuning of the process to
obtain the best open-loop performance possible. Then, a closed-loop approach is
exploited to improve the results. Another important factor is the resulting shape
of the parameter LUTs: to investigate a multi-model approach, it is necessary the
evidence of the correlation between parameters’ changes. The identification must
be guided to satisfy all the requirements. For simplicity, all the following tests are
performed considering SoCR were not specified. A different identification test is
performed for each value of current and

6.1 Single RC, static model
The first step is to perform the static identification of the circuit. The simplifications
done in this procedure cannot lead to a usable model, but the information regarding
the static resistance can be useful for dynamical identification. The circuit used for
the identification is reported in figure 6.1. The state-space equation representation
of the system does not include dynamical terms:

VT (k) = VOCV + RSI(k) (6.1)

where VOCV is extrapolated by the LUTs defined in the previous chapters. The
algorithm used for the identification is the Least Square estimator. In this appli-
cation, LS provides a punctual solution. Every data point leads to a different RS

value. The mathematical definition of the problem is:

RS(SoC) = VT (k) − VOCV

I(k) (6.2)
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Figure 6.1: Circuit model for static identification

To not overfit the characteristic, for each period of the current (considered by the
active and the idle part), the mean of the values is considered as an indicator. The
SoC value associated with the point is the median data across the current period.
The resulting LUTs are reported in figure 6.2.

Figure 6.2: Static model parameters for old and new battery

6.2 Single RC, dynamical model using SoCR

The circuit used as model is reported in figure 6.3. The dynamical part is defined
by the single RC group. The state space representation of the system is:

VT (k) = VOCV + R0i(k) + V (k)
V (k + 1) = V (k) + [−τV (k) + τRi(k)] Ts

(6.3)
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Figure 6.3: Circuit model for dynamical identification

The problem must be written according to LS theory. Firstly, V(k) and V(k-1)
must be expressed as functions of know data exploiting the first equation:

V (k) = VT (k) − VOCV (k) − R0I(k) (6.4)

V (k − 1) = VT (k − 1) − VOCV (k − 1) − R0I(k − 1) (6.5)

Substituting in the second equation:

VT (k) − VOCV (k) − VT (k − 1) + VOCV (k − 1)
= (R0 + RτTs)I(k) − R0I(k − 1) − τTs[VT (k − 1) − VOCV (k − 1) − R0I(k − 1)]

(6.6)

From here, all the following methods write the problem in a slight different way.

6.2.1 Identification from static parameters
This approach exploits the knowledge of the static resistance RS. It is possible to
define a correlation between the static resistance and the two resistors present in
the model:

RS = R0 + R (6.7)

and consequently:
R = RS − R0 (6.8)

Equation 6.6 can be rewritten as:

(6.9)
VT (k) − VOCV (k) − VT (k − 1) + VOCV (k − 1)

= (R0 + RSτTs − R0τTS)I(k) − R0I(k − 1)
− τTs[VT (k − 1) − VOCV (k − 1) − R0I(k − 1)]
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From the original three unknowns, the variable to be found become two: τ and R0.
The successive step is to divide the parameters from the known data:

(6.10)
VT (k) − VOCV (k) − VT (k − 1) + VOCV (k − 1)

= I(k)[RSτTs + R0 − R0τTs] + I(k − 1)[−R0 + τTsR0]
+ [VOCV (k − 1) − VT (k − 1)]τTs

Defining three slack variables,
α = RsτTs + R0 − R0τTs

β = τTSR0 − R0

γ = τTs

(6.11)

the vector

Y =

 VT (2) − VOCV (2) − VT (1) + VOCV (1)
...

VT (k) − VOCV (k) − VT (k − 1) + VOCV (k − 1)

 (6.12)

and the vector

X =

I(2) I(1) VOCV (1) − VT (1)
... ... ...

I(k) I(k − 1) VOCV (k − 1) − VT (k − 1)

 (6.13)

The overall identification problem can be written as:

Y = X

α
β
γ

 (6.14)

and the original parameter is expressed as a function of the three slack variables.
The values of Rs are defined by the static model identification. It is important to
notice that the system is over-determined, so there are two expressions for R0:

τ = γ

Ts

(6.15)

R0 = β

τTs − 1 = α − RSτTs

1 − τTs

(6.16)

R = RS − R0 (6.17)
The obtained estimator is applied to the data collected in chapter 5. A single
iteration of the algorithm is applied to each current period. The resulting LUTs
are reported in figure 6.4 and 6.5. As for the static case, the SoC is reported as
the median value observed during the considered interval.
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Figure 6.4: Dynamical model parameters of the new battery calculated using the
mixed static-dynamic approach

6.2.2 Direct dynamical model identification

This approach tries to avoid the need for two separate steps to identify the pa-
rameters. Starting from equation 6.6, the LS theory is developed conserving all
the three unknown parameters τ , R0, and R. The parameters are divided from the
collected known data:

(6.18)VT (k) − VOCV (k) − VT (k − 1) + VOCV (k − 1)
= (R0 +RτTs)I(k)+(R0τTs −R0)I(k−1)−(VOCV (k−1)−VT (k−1))τTs

Defining the three slack variables:


α = R0 + RτTs

β = R0τTs − R0

γ = τTs

(6.19)
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Figure 6.5: Dynamical model parameters of the old battery calculated using the
mixed static-dynamic approach

the vector of known values

Y =

 VT (2) − VOCV (2) − VT (1) + VOCV (1)
...

VT (k) − VOCV (k) − VT (k − 1) + VOCV (k − 1)

 (6.20)

and the vector

X =

I(2) I(1) VOCV (1) − VT (1)
... ... ...

I(k) I(k − 1) VOCV (k − 1) − VT (k − 1)

 (6.21)

The overall identification problem can be written as:

Y = X

α
β
γ

 (6.22)

and the original parameter are expressed as function of the three slack variables

τ = γ

Ts

(6.23)
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R0 = β

τTs − 1 (6.24)

R = α − R0

τTs

(6.25)

Now the identification framework is ready to be applied to the simulation data
collected in chapter 5. Two possible subsets of the dataset are considerable:

• Approach 1 : only the active part of the current period is considered.

• Approach 2 : the overall current period is considered.

The resulting LUTs are reported in figure 6.6 and 6.8 for Approach 1 and in figure
6.7 and 6.9 for Approach 2.

Figure 6.6: Dynamical model parameters of the new battery calculated using
direct Approach 1
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Figure 6.7: Dynamical model parameters of the new battery calculated using
direct Approach 2

6.2.3 Results
The results achieved with the two-step identification are similar to the direct
identification Approach 2. At this point, a clear preference cannot be expressed,
but the complexity of the two-step identification is higher than other solutions.
Comparing the direct identification, Approach 1 has a problem in the estimation of
R at low SoC. A negative value for the resistance is not consistent with the general
electro-technical theory. The same approach leads to a non-observability of the
series resistance R0, that for both batteries is fixed at zero. The comparison leads
to the choice of Approach 2 Direct Identification as the best trade-off identification
model for this section. In all the experiments, the resulting LUTs have to be filtered
to delete outlier values.

6.3 Single RC, dynamical model using SoCN

To guarantee a simpler presentation, only the results achieved with Approach 2
Direct Identification are proposed. The procedure is the same as presented in the
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Figure 6.8: Dynamical model parameters of the old battery calculated using
direct Approach 1

previous paragraph. The only difference is the use of SoCN instead of SoCR. The
result is displayed in figure 6.10 and 6.11. For the new battery, it is valid the
relation:

CR = CN (6.26)

The tables relative to the new battery are equivalent to the previous one. The
same cannot be seen for old batteries ones. The LUTs are translated into a set of
sub-spaces of the previous graphs. There is not a clear preference for one approach,
so both of them are developed in the next sections.
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Figure 6.9: Dynamical model parameters of the old battery calculated using
direct Approach 2
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Figure 6.10: Dynamical model parameters of the new battery calculated using
direct Approach 2 and SoCN
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Figure 6.11: Dynamical model parameters of the old battery calculated using
direct Approach 2 and SoCN
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Chapter 7

Validation

The aim of this section is the validation of the models identified in the previous
chapter with some validation datasets, different from the ones previously used.
The analysis is performed through open-loop and closed-loop simulations. The
closed-loop approach permits indirectly correcting part of the error generated by
the identification process. The data are generated through the following procedure:

• The battery is completely charged at the beginning of the cycle.

• A square wave current is applied, with variable period and duty-cycle, but
constant amplitude. The current values used in the experiment are the same
used for the generation of the datasets used during the identification process.

• The test is interrupted when the battery is empty.
The validation current datasets are displayed in figure 7.1 and 7.2. The current is
negative for the convention displayed in figure 5.1: an entering current generates a
charging process.

7.1 Open loop validation
The parameter values used in the simulation are reported in figure 6.7 and 6.9.
The OCV is displayed in figure 5.12. The test is performed using the current of
the validation datasets as input. The initial SoC is fixed at one. Knowing with
high precision the current and the real capacity of the cells, the uncertainty on the
SoC is assumed as null. The parameters are calculated and updated online. The
state-space model exploited is:

V (k + 1) = V (k) + [−τV (k) + τRi(k)]Ts

SoC(k + 1) = SoC(k) + Ts

3600·Capacity
i(k)

VT (k) = V (k) + VOCV + R0i(k)
(7.1)
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Figure 7.1: Validation dataset currents for new battery

7.1.1 New battery validation

The results of the simulation are reported in figure 7.3. The graph displays a
direct comparison between the real data and the simulated ones. A single separate
simulation is performed for each current value. The RMSE values of the validation
are reported in table 7.1. The RMSE SoC = [0.95, 0.05] is the value calculated
in the region indicated. The necessity of a subset for the definition of the RMSE
is due to the divergence of the model at low SoC values. This drawback can be
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Figure 7.2: Validation dataset currents for old battery

removed by performing an accurate normalization of the LUTs deleting the outliers.

7.1.2 Old battery validation
The results of the simulation are reported in figure 7.4. The graph displays a
direct comparison between the real data and the simulated ones. A single separate
simulation is performed for each current value. The RMSE values of the validation
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Current RMSE RMSE [0.95,0.05]
0.5C 3765 0.0828
0.75C 6929 0.1054

1C 9779 0.1198
1.5C 10316 0.1649
2C 17728 0.1953

Table 7.1: RMSE values for open loop validation for new battery model

are reported in table 7.2. The RMSE SoC = [0.95, 0.05] is the value calculated
in the region indicated. The necessity of a subset for the definition of the RMSE
is due to the divergence of the model at low SoC values. This drawback can be
removed by performing an accurate normalization of the LUTs deleting the outliers.

Current RMSE RMSE [0.95,0.05]
0.5C 2234 0.0875
0.75C 4115 0.1038

1C 3176 0.1330
1.5C 4842 0.1981
2C 6726 0.2317

Table 7.2: RMSE values for open loop validation for old battery model

7.1.3 Results
The open-loop performance is not sufficient for an accurate simulation of the cell
behavior. The restricted RMSE value seems to be low enough, but from the graphs,
it is clear that the two datasets are too far from each other. This is due to the
small relaxation of the curves compared to the overall voltage value at the terminal.
A closed-loop approach is needed to reduce uncertainties.

7.2 Minimum number of points
Until this point, the choice of twenty sample points to characterize the LUTs of
the parameters may appear not motivated. This section aims to justify the choice.
The test follows the same procedure displayed in the previous chapters. For each
set of points, the following steps are performed:

• Current pulse simulations with N steps, as done in chapter 5.
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Figure 7.3: Open loop validation of new battery model

• Identification of the parameters of the single RC equivalent model following
direct dynamic approach.

• Open loop validation and RMSE computation.

The results are displayed in table 7.3, where only the RMSE values for the restricted
interval SoC = [1, 0.1] are displayed. N = 10 has better performance for the new
battery and a not-consistent one for the old. N = 100 suffers from overfitting
concerning N = 20. The choice done in the results of the previous chapter is to be
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Figure 7.4: Open loop validation of old battery model

N New Battery Old Battery
0.5C 0.75C 1C 1.5C 2C 0.5C 0.75C 1C 1.5C 2C

10 0.032 0.041 0.043 0.053 0.053 247.2 221.1 275.7 192.1 193.9
20 0.069 0.088 0.095 0.122 0.121 0.068 0.082 0.099 0.0123 0.0135
100 0.348 0.457 0.512 0.696 0.636 0.370 0.425 0.444 0.432 0.429

Table 7.3: RMSE values for some N-steps identification tests
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the best trade-off between complexity and performance.

7.3 Closed loop validation
The performance of the open loop simulations is not consistent with the precision
required for the identification of SoH. To reduce the error, an observer is introduced.
The analysis is performed using an Extended Kalman Filter.

7.3.1 Observability analysis
The observability of a non-linear system can be studied graphically through the
inference diagram. [17] The diagram is composed of states and arcs. An arc from xi

to xj defines a direct dependence on xj in the expression of xi. The states are called
Strongly Connected Components SCC if connected with arcs to the overall graph,
and Root Strongly Connected Components RSCC if arcs only depart from the
state. The necessary and sufficient condition for observability is the possibility to
measure at least one state for each RSCC subtree. Reporting the model exploited
in the Open Loop analysis following the state-space notation: x1 = V , x2 = SoC,
y = VT 

x1(k + 1) = x1(k) + [−τx1(k) + τRu(k)]Ts

x2(k + 1) = x2(k) + Ts

3600·Capacity
u(k)

y(k) = x1(k) + VOCV + R0u(k)
(7.2)

The inference diagram is reported in figure 7.5. From the diagram, it is not possible

Figure 7.5: Inference diagram of the original state-space model

to determine the observability property. An augmented state model is proposed:

x1(k + 1) = x1(k) + [−τx1(k) + τRu(k)]Ts

x2(k + 1) = x2(k) + Ts

3600·Capacity
u(k)

x3(k + 1) = x1(k + 1) + VOCV + R0u(k)
y(k) = x3(k)

(7.3)
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x1(k +1) can be substituted with the first relation in the model. The third equation
becomes:

x3(k + 1) = x1(k) + [−τx1(k) + τRu(k)]Ts + VOCV + R0u(k)
= [1 − τTs]x1(k) + [τRTs + R0]u(k) + VOCV

(7.4)

The inference diagram is reported in figure 7.6. It is clear that x3 is an RSCC and

Figure 7.6: Inference diagram of the augmented state-space model

it can be measured. This proves the observability of the model. In the closed-loop
validation, the augmented states are employed.

7.3.2 Extended Kalman Filter
The EKF is the extension of the Kalman Filter to non-linear systems. It is a
covariance estimator, but, unlike Kalman Filter, it is not an optimal estimator. It
linearizes the non-linear problem around the estimated covariance and mean. The
closed loop configuration is displayed in figure 7.7. The EKF algorithm is provided
in algorithm 1. Assuming the model is expressed through differentiable functions:

xk = f(xk−1, uk) + wk (7.5)

yk = h(xk) + vk (7.6)
where wk and vk are the process and observation noise assumed to be zero mean
multivariate Gaussian noises with covariance matrices Qk and Rk. The notation
x̂n|m represents the estimate of x at time n, given the observed data at time m≤n.
The transition matrices are defined as:

Ak = ∂f

∂x

-----
x̂k−1|k−1,uk

(7.7)

57



Validation

Figure 7.7: Closed-loop configuration

Ck = ∂h

∂x

-----
x̂k−1|k−1

(7.8)

According to the previous model definition, the transfer functions are determined

Algorithm 1 EKF algorithm
Predict
Predicted state estimate
x̂k|k−1 = f(x̂k−1|k−1, uk)
Predicted covariance estimate
Pk|k−1 = AkPk−1|k−1AT

k + Qk

Update
Innovation
ek = yk − h(x̂k|k−1)
Innovation covariance
Sk = CkPk|k−1CT

k + Rk

Near-optimal Kalman gain
Kk = Pk|k−1CT

k S−1
k

Updated state estimate
x̂k|k = x̂k|k−1 + Kkek

Updated covariance estimate
Pk|k = (I − KkCk)Pk|k−1

by:

f(x, u) =

 x1[1 − τTs] + τRTsu
x2 + Ts

3600·Capacity
u

[1 − τTs]x1 + [τRTs + R0]u + VOCV

 (7.9)
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h(x) = x3 (7.10)

The partial derivatives are calculated

∂f1

∂x1
= 1 − τTs ,

∂f1

∂x2
= 0 ,

∂f1

∂x3
= 0 (7.11)

∂f2

∂x1
= 0 ,

∂f2

∂x2
= 1 ,

∂f2

∂x3
= 0 (7.12)

∂f3

∂x1
= 1 − τTs ,

∂f3

∂x2
= 0 ,

∂f3

∂x3
= 0 (7.13)

∂h

∂x1
= 1 ,

∂h

∂x2
= 0 ,

∂h

∂x3
= 1 (7.14)

and the Jacobians

A =

1 − τTs 0 0
0 1 0

1 − τTs 0 0

 (7.15)

C =
è
0 0 1

é
(7.16)

The matrices appear time-invariant. It is not the correct EKF filter, because the
parameters are considered invariant during the design process. This simplification
will be removed in the next chapters, where a clear dependence on SoC is defined.
The model does not include physical boundaries to the states, so the filtered output
is not correct. The main problem is the correction of the voltage on the capacitor
with a positive factor also when the current is negative, during the discharging
processes. Another problem is the limitation of the SoC to the interval [0, 1] or
similar values. To overcome the problem a constrained EKF is considered.

7.3.3 Constrained Extended Kalman Filter
There are two possible solution to the problem. [34, 35] The first is the restriction
of the optimal Kalman gain to a feasible sub-space. The problem is written as:

K̂R
k = argmin trace[(I − KkHk)Pk|k−1(I − KkHk)T + KkRkKT

k ]
s.t. A(x̂k|k−1 + Kkvk) = b

C(x̂k|k−1 + Kkvk) ≤ d

(7.17)
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The CEFK requires the solution of the optimization problem each cycle. The
computational complexity is too high for real-time time application. The second
approach is the projection of the unconstrained solution to a feasible set. It also
involves an optimization problem:

x̂P
k|k = argmin (x − x̂k|k)T Wk(x − x̂k|k)

s.t. Ax = b

Cx ≤ d

(7.18)

The solution seems to be computational expensive as the previous one, but observing
the constraints specific for this problem:

x1 ≤ 0 , 0 ≤ x2 ≤ 1 (7.19)

the feasible sets appear to be convex and mono-dimensional. The nearest point
to a non-feasible point lies on the boundary. This characteristic of the problem is
exploited to write the optimization problem with a simple if-then-else construct.

1 % Constra int on x1
2 i f x1 > 0
3 x1 = 0 ;
4 end
5 % Constra int on x2
6 i f x2 < 0
7 x2 = 0 ;
8 e l s e i f x2 > 1
9 x2 = 1 ;

10 end

7.3.4 New battery validation
The results of the simulation are reported in figure 7.8. The graph displays a
direct comparison between the real data and the simulated ones. A single separate
simulation is performed for each current value. The RMSE values of the validation
are reported in table 7.4. The RMSE SoC = [0.95, 0.05] is the value calculated
in the region indicated. The performance of the two RMSE indexes is almost
equivalent.

7.3.5 Old battery validation
The results of the simulation are reported in figure 7.9. The graph displays a
direct comparison between the real data and the simulated ones. A single separate
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Current RMSE RMSE [0.95,0.05]
0.5C 0.0136 0.0091
0.75C 0.0121 0.0085

1C 0.0114 0.0085
1.5C 0.0107 0.0090
2C 0.0104 0.0098

Table 7.4: RMSE values for closed loop validation for new battery model

simulation is performed for each current value. The RMSE values of the validation
are reported in table 7.5. The RMSE SoC = [0.95, 0.05] is the value calculated
in the region indicated. The performance of the two RMSE index are almost
equivalent.

Current RMSE RMSE [0.95,0.05]
0.5C 0.0160 0.0155
0.75C 0.0139 0.0124

1C 0.0125 0.0110
1.5C 0.0111 0.0101
2C 0.0084 0.0084

Table 7.5: RMSE values for closed loop validation for old battery model

7.4 Comparison between OL and CL approach
The closed-loop approach is highly more precise than the open-loop one. From
the RMSE table, it could be seen values relative to OL are about seven orders of
magnitude greater than CL. Also considering the filtered subset, the performance of
CL are more effective than OL. This section highlights the necessity of an observer
to guarantee low errors exploiting a low-order model. On the other hand, CL
is more computationally-expensive than OL, but better performance can justify
an increased complexity. With CL, the original data are completely tracked by
the single RC model. The CL approach will be exploited in the next chapters to
develop a multi-model approach to the estimation of SoH.
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Figure 7.8: Closed loop validation of new battery model
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Figure 7.9: Closed loop validation of old battery model
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Chapter 8

Multi-model approach

In the previous sections, the old and the new batteries are considered as two
separate entities and not as a single cell in two different states. As explained
in chapter 3, the most exploited approach is to consider different sets of LUTs
parameters for different SoH values. It is the simplest way to simulate a previously
characterized battery, but nothing could be told for a new cell under test. This
section aims to provide a simple and computationally light solution that includes
the dependency of the parameters on SoC, SoH, and current.

8.1 Analysis of SoC and Current dependencies
considering SoCR

Considering the LUTs generated during Identification phase, the idea is to simplify
the graph with the simplest possible functions. The approximation cannot be
perfect, but the CL approach guarantees good performances also with a simplified
set of parameters. The LUTs of the new and old batteries are reported in figure
8.1.

8.1.1 VOCV approximation
VOCV curves do not present any dependence on the current applied to the cell. The
line related to the new battery is very similar to the old one. The resulting curve
can be linearly approximated by a straight line dependent on SoC.

VOCV (SoC) = pVOCV
1 SoC + pVOCV

2 (8.1)

The coefficients pVOCV
1 and pVOCV

2 are determined calculating the straight line passing
through the points SoC = 0 and SoC = 1. Two independent lines are determined
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Figure 8.1: Comparison between new and old parameters identificated using
SoCR

for the new and the old batteries. The coefficients are reported in table 8.1 and
the corresponding graphs in figure 8.2.

Battery p1 p2
New 0.6972 3.5168
Old 0.6165 3.5705

Table 8.1: Coefficients of the straight lines approximating VOCV

8.1.2 R0 approximation
R0 curves do not present any dependence on the current applied to the cell. The
resulting curve can be linearly approximated by a straight line dependent on SoC.

R0(SoC) = pR0
1 SoC + pR0

2 (8.2)

The coefficients pR0
1 and pR0

2 are determined by resolving the LS approximation
related to all the points present in the corresponding LUTs. Two independent lines
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Figure 8.2: Approximation of VOCV curves for new and old batteries

are determined for the new and the old batteries. The coefficients are reported in
table 8.2 and the corresponding graphs in figure 8.3.

Battery p1 p2
New -0.0065 0.0127
Old -0.0056 0.0283

Table 8.2: Coefficients of the straight lines approximating R0

8.1.3 Current independent τ approximation and R identifi-
cation

Observing the LUTs relatives to τ and R, it is clear that the dependence on current
strongly influences both parameters. The aim is to reduce the dependence to
only one parameter, fixing the other to only SoC dependence. The simplest to fix
appears to be τ . The set of curves can be approximated as a straight line.

τ(SoC) = pτ
1SoC + pτ

2 (8.3)

To simplify future SoH estimation, both the lines for new and old cells are fixed to
pass through the point (SoC = 1, τ = 1·10−4s−1). The coefficients pτ

1 and pτ
2 are

determined by resolving the LS approximation related to all the points present in
the corresponding LUTs. Two independent lines are determined for the new and
the old batteries. The coefficients are reported in table 8.3 and the corresponding
graphs in figure 8.4. The last step is performing another identification batch using
the new parameter approximations to find the R. In this way, all the uncertainties
from the approximations are reflected on the new R LUT. Starting from the
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Figure 8.3: Approximation of R0 curves for new and old batteries

Battery p1 p2
New -0.0011 0.0012
Old −4.02·10−4 5.02·10−4

Table 8.3: Coefficients of the straight lines approximating current independent τ

state-space representationVT (k) = VOCV + R0i(k) + V (k)
V (k) = V (k − 1) − τTsV (k − 1) + τRTsi(k)

(8.4)

knowing all the parameters except for R,

(8.5)Yk = VT (k) − VOCV (k) − VT (k − 1) + VOCV (k − 1) − R0i(k)
+ R0i(k − 1) + τTs[VT (k − 1) − VOCV (k − 1) − R0i(k − 1)]

Xk = τTsi(k) (8.6)
the problem can be written as: Y2

...
Yk

 =

X2
...
Xk

 · R (8.7)

The resulting R is reported in figure 8.5. The LUTs result is dependent both on
current and SoC.

8.1.4 Current dependent τ approximation and R identifica-
tion

τ is now approximated with a set of straight lines passing through the point
(SoC = 1, τ = 1·10−4s−1). The current dependency is expressed in the angular
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Figure 8.4: Approximation of current independent τ curves for new and old
batteries

Figure 8.5: Approximation of R with current independent τ for new and old
batteries

coefficient of the lines.

τ(SoC, i) = pτ
1(i)SoC + pτ

2(i) (8.8)

The coefficients pτ
1 and pτ

2 are determined by resolving the LS approximation
related to the points referred to a specific current in the corresponding LUTs.
Two independent sets of lines are determined for the new and the old batteries.
The coefficients are reported in table 8.4 and 8.5 and the corresponding graphs in
figure 8.6. The last step is performing another identification batch using the new
parameter approximations to find the R. In this way, all the uncertainties from the
approximations are reflected on the new R LUT. The problem is the same already
defined in equation 8.7. The resulting R is reported in figure 8.7. The LUTs result
to be dependent both on current and SoC.
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Battery p1
0.5C 0.75C 1C 1.5C 2C

New −2.52·10−4 −5.31·10−4 −8.51·10−4 −0.0016 −0.0024
Old −1.13·10−4 −2.28·10−4 −3.29·10−4 −5.44 −7.75

Table 8.4: Coefficients p1 of the straight lines approximating current dependent τ

Battery p2
0.5C 0.75C 1C 1.5C 2C

New 3.52·10−4 6.32·10−4 9.51·10−4 0.0017 0.0025
Old 2.31·10−4 3.28·10−4 4.29·10−4 6.45·10−4 8.75·10−4

Table 8.5: Coefficients p2 of the straight lines approximating current dependent τ

8.2 Analysis of SoH dependency considering SoCR

This section aims to reduce, where possible, the dependence on SoH. If not possible,
the simplest model is considered to obtain sufficient performance.

8.2.1 VOCV approximation
The curves relative to new and old batteries are reported in figure 8.8a. It is
possible to notice an almost equivalence between the two straight lines. To simplify
the dependency of SoH of the model, a single common characteristic is taken. The
coefficient pVOCV

1 and pVOCV
2 are computed using the mean of the corresponding

parameters of the new and the old batteries. The equation is independent of SoH:

VOCV (SoC) = pVOCV
1 SoC + pVOCV

2 (8.9)

The resulting characteristic is displayed in figure 8.8b.

8.2.2 R0 approximation
The curves relative to new and old batteries are reported in figure 8.9a. The angular
coefficient of the two lines is almost the same. The graph can be approximated
through a not-proper set of straight lines.

R0(SoC, SoH) =pR0
1 SoC + pR0

2 (SoH)
with pR0

2 (SoH) = pp2,R0
1 SoH + pp2,R0

2
(8.10)

The angular coefficient pR0
1 is determined by calculating the mean of the angular

coefficient of the original lines. The linear regression to determine pR0
2 (SoH) is
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Figure 8.6: Approximation of current dependent τ curves for new and old batteries

Figure 8.7: Approximation of R with current dependent τ for new and old
batteries

defined by the following problem:pR0
2 (SoH1)

...

pR0
2 (SoHk)

 =

SoH1 1
... ...

SoHk 1

 ·
C
pp2,R0

1
pp2,R0

2

D
(8.11)

where 1, ..., k are the batteries with different SoH considered in the problem. The
result of the approximation is displayed in figure 8.9b.

8.2.3 τ and R approximation
The approximation of τ and R is bounded by the approach followed in the previous
section. In figure 8.10 are reported the results obtained for R parameter using both
current dependent and independent τ . Considering the data relative to current
independent τ , it is not evident relation between the new and the old battery. A
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(a) Current independent approximations (b) SoH independent approximation

Figure 8.8: Approximation of VOCV

(a) Current independent approximations (b) SoH independent approximation

Figure 8.9: Approximation of R0

vertical-translating quadratic curve could approximate the data, but it is high
in complexity and both introduce big errors. Moreover, the dependency on the
current must be analyzed and consequently, the complexity grows up. Moving to
the current dependent τ solution, it is possible to notice a lower dependency on
the current. The two curves are very similar and they can both be approximated
with the same second-order function of SoC.

R(SoC) = pR
1 SoC2 + pR

2 SoC + pR
3 (8.12)

R results to be the second parameter with no dependencies on current nor SoH.
The result of the approximation is displayed in figure 8.11.
In figure 8.12, the curves relative to current dependent τ are displayed. The lines
were designed to cross the same point, in this way the complexity is completely
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(a) Current independent τ (b) Current dependent τ

Figure 8.10: Approximation of R

Figure 8.11: R quadratic approximation

assigned to the angular coefficient only.

τ(SoC, i, SoH) − τ0 = mτ (i, SoH)[SoC − SoC0] (8.13)

with τ0 = 1 · 10−4 and SoC0 = 1. The point P = (SoC0, τ0) is defined. The mτ

coefficient dependency on current and SoH is represented in figure 8.13. mτ results
to be linearly dependent on current. For each SoH value, the dependency on the
current of the coefficients can be written as:

mτ (i)|SoHj
= pm,τ

1 i + pm,τ
2 (8.14)
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Figure 8.12: Current dependent τ approximation

Figure 8.13: mτ current dependency

The coefficients pm,τ
1 and pm,τ

2 are calculated using LS estimator on the problem:mτ (i1)|SoHj

...
mτ (ik)|SoHj

 =

i1 1
... ...
ik 1

 ·
C
pm,τ

1 (SoHj)
pm,τ

2 (SoHj)

D
(8.15)

The results are displayed in figure 8.13. To continue the analysis of SoH dependency,
the graph can be approximated as a proper set of straight lines. The angular
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coefficient of each line is the same reported in equation 8.15.

mτ − mτ
0 = pm,τ

1 (SoHj)[i − i0] (8.16)

The fixed point (i0, τ0) is calculated resolving the following problem: mτ (i1)|SoHj
− pm,τ

1 (SoHj)i
...

mτ (ik)|SoHjj
− pm,τ

1 (SoHjj)i

 =

−pm,τ
1 (SoHj) 1

... ...
−pm,τ

1 (SoHjj) 1

 ·
C

i0
mτ

0

D
(8.17)

The point Q = (i0, mτ
0) is defined. Finally, a relation between the coefficients

pm,τ
1 (SoHj) has to be investigated. The simplest way is to perform a LS estimation

of the problem: pm,τ
1 (SoH1)

...
pm,τ

1 (SoHj)

 =

SoH1 1
... ...

SoHj 1

 ·
C
ppm,τ

1
ppm,τ

2

D
(8.18)

The factors can be computed through:

pm,τ
1 (SoH) = ppm,τ

1 SoH + ppm,τ
2 (8.19)

The resultant approximation of τ , is reported in figure 8.14. The process of

Figure 8.14: Approximation of τ

τ determination is defined starting from SoC, SoH, and current values. The
parameters needed to perform the estimation are P , Q, ppm,τ

1 and ppm,τ
2 .

pm,τ = ppm,τ
1 SoH + ppm,τ

2

mτ = pm,τ (i − Q1) + Q2

τ = mτ (SoC − P1) + P2

(8.20)
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8.2.4 CR definition
To complete the model, it is necessary to define the capacity of the battery. Using
SoCR, it is consequent the use of CR, as explained in chapter 4. The relation
between CR and SoH is derived from the definition itself:

CR = CNSoH (8.21)

8.3 Analysis of SoC and Current dependencies
considering SoCN

The same analysis displayed in the previous section is performed using LUTs
generating during Identification phase using SOCN . The starting LUTs are reported
in figure 8.15. It could be seen a substantial equivalence with the results obtained
with SoCR, but the parameter characteristics relative to the old battery are
translated into a sub-space of the original plane. The approximation process of the

Figure 8.15: Comparison between new and old parameters identificated using
SoCN

previous chapter is followed. In figure 8.16 the approximation of VOCV and R0 are
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depicted. As for SoCR, the approximation of τ and R could follow two approach.

Figure 8.16: Approximation of VOCV and R0 using SoCN

The results regarding current independent τ are reported in figure 8.17, while the
ones relative to current dependent approximation are depicted in figure 8.18. The

Figure 8.17: Approximation of current independent τ and R using SoCN

use of SoCN is a simplification for the use of CN without any correction terms, but
it has some other issues regarding the complexity of R LUTs. For both τ dependent
and independent from the current, the R assumes complex transformation with
the variation of SoH. For this reason, the SoCR approach will be preferred in the
next sections.
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Figure 8.18: Approximation of current dependent τ and R using SoCN
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Chapter 9

ERMES

9.1 Introduction of a new battery
Until this point, all the computations are done based on the two models defined
in chapter 5 and called new and old batteries. To proceed it is useful to add at
least one more model, with a different SoH value. From the literature, the model
of medium battery is provided. The resulting SoH of the battery results to be

SoH = 0.875 (9.1)

The complete parameter LUTs are reported in figure 9.1.

9.2 Multi-model definition
The multi-model must be updated including the data relatives to medium battery.
The computation is following the dependent current τ approach analyzed in the
previous chapter. Remembering that x1 = V , x2 = SoC and y = VT , the resulting
model is: 

x1(k + 1) = x1(k) + [−τx1(k) + τRu(k)]Ts

x2(k + 1) = x2(k) + Ts

3600·Capacity
u(k)

x3(k + 1) = [1 − τTs]x1(k) + [τRTs + R0]u(k) + VOCV

y(k) = x3(k)

(9.2)

where:
Capacity = CR = CN ·SoH (9.3)

VOCV (x2) = pVOCV
1 x2 + pVOCV

2 (9.4)
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Figure 9.1: Parameter LUTs of medium battery
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R0(x2, SoH) =pR0
1 x2 + pR0

2 (SoH)
with pR0

2 (SoH) = pp2,R0
1 SoH + pp2,R0

2
(9.5)

R(x2) = pR
1 x2

2 + pR
2 x2 + pR

3 (9.6)

τ(x2, SoH, u) = mτ (x2 − P1) + P2

with mτ = pm,τ (iN − Q1) + Q2

pm,τ = ppm,τ
1 SoH + ppm,τ

2

iN = u

CN

(9.7)

The values of the parameters are reported in table 9.1.

Parameter Sub-parameter Value
Capacity CN 5.4Ah

VOCV
pVOCV

1 0.6479
pVOCV

2 3.5436

R0

pR0
1 -0.0057

pp2,R0
1 -0.0624

pp2,R0
2 0.0749

R
pR

1 1.6255
pR

2 -1.3058
pR

3 0.2835

τ

ppm,τ
1 -0.0040

ppm,τ
2 0.0026
P (1, 1·10−4)
Q (0.0785, 1.5883·10−4)

Table 9.1: Parameters of the multi-model

9.3 ERMES definition
ERMES is an algorithm patented by Brain technologies. It exploits a multi-model
approach to estimate complex parameters such as SoH. The main idea is a set of
observers with a pre-set value of the parameter to be estimated. The data are
processed simultaneously by all the observers and the output is compared with
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some algorithm. In this application, a simple integration of the squared absolute
error is used. In the end, the decision variable is compared and the minimum error
model is assumed to be the estimate of the parameter. [31, 36, 37] The logical
scheme is provided in figure 9.2. As observers, the EKF illustrated in chapter

Figure 9.2: ERMES scheme

7 is exploited. With the approximation of the parameters, A and C matrices
have a different formulation. Considering the model previously defined, the partial
derivatives are:

∂f1

∂x1
= 1 − τTs

∂f1

∂x2
= −mτ Tsx1 + (2pR

1 x2 + pR
2 )τTsu + mτ RTsu (9.8)

∂f1

∂x3
= 0

∂f2

∂x1
= 0 ,

∂f2

∂x2
= 1 ,

∂f2

∂x3
= 0 (9.9)
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∂f3

∂x1
= 1 − τTs

∂f3

∂x2
= −mτ Tsx1 + (2pR

1 x2 + pR
2 )τTsu + mτ RTsu + pVOCV

1 + pR0
1 u (9.10)

∂f3

∂x3
= 0

∂h

∂x1
= 0 ,

∂h

∂x2
= 0 ,

∂h

∂x3
= 1 (9.11)

and the consequent Jacobians:

A =

1 − τTs −mτ Tsx1 + (2pR
1 x2 + pR

2 )τTsu + mτ RTsu 0
0 1 0

1 − τTs −mτ Tsx1 + (2pR
1 x2 + pR

2 )τTsu + mτ RTsu + pVOCV
1 + pR0

1 u 0


(9.12)

C =
è
0 0 1

é
(9.13)

9.4 SoH estimation with correct values set of
EKF

The first test to evaluate the performance of ERMES and the defined multi-model
approach is using three EKFs, each one with a correct value of SoH. The SoH
pre-set to the observers are:

SoH ∈ {0.75; 0.875; 1} (9.14)

The test is performed with the same validation data sets defined in chapter 7. The
datasets are called D1. For each EKF, the integral squared error is computed. At
each time instant, the model with the lower error is chosen as an approximation
of SoH. After a first transient, the algorithm stabilizes the SoH estimation on a
single value. To overcome the problem of a slower estimation, a reset to zero must
be added to the integral error. The problem of the identification of the best time
instant to do this operation has not a solution yet. In this work, it is proposed a
periodical reset. In this way, it is not necessary to identify the best spot, while
a successive reset will be near enough to the optimal point. It is not an optimal
solution, but it permits a good approximation without a complex transient study.
The results for the 15 tests are reported from figure 9.3 to 9.17.
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Figure 9.3: New battery, ERMES with correct SoH, I = 0.5C

Figure 9.4: New battery, ERMES with correct SoH, I = 0.75C

Figure 9.5: New battery, ERMES with correct SoH, I = 1C
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Figure 9.6: New battery, ERMES with correct SoH, I = 1.5C

Figure 9.7: New battery, ERMES with correct SoH, I = 2C

Figure 9.8: Medium battery, ERMES with correct SoH, I = 0.5C
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Figure 9.9: Medium battery, ERMES with correct SoH, I = 0.75C

Figure 9.10: Medium battery, ERMES with correct SoH, I = 1C

Figure 9.11: Medium battery, ERMES with correct SoH, I = 1.5C
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Figure 9.12: Medium battery, ERMES with correct SoH, I = 2C

Figure 9.13: Old battery, ERMES with correct SoH, I = 0.5C

Figure 9.14: Old battery, ERMES with correct SoH, I = 0.75C
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Figure 9.15: Old battery, ERMES with correct SoH, I = 1C

Figure 9.16: Old battery, ERMES with correct SoH, I = 1.5C

Figure 9.17: Old battery, ERMES with correct SoH, I = 2C
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It is evident a good separation between the error values. After the first transient,
the errors depict a good estimation of the SoH. The error with periodical reset is
faster to estimate the correct value. To evaluate the performance of the ERMES
algorithm, it is useful to build the boxplot of the estimated SoH values. The
boxplot is a simple instrument to visualize the statistical properties of a dataset.
The box includes the data inside the twenty 25° and the 75° percentile. The red
line is the median. The points outside the boxes are the outliers of the problem. In
figure from 9.18 to 9.20 are displayed the boxplot related to the previous validation
test. The estimation is statistically significant. At high SoH and low current, the
algorithm has some uncertainty due to the similarity in the behavior of the cells.
Introducing the periodical reset enhances the performance. In both approaches,
the results are completely acceptable.

Figure 9.18: New battery D1, SoH estimation boxplot

Figure 9.19: Medium battery D1, SoH estimation boxplot
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Figure 9.20: Old battery D1, SoH estimation boxplot

The next test is the use of the same EKF set with some validation dataset at
constant current discharge. The datasets are called D2. Only the boxplots are
reported in the following section. The results are displayed in figures from 9.21 to
9.23.

Figure 9.21: New battery D2, SoH estimation boxplot
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Figure 9.22: Medium battery D2, SoH estimation boxplot

Figure 9.23: Old battery D2, SoH estimation boxplot

The results are consistent between tests performed on D1 and D2. The SoH
value is estimated with good statistical performance. The results of the test on D1
and D2 are resumed in figure 9.24.
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Figure 9.24: Comparison of test D1 and D2

9.5 SoH estimation with linearly separated values
set of EKF

In this section, the EKF bank is pre-set with some linearly separated values of
SoH. It is the first idea of the final product of an estimation. The SoH is estimated
inside the intervals of the SoH definition. Both tests on D1 and D2 are performed.
The statistical distribution of the error is displayed from figure 9.25 to figure 9.30.
There is a clear separation of the errors considering the integral error both with
or without reset. From the graphs is possible to consider the integral error as a
statistically valid decision variable.

Figure 9.25: New Battery D1, linear SoH values, error boxplot
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Figure 9.26: New Battery D2, linear SoH values, error boxplot

Figure 9.27: Medium Battery D1, linear SoH values, error boxplot

Figure 9.28: Medium Battery D2, linear SoH values, error boxplot
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Figure 9.29: Old Battery D1, linear SoH values, error boxplot

Figure 9.30: Old Battery D2, linear SoH values, error boxplot

In the next pool of graphs, from figure 9.31 to 9.36, the choice of the algorithm
is depicted. The estimation of SoH is correct for all the batteries, consistently
with the linear resolution of the ERMES set of EKF. In general, the estimation
exploiting the periodical reset of the integral error provides better results than
the simple integration. The performance of the simple estimator on the error is
good enough for the work. The aim is to estimate SoH band values and the results
are consistent. The addition of a periodical reset provides a statistically unique
estimation. From the collected data, the algorithm tends to overestimate the SoH
value when it lies in the middle of an interval between two different pre-set values.
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Figure 9.31: New Battery D1, linear SoH values, SoH estimation boxplot

Figure 9.32: New Battery D2, linear SoH values, SoH estimation boxplot

Figure 9.33: Medium Battery D1, linear SoH values, SoH estimation boxplot
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Figure 9.34: Medium Battery D2, linear SoH values, SoH estimation boxplot

Figure 9.35: Old Battery D1, linear SoH values, SoH estimation boxplot

Figure 9.36: Old Battery D2, linear SoH values, SoH estimation boxplot
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Figure 9.37: Summary of the test, SoH estimation boxplot

Finally, in figure 9.37 a summary of the test is reported. In all the 30 tests
performed, varying the current and SoH of the datasets, the estimation of SoH is
correct. The performance of the algorithm with a periodical reset is higher than
the simple one.
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Chapter 10

Conclusions and Future
Works

10.1 Conclusions
The thesis aims to investigate a new methodology of simulation and parameter
estimation in the Li-ion batteries field.

Firstly a depth analysis of the literature is performed to address the research. The
most common methods are useful to build a digital twin for simulation purposes, but
there are no real efforts to provide a robust method for wide-spectrum applications.
The most critical factor is the complexity of the processes involved inside a Li-ion
cell and the consequent side phenomena. Until the first research, it is clear that
a simple and flexible method could be the key to resolving estimation problems.
The previous solutions involve more complex tools at each iteration of the problem,
each of them fits perfectly with the analyzed battery but is completely useless for
the study of an unseen cell.

The solution proposed in this work exploits the simplest model possible with
a dynamic transient to approximate the behavior of a real cell. The use of a
lower complexity model with the data generated by a more complex model gives
a good generalization of the methodology used. During the data generation and
identification phases, a rigid energetic framework is defined to collect repeatable
results. The definition of SoC, empty or full battery, SoH, and Capacity could
influence significantly the results of the performed test. All the possible ways are
investigated at the same time and only the best is chosen for the successive steps.

The identification phase is guided by two performance indexes: the closed-loop
simulation error compared to the original data and the qualitative shapes of the
resultant parameter LUTs. Instead of researching the direct correlation between
data, as done with machine learning techniques, the collection of data is driven to
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some intuitive results. This approach might lead to bias-errors in the approach,
but the issue can be avoided by designing a significant validation phase. The
process leads to a new framework, where all the parameters are approximated
to almost-linear functions dependent on the same quantities. The parameters
of different SoH values of the same cell are seen as values of the same function,
dependent on some quantities. This vision is innovative and not deeply studied in
the literature. The functions are determined from the data and they do have not
to relate to physical meaning. The closed-loop approach for simulation guarantees
good accuracy in the fitting of different validation datasets, overcoming the issues
derived by the low-grade model and the approximations done on the parameters.

The last step is the introduction of SoH estimation using the ERMES algorithm.
The traditional way to estimate SoH is the use of an augmented states EKF. It is
a complex solution with some issues in terms of convergence. ERMES exploits the
previous characterization of the cell to build a multi-model estimator with different
pre-set values of SoH. The estimation is done based on which model fits better the
original data. The integral of the squared error is used as a decision variable for
the choice of the best model. This approach is simpler, faster, and computationally
less expensive than the traditional way. The estimation is performed online and
does not require a specific test to be achieved, so the algorithm could be introduced
in real-time monitoring systems.

10.2 Future works
This thesis shows the potential of the application of ERMES algorithm and a more
general multi-model approach to the SoH estimation problem of a Li-ion cell.

The first successive step is the experimental validation of the framework defined
in this work. The data have to be collected following the procedures exploited in
the simulation performed on the mathematical models. The inclusion of more cells,
SoH values, and battery chemistry is an important step to generalize the method
to a wider spectrum of applications.

Another important improvement is in ERMES definition. As seen in the thesis,
a constrained version of the EKF is needed. To not impact the performance of the
system, the projection of the solution into a feasible sub-space is chosen, but it is a
sub-optimal solution. Future works could investigate other solutions, such as the
use of different observers from EKF.

Regarding ERMES, a deep statistical analysis of the residuals is needed to
confirm the results obtained in this work. Considering the EKFs, fine-tuning the
internal parameters can improve the speed of the correct estimation. While better
performance is achieved with the periodical reset approach, the impact of the period
length is not investigated in the thesis, so research in this field could improve the
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results.

99



Appendix A

Battery model for data
generation

In figure A.1, the model used for data generation is reported. The block scheme
is performed on Simulink and Matlab platform. In figure A.2, it is reported the

Figure A.1: Simulink model for data generation

details of the cell model block. The function ModelCell is listed at the end of the
section.
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Figure A.2: Detail of the cell model block

1 f unc t i on output = ModelCell ( old , SoCin , Ts , I , r s t , rstSoC )
2

3 p e r s i s t e n t SoC ;
4 i f isempty (SoC)
5 SoC = SoCin ;
6 end
7 p e r s i s t e n t V1 ;
8 i f isempty (V1)
9 V1 = 0 ;

10 end
11 p e r s i s t e n t V2 ;
12 i f isempty (V2)
13 V2 = 0 ;
14 end
15 p e r s i s t e n t V3 ;
16 i f isempty (V3)
17 V3 = 0 ;
18 end
19

20 SOC_LUT = [ 0 0 .1 0 .25 0 .5 0 .75 0 .9 1 ] ;
21

22 i f o ld == 0 % new
23

24 Capacity = 5 . 4 ;
25 Em_LUT = [ 3 . 5 1 3 .56 3 .65 3 .75 3 .93 4 .02 4 . 1 8 ] ;
26 R0_LUT = [ 0 . 0 2 0 .01 0 .009 0 .009 0 .008 0 .007 0 . 0 0 8 ] ;
27

28 R1_LUT = [ 0 . 0 0 6 0 .003 0 .0035 0 .0032 0 .004 0 .0027 0 . 0 0 2 9 ] ;
29 t1 = [10 12 15 12 20 15 1 2 ] ;
30 C1_LUT = t1 . / R1_LUT;
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31

32 R2_LUT = [ 0 . 0 0 2 5 0 .0017 0 .0013 0 .0012 0 .0021 0 .0025 0 . 0 0 2 6 ] ;
33 t2 = [25 40 75 125 80 100 1 1 0 ] ;
34 C2_LUT = t2 . / R2_LUT;
35

36 R3_LUT = [ 0 . 0 2 5 0 .013 0 .007 0 .003 0 .007 0 .012 0 . 0 0 5 ] ;
37 t3 = [1000 1250 1100 850 1000 1400 1 1 0 0 ] ;
38 C3_LUT = t3 . / R3_LUT;
39

40 e l s e i f o ld == 1 % old
41

42 Capacity = 4 . 0 5 ;
43 Em_LUT = [ 3 . 5 6 3 .61 3 .68 3 .78 3 .94 4 .07 4 . 1 7 ] ;
44 R0_LUT = [ 0 . 0 3 2 0 .026 0 .026 0 .025 0 .025 0 .022 0 . 0 2 4 ] ;
45

46 R1_LUT = [ 0 . 0 0 3 0 .005 0 .0052 0 .0045 0 .0075 0 .004 0 . 0 0 7 ] ;
47 t1 = [15 10 12 60 150 20 1 8 ] ;
48 C1_LUT = t1 . / R1_LUT;
49

50 R2_LUT = [ 0 . 0 0 5 0 .01 0 .02 0 .14 0 .065 0 .01 0 . 0 0 3 ] ;
51 t2 = [150 400 10000 6500 2500 150 1 2 0 ] ;
52 C2_LUT = t2 . / R2_LUT;
53

54 R3_LUT = [ 0 . 0 7 5 0 .035 0 .16 0 .2 0 .175 0 .13 0 . 0 2 5 ] ;
55 t3 = [4000 2100 6500 6400 8000 3500 2 0 0 0 ] ;
56 C3_LUT = t3 . / R3_LUT;
57

58 e l s e % medium
59

60 Capacity = 4 . 7 2 5 ;
61 Em_LUT = [ 3 . 5 3 5 3 .585 3 .665 3 .765 3 .935 4 .045 4 . 1 7 5 ] ;
62 R0_LUT = [ 0 . 0 2 6 0 .018 0 .0175 0 .017 0 .0165 0 .0145 0 . 0 1 6 ] ;
63

64 R1_LUT = [ 0 . 0 4 5 0 .004 0 .0043 0 .0039 0 .0057 0 .0034 0 . 0 0 4 9 ] ;
65 t1 = [ 1 2 . 5 11 13 .5 36 85 17 .5 1 5 ] ;
66 C1_LUT = t1 . / R1_LUT;
67

68 R2_LUT = [ 0 . 0 0 3 7 0 .0059 0 .0106 0 .0706 0 .0336 0 .0063 0 . 0 0 2 8 ] ;
69 t2 = [ 0 . 0 8 7 5 0 .22 5 .037 3 .322 1 .29 0 .125 0 . 1 1 5 ] ;
70 C2_LUT = t2 . / R2_LUT;
71

72 R3_LUT = [ 0 . 0 5 0 .024 0 .0835 0 .1015 0 .091 0 .071 0 . 0 1 5 ] ;
73 t3 = [ 0 . 0 5 0 .024 0 .0835 0 .1015 0 .091 0 .071 0 . 0 1 5 ] ;
74 C3_LUT = t3 . / R3_LUT;
75

76 end
77

78 r0 = in t e rp1 (SOC_LUT, R0_LUT, SoC , ’ l i n e a r ’ , ’ extrap ’ ) ;
79 r1 = in t e rp1 (SOC_LUT, R1_LUT, SoC , ’ l i n e a r ’ , ’ extrap ’ ) ;
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80 r2 = in t e rp1 (SOC_LUT, R2_LUT, SoC , ’ l i n e a r ’ , ’ extrap ’ ) ;
81 r3 = in t e rp1 (SOC_LUT, R3_LUT, SoC , ’ l i n e a r ’ , ’ extrap ’ ) ;
82 c1 = in t e rp1 (SOC_LUT, C1_LUT, SoC , ’ l i n e a r ’ , ’ extrap ’ ) ;
83 c2 = in t e rp1 (SOC_LUT, C2_LUT, SoC , ’ l i n e a r ’ , ’ extrap ’ ) ;
84 c3 = in t e rp1 (SOC_LUT, C3_LUT, SoC , ’ l i n e a r ’ , ’ extrap ’ ) ;
85 Em = inte rp1 (SOC_LUT, Em_LUT, SoC , ’ l i n e a r ’ , ’ extrap ’ ) ;
86

87 V1 = V1 + ( −(1/( r1 ∗c1 ) ) ∗V1 + (1/ c1 ) ∗ I ) ∗Ts ;
88 V2 = V2 + ( −(1/( r2 ∗c2 ) ) ∗V2 + (1/ c2 ) ∗ I ) ∗Ts ;
89 V3 = V3 + ( −(1/( r3 ∗c3 ) ) ∗V3 + (1/ c3 ) ∗ I ) ∗Ts ;
90

91 SoC = SoC + I ∗Ts/( Capacity ∗3600) ;
92

93 i f r s t == 1
94 SoC = rstSoC ;
95 end
96

97 output = [ SoC , V1 , V2 , V3 , Em, r0 ] ;
98

99 end
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Matlab codes: Identification

B.1 Static identification

1 c l o s e a l l
2 c l e a r
3 c l c
4

5 load Idataset2new
6

7 Ts = 0 . 1 ;
8

9 [ h , l ] = s i z e (OCV) ;
10

11 f o r ih = 1 : h
12

13 f o r i l = 1 : l
14

15 % Find s t a r t and f i n i s h o f each cur rent pu l s e
16 cnt = 1 ;
17 found = 0 ;
18 f o r i = 1 : l ength ( s_current { ih , i l })
19 i f s_current { ih , i l }( i )<0 && found==0
20 i_current { ih , i l }( cnt , 1) = i ;
21 found = 1 ;
22 e l s e i f s_current { ih , i l }( i )==0 && found==1
23 found = 0 ;
24 i_current { ih , i l }( cnt , 2) = i −1;
25 cnt = cnt + 1 ;
26 end
27 end
28

29 % Extract data r e l a t e d to cur rent pu l s e s
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30 cnt = 1 ;
31 j = 1 ;
32 f o r i = 1 : l ength ( s_current { ih , i l })
33 i f i>=i_current { ih , i l }( cnt , 1 )+1 && i<=i_current { ih , i l }(

cnt , 2 )
34 Idata { ih , i l }( cnt , j ) = s_current { ih , i l }( i ) ;
35 Vdata{ ih , i l }( cnt , j ) = s_voltage { ih , i l }( i ) ;
36 SOCdata{ ih , i l }( cnt , j ) = s_soc{ ih , i l }( i ) ;
37 j = j + 1 ;
38 end
39

40 i f i==i_current { ih , i l }( cnt , 2 ) && cnt<length ( i_current { ih ,
i l })

41 cnt = cnt + 1 ;
42 j = 1 ;
43 end
44 end
45

46 % Extract SOC/OCV r e l a t i o n from the data
47 OCV_LUT{ ih , i l } = OCV{ ih , i l } ( 1 , : ) ;
48 SOC_OCV_LUT{ ih , i l } = SOCn{ ih , i l } ( 1 , : ) ;
49

50 [ n , nn ] = s i z e (SOCdata{ ih , i l }) ;
51 N0 = 700 ;
52

53 f o r i = 1 : n
54 cnt = 1 ;
55 beta = [ ] ;
56 soc = [ ] ;
57 f o r j = N0 : nn
58 ocv = in t e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } ,

SOCdata{ ih , i l }( i , j ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
59 Y = Vdata{ ih , i l }( i , j ) − ocv ;
60 X = Idata { ih , i l }( i , j ) ;
61 beta ( cnt ) = Y / X;
62 soc ( cnt ) = SOCdata{ ih , i l }( i , j ) ;
63 cnt = cnt + 1 ;
64 end
65 R_LUT{ ih , i l }( i ) = mean( beta ) ;
66 SOC_R_LUT{ ih , i l }( i ) = mean( soc ) ;
67 end
68

69 SOC_R_LUT{ ih , i l }( end ) = [ ] ;
70 R_LUT{ ih , i l }( end ) = [ ] ;
71

72 f o r t = 1 : l ength ( s_time{ ih , i l })
73 ocv = in t e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } , s_soc{

ih , i l } (1 , t ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
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74 r = in t e rp1 (SOC_R_LUT{ ih , i l } , R_LUT{ ih , i l } , s_soc{ ih , i l
} (1 , t ) , ’ l i n e a r ’ , ’ extrap ’ ) ;

75 VsimpleR{ ih , i l } (1 , t ) = ocv + r ∗ s_current { ih , i l } (1 , t ) ;
76 end
77

78 f i g u r e , p l o t ( s_time{ ih , i l } , s_voltage { ih , i l } , ’ k ’ , . . .
79 s_time{ ih , i l } , VsimpleR{ ih , i l } , ’ r ’ )
80

81 end
82

83 end
84

85 save ( ’ ID1_parametersStatic_Idataset2new . mat ’ , . . .
86 ’SOC_OCV_LUT’ , ’OCV_LUT’ , . . .
87 ’SOC_R_LUT’ , ’R_LUT’ , . . .
88 ’ VsimpleR ’ )

B.2 Identification from static parameters

1 c l o s e a l l
2 c l e a r
3 c l c
4

5 load Idataset2new
6 load ID1_parametersStatic_Idataset2new
7

8 SOC_Rs_LUT = SOC_R_LUT;
9 Rs_LUT = R_LUT;

10 c l e a r SOC_R_LUT R_LUT
11

12 Ts = 0 . 1 ;
13

14 [ h , l ] = s i z e (OCV) ;
15

16 f o r ih = 1 : h
17

18 f o r i l = 1 : l
19

20 % Find s t a r t and f i n i s h o f each cur rent per iod
21 cnt = 1 ;
22 found = 0 ;
23 f l a g = 0 ;
24 f o r i = 1 : l ength ( s_current { ih , i l })
25 i f s_current { ih , i l }( i )<0 && found==0
26 i f cnt>1 && f l a g==0

106



Matlab codes: Identification

27 i_current { ih , i l }( cnt −1, 2) = i −1;
28 end
29 i_current { ih , i l }( cnt , 1) = i ;
30 found = 1 ;
31 f l a g = 0 ;
32 e l s e i f found==1 && s_state { ih , i l }( i )~=3
33 found = 0 ;
34 i_current { ih , i l }( cnt , 2) = i −1;
35 cnt = cnt + 1 ;
36 f l a g = 1 ;
37 e l s e i f s_current { ih , i l }( i )==0 && found==1
38 found = 0 ;
39 cnt = cnt + 1 ;
40 end
41 end
42

43 % Extract data r e l a t e d to cur rent pu l s e s
44 cnt = 1 ;
45 j = 1 ;
46 f o r i = 1 : l ength ( s_current { ih , i l })
47 i f i>=i_current { ih , i l }( cnt , 1 )+1 && i<=i_current { ih , i l }(

cnt , 2 )
48 Idata { ih , i l }( cnt , j ) = s_current { ih , i l }( i ) ;
49 Vdata{ ih , i l }( cnt , j ) = s_voltage { ih , i l }( i ) ;
50 SOCdata{ ih , i l }( cnt , j ) = s_soc{ ih , i l }( i ) ;
51 Tdata{ ih , i l }( cnt , j ) = s_time{ ih , i l }( i ) ;
52 OCVdata{ ih , i l }( cnt , j ) = in t e rp1 (SOC_OCV_LUT{ ih , i l } ,

OCV_LUT{ ih , i l } , SOCdata{ ih , i l }( cnt , j ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
53 j = j + 1 ;
54 end
55

56 i f i==i_current { ih , i l }( cnt , 2 ) && cnt<length ( i_current { ih ,
i l })

57 cnt = cnt + 1 ;
58 j = 1 ;
59 end
60 end
61

62 f i g u r e ( )
63 [ n , nn ] = s i z e ( i_current { ih , i l }) ;
64 f o r i = 1 : n
65 p lo t ( s_time{ ih , i l }( i_current { ih , i l }( i , 1 ) : i_current { ih , i l

}( i , 2 ) ) , . . .
66 s_voltage { ih , i l }( i_current { ih , i l }( i , 1 ) : i_current { ih ,

i l }( i , 2 ) ) )
67 hold on
68 end
69

70 % Generate the SOC mean f o r each cur rent pu l s e
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71 [ n , nn ] = s i z e (SOCdata{ ih , i l }) ;
72 f o r i = 1 : n
73 dSOC( i , 1 ) = SOCdata{ ih , i l }( i , 1 ) ;
74 dSOC( i , 2 ) = SOCdata{ ih , i l }( i , end ) ;
75 SOCmean{ ih , i l }( i ) = (dSOC( i , 1 )+dSOC( i , 2 ) ) /2 ;
76 end
77

78 % Extract SOC/OCV r e l a t i o n from the data
79 OCV_LUT{ ih , i l } = OCV{ ih , i l } ( 1 , : ) ;
80 SOC_OCV_LUT{ ih , i l } = SOCn{ ih , i l } ( 1 , : ) ;
81

82 % Generate the SOC mean f o r each cur rent pu l s e
83 [ n , nn ] = s i z e (SOCdata{ ih , i l }) ;
84 f o r i = 1 : n
85 dSOC( i , 1 ) = SOCdata{ ih , i l }( i , 1 ) ;
86 dSOC( i , 2 ) = SOCdata{ ih , i l }( i , end ) ;
87 SOCmean{ ih , i l }( i ) = (dSOC( i , 1 )+dSOC( i , 2 ) ) /2 ;
88 end
89

90 f i g u r e ( )
91 [ n , nn ] = s i z e ( i_current { ih , i l }) ;
92 f o r i = 1 : n
93 p lo t ( s_time{ ih , i l }( i_current { ih , i l }( i , 1 ) : i_current { ih , i l

}( i , 2 ) ) , . . .
94 s_voltage { ih , i l }( i_current { ih , i l }( i , 1 ) : i_current { ih ,

i l }( i , 2 ) ) )
95 hold on
96 end
97

98 % Al l toghe te r
99

100 [ n , nn ] = s i z e (SOCdata{ ih , i l }) ;
101

102 f o r i = 1 : n
103 f o r j = 2 : nn
104 OCVk = int e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } ,

SOCdata{ ih , i l }( i , j ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
105 OCVkp1 = in t e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } ,

SOCdata{ ih , i l }( i , j −1) , ’ l i n e a r ’ , ’ extrap ’ ) ;
106

107 Y{ ih , i l }( j −1, i ) = Vdata{ ih , i l }( i , j ) − Vdata{ ih , i l }( i ,
j −1) − OCVk + OCVkp1 ;

108

109 X1{ ih , i l }( j −1, i ) = Idata { ih , i l }( i , j ) ;
110 X2{ ih , i l }( j −1, i ) = Idata { ih , i l }( i , j −1) ;
111 X3{ ih , i l }( j −1, i ) = OCVkp1 − Vdata{ ih , i l }( i , j −1) ;
112

113 end
114
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115 X = [ X1{ ih , i l } ( : , i ) X2{ ih , i l } ( : , i ) X3{ ih , i l } ( : , i ) ] ;
116 b = X\Y{ ih , i l } ( : , i ) ;
117 alpha { ih , i l }( i ) = b (1) ;
118 beta { ih , i l }( i ) = b (2) ;
119 gamma{ ih , i l }( i ) = b (3) ;
120

121 Rs{ ih , i l }( i ) = in t e rp1 (SOC_Rs_LUT{ ih , i l } , Rs_LUT{ ih , i l } ,
SOCdata{ ih , i l }( i , j ) , ’ l i n e a r ’ , ’ extrap ’ ) ;

122

123 tau{ ih , i l }( i ) = gamma{ ih , i l }( i ) / Ts ;
124 R01{ ih , i l }( i ) = beta { ih , i l }( i ) / ( tau{ ih , i l }( i ) ∗Ts−1) ;
125 R02{ ih , i l }( i ) = ( alpha { ih , i l }( i ) − Rs{ ih , i l }( i ) ∗ tau{ ih , i l

}( i ) ∗Ts ) /(1−tau{ ih , i l }( i ) ∗Ts ) ;
126 R1{ ih , i l }( i ) = Rs{ ih , i l }( i ) − R01{ ih , i l }( i ) ;
127 R2{ ih , i l }( i ) = Rs{ ih , i l }( i ) − R02{ ih , i l }( i ) ;
128 Crc{ ih , i l }( i ) = 1 / ( tau{ ih , i l }( i ) ∗R1{ ih , i l }( i ) ) ;
129

130 end
131

132 end
133

134 end
135

136 f i g u r e ( )
137 subplot ( 2 , 2 , 1 )
138 cnt = 1 ;
139 f o r ih = 1 : h
140 f o r i l = 1 : l
141 p lo t (SOCmean{ ih , i l } , R01{ ih , i l } , ’ r ’ , . . .
142 SOCmean{ ih , i l } , R02{ ih , i l } , ’b ’ )
143 hold on
144 cnt = cnt + 1 ;
145 end
146 end
147 x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’R_0 [ \Omega ] ’ ) , g r i d on , . . .
148 t i t l e ( ’R_0 vs SOCn ’ )
149

150 subplot ( 2 , 2 , 2 )
151 cnt = 1 ;
152 f o r ih = 1 : h
153 f o r i l = 1 : l
154 p lo t (SOCmean{ ih , i l } ( 1 , : ) , R1{ ih , i l } ( 1 , : ) , ’ r ’ , . . .
155 SOCmean{ ih , i l } ( 1 , : ) , R2{ ih , i l } ( 1 , : ) , ’ b ’ )
156 hold on
157 cnt = cnt + 1 ;
158 end
159 end
160 x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’R [ \Omega ] ’ ) , g r i d on , . . .
161 t i t l e ( ’R vs SOCn ’ )
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162

163 subplot ( 2 , 2 , 3 )
164 cnt = 1 ;
165 f o r ih = 1 : h
166 f o r i l = 1 : l
167 p lo t (SOCmean{ ih , i l } ( 1 , : ) , tau{ ih , i l } ( 1 , : ) , ’ ∗ ’ )
168 hold on
169 l e g end In f o { cnt } = [ ’ SoCin=’ num2str ( SoCinVect ( ih ) ) ’ , Iamp=’

num2str ( abs ( IampVect ( i l ) / 5 . 4 ) ) ’C ’ ] ;
170 cnt = cnt + 1 ;
171 end
172 end
173 l egend ( l e g end In f o ) , x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’ \ tau [ s ] ’ ) , g r i d on , . . .
174 t i t l e ( ’ \ tau vs SOCn ’ )
175

176 subplot ( 2 , 2 , 4 )
177 cnt = 1 ;
178 f o r ih = 1 : h
179 f o r i l = 1 : l
180 p lo t (SOCmean{ ih , i l } ( 1 , : ) , R01{ ih , i l } ( 1 , : )+R1{ ih , i l } ( 1 , : ) , ’ r ’

, . . .
181 SOCmean{ ih , i l } ( 1 , : ) , R02{ ih , i l } ( 1 , : )+R2{ ih , i l } ( 1 , : ) , ’ b ’ )
182 hold on
183 cnt = cnt + 1 ;
184 end
185 end
186 x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’C [F ] ’ ) , g r i d on , . . .
187 t i t l e ( ’C vs SOCn ’ )
188

189 [SOC_R0_LUT, R0_LUT] = d e l e t e D u p l i c a t e s (SOCmean, R01) ;
190 [SOC_TAU_LUT, TAU_LUT] = d e l e t e D u p l i c a t e s (SOCmean, tau ) ;
191 [SOC_R_LUT, R_LUT] = d e l e t e D u p l i c a t e s (SOCmean, R1) ;
192 [SOC_C_LUT, C_LUT] = d e l e t e D u p l i c a t e s (SOCmean, Crc ) ;
193 [SOC_OCV_LUT, OCV_LUT] = d e l e t e D u p l i c a t e s (SOC_OCV_LUT, OCV_LUT) ;
194

195 save ( ’ ID1_parametersMode32_Idataset2new . mat ’ , . . .
196 ’SOC_OCV_LUT’ , ’OCV_LUT’ , . . .
197 ’SOC_R0_LUT’ , ’R0_LUT ’ , . . .
198 ’SOC_TAU_LUT’ , ’TAU_LUT’ , . . .
199 ’SOC_R_LUT’ , ’R_LUT’ , . . .
200 ’SOC_C_LUT’ , ’C_LUT’ )

B.3 Direct dynamical model identification

1 c l o s e a l l
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2 c l e a r
3 c l c
4

5 load Idataset2new
6

7 Ts = 0 . 1 ;
8

9 [ h , l ] = s i z e (OCV) ;
10

11 f o r ih = 1 : h
12

13 f o r i l = 1 : l
14

15 % Extract SOC/OCV r e l a t i o n from the data
16 OCV_LUT{ ih , i l } = OCV{ ih , i l } ( 1 , : ) ;
17 SOC_OCV_LUT{ ih , i l } = SOCr{ ih , i l } ( 1 , : ) ;
18

19 % Find s t a r t and f i n i s h o f each cur rent per iod
20 cnt = 1 ;
21 found = 0 ;
22 f l a g = 0 ;
23 f o r i = 1 : l ength ( s_current { ih , i l })
24 i f s_current { ih , i l }( i )<0 && found==0
25 i f cnt>1 && f l a g==0
26 i_current { ih , i l }( cnt −1, 2) = i −1;
27 end
28 i_current { ih , i l }( cnt , 1) = i ;
29 found = 1 ;
30 f l a g = 0 ;
31 e l s e i f found==1 && s_state { ih , i l }( i )~=3
32 found = 0 ;
33 i_current { ih , i l }( cnt , 2) = i −1;
34 cnt = cnt + 1 ;
35 f l a g = 1 ;
36 e l s e i f s_current { ih , i l }( i )==0 && found==1
37 found = 0 ;
38 cnt = cnt + 1 ;
39 end
40 end
41

42 % Extract data r e l a t e d to cur rent pu l s e s
43 cnt = 1 ;
44 j = 1 ;
45 f o r i = 1 : l ength ( s_current { ih , i l })
46 i f i>=i_current { ih , i l }( cnt , 1 )+1 && i<=i_current { ih , i l }(

cnt , 2 )
47 Idata { ih , i l }( cnt , j ) = s_current { ih , i l }( i ) ;
48 Vdata{ ih , i l }( cnt , j ) = s_voltage { ih , i l }( i ) ;
49 SOCdata{ ih , i l }( cnt , j ) = s_soc{ ih , i l }( i ) ;

111



Matlab codes: Identification

50 Tdata{ ih , i l }( cnt , j ) = s_time{ ih , i l }( i ) ;
51 OCVdata{ ih , i l }( cnt , j ) = in t e rp1 (SOC_OCV_LUT{ ih , i l } ,

OCV_LUT{ ih , i l } , SOCdata{ ih , i l }( cnt , j ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
52 j = j + 1 ;
53 end
54

55 i f i==i_current { ih , i l }( cnt , 2 ) && cnt<length ( i_current { ih ,
i l })

56 cnt = cnt + 1 ;
57 j = 1 ;
58 end
59 end
60

61 f i g u r e ( )
62 [ n , nn ] = s i z e ( i_current { ih , i l }) ;
63 f o r i = 1 : n
64 p lo t ( s_time{ ih , i l }( i_current { ih , i l }( i , 1 ) : i_current { ih , i l

}( i , 2 ) ) , . . .
65 s_voltage { ih , i l }( i_current { ih , i l }( i , 1 ) : i_current { ih ,

i l }( i , 2 ) ) )
66 hold on
67 end
68

69 % Generate the SOC mean f o r each cur rent pu l s e
70 [ n , nn ] = s i z e (SOCdata{ ih , i l }) ;
71 f o r i = 1 : n
72 dSOC( i , 1 ) = SOCdata{ ih , i l }( i , 1 ) ;
73 dSOC( i , 2 ) = SOCdata{ ih , i l }( i , end ) ;
74 SOCmean{ ih , i l }( i ) = (dSOC( i , 1 )+dSOC( i , 2 ) ) /2 ;
75 end
76

77 f i g u r e ( )
78 [ x , xx ] = s i z e ( Tdata {1 , i l }) ;
79 f o r i = 1 : x
80 p lo t ( Tdata {1 , i l }( i , : ) , Vdata {1 , i l }( i , : ) , ’ r ’ , . . .
81 Tdata {1 , i l }( i , : ) , OCVdata{1 , i l }( i , : ) , ’ b ’ )
82 hold on
83 end
84

85 % Al l toghe te r
86 f o r i = 1 : n
87 f o r j = 2 : nn
88 OCVk = int e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } ,

SOCdata{ ih , i l }( i , j ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
89 OCVkp1 = in t e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } ,

SOCdata{ ih , i l }( i , j −1) , ’ l i n e a r ’ , ’ extrap ’ ) ;
90 Y{ ih , i l }( j −1, i ) = Vdata{ ih , i l }( i , j ) − Vdata{ ih , i l }( i ,

j −1) − OCVk + OCVkp1 ;
91 X1{ ih , i l }( j −1, i ) = Idata { ih , i l }( i , j ) ;
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92 X2{ ih , i l }( j −1, i ) = Idata { ih , i l }( i , j −1) ;
93 X3{ ih , i l }( j −1, i ) = OCVkp1 − Vdata{ ih , i l }( i , j −1) ;
94 end
95

96 X = [ X1{ ih , i l } ( : , i ) X2{ ih , i l } ( : , i ) X3{ ih , i l } ( : , i ) ] ;
97 b = X\Y{ ih , i l } ( : , i ) ;
98 alpha { ih , i l }( i ) = b (1) ;
99 beta { ih , i l }( i ) = b (2) ;

100 gamma{ ih , i l }( i ) = b (3) ;
101

102 tau{ ih , i l }( i ) = gamma{ ih , i l }( i ) / Ts ;
103 R0{ ih , i l }( i ) = beta { ih , i l }( i ) / ( tau{ ih , i l }( i ) ∗Ts−1) ;
104 R{ ih , i l }( i ) = ( alpha { ih , i l }( i )−R0{ ih , i l }( i ) ) / ( tau{ ih , i l

}( i ) ∗Ts ) ;
105 Crc{ ih , i l }( i ) = 1 / ( tau{ ih , i l }( i ) ∗R{ ih , i l }( i ) ) ;
106

107 end
108

109 end
110

111 end
112

113 f i g u r e ( )
114 subplot ( 2 , 2 , 1 )
115 cnt = 1 ;
116 f o r ih = 1 : h
117 f o r i l = 1 : l
118 p lo t (SOCmean{ ih , i l } , R0{ ih , i l } , ’ ∗ ’ )
119 hold on
120 l e g end In f o { cnt } = [ ’ SoCin=’ num2str ( SoCinVect ( ih ) ) ’ , Iamp=’

num2str ( abs ( IampVect ( i l ) / 5 . 4 ) ) ’C ’ ] ;
121 cnt = cnt + 1 ;
122 end
123 end
124 l egend ( l e g end In f o ) , x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’R_0 [ \Omega ] ’ ) , g r i d on ,

. . .
125 t i t l e ( ’R_0 vs SOCn ’ )
126

127 subplot ( 2 , 2 , 2 )
128 cnt = 1 ;
129 f o r ih = 1 : h
130 f o r i l = 1 : l
131 p lo t (SOCmean{ ih , i l } ( 1 , : ) , R{ ih , i l } ( 1 , : ) , ’ ∗ ’ )
132 hold on
133 l e g end In f o { cnt } = [ ’ SoCin=’ num2str ( SoCinVect ( ih ) ) ’ , Iamp=’

num2str ( abs ( IampVect ( i l ) / 5 . 4 ) ) ’C ’ ] ;
134 cnt = cnt + 1 ;
135 end
136 end
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137 l egend ( l e g end In f o ) , x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’R [ \Omega ] ’ ) , g r i d on ,
. . .

138 t i t l e ( ’R vs SOCn ’ )
139

140 subplot ( 2 , 2 , 3 )
141 cnt = 1 ;
142 f o r ih = 1 : h
143 f o r i l = 1 : l
144 p lo t (SOCmean{ ih , i l } ( 1 , : ) , tau{ ih , i l } ( 1 , : ) , ’ ∗ ’ )
145 hold on
146 l e g end In f o { cnt } = [ ’ SoCin=’ num2str ( SoCinVect ( ih ) ) ’ , Iamp=’

num2str ( abs ( IampVect ( i l ) / 5 . 4 ) ) ’C ’ ] ;
147 cnt = cnt + 1 ;
148 end
149 end
150 l egend ( l e g end In f o ) , x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’ \ tau [ s ] ’ ) , g r i d on , . . .
151 t i t l e ( ’ \ tau vs SOCn ’ )
152

153 subplot ( 2 , 2 , 4 )
154 cnt = 1 ;
155 f o r ih = 1 : h
156 f o r i l = 1 : l
157 p lo t (SOCmean{ ih , i l } ( 1 , : ) , Crc{ ih , i l } ( 1 , : ) , ’ ∗ ’ )
158 hold on
159 l e g end In f o { cnt } = [ ’ SoCin=’ num2str ( SoCinVect ( ih ) ) ’ , Iamp=’

num2str ( abs ( IampVect ( i l ) / 5 . 4 ) ) ’C ’ ] ;
160 cnt = cnt + 1 ;
161 end
162 end
163 l egend ( l e g end In f o ) , x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’C [F ] ’ ) , g r i d on , . . .
164 t i t l e ( ’C vs SOCn ’ )
165

166 [SOC_R0_LUT, R0_LUT] = d e l e t e D u p l i c a t e s (SOCmean, R0) ;
167 [SOC_TAU_LUT, TAU_LUT] = d e l e t e D u p l i c a t e s (SOCmean, tau ) ;
168 [SOC_R_LUT, R_LUT] = d e l e t e D u p l i c a t e s (SOCmean, R) ;
169 [SOC_C_LUT, C_LUT] = d e l e t e D u p l i c a t e s (SOCmean, Crc ) ;
170 [SOC_OCV_LUT, OCV_LUT] = d e l e t e D u p l i c a t e s (SOC_OCV_LUT, OCV_LUT) ;
171

172 save ( ’ ID1_parametersMode2_Idataset2new . mat ’ , . . .
173 ’SOC_OCV_LUT’ , ’OCV_LUT’ , . . .
174 ’SOC_R0_LUT’ , ’R0_LUT ’ , . . .
175 ’SOC_TAU_LUT’ , ’TAU_LUT’ , . . .
176 ’SOC_R_LUT’ , ’R_LUT’ , . . .
177 ’SOC_C_LUT’ , ’C_LUT’ )
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Matlab codes: Validation

C.1 Open-loop validation

1 c l o s e a l l
2 c l e a r
3 c l c
4

5 load Vdataset1new
6 load ID1_parametersMode2_Idataset2new
7

8 Ts = 0 . 1 ;
9

10 [ h , l ] = s i z e ( s_state ) ;
11

12 i_d i scharge = c e l l (h , l ) ;
13 Idata = c e l l (h , l ) ;
14 Vdata = c e l l (h , l ) ;
15 SOCdata = c e l l (h , l ) ;
16 Tdata = c e l l (h , l ) ;
17 simV = c e l l (h , l ) ;
18 simSOC = c e l l (h , l ) ;
19

20 f o r ih = 1 : h
21 f o r i l = 1 : l
22

23 % I d e n t i f y d i s cha rg ing f r a c t i o n o f time
24 cnt = 1 ;
25 found = 0 ;
26 f o r i = 1 : l ength ( s_state { ih , i l })
27 i f s_state { ih , i l }( i )==3 && found==0
28 i_d i scharge { ih , i l }( cnt , 1) = i ;
29 found = 1 ;
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30 e l s e i f s_state { ih , i l }( i )~=3 && found==1
31 found = 0 ;
32 i_d i scharge { ih , i l }( cnt , 2) = i −1;
33 cnt = cnt + 1 ;
34 end
35 end
36

37 [ n , nn ] = s i z e ( i_d i scharge { ih , i l }) ;
38 f o r i = 1 : n
39 Idata { ih , i l }( i , : ) = s_current { ih , i l }( i_d i scharge { ih , i l }( i

, 1 ) : i_d i scharge { ih , i l }( i , 2 ) ) ;
40 Vdata{ ih , i l }( i , : ) = s_voltage { ih , i l }( i_d i scharge { ih , i l }( i

, 1 ) : i_d i scharge { ih , i l }( i , 2 ) ) ;
41 SOCdata{ ih , i l }( i , : ) = s_soc{ ih , i l }( i_d i scharge { ih , i l }( i

, 1 ) : i_d i scharge { ih , i l }( i , 2 ) ) ;
42 Tdata{ ih , i l }( i , : ) = s_time{ ih , i l }( i_d i scharge { ih , i l }( i , 1 )

: i_d i scharge { ih , i l }( i , 2 ) ) ;
43 end
44

45 f o r i = 1 : n
46 simV{ ih , i l }( i , 1 ) = Vdata{ ih , i l }( i , 1 ) ;
47 simSOC{ ih , i l }( i , 1 ) = SOCdata{ ih , i l }( i , 1 ) ;
48 Vrc = 0 ;
49 Vocv = in t e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } , simSOC

{ ih , i l } (1 , 1 ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
50 f o r k = 2 : l ength ( Idata { ih , i l }( i , : ) )
51 simSOC{ ih , i l }( i , k ) = simSOC{ ih , i l }( i , k−1) + Idata { ih ,

i l }( i , k ) ∗Ts/( Capacity ∗3600) ;
52 R0 = int e rp1 (SOC_R0_LUT{ ih , i l } , R0_LUT{ ih , i l } , simSOC

{ ih , i l }( i , k ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
53 R = inte rp1 (SOC_R_LUT{ ih , i l } , R_LUT{ ih , i l } , simSOC{ ih

, i l }( i , k ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
54 tau = in t e rp1 (SOC_TAU_LUT{ ih , i l } , TAU_LUT{ ih , i l } ,

simSOC{ ih , i l }( i , k ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
55 Vocv_p = Vocv ;
56 Vocv = in t e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } ,

simSOC{ ih , i l }( i , k ) , ’ l i n e a r ’ , ’ extrap ’ ) ;
57 Vrc_p = Vrc ;
58 Vrc = Vrc_p − tau∗Ts∗Vrc_p + R∗tau∗Ts∗ Idata { ih , i l }( i ,

k ) ;
59 simV{ ih , i l }( i , k ) = Vocv + R0∗ Idata { ih , i l }( i , k ) + Vrc ;
60 simR{ ih , i l }( i , k ) = R;
61 simR0{ ih , i l }( i , k ) = R0 ;
62 simC{ ih , i l }( i , k ) = 1 / (R∗tau ) ;
63 end
64 end
65 end
66 end
67
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68 % Plots
69 f o r ih = 1 : h
70 f o r i l = 1 : l
71 f i g u r e ( )
72 subplot ( 1 , 2 , 1 )
73 [ n , nn ] = s i z e ( Vdata{ ih , i l }) ;
74 f o r j = 1 : n
75 p lo t ( Tdata{ ih , i l }( j , : ) , Vdata{ ih , i l }( j , : ) , ’−r ’ )
76 hold on
77 p lo t ( Tdata{ ih , i l }( j , : ) , simV{ ih , i l }( j , : ) , ’−b ’ )
78 end
79 t i t l e ( ’ Terminal vo l tage ’ ) , x l a b e l ( ’V [V] ’ ) , y l a b e l ( ’ t [ s ] ’ ) ,

g r i d on
80 subplot ( 1 , 2 , 2 )
81 [ n , nn ] = s i z e (SOCdata{ ih , i l }) ;
82 f o r j = 1 : n
83 p lo t ( Tdata{ ih , i l }( j , : ) , SOCdata{ ih , i l }( j , : ) , ’−r ’ )
84 hold on
85 p lo t ( Tdata{ ih , i l }( j , : ) , simSOC{ ih , i l }( j , : ) , ’−b ’ )
86 end
87 t i t l e ( ’SoC ’ ) , x l a b e l ( ’SoC ’ ) , y l a b e l ( ’ t [ s ] ’ ) , g r i d on
88 end
89 end
90

91 save ( ’ ID1_Vsim_Idataset2_mode2 . mat ’ , . . .
92 ’ Idata ’ , ’ Vdata ’ , ’ SOCdata ’ , ’ Tdata ’ , . . .
93 ’ simV ’ , ’ simSOC ’ , ’ simR ’ , ’ simR0 ’ , ’ simC ’ )

C.2 Closed-loop validation

1 c l o s e a l l
2 c l e a r
3 c l c
4

5 load Vdataset1new
6 load ID1_parametersMode4_Idataset2new
7

8 Ts = 0 . 1 ;
9

10 [ h , l ] = s i z e ( s_state ) ;
11

12 i_d i scharge = c e l l (h , l ) ;
13 Idata = c e l l (h , l ) ;
14 Vdata = c e l l (h , l ) ;
15 SOCdata = c e l l (h , l ) ;
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16 Tdata = c e l l (h , l ) ;
17 simV = c e l l (h , l ) ;
18 simSOC = c e l l (h , l ) ;
19

20 N0 = 15 ;
21

22 f o r ih = 1 : h
23 f o r i l = 1 : l
24

25 SOC_R_LUT{ ih , i l }( end ) = [ ] ;
26 R_LUT{ ih , i l }( end ) = [ ] ;
27 SOC_R0_LUT{ ih , i l }( end ) = [ ] ;
28 R0_LUT{ ih , i l }( end ) = [ ] ;
29 SOC_TAU_LUT{ ih , i l }( end ) = [ ] ;
30 TAU_LUT{ ih , i l }( end ) = [ ] ;
31

32 Vdata{ ih , i l } = s_voltage { ih , i l }(N0 : end ) ;
33 Tdata{ ih , i l } = s_time{ ih , i l }(N0 : end ) ;
34 Idata { ih , i l } = s_current { ih , i l }(N0 : end ) ;
35 SOCdata{ ih , i l } = s_soc{ ih , i l }(N0 : end ) ;
36

37 Xh( : , 1 ) = [ Vdata{ ih , i l } (1) ; SOCdata{ ih , i l } (1) ] ;
38 V1 = diag ( [ 0 . 1 0 . 0 5 ] ) ;
39 P{1} = V1 ;
40 V2 = 0 . 1 ;
41

42 Ph{1} = V1 ;
43 Pf {1} = V1 ;
44 Xf ( : , 1 ) = [ 0 ; SOCdata{ ih , i l } (1) ] ;
45 Yf (1 ) = Vdata{ ih , i l } (1) ;
46

47 f o r t = 2 : l ength ( s_voltage { ih , i l }(N0 : end ) )
48

49 Vocv = in t e rp1 (SOC_OCV_LUT{ ih , i l } , OCV_LUT{ ih , i l } ,
SOCdata{ ih , i l }( t ) , ’ l i n e a r ’ , ’ extrap ’ ) ;

50 R0 = int e rp1 (SOC_R0_LUT{ ih , i l } , R0_LUT{ ih , i l } , SOCdata{ ih
, i l }( t ) , ’ l i n e a r ’ , ’ extrap ’ ) ;

51 R = inte rp1 (SOC_R_LUT{ ih , i l } , R_LUT{ ih , i l } , SOCdata{ ih , i l
}( t ) , ’ l i n e a r ’ , ’ extrap ’ ) ;

52 tau = in t e rp1 (SOC_TAU_LUT{ ih , i l } , TAU_LUT{ ih , i l } , SOCdata
{ ih , i l }( t ) , ’ l i n e a r ’ , ’ extrap ’ ) ;

53

54 Y( t ) = Vdata{ ih , i l }( t ) ;
55 u( t ) = Idata { ih , i l }( t ) ;
56

57 % Pred i c to r
58 A = [1−tau∗Ts 0 ; 0 1 ] ;
59 C = [ 1 0 ] ;
60
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61 % F i l t e r
62 Xh(1 , t ) = (1−tau∗Ts) ∗Xf (1 , t −1) + R+tau∗Ts∗u( t ) ;
63 Xh(2 , t ) = Xf (2 , t −1) + Ts/( Capacity ∗3600) ∗u( t ) ;
64

65 Ph{ t } = A∗Pf{t −1}∗A’ + V1 ;
66 Yh( t ) = Vocv + Xh(1 , t ) + R0∗u( t ) ;
67 e = Y( t ) − Yh( t ) ;
68 K{ t } = Ph{ t }∗C’ ∗ inv (C∗Ph{ t }∗C’ + V2) ;
69

70 Xf ( : , t ) = Xh( : , t ) + K{ t }∗ e ;
71 Yf ( t ) = Vocv + Xf (1 , t ) + R0∗u( t ) ;
72

73 Pf{ t } = ( eye (2 ) − K{ t }∗C) ∗Ph{ t } ;
74

75 simVf{ ih , i l }( t ) = Yf ( t ) ;
76 simVrcf { ih , i l }( t ) = Xf (1 , t ) ;
77 simSOCf{ ih , i l }( t ) = Xf (2 , t ) ;
78

79

80 end
81

82 end
83 end
84

85 % Plots
86 f o r ih = 1 : h
87 f o r i l = 1 : l
88

89 f i g u r e ( )
90 subplot ( 1 , 2 , 1 )
91 [ n , nn ] = s i z e ( Vdata{ ih , i l }) ;
92 p lo t ( Tdata{ ih , i l } , Vdata{ ih , i l } , ’−k ’ )
93 hold on
94 p lo t ( Tdata{ ih , i l } , simVf{ ih , i l } , ’−r ’ )
95 l egend ( ’ Or i g i na l data ’ , ’Kalman ’ )
96 t i t l e ( ’ Terminal vo l tage ’ ) , y l a b e l ( ’ Voltage [V] ’ ) , x l a b e l ( ’

Time [ s ] ’ )
97 g r id on , ylim ( [ 2 . 5 4 . 5 ] )
98

99 subplot ( 1 , 2 , 2 )
100 p lo t ( Tdata{ ih , i l } , SOCdata{ ih , i l } , ’−r ’ )
101 hold on
102 p lo t ( Tdata{ ih , i l } , simSOCf{ ih , i l } , ’−b ’ )
103 l egend ( ’ Or i g i na l data ’ , ’Kalman ’ )
104 t i t l e ( ’SoC ’ ) , y l a b e l ( ’SoC ’ ) , x l a b e l ( ’Time [ s ] ’ )
105 ylim ([ −0.1 1 . 1 ] )
106

107 end
108 end
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109

110 save ( ’ ID1_Vsim_Vdataset1new_mode4Kalman . mat ’ , . . .
111 ’ Idata ’ , ’ Vdata ’ , ’ SOCdata ’ , ’ Tdata ’ , . . .
112 ’ simVf ’ , ’ simSOCf ’ )
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Appendix D

Matlab codes: Parameters
approximation

D.1 τ current independent

1 c l o s e a l l
2 c l e a r
3 c l c
4

5 load ID1_parametersMode2_Idataset2new
6

7 Capacity = 5 . 4 ;
8

9 [ h , l ] = s i z e (C_LUT) ;
10

11 f o r i l = 1 : l
12

13 C_LUT{ i l }( end ) = [ ] ;
14 SOC_C_LUT{ i l }( end ) = [ ] ;
15

16 R_LUT{ i l }( end ) = [ ] ;
17 SOC_R_LUT{ i l }( end ) = [ ] ;
18

19 R0_LUT{ i l }( end ) = [ ] ;
20 SOC_R0_LUT{ i l }( end ) = [ ] ;
21

22 TAU_LUT{ i l }( end ) = [ ] ;
23 SOC_TAU_LUT{ i l }( end ) = [ ] ;
24

25 end
26
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27 %% TAU
28

29 cnt = 1 ;
30 X = [ ] ;
31 P = [1 1e −4] ;
32 f o r i l = 1 : l
33 f o r j = 1 : l ength (SOC_TAU_LUT{ i l })
34 X( cnt , 1 ) = SOC_TAU_LUT{ i l }( j ) ;
35 Y( cnt , 1 ) = TAU_LUT{ i l }( j ) ;
36 cnt = cnt + 1 ;
37 end
38 end
39 X = X − P(1) ;
40 Y = Y − P(2) ;
41 pTAU(1) = X \ Y;
42 pTAU(2) = P(2) − pTAU(1) ∗P(1) ;
43

44 soc = l i n s p a c e (0 ,1 , 100) ’ ;
45 tau = [ soc ones (100 ,1 ) ] ∗ [pTAU(1) ; pTAU(2) ] ;
46

47 f i g u r e ( )
48 f o r i l = 1 : l
49 p lo t (SOC_TAU_LUT{ i l } , TAU_LUT{ i l } , ’b ’ )
50 hold on
51 end
52 p lo t ( soc , tau , ’ r ’ , ’ LineWidth ’ , 1)
53 t i t l e ( ’TAU, New Battery ’ ) , x l a b e l ( ’SoC_R ’ ) , y l a b e l ( ’ \ tau [ s ^{−1}] ’ ) ,

g r i d on , xlim ( [ 0 1 ] )
54

55 %% R0
56

57 cnt = 1 ;
58 X = [ ] ;
59 f o r i l = 1 : l
60 f o r j = 1 : l ength (SOC_TAU_LUT{ i l })
61 X( cnt , 1 ) = SOC_R0_LUT{ i l }( j ) ;
62 Y( cnt , 1 ) = R0_LUT{ i l }( j ) ;
63 cnt = cnt + 1 ;
64 end
65 end
66 X( : , 2 ) = ones ( l ength (X( : , 1 ) ) , 1 ) ;
67 pR0 = X \ Y;
68

69 soc = l i n s p a c e (0 ,1 , 100) ’ ;
70 R0 = [ soc ones (100 ,1 ) ] ∗ [ pR0(1) ; pR0(2 ) ] ;
71

72 f i g u r e ( )
73 f o r i l = 1 : l
74 p lo t (SOC_R0_LUT{ i l } , R0_LUT{ i l } , ’b ’ )
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75 hold on
76 end
77 p lo t ( soc , R0 , ’ r ’ , ’ LineWidth ’ , 1)
78 t i t l e ( ’R_0, New Battery ’ ) , x l a b e l ( ’ SoCr ’ ) , y l a b e l ( ’R_0 [ \Omega ] ’ ) ,

g r i d on , xlim ( [ 0 1 ] )
79

80 %% OCV
81

82 m = (OCV_LUT{1}( end )−OCV_LUT{1}(1) ) /(SOC_OCV_LUT{1}( end )−SOC_OCV_LUT
{1}(1) ) ;

83 pOCV(1) = m;
84 pOCV(2) = OCV_LUT{1}(1) − m∗SOC_OCV_LUT{1}(1) ;
85

86 soc = l i n s p a c e (0 ,1 , 100) ’ ;
87 OCV = [ soc ones (100 ,1 ) ] ∗ [pOCV(1) ; pOCV(2) ] ;
88

89 f i g u r e ( )
90 f o r i l = 1 : l
91 p lo t (SOC_OCV_LUT{ i l } , OCV_LUT{ i l } , ’b ’ )
92 hold on
93 end
94 p lo t ( soc , OCV, ’ r ’ , ’ LineWidth ’ , 1)
95 t i t l e ( ’OCV, New Battery ’ ) , x l a b e l ( ’SoC_R ’ ) , y l a b e l ( ’OCV [V] ’ ) , g r i d

on , xlim ( [ 0 1 ] )
96

97 c l e a r v a r s −except pTAU pR0 pOCV
98

99 re turn
100

101 %% R
102

103 load Idataset2new
104

105 Ts = 0 . 1 ;
106

107 ih = 1 ;
108 [ h , l ] = s i z e ( s_voltage ) ;
109 f o r i l = 1 : l
110

111 % Find s t a r t and f i n i s h o f each cur rent per iod
112 cnt = 1 ;
113 found = 0 ;
114 f l a g = 0 ;
115 f o r i = 1 : l ength ( s_current { ih , i l })
116 i f s_current { ih , i l }( i )<0 && found==0
117 i f cnt>1 && f l a g==0
118 i_current { ih , i l }( cnt −1, 2) = i −1;
119 end
120 i_current { ih , i l }( cnt , 1) = i ;
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121 found = 1 ;
122 f l a g = 0 ;
123 e l s e i f found==1 && s_state { ih , i l }( i )~=3
124 found = 0 ;
125 i_current { ih , i l }( cnt , 2) = i −1;
126 cnt = cnt + 1 ;
127 f l a g = 1 ;
128 e l s e i f s_current { ih , i l }( i )==0 && found==1
129 found = 0 ;
130 cnt = cnt + 1 ;
131 end
132 end
133

134 % Extract data r e l a t e d to cur rent pu l s e s
135 cnt = 1 ;
136 j = 1 ;
137 f o r i = 1 : l ength ( s_current { ih , i l })
138 i f i>=i_current { ih , i l }( cnt , 1 )+1 && i<=i_current { ih , i l }( cnt , 2 )
139 Idata { ih , i l }( cnt , j ) = s_current { ih , i l }( i ) ;
140 Vdata{ ih , i l }( cnt , j ) = s_voltage { ih , i l }( i ) ;
141 SOCdata{ ih , i l }( cnt , j ) = s_soc{ ih , i l }( i ) ;
142 Tdata{ ih , i l }( cnt , j ) = s_time{ ih , i l }( i ) ;
143 j = j + 1 ;
144 end
145

146 i f i==i_current { ih , i l }( cnt , 2 ) && cnt<length ( i_current { ih , i l })
147 cnt = cnt + 1 ;
148 j = 1 ;
149 end
150 end
151

152 % Generate the SOC mean f o r each cur rent pu l s e
153 [ n , nn ] = s i z e (SOCdata{ ih , i l }) ;
154 f o r i = 1 : n
155 dSOC( i , 1 ) = SOCdata{ ih , i l }( i , 1 ) ;
156 dSOC( i , 2 ) = SOCdata{ ih , i l }( i , end ) ;
157 SOCmean{ ih , i l }( i ) = (dSOC( i , 1 )+dSOC( i , 2 ) ) /2 ;
158 end
159

160 % Al l toghe te r
161 f o r i = 1 : n
162

163 f o r j = 2 : nn
164 OCVk = pOCV(1) ∗SOCdata{ ih , i l }( i , j ) + pOCV(2) ;
165 OCVkp1 = pOCV(1) ∗SOCdata{ ih , i l }( i , j −1) + pOCV(2) ;
166 R0 = pR0(1) ∗SOCdata{ ih , i l }( i , j ) + pR0(2) ;
167 tau = pTAU(1) ∗SOCdata{ ih , i l }( i , j ) + pTAU(2) ;
168 Y{ ih , i l }( j −1, i ) = Vdata{ ih , i l }( i , j ) − Vdata{ ih , i l }( i , j −1)

− . . .
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169 OCVk + OCVkp1 − R0∗ Idata { ih , i l }( i , j ) + R0∗ Idata { ih , i l
}( i , j −1) + . . .

170 tau∗Ts∗( Vdata{ ih , i l }( i , j −1) − OCVkp1 − R0∗ Idata { ih , i l
}( i , j −1) ) ;

171 X{ ih , i l }( j −1, i ) = tau∗Ts∗ Idata { ih , i l }( i , j ) ;
172 end
173

174 R{ ih , i l }( i ) = X{ ih , i l } ( : , i ) \Y{ ih , i l } ( : , i ) ;
175

176 end
177

178 end
179

180 subplot ( 2 , 2 , 4 )
181 cnt = 1 ;
182 f o r ih = 1 : h
183 f o r i l = 1 : l
184 p lo t (SOCmean{ ih , i l } ( 1 , : ) , R{ ih , i l } ( 1 , : ) , ’−∗ ’ )
185 hold on
186 cnt = cnt + 1 ;
187 end
188 end
189 x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’R [ \Omega ] ’ ) , g r i d on , t i t l e ( ’R ’ )
190

191 SOC_R_LUT = SOCmean ;
192 R_LUT = R;
193

194 save ( ’ ID1_appParameters_linearConstTau_new . mat ’ , . . .
195 ’pR0 ’ , ’pTAU’ , ’pOCV’ , ’SOC_R_LUT’ , ’R_LUT’ , ’ Capacity ’ , ’Ts ’ ) ;

D.2 τ current dependent

1 c l o s e a l l
2 c l e a r
3 c l c
4

5 load ID1_parametersMode2_Idataset2new
6

7 Capacity = 5 . 4 ;
8

9 [ h , l ] = s i z e (C_LUT) ;
10

11 f o r i l = 1 : l
12

13 C_LUT{ i l }( end ) = [ ] ;

125



Matlab codes: Parameters approximation

14 SOC_C_LUT{ i l }( end ) = [ ] ;
15

16 R_LUT{ i l }( end ) = [ ] ;
17 SOC_R_LUT{ i l }( end ) = [ ] ;
18

19 R0_LUT{ i l }( end ) = [ ] ;
20 SOC_R0_LUT{ i l }( end ) = [ ] ;
21

22 TAU_LUT{ i l }( end ) = [ ] ;
23 SOC_TAU_LUT{ i l }( end ) = [ ] ;
24

25 end
26

27 %% TAU
28

29 soc = l i n s p a c e (0 ,1 , 100) ’ ;
30

31 P = [1 1e −4] ;
32 f o r i l = 1 : l
33 cnt = 1 ;
34 X = [ ] ;
35 f o r j = 1 : l ength (SOC_TAU_LUT{ i l })
36 X( cnt , 1 ) = SOC_TAU_LUT{ i l }( j ) ;
37 Y( cnt , 1 ) = TAU_LUT{ i l }( j ) ;
38 cnt = cnt + 1 ;
39 end
40 X = X − P(1) ;
41 Y = Y − P(2) ;
42 pTAU{ i l } (1) = X \ Y;
43 pTAU{ i l } (2) = P(2) − pTAU{ i l } (1) ∗P(1) ;
44

45 tau{ i l } = [ soc ones (100 ,1 ) ] ∗ pTAU{ i l } ’ ;
46

47 end
48

49 f i g u r e ( )
50 % subplot ( 2 , 2 , 1 )
51 f o r i l = 1 : l
52 p lo t (SOC_TAU_LUT{ i l } , TAU_LUT{ i l } , ’b ’ )
53 hold on
54 p lo t ( soc , tau{ i l } , ’ r ’ , ’ LineWidth ’ , 1)
55 end
56 t i t l e ( ’ \ tau , New Battery ’ ) , x l a b e l ( ’SoC_R ’ ) , y l a b e l ( ’ \ tau [ s ^{−1}] ’ ) ,

g r i d on , xlim ( [ 0 1 ] )
57

58 %% R0
59

60 cnt = 1 ;
61 X = [ ] ;
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62 f o r i l = 1 : l
63 f o r j = 1 : l ength (SOC_TAU_LUT{ i l })
64 X( cnt , 1 ) = SOC_R0_LUT{ i l }( j ) ;
65 Y( cnt , 1 ) = R0_LUT{ i l }( j ) ;
66 cnt = cnt + 1 ;
67 end
68 end
69 X( : , 2 ) = ones ( l ength (X( : , 1 ) ) , 1 ) ;
70 pR0 = X \ Y;
71

72 soc = l i n s p a c e (0 ,1 , 100) ’ ;
73 R0 = [ soc ones (100 ,1 ) ] ∗ [ pR0(1) ; pR0(2 ) ] ;
74

75 f i g u r e
76 subplot ( 2 , 2 , 2 )
77 f o r i l = 1 : l
78 p lo t (SOC_R0_LUT{ i l } , R0_LUT{ i l })
79 hold on
80 end
81 p lo t ( soc , R0 , ’ r ’ , ’ LineWidth ’ , 2)
82 t i t l e ( ’R_0 ’ ) , x l a b e l ( ’ SoCr ’ ) , y l a b e l ( ’R_0 [ \Omega ] ’ ) , g r i d on , xlim

( [ 0 1 ] )
83

84 %% OCV
85

86 m = (OCV_LUT{1}( end )−OCV_LUT{1}(1) ) /(SOC_OCV_LUT{1}( end )−SOC_OCV_LUT
{1}(1) ) ;

87 pOCV(1) = m;
88 pOCV(2) = OCV_LUT{1}(1) − m∗SOC_OCV_LUT{1}(1) ;
89

90 soc = l i n s p a c e (0 ,1 , 100) ’ ;
91 OCV = [ soc ones (100 ,1 ) ] ∗ [pOCV(1) ; pOCV(2) ] ;
92

93 subplot ( 2 , 2 , 3 )
94 f o r i l = 1 : l
95 p lo t (SOC_OCV_LUT{ i l } , OCV_LUT{ i l })
96 hold on
97 end
98 p lo t ( soc , OCV, ’ r ’ , ’ LineWidth ’ , 2)
99 t i t l e ( ’OCV’ ) , x l a b e l ( ’ SoCr ’ ) , y l a b e l ( ’OCV [V] ’ ) , g r i d on , xlim ( [ 0 1 ] )

100

101 c l e a r v a r s −except pTAU pR0 pOCV
102

103 re turn
104

105 %% R
106

107 load Idataset2new
108
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109 Ts = 0 . 1 ;
110

111 ih = 1 ;
112 [ h , l ] = s i z e ( s_voltage ) ;
113 f o r i l = 1 : l
114

115 % Find s t a r t and f i n i s h o f each cur rent per iod
116 cnt = 1 ;
117 found = 0 ;
118 f l a g = 0 ;
119 f o r i = 1 : l ength ( s_current { ih , i l })
120 i f s_current { ih , i l }( i )<0 && found==0
121 i f cnt>1 && f l a g==0
122 i_current { ih , i l }( cnt −1, 2) = i −1;
123 end
124 i_current { ih , i l }( cnt , 1) = i ;
125 found = 1 ;
126 f l a g = 0 ;
127 e l s e i f found==1 && s_state { ih , i l }( i )~=3
128 found = 0 ;
129 i_current { ih , i l }( cnt , 2) = i −1;
130 cnt = cnt + 1 ;
131 f l a g = 1 ;
132 e l s e i f s_current { ih , i l }( i )==0 && found==1
133 found = 0 ;
134 cnt = cnt + 1 ;
135 end
136 end
137

138 % Extract data r e l a t e d to cur rent pu l s e s
139 cnt = 1 ;
140 j = 1 ;
141 f o r i = 1 : l ength ( s_current { ih , i l })
142 i f i>=i_current { ih , i l }( cnt , 1 )+1 && i<=i_current { ih , i l }( cnt , 2 )
143 Idata { ih , i l }( cnt , j ) = s_current { ih , i l }( i ) ;
144 Vdata{ ih , i l }( cnt , j ) = s_voltage { ih , i l }( i ) ;
145 SOCdata{ ih , i l }( cnt , j ) = s_soc{ ih , i l }( i ) ;
146 Tdata{ ih , i l }( cnt , j ) = s_time{ ih , i l }( i ) ;
147 j = j + 1 ;
148 end
149

150 i f i==i_current { ih , i l }( cnt , 2 ) && cnt<length ( i_current { ih , i l })
151 cnt = cnt + 1 ;
152 j = 1 ;
153 end
154 end
155

156 % Generate the SOC mean f o r each cur rent pu l s e
157 [ n , nn ] = s i z e (SOCdata{ ih , i l }) ;
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158 f o r i = 1 : n
159 dSOC( i , 1 ) = SOCdata{ ih , i l }( i , 1 ) ;
160 dSOC( i , 2 ) = SOCdata{ ih , i l }( i , end ) ;
161 SOCmean{ ih , i l }( i ) = (dSOC( i , 1 )+dSOC( i , 2 ) ) /2 ;
162 end
163

164 % Al l toghe te r
165 f o r i = 1 : n
166

167 f o r j = 2 : nn
168 OCVk = pOCV(1) ∗SOCdata{ ih , i l }( i , j ) + pOCV(2) ;
169 OCVkp1 = pOCV(1) ∗SOCdata{ ih , i l }( i , j −1) + pOCV(2) ;
170 R0 = pR0(1) ∗SOCdata{ ih , i l }( i , j ) + pR0(2) ;
171 tau = pTAU{ i l } (1) ∗SOCdata{ ih , i l }( i , j ) + pTAU{ i l } (2) ;
172 Y{ ih , i l }( j −1, i ) = Vdata{ ih , i l }( i , j ) − Vdata{ ih , i l }( i , j −1)

− . . .
173 OCVk + OCVkp1 − R0∗ Idata { ih , i l }( i , j ) + R0∗ Idata { ih , i l

}( i , j −1) + . . .
174 tau∗Ts∗( Vdata{ ih , i l }( i , j −1) − OCVkp1 − R0∗ Idata { ih , i l

}( i , j −1) ) ;
175 X{ ih , i l }( j −1, i ) = tau∗Ts∗ Idata { ih , i l }( i , j ) ;
176 end
177

178 R{ ih , i l }( i ) = X{ ih , i l } ( : , i ) \Y{ ih , i l } ( : , i ) ;
179

180 end
181

182 end
183

184 subplot ( 2 , 2 , 4 )
185 cnt = 1 ;
186 f o r ih = 1 : h
187 f o r i l = 1 : l
188 p lo t (SOCmean{ ih , i l } ( 1 , : ) , R{ ih , i l } ( 1 , : ) , ’−∗ ’ )
189 hold on
190 cnt = cnt + 1 ;
191 end
192 end
193 x l a b e l ( ’SoCn ’ ) , y l a b e l ( ’R [ \Omega ] ’ ) , g r i d on , t i t l e ( ’R ’ )
194

195 SOC_R_LUT = SOCmean ;
196 R_LUT = R;
197

198 save ( ’ ID1_appParameters_linearVarTau_new . mat ’ , . . .
199 ’pR0 ’ , ’pTAU’ , ’pOCV’ , ’SOC_R_LUT’ , ’R_LUT’ , ’ Capacity ’ , ’Ts ’ ) ;
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Appendix E

ERMES scheme

Figure E.1: Simulink ERMES block scheme
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