
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Telecommunication Engineering

Master’s Degree Thesis

Design and Development of a Honeypot
Testing System

Supervisors

Prof. MARCO MELLIA

Prof. LUCA VASSIO

Prof. IDILIO DRAGO

Candidate

ANDREA DOMENICO

MOURGLIA

December 2022

Summary

The permeation of connected electronic devices in everyday life has exponentially
increased since the beginning of this century. Connected devices are constantly
exposed to potential threats, that could lead to sensitive data leaks. Data is the
gold of the twenty-first century, thus making this risk not only a security problem
but a critical economical issue.

Modern IT systems are equipped with technological solutions that provide
detection and protection against security risks. However, these systems do not
produce comprehensive raw data about what they inspect. Complete information
about the traffic toward a host could be useful to understand how malicious activities
are performed. In order to carry out this task, honeypots can be employed.

Honeypots are tools intended to mimic the behavior of a real system, tricking
an attacker into interacting with them and exploiting their apparent potential
vulnerabilities. As honeypots are not real systems, it is important to assess how
they respond with respect to an actual machine. As a matter of fact, the fidelity
of the response is an important topic, because it participates in the ability of the
honeypot to keep an attacker connected to it in pursuit of its goal. However, given
its fictitious nature how can we assess and evaluate honeypot effectiveness?

The activity of testing systems by probing and attacking them to get information
about their behavior and discover vulnerabilities is known as penetration testing.
Penetration testing techniques are composed of different phases that contribute
to the assessment of a system security. In this work, we followed some of the
penetration testing phases such as analysis, gaining and maintaining access, to
evaluate honeypot behavior with respect to real systems.

As a result, we developed a system called T-Hon capable of performing several
attacks through the SSH protocol against different victims, managing the data
collection and the target selection. The T-Hon system automates the attack
process by controlling Metasploit, a framework for penetration testing activities,
and managing the selection of the victim through a proxy, which is in charge of
collecting all the traffic data and correctly forwarding the communication to the
right recipient. The modular architecture of T-Hon allows to perform additions or
modifications of a part of the system without affecting the others. Furthermore,

ii

the system employs an organized and simple way of defining the parameters of the
tests through a single configuration file. This feature allows to configure each attack
individually while keeping all settings in one place. T-Hon collects and organizes
the data in order to support a complete analysis. T-Hon has a wide number of
victim scenarios as it allows to perform attacks on real machines, virtual machines,
and Docker containers.

In order to evaluate T-Hon, we used Cowrie as a test subject. Cowrie is a
medium interaction SSH and Telnet honeypot. The tests consisted in performing
several attacks against it and real systems, thus comparing the results to discover
potential issues and odd behaviors of the honeypot response. Attacks, or exploits,
are scripts specifically designed to exploit vulnerabilities in order to gain access
to a system. In this case, the chosen attacks aim at gaining access to the victim
through the SSH protocol, retrieving a shell, and executing specific commands.

The evaluation of honeypot performance is a complex process. The presence of
metrics that allow us to summarize the honeypot ability is of great importance. As
a consequence, we propose a set of metrics that can be employed to recap the ability
of the honeypot to mimic a real system, starting from the evidence collected through
T-Hon. The analysis and comparison of the data collected by T-Hon during these
attacks toward both honeypots and actual systems highlighted some important
discrepancies. We identified potential issues in the Cowrie SSH connection protocol
implementation, especially concerning the order in which messages are sent and
how shell requests are managed. Furthermore, we were able to address one of the
issues that we discovered in the previous phase. In this way, we deployed two
versions of Cowrie, one with the issues solved and one without, into a real network
for more than two months. In this way, exposing the two honeypots to real traffic
interactions, we were able to understand how the modification we made affected
the honeypot behaviors. This experiment reported some interesting results. The
analysis of the recorded data highlighted how the modified honeypot performed
better with respect to the other one in terms of the number of commands received
in one session. Thanks to the aforementioned findings, we proved the value and
usefulness of the developed tool.

iii

Acknowledgements

Il mio percorso universitario non è stato dei più semplici. Il difficile impatto con
il mondo accademico, la salute non sempre dalla mia parte e una pandemia sono
stati grandi ostacoli da superare. Tuttavia, questi ultimi due anni hanno costituito
una rinascita. Finalmente sono riuscito a ritrovare quell’entusiasmo e curiosità che
avevano caratterizzato i miei anni all’Istituto Tecnico, un luogo che mi ha plasmato
e dato una visione unica del mondo tecnologico.

Chi mi conosce sa che non amo esternare le mie emozioni e tanto meno i miei
sentimenti. Questo, però, è un momento speciale, è il traguardo di un percorso, o
meglio, un’importante tappa di un più grande progetto.

Nel mio percorso di studi, sono state tante le persone che mi hanno supportato
ed aiutato, soprattutto nei momenti più complessi e difficili anche quando avevo
l’impressione che il mondo intorno a me correva velocissimo ed io ero lì immobile,
fermo sui libri. Ora è il momento di ringraziarle tutte ed in particolare vorrei
spendere qualche parola in più per coloro che maggiormente hanno condiviso con
me questi anni.

Ai miei nonni, ai miei zii, ai miei cugini ed in particolare ai miei genitori, con cui
ho condiviso gioie e dolori di questo percorso di studi. Non lo dico spesso ma con
gli anni mi sono reso conto di quanto sia stato fortunato ad avere una mamma ed
un papà che hanno saputo lasciarmi scegliere la mia strada senza mai obbligarmi a
prendere una via piuttosto che un’altra, ma rendendomi partecipe di un costante
confronto che mi ha permesso di crescere personalmente rendendomi consapevole e
autonomo.

A Chiara, la mia ragazza, che ha vissuto insieme a me, passo dopo passo, questo
mio percorso. Mi ha supportato e sopportato quotidianamente con il suo entusiasmo
anche quando ho fatto fatica a farlo io.

À ma famille canadienne, que même à distance, elle continue à m’être proche
et que dans celle année, passée pour une bonne partie au froid, m’a fait découvrir
un nouveau monde, dépassant me limites e en ouvrant mon horizon a des nouvelle
expériences et projets.

All’Oratorio di Cavour e agli Amici di Babano, due realtà di volontariato che
mi hanno formato e permesso di esprimere le mie passioni che hanno influenzato la

iv

scelta del mio percorso di studi sin dalle scuole medie.
A Marco ed Alessandro, due punti di riferimento costanti con cui confrontarsi,

costruire ed inventare!
Ai miei amici di sempre con cui da vent’anni condivido il mio tempo libero, con

cui faccio volontariato e che mi hanno sostenuto ed aiutato quando sono stato in
difficoltà, grazie GNOC!

Ai ragazzi di Smart Data con cui ho speso buona parte della stesura della tesi
e che ringrazio per la loro grande disponibilità ed accoglienza. In particolare, un
grazie speciale a Giulia M. per i suoi consigli e le sue guide.

Ai miei relatori I. Drago, L. Vassio, M. Mellia che mi hanno seguito costantemente
in tutti questi mesi di lavoro. Un supporto formativo che mi ha guidato alla scoperta
del mondo della ricerca e della cybersecurity.

A tutti coloro che hanno condiviso con me parte di questo percorso. Sono stati
fondamentali nel raggiungimento di questo traguardo!

Grazie a tutti!

v

Table of Contents

List of Tables ix

List of Figures xi

Acronyms xiv

1 Introduction 1

2 Objectives and related work 4
2.1 Objectives and research context . 4
2.2 Related work . 7

3 Background 8
3.1 Honeypots . 8
3.2 Penetration testing . 11

3.2.1 Penetration testing tools . 13
Kali Linux . 13
The Metasploit Framework 13
Metasploitable . 15

4 T-Hon: testing honeypots 16
4.1 System requirements . 16
4.2 The architecture . 17

4.2.1 The attacker . 17
Attack deployment . 18

4.2.2 The proxy . 20
4.2.3 The victims . 22
4.2.4 The manager . 22

Manager settings . 22
Interaction with the Metasploit framework 24
Victim selection . 24

vii

Attack management . 24
Log collection . 25

4.3 Testing process . 26
4.4 Requirement compliance . 27

5 Case studies 28
5.1 Methodology . 28

5.1.1 Victims . 29
5.1.2 Attacks selection . 29
5.1.3 T-Hon settings . 30

5.2 Test goals . 31
5.2.1 Metrics . 31

5.3 Results . 34
5.3.1 Attack 1: Cisco UCS scpuser 35

Payload analysis . 36
Connection analysis . 37
Metric evaluation . 38

5.3.2 Attack 2: SSH Login . 40
Payload analysis . 42
Connection analysis . 42
Metric evaluation . 44

5.3.3 Attack 3: Quantum vmPRO backdoor 45
Payload analysis . 46
Connection analysis . 48
Metric evaluation . 48

5.4 Case studies review . 50

6 Work application 51
6.1 Honeypot modification . 51

6.1.1 Deployment . 52
6.2 Analysis of the collected data . 53

6.2.1 Data quantification . 53
6.2.2 SSH connections and IP addresses 54
6.2.3 Commands received . 55

6.3 Result review . 61

7 Conclusions and future work 62

A List of Linux SSH attacks 65

Bibliography 69

viii

List of Tables

4.1 T-Hon system requirements compliance 27

5.1 Number of Metasploit modules specifically created for the Secure
Shell protocol . 30

5.2 Number of SSH messages for each victim for the Cisco UCS scpuser
attack . 35

5.3 Number of SSH messages divided by type for Cisco UCS scpuser
attack. A: Attacker, C: Cowrie, M: Metasploitable, U: Ubuntu . . . 36

5.4 Byte sequence of the channel open confirmation message payload
bytes sequence sent from the victims for the Cisco UCS scpuser attack 37

5.5 Metrics evaluation for the victims under the Cisco UCS scpuser attack 40
5.6 Number of SSH messages for each victim for the SSH login attack . 41
5.7 Number of SSH messages divided by type for the SSH login attack.

A: Attacker, C: Cowrie, M: Metasploitable, U: Ubuntu 41
5.8 Byte sequence of the second channel open confirmation message

payload sent from the victims for SSH Login attack. Highlighted in
green are the bytes related to the sender channel and in yellow are
the bytes related to the initial window size 42

5.9 Metrics evaluation for the victims under the Cisco UCS scpuser attack 45
5.10 Number of SSH messages for each victim for the SSH login attack . 46
5.11 Number of SSH messages divided by type for the SSH login attack.

A: Attacker, C: Cowrie, M: Metasploitable, U: Ubuntu 47
5.12 Byte sequence of the victims channel request message payload bytes

sequence for Quantum vmPRO backdoor attack 47
5.13 Metrics evaluation for the victims under the Quantum vmPRO

backdoor attack . 49

6.1 Quantification of collected data divided by honeypot version: fixed
and original . 53

ix

6.2 Most popular first input line commands received by the original
version of Cowrie and the relative number of sessions in which they
were recorded . 58

6.3 Most popular first input line commands received for the fixed Cowrie
version and the relative number of sessions in which they were recorded 60

A.1 List of SSH Linux attacks . 65

x

List of Figures

2.1 Honeypot testing scenario: an attack is deployed to multiple victims,
honeypots, and real systems, in order to compare the results to find
possible differences . 6

3.1 Metasploit Framework command line interface running the RPC API. 14

4.1 High level system architecture . 17
4.2 General chain of operations of common Metasploit attack exploitation 19
4.3 System architecture highlighting how subsystem parts interact. . . . 23
4.4 Attack management flow chart . 26

5.1 Attack steps for performance evaluation 32
5.2 SSH connection between the attacker and Metasploitable for the

Cisco UCS scpuser attack . 38
5.3 SSH connection between the attacker and Cowrie for the Cisco UCS

scpuser attack . 38
5.4 Extract of the log reporting the particular Cowrie behavior when

responding to the "echo ’randomBytes’" command for the Cisco UCS
scpuser attack . 38

5.5 Attack result for the three victims for the Cisco UCS scpuser attack 39
5.6 First SSH connection between the attacker and Metasploitable for

the SSH login attack . 43
5.7 First SSH connection between the attacker and Cowrie for the SSH

login attack . 43
5.8 Attack result for the three victims for the SSH login attack 44
5.9 SSHconnection diagram between the attacker and Metasploitable

for the Quantum vmPRO backdoor attack 48
5.10 SSH connection diagram between the attacker and Cowrie for the

Quantum vmPRO backdoor attack 48
5.11 Attack result for the three victims for the Quantum vmPRO backdoor

attack . 49

xi

6.1 SSH connection between the attacker and the fixed version of Cowrie
for the SSH Login attack . 52

6.2 Number of started SSH handshakes per day in the case of the original
and fixed version of Cowrie . 54

6.3 Number of distinct IP addresses that started an SSH handshake per
day in the case of the original and fixed version of Cowrie 55

6.4 Session Cumulative Density Function as a function of the number of
input line commands per session . 56

6.5 Probability Density Function of SSH sessions as a function of the
number of input line commands . 57

6.6 Number of sessions as a function of the number of input line commands 58
6.7 Extract from the log of the fixed version of Cowrie 60
6.8 Extract from the log of the original version of Cowrie 61

xii

Acronyms

CLI
Command Line Interface

VM
Virtual Machine

RPC
Remote Procedure Call

SSH
Secure Shell Protocol

OS
Operative System

IT
Information Technology

IDS
Intrusion Detection System

IPS
Intrusion Protection System

LIH
Low Interaction Honeypots

MIH
Medium Interaction Honeypots

xiv

HIH
High Interaction Honeypots

RL
Reinforcement Learning

IP
Internet Protocol

CVE
Common Vulnerabilities and Exposures

NVD
National Vulnerability Database

NIST
National Institute of Standards and Technology

CVSS
Common Vulnerability Scoring System

JSON
JavaScript Object Notation

TTY
Teletypewriter

API
Application Programming Interface

MSF
Metasploit Framework

CDF
Cumulative Density Function

xv

Chapter 1

Introduction

Cybersecurity threats are becoming part of our daily life as the internet connection
permeates every aspect of the day. Nowadays, the effects of cyber-attacks have a
direct impact on the physical world, bringing them from the virtual environment
of the internet into the real world [1]. The significance of this phenomenon is
highlighted by the high economical cost that cyber-crime causes to companies.
According to [2], the average data breach cost in 2020 was $3.86 million. This value
increased remarkably year-over-year, reaching $4.24 million in 2021.

This issue could be even more critical in the next years as the number of devices
connected to the internet is constantly increasing. As a matter of fact, according to
Cisco Annual Internet Report (2018–2023), the number of connected devices will
be three times the global population by 2023. Furthermore, over 70% of the global
population will have mobile connectivity by then [3]. Consequently, as connected
devices are becoming increasingly personal, they may expose to potential risks an
enormous amount of sensitive data that could be used for unlawful purposes.

Cyber-threats are continuously evolving, becoming more sophisticated and
tailored to the target, trying to exploit the latest vulnerabilities [4], making it
even more important to maintain all electronic devices up to date with the latest
security features available.

In order to increase the awareness about how attacks are deployed, it is important
to collect accurate and high-quality data about how they are carried out. In this
way, effective counteractions can be designed and set up. Intrusion Protection
Systems (IPS), Intrusion Detection Systems (IDS), and antivirus solutions are often
implemented into modern IT systems, but they lack the ability to provide security
analysts with raw data about the traffic inspected by them [5], which can bring
interesting insights regarding malicious activities.

The employment of honeypots can be very useful to accomplish this task, as
they provide a powerful way to gather information. Honeypots are emulated virtual

1

Introduction

machines that can act as a vulnerable one, attracting attackers to probe them.
Thus, providing helpful data in a harmless way [6].

However, since honeypots are not real devices, it results particularly challenging
for the developers to create a system that answers in a realistic way. This fact,
leads to another important issue: how could we assess the fidelity of honeypots
response? This is the main research question addressed by this work. Assessing
honeypots response fidelity is significant as it brings to attention how the hoenypot
is able to mimic the behavior of a real system. Moreover, this is directly connected
to the ability of a honeypot to keep trapped the attacker [5]. Based on this criteria,
honeypot systems can be divided into three different categories: LIH, MIH, HIH.
Low Interaction Honeypots (LIH) provide little interaction with adversaries as they
implement a small subset of OS functionalities. Medium Interaction Honeypots
(MIH) provide a greater set of real OS features. High Interaction Honeypots (HIH)
are completely functional systems that can be fully compromised by attackers [5].

In this work, we will concentrate on the second type, testing Cowrie, an open-
source medium interaction SSH and Telnet honeypot [7]. SSH and Telnet are
communication protocols widely used to access remote hosts. Nowadays, SSH
higher security makes it the preferred one for that task, as it employs public-key
cryptography to authenticate the client.

In order to evaluate honeypots behavior, it is necessary to compare their re-
sponses with those of a real system. This operation is based on the data collected
from several attacks launched against honeypots and real systems. By analyzing
the collected information it is possible to see how the honeypot responds to the
attacker with respect to the behavior of a real system.

The analysis of data coming from attack execution is part of a security technique
known as penetration testing. Penetration testing aims at providing proactive
security protection highlighting security issues [8]. Generally, a penetration test is
composed of five different phases: planning and reconnaissance, scanning, gaining
access, maintaining access, and analysis [9]. For the scope of this work, we will
concentrate on gaining and maintaining access, since we are not looking for potential
vulnerabilities of the system under evaluation, but how it responds to different
attacks. However, the first task of planning and reconnaissance still covers an
important role. As a matter of fact, the search for attacks that are suitable for this
task could be a challenging work since they have to be designed for the penetration
testing framework and for the communication protocol in use.

As a result of this work, we designed a system called T-Hon that automates
the attack process towards several victims, managing the log collection and the
victim selection. Logs are collected and processed to make them readable and easier

2

Introduction

to analyze. T-Hon handles the Metasploit framework to select and configure the
attack. It manages the selection of the recipient by properly configuring a proxy
which is in charge of collecting all SSH traffic between the attacker and the victim
and forwarding it to the right recipient. T-Hon is based on a modular architecture
composed of four blocks: attacker, proxy, victims, and manager. The attacker is
the part in charge of deploying the attack to the victim. The proxy is responsible
for collecting the traffic between the attacker and correctly forwarding the attack
to the right victim. The victims are the recipients of the attack and they can be a
real machine, a virtual machine, or even a Docker application. The last block is
the manager, which is in charge of coordinating all the other blocks by selecting
the victim and the attack to perform. It allows the user to define in advance all the
settings for each attack and victim, without the need for user intervention during
the test process. Furthermore, it organizes the data collection by grouping the
gathered information in a structured way, simplifying the analysis process. The
system project is open source and will be available at [10].

In order to evaluate how the honeypot performed with respect to a real system,
in terms of how it is able to mimic the actual behavior of a true machine, we
proposed some metrics that constitute a useful tool to summarize the honeypot
performance. Thanks to T-Hon we were able to collect important data that allowed
us to discover several issues in Cowrie SSH connection handling, shell gathering,
and command execution. Based on these findings we assessed Cowrie performance
through the proposed metrics. The found problems could prevent the attacker
from completing the attack, or compromise its ability to verify its status. In order
to understand how much such issues could affect the honeypot effectiveness, we
addressed one of them by applying some modifications to the honeypot software.
Then, we deployed two honeypots: one with the fixes and the other without. We
collected about two months of data. The analysis of the gathered information
offered some insightful results. The data collected by the fixed honeypot showed a
higher number of commands per session and a reduction in the repeated attempts
of executing certain commands. In this way, we were able to understand why the
original honeypot received an important amount of reiterated commands. As a
consequence, we proved that T-Hon is a valuable tool to gather data to assess
honeypots work.

3

Chapter 2

Objectives and related work

The objective of this work is to create a system that allows information gathering
about attacks towards honeypots and real systems. In particular, the system has
to allow the automation of the attack process to perform several attacks without
manual intervention. It should automate the management of data collection and
victim selection. The gathered data will be of great value to evaluate the honeypot
response compared to the ones of real systems. In this section we describe what
are the objectives of our work, introducing the reasons that led to the creation of
this work.

2.1 Objectives and research context
Honeypots are fictitious computer systems that aim at luring attackers into inter-
acting with them. Honeypots are largely employed to study network security. The
idea behind their use is to trap attackers and collect data about what actions they
perform and avoid their interaction with production machines that could cause
important damage and resource wasting [11].

As a consequence, the way honeypots respond to the attacker is a key feature of
their effectiveness. Honeypots are not real computers, hence their answer could
be different from the one of an actual system. Depending on how the client
interacts with them, how complex is the operation required and how advanced is
the honeypot, it may not be able to satisfy such requests. An unexpected request
that could potentially lead to a faulty response may compromise the honeypot
disguise resulting in being discovered [11].

Honeypot technology is very useful in understanding how malicious activities
are carried out, however, it is important to understand how well these systems are
able to mimic the real system behavior. The data collected by honeypots may be
justified also by understanding how they responded to the attack, thus observing

4

Objectives and related work

the victim from the attacker point of view. The way honeypot responds could
influence the attacker activity having consequences on the reality of its actions.
Attackers may employ automated techniques to perform malicious activity on a
large scale. Attacks are generally structured in steps. Each step of the attack
carries out a certain action that leads to the prosecution of the offensive. If one of
these actions does not receive positive feedback, the attack could be compromised
and the data that could result may be corrupted or incomplete, thus making it
difficult to understand.

Generally, researchers use honeypots to study SSH-based attacks [12], neverthe-
less there are honeypots designed specifically for different protocols and purposes.
The Secure Shell protocol allows secure access to remote hosts and network ap-
pliances [13]. It is extensively employed in production environments [13], making
it a common target for malicious activity attempts since it can grant access to
a machine command line interface [14]. As a consequence, in this work, we will
concentrate on the SSH protocol.

The SSH protocol is composed of three different layers, one running on top of
the other, and they are listed as follows from the lower to the higher: transport,
user authentication, and connection. The first one provides server authentication,
confidentiality, and integrity and it generally runs over a TCP/IP connection. The
second one is in charge of providing authentication to the client user. The third
one allows the creation of logical channels that support functionalities such as
interactive login sessions and remote command execution [15]. The third layer is
of great interest, since, provides the feature of running commands on the remote
host, and allows attackers to interact with the victim machine, upon successful
authentication.

Data coming from the attacker is particularly useful in all security-related data
analysis activities. However, in order to evaluate the response of a honeypot, it
is necessary to perform comparisons between its behavior and the one of a real
system under the same conditions. This means that it is essential to analyze data
from the attacker point of view, by performing attacks toward both real systems
and honeypots to understand how they act according to the received malicious
commands. Based on these considerations, the need for a honeypot testing system
came up.

The testing system should be able to automatically perform multiple tests toward
real and mock systems, recording useful data for later analysis and comparisons.
The analysis of the recorded data should be focused on highlighting differences
among the responses of the victims. In particular, the analyst should look for
indicators of honeypot fingerprints, which would lead to the distinction between
a real system and a mock one. This kind of analysis enables the possibility to
give the honeypot under testing an evaluation based on important parameters

5

Objectives and related work

Figure 2.1: Honeypot testing scenario: an attack is deployed to multiple victims,
honeypots, and real systems, in order to compare the results to find possible
differences

and observation. For this reason, it is important to define metrics and evaluation
methods that can generalize the assessment of a honeypot behavior.

Generally, the performance of a system can be defined as the ability of the
system to meet specific user requirements and can be described as a Measure
of Effectiveness (MoE) [16]. In this work, we will propose a set of metrics and
parameters focused on assessing the fidelity of the honeypot response and how this
relates to the behavior of the attacker.

Several penetration tools are available for testing systems vulnerabilities, however,
the level of detail and the completeness of the provided data for the scope of this
work still remain an unmet requirement. As a consequence, summarizing what is
exposed in this paragraph and graphically reported in Figure 2.1, the ultimate goal
of this work is to develop a honeypot testing system that provides useful data from
the attacker perspective, that supports analysts in assessing the performance of
the honeypot under investigation following specific evaluation metrics.

6

Objectives and related work

2.2 Related work
While there are extensive research and publications regarding the analysis of the
data collected by honeypots, very few works are focused on the test and quality
evaluation of such systems based on the comparison with real ones. Jason M.
Pittman et al. [17] proposed an assessing tool used to reply to captured network
traffic toward the honeypot with the goal of generating interactions and performing
a measurement of effectiveness based on the metrics defined in [16]. The data
analysis performed in [17] consists in comparing the honeypot response in the case
of interaction with the traffic coming from the internet and the one generated by
their developed tool.

Alexander Vetterl et al. [18] proposed a method to systematically fingerprint
honeypot systems. This work covers fingerprinting techniques for three different
protocols: HTTP, Telnet, and SSH. For what concerns the last one, they analyzed
two different honeypots: Cowrie and Kippo. They employed specifically designed
version strings and SSH2_MSG_KEXINIT packets to identify possible protocol
deviation [19]. In [18] they highlighted how Kippo and Cowrie were able to respond
similarly to OpenSSH, a popular implementation of the SSH protocol, however not
exactly alike.

Evaluation metrics are important tools to state how effectively a honeypot
performs in carrying out its task. In [16] a set of four metrics is proposed. The
metrics are fingerprinting, data capture, deception, and intelligence. These metrics
contribute to the definition of another parameter named Measure of Effectiveness
(MoE). This parameter aims at stating how the honeypot performance complies
with the requirements that were set by the final user.

In [5] a set of honeypot features that may influence honeypot performances are
identified as follows: fidelity, scalability, adaptability, deployment strategy, resource
type, monitoring, detection, and profiling. Despite, these features do not represent
real metrics, they could constitute an interesting set of parameters to take into
consideration to produce performance metrics.

7

Chapter 3

Background

In section 2.1 we presented the objectives of this work. In this section, we report
the background information useful to understand and reach the presented goal.

In section 3.1 we report a background on honeypots paying particular attention
to the different typologies and use cases. In section 3.2, we provide a background
on penetration testing activity and techniques, presenting some of the most popular
tools employed in the field.

3.1 Honeypots
Honeypots are relatively new devices that were first proposed at the beginning
of this century. They were conceived as a tool to investigate hacker’s activities
and share insights about the analyzed information [20]. In these years, multiple
definitions of what a honeypot is have been provided. Some are more focused
on the use and application others on its structure. In [5] the authors define a
honeypot as follows “A honeypot is an information system that includes two
essential elements, decoys, and captors. It aims at using its information resources
to attract unauthorized and illicit access with the purpose of security investigation”.

This definition gives a great insight into the structure of a honeypot presenting
two main components: decoy and captor. The decoy acts as bait to attract the
attacker into probing and interacting with the honeypot. On the other hand, the
captor is in charge of security-related activities. It is the element responsible for the
collection of attack information such as the set of commands sent by an adversary
during an attack [5].

Honeypots can be classified into different categories based on several charac-
teristics. In [6], they provide a classification based on seven parameters: purpose,
role, level of interaction, scalability, resource level, source code availability, and

8

Background

applications. Nevertheless, the most commonly used classification is based on the
purpose and level of interaction [21].

The purpose of a honeypot defines the ultimate goal of its use. Based on this
feature, honeypots are divided into research and production. The first type is
generally employed for data gathering while the second one is used for security
defense purposes such as preventing an adversary from compromising a real system
[6]. As a matter of fact, honeypots can be integrated into a production system in
order to deceive an adversary into interacting with them and making it lose time
and power while proper countermeasures are prepared and deployed [5].

On the other hand, research honeypots are very valuable systems as the data
they collect can be used to analyze how malicious activities are performed. Large
deployments of these devices can help monitor the network activities on a global
scale [20].

The definition that we reported at the beginning of this section addresses the
security investigation as the main use of honeypot capabilities. However, honeypots
can be a proactive component of network security systems.

Production honeypots can be integrated into already deployed security systems
to increase attack detection and reaction capabilities, whereas, from the prevention
point of view, the honeypot is limited to slow down the attacker [21].

For what concerns the attack detection task, honeypots can complement the
work of Intrusion Prevention Systems (IPS) and Intrusion Detection Systems (IDS).
These security tools can report several false-positive or false-negative alerts, while
honeypots consider all traffic as malicious, providing useful insights even in the
presence of an unknown type of attack. Regarding the reaction task, honeypots
can help security analysts understand how the attack was deployed and retrace the
steps that led to such issues [21].

The way in which honeypots are able to relate with an adversary and provide it
with correct information defines the level of interaction. This parameter allows a
general classification of honeypots in four categories [6][5]:

• Low Interaction Honeypots: provide limited interaction with the attacker.
They emulate a limited amount of services with very simple functionalities.
This characteristic makes them easier to be uncovered by attackers.

• Medium Interaction Honeypots: provide a higher level of interaction with re-
spect to LIH, however different implementations could provide a real operating
system or an emulated one and an increased number of available services.

• High Interaction Honeypots: provide a high level of interaction thanks to the
presence of a real operating system. This feature increases the complexity of
the system since it could be completely compromised by an attacker.

9

Background

• Hybrid system: composed of different honeypots providing distinct levels of
interaction, merging the benefits of the listed above systems.

The level of interaction is somehow related to the fidelity of the honeypot as
the higher the interaction level the higher the fidelity of the response [5]. The
honeypot fidelity is of great interest for this work since its goal is to provide a
system that could support the evaluation of this feature by providing analysts with
comprehensive data.

One of the main challenges for a honeypot is to prevent its detection. From the
moment an adversary detects the honeypot, all the benefits of such a system vanish
since the attacker will leave the system without completing its task. The level of
interaction of a honeypot is linked to its ability to be undetected. Depending on
the limitations of the emulated services, it is easier for an adversary to understand
if the system to which is connected is not a real one [21].

Creating honeypots with anti-detection features requires specific shrewdness
because emulated services could behave slightly differently from real ones. For
example, delays represent a critical point for honeypots, since the honeypot nature
of capturing data could increase the time that would normally be required by a
real system to perform a certain task. Intelligent honeypots based on machine
learning approaches represent a good point in increasing honeypot stealthiness.
For example, reinforcement learning honeypots can learn from previous attackers
how to answer leading to an adaptation of the response based on the previous
interactions [22].

As many honeypots are open-source tools, the source code is publicly available.
Despite the advantage of community collaboration and contribution, they are subject
to the regular analysis of adversaries who constantly look for signatures that could
allow the identification of the honeypot. In the past years, several signatures were
found, due to faulty honeypot behaviors. For example, an implementation error in
Kippo, a popular SSH honeypot, allowed the creation of scripts capable of sending
corrupted data that generated error messages that were not compliant with the
protocol standard 1.

The Secure Shell protocol is widely used to access remote systems [13]. Because
of this, it is a desirable target for adversaries, since a successful attack could grant
access to a system being able to potentially compromise it. If on one hand, SSH
is a common target for attackers, on the other hand, it is an important topic for
security researchers. As a matter of fact, the analysis of SSH protocols is subject to
intensive research [14]. This kind of activity is a perfect use case for SSH honeypots.

1https://www.rapid7.com/db/modules/auxiliary/scanner/ssh/detect_kippo/

10

Background

Cowrie is a medium to high interaction SSH and Telnet honeypot and can
be used as the base software for dynamic and intelligent honeypots. Cowrie was
forked from the Kippo project representing, today, its modern evolution [6]. It was
developed using Python programming language which allows the emulation of a
UNIX system, providing a fictitious file system enabling document uploading and
visualization. In addition, Cowrie can be employed in proxy mode enabling the
possibility to monitor the activity of a malicious user on another system, increasing
its level of interaction [7]. It supports full Docker deployment, simplifying its
distribution [21].

3.2 Penetration testing
The penetration testing activity is an important task in the information security
domain. The National Institute of Standards and Technologies defines in [23] this
activity as “A test methodology in which assessors, typically working under specific
constraints, attempt to circumvent or defeat the security features of a system”.

The goal of this task is to evaluate a system in terms of risks linked to potential
security breaches. A vulnerability assessment is an activity oriented to the discovery,
classification, and analysis of system issues that could constitute a risk from a
cybersecurity point of view. In penetration testing, this is only a component of the
entire activity, since the discovered vulnerabilities can be used against the system
under evaluation to understand what piece of information is possible to obtain from
it and evaluate what is the cost for the test subject to be stolen of such information
[24].

Vulnerabilities are subject of great interest and research for companies and
government institutions. Vulnerabilities are identified through a code defined by
the Common Vulnerabilities and Exposures [25]. Furthermore, the severity of
vulnerability can be assessed following the Common Vulnerability Scoring System,
which provides a set of rules to associate a qualitative score to this parameter.
The CVSS classifies vulnerability severity from 0.0 to 10.0 2, where 0.0 correspond
to no vulnerability and 10.0 to a critical vulnerability. The creation of a piece of
software that could exploit a particular issue could lead to the potential exposure
of sensitive data or even worse consequences such as infrastructure impairment and
financial losses.

As a matter of fact, companies and organizations may use penetration testing
techniques to periodically assess the security of their information systems. Fur-
thermore, they can take advantage of the gained information not only from a

2https://nvd.nist.gov/vuln-metrics/cvss

11

Background

security and privacy point of view but as a means to increase the system awareness
and understanding. The data collected during penetration testing is important to
characterize the effectiveness of the deployed security measures and provide useful
information to the entities responsible for the security maintenance [23].

Penetration testing is a structured activity. Several standards organizations
provide guidelines and methodologies to perform comprehensive tests to guarantee
the comparability and reproducibility of the results and ensure the collection of
meaningful and high-quality data. An example of a standard is the Penetration
Testing Methodologies and Standards (PTES). It reports the procedures that should
be employed to carry out a penetration test [26].

Nevertheless, penetration testing involves some general steps that are common
to all standards. According to [9], the general phases of a penetration test are:

1. Planning and reconnaissance

2. Scanning

3. Gaining access

4. Maintaining access

5. Analysis

The first phase is actually composed of two parts. The first part consists in
devising and organizing the test including stating what are the objectives and the
methodology. The second part consists in finding all useful intelligence that can
help the assessors in setting up the problem.

The second phase is based on gathering information from the system under
analysis by studying system-related data, to understand and discover system
vulnerabilities [9]. This step can be performed actively or passively. In the first
case, the assessors directly interact with the test subject to observe its reaction to
certain probes. In the second case, data that can be obtained without interaction
with the victim is analyzed [26].

In the third phase, penetration testers take advantage of the previously discovered
vulnerabilities in order to gain access to the target system [9]. This phase is
dependent on the previous one because it shows how the discovered vulnerabilities
are effective to access the system [26].

While in the previous phase the objective was to exploit vulnerabilities to gain
access to the test subject, in the fourth phase the goal is to remain present in the
victim system for a certain period of time to perform further exploitation in the
stealthier way possible. Generally, the goal is to create permanent access to the
victim.

12

Background

In the last phase, the data and the results obtained through the previous steps
are analyzed. In this phase, a detailed report has to be produced to provide
useful information to the relevant bodies. The final report has to include precise
information about the discovered vulnerabilities, describing the methodologies that
were employed to guarantee the repeatability of the tests [9].

In the end, it is crucial that penetration testers approach the system as a
real attacker would and they have to define in a clear and exhaustive way the
objectives of the penetration test paying particular attention to the test environment,
attack surface, and goal, level of effort, and threat sources. Furthermore, a valid
penetration test needs to provide proof and an explanation of the findings to
quantify how the discovered vulnerability constitutes a risk for the test subject
[23].

3.2.1 Penetration testing tools
As introduced in section 3.2, penetration testing is a very complex activity. As a
consequence, it can be supported by specialized tools that are specifically designed
to allow assessors to manage attacks, victims, and information gathering. In
this section, we present different tools that are useful to perform and understand
penetration testing.

Kali Linux

Information security activities require specific tools. In order to allow analysts
to have a complete suite of instruments, specific operative systems have been
developed. For what concerns penetration testing and forensic analysis, Kali Linux
is the most popular OS. This is mainly due to the fact that it is Linux-based which
guarantees stability and it comes with a preinstalled comprehensive set of security
tools [27]. Among the tools that are preinstalled is worth mentioning Metasploit,
which will be presented in section 3.2.1.

The Metasploit Framework

Penetration testers often employ frameworks that guide them into the testing
process. One of the most used penetration testing frameworks is Metasploit [27].
Metasploit is a free and open-source project maintained by Rapid7. It is written
in Ruby following a modular architecture. The framework is composed of the
MSF Core library which extends the Ruby Rex library. The MSF Core library
is then extended by the MSF Base library that supports the user interface. In
order to interact with the Metasploit framework, a Command Line Interface and a

13

Background

Web interface are provided. However, the CLI is preferable since it allows to take
advantage of all framework available features [27].

Here we address some of the most important Metasploit features reported in
[28] and [29]. The Metasploit framework is based on modules. Modules are tools
that can be employed to carry out the tasks of a penetration testing procedure
that we reported in section 3.2. For what concern the first two phases, the
Metasploit framework provides auxiliary modules that are specifically conceived to
support information gathering and vulnerability assessment tasks. For example,
vulnerability scanners and service reconnaissance are available. These modules can
provide useful information about what services are running and what ports they
are using. In some cases, there are specific auxiliary modules conceived to discover
what version of the service is installed on the victim machine. Others, such as the
Juniper SSH Backdoor Scanner which assesses if that particular vulnerability is
present on a certain host.

Figure 3.1: Metasploit Framework command line interface running the RPC API.

For the third phase, a complete library of modules called exploits is available.

14

Background

Exploits are Ruby scripts that take advantage of known vulnerabilities to access a
system. Once analysts access the system, it is possible to perform post-exploitation
tasks and use techniques that will guarantee maintained access to the system,
covered by the fourth phase of the penetration test procedure. For these tasks,
Metasploit provides a set of payloads that help assessors in continuing the ex-
ploitation by acting on the exploited machine to achieve further objectives such as
privilege escalation and backdoor installation.

An example of the payload is Meterpreter. Meterpreter is deployed through
in-memory DLL injection and it allows to run specific commands aimed at further
exploring the exploited machine. Furthermore, running completely in memory,
it is stealthier compared to purpose-specific payloads. Another type of payload,
which is often the default one, is the reverse shell. This payload allows to obtain a
shell on the victim machine but exchanging the usual client/server paradigm, thus
making the victim machine the client and the attacker the server. Since outgoing
connections are less subject to firewall rules, it has more probability to succeed
[27].

Metasploit provides a way to interface with it in order to externally automate
its functionalities, by exposing a set of Application Programming Interfaces. The
free version provides an RPC API that allows any other programming language
able to manage HTTP-based Remote Procedure Call services such as Python. This
API allows controlling Metasploit tasks externally with respect to the framework.
Metasploit can run an RPC server to which it is possible to communicate following
the API-specific format [29].

Metasploitable

Finding a machine that allows practicing and testing penetration testing procedures
can be a challenging task. Metasploitable is a Virtual Machine that was designed
specifically with a high number of vulnerabilities. This provides a secure envi-
ronment in which to test attacks. Metasploitable is an Ubuntu Linux vulnerable
machine. It can be seen as a test bench where it is possible to demonstrate common
vulnerabilities. For instance, the employed passwords are very easy to guess, mainly
default and commonly used passwords, and there are several services that provide
back doors which can be exploited through Metasploit modules [29].

15

Chapter 4

T-Hon: testing honeypots

In this chapter, we analyze how the T-Hon system has been designed. The primary
goal of this work is to create a tool that is able to automatically perform several
attacks through the SSH protocol against honeypots and real systems, to obtain
meaningful data concerning how honeypots and real systems respond. In this work
we will focus on the SSH protocol, in particular, we will analyze the SSH connection
protocol.

4.1 System requirements
In this section, we report the requirements of the system needed to achieve the
objectives of this work reported in section 2.1. They can be summarized as follows:

• Automatic attack execution: attacks need to be executed without user inter-
vention. Setup must be performed before attack execution and no on-the-fly
modification should be necessary.

• Adaptability: the system must allow the user to set up all parameters of the
attacks in a simple and organized way, allowing the employment of specific
settings for each of them.

• Modularity: the system must allow and support any future integration or
modification.

• Attack activity recording: the system has to collect, store and organize all
the data generated by the attacks for the SSH connection protocol. The
recorded data must be organized such that it should be easy to be processed
and analyzed.

• Victim management: the system must be able to autonomously manage and
select the victim to attack.

16

T-Hon: testing honeypots

The recorded data about the attack activity can be later processed and analyzed
making it possible to identify potential issues that could lead to incorrect behavior
of the honeypots, thus making the attacker leave the system.

4.2 The architecture
In order to be compliant with the modularity requirement, the system architecture
is based on four main components:

1. Attacker: it is in charge of deploying the attack to the victims

2. Proxy: it intercepts all the communications between the attacker and the
victim recording them in a log file

3. Victims: they are the recipients of the attack

4. Manager: it is responsible for the management of the previously listed compo-
nents

The graphical representation of the high-level architecture described above
is reported in Figure 4.1. The manager oversees the activity of all the other
components, while the proxy is placed in the middle between the attacker and the
victim.

Figure 4.1: High level system architecture

4.2.1 The attacker
The attacker is in charge of deploying the attack to the victim. As represented in
Figure 4.1, the attacker is not directly connected to the victim. However, from

17

T-Hon: testing honeypots

its point of view, nothing changes. The attacker is implemented through the
Metasploit framework, which was previously introduced in subsection 3.2.1.

The Metasploit framework provides a CLI that can be used to interact with
it. Nevertheless, when it comes to penetration test automation, it is difficult to
use it, as it is conceived for live interaction. However, in addition to the CLI,
Metasploit provides an RPC API which can be used to control the attack process,
hence making it possible to interact directly with the framework using scripting
languages that are capable of communicating with an RPC server as a client. The
RPC server can be easily started through the MSF CLI command reported in
Figure 4.1.

1 $ load msgrpc Pass=’ password ’

Figure 4.1: CLI command to start MSF RPC API

The Metasploit Framework is a key tool in the penetration testing domain.
Alternatives to this tool are Burp and Core Impact. We decided to use Metasploit
because it is free, it has a comprehensive library of exploit scripts and it exposes
services that support attack automation. On the other hand, Burp and Core
Impact free and trial versions are not as complete as Metasploit [30] [31] [29],
hence they could not be easily integrated into an attack automation system.
Furthermore, Metasploit comes with a complete database of exploit scripts, based
on known vulnerabilities, covering a wide spectrum of operative systems, devices,
and protocols.

The Metasploit framework is installed on a VM running Kali Linux. Kali Linux
is an operative system conceived specifically for cybersecurity purposes. It embeds
several security tools providing a comprehensive suite for penetration testing and
other cybersecurity activities1. Metasploit is one of these tools.

Attack deployment

From the Metasploit point of view, the attack is a script written in Ruby, which is
a general-purpose object-oriented programming language. The attack script takes
advantage of the Metasploit framework to perform its task. As a matter of fact,
Metasploit provides several modules that allow the exploit script to interact with
communication protocols, operative systems, etc.

In our case, we will focus our test cases on the SSH protocol, hence the employed
attack scripts are all based on known SSH vulnerabilities that aim at gaining
access to a shell and executing specific commands to achieve a certain goal. For
example, some scripts execute commands that allow the exploitation of specific

1https://www.kali.org/

18

T-Hon: testing honeypots

vulnerabilities that would lead to a privileges escalation. The attack is carried out
in three phases listed as follows:

1. Exploit selection: the attack based on a certain known vulnerability is selected.

2. Exploit configuration: parameters of the exploit such as victim port, username,
and password are set.

3. Exploitation: the attack is deployed to the victim.

Among the three phases, the third one is the most important, since it physically
carries out the attack. It is divided into multiple parts. In Figure 4.2 the phases of
common attack exploitation performed on the SSH protocol are reported. These
steps were identified by analyzing the attacks reported in Appendix A, however as
reported in chapter 5 these phases may change in the order they are executed or
they may not be all carried out depending on the attack goal.

Figure 4.2: General chain of operations of common Metasploit attack exploitation

Once the exploitation has ended, Metasploit will provide information about the
success of the attack. Generally, the accomplishment of the attack is linked to the
ability to carry out successfully all the phases reported in Figure 4.2 and listed as
follows:

1. Connection opening: the SSH connection is opened with the victim machine.

2. Login: through the provided credentials or SSH key, the system executes the
login and verifies its result.

3. Shell test: Metasploit can automatically check if it was able to obtain a shell
in multiple ways. It can send to the victim the command “echo” followed by
a set of random characters. If the shell was correctly obtained, the victim
machine will respond exactly with the random set of characters that were
generated by Metasploit. Otherwise, Metasploit will give negative feedback
about the goal of gaining access to the shell. It can check for the SSH message
stating the success of the request or it can execute other specific commands
focused on the gathering of system information.

4. Command execution: in some cases, specific commands are sent after the shell
has been obtained depending on the purpose of the attacks. Indeed, known

19

T-Hon: testing honeypots

vulnerabilities of certain devices, such as routers, networking management sys-
tems, and networking OS, can be exploited to perform privilege escalation and
obtain a shell with root privileges. This kind of operation can be particularly
useful when the attacker is trying to install scripts or some piece of software
on the victim machine that requires specific permissions.

5. Connection closing: the SSH connection is closed. However, if a shell is
successfully obtained, a session is created maintaining a connection with the
victim machine. The session can be either a shell or both a shell and a
Meterpreter session. Meterpreter is a payload delivered to the victim machine
that gives the ability to launch Metasploit modules which are not available in
a standard shell2.

The victim response is verified by Metasploit at each step to understand if the exploit
gave the expected result. Metasploit provides several options that allow further
information gathering about the attack. In particular, it is possible, concerning the
SSH protocol, to see from the CLI a verbose log of all the SSH connection processes.
However, not all attacks perform all the aforementioned tasks. For example, in
some cases, depending on the attack goal, the command execution phase does not
occur.

4.2.2 The proxy
The proxy is placed between the attacker and the victim. It is in charge of collecting
logs about the traffic that passes through it and properly relaying the traffic from
the attacker to the victim and vice versa.

The choice of using a proxy allows to make the log collection completely in-
dependent from the other parts of the system. In this way, the attacker and the
victims can be changed, but the information-gathering block will always be the
same, assuring comparability between different tests.

The proxy is implemented through Cowrie in proxy mode. Cowrie can be
configured to act as an SSH proxy. This is possible because the proxy mode is
completely independent from the honeypot one. Cowrie as proxy allows setting
through its configuration file cowrie.cfg the correct victim to forward the incoming
traffic. The proxy collects data at the connection level, recording all messages sent
to the victim from the attacker and vice versa.

As reported in subsection 4.2.1, the attacker does not notice the presence of the
proxy. However, it connects always to the proxy using its credentials, and then the

2https://docs.rapid7.com/metasploit/manage-meterpreter-and-shell-sessions/

20

T-Hon: testing honeypots

proxy uses the victim credentials to connect to the right one in the back end. In
this way, the attack configuration, in terms of credentials and recipient is always
the same.

The proxy provides three types of log files:

1. TTY: binary file that records the interaction through SSH with the remote
terminal. They are useful to reproduce the exact sequence of commands that
we could see on the terminal.

2. LOG: text file where for each line an activity is recorded. It is a verbose log
file, it contains extensive information about the messages exchanged in both
directions (from the attacker to the proxy and vice-versa) and concerning the
activity of the proxy system. Thanks to its high verbosity, it results easier
to read for the human eye. However, it requires a considerable amount of
processing.

3. JSON: text file formatted following the JSON standard. It is a list of objects
in which information about the proxy activity and the messages received from
the attacker are recorded. Each object is composed of distinct keys, each one
containing a different field of a record.

Despite the JSON log file would be easier to process due to the fact that all
fields of interest are already divided and directly accessible, we decided to analyze
the LOG file. In this way, a thorough analysis can be performed, since we will have
access to all the messages exchanged by the parties, including raw SSH payloads.
This will be of great value during the analysis phase, because it allows us to
understand the order in which messages are sent and what they contain, not only
in terms of commands but also in terms of SSH protocol payload byte sequences.

The proxy runs in a Docker container. A container is a standard unit of software
that allows running an application on different computer environments since it
contains all its dependencies 3. Thanks to this choice, the proxy can be run on any
system able to execute the Docker engine, hence making it completely independent
from the environment it is deployed. Furthermore, it opens the opportunity of
using docker containers as victims, thus simplifying networking management and
communication between the parties. Several Docker containers can be managed
by Docker Compose, which is a tool that allows managing multi-container Docker
applications4.

There were two alternatives to this solution. The first one would have been
to install the proxy natively on the same system of the manager. However, in

3https://www.docker.com/resources/what-container/
4https://docs.docker.com/compose/

21

T-Hon: testing honeypots

that case, using victims running on the Docker container would have been more
complicated, since the networking configuration should have exposed all the victims
outside the docker environment. The second alternative would have been to install
the proxy on another virtual machine, different from the one running the manager.
Nonetheless, this solution would have made difficult the management of the proxy
in terms of configuration files and the process of switching on and off the subsystem
would have been heavier.

4.2.3 The victims
The victims are the recipients of the attack. They can be either honeypots or real
systems. The basic setup should be made of at least one honeypot and one real
system, to perform a meaningful comparison.

Victims can be either virtual machines or Docker containers, as mentioned in
subsection 4.2.2. There is no limit to the number of victims that can be used. For
each victim, a configuration file in the proxy has to be created. It contains all the
necessary information that the proxy needs to correctly forward the attack:

• Port on which the SSH service is running

• IP address or Docker service name

• Username to perform SSH login

• Password to perform SSH login

These configuration files will be automatically selected by the manager to switch
the victim of the test.

4.2.4 The manager
Given the complexity of the architecture and the number of actors involved, it is
necessary to have some kind of supervisor that oversees and controls the testing
process. The subsystem in charge of this task is the manager. The manager is a
Python program that automates and orchestrates the testing process. This part
is of great importance since it organizes how attacks are carried out, the victim
selection, and the log collection. In Figure 4.3 a detailed representation of how
the parts of the system interact among them. In this figure, we can observe the
coordinating action performed by the manager subsystem on all the other parts.

Manager settings

The manager is set up through a configuration file written following the JSON
standard. Configuration files are useful tools since they allow to modify parameters

22

T-Hon: testing honeypots

Figure 4.3: System architecture highlighting how subsystem parts interact.

without having to adjust hard-coded information in the program code. JSON files
are a great format for computer use, because they can be parsed into a Python
dictionary, that can be easily accessed and manipulated.

The configuration file presents the following keys:

• exploits: a list of JSON objects containing the exploits that we want to deploy.
For each of them, exploit-specific settings can be specified.

• conf_files: a list of the configuration file names of the victims. Each of these
files corresponds to a victim.

• test_bed_conf: a list of general settings that apply to all exploits. They
can be overridden for a specific exploit by specifying the same one in the
exploit-specific settings. In this part, it is specified the number of trials to be
performed which is the number of times an attack has to be repeated.

• rpc_psw: password of the Metasploit RPC server

• rpc_port: port of the Metasploit RPC server

23

T-Hon: testing honeypots

Interaction with the Metasploit framework

The manager is connected to the Metasploit framework thanks to its Remote
Procedure Call API. Through this service, it is possible to interact with Metasploit,
using the same set of commands accessible through the CLI. We employed a Python
library specifically designed to interact with this API, called Pymetasploit3 5. This
library allows to interface with MSF modules, sessions, and consoles 5.

Unfortunately, this library does not provide asynchronous event handling. Hence,
we have to perform tasks synchronously with the Metasploit Framework as they
were manually run from the console. Despite this issue, the library provides the
possibility to read the MSF console and to interface with it as we were using it
manually. The library ensures that the console is read without losing information
by buffering the data that has not been read yet. Furthermore, by reading the
MSF console, we are constantly aware of the status of the attack, and the manager
can act accordingly and record the result.

Victim selection

As mentioned before, the manager is in charge of the victim selection task. Victims
are specified in the manager configuration file. The victim configuration file has to
be set in the proper proxy folder. However, the proxy configuration file needs to
feature always the same name: cowrie.cfg. For this reason, in the same folder of
the main configuration file, there are other copies of the same one, named with a
meaningful name representing the victim and containing its specific settings. Every
time the victim needs to be changed, the manager copies the proper configuration
file content into the main one.

The proxy reads the configuration file only once at start-up. For this reason,
every time the victim is changed, the proxy subsystem needs to be restarted.
However, since it runs on a Docker container, it requires very little time to start
up and it is easy for the manager to control it.

Attack management

The attack selection process is performed by reading from the configuration file
the list of exploits that has to be deployed. Each attack is different, as its goal can
change from one to another. For this reason, for each attack, specific settings can
be applied. An example of JSON object used to describe an attack is reported in
Figure 4.2. Each object contains two keys:

5https://github.com/DanMcInerney/pymetasploit3

24

T-Hon: testing honeypots

• name: uniquely identifies the attack script in the Metasploit Framework library.
For what concerns exploits, it must report the exact path from the exploit
folder to the script location without its extension. For all the other modules, it
is necessary to specify the path from the modules folder to the script location
without its extension.

• parameters: lists of JSON objects containing the name of the attack-specific
settings and their value.

1 {
2 "name": "linux/ssh/ microfocus_obr_shrboadmin ",
3 " parameters ": [
4 {
5 "name": " PASSWORD ",
6 "value": "admin"
7 },
8 {
9 "name": " USERNAME ",

10 "value": "root"
11 }
12]
13 }

Figure 4.2: Example of JSON object for exploit settings

Log collection

Logs collection is an important task because it allows a comprehensive analysis of
the results. As mentioned in subsection 4.2.2, the proxy produces three types of
log files. In order to simplify the data collection process, the manager collects the
JSON and LOG files and it regroups them in one single JSON document. This
file is the output of the entire test. In this document, a list of JSON objects is
reported, one for each deployed attack with the following keys:

• victim: the name of the victim that has been tested in the format "trial
number"_"victim name"

• exploit: the copy of the JSON object describing the attack reported in the
system settings file

• success: boolean value reporting if the attack was able to retrieve a shell (true)
or not (false)

25

T-Hon: testing honeypots

• timestamp: the timestamp corresponding to the moment the attack started

• tty: the name of the binary file containing the the TTY logs

• msf_logs: the Metasploit console output during the attack

• logs: the proxy logs from the JSON file

• logs.log: the proxy logs from the LOG file

Logs analysis is not performed directly by the T-Hon system, but it is done in a
later time using data analysis techniques.

Figure 4.4: Attack management flow chart

4.3 Testing process
The testing process is a complex procedure since it has to assure that all the data
is correctly collected. For each trial and for each victim, the procedure described
in the flow chart reported in Figure 4.4 is performed.

26

T-Hon: testing honeypots

The procedure starts by cleaning old log files. Now, the victim selection is
performed as explained in section 4.2.4. Then, the docker environment is started
up. In this way, the proxy and all the other systems running on Docker containers
are initialized. Later, the attack is deployed. The system waits for it to finish and
in the meantime continues to read the Metasploit framework console to be aware
of the attack status, logging each output. Once the execution of the Metasploit
attack script is terminated, the docker environment is shut down. At this point,
the log files produced by the proxy are collected and organized into the JSON file
that will contain all the results of all the performed attacks.

4.4 Requirement compliance
At the beginning of this chapter, we reported a set of key requirements for the
development of the system. In this section, we will verify that those requirements
were met by the adopted system design. The list of requirements and the explanation
of how this design meets them is reported in table Table 4.1.

Requirement Solution

Automatic attack ex-
ecution

We developed a module that automates the attack process
managing the Metasploit Framework

Adaptability The system employs a file that reports all the parameters
for its general functioning and specific settings related to
the attacks to be deployed

Modularity The system is based on a distributed architecture, making
easier to modify or integrate new features and modules

Attack activity
recording

The system records all the SSH connection protocol traffic
and it organizes the collected data for an easy and complete
analysis

Victim management The system is able to automatically select the victim to
attack

Table 4.1: T-Hon system requirements compliance

27

Chapter 5

Case studies

Using the data collected through T-Hon, we try to assess the fidelity performance
of Cowrie responses and highlight possible discrepancies compared to real operative
systems. We performed several attacks against three different victim systems:
Cowrie, Ubuntu, and Metasploitable. In this way, we will evaluate how effective
T-Hon is in providing useful and meaningful data. In section 5.1 we describe the
methodology employed to carry out these tests. In this section, we provide some
metrics that are useful to quantify the performance of the honeypot in terms of
its ability to behave as an actual system and we try to use them to evaluate test
results. In section 5.3 we report three cases that show how T-Hon is a valuable
tool for collecting data from honeypot tests.

5.1 Methodology
In this section, we will describe how the test bed is set up and what information have
to be gathered to perform a comprehensive test. In order to perform comprehensive
tests and according to the work objective, we will employ some of the penetration
testing activity phases reported in section 3.2. These tests are not focused on
discovering new vulnerabilities per se, since we will employ existing attacks created
to exploit known security issues, hence the scanning phase will not be performed.

Nevertheless, for what concerns the other steps, in the planning and recon-
naissance phase, all the attacks were gathered and a set of victims was chosen
as reported in subsection 5.1.2 and subsection 5.1.1. Furthermore, according to
the previous choices, T-Hon settings were defined as reported in subsection 5.1.3.
Then, the third and fourth phases, respectively gaining access and maintaining
access, were carried out following the steps provided by the attacks if implemented.
The last phase is the object of section 5.3, where the results of the previous phases
are analyzed to highlight differences in the victim responses.

28

Case studies

As reported in subsection 4.2.2, the data collected refers to the SSH connection
protocol. The logs will contain the commands sent by the attacker and the relative
victim response. Furthermore, they will provide detailed information about the
SSH connection protocol messages. This feature enables a thorough inspection of
the exchanged payload.

5.1.1 Victims
In this work, we will perform attacks through the Secure Shell Protocol protocol
towards three different victims:

1. Cowrie 2.4.0

2. Metasploitable 2.6.24-16-server

3. Ubuntu 22.04 LTS

The honeypot under evaluation is a state-of-the-art system called Cowrie which is a
Linux-emulated SSH honeypot. In order to compare the results, the other victims
have to be Linux based and support the SSH protocol. The choice of Metasploitable
was driven by the interest in having a test subject that could help us understand
how a completely vulnerable device would respond. As reported in section 3.2.1,
Metasploitable is an intentionally vulnerable machine conceived for validation and
demonstration purposes.

On the other hand, we needed a real system that could represent a common
host. For this reason, Ubuntu was chosen, since it features a very high diffusion,
accounting for 33.9% of the Linux market [32]. The structure of the test bed and
its architecture is described in chapter 4.

5.1.2 Attacks selection
As reported in subsection 5.1.1, the systems under testing are all Linux based and
support the SSH protocol. Hence, the attacks to deploy need to be compatible with
the system employed in the tests. For this reason, the attack research was focused
on finding scripts dedicated to SSH vulnerabilities or to vulnerable systems that
could be exploited through the SSH protocol based on the Linux operative system.

The Metasploit Framework provides a complete library of exploit scripts that
can be used against a host, including specific attacks on SSH. Several other scripts
1 could be found online exploiting known security issues of devices whose SSH
implementation features some vulnerabilities. However, most of them are written

1https://0day.today

29

Case studies

in Python and are not directly integrable into the Metasploit Framework, hence we
decided to focus on the attacks available in the framework database. Metasploit
library2 contains a set of modules specifically designed for the SSH protocol as
reported in Table 5.1. Exploits modules are scripts designed to take advantage of
known vulnerabilities to perform malicious tasks on the victim machine. Fuzzers
modules are scripts that inject random and unexpected data into programs or
stacks to discover bugs and faulty behaviors. Scanners are modules conceived to
look for characteristics of the victim in order to gather useful information [28]. For
these tests, we selected 14 exploits and 1 scanner among the available ones. The
higher number of chosen exploit modules with respect to the scanners is due to the
fact that we are interested in the interaction the attacker has with the system not
only at the login but even once this has succeeded, to see the commands it sends
to accomplish its malicious task.

Module type Quantity
Exploits 14
Fuzzers 4

Scanners 14

Table 5.1: Number of Metasploit modules specifically created for the Secure Shell
protocol

Among the 14 exploits, only 5 were able to successfully perform login to the
victim. The remaining 9 do not use a username and password to log in but they
rely on SSH keys.

5.1.3 T-Hon settings
The T-Hon system is set up through its configuration file settings.json, to execute
each of the attacks once against each victim. The list of the attacks and settings
that are exploit-specific, such as username and password, are specified in the
configuration file. Since the attacker always interacts with the proxy first, the
credentials are always related to the proxy.

For each victim, a different proxy configuration file is created and specified
in the T-Hon configuration file as well as the proxy port, the proxy IP address,
and the RPC port and password needed for the connection to the Metasploit
Framework. In the proxy configuration file cowrie.cfg the credential to log into the
three victims specified in subsection 5.1.1 are automatically set. T-Hon will set the

2https://github.com/rapid7/metasploit-framework/tree/master/modules

30

Case studies

proper proxy configuration file before starting the attack deployment without any
kind of user intervention. Depending on the attack goal, if a shell is obtained, then
the command "exit" is sent from the attacker to the victim to terminate the session.
This command is not part of the attack script, but it is used by T-Hon to record if
commands can be correctly sent to the victim machine once a shell is gathered.

5.2 Test goals
As previously reported in chapter 2, the objective of this work is to create a system
that will provide analysts with useful data to evaluate the quality of the honeypot
response. This is done by performing attacks through the SSH protocol against
honeypots and real systems, thus comparing the collected responses to highlight
differences and potential errors.

In order to understand how attacks are deployed to the victims we summarize a
set of steps that can give an overall evaluation of how further the attacker is able
to go in the interaction with the victims. These steps have been identified among
the attacks listed in Appendix A. The steps, reported in Figure 5.1, are numbered
as follows:

1. Connection opening: capability of establishing an SSH connection with the
attacker.

2. Login: capability of correctly performing login operations.

3. Shell gathering: capability of providing a shell.

4. Execution of attack-specific commands: capability of executing commands
sent by the attacker.

Despite all the attacks having the first two steps, not all of them have step
number 4 since their goal is only to get access to the victim system and gather a
shell. Furthermore, as reported in Figure 5.1, in some case the command execution
is performed before the shell gathering since the execution request is embedded in
the channel request message specifying "exec" in the type field in the payload and
the command to be executed.

5.2.1 Metrics
Defining metrics to determine honeypots performance is a hard task since it is
complex to quantify their performance. As we reported in chapter 2, in the literature
[16] there are definitions of some metrics based on:

31

Case studies

Figure 5.1: Attack steps for performance evaluation

1. Fingerprinting: the ability of the honeypot in identifying changes in its
environment or in the services it provides.

2. Data capture: honeypot ability to collect high-quality data from the attacker.

3. Deception: honeypot ability to deceit an attacker into continuing the interac-
tion with it.

4. Intelligence: the level of interaction and machine learning techniques imple-
mented in the honeypot.

Fingerprinting is a metric that can be estimated by looking at the honeypot
from a client’s point of view. In that case, the honeypot would probe a set of
victims to gather information, such as understanding what services are available
and what ports are open. However, in this work, we are looking at the honeypot
from the attacker’s point of view. The intelligence metric can be seen more as
a classification parameter, stating the level of automation and adaptability of a
honeypot based on the implementation employed. In this case, this can be easily
inferred from Cowrie specifications. Data capture can be employed to evaluate the
quality of the honeypot collected information. It can be based also on the ability
of the honeypot to recognize commands and categorize them.

Deception is a fundamental parameter in evaluating honeypot performance. How
the honeypot is able to trick an attacker into continuing the interaction with it is a
key factor as it allows the collection of further information concerning how attacks
are performed. This last metric can be evaluated thanks to the data collected by
T-Hon. The ability of a honeypot to deceive an adversary is directly connected to
the fidelity of its response. The higher the ability of the honeypot to behave as a
real system the higher the probability that an attacker will continue its task since

32

Case studies

it does not notice that it is dealing with a mocked system. This is very important
especially when attackers are automated machines since they expect responses
following protocol standards and if this is not the case, the attacker will leave
without completing its attack or trying several times without success, thus affecting
the completeness and quality of the collected data. To evaluate the deception of a
honeypot we propose to use an evaluation method based on how many steps of a
certain attack the honeypot is able to complete. In order to have a ground truth
comparison, we suggest applying the same procedure to a real system under the
same conditions. In this way, it will be clearer how real and mock systems perform
when subject to the same attack.

This kind of evaluation can be employed when the environment in which the test
is performed is a controlled one, as the one in which T-Hon will be used. However,
how could we perform a similar evaluation in the case of a deployed system opened
to interaction with the external world? In this case, an important parameter to take
into consideration is the number of distinct commands that a honeypot receives in
an SSH session. This measurement is insightful since it gives an idea about the
interaction between the honeypot and the attacker. If an attacker sends multiple
distinct commands in a session, it is probable that the honeypot is responding in
an expected way, as a real system would do. Nevertheless, this parameter cannot
be employed as an absolute score since we do not know which are all the steps of
the attack in advance. For this reason, it is essential to deploy different systems
under the same conditions to perform a meaningful comparison.

As previously highlighted, fingerprinting can be used by honeypots to understand
the environment in which they are. However, as reported in [18], this technique
can be employed against honeypots to understand if there are some signatures that
would give proof of interacting with a mock system. Discovering such evidence is
of great importance to maintain the effectiveness of a honeypot. The signature
of a honeypot is hard to quantify, as it is actually an error or odd behavior in
the way the system works with respect to a real one. As a matter of fact, the
presence of a signature could drastically influence all the other parameters, since it
would decrease the fidelity of the response and inhibit the deception capacity since
the honeypot could be detected by attackers looking for a discovered signature.
Nevertheless, in order to give an evaluation of such an important feature, we will
report the number of issues that could potentially bring to the discovery of a
signature. This cannot be done in an absolute way, it is necessary to analyze the
honeypot response with respect to a real system. For this reason, it is important to
perform tests against both honeypots and actual systems to have a baseline result
to compare with the other.

Summarizing what until now reported, we propose in the context of this work,

33

Case studies

the following parameters as metrics to evaluate the performance of the honeypot
under testing:

1. Attack steps score: is the ratio between the number of steps that the adversary
is able to complete on the victim and the total number of steps of a known
attack as reported in the following formula:

ASscore = NSsuccess

NStotal

where ASscore is the attack steps score, NSsuccess is the number of successfully
completed steps and NStotal is the total number of steps of the attack.

2. Attack commands score: it is the ratio between the number of received input
line commands that are correctly executed by the victim and the total number
of commands in a known attack, as reported in the following formula:

ACscore = NCsuccess

NCcommands

where ACscore is the attack commands score, NCsuccess is the number of
successfully executed commands and NCtotal is the total number of commands
of the attack.

3. Received commands: number of commands received during an SSH session.

4. Signature: number of issues that could potentially constitute loss of deceitful-
ness.

The first three parameters are linked since the fact that an attacker continues in
its activity is related to the number of commands it sends and to the ability of the
victim to correctly execute them. However, depending on the environment in which
tests are carried out, the attack may be not known a priori, making it impossible
to estimate the first parameter. For the real victims, the signature parameter is
not applicable since they employ a real implementation of the service.

5.3 Results
In section 5.1 we reported the methodology that we employed to perform the tests.
In this section, we present the data collected through T-Hon in real test cases.
We analyze the results of three different attacks of the fifteen modules that were
identified in subsection 5.1.2 and reported in appendix Appendix A. We present
the findings of these attacks since they are the most representative of the value of
T-Hon. For each of them, we discuss how the honeypot responded compared to
the other two real systems, highlighting possible discrepancies between the three
systems and providing a quantification of the metrics reported in subsection 5.2.1.

34

Case studies

5.3.1 Attack 1: Cisco UCS scpuser
This exploit is based on a known default password of the Cisco UCS Director,
which is a heterogeneous platform for private cloud Infrastructure as a Service [33].

This vulnerability is identified by [34], introduced in section 3.2 with the CVE
2019-1935 and it got a base score in the CVSS of 9.8 out of 10. As reported by [34],
the vulnerability was caused by an undocumented default password and incorrect
permission settings of a documented default account. As we can notice by looking
at the CVSS score, this vulnerability was an important security issue, because a
successful exploit could grant the attacker full read and write access to the system
database.

The Metasploit exploit based on this vulnerability is contained in the MSF library
in the cisco_ucs_scpuser.rb file. According to the steps identified in paragraph
section 5.2 only steps 1, 2, and 3 are carried out since its goal is just to gain access
to the system. After the attacker performed a successful login, it requests a shell
by specifying it in the channel request message. Then, it tests the victim for the
presence of a shell by sending two times the command "echo" followed by a string
of random characters. The attacker verifies that the string it sent is the same one
it received.

In Table 5.2, is reported the number of SSH messages that are exchanged between
the attacker and the victims and vice versa. As we can see, it is clear that there
are some important differences in how the systems under analysis respond to the
same attack. Cowrie sent three times the number of messages to the attacker with
respect to the other two, while the two real systems responded in a similar way in
terms of the number of messages.

Direction Cowrie Metasploitable Ubuntu
Attacker to victim 3 6 6
Victim to attacker 33 8 10

Table 5.2: Number of SSH messages for each victim for the Cisco UCS scpuser
attack

In Table 5.3 we reported the number of messages in both directions (from the
attacker to the victim and from the victim to the attacker) divided by type for
each of the victims. By dividing the SSH messages by type, it is even more explicit
the discrepancies among victim responses. For what concerns the honeypot Cowrie,
the reception of one message from the attacker generated 31 channel data messages.
However, the number of channel success and channel open confirmation messages
is the same.

35

Case studies

On the other hand, there are few differences between the two real systems.
Ubuntu sends one channel data message more than Metasploitable, due to the fact
that once the connection opens and the shell is requested, Ubuntu sends welcome
information, while Metasploitable does not. The last difference between these two is
that Ubuntu sends a global request with the specification hostkeys-00@openssh.com
which is an optional OpenSSH extension that allows the server to inform the client
about its protocol host keys after a successful authentication3. The channel close,
channel eof, channel window adjust, and channel global request are not sent in the
Cowrie case. In this case study, the number of messages sent by the attacker is
different in the Cowrie case with respect to the other. This is due to the fact that
the attacker was not able to continue its task as much as on the real systems.

A→C C→A A→M M→A A→U U→A
CHANNEL DATA 1 31 3 2 3 3
CHANNEL OPEN 1 - 1 - 1 -
CHANNEL REQUEST 1 - 1 1 1 1
CHANNEL OPEN
CONFIRMATION

- 1 - 1 - 1

CHANNEL SUCCESS - 1 - 1 - 1
CHANNEL CLOSE - - 1 1 1 1
CHANNEL EOF - - - 1 - 1
CHANNEL
WINDOW ADJUST

- - - 1 - 1

GLOBAL REQUEST - - - - - 1

Table 5.3: Number of SSH messages divided by type for Cisco UCS scpuser attack.
A: Attacker, C: Cowrie, M: Metasploitable, U: Ubuntu

Payload analysis

In order to understand why there is such an important difference between the
messages sent by Cowrie with respect to the other two, we inspected messages
payload and sequences. Among the different messages that both the honeypots
and real systems have sent at least once, the channel open confirmation message
shows some peculiarities.

3https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL?annotate=HEAD

36

https://cvsweb.openbsd.org/src/usr.bin/ssh/PROTOCOL?annotate=HEAD

Case studies

Victim Byte sequence

Cowrie \x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x80\x00

Metasploitable \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00

Ubuntu \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00

Table 5.4: Byte sequence of the channel open confirmation message payload bytes
sequence sent from the victims for the Cisco UCS scpuser attack

As we can observe from Table 5.4, there is only one byte that changes in the
sequence compared to the others. According to the SSH connection protocol
standardized by the RFC 4254 [15], the highlighted bytes refer to the initial window
size, which specifies how many bytes of data can be sent on the channel without
having to modify it. From a protocol point of view, this does not constitute an
issue. The channel success messages are the same for all victims.

Connection analysis

Further insights, can be obtained by inspecting the sequence of SSH messages sent
between the parts. In Figure 5.2 and Figure 5.3 are reported the SSH connection
diagrams of the attacks towards Metasploitable and Cowrie, respectively. In
Figure 5.2, it is possible to notice the three channel data messages corresponding to
the two "echo" commands and the "exit" command sent from T-Hon. In Figure 5.3,
we can notice only the first channel data message corresponding to the first "echo"
command. As we can see, in the Metasploitable case, the victim responded to the
attacker with a channel window adjust message, while in the cowrie case this does
not happen. Then, in the first case reported in Figure 5.2, the attack continues as
expected giving a successful result, while in the second case reported in Figure 5.3,
the victim continues to send unexpected data to the attacker, thus preventing it to
continue its task.

Again, we performed a control on the payload sent in the channel data messages
from Cowrie to the attacker and we saw that the honeypot responded to the attacker
shell test by sending one character for each message as shown in Figure 5.4, instead
of sending the entire string back as one. This is the reason for the high number of
messages from Cowrie to the attacker reported in Table 5.3. On the other hand,
the two real systems behave as expected. The results of this test suggest that
Cowrie has problems in handling the shell request.

37

Case studies

Figure 5.2: SSH connection between
the attacker and Metasploitable for the
Cisco UCS scpuser attack

Figure 5.3: SSH connection between
the attacker and Cowrie for the Cisco
UCS scpuser attack

Figure 5.4: Extract of the log reporting the particular Cowrie behavior when
responding to the "echo ’randomBytes’" command for the Cisco UCS scpuser attack

Metric evaluation

In Table 5.5 the evaluation of the metric is reported. Figure 5.5 shows the steps
that the attack performs and the result in carrying them out for the three different

38

Case studies

victims. Consequently, the attack deployed toward cowrie was able to perform
two tasks out of three, since due to some faulty behavior in the "echo" command
handling, the attacker was not able to verify the presence of the shell. For what
concerns the other two victims, the attack succeeded in carrying out all steps.

Figure 5.5: Attack result for the three victims for the Cisco UCS scpuser attack

As a consequence given the three steps of the attack, the attacker was able to
successfully carry out two of them. In this way, Cowrie obtained an attack steps
score of 66%. The number of input line commands employed in the attack was
2. However, if the shell was correctly verified then, the T-Hon system would have
sent the "exit" command. Consequently the total number of commands would
have been 3. However, the honeypot did not succeed in performing any of them
obtaining an attack command score of 0 %. For what concerns the number of
received commands, due to the honeypot inability to correctly execute them, it
received only 1 input line command. In the end, we identified 2 issues that could
compromise Cowrie deceitfulness:

1. A predefined initial window size value in the channel open confirmation message

2. An odd response to the command "echo", consisting in sending one byte per
channel data message instead of the entire string

Consequently, the signature parameter assumes the value 2. In conclusion, the
overall performance of the honeypot on the Cisco UCS scpuser attack is poor. Even
if the attack steps score is pretty high, it was not able to correctly execute any
shell verification command.

39

Case studies

Direction Cowrie Metasploitable Ubuntu
Attack steps score 66 % 100 % 100 %

Attack commands score 0 % 100 % 100 %
Received commands 1 3 3

Signature 2 n.a. n.a.

Table 5.5: Metrics evaluation for the victims under the Cisco UCS scpuser attack

5.3.2 Attack 2: SSH Login
The SSH Login is an auxiliary module that is used to perform SSH logins on a
list of machines. This module is not classified as an exploit since it does not take
advantage of a known vulnerability. Consequently, it is inserted into the scanner
categories since it can scan a certain number of hosts trying to log into them with a
list of credentials. This kind of tool could be useful to test several victims trying to
see if some of them can be entered with common unsecured credentials. However,
in the module description it is reported the CVE 1999-0502 which refers to the
fact that the Linux system may have an unsecured password, that can be easily
guessed.

This module is contained in the MSF library in the SSH_login.rb file. Despite
the fact that it aims only at performing the login, it does execute a command on the
remote machine. The command is "id", which prints the system identifications for
the logged user4. Furthermore, it presents a particular feature called Gather Proof
that aims at verifying that the access was actually carried out successfully. This is
performed by trying to identify the system type that was accessed by analyzing id
information before opening a Metasploit session requesting a shell.

This module carries out all the four steps identified in section 5.2, in the order
1, 2, 4, 3. The module starts by performing login, and request the execution of
the id command. Then, if the Gather Proof option is set to true, the previous
step is repeated. At this point, if the login had a positive result, independently
from the result of the Gather Proof process, a shell is requested, and if successful
a Metasploit session is opened. Furthermore, if the previously reported step is
acknowledged, the T-Hon will send the "exit" command.

In Table 5.6 the total number of SSH messages exchanged between victims, the
attacker and vice-versa are reported. The number of exchanged SSH messages is

4https://www.ibm.com/docs/en/aix/7.1?topic=i-id-command

40

Case studies

fairly similar among all victims. However, Cowrie presents slightly more messages
sent to the attacker than the other two victims.

Direction Cowrie Metasploitable Ubuntu
Attacker to victim 10 10 10
Victim to attacker 23 20 21

Table 5.6: Number of SSH messages for each victim for the SSH login attack

In Table 5.7 the number of SSH messages generated by the attacker and the
victims divided by type is reported. The number of messages from the attacker
is equal for all victims. This suggests that it was able to run the same actions
on all of them. The number of close, request, and open confirmation messages
sent to the attacker is the same for all victims. However, as in the case reported
in subsection 5.3.1, the Ubuntu victim sends a global request message, while all
the other victims do not. For what concerns the data message, Ubuntu and
Metasploitable responded with the same number of messages. On the other hand,
Cowrie responded with 11 data messages.

A→C C→A A→M M→A A→U U→A
CHANNEL CLOSE 3 3 3 3 3 3
CHANNEL DATA 1 11 1 2 1 2
CHANNEL OPEN 3 - 3 - 3 -
CHANNEL REQUEST 3 3 3 3 3 3
CHANNEL OPEN
CONFIRMATION

- 3 - 3 - 3

CHANNEL SUCCESS - 3 - 3 - 3
CHANNEL EOF - - - 3 - 3
CHANNEL
WINDOW ADJUST

- - - 3 - 3

GLOBAL REQUEST - - - - - 1

Table 5.7: Number of SSH messages divided by type for the SSH login attack. A:
Attacker, C: Cowrie, M: Metasploitable, U: Ubuntu

41

Case studies

Payload analysis

In order to understand the reason for the differences reported in Table 5.7, we
inspected the messages payloads and, later, the sequence in which they were sent.
This analysis will focus on the victims responses since the attacker sent always the
same payloads.

As reported in paragraph subsection 5.3.1, the open confirmation messages
present some peculiarities. For the first and the third open confirmation messages,
the byte sequence are the same for all victims except one byte related to initial
window size that has the same behavior highlighted in yellow in tables Table 5.4
and Table 5.8. Also in this case, Cowrie has a different value for the initial window
size with respect to the other real systems. The second open confirmation message,
presents another peculiarity. The fourth byte reserved for the sender channel
number, as defined in [15], is set to 1 while in the other victim responses are set to
0. The fact that Cowrie chooses another channel to respond, it is not a protocol
issue. As reported in [15], the number referring to a channel may be different
between the two connection ends. However, it is interesting to report that it has a
different behavior with respect to real systems.

For what concerns the request, close, success messages, their payload is the same
one for all the victims.

Victim Byte sequence

Cowrie \x00\x00\x00\x01\x00\x00\x00\x01\x00\x02\x00\x00\x00\x00\x80\x00

Metasploitable \x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00

Ubuntu \x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00

Table 5.8: Byte sequence of the second channel open confirmation message payload
sent from the victims for SSH Login attack. Highlighted in green are the bytes
related to the sender channel and in yellow are the bytes related to the initial
window size

Connection analysis

In order to gain more information to understand the differences reported in Ta-
ble 5.8 we analyzed the sequence in which the messages are sent during the SSH
connection. In Figure 5.7 and Figure 5.6, the SSH connection diagram for Cowrie
and Metasploitable respectively are reported.

The Ubuntu connection diagram is very similar to the Metasploitable one except
for the global request message that we previously highlighted and reported in
Table 5.7. The diagrams report the first SSH connection that is established during

42

Case studies

Figure 5.6: First SSH connection be-
tween the attacker and Metasploitable
for the SSH login attack

Figure 5.7: First SSH connection be-
tween the attacker and Cowrie for the
SSH login attack

the attack. The second connection is identical to this one from the diagram point
of view. This is due to the fact that the Gather Proof option was set to true. The
first three messages are the same and in the same order for both victims.

Nevertheless, starting from the fourth, we can notice some differences. In the
Metasploitable case, a channel adjust message is sent while in the Cowrie case,
it is not. Then the channel success message is sent. In the Cowrie diagram, a
channel data is sent. In this case, the attacker requests to execute the command
"id" specifying exec in the request type payload field, through a channel-specific
request. In this type of request, it is possible to specify in the payload in the
want proof byte if the recipient has to answer it or not. In this case, the attacker
requested a response. According to [15], after a channel-specific request with the
want proof set to true, the recipient can answer in three ways:

1. channel success: the request is correctly recognized and supported by the
channel.

2. channel failure: the request is not recognized or it is not supported by the
channel.

3. Request-specific continuation messages.

The third option seems to be the one chosen by Cowrie since it responds to the
attacker command directly with its result. However, a channel success message is
sent, but in a sequence which is odd, since it is transmitted after the channel close
message is sent. The channel EOF is missing in the Cowrie connection diagram.

43

Case studies

However, according to [15], a party can send the channel close message without
sending it before the channel EOF, thus, from a protocol point of view, this does
not constitute an issue. Anyway, the fact that both real systems responded in the
same way but differently from Cowrie, could provide some clues that there may be
some protocol implementation issues.

The second SSH connection is the same as the one reported in Figure 5.7 and
Figure 5.6. There are some more differences in the connection that is created to
request a shell. After the shell is obtained, the T-Hon system sends the "exit"
command to close it. For what concerns Cowrie, we found the same issue reported
in subsection 5.3.1. The command is correctly received, however, Cowrie sends back
the "exit" string, one character per packet even if this was not requested. These
results further highlight a possible problem in the management of the shell request.

Metric evaluation

In Table 5.9 the metric evaluation is reported. The final result of the test in terms
of steps carried out by the attacker is reported in Figure 5.8.

Figure 5.8: Attack result for the three victims for the SSH login attack

The outcome is marked as successful since the command is correctly executed
from the result point of view and, most importantly, the shell is correctly gathered.
As a matter of fact, the attacker does not verify the presence of the shell by
performing some kind of test as in subsection 5.3.1. In this way, the shell is
correctly obtained, however, several odd behaviors have been found. Consequently,
given the four attack steps, the attacker was able to successfully carry out all
of them. Hence, Cowrie obtained an attack steps score of 100 %. The number
of input line commands employed in the attack were 2 corresponding to the two
"id" command sent in two different connections, and considering also the "exit"
command sent by T-Hon, we have a total number of commands sent equal to

44

Case studies

3. However, the honeypot was able to correctly execute only the first two, thus
obtaining an attack command score of 75 %. Since the first two commands were
successfully executed and the shell successfully obtained, the T-Hon system sent
the "exit" command, which was not correctly executed. Nevertheless, the number of
received commands is 3. For what concerns the signature parameter, we identified
4 issues that could cause Cowrie to lose its deceitful ability:

1. A predefined initial window size in the channel open confirmation message,
which was already highlighted in subsection 5.3.1.

2. An odd response to the command "exit", in the same way, reported in subsec-
tion 5.3.1.

3. A particular order in which responses are sent to the attacker.

4. The use of a different channel even if not necessary.

As a consequence, the signature parameter assumes the value 4.

Direction Cowrie Metasploitable Ubuntu
Attack steps score 100 % 100 % 100 %

Attack commands score 75 % 100 % 100 %
Received commands 3 3 3

Signature 4 n.a. n.a.

Table 5.9: Metrics evaluation for the victims under the Cisco UCS scpuser attack

In conclusion, the overall performance of the honeypot on the SSH login attack,
for what concerns the first two parameters is good. However, even if the shell was
correctly obtained, the "exit" command was not successfully executed. Furthermore,
the number of issues that could constitute a problem from the signature point of
view is high.

5.3.3 Attack 3: Quantum vmPRO backdoor
Quantum vmPRO is a backup and recovery application for data protection. It
interacts with any operative system of any virtual machine [35]. The attack is
based on a known command "shell-escape" which constitutes a hidden backdoor
that allows obtaining a bash shell with full root permissions, even if the user has
no administrative privileges. This module belongs to the exploit category and it is
contained in the MSF library in the quantum_vmpro_backdoor.rb file.

45

Case studies

According to the steps reported in section 5.2, this attack performs all the
identified steps. The attacker connects to the victim, then performs the SSH login
procedure. If successful, the attacker continues by requesting the execution of the
backdoor command "shell-escape". If the command is correctly executed then a
shell is requested. If the shell is correctly gathered, T-Hon will send the "exit"
command.

The number of SSH messages exchanged between the victims is reported in
Table 5.10. In this case, Cowrie sent fewer messages than the other two real systems.
On the other hand, Metasploitable and Ubuntu exchanged a similar number of
messages. The number of messages sent from the attacker is the same for all three
victims.

Direction Cowrie Metasploitable Ubuntu
Attacker to victim 3 3 3
Victim to attacker 5 7 8

Table 5.10: Number of SSH messages for each victim for the SSH login attack

In Table 5.11, the number of messages in both directions (from the attacker
to the victim and from the victim to the attacker) divided by type for each of
the victims are reported. First of all, the number of channel close, channel open,
channel request, and channel success is coincident for all three victims. The number
of channel eof, channel extended data and channel window adjust are equal for the
two real systems: Ubuntu and Metasploitable, while they are not present in the
Cowrie case. Finally, the global request is only present for Ubuntu as in the case
reported in subsection 5.3.1 and subsection 5.3.2.

Payload analysis

As a consequences of the previous observations, we inspected the messages payloads,
focusing on the ones that were at least sent once from all victims, to ensure a useful
comparison. We will focus on the victims messages since for what concerns the
attacker, they are always alike. First of all, the channel close and channel success
messages have the same payloads for all victims. Also in this case, the channel open
confirmation message presents the same behavior reported in Table 5.4. However,
the channel request message displays some interesting insight as shown in Table 5.12.
As we can see, there is a difference in the last byte. This message sent the result
of the previously requested command execution. Since the backdoor command
does not exist on any of the victims, bash returned the exit code 127 (7F16) that

46

Case studies

A→C C→A A→M M→A A→U U→A
CHANNEL CLOSE 1 1 1 1 1 1
CHANNEL OPEN 1 - 1 - 1 -
CHANNEL REQUEST 1 1 1 1 1 1
CHANNEL DATA - 1 - - - -
CHANNEL OPEN
CONFIRMATION

- 1 - 1 - 1

CHANNEL SUCCESS - 1 - 1 - 1
CHANNEL EOF - - - 1 - 1
CHANNEL
EXTENDED DATA

- - - 1 - 1

CHANNEL
WINDOW ADJUST

- - - 1 - 1

GLOBAL REQUEST - - - - - 1

Table 5.11: Number of SSH messages divided by type for the SSH login attack.
A: Attacker, C: Cowrie, M: Metasploitable, U: Ubuntu

corresponds to the "command not found" error5. Both Metasploitable and Ubuntu
append the exit code to the end of the message, however Cowrie does not, even if
from the logs the command is not found.

Victim Byte sequence

Cowrie \x00\x00\x00\x00\x00\x00\x00\x0bexit-status\x00\x00\x00\x00\x00

Metasploitable \x00\x00\x00\x01\x00\x00\x00\x0bexit-status\x00\x00\x00\x00\x7f

Ubuntu \x00\x00\x00\x01\x00\x00\x00\x0bexit-status\x00\x00\x00\x00\x7f

Table 5.12: Byte sequence of the victims channel request message payload bytes
sequence for Quantum vmPRO backdoor attack

5https://www.gnu.org/software/bash/manual/bash.html

47

Case studies

Connection analysis

In Figure 5.9 and Figure 5.10, the SSH connection diagrams for Metasploitable
and Cowrie are reported. Connection diagrams are a useful tool to understand the
dynamics of the messages exchanged between attacker and victim. The Ubuntu con-
nection diagram is equivalent to the one of Metasploitable with the only difference
that in its case a global request message is sent before the channel open message.
The cowrie message sequence displays the same particular behavior reported and
analyzed in subsection 5.3.2. However, in this case, there is one more difference.
Both Metasploitable and Ubuntu use a channel extended data message to send
the result of the executed command, which is transmitted in the channel request
message. As reported in [15], a party can use a channel extended data message to
transfer data with the possibility of specifying the data type in a reserved payload
field.

Figure 5.9: SSHconnection diagram be-
tween the attacker and Metasploitable
for the Quantum vmPRO backdoor at-
tack

Figure 5.10: SSH connection diagram
between the attacker and Cowrie for the
Quantum vmPRO backdoor attack

Metric evaluation

In Table 5.13 the evaluation of the metrics proposed in subsection 5.2.1 is reported.
The overall result of the attack divided by steps is reported in Figure 5.11.

In this case study, any of the victims was able to correctly execute the requested
command, consequently, they were not able to provide a shell. This is due to the
fact that all machines were not running the Quantum vmPRO application, thus
they were not vulnerable to this type of attack. The overall attack steps score
is 50 % since the attacker was able to perform only 2 steps out of 4. The attack

48

Case studies

Figure 5.11: Attack result for the three victims for the Quantum vmPRO backdoor
attack

command score is 0 % since any victim was able to give the correct result to the
command execution. They received only 1 command from the attacker since, given
the inability to retrieve a shell, T-Hon could not send the "exit" command. For
what concerns the signature parameter, we identified 3 potential issues concerning
the mocking capability of Cowrie:

1. The bash exit code is not reported to the attacker

2. A predefined initial window size as highlighted in subsection 5.3.1

3. A particular order in which responses are sent to the attacker as highlighted
in subsection 5.3.2

As a consequence, the value of the signature parameter is 3.

Direction Cowrie Metasploitable Ubuntu
Attack steps score 50 % 50 % 50 %

Attack commands score 0 % 0 % 0 %
Received commands 1 1 1

Signature 3 n.a. n.a.

Table 5.13: Metrics evaluation for the victims under the Quantum vmPRO
backdoor attack

In conclusion, the overall performance of the honeypot, compared to the one of
the real systems, is good. However, the presence of several potential issues that
could make Cowrie discoverable, does decrease its effectiveness.

49

Case studies

5.4 Case studies review
In this section, we summarize the results that we highlighted in sections subsec-
tion 5.3.1, subsection 5.3.2, and subsection 5.3.3. First of all, thanks to the data
collected through the T-Hon system we were able to identify several discrepancies
between the honeypot behavior and the real systems responses. This was possible
because T-Hon methodically deployed the attacks to all victims, collecting and
organizing the resulting data. Analyzing the data concerning the three attacks
that we reported as case studies we were able to highlight the following issues:

• Cowrie does not use a channel window adjust message as the real systems
under analysis do. However, it seems to have by default a window value in
the channel open confirmation message.

• When a shell is requested using a specific channel request message, Cowrie is
not able to manage command execution. It responds to commands sending
back one character for each message.

• When the attacker requests to execute a command through a specific channel
request message, the order in which the messages resulting from the command
execution are sent is peculiar.

• When a command fails its execution, the error code is not sent back to the
attacker.

• Cowrie chooses different channels to respond to the attacker with respect to
real systems.

The fact that we were able to identify all these issues proves the usefulness of
T-Hon in supporting the evaluation of honeypot effectiveness.

50

Chapter 6

Work application

In this chapter, we will present the results of the analysis of the data collected
from a real honeypot deployment. We applied some modifications to Cowrie to
fix an odd behavior concerning the order in which SSH messages are sent that
was highlighted in subsection 5.3.2. Then, a honeypot with the fixes and one
without were deployed and exposed to real traffic. In this way, we were able to
show how the T-Hon data supported the honeypot fixes and how they contributed
to the collection of real attack data compared to the ones collected without the
corrections.

6.1 Honeypot modification
As shown in Figure 5.7, the order in which the SSH messages are sent presents a
particular characteristic. The channel success message is sent after the channel close
message and most importantly, after the data requested in the attacker channel
request is sent. Even if this could be accepted from the standard [15] point of view,
since after a channel request a channel data message could be sent reporting the
data requested in the attacker message, it is not accepted by the attacker. As a
matter of fact, Metasploit is not able to verify if the shell is really a valid one, thus
failing the Gather Proof procedure. Despite this behavior, the attack is successful
since a shell is correctly retrieved.

In order to avoid this, a fix has been applied to the honeypot. This modification
allows reordering the way SSH messages are sent. In this way, after the attacker
channel request has been sent, the first message in response is channel success, then
channel data message. Consequently, the Gather Proof procedure is successful.

In order to verify the result of the alterations that we made, we tested the fixed
version of Cowrie with SSH login, which is the same attack that brought to the
discovery of this particular behavior as reported in subsection 5.3.2.

51

Work application

Figure 6.1: SSH connection between the attacker and the fixed version of Cowrie
for the SSH Login attack

In Figure 6.1 the SSH connection diagram between the fixed version of Cowrie
and the attacker for the SSH Login attack is reported. With respect to Figure 5.7,
it is clear that the order in which response messages are sent is changed. Now, the
SSH connection diagram is much more similar to the one of a real system under
the same attack as the one shown in Figure 5.6.

6.1.1 Deployment
In order to understand how the modification that we made to the original version
of Cowrie could affect its performance, we deployed two versions of the honeypot:

1. Cowrie original: standard version of Cowrie without any modification.

2. Cowrie fixed: version of Cowrie with the modification reported in section 6.1.

The two honeypots were installed into an already deployed system on a /16 network
of the Politecnico di Torino. According to [36] in this network a /23 network
was isolated and multiple /29 networks belonging to the same /24 network were
employed. Each of the /29 networks features 8 IP addresses. 16 of these /29
networks were reserved for L-7 and L-4 responders i.e. honeypots. The two
honeypots were deployed on two different /29 networks positioned in the middle
of the /24 IP addresses range. The two honeypots were exposed to real SSH
connections coming from the internet. The structure of this setup aims at making
the two honeypots work under the same conditions, without influencing each other.

52

Work application

6.2 Analysis of the collected data
In this section, we present the data collected by the two deployed honeypots
as described in subsection 6.1.1 and we will analyze and compare how the two
honeypots behaved, through the quantification of the retrieved data and the
graphical representation of meaningful characteristics. The data was collected for
a period of 70 days, from 31st August 2022 to 8th November 2022.

6.2.1 Data quantification
In Table 6.1 a quantification of the collected data is reported, divided by honeypot
deployment: fixed and original. The column Started SSH handshakes reports the
number of initiated SSH handshakes, independently from the fact that they may
have failed. The fixed Cowrie had about 16% less initiated handshakes with respect
to the original one. However, the number of distinct IPs that interacts with both
of them is fairly similar. This means that the number of attackers that interact
with the two honeypots is almost the same.

Honeypot Started
SSH
hand-
shakes

Distinct
IPs

SSH
login at-
tempts

Commands
received

Distinct
commands
received

Original 2065102 21276 1605840 3991662 231193
Fixed 1724566 21460 1260015 3664297 232432

Table 6.1: Quantification of collected data divided by honeypot version: fixed
and original

The fact that the number of handshakes is lower in the fixed one could be caused
by the modification that we applied. Several times, attacks are carried out in
an automated way using, for example, bots. If the attack is not successful, the
automated system could decide to repeat it until a certain stopping criterion is
met, such as a fixed number of attempts. This observation is supported by looking
at the number of received commands. On one hand, in the case of the original
version of Cowrie, this number is higher with respect to the fixed one. On the
other hand, observing the number of distinct received commands, the number is
quite similar. This means that both honeypots received almost the same number of
distinct commands, but in the original version some of them are sent multiple times.
This could justify the idea that in the original version, the same command may
be sent multiple times because it does not give the expected result, while in the

53

Work application

fixed version this is not necessary. The number of login attempts is quite different
between the two versions. The original version received 27% more attempts with
respect to the fixed one. Again, supposing that there is a large interaction with
automated attackers, the original version may need more attempts before the
attacker stops.

6.2.2 SSH connections and IP addresses
In Figure 6.2, the number of started SSH handshakes is plotted for each day for
both the original and fixed versions of Cowrie. The number of handshakes grows
during the first 40 days of deployment reaching its peak around October 10th. In
the remaining days, it decreases to then have a smaller peak during the last days
of deployment.

Figure 6.2: Number of started SSH handshakes per day in the case of the original
and fixed version of Cowrie

At first sight, the dashed line representing the fixed version of Cowrie is more
smoothed out with respect to the red one, representing the original Cowrie version.
The peaks that are reported in the red line may represent the repeated attempts of
establishing a connection and maybe execute line commands. In the surrounding
area of those peaks, the dashed line presents much smaller peaks. This could
represent the fact that in the original version of Cowrie, the attacker is not able
to continue its task and it tries multiple times to perform it. Whereas, in the
fixed version, it is more likely to succeed. This does not imply that the attack will

54

Work application

achieve its final goal, however, it is more likely to perform some more tasks that
could potentially be blocked in the next steps.

In Figure 6.3 the number of distinct IP addresses that started an SSH handshake
with both original and fixed Cowrie is reported. The two lines are fairly similar as
they follow the same trend. The number of IP addresses that interacts with both
honeypots is very low at the beginning of the experiment. Starting from September
6th, the number increased drastically reaching a peak on September the 29th. Then
it decreases to reach a steady trend until the end of the time window. As remarked
in Table 6.1, the number of distinct IP addresses is very similar among both Cowrie
deployments. This suggests that the data captured is comparable and the two
victims are subject to the same environment since the number of attackers that
interact with the two honeypot versions is almost the same.

Figure 6.3: Number of distinct IP addresses that started an SSH handshake per
day in the case of the original and fixed version of Cowrie

6.2.3 Commands received
In Figure 6.4, the Cumulative Density Function for the sessions as a function of
the number of input line commands is shown. The CDF is a statistical tool that
represents the probability that the random variable under consideration takes a
value less or equal to the one reported on the x-axis. In this case, the random

55

Work application

variable represents the number of commands received by the attacker for each SSH
session.

Figure 6.4: Session Cumulative Density Function as a function of the number of
input line commands per session

Looking at the chart reported in Figure 6.4, over the 60% of SSH sessions
with the original version of Cowrie registered only one command. This result is
drastically decreased in the case of the fixed version of Cowrie. From this finding,
we can infer that the number of SSH sessions with just one command is much
smaller for the fixed version of Cowrie. The fact that below the 20% of sessions
with the fixed version of Cowrie reports only one command, suggests that the
attacker is able to send more commands to the fixed honeypot, as it may be able to
continue its procedure for a longer number of steps compared to the original version
of Cowrie. Few sessions can be noticed for a number of commands corresponding
to 2, 3, 5, 8, 9, 19, 23, and 27, where the fixed version of Cowrie reports a slightly
higher percentage of sessions with respect to the original one.

In Figure 6.5, the probability density function of the SSH sessions as a function
of the number of commands sent in each of them is reported. This chart completes
the representation reported in Figure 6.4, making clearer the difference between the
two honeypots behavior. For what concerns SSH sessions with just one command,
the same considerations made for Figure 6.4 are standing. Furthermore, we can
notice a peak on fifteen line commands per SSH session corresponding to the vertical
ascending line around the same number of line commands shown in Figure 6.4.
In this case, around 80% of the SSH sessions between the attacker and the fixed

56

Work application

Figure 6.5: Probability Density Function of SSH sessions as a function of the
number of input line commands

version of Cowrie registered 15 commands, while less than 40% of SSH sessions
reached the same number with the original version.

In Figure 6.6, the number of sessions as a function of the number of input line
commands is reported. The scale of the y-axis is logarithmic. We can observe a
high difference in the number of sessions containing just one command between
the original version of cowrie and the fixed one. The big discrepancies reported
in Figure 6.4, especially concerning sessions with fifteen commands, here are not
reported. However, this is due to the fact that, generally, the fixed version of Cowrie
has more input line commands per session, meaning that the attacker that is not
stuck on the first command, as in the original version of Cowrie, can continue the
attack, increasing the number of commands per sessions and allowing the honeypot
to collect more information. For this reason, as reported in Figure 6.4, it is more
likely that the fixed version of Cowrie will receive a higher number of input line
commands.

In tables Table 6.2 and Table 6.3 the four most popular first commands are
reported, respectively for the original and fixed version of Cowrie. These are the
commands that the attacker sends as soon as the SSH login phase is successfully
completed. For each of them, the number of SSH sessions in which they were
recorded is reported, helping quantify divergences among the number of sessions in
which they were employed. As a matter of fact, the difference between the number
of sessions in which the commands have been recorded is large, especially between
the most popular one and the others. For what concerns the original version of

57

Work application

Figure 6.6: Number of sessions as a function of the number of input line commands

cowrie, the most popular command was sent 55% more with respect to the second
most popular command and 23 more times than the third one. For what concerns
the fixed version of Cowrie, the most popular command was sent 12 times more
than the second one and 19 times more with respect to the third one.

Rank Cowrie original received commands No. of SSH
sessions

1° echo -e "\x6F\x6B" 366417

2° cat /proc/cpuinfo | grep name | wc -l 235417

3° uname -a 15800

4° cd /tmp; rm -rf wget*; wget
http://179.43.175.5/wget.sh; curl -O
http://179.43.175.5/wget.sh; chmod 777 wget.sh;
./wget.sh server; sh wget.sh server

11938

Table 6.2: Most popular first input line commands received by the original version
of Cowrie and the relative number of sessions in which they were recorded

In Table 6.2 the first command prints on the terminal the string that follows
the command "echo". In this case, the string is written using the ASCII codes
representing the letters "o" and "k". The "-e" parameter is used to tell the echo
command to escape the backslash characters used to identify the ASCII bytes.

58

Work application

The second command tries to understand the technical specification of the
computer on which is run, in particular, it reports the specifications of all the
processors or cores installed on the machine. The command filters the previously
obtained result by name, which yields the name of each processor installed. Then
it uses the "wc" utility with the option "-l" to count the number of lines that were
generated with the previous command steps. In this way, it is possible to retrieve
how many processors are installed on the computer.

The third command "uname -a" is used to get the name of the operative system
that the computer on which the command is executed is running. The "-a" option
allows showing all the information about the OS such as the system version, machine
ID, and the release number of the OS 1. This information could be used to assess
the system characteristics to understand how the machine can be exploited by
using, for example, an exploit based on vulnerabilities that are typical of that
specific OS version.

The fourth command is more complex than the previous one. First of all, it
moves to the "tmp" directory. Then, it downloads a bash file from a specific IP
address using two different tools: "wget" and "curl", it changes access permission
with the "chmod" command followed by the code "777" which aims at granting
execution, read and write privileges to groups, owner and public2. Then it executes
the downloaded file passing the parameter "server".

For what concerns the commands reported in Table 6.3 for the fixed version
of Cowrie, the first three correspond respectively to the second, third, and fourth
most popular commands reported in Table 6.2 for the original version of Cowrie.
The fourth command reported in Table 6.3 executes "uname -a", which behavior
was previously described. Then it runs the "lspci" command which is used to gather
information about PCI buses and connected devices if any 3. The result is filtered
and some words of interest are highlighted in color. Then, a request is sent to a
specific IP address through the command line tool curl4 and the response is saved
into a file that is downloaded and executed with "perl".

By comparing Table 6.2 and Table 6.3, we can highlight that the most popular
command in the original version of Cowrie is no more considered in the first
four most common commands recorded by the fixed version. However, the other
commands still remain in the ranking, shifting from one position toward the first
place. Furthermore, the fourth command reported in Table 6.3 is the fifth most

1https://www.ibm.com/docs/en/aix/7.2?topic=u-uname-command
2https://www.ibm.com/docs/en/aix/7.2?topic=c-chmod-command
3https://man7.org/linux/man-pages/man8/lspci.8.html
4https://curl.se

59

Work application

Rank Cowrie fixed received commands No. of SSH
sessions

1° cat /proc/cpuinfo | grep name | wc -l 236688

2° uname -a 19637

3° cd /tmp; rm -rf wget*; wget
http://179.43.175.5/wget.sh; curl -O
http://179.43.175.5/wget.sh; chmod 777 wget.sh;
./wget.sh server; sh wget.sh server

12200

4° uname -a;lspci | grep -i –color ’vga\|3d\|2d’;curl -s -L
http://39.165.53.17:8088/iposzz/dred -o /tmp/dred;
perl /tmp/dred

4087

Table 6.3: Most popular first input line commands received for the fixed Cowrie
version and the relative number of sessions in which they were recorded

popular command for the original Cowrie version. The number of sessions in which
the same command is used in both versions is similar, making comparable the two
cases. Furthermore, the fact that the most popular commands received by the two
honeypots, except for the first one in the original Cowrie case, highlights how the
two honeypots were subject to the same environment.

This finding is particularly important because it shows how the changes that
we made to Cowrie impacted its performance. Since the only difference between
the two versions is the order in which they send SSH messages, the fact that the
most popular command in the original version is no more reported in the top four
command ranking of the fixed one means that the changes that we made allowed
the attacker to continue its task without remaining stuck on the first command.
Given the high amount of sessions in which that command was sent, it is legitimate
to assume that the smoothed trend reported in Figure 6.2 for the fixed version of
Cowrie, is due to the lack of that command at the top of the ranking. However,
that command is still present in 78 sessions.

Figure 6.7: Extract from the log of the fixed version of Cowrie

Inspecting one of the sessions in which this command was sent to the fixed
version of Cowrie, we noticed that once the command sent by the attacker is
executed the connection closes without issues as shown in Figure 6.7. In the case

60

Work application

of the original version of Cowrie, once the honeypot responds to the command, the
connection is lost as the attacker leaves without following the protocol standard
as reported in Figure 6.8. This means that the way the original version of Cowrie
answers to SSH messages from the attacker is not accepted by the attacker, as we
saw in subsection 5.3.2.

Figure 6.8: Extract from the log of the original version of Cowrie

6.3 Result review
In this case, it is not possible to employ all the metrics that were used in section 5.3
since we do not know in advance what were the goals of the attacks and the steps
to achieve them. As a consequence, the attack steps score cannot be evaluated.
For the same reason, we cannot evaluate the attack commands score. In a similar
way, the signature parameter cannot be determined since we do not have data
concerning real system behavior under the same conditions.

However, since the issue concerning the order in which messages are sent has
been fixed, the signature parameter for the fixed version of Cowrie under the SSH
login test is now decreased. Even if this modification does not affect the other
metrics in that test, it does have a big effect on the collected data in the real
deployment scenario. The fixed version of Cowrie performed better according to
the received commands metric with respect to the original one, as highlighted in
the data presented in section 6.2. As reported in Figure 6.5 and Figure 6.4, it is
clear that the number of input line commands per session is higher for the fixed
version of Cowrie with respect to the original one.

Thanks to the inspection that the data collected through T-Hon we were able
to improve Cowrie effectiveness. As a matter of fact, this small modification to
the honeypot allowed to remove from the collected data an important amount of
commands that were not useful to gain information about how attacks were carried
out.

61

Chapter 7

Conclusions and future work

The objective of this work was to design and develop a honeypot testing system.
The system needed to be able to automatically perform attacks toward a group
of victims. Then, the data from those attacks had to be collected to provide
analysts with comprehensive information regarding how the victims responded to
the deployed attacks. The focus of this data was the SSH connection protocol
since this carries the input line commands sent by the attacker, which are of great
interest to understand how malicious activities are performed. Furthermore, a set
of metrics and parameters were proposed to evaluate and quantify the honeypots
performance from the response fidelity point of view.

In order to meet the previously listed goals, the T-Hon system has been developed.
T-Hon is an attack and data collection automation tool based on four blocks: the
attacker, the proxy, the manager, and the victims. The four blocks work together
under the coordination of the manager to select the victim to test, attack it, and
collect the resulting data. The attacker block is based on the Metasploit Framework,
a known tool in the penetration testing domain. It provides extensive support
to the penetration testing activity. In the context of this work, we are interested
in its complete library of exploits based on known vulnerabilities and its Remote
Procedure Call Application Programming Interface. The library is useful to find
attacks suitable to any test case and the RPC API is important to allow external
interaction with the attack process and its automation. The proxy block was used
to separate the data collection and the victim selection tasks from the other blocks.
In this way, the proxy can be changed according to the kind of data that the test
is focused on without affecting the other blocks. The proxy module is based on
Cowrie in proxy mode deployed in a Docker container. The victims block regroup
all the systems that will be the recipients of the attacks. They can be honeypots
or real systems and they can be deployed as virtual machines, real machines or
Docker containers. The manager block is a Python program that is in charge of

62

Conclusions and future work

orchestrating all the tasks of the other blocks. It is set up through a configuration
file that reports the attacks that have to be deployed, their specific settings, and
the victims recipient of the attacks. At the end of the test session, T-Hon will
provide a comprehensive JSON file reporting the logs and configurations of all the
deployed attacks. The architecture of T-Hon allows adapting the system to the
type of attacks, protocols, and victims that is required to inspect.

A set of attacks has been selected from the Metasploit library and three victims
were selected: Cowrie in honeypot mode, Metasploitable, and Ubuntu. In this
way, we could evaluate how T-Hon is able to provide useful data to assess how
the honeypot behaves compared to real operative systems. We reported three case
studies featuring three different attacks. In these studies, we analyzed the T-Hon
collected data to highlight discrepancies in the different victim cases. After the data
collection phase, we assessed the honeypot performance using the proposed metrics.
Inspecting data from the attacker point of view, gave us a unique perspective of
how the honeypot behaves. Furthermore, it provided us with the opportunity to
discover some particular behaviors. In all three cases, we were able to identify
issues that could be exploited to fingerprint the honeypot, as there are concerns
regarding the way Cowrie manages the shell requests, how commands are executed
and the SSH protocol implementation. Exploiting these issues, a malicious user
could potentially recognize the honeypot among real systems, thus making it lose
its deceiptability.

Thanks to the data collected by T-Hon and then analyzed in the study cases,
we were able to identify honeypot issues and we decided to address one of them
and fix it. Then, we inspected the changes in the collected data of the modified
honeypot with respect to the original one that resulted to be significant. Among
the issues identified in the study cases, we decided to solve the one regarding the
implementation of the SSH protocol, specifically concerning the order in which the
SSH connection protocol messages are sent. We applied modifications to the Cowrie
software to make it behave similarly to the real systems that we tested. Then,
the two versions of the honeypot, the fixed and the original one, were deployed
in a real network for more than two months. Later, the data collected by both
systems were analyzed and compared. Both versions of Cowrie were subject to the
same environment. However, the fixed version of Cowrie performed much better
in terms of the number of input line commands received per session, reducing
in a considerable way the number of repeated attacks using the same input line
command. This suggested that in the fixed version of Cowrie, attackers are able to
execute more commands with respect to the other one. In the end, T-Hon proved
to be a valuable tool to test honeypots and provide meaningful data that can be
used to inspect their behaviors to gather precious insights and information.

63

Conclusions and future work

Given the current development state of the T-Hon system, we propose some
additional studies and future work that could allow to enhance the system capa-
bilities. The data collected by T-Hon is focused on the SSH connection protocol.
However, it would be interesting to perform the same kind of testing at a lower
level inspecting the transport and authentication layer protocols. Furthermore, we
propose to employ T-Hon, with the appropriate modifications, to inspect other
types of honeypots, featuring different protocols. Another interesting feature that
could be added to the system is an automated data analysis block, that could
provide an evaluation of the proposed metrics after that all tests have been carried
out. T-Hon was used with attacks identified in the Metasploit Framework library.
We suggest to perform a deeper research for new attack scripts and to find a
straightforward way to integrate them into the Metasploit Framework.

In this work, the data collected by T-Hon was used to identify odd behaviors in
honeypot operations. As introduced in section 3.1, honeypots can be integrated
with intelligent machine learning techniques that allow them to modify their
behavior according to the way the attacker interacts with them. This kind of
honeypot can learn from the received attacks and real system behavior how to
respond to incoming interactions. In this way, we propose to adopt T-Hon as a
training system, that can be employed to deploy several attacks toward intelligent
honeypots in order to train them and, as a consequence, test their performance.
The attacks could be the very same received during real environment deployments
and resubmitted in controlled circumstances. This possible use of T-Hon could
decrease the time needed to train such systems. Furthermore, it would be possible
to employ ready-to-use attacks available in various libraries or by creating ad-hoc
interactions, without waiting long periods of time for the collection of live data.

64

Appendix A

List of Linux SSH attacks

In this appendix, we report the list of SSH attacks that we selected for the scope
of this work and available in the Metasploit Framework library 1 2 reporting their
description3.

Table A.1: List of SSH Linux attacks

Begin of Table

Name Description

ceragon fibeair
known privkey

Ceragon ships a public/private key pair on FibeAir IP-
10 (FibeAir IP-10 is Ceragon’s next-generation carrier-
grade wireless Ethernet solutions family) devices that allow
passwordless authentication to any other IP-10 device.
Since the key is easily retrievable, an attacker can use it
to gain unauthorized remote access as the "mateidu" user.

1github.com/rapid7/metasploit-framework/tree/master/modules/exploits/linux/ssh
2github.com/rapid7/metasploit-framework/tree/master/modules/auxiliary/scanner/ssh
3https://www.infosecmatter.com

65

List of Linux SSH attacks

Continuation of Table A.1

Name Description

exagrid known
privkey

ExaGrid (Tiered Backup Storage) ships a public/private
key pair on their backup appliances to allow passwordless
authentication to other ExaGrid appliances. Since the
private key is easily retrievable, an attacker can use it to
gain unauthorized remote access as root. Additionally,
this module will attempt to use the default password for
root, ’inflection’.

cisco ucs scpuser This module abuses a known default password on Cisco
UCS Director. The ’scpuser’ has the password of ’scpuser’,
and allows an attacker to log in to the virtual appliance
via SSH. This module has been tested with Cisco UCS
Director virtual machines 6.6.0 and 6.7.0. Note that Cisco
also mentions in their advisory that their IMC Supervi-
sor and UCS Director Express are also affected by these
vulnerabilities, but this module was not tested with those
products.

ibm drm a3user This module abuses a known default password in IBM Data
Risk Manager. The ’a3user’ has the default password ’idrm’
and allows an attacker to log into the virtual appliance via
SSH. This can be escalated to full root access, as ’a3user’
has sudo access with the default password. At the time of
disclosure, this was an 0-day, but it was later confirmed
and patched by IBM. Versions <= 2.0.6.1 are confirmed
to be vulnerable.

loadbalancerorg
enterprise
known privkey

Loadbalancer.org ships a public/private key pair on En-
terprise virtual appliances version 7.5.2 that allows pass-
wordless authentication to any other LB Enterprise box.
Since the key is easily retrievable, an attacker can use it
to gain unauthorized remote access as root.

mercurial ssh
exec

Mercurial is a distributed revision control tool. This mod-
ule takes advantage of custom hg-ssh wrapper implementa-
tions that don’t adequately validate parameters passed to
the hg binary, allowing users to trigger a Python Debugger
session, which allows arbitrary Python code execution.

66

List of Linux SSH attacks

Continuation of Table A.1

Name Description

microfocus obr
shrboadmin

This module abuses a known default password on Micro
Focus Operations Bridge Reporter. The ’shrboadmin’ user,
installed by default by the product has the password of
’shrboadmin’ and allows an attacker to log in to the server
via SSH. This module has been tested with Micro Focus
Operations Bridge Manager 10.40. Earlier versions are
most likely affected too. Note that this is only exploitable
in Linux installations.

quantum dxi
known privkey

Quantum ships a public/private key pair on DXi V1000
2.2.1 (appliances for backup) appliances that allow pass-
wordless authentication to any other DXi box. Since the
key is easily retrievable, an attacker can use it to gain
unauthorized remote access as root.

quantum vmpro
backdoor

This module abuses a backdoor command in Quantum
vmPRO (software for VM backup). Any user, even one
without admin privileges, can get access to the restricted
SSH shell. By using the hidden backdoor "shell-escape"
command it’s possible to drop to a real root bash shell.
This module has been tested successfully on Quantum
vmPRO 3.1.2.

solarwinds lem
exec

This module exploits the default credentials of SolarWinds
LEM (security information and event management system).
A menu system is encountered when the SSH service is
accessed with the default username and password which
is "cmc" and "password". By exploiting a vulnerability
that exists on the menuing script, an attacker can escape
from a restricted shell. This module was tested against
SolarWinds LEM v6.3.1.

symantec smg
ssh

This module exploits a default misconfiguration flaw on
Symantec Messaging Gateway. The ’support’ user has a
known default password, which can be used to login to
the SSH service, and gain privileged access from remote.

67

List of Linux SSH attacks

Continuation of Table A.1

Name Description

vmware vdp
known privkey

VMware vSphere Data Protection (backup and restore)
appliances 5.5.x through 6.1.x contain a known ssh private
key for the local user admin who is a sudoer without a
password.

vyos restricted
shell privesc

This module exploits command injection vulnerabilities
and an insecure default sudo configuration on VyOS
(open-source network OS) versions 1.0.0 <= 1.1.8 to ex-
ecute arbitrary system commands as root. VyOS fea-
tures a restricted-shell system shell intended for use by
low-privilege users with operator privileges. This module
exploits a vulnerability in the telnet command to break
out of the restricted shell, then uses sudo to exploit a
command injection vulnerability in /opt/vyatta/bin/sudo-
users/vyatta-show-lldp.pl to execute commands with root
privileges. This module has been tested successfully on
VyOS 1.1.8 amd64 and VyOS 1.0.0 i386.

f5 bigip known
privkey

F5 ships a public/private key pair on BIG-IP appliances
that allow passwordless authentication to any other BIG-
IP box. Since the key is easily retrievable, an attacker can
use it to gain unauthorized remote access as root.

ssh login This module will test ssh logins on a range of machines
and report successful logins. If you have loaded a database
plugin and connected to a database this module will record
successful logins and hosts so you can track your access.

End of Table

68

Bibliography

[1] Adrienne LaFrance. Cyberwar Is Officially Crossing Over Into the Real World.
May 2017. url: https://www.theatlantic.com/technology/archive/
2017/05/cyberwar- is- officially- crossing- over- into- the- real-
world/526860/ (cit. on p. 1).

[2] Cost of a Data Breach Report 2021. Tech. rep. IBM Corporation New Orchard
Road Armonk, NY 10504: IBM Corporation, July 2021 (cit. on p. 1).

[3] Cisco Annual Internet Report (2018–2023). Tech. rep. Chesney House, 96
Pitts Bay Road, Pembroke HM 08, Bermuda: Cisco, Mar. 2020 (cit. on p. 1).

[4] The McAfee Consumer Mobile Threat Report. Tech. rep. 6220 America Center
Drive, San Jose, CA 95002: McAfee, Feb. 2022 (cit. on p. 1).

[5] Wenjun Fan, Zhihui Du, David Fernandez, and Victor A Villagra. «Enabling
an Anatomic View to Investigate Honeypot Systems: A Survey». eng. In:
IEEE systems journal 12.4 (2018), pp. 3906–3919 (cit. on pp. 1, 2, 7–10).

[6] Javier Franco, Ahmet Aris, Berk Canberk, and A. Selcuk Uluagac. «A Survey
of Honeypots and Honeynets for Internet of Things, Industrial Internet of
Things, and Cyber-Physical Systems». eng. In: IEEE Communications surveys
and tutorials 23.4 (2021), pp. 2351–2383 (cit. on pp. 2, 8, 9, 11).

[7] Cowrie. Cowrie Documentation. Oct. 2022. url: https://cowrie.readthed
ocs.io/en/latest/index.html (cit. on pp. 2, 11).

[8] Ahmad Salah Al-Ahmad, Hasan Kahtan, Fadhl Hujainah, and Hamid A.
Jalab. «Systematic Literature Review on Penetration Testing for Mobile
Cloud Computing Applications». In: IEEE Access 7 (2019), pp. 173524–
173540. doi: 10.1109/ACCESS.2019.2956770 (cit. on p. 2).

[9] Mohd Nizam Zakaria, Poon Ai Phin, Nurfarahin Mohmad, Saiful Adli Ismail,
Mohd Nazri Kama, and Othman Yusop. «A Review of Standardization for
Penetration Testing Reports and Documents». In: 2019 6th International
Conference on Research and Innovation in Information Systems (ICRIIS).
2019, pp. 1–5. doi: 10.1109/ICRIIS48246.2019.9073393 (cit. on pp. 2, 12,
13).

69

https://www.theatlantic.com/technology/archive/2017/05/cyberwar-is-officially-crossing-over-into-the-real-world/526860/
https://www.theatlantic.com/technology/archive/2017/05/cyberwar-is-officially-crossing-over-into-the-real-world/526860/
https://www.theatlantic.com/technology/archive/2017/05/cyberwar-is-officially-crossing-over-into-the-real-world/526860/
https://cowrie.readthedocs.io/en/latest/index.html
https://cowrie.readthedocs.io/en/latest/index.html
https://doi.org/10.1109/ACCESS.2019.2956770
https://doi.org/10.1109/ICRIIS48246.2019.9073393

BIBLIOGRAPHY

[10] OffSec Services Limited. Metasploit unleashed. Nov. 2022. url: https://www.
offensive-security.com/metasploit-unleashed/ (cit. on p. 3).

[11] Christos Dalamagkas, Panagiotis Sarigiannidis, Dimosthenis Ioannidis, Eider
Iturbe, Odysseas Nikolis, Francisco Ramos, Erkuden Rios, Antonios Sarigian-
nidis, and Dimitrios Tzovaras. «A Survey On Honeypots, Honeynets And
Their Applications On Smart Grid». In: 2019 IEEE Conference on Network
Softwarization (NetSoft). 2019, pp. 93–100. doi: 10.1109/NETSOFT.2019.
8806693 (cit. on p. 4).

[12] Solomon Z. Melese and P.S. Avadhani. «Honeypot System for Attacks on SSH
Protocol». eng. In: International journal of computer network and information
security 8.9 (2016), pp. 19–26. issn: 2074-9090 (cit. on p. 5).

[13] Jurgen Schonwalder, Georgi Chulkov, Elchin Asgarov, and Mihai Cretu.
«Session resumption for the secure shell protocol». In: 2009 IFIP/IEEE
International Symposium on Integrated Network Management. 2009, pp. 157–
163. doi: 10.1109/INM.2009.5188805 (cit. on pp. 5, 10).

[14] Melike Baser, Ebu Yusuf Guven, and Muhammed Ali Aydin. «SSH and Telnet
Protocols Attack Analysis Using Honeypot Technique: Analysis of SSH AND
TELNET Honeypot». eng. In: IEEE, 2021, pp. 806–811 (cit. on pp. 5, 10).

[15] The Secure Shell (SSH) Connection Protocol. The Internet society, Jan. 2006.
url: https://www.rfc-editor.org/info/rfc4254 (cit. on pp. 5, 37, 42–44,
48, 51).

[16] Jason M Pittman, Kyle Hoffpauir, Nathan Markle, and Cameron Meadows.
«A Taxonomy for Dynamic Honeypot Measures of Effectiveness». eng. In:
(2020) (cit. on pp. 6, 7, 31).

[17] Jason M Pittman, Kyle Hoffpauir, and Nathan Markle. «Primer – A Tool for
Testing Honeypot Measures of Effectiveness». eng. In: arXiv.org (2020). issn:
2331-8422 (cit. on p. 7).

[18] A Vetterl and R Clayton. «Bitter harvest: Systematically fingerprinting low-
and medium-interaction honeypots at internet scale». eng. In: 12th USENIX
Workshop on Offensive Technologies, WOOT 2018, co-located with USENIX
Security 2018, 2018 (cit. on pp. 7, 33).

[19] A Vetterl, R Clayton, and I Walden. «Counting outdated honeypots: Legal
and useful». eng. In: Proceedings - 2019 IEEE Symposium on Security and
Privacy Workshops, SPW 2019, 2019 (cit. on p. 7).

[20] L. Spitzner. «The Honeynet Project: trapping the hackers». In: IEEE Security
& Privacy 1.2 (2003), pp. 15–23. doi: 10.1109/MSECP.2003.1193207 (cit. on
pp. 8, 9).

70

https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://doi.org/10.1109/NETSOFT.2019.8806693
https://doi.org/10.1109/NETSOFT.2019.8806693
https://doi.org/10.1109/INM.2009.5188805
https://www.rfc-editor.org/info/rfc4254
https://doi.org/10.1109/MSECP.2003.1193207

BIBLIOGRAPHY

[21] Lukas Zobal, Dusan Kolar, and Radek Fujdiak. «Current State of Honeypots
and Deception Strategies in Cybersecurity». eng. In: 2019 11th International
Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT). Vol. 2019-. IEEE, 2019, pp. 1–9. isbn: 9781728157634
(cit. on pp. 9–11).

[22] Michail Tsikerdekis, Sherali Zeadally, Amy Schlesener, and Nicolas Sklavos.
«Approaches for Preventing Honeypot Detection and Compromise». In: 2018
Global Information Infrastructure and Networking Symposium (GIIS). 2018,
pp. 1–6. doi: 10.1109/GIIS.2018.8635603 (cit. on p. 10).

[23] Assessing Security and Privacy Controls in Information Systems and Organi-
zation. Tech. rep. Gaithersburg: NIST, Jan. 2022 (cit. on pp. 11–13).

[24] Georgia Weidman. Penetration Testing. eng. No Starch Press, 2014. isbn:
1-59327-564-1 (cit. on p. 11).

[25] Common Vulnerabilities and Exposures (CVE) Numbering Authority (CNA)
Rules. Common Vulnerabilities and Exposures Program. 2016 (cit. on p. 11).

[26] Kevin Allen Lee; Cardwell. Advanced penetration testing for highly-secured
environnements : employ the most advenced pentesting techniques and tools
to build highly-secured systems and environnements. eng. Packt Publishing,
2016. isbn: 1-78439-581-1 (cit. on p. 12).

[27] Abhinav Singh, Nipun Jaswal, Monika Agarwal, and Daniel Teixeira. Metas-
ploit Penetration Testing Cookbook: Evade Antiviruses, Bypass Firewalls,
and Exploit Complex Environments with the Most Widely Used Penetration
Testing Framework, 3rd Edition. eng. Birmingham: Packt Publishing, Limited,
2018. isbn: 9781788623179 (cit. on pp. 13–15).

[28] OffSec Services Limited. Metasploit unleashed. Nov. 2022. url: https://www.
offensive-security.com/metasploit-unleashed/ (cit. on pp. 14, 30).

[29] Rapid7. Metasploit Documentation. Oct. 2022. url: https://docs.metaspl
oit.com (cit. on pp. 14, 15, 18).

[30] HelpSystems. Core Security. Oct. 2022. url: https://www.coresecurity.
com/products/core-impact#resources (cit. on p. 18).

[31] PortSwigger Ltd. PortSwigger. Oct. 2022. url: https://portswigger.net/
burp (cit. on p. 18).

[32] Truelist. Linux Statistics. Oct. 2022. url: https://truelist.co/blog/
linux-statistics/ (cit. on p. 29).

[33] Cisco. UCS director. Oct. 2022. url: www.cisco.com/c/en/us/products/
servers-unified-computing/ucs-director/index.html (cit. on p. 35).

71

https://doi.org/10.1109/GIIS.2018.8635603
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://docs.metasploit.com
https://docs.metasploit.com
https://www.coresecurity.com/products/core-impact#resources
https://www.coresecurity.com/products/core-impact#resources
https://portswigger.net/burp
https://portswigger.net/burp
https://truelist.co/blog/linux-statistics/
https://truelist.co/blog/linux-statistics/
www.cisco.com/c/en/us/products/servers-unified-computing/ucs-director/index.html
www.cisco.com/c/en/us/products/servers-unified-computing/ucs-director/index.html

BIBLIOGRAPHY

[34] National Insitute of Standards and Technology. National Vulnerability Database.
Oct. 2022. url: https://nvd.nist.gov (cit. on p. 35).

[35] Quantum vmPRO User’s Guide. Quantum Corporation. 2015 (cit. on p. 45).
[36] F. Soro, I. Drago T. Rescio, D. Giordano M. Mellia, Z. B. Houidi T. Favale,

and D. Rossi. «Enlightening the Darknets: Augmenting Darknet Visibility
with Active Probes». In: (2021) (cit. on p. 52).

72

https://nvd.nist.gov

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives and related work
	Objectives and research context
	Related work

	Background
	Honeypots
	Penetration testing
	Penetration testing tools
	Kali Linux
	The Metasploit Framework
	Metasploitable

	T-Hon: testing honeypots
	System requirements
	The architecture
	The attacker
	Attack deployment

	The proxy
	The victims
	The manager
	Manager settings
	Interaction with the Metasploit framework
	Victim selection
	Attack management
	Log collection

	Testing process
	Requirement compliance

	Case studies
	Methodology
	Victims
	Attacks selection
	T-Hon settings

	Test goals
	Metrics

	Results
	Attack 1: Cisco UCS scpuser
	Payload analysis
	Connection analysis
	Metric evaluation

	Attack 2: SSH Login
	Payload analysis
	Connection analysis
	Metric evaluation

	Attack 3: Quantum vmPRO backdoor
	Payload analysis
	Connection analysis
	Metric evaluation

	Case studies review

	Work application
	Honeypot modification
	Deployment

	Analysis of the collected data
	Data quantification
	SSH connections and IP addresses
	Commands received

	Result review

	Conclusions and future work
	List of Linux SSH attacks
	Bibliography

