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Abstract

Warehouse optimization is a process that aims at improving the management of
time, space, and resources inside a warehouse, minimizing the overall costs yet
ensuring a satisfactory quality of service for the customers.

When running an efficient warehouse most effort is on the inventory management,
which is a well-known challenge for businesses: on the one hand they have to avoid
late product supply, which would result in lost profits, while on the other hand they
need to focus on a careful inventory control to mitigate the rise of costs, caused by
an excessive accumulation of products.

The purpose of this thesis is that of supporting industrial fleet managers when
vehicles undergo maintenance, providing a way to cope with the need of spare
parts under realistic situations, represented by the uncertain nature of components
demand. This work proposes a Two-stage Stochastic Mixed-Integer Nonlinear
Problem that aims at minimising both spare parts inventory costs and vehicle
offline periods when the requested items are not immediately available.

The presence of historical data allows to implement a data-driven approach: we
use data collected between 2020 and 2022 from industrial vehicles’ maintenance
history to investigate the spare parts demand distributions and provide an efficient
forecast.

First, we investigate the case in which the demand distribution is stationary
and does not change over time, providing an optimal target inventory level to
maintain for ensuring an efficient warehouse management. Secondly, we study the
possibility that the demand may vary over different time periods, thus providing
the optimal order quantity per spare part and keeping into account the difference
in the shipment time per component. Finally, we also exploit machine learning
techniques, introducing the uncertainty of forecast of spare parts demand in the
optimization process.

Results show that, through automation and a careful stock control strategy,
businesses are able to improve customer satisfaction and reduce their inventory
holding costs, especially if compared with manual warehouse management or naive
strategies.
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Chapter 1

Introduction

1.1 Motivation and Objectives
Warehouse optimization is an essential process for efficiently running warehouses of
all sizes. In particular, it exploits automated solutions to improve the management
of time, space and resources inside the warehouse itself, minimizing costs while
meeting customers’ needs. Being an important step of the whole supply chain
process, a systematic warehouse management has significant effects on the business
profits, in terms of reducing costs, planning and predicting customers’ requests,
thus rising their satisfaction, contributing to the overall enterprise’s growth.
The focus of this work is specifically on stock management, being one of the
practices on which to act for increasing the efficiency of the process. In this context,
we collaborate with a company providing telematics services which support fleet
managers in scheduling maintenance operations. The proposed approach aims at
implementing an automated solution to handle spare parts requests coming from a
large company producing vehicles for goods and people transportation. Starting
from the provided heterogeneous input data, related to the maintenance history
and past usage of the vehicles under study, it is possible to analyse some of the
main requirements that motivate this thesis project.

1.1.1 Research Questions
The proposed work aims at solving the following relevant points:

• As soon as industrial vehicles undergo maintenance, it would be better to
already have the needed spare parts in the inventory, in order to avoid long
waiting times before changing the eventually damaged components. Of course,
this is ensured if the orders quantities are placed correctly by the fleet managers,
avoiding late supply. Moreover, the quantities of spare parts to order are

1



Introduction

highly influenced by the lead time that it takes for them to be shipped, which
is considered deterministic.

• The uncertainty of the demand for the spare parts must be correctly managed.
When demand is uncertain and difficult to forecast, ordering the right quantities
of product at the right time is essential.

• For what concerns the monetary costs, the company wishes for an improvement
in terms of expenses for the holding of spare parts quantities in the inventory.
Notice that at the moment there is no intelligent strategy adopted by them
for the management of the inventory.

To this end, in chapter 1 we define the problem and the context in which it takes
place; in chapter 2, we provide a review of the current literature that is relevant for
this case study; in chapter 3 we introduce the employed dataset with an overview
of its characteristics and peculiarities; in chapter 4 we present the relevant theory
used to support this thesis project; finally, in chapter 5 we describe in detail the
followed methodology and the corresponding results of the work and performances.

1.1.2 Workflow
In particular, the workflow of this project is composed of 3 phases, each of which
can be divided into sub-phases, as shown in Figure 1.1.

Figure 1.1: Workflow of the thesis

1. Data Pre-Processing, consisting in: an initial description of the exploited
tools; data transformation for putting together all the meaningful information
contained in the different available datasets; preparation and characterisation
of the resulting dataset to understand the behaviour of the data; a critical
analysis on the different maintenance cycles of the vehicles under study to get
to the spare parts demand distributions.
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2. Forecast, consisting in the analysis of the adopted training strategy and the
Random Forest regression algorithm for specific categories of vehicles with
long maintenance cycles.

3. Optimization Model, consisting in: an initial description of the tools used
to build and solve the model; the statement of the optimization problem and
its characteristics; the mathematical formulation of both the stationary and
non-stationary optimization models.

1.2 Warehouse Management
Warehouse management includes all the processes that are needed to correctly
run the daily operations of a warehouse. Some examples are the organization of
the space inside of it to maximize the storage capacity, the management of the
stock quantities themselves, the correct choice of the staff, the coordination among
suppliers and transportation companies to handle shipment and the subsequent
fulfilment of the customers’ orders. An effective cooperation among these activities
should ensure an increase in productivity and a reduction of costs.

Figure 1.2: Warehouse Management

1.2.1 The importance of Warehouse Management in the
Supply Chain process

It is important to notice that any improvement in the management of a warehouse
has effects on the whole supply chain process. Supply chain in fact is

[. . . ] the process generated from the time the customer places an order to the

3
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moment the product or service has been delivered and charged. [1]

In other words, the supply chain refers to the complete flow of a product until it is
sold and it involves all those activities in charge of following the whole product
life cycle, from the material purchase to manufacture it, up to the arrival of the
end product to the customer. The supply chain is also known as the value chain,
since products increase their value as they advance through its stages (Figure
1.3). After having obtained raw materials from the designated suppliers, the first
stage is related to the manufacturing process itself, in which the producer will
transform them into the end product. The second stage is a broader set called
logistic involving storage, transportation, and distribution management. The final
product is distributed to warehouses and distribution centres, and logistic takes care
of the efficient and in-time traveling of the good along the supply chain. Products
also need to adhere to some guidelines and some tariffs must be paid. In the final
stage the goods reach the customers from the point of sale or directly from the
warehouse, transported by delivery drivers across the country.

Figure 1.3: Supply Chain Stages
[2]

However, the first definition of supply chain management came out in 1982
thanks to Oliver and Webber [3], who defined it as a technique to reduce stocks in
companies belonging to the same supply chain. Thus the term was used specifically
to speak of warehouse and inventory management within a supply chain, when the
concept actually involves the management of the whole chain.

As a matter of fact, our focus is on the logistic stage, in particular to the part of
it comprising management of the warehouse, and it proves the fact that a correct
handling of this step influences the whole supply chain, aiming at achieving customer

4
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satisfaction through effective order management and optimization practices.

1.2.2 Warehouse Optimization Strategies

When managing a warehouse there are some strategies that result to be useful
to bring advantages to the optimization process, such as reducing late deliveries
that could make customers unsatisfied and better exploiting the space inside the
warehouse by carefully forecasting what to store and what not. Some of the most
efficient practices are:

• Warehouse slotting optimization, which aims at establishing the best
place inside the inventory for each product, allowing faster identification of
items which are ready to be distributed. The physical space in the warehouse
is optimized by ensuring things are clearly labeled, and items are stocked in
order of popularity to make it easy for pickers to find items that are frequently
ordered. Since it usually involves a high quantity of products, it is challenging
to perform it manually, thus requiring some software systems able to consider
enough room for any warehouse operation like product that remain in storage
for long or possible returns.

• Automation, achieved through some warehouse management softwares that
aim at replacing manual checks of correct products reception and shipment. It
is a monetary investment, however it lowers the risks related to human errors,
by providing automated barcode scanning of goods then uploaded to a server.

• Shipping process optimization, with not only the purpose of delivering
goods to customers in time, but also that of making sure that they are
distributed to the right ones. Through routing automation it could be possible
to reduce errors and delays, also by choosing the most suitable shipping carriers
by delivery time or costs.

• Inventory replenishment optimization, obtained through careful analysis
of the available historical data about the customers requests for specific items
and forecasting of the demand. This makes the whole process less time-
consuming and helps to foresee what will be the quantities needed in specific
future instants. Moreover, it is essential to balance the availability of stock
quantities to fulfil the demand with the need to prevent overstocking that
inevitably leads to higher holding costs.

5
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1.2.3 Difference between Warehouse Management, Inven-
tory Management and Stock Management

Terms like warehouse management, inventory management and stock management
are often used interchangeably, but there are some differences.

Warehouse management is a broad term that includes different aspects
of warehouse operations, like warehouse organization and design, labor, order
fulfillment, warehouse monitoring and reporting.

Inventory management is centered on efficiently ordering, storing, moving,
and picking the materials needed to make products or fulfill orders.

Stock management is often used as another term for inventory management,
but it is possible to point out the difference between the two, especially for companies
involved in manufacturing products. Stock generally refers to finished product
ready for sale or distribution, while inventory includes everything in the warehouse:
raw materials, materials that are in the process of being built into products and
finished products (stock). Stock management is therefore a subset of inventory
management that focuses specifically on holding as little stock as possible to save
space and costs while still being able to meet customer demand, which is the
purpose of this study. For simplicity the two definitions will be used as synonyms.

1.3 Inventory Optimization
Inventory or stock optimization is a supply-chain management method that attempts
to remove excess inventory while maintaining the right amount of goods in stock
to meet consumer demand and revenue goals, thus balancing demand and supply.

1.3.1 Inventory Optimization Challenges
Inventory is the largest single asset that most companies have. Also Wall Street looks
attentively at their inventory handling when making evaluations about businesses’
performances. Inventory consumes space, gets damaged, and sometimes becomes
obsolete and carrying surplus inventory costs the organisation. Studies show that
70% of correlation exists between overall profits and inventory turns, however a high
number of companies still use traditional strategies to cope with customers demand.
These consist in companies purchasing high quantities of products to cope with
demand spikes, while today inventory optimization is considered a crucial strategy
to save working capital by reducing stock quantities without damaging operations
and sales. The reasons why it has become a central point are explained by some
organisations joining the APQC Open Standards Benchmarking in logistics: they
show that more than one-third of their logistics labor is allocated to operating
warehouses and keeping the optimal amount of inventory on hand could make a
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significant difference. In addition, inventory carrying costs can be non-negligible
for organizations. Figure 1.4 shows APQC data for inventory carrying costs in
2011, pointing out that median companies spend 10 percent of the annual value
of their inventory to carry it. Bottom performers, i.e. those organizations at or
below the bottom quartile of performance spend almost 10 percent more than top
performers (i.e., organizations at or above the top quartile of performance) to carry
their inventory: 15.0 percent compared to 5.8 percent of the inventory value.

Managing inventories has become more and more important also after 2001,
when network giant Cisco announced $2.1 billion inventory write down, while
in 2006 Wal-Mart began its Inventory Deload Program, after finding that total
inventory levels had been rising at a much higher rate with respect to the company’s
sales growth (almost 90%).

As a matter of fact, an effective inventory optimization program should invest
on good design, effective processes, appropriate technology, and regular assessment.

Figure 1.4: Percentage of Inventory Holding Costs
[4]

1.3.2 Inventory Optimization Benefits
Inventory optimization can lead to significant economic benefits. IDC Manufactur-
ing Insights, for instance, reported that many organizations were able to reduce
inventory levels by up to 25% in one year. In particular, they give an assessment
of providers participating in the worldwide supply chain inventory optimization
market.
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BP Castrol, for instance, which is a manufacturer, distributor, and marketer in
the automotive field, turned to inventory optimization because slow moving products
had excess inventory while fast moving products were often out-of-stock. Safety
stocks were set manually and infrequently adjusted, based largely on personal
experience, and in the calculations there was little formal sense of supply and
demand uncertainty. They improved demand sensing by generating more robust
and reliable forecasts, improving monitoring and safety stocks. In this way BP
Castrol reduced inventory levels by 35% in two years and at the same time increased
customer satisfaction by 9%.

Also Smiths Medical, a leading supplier of specialized medical devices and
equipment for global markets, was able to reduce overstocks and unsatisfied demands
exploiting inventory optimization strategies, improving levels of stock availability
and, consequently, profits.

1.3.3 Inventory Optimization Characteristics
Inventory optimization models can be classified as deterministic or stochastic.
Deterministic models are based on the assumption that all parameters and
variables associated with an inventory stock are known and that there is no
uncertainty associated neither with demand nor with the replenishment of inventory
stock. Demand is thus assumed to be known and either static (i.e. constant over
an infinite horizon) or dynamic. Stochastic models, (or Probabilistic) on the
contrary, take into account the more realistic assumption that demand is a random
variable that can be forecast or whose distribution may be known. In this case
demand can be stationary or not. In this kind of models there can be other sources
of uncertainty besides the demand, such as the lead time for the shipment of a
product.

Another distinction is made by considering the time horizon of the optimization.
For stochastic models it is possible to perform it considering a Single Stage
optimization, thus minimizing the inventory in just one time window, or through
Multi Stage optimization that performs minimization over several time periods.

Figure 1.5: Types of demand classification
[5]
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1.3.4 Spare Parts Inventory Optimization
Spare parts are common inventory stock items, which are needed to maintain
equipment and reduce the consequences of its downtime. According to Gallagher
et al. [6] machinery annually consumes spare parts amounting to as much as
2.5% of the purchase price and they might have a useful life of up to 30 years.
If spare parts result to be not available when maintenance or repair of certain
equipment are needed, businesses may encounter some economic losses. As a
consequence, a sufficient availability of components must be ensured through spare
parts management, while keeping the costs as low as possible.

Due to some peculiar characteristics of this kind of products, spare parts
management can be considered as a special case of inventory stock management:

• Intermittent demand patterns that make spare parts demand difficult to
forecast due to periods of zero demand followed by others of non-zero one [7].

• Heterogeneity, of spare parts and their high number make difficult for
companies to handle them inside their inventories. If some enterprises want
to devise specific stock control strategies for each kind of spare part, this is
made particularly challenging.

• Obsolescence of some spare parts, that make necessary the minimization of
stocks, with only small quantities per Stock Keeping Units (SKU), to avoid
the risks of excessive holding costs.

• Dependence on equipment usage, meaning a close relationship between
spare parts consumption and maintenance. Thus the usage patterns of equip-
ment and their maintenance strategies are important factors in designing spare
parts optimization.[8][9]

For all these reasons, it is crucial to use forecasting strategies together with past
data analysis to understand product variability, exploiting previously recorded
demand. A good understanding of which products need to be stocked, in what
quantities and across what time intervals, is also essential: it helps to understand
the safety stock calculations to address sudden fluctuations in demand. Moreover,
replenishment strategies are important to understand which quantities are needed
to be reordered at what points in time. Also, it is necessary to keep track of the
goods which are in transit and not just those which are in stock at the warehouse.

1.3.5 Periodic vs Continuous Review Policies
When taking into account this kind of demand uncertainty and replenishment
strategies, different inventory control policies can be analysed, since using the right
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one can add a lot of value to help in inventory optimization efforts. They can be
classified in Periodic Review policies and Continuous Review policies.

• Periodic Review Policies: this system is adopted when managers order
products at the same time each period. The most common are (R,Q), (R,S)
and (R,s,S) where R indicates the periodicity of the review. Every R time
units either a fixed amount Q of items or a variable quantity sufficient to
reach the target stock level S is ordered. In (R,s,S) systems instead an order
is only performed if the stock position is equal to a threshold s or below.

• Continuous Review Policies: in this type of system inventory is continu-
ously monitored. Some common policies are (s,Q) and (s,S): whenever the
stock position is less than or equal to s, an order of Q units is placed or a
variable quantity sufficient to raise the stock level to position S.

1.3.6 Sources of Cost in Inventory Optimization
The kind of policies analysed in Section 1.3.5 can be driven by four sources of costs:
ordering, holding, shortage and spoilage.

Ordering cost is assumed to be fixed and does not depend on the number of
ordered units, while holding cost represents the the amount of rent a business pays
for the storage area where they hold the inventory. These two costs are associated
with operational aspects and can be estimated up to a certain level of accuracy.

Shortage costs, also known as stock-out costs, are related with the extra costs
incurred when a product demand is not satisfied, causing a delay due to temporary
unavailability. Some of the reasons might be emergency shipment costs or disrupted
production costs. Spoilage costs are due to the fact that perishable inventory stock
can rot or spoil if not sold in time, so controlling inventory to prevent spoilage is
essential. These last two costs are more difficult to be estimated.

10



Chapter 2

Related Literature

2.1 General Analysis

In this section we provide a review of relevant literature considering some difficulties
arising from inventory management, such as uncertain demand and lead time,
together with some methodologies that cope with them.

Unknown demand complicates inventory management problems. For this reason,
it is essential to provide demand information in advance to help controlling stock
quantities in the best way possible. Nakade et al. [10] emphasise how production
and inventory control using advance demand information (ADI) decrease the
amount of products in inventory and backlogs, pointing out the importance of the
exploitation of preliminary demand insights. In this context, ADI refers to the
piece of information related to the demand that managers get before it actually
occurs.

When demand is uncertain and difficult to forecast, ordering the right quantities
of product at the right time is essential. Samak-Kulkarni et al. [11] analyse several
models to minimize the total annual inventory costs for different items, considering
the nature of the demand according to different thresholds for its coefficient of
variation. Their study takes into account 288 different items and to simplify the
control over the inventory they perform an Always Better Control (ABC) analysis
to classify them into three categories according to their usage level (high, medium,
low). The first model they analyse is the lot for lot: the system uses the exact
shortage quantity (requirement minus available stock) as the order quantity in the
case of a material shortage. In this case the holding costs are zero, but this causes
shortage costs to rise. The second model is the Economic Order Quantity (EOQ),
which is the order quantity that minimizes total inventory holding costs. However,
one of the important limitations of the economic order quantity is that it assumes
the demand for the company’s products is constant over time. The Period Order
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Quantity lot-size rule is the third model, and it is based on the same theory as the
economic-order quantity. It uses the EOQ formula to calculate an economic time
between orders. This is calculated by dividing the EOQ by the demand rate. This
produces a time interval for which orders are placed. Instead of ordering the same
quantity (EOQ), orders are placed to satisfy requirements for the calculated time
interval. The number of orders placed in a year is the same as for an economic
order quantity, but the amount ordered each time varies. Thus, the ordering cost is
the same but, because the order quantities are determined by actual demand, the
holding cost is reduced. The best performing model is however the Wagner-Whitin
algorithm that determines the optimal batch size for a product with a dynamic
demand considering also capacity constraints.

The work from Axsater [12] analyses one of the most common inventory control
problems under normally distributed demand: the purpose is that of minimizing
holding and ordering costs of a single-echelon inventory system considering a fill rate
constraint. The study aims at determining the reorder point and the order quantity
by using an (R,Q) policy, so that the total expected costs are minimized under the
fill rate constraint. In this case, the fill rate is the amount of customer demand that
can be satisfied with the immediately available stocks, and it can be empirically
measured as the average of the correctly served requests with respect to the total
number of them. It is important when controlling inventories as it represent the
amount of demand that could be satisfied by improving the management of the
inventory itself. Two procedures are proposed: one is based on a two-step approach
in which the order quantity is estimated through an Operational Research (OR)
deterministic model; the other one reformulates the problem for a given fill rate
value so that it reduces to a single parameter, thus solving it exploring a grid of
values of this parameter and a certain amount of fill rates. At the end, a table for all
items is obtained and the single item solutions result using a linear or polynomial
interpolation in the table. Results show that this solution is very close to the
optimal one, even if savings appear to be larger for low service levels and smaller
for high service levels.

Another work focusing on specific optimization approaches to cope with station-
ary uncertain demand is the one from Perez et al. [13]. It presents an inventory
management problem for a make-to-order supply chain, with inventory holding
locations at each node. Its aim is that of thus dealing with complex supply chain
networks with many distribution points from the point-of-origin to the endpoint,
the consumer. It also considers heterogeneous lead times between nodes. In partic-
ular, a retailer is subject to an uncertain stationary consumer demand for a single
product at each time period, and two sales scenarios are taken into account, i.e.
backlogging and lost sales. The daily inventory replenishment requests are modeled
and optimized using deterministic linear programming, multi-stage stochastic linear
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programming, and reinforcement learning, and the obtained performances are com-
pared in terms of both profits and service levels. The deterministic model (DLP)
uses either the rolling horizon or shrinking horizon technique to determine optimal
re-order quantities for each time period at each node in the supply network, and the
demand is modeled as the expected value over the time window. The multi-stage
stochastic program (MSSP) exploits a scenario tree and both the shrinking and
rolling horizon to choose the optimal reorder quantity at each stage. Finally, the
reinforcement learning model (RL) makes re-order decisions according to the overall
network state. Even though the application of the work is slightly different from
our case study, it is interesting to analyse the outcomes of the different strategies:
of the three approaches, stochastic modeling yields the largest increase in profit,
whereas reinforcement learning creates more balanced inventory policies that would
potentially respond well to network disruptions. However, the deterministic model
performs also well in determining reorder policies in a dynamic way, leading to
comparable results with respect to reinforcement learning. The average value of
lost sales for all the approaches in a single node are summarized in Figure 2.1.

Figure 2.1: Average unfulfilled demand at a single node
[13]

In the previously mentioned papers the stochastic demand was stationary.
However, several cases can be found in the literature analysing non-stationary
demand problems. Armagan Tarim et al. [14] address the single-item non-stationary
stochastic demand inventory control problem under a variation of the (R,S) policy.
If demand were stationary, the optimal inventory replenishment policy determined
using (R,S) would be cyclical, that is, a sufficient amount of order would be
placed every fixed number of R periods to raise the inventory position to the level
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S. However, under non-stationary stochastic demand assumption this a difficult
problem where the two control parameters are non stationary. The actual demand
per period is assumed as normally distributed random variable considering forecast
values. By means of a piecewise linear approximation to the non-linear cost function,
a certainty equivalent mixed integer programming model is built. The accuracy of
the approximation can be improved by introducing new breakpoints—each adding
a new set of constraints without requiring additional variables—to the piecewise
linear approximation. The resultant MIP model gives the approximately optimal
solution in terms of the number and timing of the replenishments and the associated
order-up-to-levels. Using these (R,S) policy parameters and observing the realized
demand, the size of the actual replenishment orders for the periods when stock
reviews take place are determined.

Another study that addresses the non-stationarity of the demand, with the
additional complexity of the perishability of the managed good, is by Gitae Kim
et al. [15]. They address a common single-echelon single-period inventory control
problem, i.e. the newsvendor model, extending it to a multi-period one. Instead of
minimizing the inventory, the model maximizes the expected profit considering the
trade-off between remaining newspapers costs and shortage costs under demand
uncertainty. They provide novel knowledge to optimize the trade-off between
delivery, transshipment, shortage, and holding costs. In addition, the model
supports decision making for allocating inventory of short-life-cycle products under
the uncertainty. They first propose the mathematical model for multi-period
newsvendor problem with transshipment and non-stationary demand and then
develop a multi-stage stochastic programming model to optimize the inventory
control policy. The assumption of a non-stationary demand is due to the fact that
a stationary one may not be valid in practice because of economic conditions and
seasonal effects of the newspapers requests. The uncertainty of data is described by
a probability distribution and gradually revealed over the stages in form of a set of
scenarios, indicating the possible realization of each random event. The progressive
hedging method (Figure 2.2) is used to solve the problem, aiming at solving the
multistage stochastic program through scenario decomposition. The experimental
results show that the proposed multi-stage stochastic programming model performs
better than the EOQ and single-period newsvendor models. Furthermore, this
work also provides an interesting sensitivity analysis of the relationships among the
initial inventory, the holding, delivery, transshipment and shortage costs, showing
that as the holding costs increase, also the delivery and transshipment ones do,
while the shortage is stable (Figure 2.3).
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Figure 2.2: Progressive Hedging method
[15]

Figure 2.3: Sensitivity analysis of the holding cost
[15]

The perishability of products while minimizing inventory is also considered in
Dillon et al. work [16]. The purpose is that of managing inventories in the blood
supply chain while minimizing the operational costs and blood shortage or wastage
due to outdating, taking into account demand uncertainty. This latter is modeled
by considering a general stochastic process that can be solved by an off-the-shelf
optimization software like CPLEX. Eight type of bloods are considered, together
with the average and standard deviation of their daily demand. The adopted
policy is an (R,S) one, where R is the optimal time between reviews and S is the
target inventory level used as a reference for defining order quantities. A two-stage
stochastic model with recourse is formalized, where the first stage decisions to be
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made before the uncertainty realization are the R and S parameters, while the
second stage ones that are made after the uncertainty disclosure are those referring
to the daily operations of the system under each scenario of the model. The resulting
model is a Mixed-Integer Linear Program (MILP) representing the deterministic
equivalent formulation of the two stage stochastic one. For their case study, after
the definition of the demand distribution, 10 demand scenarios are generated
for three months and each blood type using a Monte Carlo sampling approach
and the distribution is assumed to be identically and independently distributed.
To evaluate results, the authors suggest four key performance indicators (KPI),
i.e. total cost, because of the cost-oriented management approach that aims at
minimizing inventory costs, daily average outdate and average unmet demand,
measured in number of units, average age at issue, corresponding to the average
age of units transfused in a day, and average inventory on-hand per day. Outcomes
are reported in Figure 2.4 for one of the experiments with service level equal to 95%
and outdate limiti equal to 5%, and they show that the optimised policy presents
improvement of up to 50%.

Figure 2.4: Optimised policy with respect to benchmark actual hospital policy in
%

[16]

In many cases demand is not the only source of uncertainty, as Kulkarni et al.
discuss in [17]. They consider a production-inventory system where the production
and demand rates are modulated by a finite state Continuous Time Markov Chain
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(CTMC). The exploited order policy involves the placing of an order of size Q
as soon as the inventory position falls below a reorder point R, while taking into
account stochastic i.i.d. lead times following an exponential distribution. They
derive the distribution of the inventory level and study also the sensitivity of the
system with respect to other lead times distributions.

2.2 Inventory Optimization of Spare Parts
Spare parts and their corresponding demand are a complex subset of inventory items
to cope with when speaking of inventory optimization, because of the high number
of managed parts, their intermittent patterns and the risk of stock obsolescence.
In industrial contexts the proportion of the stock range that is devoted to spare
parts is often considerable as they constitute up to 60% of the total stock value.
Thus, small improvements in their management may be translated to substantial
cost savings [18].

As customer expectations rise and product complexity increases, an enormous
quantity and variety of spare parts is stocked. At the same time, product life-cycles
are becoming shorter due to rapid technology advancement, leading to the need of
carefully analysing the characteristics of the spare parts in each phase of this cycle,
taking into account eventual obsolescence. Hu et al. in [19] provide an analysis of
different OR strategies and an overview of spare parts management, pointing out
an innovative framework reported in Figure 2.5. Under these conditions advanced
inventory management strategies can efficiently reduce the inventory cost while
achieving satisfactory service levels.

Li et al. [20] propose a stochastic programming model for the supply chain
planning of maintenance, repair and operation (MRO) spare parts (Figure 2.6),
becoming more and more relevant for manufacturing enterprises. To do so, they take
into account the fact that randomness and uncertainty in storage and production
must be correctly modeled because of the specificity of this item category, ensuring
availability of components and a minimization of costs. In particular, the focus
of their work is that of minimizing production, setup, storage and distribution
costs ensuring a good service level. Considering a multi-product multi-period
maintenance, they build a model of stochastic programming combined with multi-
choice programming, in which the decision maker can model uncertain parameters
as random variables and dynamically set multiple choices for some constraint
parameters according to the situation. The Lagrange interpolating polynomial
approach is used to derive the deterministic equivalent of the model and the
equivalent non-linear mixed integer programming model is solved. The results of
the numerical examples show the efficiency of the model, through some testing
with continuous caster bearings. Moreover, with the aid of the technologies from
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Figure 2.5: Framework for spare parts management
[19]

the Internet of Things, mobile Internet and Big Data, information on product
operations and user feedback could also be collected to predict the spare parts
demand in a more efficient way. The results of the numerical examples validate the
feasibility and efficiency of the proposed model. Finally, the model is tested in the
supply chain planning of continuous caster (CC) bearings.

Another work by Zhang et al. [21] develops a procedure for establishing stocking
rules for a multi-component distribution center that supplies spare parts for an
equipment maintenance operation. The aim is that of minimizing inventory costs
taking into account service level and replenishment frequency, with particular
focus on a preliminary classification of spare parts according to an improved
ABC methodology scheme. The latter is more effective since it is sensitive to
key attributes of the spare parts with respect to the optimization model. Within
each category, they constrain service and order frequency uniformly, and then use
various approximations to compute stocking parameters, thus applying heuristics
to the (Q,R) policy. Numerical results show that the ABC classification does
not introduce large errors if it reflects the model key parameters and that the
implemented heuristics for the stocking parameters can be used effectively, as
long as the exact formula for service level is employed to adjust the formulas to
achieve target performance. These heuristics for setting stocking parameters in
multi-item spare parts distribution centers are obtained by approximation of the
inventory and service expression to get closed-form equations for both the order
quantity and the replenishment points. Moreover, having the different spare parts
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Figure 2.6: Supply chain operations for MRO spare parts
[20]

classification, a uniform service target can be assigned to each part within a given
category, reducing the size of the optimization problem. Finally, the exact service
is computed for any set of stocking parameters and it is used to guide the search
for target service levels useful to achieve the desired one.

Spare parts demand can be indeed non-stationary, especially when considering
growth of installed base and new sales. For installed base we refer in particular
to a measure of the number of units of a type of product that have been sold
and are being used. In this eventuality, due to the challenging task, spare parts
inventory control strategies are crucial for coping with the resulting non-stationary
behaviour of the demand. The goal is to ensure that timely replacements can be
provided to customers while minimizing the overall cost for spare parts inventory
control. Jin et al. [22] provide a solution as a non-linear integer program for
the aggregate maintenance demand of a product whose installed base grows as a
homogeneous Poisson process (Figure 2.7). As the products failures (maintenance)
follow an exponential distribution, their mean and variance are derived and through
a bisectional search algorithm the optimal setting for the chosen dynamic (Q, R)
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policy are found. Finally, through a simulation approach, the application of the
method in controlling spare parts inventory under service level constraints is carried
out, showing effective results also for products with generic distributions of the
demand.

Figure 2.7: Maintenance demand as a Poisson process
[22]

As a matter of fact, Liao et al. [23] present a work involving a non-repairable
product whose sale rate is assumed constant and its failure time follows a Weibull
distribution. They formulate a mathematical model based on dynamic (Q, R) policy
with fixed order quantity and replenishment point, and the problem is solved using
a multi-resolution approach. Finally, though numerical examples, the inventory
cost is minimized taking into account service level constraints.

Another work that addresses inventory control of spare parts is the one by
Aronis et al. [24]. They focus on a specific case study in which a company produces
circuit packs as spare parts for telephone switching systems and wants to keep
a high service level for its customers. Continuous operation of these systems is
essential for the company customers, and when a failure in a circuit pack occurs,
it has to be solved by replacing the failed circuit pack with a functioning one,
already available. As a consequence, the demand is originated by random failures
of the circuit packs. The company under study sees the spare parts stock as an
insurance against unexpected events. In this regard, there is uncertainty both
with respect to the average failure rate and with respect to the usual fluctuations
given an average failure rate, and both uncertainties are addressed separately. The
Bayesian method proposed by the authors, instead, tackles them in an integral
way and gives a better indication of which service level one may finally expect.
This approach is applied to forecas the demand for spare parts, with the objective
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of more accurate determination of stock levels required to provide a negotiated
service level to the users of the equipment. The inventory control policy is a (S-1,S)
and it is the same already adopted by the company, however the determination of
the appropriate parameters for the policy through a Bayesian approach introduces
lower total stocks for the same desired service level.

2.3 Maintenance Forecast
Spare parts demand uncertainty results to be a focal point for all kind of inventory
optimization strategies. As a matter of fact, to help the management of the stock
quantities and of the customers requests, demand forecast is indeed necessary in
certain cases, and when speaking of vehicles’ spare parts it is obviously strictly
related to the concept of maintenance prediction.

Maintenance prediction can be carried out considering several factors. Perrotta
et al. [25] analyse several elements that could influence fuel consumption in trucks
and as a consequence its prediction over time, based on truck telematic and road
geometry and condition data. Truck data come from sensors installed in recent
trucks, and through Machine Learning regression methods the fuel consumption
of a large fleet is predicted. In particular, the dataset includes 56 variables, and
in order to avoid overfitting only the most significant parameters are kept for the
regression analysis. In addition to that, also cross-validation is performed, splitting
the data into training and test datasets of 75% and 25% each. The employed
algorithms are Support Vector Machine (SVM), Random Forest (RF) and Artificial
Neural Network (ANN), and the performances are evaluated through root mean
squared error and mean absolute error and then compared. Results show that RF
is the technique giving the best performance, even though SVM and ANN present
better result in predicting extreme values.

Another work by Rezvanizaniani et al. [26] shows an effective predictive main-
tenance technique for industrial assests, exploiting a dataset provided by the
Prognostic and Health Management Society 2014 Data Challenge. It contains
usage and part consumption for three years, two of which are used as training set
and the remaining part as test. The the method in built on the probability of
failure risk, and its aim is that of establishing the high risk and low risk times of
failure for the test data. One of the main challenges is to detect the Preventive
Maintenance (PM) in the trainig data, whose pattern based on time and type
of maintenance must be detected in the first place. The high-risk time intervals
are successively determined through the frequency of the failures at specific times
between each preventive maintenance. Finally, the high risk time intervals are
predicted also for the testing data. The preliminary processes of the data analysis
included the removal of outliers and feature extraction. Pre-Processing functions,
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included data observation, sorting and irregularities in the usage data, were used
to eliminate data that does not have the quality required to accurately determine
features. The concept of a bathtub curve was used to extract and select features
on how soon after a maintenance a failure would occur during the training data,
which was then applied to the testing data to provide an accurate health assessment
rating and therefore determine if the asset was at high risk. The other approach is
to use the corrective maintenances to evaluate the correlation between corrective
measures and the probability of failure afterword. Using the number of failures
immediately after maintenance actions in the testing data, the probability of failure
after maintenance actions is calculated.

2.4 Previous publications by our research group
The study for this thesis derives from the broader work carried out by the Smart-
Data@Polito research group together with Tierra S.p.A. The former is a center
focusing on Big Data technologies, Data Science and Machine Learning approaches,
applied to different domains with the aim of providing efficient solutions both to
theoretical problems and for helping companies towards applications. The latter,
instead, is a company operating in the IoT sector providing telematics solutions
for complex issues in terms of management, maintenance and remote diagnostic of
equipment. In particular, the domain of study of the following works is related to
identification and forecasting of industrial vehicles’ usage patterns together with
next-maintenance prediction.

One work by Buccafusco et al. [27] aims at automatically define per-vehicle
duty levels for industrial vehicles working on construction sites. These duty levels
indicate the vehicle state according to how much it has been used, and they are
usually set up manually due to the high heterogeneity of usage patterns of the
vehicles under analysis, that can change from light to heavy workload. However,
this manual strategy is time-consuming and likely to experience errors. To overcome
this issues, the authors propose a clustering-based approach to the data collected
from a CAN bus data logger installed on a test farm tractor. CAN bus data
usually consist of raw time series, sampled, aggregated and transmitted to a central
repository, and are mainly related to fuel consumption, route characteristics and
vehicle movements. In order to optimize maintenance, the ideal indicators to
monitor vehicle usage is the time spent in specific duties, which describe the
current state of a vehicle and are classified as long idle, idle, moving/working, light
workload and heavy workload. The clustering approach works on a list of 20 Suspect
Parameters Numbers (SPNs) acquired from November 7, 2019 to April 15, 2020,
which escribe several aspects like the engine speed, fuel rate and so on. First, raw
CAN data are cleaned, removing missing data or errors, then after having identified
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working cycles, the asynchronous CAN messages are aligned and synchronised
through linear interpolation and down-sampling, and the most significant and
influent SPNs are selected through correlation analysis. At this point, SPN series
can be synchronised and segmented into fixed-length intervals, where each segment
is described by a specific feature. Finally, the segments are clustered to support
the definition of vehicle-specific duty levels, and homogeneous groups are obtained.
Results show the effectiveness and truthfulness of the approach, as the number of
segments per cluster distribution (Figure 2.8) corresponds to the actual usage of
the employed vehicles.

Figure 2.8: Number of segments per cluster
[27]

Another paper that exploits CAN bus data analysis is the one from Markudova
et al. [28]. Starting from industrial vehicles’ usage indicators like utilization
hours, they derive non-stationary time series, and through Machine Learining
methods they exploit these historical data and additional features (which describe
several vehicles characteristics) to make predictions on future usage. In particular,
the aim of this work is that of predicting the daily utilization hours of different
models of construction vehicles, exploiting real data collected over 4 years and
involving 2239 vehicles over the world. This prediction has the objective of easing
maintenance scheduling for site managers. Starting from the collected data, they
are prepared for the Machine Learning process though cleaning, normalization,
aggregation of the features on a daily basis, enrichment with contextual information
and transformation, to tailor input data to a relational data format. Furthermore,
vehicles are classified based on the type of construction vehicle and each type is split
into several models. Since it is important to discover similarities among the usage
patterns, the Cumulative Distribution Functions (CDF) of the number of daily
utilization hours per vehicle type are derived. To perform prediction on utilization
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hours, they train regression models on past vehicle data separately on each vehicle,
due to the heterogeneous trend in the usage patterns. The training is performed
using both sliding window and expanding window approaches. In addition to that,
before proceeding to the prediction step, a statistics-based approach is used to filter
relevant and most discriminating features. Finally, some regression algorithms are
implemented to perform prediction, such as Linear Regression, Lasso Regression;
Support Vector Regression and Gradient Boosting. Results show that the models
are effective, with only 15% error in predicting next working day utilization hours.

Mishra et al. in [29] focus instead on the prediction of the remaining time to
maintenance of industrial vehicles. This work describes a data-driven application
to provide an automatic scheduling of periodic maintenance operations of indus-
trial and construction vehicles, whose schedule is highly influenced by per-vehicle
characteristics and usage. Also in this case, the presence of on-board devices allows
to monitor several features of the vehicles. For a given vehicles, the purpose is
that of implementing regression techniques to predict the remaining days until
next maintenance, coping with typical difficulties of working with this kind of
vehicles: non-stationarity of utilization time series per vehicle, lack of historical
data for newly-added vehicles to the fleet, and vehicle heterogeneity in terms of
number, type and frequency of maintenance operations, that make the process
time-consuming. All these challenges are faced training a separate regression model
per vehicle, which analyses single vehicle usage patterns and time to maintenance,
incorporating historical usage levels in the predictive models training linear and
non-linear ones, and combining the regressor outcomes obtained on similar vehicles.
In particular, different methodologies are issued when vehicles are indicated as
new, semi-new or old, due to the different amount of available data. Results from
all categories are obtained using LR, SVR, RF and Histogram Based Gradient
Boosting (XGB), showing that non-linear algorithms are those performing best.

On a similar track to [29], in a paper from Markudova et al. [30], the research
group addresses the learning of per-vehicle predictors to forecast the next-day
utilization level (indicated as task A) together with the remaining time until next
maintenance (task B). The input data are related to a set of about 2000 construction
vehicles of different types. The previous assumptions about the challenges in dealing
with large fleets of industrial and construction vehicles hold, leading to the use
of data-driven solutions based on Machine Learning techniques able to model the
trends of non-stationary patterns of use. For each vehicle category, the two tasks are
addressed using univariate but also multivariate models, where the prediction model
is enriched with additional contextual features describing different usage patterns.
The regression models training is carried out using a portion of the historical data
denoted as training window, exploiting both a sliding and an expanding window
strategy. Figure 2.9 provides an insight on the parameter tuning for task A and B
on old vehicles, in order to find the best configuration. The employed algorithms
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for regression are LR, SVR, RF and GB. Results show that LR performs better
than baseline methods even if it is affected by the usage pattern variability of the
vehicles, while RF and GB are good in predicting single vehicle maintenances.

Figure 2.9: Tuned parameters for each task
[30]

2.5 Our Contribution
This thesis project places itself in the literature related to industrial vehicles’ spare
parts. In particular, starting from OR inventory optimization strategies, it sets
the goal of combining MP models with stationary demand with specific inventory
control policies that aim at establishing a target equilibrium level for minimizing
inventory costs and ensuring customers satisfaction. In addition to that, it also
investigates the case of non-stationary demand, exploiting ML techniques to provide
forecast of the next maintenance time.
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Chapter 3

The Input Dataset

The choice and processing of the dataset play a central role in satisfying the
objective of this work. For an effective optimization of the inventory quantities, it
is necessary to derive the demand distribution for the required spare parts over
different time instants. In order to obtain this kind of input, the main requirements
are related to two aspects:

In terms of vehicles, a significant number of them must be available to collect
various information. Moreover, historical records about their utilization should be
disposable over a sufficiently large time period.

In terms of spare parts, it is necessary to obtain historical maintenance infor-
mation in order to understand how many tasks are performed and which specific
component is substituted according to a specific deadline.

For these reasons, data are gathered from different sources and are then processed
and put together in order to satisfy the aforementioned requirements. Information
regarding the vehicles utilization over time are obtained thanks to the combined
work with a company providing telematics services to industrial vehicles producers,
that managed to collect CAN bus data about their usage, such as the traveled
distance. Data related to the past maintenance details are instead obtained thanks
to the maintenance booklets provided by the company.

3.1 Vehicles’ Choice
The input dataset combines information related to a large company producing ve-
hicles for good transportation (trucks) and people transportation (buses) operating
in many countries worldwide.

The vehicle choice for the dataset results appropriate since trucks and buses
are on-road vehicles, able to travel many kilometers daily, thus providing a great
number of usage records. Moreover, the provided dataset contains a sufficiently
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large number of vehicles and models.

3.2 Characterization of the Dataset
The input data are retrieved from different sources, like CAN bus technology that
enables the acquisition, collection, and processing of vehicle usage data, but also
from companies historical records about specific maintenance tasks that have been
performed over time.

The first dataset of interest is related to the vehicles maintenance history. It
contains maintenance information from January 20, 2020 to January 31, 2022,
resulting in 8242 rows of data. The most relevant information are related to:

• Maintenance tasks: for each vehicle that undergoes maintenance it is
possible to check the specific task that has been performed, such as change of
the engine oil or substitution of the fuel filter. The task names are associated to
a univocal task id and also the number of performed tasks for each maintenance
are indicated.

• Maintenance deadlines: these are thresholds according to which vehicles
undergo maintenance. They refer to a specific vehicle model and they can be
expressed in terms of traveled kilometers, engine hours or seconds elapsed from
the last maintenance. They represent a focus point since each maintenance
task is related to a specific deadline.

• Dealers: vehicles go to the dealer they visit more often. These dealers are
registered according to their names and univocal id, and they are in charge of
specifying the date in which the performed maintenance has been confirmed.
Each maintenance booking has a specific id and the date in which the dealer
confirms that the maintenance has been done.

When the deadlines are reached, maintenance information is saved in some
maintenance booklets that keep track of all the performed interventions for each
vehicle model. The models names contained in these booklets are directly linked
to the ones contained in the maintenance history records.

The second dataset is the one related to vehicles’ traveled kilometers. It contains
information retrieved from October 1, 2021 to September 30, 2022 related to the
cumulative kilometers traveled by 51980 vehicles. This leads to a total of 9712592
rows of data. For each record there is a univocal vehicle id, with the corresponding
crossed km up to the specified date. This information is relevant since it allows to
check when a specific vehicle reaches a deadline in km, meaning that it is time for
it to perform a maintenance task.

27



The Input Dataset

Besides the previously mentioned maintenance booklets, in order to put together
all the needed information about the vehicles, it is necessary to check also an
additional file that contains all the vehicles ids with the correspondent model name,
model id and maintenance booklet name. This is needed in order to check exactly
which vehicles have specific maintenance deadlines according to their models.

3.3 Dataset Analysis and Data Cleaning

3.3.1 The Maintenance History Dataset
Starting from the maintenance history dataset, it is possible to perform some pre-
liminary analysis. First of all, since it contains performed maintenance information
for every kind of task, it is necessary to retrieve only those which refer to actual
spare parts substitutions. Table 3.1 lists all the performed tasks in the period of
time under study. Among the 12 of them, only 4 refer to spare parts maintenance,
i.e. Element Oil Filter, Element Fuel Filter Lower and Upper, Element Air Cleaner
Out.

Task name Task id
Chassis Grease 73

Engine Oil 66
Element Oil Filter 62

Element Fuel Filter Lower 64
Element Fuel Filter Upper 63
Element Air Cleaner Out 65

Grease Wheel Bearing 72
Power steering Oil 71

Brake Fluid 70
Clutch Fluid 69

Differential Oil 68
Transmission Oil 67

Table 3.1: List of maintenance tasks

Moreover, all the maintenance records refer to multiple dealers across different
countries, and each vehicle usually undergoes maintenance to the one they visited
more often. Thus, to perform an analysis of the requested spare parts by a specific
warehouse, it is also possible to filter according to a single garage. Considering each
garage, we can count the number of required maintenance over the time horizon,
both in terms of spare parts only and of total performed tasks (Figure 3.1). This is
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useful to have an insight on the dealers for which we have more records as we want
to derive a time series of the requested components. Notice that the names of the
dealers in the x axis of the figure are not shown for confidentiality reasons.

Figure 3.1: Total number of maintenance tasks over the chosen time period for
each dealer
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Choosing for instance a specific dealer which registers 955 overall maintenance
tasks and 417 component ones, it is possible to plot the weekly time series for each
required component (Figure 3.2). Notice that the four figures do not show any
particular trend or seasonal variation, with values that range between 0 and 16
components per week. The two fuel filters display the same behaviour as they are
usually substituted at the same time.

(a) Element Oil Filter

(b) Element Fuel Filter Lower

(c) Element Fuel Filter Upper

(d) Element Air Cleaner Out

Figure 3.2: Weekly Time Series for Spare Parts
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3.3.2 The Cumulative Odometer Dataset
This dataset contains vehicles’ cumulative traveled kilometers on a daily basis.
After a first check on the correctness of the data, it is noticeable that some dates
are missing, maybe due to the fact that the vehicle was left unused for some days
and no data was collected. For this reason, for each vehicle id, dates are ordered
in chronological order and the missing ones are detected and counted, in order to
have an insight of the amount of missing data and the usage pattern of the vehicles:
some vehicles show almost the entire year of missing data, making them useless for
performing any analysis. For this reason, they are removed. In addition to that,
some vehicles appear to have 0 cumulative traveled km in between some dates, and
since this may be due to some errors in the data collection, they are also removed
from the dataset to avoid imprecise results. Furthermore, the remaining missing
data about the cumulative traveled km for each missing date are filled with the
immediately previous record, as it is likely that the total amount of kilometers has
not increased since the last utilization date. The changes in the dataset dimensions
after this cleaning phase are reported in Table 3.2.

Original Dataset Cleaned Dataset
# of records 9712592 9370842
# of vehicles 51980 45515

# of vehicles with > 300 missing data 45 0
# of vehicles with 0 cumulative km 6420 0

Table 3.2: Comparison before and after dataset cleaning

As already mentioned, one of the deadlines for performing maintenance is related
to the amount of travelled road. However, for the vehicles under study, the starting
amount of it is not equal to zero. For this reason, the best choice is that of
evaluating the daily travelled km by each of them, thus performing a difference
between the cumulative travelled amount of two consecutive dates. In this way it
is possible to compare this feature to the chosen maintenance threshold.

Nevertheless, another observation must be made as in the first dataset mentioned
in Section 3.3.1 the deadlines are associated to the vehicle model and not to the
vehicle id, which is not present. Despite this, the maintenance history is still useful
to extract the model names and check the corresponding maintenance booklet. The
latter contains, in fact, the thresholds associated to each spare part request for
all the models in the file. As a result, every vehicle model has a different target
for each component. The correspondance is summerised in Table 3.3, where for
confidentiality reasons they are reported with a letter.

In this way, by choosing a specific target, it is possible to consider all the models

31



The Input Dataset

Vehicle Model Oil Filter Fuel Filter Low Fuel Filter Up Air Cleaner
A 20000 20000 20000 60000
B 10000 20000 20000 60000
C 20000 20000 20000 60000
D 20000 20000 20000 40000
E 10000 20000 20000 60000
F 20000 20000 20000 40000
G 20000 20000 20000 60000
H 20000 20000 20000 40000
I 20000 20000 20000 40000
L 10000 20000 20000 60000
M 10000 20000 20000 60000
N 10000 20000 20000 50000
O 20000 20000 20000 40000
P 20000 20000 20000 40000

Table 3.3: Deadlines in kilometers for each vehicle model and spare part

that undergo maintenance as soon as the selected deadline is reached. Finally, with
the support of the file mentioned at the end of Section 3.2, we are able to link
the specific vehicles with the corresponding model. As a matter of fact, selecting
a threshold value (and consequently a specific spare part), we can select all the
distinct models that perform maintenance in correspondence of that deadline and
filter the odometer dataset according to them. The result is a dataset containing
the daily traveled kilometers for each selected vehicle, that will be used to predict
their future maintenance in time, and evaluate the total required amount for the
component under analysis.

3.3.3 Spare Parts Demand Characterization
The objective of this dataset analysis is that of finally obtaining the distribution of
each component’s demand. The result will be provided as input for the inventory
optimization model, which is in charge of minimizing the inventory costs of a
specific warehouse yet satisfying the demand. Through these kind of data, different
scenarios of demand can be gathered, each with a specific quantity of component
and probability of occur.

In a preliminary phase of the work, we use the maintenance historical data
related to the specific performed tasks over time. Considering the same single
dealer as in Section 3.3.1, for each component we evaluate the ECDF either on a
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daily and on a weekly basis (Figures 3.3, 3.4, 3.5). Through these plots it is possible
to understand that the higher the number of requested components, the smaller
the probability of occurrence of that specific scenario. This is true in particular for
components like the Oil Filter and the Fuel Filter, and it is confirmed by Table 3.3
in which the deadlines for maintenance are shorter, thus hypothetically leading to
more frequent requests of that specific spare part. Their behaviours on a daily and
weekly basis are similar, and we can deduce that in the majority of the cases it
is more likely to have small demands of products. A slightly different behaviour
can be noticed in the Air Cleaner distribution, that on a weekly basis shows a
uniform-like behaviour, thus leading to a set of scenarios that are more or less
equally probable.

(a) Daily (b) Weekly

Figure 3.3: Distribution of Element Oil Filter demand

(a) Daily (b) Weekly

Figure 3.4: Distribution of Element Fuel Filter demand

33



The Input Dataset

(a) Daily (b) Weekly

Figure 3.5: Distribution of Element Air Cleaner Out demand
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Chapter 4

Relevant Theory

In this section we will present the theory that appears to be relevant to this thesis
project.

In particular, this work is composed of two main blocks, each belonging to a
specific macro study area: the definition and implementation of an optimization
model for the inventory cost minimization, and the prediction of the future required
components, necessary to provide an input to the mentioned model. For this reason,
we first focus on the definition of OR optimization model, and on the differences
between deterministic and stochastic approach, with particular attention to the
latter. Afterwards, we will present some notions of probability theory to model
the uncertainty, analysing some commonly known distributions useful for our work.
Finally, for coping with the prediction stage of this project, we will describe the
regression method both in general terms and in relation to the employed method.
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4.1 Optimization Models
An optimization problem is

"A computational problem in which the object is to find the best of all
possible solutions. More formally, find a solution in the feasible region
which has the minimum (or maximum) value of the objective function
[31]".

Thus, with the term optimization we refer to a discipline within applied mathematics
that deals with optimization models, their mathematical properties, and the
development and implementation of algorithms. This concept is strictly related to
the definition of Operational Research, representing one of the main techniques
that support the different phases of an OR approach.

Operational Research concretely originated during World War II, when the
British military management contacted a group of scientists to apply a scientific
approach in the study of military operations to win the battle. The main objective
was to allocate scarce resources in an effective manner to various military operations
and to the activities within each operation. The application of OR in the military
domain spread interest in it to other government departments and industry.
OR is defined as

"[...] the application of scientific methods for solving complex problems
arising within the management of complex systems of people, machines,
materials and money in industry, finance, government and defence. [...]
The aim is to aid decision makers in determining scientifically their
policies and actions [32]".

One of the main characteristics of OR is thus dealing with complex and real
problems, applying advanced analytical modeling and solution methods to the
study of operations, to help making better decisions. In other words, OR represents
the study of optimal resource allocation.

The main phases of the Operational Research approach are depicted in Figure 4.1
and they consist of specifying and formulating the problem, constructing a suitable
mathematical model and deriving a solution from it, testing and modifying the
model, and finally implementing the model solution in the real problem situation.

4.1.1 Definitions
Modeling is essential in Operational Research and when speaking of formulating an
optimization problem it means performing a translation of the key characteristics of
the real problem into mathematical equations and variables. To do so, we need to
deal with limitations and restrictions on our freedom to make decisions yet finding
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Figure 4.1: Phases of a classical OR approach

the optimal decisions with respect to one or more attributes of the problem itself.
An optimization model consists of four main elements:

• Objective Function: the objective function, often denoted f, reflects a
single quantity to be either maximized or minimized. It is a measure used to
evaluate the goodness of a solution and to choose the best one among them.
It is generally related to economic attributes like cost minimization, revenue
maximization, or minimization of deviations.

• Decision Variables: the decision variables reflect aspects of the problem
that can be controlled. This can include both variables that directly modify
the status of the system, as well as variables indirectly influenced by the choice
of other ones. Every decision variable in the formulation should either directly
influence the objective function or influence another decision variable that
affects the objective function. A precise assignment of values to the decision
variables is a solution.

• Parameters: the parameters are the constant quantities/entities that describe
the system under study.

• Constraints: the problem constraints represent any kind of limitation on
the values that the decision variables take. They are the main way to link
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parameters and decision variables, ensuring the feasibility of a solution. The
most intuitive types of constraints are those which directly and obviously
limit the choices to be made (implicit constraints), while the second type
of constraint is required to ensure consistency among the decision variables
(explicit constraints).

An assignment of values to decision variables that satisfies all the implicit and
explicit constraints is called a feasible solution. On the contrary, an infeasible
solution is an assignment of values that violates at least one of the constraints.
An optimal solution is a feasible solution such that there exists no other feasible
solution having a better objective function value.
As a consequence, a model is called feasible if it has at least one feasible solution,
infeasible if there exists no feasible solution, and unbounded if there is no precise
optimal solution but the value of the objective function can grow or decrease to
infinite values.

In order to find a solution, optimization algorithms are used, consisting in a
finite step by step procedure with the scope of finding the optimal solution of an
optimization problem. Among the optimization algorithms that can be used, we
can list exact ones, that at the end of the procedure ensure the optimality of the
solution, heuristic ones, that do not give this guarantee, and approximation ones
that ensure a maximum gap from the optimality. This distinction is made because
computational time needed by an algorithm to return a solution is a key aspect
and must be kept as reasonable as possible, which is not always the case for exact
solutions.

4.1.2 Mathematical Programming Models
Mathematical programming is one of the most important techniques available for
quantitative decision making. Its purpose is that of finding an optimal solution for
allocation of limited resources to perform competing activities and the optimality
is defined with respect to important performance evaluation criteria, such as cost,
time, and profit. To describe the problem under study, mathematical programming
uses a compact mathematical model defined as in (4.1) and the formulation includes
the objective function and the explicit and implicit constraints.

min f(x1, ...xn)
s.t. gj(x1, ..., xn) = 0 ∀j ∈ {1, ..., m}

xi ∀i ∈ {1, ..., n}
(4.1)

Figure 4.2 summarizes the different type of MP and we will analyse their
characteristics in the following.
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Figure 4.2: Problem types related to optimization problems
[18]

Continuous and Integer Models

A first distinction among MP models involves the kind of variables that are present
in the model. We refer to continuous models when the decision variables under
study are defined in the continuous domain, i.e. their cardinality is infinite. (4.2)

min f(x1, ...xn)
s.t. gj(x1, ..., xn) = 0 ∀j ∈ {1, ..., m}

xi ≥ 0 ∀i ∈ {1, ..., n}
(4.2)

On the contrary, integer models contain only discrete (integers) variables, including
Boolean ones. It is common to cope with Mixed Integer models, that imply the
use of both continuous and integer variables. (4.3)

min f(x1, ...xn, y1, ..., yq)
s.t. gj(x1, ..., xn, y1, ..., yq) = 0 ∀j ∈ {1, ..., m}

xi ≥ 0 ∀i ∈ {1, ..., n}
yk ∈ Z ∀k ∈ {1, ..., q}

(4.3)

Linear and Non Linear Models

Another difference involves the concept of linearity or not of the studied problem.
It is called, in fact, linear programming problem (LP) if both the objective function
and the constraints are linear. It is called, instead, a nonlinear programming
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problem (NLP) if the objective function is nonlinear and/or the feasible region is
determined by nonlinear constraints [33] .

Feasibility

According to the type of models under study, one significant difference relies in the
shape of the feasibility region, i.e. the set of all possible points of an optimization
problem that satisfy the problem’s constraints.

For linear programming problems, in fact, the feasibility region changes if
considering only continuous decision variables or integer ones too. In general, the
feasibility region of a linear continuous problem is a convex and closed region, while
for integer ones it is a reticular non convex set of points called convex hull. In
the absence of integer constraints the feasible set is thus the entire green region in
Figure 4.3a, but with integer constraints it is the set of blue dots.
Due to the fact that the type of constraints influences the feasibility region, its
shape changes also for NLP models (Figure 4.3b).

(a) Linear models (b) Non-linear models

Figure 4.3: Feasibility Regions
[34]

Several methods are available for solving non-convex problems. One approach
is to use special formulations of linear programming problems. Another method
involves the use of branch-and-bound techniques, where the program is divided into
subclasses to be solved with convex (minimization problem) or linear approximations
that form a lower bound on the overall cost within the subdivision. With subsequent
divisions, at some point an actual solution will be obtained whose cost is equal to
the best lower bound obtained for any of the approximate solutions.
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4.1.3 Deterministic and Stochastic Models
A further distinction in optimization models is related to the nature of the input
data.
Many problems rely on the assumption that their input parameters are deterministic
and exact values, known a-priori and without any uncertainty. Nevertheless, for
modeling realistic issues, the lack of knowledge of some data must be taken into
account, together with the possibility that these may become known during the
decision making process evolution. For this reasons, the problem formulation
slightly changes in case of stochastic models, as shown in (4.4), where ω is a
random process.

min f(x1, ...xn, ω)
s.t. gj(x1, ..., xn, ω) = 0 ∀j ∈ {1, ..., m}

xi ≥ 0 ∀i ∈ {1, ..., n}
(4.4)

4.1.4 Uncertainty Characterization
When modeling uncertainty, there can be mainly two different sources that generate
it [35]:

• Exogenous, when decisions cannot influence the stochastic process. Ex-
ogenous uncertain parameters are realized at a known stage in the problem
irrespective of the values of the decision variables. For example, demand is
generally considered to be independent of any decisions in process industries,
and hence, it is regarded as an exogenous uncertain parameter.

• Endogenous, when decisions impact endogenous uncertain parameters and
they may cause alteration of the probability distribution by making one
possibility more likely than the other.

Randomicity is usually modeled in form of probability distributions of the random
variables under study, obtained through historical data or predictions.

Random Variables

Given an outcome ω of a random experiment, and the set of all the possible
outcomes usually denoted as Ω, these outcomes can be combined into subsets A of
Ω called events. For each of these events A ∈ A there is a probability measure that
tells the probability with which the event belonging to the subset occurs (P). The
triplet (Ω, A, P) is called probability space. Random variables are functions that
assign a numerical value to each possible outcome over the sample space Ω [36].
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When a probability measure has been specified on the sample space of an
experiment, we can determine probabilities associated with the possible values of
each random variable X. Let C be a subset such that {X ∈ C} is an event, and let
P (X ∈ C) denote the probability that the value of X will belong to the subset C.
Then P (X ∈ C) is equal to the probability that the outcome ω of the experiment
will be such that X(ω) ∈ C.
There are two major classes of distributions and random variables: discrete and
continuous.

We say that a random variable X has a discrete distribution or that X is a discrete
random variable if X can take only a finite number k of different values. If a random
variable X has a discrete distribution, the probability mass function (pmf) of
X is defined as the function f such that for every real number x, f(x) = P (X = x).
In this case, the probability of each subset C can be determined as in (4.5)

P (X ∈ C) =
Ø

xi∈C

f(xi) (4.5)

On the contrary, a random variable X has a continuous distribution if there
exists a function f such that for every interval of real numbers, the probability that
X takes a value in the specified interval is the integral of f over that interval (4.6).

P (a ≤ X ≤ b) =
Ú b

a
f(x) dx (4.6)

If X has a continuous distribution, the function f is called the probability
density function (pdf) of X.

Independently from the discrete or continuous characterization of a distribution,
it can be defined in terms of cumulative distribution function (cdf). The cdf of a
random variable X is the function F (x) = P (X ≤ x) for −∞ ≤ x ≤ +∞.

Some relevant metrics to describe random variables are the expected value and
the variance, that will result useful in this work.

4.1.5 Poisson Process
Among the common-known probability distributions, of particular interest for this
work are those distribution that are related to a Poisson Process.
A Poisson process [37] is a model for a series of discrete events where the average
time between events is known, but the exact timing of events is random, meaning
that they are randomly spaced in time. Furthermore, the arrival of an event is
independent of the event before, leading to the statement that the waiting time
between events is memoryless.

A Poisson process must meet the following criteria:
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• Events must be independent from one another and the occurrence of one event
must not influence the probability of another event to happen.

• The average rate (in terms of event per time period) is constant.

• Two events cannot be simultaneous, meaning that each sub-interval in a
Poisson process can be seen as either a success or a failure (Bernoulli).

Poisson distribution

As mentioned, a Poisson process describes randomly occurring events, and the
Poisson distribution is used to model the number of such events occurring in a fixed
time period. As a matter of fact, the Poisson distribution pdf gives the probability
of observing a certain number of events in a time period given the length of the
period and the average events per time. This factor given by events/time * time
period can be summarised into a single parameter λ, the rate parameter. Being
λ > 0, a random variable X has a Poisson distribution with mean λ if the pdf of X
is as in (4.7).

f(x|λ) =


e−λλx

x! for x = 0, 1, 2, ...
0 otherwise

(4.7)

We can think of λ as the expected number of events in the interval, thus it
represents the mean of the random variable and also its variance. As we change
the rate parameter we change the probability of seeing different numbers of events
in one interval as shown in Figure 4.4.

Figure 4.4: Poisson pdf at varying of rate λ
[38]

43



Relevant Theory

Exponential distribution

An additional step of the Poisson process involves figuring out the waiting time
before the following Poisson event, usually called the inter-arrival time. The time
to wait between events can be described as a decaying exponential, since the
probability of waiting a given amount of time between successive events decreases
exponentially as time increases [39]. Evidence is given in Figure 4.5.

A continuous random variable X is said to have an exponential distribution
with parameter λ > 0 if its pdf is given by (4.8).

fX(x) =
I

λe−λx x > 0
0 otherwise

(4.8)

The probability of waiting less than a specific amount of time t is given in (4.9).

P (T ≤ t) = (1− e− events
time

t) (4.9)

The waiting times between events are memoryless, so the time between two events
has no effect on the time between any other events. This memorylessness is also
known as the Markov property.

The mean and variance of exponential distributions are, respectively, E(X) = 1
λ

and V ar(X) = 1
λ2 .

Figure 4.5: Exponential probability of waiting time between successive events
[38]
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4.1.6 Stochastic Programming
Stochastic programs’ aim is that of finding a solution to problems involving some
uncertain data, that can be thus represented as random variables [40]. It is
essential to provide a probabilistic description of such phenomena, using statistics
and expertise to learn the most about uncertain parameters and represent them in
the form of probability distributions and densities. Indeed the true value of these
variables will be known with certainty only after their realization, which is usually
too late to make decisions if we want to optimize the problem under study in an
efficient and effective way.

For this reason, the temporal horizon can be divided into information stages,
which are points in time where decisions are made during a process. The definition
of these stages depend from the process structure or can also be a modeling
approximation, however it only makes sense to distinguish two points in time as
different stages if something relevant is observed in between (Figure 4.6).

Figure 4.6: Information stages

As a result, the set of decisions is divided into two groups (if the information
stages are two):

• first-stage decisions, which are those decisions that must be taken before the
experiment.

• second-steg decisions, which are those decisions that must be taken after the
experiment.

Considering ω an outcome of the random experiment, and ξ(ω) the values of the
the random variables after the realization of the experiment, first-stage decisions
are represented by the vector x, and the second-stage ones are represented by the
vector y(ω, x). The sequence of events and decisions becomes x → ξ(ω)→ y(ω, x).
Furthermore, if the uncertainty to be realized can be described by means of a
distribution, it is straightforward to derive different scenarios of realization, each
with a specific probability. The result of such procedure is the scenario tree depicted
in Figure 4.7.

Notice that stochastic programs can be two-stage or multi-stage ones: if there
are only two stages then the problem corresponds to a two-stage stochastic program,
while in a multistage stochastic program the uncertainty is revealed sequentially
in multiple stages, and the decision-maker can take corrective action over this
sequence.
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Figure 4.7: Scenario Tree

Finally, when making decisions under uncertainty, we must take into account
two properties:

• Robustness, which is a first stage property, and it indicates that the model
must be capable of bearing random events that will eventually happen.

• Flexibility, which is a second stage property, and gives the possibility to the
model to adapt to various events occurrences.

Two-Stage Stochastic Programming

Starting from the classical formulation of a random program as in (4.10)

min cT x

s.t. Ax ≤ b

Tx ≤ h

x ∈ X

(4.10)

the classical two-stage problem with recourse [41] is the one of finding (4.11)

min cT x + Eξ[Q(x, ξ)]
s.t. Ax ≤ b

x ∈ X

where Q(x, ξ) := min qT y

s.t. Tx + Wy ≤ h

y ∈ Y

(4.11)
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The first-stage decisions of the two-stage program are represented by the vector x,
and corresponding to x there are the first-stage vectors and matrices c , b , and A.
In the second stage, a number of random events may realize, and for each realization
the second-stage problem data Q, h, T become known. Then, the second-stage
decision y must be taken, and they are different according to the realization of the
event. W is the recourse matrix.

Random constraints are modeled as "soft" constraints, and their violation is
accepted even though the cost of this violation will influence the choice of x through
the recourse matrix W.
There can be different type of recourse: random recourse, in which the matrix W
depends on uncertainty, fixed recourse, in which W does not depend on uncertainty,
simple recourse in which the matrix is defined as W=[I,-I].

Deterministic Equivalent Programming

Notice also that the objective function in (4.11) contains both a deterministic term
(cT x) and the expected value of the second-stage objective (Eξ[Q(x, ξ)]), where for
each event realization y is the solution of a linear program. For this reason, it
is possible to write the formulation as a deterministic equivalent program (DEP)
(4.12), where s is the single scenario that occurs and ps is the probability for that
scenario to happen.

min cT x +
Ø
s∈S

psq
T
s ys

s.t. Ax ≤ b

x ∈ X

Tsx + Wys ≤ hs ∀s ∈ S

ys ∈ Y, ∀s ∈ S

(4.12)

The deterministic equivalent is scenario-dependent, and it is in general much
bigger in terms of dimensions of variables and constraints.
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4.2 Regression Methods
In statistical modeling, regression [42] is a technique useful to infer the relationship
between a dependent variable y and p independent variables x = [x1|. . . |xp].
The dependent variable is also known as response variable or outcome, and the
independent variables as predictors, explanatory variables, or covariates.

The term regression was coined by Francis Galton in the 19th century to describe
a biological phenomenon, in particular he stated that the heights of descendants of
tall ancestors tend to regress down towards a normal average [43]. His work, only
related to biological phenomena, was later extended to a more general statistical
context.

Regression falls into the category of supervised problems. For each observation
of the predictor measurements xi, i = 1, ..., p there is an associated response
measurement yi.The model is fitted according to the response to the predictors,
with the aim of accurately forecasting future observations (prediction) or better
understanding the relationship between the response and the predictors (inference).

Another distinction relies in the used variables, that can be quantitative or
qualitative. The former take only continuous numerical values, while the latter
can fall into e set of different classes or categories. Regression problems are
quantitative ones, while classification problems are often referred to as qualitative
ones [44].

4.2.1 Random Forest Regressor
Random Forest [45] uses ensemble learning, which is a technique that combines
many classifiers to provide solutions to complex problems. In particular, it combines
the predictions of multiple decision trees, which constitute the building block of
Random Forest.

A decision tree is a decision support technique that forms a tree-like structure.
It is composed of a root node, decision nodes and leaf nodes (Figure 4.8). This kind
of algorithm divides a training dataset into branches, which further segregate into
other branches. This sequence continues until a leaf node is reached. The nodes
in the decision tree represent attributes that are used for predicting the outcome.
The main difference of Random Forest algorithm with respect to decision tree is
the fact that establishing root nodes and segregating nodes is done in a random
way, exploiting a method called bagging to issue predictions.

For Random Forest classifiers, this technique uses different samples of training
data rather than just one sample. The decision trees produce different outputs,
depending on the training data fed to the random forest algorithm, these outputs
will be ranked, and the output chosen by the mode of the decision trees becomes
the final output of the system (Figure 4.9a).
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Figure 4.8: Decision Tree structure
[46]

In case of Random Forest regressors, instead, features and independent variables
are passed to the model and the result of the regression will be the mean prediction
of the individual trees (Figure 4.9b).

(a) Classification (b) Regression

Figure 4.9: Random Forest Algorithms

An important last step involves its final performance testing. Considering
Random Forest as a regression algorithm, its results can be assessed using all
the available regression metrics. The most commonly used among the many are
the Mean Squared Error (MSE), the coefficient of determination R2, Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE).

In particular, the MSE is the average of the summation of the squared difference
between the actual output value and the predicted output value, and it should be
kept as small as possible (4.13). The RMSE is just the square root of the MSE.

The MAE is instead the mean of the absolute values of the individual prediction
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error over all instances in the test set (4.14).
The R2 score is a number between 0 and 1 that measures how well a statistical

model predicts an outcome. The outcome is represented by the model’s dependent
variable. The better a model is at making predictions, the closer its value will be
to 1. In the equation (4.15) RSS stands for the sum of squared residuals and TSS
for the total sum of squares

MSE = 1
n

nØ
i=1

(yi − ŷi)2 (4.13)

MAE = 1
n

nØ
i=1
|yi − ŷi| (4.14)

R2 = 1− RSS

TSS
(4.15)

The advantages of using a Random Forest are the fact that it is more accurate
than a single decision tree, it provides an effective way to handle missing data,
solves the issue of overfitting in decision trees and can produce predictions without
hyper-parameter tuning.
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Chapter 5

Methodology and Results

In this chapter we will present the step-by-step process that we followed to satisfy
the requirements of this thesis project. In particular, we will analyse in detail how
data are processed and analysed; afterwards, we will introduce the implementation
of both the forecast model and the optimization one; finally, results will be compared
and critically analysed to give evidence of the usefulness of the work.

5.1 Data Pre-Processing
As described in Chapter 3, the input data used for this work come from different
sources and are put together to satisfy the main requirements of having a significant
number of vehicles’ data and enough maintenance task information about specific
spare parts’ deadlines. All useful data are provided by Tierra S.p.A, a company
providing telematics services to industrial vehicles producers. In particular, the
needed files are:

• Vehicles maintenance history, containing information from January 20, 2020
to January 31, 2022, for a total of 8242 records about performed maintenance
tasks with the corresponding deadline.

• Maintenance booklets, containing information about performed interventions
for each vehicle model and whose models names are directly linked to the
previous data source.

• Vehicles’ traveled kilometers, containing information from October 1, 2021 to
September 30, 2022 related to the day-by-day cumulative km of 51980 vehicles.
It gathers together 9712592 records.

• A vehicle-to-model file that links the vehicles ids with the corresponding
company model, to check which vehicles have specific deadlines according to
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the model.

5.1.1 Instruments
The majority of the input data files are directly provided in CSV format from the
company. However, due to its high dimensions, the dataset containing the vehicles
traveled kilometers can be retrieved exploiting Amazon Web Service (Figure 5.1).

Figure 5.1: Amazon Web Service, Amazon S3, Amazon Athena and Amazon
SageMaker logos ©

Amazon Web Service (AWS) [47] is an online platform that provides scalable
and cost-effective cloud computing solutions. It was launched in the early 2000s as
a subsidiary of Amazon and it provides on-demand cloud computing platforms and
APIs to individuals, companies, and governments, on a pay-as-you-go pricing model
with no upfront cost. It is adopted worldwide and offers over 200 fully featured
services from compute power and database storage to content delivery, helping
companies to scale and grow. Amazon Web services offers flexibility since only the
actually used services are paid for, moreover enterprises using AWS can reduce
capital expenditure of building their own private IT infrastructure.

The AWS global infrastructure is divided into geographical regions, which are
further divided into separate availability zones, physically isolated from each other,
and providing business continuity for the infrastructure as in a distributed system.
If one zone fails to function, the infrastructure in other availability zones remains
operational. These availability zones are connected by AWS’s own high-speed
fiber-optic network.

There are three cloud computing models available on AWS:

• Infrastructure as a Service (IaaS): basic building block fo cloud IT, highly
flexible. It provides access to data storage space, networking features and
computer hardware, and provides management controls over the IT resources
to the developer.

• Platform as a Service (PaaS): AWS manages the underlying infrastructure,
and this solution helps the developer to be more efficient as there is no need to
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worry about capacity planning, software maintenance, resource procurement
etc.

• Software as a Service (SaaS): complete product that usually runs on a browser.
It refers mainly to end-user applications, and it is run and managed by the
service provider, thus the user only has to care about the most suitable
application of the software.

AWS can be accessed through a web-based interface called AWS Management
Console, signing in with an AWS account. In our case, the company is already
equipped with one, and from the console home page it is possible to see all the
provided services.
In the following we will analyse some of the ones exploited in this work.

Amazon S3

Amazon S3 or Amazon Simple Storage Service [48] is a service offered by AWS
that provides object storage through a web service interface, ensuring scalability,
high availability, and low latency with high durability. The basic storage unit is an
object identified by a unique key, and objects are immutable and organized into
buckets. Buckets are containers with their own set of policies and configurations,
enabling users to have more control over their data. An object in S3 can be between
1 byte and 5TB. If an object is larger than 5TB, it must be divided into chunks
prior to uploading. When uploading, Amazon S3 allows a maximum of 5GB in
a single upload operation; hence, objects larger than 5GB must be uploaded via
the S3 multipart upload API. Theoretically AWS S3 is supposed to have infinite
storage space, making it infinitely scalable for all kinds of use cases. Furthermore,
users are charged according to the S3 storage they hold.

Amazon Athena

Amazon Athena [49] is an interactive query service that allows to analyse Amazon
S3 data through standard SQL. Athena is serverless, so there is no infrastructure
to manage, and easy to use, since it is necessary only to point at data in Amazon
S3, define the schema and start querying. Moreover, the only cost to pay is for the
used queries. Most results are delivered within seconds. Athena uses Presto, an
open source SQL query engine, with ANSI SQL support and works with a variety
of standard data formats, including CSV, JSON, ORC, Avro, and Parquet. It is
ideal for interactive querying and can also handle complex analysis, including large
joins, window functions, and arrays.
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Amazon SageMaker

Amazon SageMaker [50] is a fully managed service that allows to build, train, and
deploy ML models quickly, giving complete access, control and visibility into all the
steps. It provides all the components used for machine learning in a single toolset
to make the process faster and cheaper. It is easy and quick to upload data, create
notebooks, train and tune models all in one place, and all the activities involved
in the ML development can be performed within the unified SageMaker Studio
visual interface. For what concerns our interests, Amazon SageMaker provides
one-click Jupyter notebooks (Figure 5.2) that allows to start working in seconds.
The underlying compute resources are elastic, allowing to dial up or down the
available resources and the changes take place automatically in the background
without interrupting the work. It also enables one-click sharing of notebooks,
making it easier to collaborate with others, who will get the same notebook saved
in the same place.

Figure 5.2: Jupyter logo ©

The aforementioned services are useful for our thesis because Athena is able to
map all the S3 objects into tables, allowing to analyse them through simple queries.
In particular, data can be retrieved from Athena and elaborated with the help of
some tools and libraries (Figure 5.3):

• Pandas [51] is a fast, powerful and flexible open source software library for data
manipulation and analysis, built on top of Python programming language. In
particular, it offers data structures and operations for manipulating numerical
tables and time series.

• NumPy [52] is an open source package for scientific purpose in Python. It
offers comprehensive mathematical functions, random number generators,
linear algebra routines, vectorization, indexing and more.

• Seaborn [53] is a Python data visualization library based on matplotlib. It
provides a high-level interface for drawing attractive and informative statistical
graphics.
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• Matplotlib [54] is a comprehensive library for creating static, animated, and
interactive visualizations in Python. It is possible to create publication quality
plots, make interactive figures that can zoom, pan, update, customize visual
style and layout and export many file formats.

• SciPy [55] provides algorithms for optimization, integration, interpolation,
eigenvalue problems, algebraic equations, differential equations, statistics and
many other classes of problems. It extends NumPy providing additional tools
for array computing and provides specialized data structures, such as sparse
matrices and k-dimensional trees.

• SciKit-Learn [56] is an open source, simple and efficient tool for predictive
data analysis, built on NumPy, SciPy and matplotlib. It features various
classification, regression and clustering algorithms, dimensionality reduction,
model selection and pre-processing.

• Awswrangler [57] is an open source Python library that enables to focus on
the transformation step of extract, transform and load (ETL) data pipelines
by using familiar Pandas transformation commands and relying on abstracted
functions to handle the extraction and load steps. It reduces the time it takes
to aggregate and prepare data for machine learning.

Figure 5.3: Logos of the used libraries ©

The input data about the vehicles’ odometer information are stored in a database
called "politecnico_db" on Athena, from which it is possible to retrieve the file
"patchwork_odometer" containing all the useful records for our purposes. In order to
transfer these data on a Jupyter Notebook in Amazon SageMaker, we can perform
a single query thanks to the awswrangler library that allows us to manipulate it
and transform it into a pandas DataFrame. In particular, DataFrames permit to
organize data into table-like structures with named columns, making it easier to
work with them. The employed query is reported in the following:
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1 sql = ’’’SELECT *
2 FROM " politecnico_db "." patchworkb_odometer " ’’’ # <-- write here

your SQL ( PrestoDB ) query
3

4 df = wr. athena . read_sql_query (sql , database = " politecnico_db ",
ctas_approach = False , s3_output =’s3 :// peruser -athena - result /
datalake -admin - cctutorial /’) #run the previous query in Athena
and return a pandas dataframe

athena_query.py

5.1.2 Data Transformation
The retrieved data are loaded as DataFrames in pandas in order to carefully analyse
their attributes. The first dataset, related to the maintenance history, is composed
as in Table 5.1.

Attribute Type Description
id_book int64 Indicates the specific booking id

id int64 Indicates the id of the dealer

confirmed_date string Indicates the date in which the performed
maintenance has been confirmed

garage string Indicates the dealer’s name
NAME string Indicates the model’s name

num_tasks int64 Indicates the number of tasks performed
in that date

deadline_km float64 Indicates the maintenance deadline in
terms of traveled km

deadline_time float64 Indicates the maintenance deadline in
terms of seconds elapsed

deadline_engine_hours float64 Indicates the maintenance deadline in
terms of hours the vehicle was on

name string Indicates the name of the specific per-
formed maintenance task

id_task int64 Indicates the id of the performed mainte-
nance task

Table 5.1: Attributes description of maintenance history

After analysing the dataset composition, only the columns related to the con-
firmed date, the garage, the model’s name, the deadline in km, the name and the id
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of the tasks are kept, since they represent the useful ones for our purposes. Notice
that the confirmed date attribute is changed into datetime format for an easier
manipulation.

The second dataset related to the vehicles’ traveled kilometers is composed as
summarised in Table 5.2.

Attribute Type Description

date string Indicates the specific day correspond-
ing to the registered traveled km

cumulated_raw_odometer float64 Indicates the cumulative value of the
traveled km, incremented day by day

unit_uuid int64 Indicates the id of the vehicle whose
traveled km are registered

Table 5.2: Attributes description of vehicles’ cumulative odometer values

This dataset contains vehicles’ cumulative traveled kilometers on a daily basis,
and also in this case the date is changed into a datetime format. After this, dates
are ordered chronologically for each vehicle id, and due to the presence of some
errors and missing data, a first cleaning step is performed, as explained in Section
3.3.2. The best choice turns out to be the one of slightly modifying the dataset to
obtain only the vehicles’ daily amount of traveled km from the cumulative ones.
This is done by performing a difference between the cumulative travelled amount
of two consecutive dates, allowing to compare the obtained values to the chosen
spare parts maintenance threshold, which in our case is the deadline in km.

As shown in Table 3.3 of Section 3.3.2, for each vehicle model and spare part,
retrieved from the maintenance history, there is a specific km threshold associated,
obtained looking at the maintenance booklets provided by the company. As a result,
every vehicle model has a different target for each component, and by choosing a
specific target it is possible to consider all the models undergoing maintenance as
soon as the selected deadline is reached.

To link the specific vehicle with the corresponding model, the third needed file
is a model-to-vehicle mapping organized as explained in Table 5.3.

As a matter of fact, in consideration of all the available data, the procedure to
obtain the final dataset to be prepared for the forecasting step is the following:

• The maintenance history dataset is filtered to keep only the 4 spare parts
under study and the models that have different components maintenance
deadlines according to the booklets.

• We choose the targets in km, and for each target we consider only the vehicles
that undergo maintenance according to that reached threshold.

57



Methodology and Results

Attribute Type Description

vehicle_id int64 Indicates the vehicle id corresponding to
the "unit_uuid" in the odometer file

model_name string Indicates the name of the model corre-
sponding to the specific vehicle

id int64 Indicates the id of the specific kind of
model

book_name string Indicates the name of the booklet to which
the model belongs

Table 5.3: Attributes description of vehicles to model file

• Looking at the file summarized in Table 5.3 we keep all the vehicles ids
corresponding to the chosen models.

• The vehicles’ odometer dataset is filtered according to the vehicles’ ids ex-
tracted from the previous point. The dataset is already cleaned from errors
and missing data. For example, the resulting vehicles considering each target
are reported in Table 5.4.

Target maintenance deadline [km] # vehicles
10000 340
20000 12768
40000 6341
60000 6438

Table 5.4: Number of vehicles per target maintenance deadline after the cleaning

The result is a dataset containing the daily traveled kilometers for each selected
vehicle (Figure 5.4), ready to be prepared for the forecast step. Notice that the
daily traveled km are consistent with the cumulative odometer value that increases
correctly day by day.

5.1.3 Dataset Preparation
Starting from the dataset obtained in Section 5.1.2 the main purpose is that of
building the training dataset for allowing the chosen ML algorithm to perform
predictions.

In order to prepare the dataset in the most effective way to achieve our purposes,
it is useful to present the main variables of interest in relation with the objectives
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Figure 5.4: Example of daily traveled km dataframe

to reach. We start from the statement of the problem presented by Markudova et
al. in [30], where the aim was that of predicting next-day utilization hours and
remaining days until maintenance according to specific utilization hours cycles. We
adapt it to our use case introducing the traveled km. Taking into account a single
vehicle v indicated by the uuid in Figure 5.4, we consider:

• T v[km] as the target maintenance deadline in kilometers for each vehicle under
study belonging to a specific model. It indicates the traveled km by each
vehicles before having to perform maintenance.

• U v(t)[km] as the time series of daily traveled km by each vehicle. It corre-
sponds to the column daily_km in Figure 5.4.

• Lv(t)[km] as the series of km left to the next maintenance of the vehicle. It
will correspond to the column km_to_maint.

• Dv(t)[days] as the time series of the days left to the next maintenance of the
vehicle. It will correspond to the column days_to_maint.

The first two information are already available in the current dataset, however
some further preparation is needed to obtain the remaining ones, i.e. the km and
days left to the next maintenance. To do so, the perform the following steps:

• We initialize an empty list called days_per_cycle to keep track of the days
left to the next maintenance target for all the cycles that each vehicle performs.
This is useful to understand the frequency of maintenance.

• We also initially set the km left to maintenance Lv(t)[km] to the deadline
target T v[km], and the Dv(t)[days] to -1.

• for all the dates inside the vehicle’s dataframe, so day-by-day, we check if the
difference between the remaining km to maintenance and the daily traveled
km (U v(t)[km]) is negative, meaning that the target T v[km] is reached, and
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we can store the days of the maintenance cycle, the days left to maintenance,
and reset the values of Dv(t)[days] to -1 and Lv(t)[km] to the deadline target
T v[km].

• if the previous condition is not respected, we simply increment the count of
the days left to maintenance, we decrement the km left to maintenance of the
daily traveled amount (U v(t)[km]), and store in the new dataframe the date,
the vehicle id, the daily traveled km, and the decremented new km left to
maintenance Lv(t)[km].

For further clarity, the code in the following shows how to achieve the desired
results:

1

2 def prepare_df (df_vehicle , target_km ):
3 days_per_cycle = []
4 km_to_maintenance = target_km
5 days_count = -1
6 data = defaultdict (list)
7

8 for _, row in df_vehicle . iterrows ():
9 # If cycle has finished , restart counter

10 if km_to_maintenance - row[’daily_km ’] < 0:
11 days_per_cycle . append ( days_count )
12 data[’days_to_maint ’]. extend (range(days_count , -1, -1)

)
13 km_to_maintenance = target_km
14 days_count = -1
15

16 date_today = pd. to_datetime (row["date"])
17 usage_until_now = df_vehicle [ df_vehicle ["date"] <

date_today ][" daily_km "]. mean ()
18 data["uuid"]. append (row[’uuid ’])
19 data[" avg_util "]. append ( usage_until_now )
20 data["date"]. append (row[’date ’])
21 data[’daily_km ’]. append (row[’daily_km ’])
22 km_to_maintenance -= row[’daily_km ’]
23 data[’km_to_maint ’]. append ( km_to_maintenance )
24 days_count += 1
25 data[’days_to_maint ’]. extend ([ None] * ( days_count + 1))
26 dataset = pd. DataFrame (data)
27

28 return dataset , days_per_cycle

In the end, the resulting dataframe will be as shown in Figure 5.5. Notice that
also the average traveled km up to the specified day are added for more insights.
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Figure 5.5: Result of dataset preparation

5.1.4 Data Characterization
After having obtained all the relevant information for the vehicles under study, it
is useful to perform some analysis to understand the characteristics and behaviour
of some data. In particular, we consider 4 target maintenance deadlines T v: 10000,
20000, 40000 and 60000 km, which are the ones under study for the vehicles
resulting from Section 5.1.2.
Then, for each target deadline, we consider one representative vehicle id and the
corresponding records over an entire year.
Taking into account the daily traveled km, it is possible to derive the empirical
cumulative distribution function (ECDF) for all four cases (Figure 5.6).

(a) Original (b) Zoomed

Figure 5.6: ECDF of daily traveled km U v(t) for each target maintenance deadline

Notice that the behaviour of the vehicles for all the targets larger than 20000
km is more or less the same, opposite to the vehicle with target equal to 10000
km, whose plot highlights some very high amounts of daily traveled km with a
probability that is not negligible. Since it is quite unlikely for a vehicle to drive
more than 4000 km a-day, these values may be considered as outliers due to errors
in the data collection and thus can be removed. For what concerns the reasonable
values, the plots highlight the tendency of more or less all the vehicles to travel
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less than 2000 km per day, which is still a quite high amount of distance.
This last observation leads to the necessity to understand how frequent are the

maintenance cycles for the vehicles. For this reason, Figure 5.7 shows the number of
days left until the next maintenance for the 4 vehicles. It is evident that for all the

(a) Original (b) Zoomed

Figure 5.7: Number of days left until next maintenance

4 vehicles maintenances are quite frequent, with few days per maintenance cycle,
which is a reasonable outcome due to the fact that as we have seen they travel a
lot of km daily. Rationally, as the target maintenance deadline increases, also the
number of days in each maintenance cycle does, however for a smaller threshold it
could be more useful to understand the rate with maintenances happening for the
vehicles.

Notice that in the end we want to obtain the distribution of the required spare
parts to derive the scenarios for our optimization model. If maintenances are quite
frequent they may generate some stationary demand scenarios, since the shipment
time for a specific spare part may be much bigger than the number of days between
one maintenance and the other. For this reason, from now on we will differentiate
two possibilities:

• Short maintenance cycles with respect to the considered lead time, charac-
terised by a relatively small amount of days in-between target km deadlines,
that make maintenances more frequent. This will correspond to stationary
demand.

• Long maintenance cycles with respect to the considered lead time, char-
acterised by a higher number of remaining days until the next maintenance.
This will correspond to non-stationary demand.
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5.1.5 Short Maintenance Cycles

Vehicles with short maintenance cycles are those which feature small amount of
days left to the next maintenance. For each target maintenance deadline and for
each related vehicle we collect the number of days to maintenance inside a list
containing all the performed cycles.

Notice that, after having removed the outliers as said in Section 5.1.4, it can be
useful to evaluate the mean value and the standard deviation of the maintenance
rate for all the vehicles under study, in order to derive a distribution of the mean
value as a measure of the similarity of the vehicles’ behaviour. The result is shown
in Figure 5.8.

Figure 5.8: Distribution of the mean values of the maintenance cycles

The majority of the average days per cycle are more or less concentrated in
correspondence values that are smaller than 25 days per maintenance cycle, with a
distribution that can be fitted to a decaying exponential one. For more in-depth
information, the distribution of the whole days in each maintenance cycle, for
all the vehicles under study, is presented in Figure 5.9. As a matter of fact, the
behaviour is confirmed to be that of an exponential distribution, with very few
large values indicating the number of days in each cycle.
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Figure 5.9: Distribution of the days per maintenance cycle

Distribution of the number of vehicles - Stationary Demand

The exponential distribution is often concerned with the amount of time until some
specific event occurs. As explained in Section 4.1.5 the time to wait between events
can be described as a decaying exponential, since the probability of waiting a given
amount of time between successive events decreases exponentially as time increases.
This definition is suited with the outcome of our analysis, since the days to wait
until the occurrence of next-maintenance event follow an exponential decay.

Considering 12000 vehicles in total, corresponding to our example of target
maintenance deadline equal to 20000 km, they all show a similar behaviour and
follow the same distribution of inter-time maintenance, as we can call the days
in-between maintenances. From the inter-time maintenance exponential distribution
we can derive a mean of µ units of time.

Assuming that these times are independent, meaning that the time between
events is not affected by the one between previous events, the process can be
considered Poisson. In this way it is possible to obtain the number of events
per unit time, which is exactly what we want to derive to understand how many
vehicles undergo maintenance (and thus how many spare parts are needed) in
the unit of time. Thus the number of events per unit time will follow a Poisson
distribution with mean λ = 1

µ
. If we want to understand how many vehicles will

undergo maintenance in a specific time interval, we can consider to ideally place
orders once every two weeks or once every four weeks. In this cases, applying the
formulations for the Poisson distribution in (5.1) we can evaluate the probability of
having a certain number k of vehicles under maintenance in the chosen unit of time.
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As a result we obtain the plots in Figure 5.10 for different values of λ obtained
from Table 5.5. Notice that λ = 1 refers to maintenances every 2 weeks and λ = 2
to maintenances every 4 weeks.

P (k events in interval) = e−λλk

k! (5.1)

Figure 5.10: Distribution of the number of vehicles k that undergo maintenance
every 2 and 4 weeks

µ λ

Interval of 2 weeks 0.93 1.07
Interval of 4 weeks 0.47 2.14

Table 5.5: Values of the mean µ of the exponential inter-maintenance time and
the rate λ of the poisson distribution

Once we have obtained the distribution of the number of vehicles undergoing
maintenance, we can easily derive the desired number of scenarios for our stationary
demand, each with its own probability value, by defining an interval of values and
extracting the corresponding probability.

5.1.6 Long Maintenance Cycles
Vehicles with long maintenance cycles are those which feature a great amount of
days left to the next maintenance. Usually this kind of behaviour can be seen in
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vehicles whose target maintenance deadline is higher, for instance 60000 km, which
contributes to make the next maintenance further in time. If maintenances are far
away in time it can be more useful to exploit predictions for the next due one, in
order to then consider the errors and build up the different non-stationary demand
situations.

In this specific case, we can think of considering only the vehicles whose days
to maintenance are around 150. In order to further prepare the dataset for the
machine learning process, it is possible to enrich the available data with additional
information about the historical daily traveled km in the past instant within a
window time interval of size 10 days. Once this last step is performed, it is possible
to proceed with the forecasting process.

5.2 Forecast
After the dataset processing, we have distinguished two cases of maintenance cycles:
short and long ones. For vehicles with long maintenance cycles it is useful to
perform a forecast by exploiting machine learning techniques. To do so, we take
advantage of the work by Markudova et al. in [30], and in particular we focus on
the methodology followed to predict the remaining time to next maintenance as in
their task B. In the following, we will present the authors’ choices for the training
and regression phases of the process, and we will explain the differences adopted in
our thesis project with respect to theirs.

5.2.1 Training of the model

For training the model under study the first thing to do is to choose the training
set. It must be used to teach prediction models how to extract features that are
relevant to specific goals. After that, the trained model can be evaluated using a
new set of data, called test set, which must not be used during the training.

The authors employ the strategy of training the regression models on a portion
of the historical data that come before a chosen day t. The portion is chosen by
using a training window equal to a certain value in order to set the dimension of
the previous set of data to use. All the subsequent days (t+1 ) are used to test the
trained model. Since the training phase requires a long period, they choose to keep
the training window fixed and equal to 70% of the whole set.

For our work, we start from the dataset in Figure 5.11 and we perform the
training on all the available vehicles except one, that will be used to perform the
prediction. Specifically, for example, the vehicle whose id is 3213 is excluded from
the training set.
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Figure 5.11: Dataset of vehicles for performing the training

5.2.2 Regression Algorithm

The objective is that of applying regression to predict the time until the next due
maintenance. The authors train and test both linear and non-linear regression
models, each category showing advantages and disadvantages: linear models have
smaller complexity but are not ideal if the purpose is that of modeling non-
stationary trends. For this reason, they exploit four regression algorithms, i.e. a
Linear Regressor, a Support Vector Regressor, a Random Forest Regressor and a
Gradient Boosting. For each of them they perform a grid search to find the optimal
hyper-parameter configuration that manages to fit the input data distribution.

Considering the fact that the Random Forest one performed best for the task,
we will focus on this specific algorithm. Hyperparameter tuning is a useful step to
optimize the Random Forest model. For this specific algorithm, hyperparameters
include the number of decision trees in the forest, the maximum number of features
considered by each tree when splitting a node, the maximum number of levels in
each decision tree, the minimum number of data points placed in a node before the
node is split and others. These can all be tuned when using SciKit-Learn, which
implements a set of sensible default hyperparameters for all models, even if they
are not guaranteed to be optimal for a problem. For this reason, it can be useful
to perform a Grid Search by explicitly specify every combination to find out the
optimal one. In general, the most important settings are the number of trees in
the forest and the number of features considered for splitting at each leaf node.

For our case study, we perform regression both exploiting grid search to find
their optimal configuration and without grid search, using the default sensible
values ensured by SciKit-Learn. Due to the high computational time of the grid
search execution, and to the small differences in terms of errors between the two
strategies, we choose to use the deafult ones.
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5.2.3 Results
The Random Forest model is finally trained and tested as indicated in Section
5.2.1. The prediction results are shown in Figure 5.12 and also some meaningful
metrics are evaluated to support the considerations. In particular, both the MSE
and the R2 value are calculated as shown in Section 4.2.1. The MSE is equal to
391.27, which is a reasonable value considering the fact that the R2 score is equal
to 0.80, thus quite close to the ideal value of 1. R2 is a measure of goodness of
fit, and it represents the proportion of variance in the dependent variable that is
explained by the model. Thus, by looking at the plot, we can see that the results
are coherent, since the observations are quite close to the model’s predictions, thus
they are close to the line of best fit.

Starting from the prediction results, it could be possible to evaluate for each
chosen time interval how many vehicles undergo maintenance, calculating their
expected value and standard deviation from which we derive the non-stationary
demand. For this thesis work, we focused mainly on the short cycles of maintenance,
as the provided dataset contained few data about long maintenance ones, although
we still present a model for non-stationary demand management that could be used
with other datasets.

Figure 5.12: Prediction line vs true values
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5.3 The Optimization Model
As stated earlier, the final phase involves the optimization of the overall management
of the inventory in order to meet all the requirements related to low costs and high
customers’ satisfaction.

Taking into account the requirements mentioned in Section 1.1.1, and due to
the necessity of dealing with a complex and realistic problem, it is straightforward
to think of implementing an OR stochastic model. Our objective is essentially that
of finding an optimal solution for the allocation of resources, taking into account
objectives, constraints and input parameters.

5.3.1 Instruments
Optimization models can be formulated and solved with the help of several useful
tools, from libraries to different kind of solvers. In the following we list the
instruments chosen to build up and solve our mathematical program (Figure 5.13):

• Pyomo [58], a Python-based, open-source optimization modeling language
with a diverse set of optimization capabilities, allowing to load data from
many sources. Using Pyomo, a user can describe optimization model in a
flexible way by specifying decision variables, constraints, and an optimization
objective.

• Couenne [59], an Open Source algorithm for solving Mixed-Integer Nonlin-
ear Programming (MINLP) problems. It implements linearization, bound
reduction, and branching methods within a Branch&Bound framework. It is
distributed on Coin-OR under the Eclipse Public License (EPL).

Everything is implemented exploiting Jupyter Notebook, allowing to run the
optimization models also on SageMaker.

Figure 5.13: Logos of the used tools and solver ©
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5.3.2 Problem Statement

Managing inventories in the industrial vehicles domain is a challenging task, most
of all for the uncertain nature of the spare parts demand, which often shows an
intermittent pattern.
In this section we present a Stochastic Programming model for minimizing the
inventory holding costs of spare parts inventory and at the same time avoiding
vehicle offline periods when the requested items are not immediately available.
The choice of adopting this kind of model is mainly driven by the necessity of
considering the lack of knowledge of the demand, which is a quantity that may
become known only during the decision making process evolution. Spare parts
demand is indeed represented as a random variable and its true value becomes
known only after its realization. For this reason, the formulation introduced and
explained in Section 4.1.6 is adopted.

In this problem the spare parts will be ordered on a regular basis, indicatively
once every one or two weeks, and they will be received after the lead time related
to each of them. This characteristic makes the lead time non negligible.

The inventory dimensions are of course limited, since a single warehouse cannot
store an infinite number of components. Thus, in our model we must also take into
account the fact that a maximum storage bound has to be respected. Together
with that, since the model is meant to hold independently from the moment in
time in which the program runs, also any quantity of product already stored in the
warehouse must be specified.

Moreover, since the objective is that of minimizing the inventory holding costs,
it is important to know how much it will be paid for a specific spare part to be
stored in the warehouse. The holding costs are specific for each spare part, because
some components may have some small costs for the storage while others may be
quite expensive.
To model, instead, the minimization of the offline period, we introduce a shortage
cost that can be seen as a penalty faced when a product’s demand is not satisfied.
Also in this case this is component-dependent. The optimization is performed by
considering an holding/shortage cost ratio, since we do not have a precise available
value for them but just a proportion.

Finally, due to its uncertain nature, we consider the demand distribution for
each spare part and from it we derive a set of possible realization scenarios to
be given as input to our model. In the following we will analyse in detail the
mathematical model formulation for the two cases under study, i.e. stationary and
non-stationary demand.
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5.3.3 Stationary Spare Parts Demand
The first case under study is the one in which the demand distribution for the
components does not change over time, meaning that in between the placement of
the orders and their reception the demand is always stationary.

To model the problem at hand, we propose a Mixed-Integer Non Linear (MINLP)
Two-Stage stochastic model whose decision variables are grouped into first-stage
decisions that must be made prior to the realization of the uncertainty (usually
called "here-and-now") and second-stage decisions (so-called "wait-and-see") that
are the result of the realization of the uncertainty. The advantage of this type of
framework is that we can represent any stochastic process, as long as it can be
approximated by a finite number of realisations.

In this context, we want to make first-stage decisions that must hold for all the
considered scenarios such that the costs associated with all variables are optimized.
For the problem under study, the first-stage decisions are represented by the
quantity to order for each spare part, that will be delivered after its own lead
time, and by a target inventory level for each component that represent the ideal
quantity to keep in the inventory to ensure the demand satisfaction. The idea of
adopting a target level comes from the inventory control policies already present in
the literature, and we can easily adapt it to our use case using it as a "safe stock"
to keep to guarantee an equilibrium at steady-state.

Given those decisions, the second-stage ones are those referring to the daily
operation of the system, under the scenarios considered in the model. In fact, they
are scenario-dependent.

Notice that the implemented mathematical model must cover different time
instants as the optimal quantity to find is not delivered immediately but only after
the respective lead time, which may cover an arbitrary number of time steps in the
time horizon.

We will start by giving the mathematical formulation of the problem under study,
listing its parameters and decision variables, followed by the objective function and
constraints definitions and explanation.

Sets

First of all, we need to define the employed sets to index variables and parameters:

• Number of spare parts c ∈ C

• Number of scenarios ξ ∈ Ξ

• Time period t ∈ T
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The time period is needed because we are performing an optimization over multiple
time instants, due to the non-negligible lead time that will cover different time
steps for each component.

Parameters

Parameters are those data that are provided as input to the model. They are
usually obtained from the company or derived from statistical analysis:

• Inventory holding cost hc ∀c ∈ C.

• Shortage cost wc ∀c ∈ C

• Lead time lc ∀c ∈ C

• Initial inventory quantity ic ∀c ∈ C

• Maximum inventory capacity M

• Demand for spare part Dc,ξ ∀c ∈ C, ∀ξ ∈ Ξ

• Demand probability for each scenario Pc,ξ ∀c ∈ C, ∀ξ ∈ Ξ

As previously mentioned, the inventory holding and shortage costs are component-
dependent, as also the lead time which is specific for each spare part. We also need
to define the initial state of the inventory at the start of the optimization. All the
quantities mentioned up to now are deterministic and known. The demand values
and probabilities are obtained from the distribution of the spare parts demand, as
seen in Section 5.1.5.

Decision variables

Decision variables are divided into first stage and second stage ones, according to
whether they depend on the scenario or not.

• Quantity to order for a specific component that will arrive after the shipment
time Qc,t−lc ∀c ∈ C, ∀t ∈ T .

• Target level of inventory for a specific component Sc ∀c ∈ C.

• Inventory quantity for a component at a specific time instant It,c,ξ ∀t ∈
T, ∀c ∈ C ∀ξ ∈ Ξ.

• Unsatisfied demand for a component at a specific time instant Ft,c,ξ ∀t ∈
T, ∀c ∈ C ∀ξ ∈ Ξ.
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• Binary variable to indicate if there is shortage or not Zt,c,ξ ∀t ∈ T, ∀c ∈
C ∀ξ ∈ Ξ.

As a matter of fact the first stage decision variables are Qc,t−lc and Sc, while the
second stage ones are It,c,ξ, Ft,c,ξ and Zt,c,ξ. The latter is needed just to force the
model to put the shortage equal to zero if the inventory is greater than zero. In
particular, it is equal to 0 if there is shortage, and equal to 1 otherwise.

Model

The goal of the implemented model is that of finding the optimal quantity to order
and to keep in stock so that the inventory holding costs are minimized as long
as the customers’ satisfaction is ensured, meaning that we must also minimise
the shortage costs. To do so, we derive a two stage optimization with two main
objectives:

min
Qc,t−lc

Ø
ξ

Ø
c

Pc,ξ[
Ø

t

hcIt,c,ξ + wcFt,c,ξ] (5.2)

min
Sc

|
Ø

ξ

Ø
c

Pc,ξIt,c,ξ − ic| (5.3)

s.t. It,c,ξ = (It−1,c,ξ + Qc,t−lc −Dc,ξ)Zt,c,ξ ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.4)

Ft,c,ξ = (Dc,ξ − It−1,c,ξ −Qc,t−lc)(1− Zt,c,ξ) ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.5)

where It−1,c,ξ = (It−2,c,ξ + Qc,t−lc−1 − E(Dc,ξ))Zt−1,c,ξ (5.6)

M ≥
Ø

c

It,c,ξ ∀t ∈ T, ∀ξ ∈ Ξ (5.7)

Qc,t−lc ≥ 0 ∀t ∈ T, ∀c ∈ C (5.8)

Sc ≥ 0 ∀c ∈ C (5.9)

It,c,ξ ≥ 0 ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.10)

Ft,c,ξ ≥ 0 ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.11)

Zt,c,ξ ∈ {0,1} ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.12)

Expression (5.2) consists of the first objective function to be minimised. It
involves the holding and shortage costs and it is formulated as the deterministic
equivalent of the stochastic problem as it involves the probabilities for each scenario
to occur. This is done because the resulting second stage decision variables are
scenario dependent, and we want to minimize our problem for all the possible
scenarios that could occur. Notice that the function must be optimized for all the
involved time instants, as we want to ensure that for all the days in between the
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reception of the ordered quantity Qc,t−lc the inventory costs are minimized. For
this reason, the optimization follows a sort of iterative procedure in which at each
time instant we evaluate the constraints (5.4) and (5.5): the first states that if
shortage does not happen, then the inventory value at the current time instant
is equal to the inventory state at the previous one, plus any eventual quantity of
product that was ordered lc lead times before, minus the satisfied demand for that
specific occurring scenario; the second, instead, tells us that if there is a shortage
the unmet demand Ft,c,ξ must be equal to the realized demand in that scenario
minus any eventual stock still present in the inventory, which involves also the
possibility that previously made orders have arrived.

Constraint (5.7) is needed to ensure that the maximum inventory capacity is
not exceeded.

Notice that, as stated in (5.6), since we are optimizing the variables at each
time instant, the previous inventory state is itself a variable that is obtained by
going backwards to all the previous time instants that have been considered. In
particular, It−1,c,ξ should be the state of the inventory at the previous time instant,
however due to the uncertain nature of the demand, we are not sure about which
scenario is occurring in that specific moment in time, and it is not said that the
demand scenario we are considering at time t is the same of that at time t-1. For
this reason, the previous inventory state is always evaluated by taking into account
the expected value of the demand over all the possible occurring scenarios.

This necessary assumption leads to the importance of establishing a target
inventory level Sc in our model. This variable represents a quantity that we wish
to reach such that the demand is always satisfied even if it could oscillate around
the target value. To ensure this equilibrium, as we are consideing the expected
value of the demand at each time instant, Sc should be the same at the end of
every time period. Thus our new objective becomes that of finding the optimal
value of the target in order to respect this condition.

To find out which is the optimal target value that allows to reach an equilibrium
situation, we suppose that also the quantity ordered and arrived at every time
instant must be the same. This comes from the assumption that, if we consider
the expected value of the demand and we have reached an equilibrium situation,
then in the past we must have made always the same decisions about the quantity
to order.
We devise a specific strategy to obtain the final result of our optimization:

1. First of all, we exploit the first optimization in (5.2) to find the optimal value
of Qc,t−lc , which represents a quantity that we want to order right now but
that will be delivered only lc times afterwards.

2. We set the values of the quantities arrived at the previous time instants equal
to an arbitrary value (for example zero).

74



Methodology and Results

3. We proceed with the first stage of the optimization, evaluating the optimal
Qc,t−lc value, which will be of course highly influenced by the fact that the
previous quantities have been set to a low value.

4. After the first optimization, the obtained value is shifted and assigned to the
value of Qc,t−lc+1, which is the quantity assumed to be received at the previous
time instant. The optimization is repeated.

5. Steps 3 and 4 are repeated until the values of the purchased quantities are
equal among them, reaching a sort of convergence after the first oscillations
to adjust the ideal quantities to buy at every time step.

6. Once the quantities are the same, we keep them fixed and we continue the
optimization with the second stage (5.3), incrementing or decrementing the
target value at each iteration according to how close the expected value of the
inventory at the current time instant and the initial inventory quantity are.
The procedure for solving this second step is explained in Algorithm 1.

As long as the target value for each component is not found, we evaluate the
expected value of the inventory after each optimization and we calculate the
difference between its value and the initial inventory one. If the difference at
the current iteration is smaller than the previous one, it means that there is still
the possibility to improve the model, thus we check if the expected value of the
inventory is greater or smaller than the initial inventory: in the first case, the target
value is incremented and the initial inventory is put equal to it, in the second case
it is decremented. If, instead, the new difference in the inventory quantity is greater
than the previous one, it means that we have reached in the previous iteration the
reasonable target value, and if the difference in the inventory is reasonably small
we can set Sc to the optimal found value.
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Algorithm 1 Optimization of the target value Sc

Sc ← 0
c_found← False
Initialize E(It,c,ξ)
previous_inventory_difference← 0
while all(c_found = False) do

Optimize the model
Evaluate new_inventory_difference = |EIt,c,ξ − ic(t)|
if new_inventory_difference ≥ previous_inventory_difference then

if new_inventory_difference ≤ 0.5 then
Sc ← ic(t− 1)
c_found = True

else
if EIt,c,ξ > ic(t) then

Sc+ = 1
else if EIt,c,ξ < ic(t) then

Sc− = 1
end if
previous_inventory_difference = |EIt,c,ξ − ic(t)|
ic = Sc

end if
end if

end while

The main advantage of this optimization model is that it does not need to be
solved multiple times as long as the demand remains stationary over the time
horizon. Until the demand holds, the procedure must not be repeated. As a result,
if it is convenient to buy stocks because the holding costs are smaller than the
shortage ones, the target will be incremented and the company will be covered
against the unlucky event in which the realized demand is slightly different from the
expected one. On the contrary, if the penalty costs are smaller than the inventory
ones, the target inventory will remain equal to zero. It is a reasonable outcome
since the costs will be minimized due to the inconvenience of keeping stocks in the
inventory, and the company will just have to order the optimal quantity Qc,t−lc .
Figure 5.14 shows how the values of the objective function and of the target
inventory level change as the ratio between the holding and the shortage costs
changes too. We keep the inventory holding cost fixed and equal to 1 and we just
change the proportion with respect to the shortage, varying from 0.01 to 2.0. As
expected, the objective function grows incrementally as the penalty cost does, while
the target value performs a step increment as it suddenly changes from 0 to the
optimal value found.
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Figure 5.14: Effects of the holding/shortage ratio on the target Sc and the
objective function

5.3.4 Non-Stationary Spare Parts Demand

The second case under study is the one involving the non-stationary nature of
the demand for the spare parts. As anticipated in Section 5.1.6 this kind of
behaviour can be derived from the prediction step of this thesis project: for every
time instant we will have a different demand for the spare quantities, each with
their own uncertainty, and as a consequence the quantity to order will change at
every interval of the time horizon we are considering. Due to this change in the
assumption, also the mathematical model must be modified to cope with it.

We still propose a Two-Stage stochastic model whose decision variables are
grouped into first-stage decisions that must be made prior to the realization of
the uncertainty and second-stage decisions that are the result of the realization of
the uncertainty. In this context, however, it makes no sense to consider a target
inventory level to reach, as the equilibrium condition ensured by the stationarity of
the demand does not hold anymore. As a consequence, the target would not be
the same at every time step, thus we just keep the quantity to order to for each
component Qc,t−lc as first stage decision variable. Also in this case the mathematical
model covers different time instants.
We will present now the formulation of the problem under study, listing its pa-
rameters and decision variables, followed by the objective function and constraints
definitions and explanation.
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Sets

First of all, we need to define the employed sets to index variables and parameters:

• Number of spare parts c ∈ C

• Number of scenarios ξ ∈ Ξ

• Time period t ∈ T

The time period is needed because we are performing an optimization over multiple
time instants, due to the non-negligible lead time that will cover different time
steps for each component.

Parameters

Parameters are those data that are provided as input to the model. They are
usually obtained from the company or derived from statistical analysis:

• Inventory holding cost hc ∀c ∈ C.

• Shortage cost wc ∀c ∈ C

• Lead time lc ∀c ∈ C

• Initial inventory quantity ic ∀c ∈ C

• Maximum inventory capacity M

• Demand for spare part Dc,ξ ∀c ∈ C, ∀ξ ∈ Ξ

• Demand probability for each scenario Pc,ξ ∀c ∈ C, ∀ξ ∈ Ξ

As previously mentioned, the inventory holding and shortage costs are component-
dependent, as also the lead time which is specific for each spare part. We also need
to define the initial state of the inventory at the start of the optimization.

Decision variables

Decision variables are divided into first stage and second stage ones, according to
whether they depend on the scenario or not.

• Quantity to order for a specific component that will arrive after the shipment
time Qc,t−lc ∀c ∈ C, ∀t ∈ T .

• Inventory quantity for a component at a specific time instant It,c,ξ ∀t ∈
T, ∀c ∈ C ∀ξ ∈ Ξ.
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• Unsatisfied demand for a component at a specific time instant Ft,c,ξ ∀t ∈
T, ∀c ∈ C ∀ξ ∈ Ξ.

• Binary variable to indicate if there is shortage or not Zt,c,ξ ∀t ∈ T, ∀c ∈
C ∀ξ ∈ Ξ.

As a matter of fact the first stage decision variable is just Qc,t−lc , while the second
stage ones remain It,c,ξ, Ft,c,ξ and Zt,c,ξ. The latter is needed just to force the model
to put the shortage equal to zero if the inventory is greater than zero. In particular,
it is equal to 0 if there is shortage, and equal to 1 otherwise.

Model

The goal of the implemented model is that of finding the optimal quantity to
order so that the inventory holding costs are minimized as long as the customers’
satisfaction is ensured, meaning that we must also minimise the shortage costs. To
do so, we derive the following model:

min
Qc,t−lc

[
Ø

ξ

Ø
c

Pc,ξ[
Ø

t

(hcIt,c,ξ + wcFt,c,ξ)α−t]] (5.13)

s.t. It,c,ξ = (It−1,c,ξ + Qc,t−lc −Dc,ξ)Zt,c,ξ ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.14)

Ft,c,ξ = (Dc,ξ − It−1,c,ξ −Qc,t−lc)(1− Zt,c,ξ) ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.15)
where It−1,c,ξ = (It−2,c,ξ + Qc,t−lc−1 − E(Dc,ξ))Zt−1,c,ξ (5.16)

M ≥
Ø

c

It,c,ξ ∀t ∈ T, ∀ξ ∈ Ξ (5.17)

Qc,t−lc ≥ 0 ∀t ∈ T, ∀c ∈ C, (5.18)
It,c,ξ ≥ 0 ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.19)
Ft,c,ξ ≥ 0 ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.20)

Zt,c,ξ ∈ {0,1} ∀t ∈ T, ∀c ∈ C, ∀ξ ∈ Ξ (5.21)
Expression (5.13) consists of the objective function to be minimised. With

respect to Section 5.3.3 the formulation is slightly modified by adding a coefficient
α−t. This factor is needed since we are coping with predicted quantities that will
have a growing uncertainty, directly proportional to the amount of time in the
future we are considering for the forecast. This value is elevated to minus t because
we want to give less importance to the farthest predictions, thus it performs as a
weight for the different predictions in time. As a result the error will grow, but the
importance of the forecast quantity will decrease. All the other constraints have
the same meaning as for the stationary case.

Contrary to the previously analysed model, this one needs to be run multiple
times to give the optimal quantities over a specific time period.
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5.3.5 Results
After having processed all the input data provided by the company and implemented
the two optimization models to cope with the stationary and non-stationary nature
of the spare parts demand, some results can be shown. In particular, we will start
by analysing the results of two optimization runs for both the models; then we
will focus on the computational complexity of the two programs, highlighting the
relevant variables that influence it; finally, we will underline how our model is able
to provide improved results in terms of minimization of costs with respect to some
naive baselines.

Stationary Demand Results

The input data values used for the model are summarised in Table 5.6. Notice that
the demand and demand probability values are obtained from the discretization of
the true distribution of data obtained in Section 5.1.5. In particular, we use an
order periodicity of 2 weeks.

Input data Value
# spare parts 2
# scenarios 3

Lead time ∀ items [2, 3]
Initial inventory ∀ items [0, 0]
Inventory Cost ∀ items [1, 1]
Shortage Cost ∀ items [10, 10]

Maximum Inventory Capacity 200
Demand item 1 [2, 4, 6]
Demand item 2 [1, 3, 5]

Demand Probabilities item 1 [0.55, 0.35, 0.10]
Demand Probabilities item 2 [0.60, 0.25, 0.15]

Table 5.6: Input data values for the stationary optimization model

We make the optimization model run and in a short amount of time the resulting
ideal target inventory is found. In particular, Table 5.7 shows the inventory and
shortage levels and the ordered quantities for every time instant at the last iteration,
to have a proof of the goodness of the results.

As can be seen, the shortage is zero in almost all cases, and it is an evidence
of the goodness of the model because the shortage costs are 10 times higher than
the inventory holding ones, thus leading to the tendency of keeping more in stock.
The quantities to buy for each component are all very similar, and it is the proof
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[t, c, ξ] It,c,ξ Ft,c,ξ Qc,t−lc

[0, 1, 1] 4 0 3.90
[0, 1, 2] 2 0
[0, 1, 3] 0 0
[0, 2, 1] 3.5 0 2.55
[0, 2, 2] 1.5 0
[0, 2, 3] 0 0.5
[1, 1, 1] 5 0 4.10
[1, 1, 2] 3 0
[1, 1, 3] 0 0
[1, 2, 1] 4.14 0 2.65
[1, 2, 2] 2.14 0
[1, 2, 3] 0.14 0
[2, 1, 1] 4 0 3.85
[2, 1, 2] 2 0
[2, 1, 3] 0 0
[2, 2, 1] 5 0 2.75
[2, 2, 2] 3 0
[2, 2, 3] 1 0
[3, 2, 1] 4 0 2.55
[3, 2, 2] 2 0
[3, 2, 3] 0 0

Table 5.7: Results for the stationary optimization model with holding-shortage
cost ratio equal to 1:10

that the equilibrium situation has been reached and the ideal target value can be
found. In the following we list the remaining results, that is the ideal value of the
target inventory level Sc that has been found for both components, the objective
function value, the number of optimization iterations that the model performed for
obtaining the target and the computational time both for a single optimization
and for completing the whole algorithm:

• S1 = 3.

• S2 = 3.

• Objective function value = 22.53 euros.

• Number of total optimization iterations = 19.

• Computational time for a single optimization in seconds = 0.88 s.
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• Computational time for the whole algorithm in seconds = 41.42 s.

The overall results show that the model achieves the optimal target value result in
a reasonable amount of time and ensures a quite good result in terms of monetary
expense for the inventory management.

The same optimization can be performed by changing the ratio between the
shortage and the inventory holding costs. In fact, keeping the exact same input
values as in Table 5.6 and just changing the holding costs to [10, 10] and the penalty
to [1,1] we will obtain the results in Table 5.8. As a matter of fact, the model
will tend to buy always the minimum possible quantity to ensure the satisfaction
of the most likely demand. For this reason, the target inventory level for both
components Sc is equal to 0.

• Sc for the first spare part = 0

• Sc for the second spare part = 0

• Objective function value = 7.80 euros

• Number of total optimization iterations = 5

• Computational time for a single optimization in seconds = 0.50 s

• Computational time for the whole algorithm in seconds = 31.71 s

The number of necessary iterations for getting the optimal result only corresponds
to the ones needed to find the equal value of the quantity to buy.
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[t, c, ξ] It,c,ξ Ft,c,ξ Qc,t−lc

[0, 1, 1] 0 0 2
[0, 1, 2] 0 2
[0, 1, 3] 0 4
[0, 2, 1] 0 0 1
[0, 2, 2] 0 2
[0, 2, 3] 0 4
[1, 1, 1] 0 0 2
[1, 1, 2] 0 2
[1, 1, 3] 0 4
[1, 2, 1] 0 0 1
[1, 2, 2] 0 2
[1, 2, 3] 0 4
[2, 1, 1] 0 0 2
[2, 1, 2] 0 2
[2, 1, 3] 0 4
[2, 2, 1] 0 0 1
[2, 2, 2] 0 2
[2, 2, 3] 0 4
[3, 2, 1] 0 0 1
[3, 2, 2] 0 2
[3, 2, 3] 0 4

Table 5.8: Results for the stationary optimization model with holding-shortage
cost ratio equal to 10:1

Non-Stationary Demand Results

The input data values used for running the non-stationary demand model are
summarized in Table 5.9. Notice that the input values are quite similar to the ones
of the stationary demand, however in this case we add the possibility to insert the
previously ordered quantities that are meant to arrive after the corresponding lead
time, since we are not imposing them anymore as in the former case. Moreover,
the demand and demand probabiliy values are different for each time interval, as
the demand changes over time. These values are meant to be obtained from the
distribution of the predicted demand, where for each time instant we will have
the expected value of the requested spare part with the corresponding standard
deviation.

Results obtained from this optimization show that if no orders are placed before
the moment in which we run the algorithm, thus if the previously ordered quantities
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Input data Value
# spare parts 2
# scenarios 2

α 0.7
Lead time ∀ items [2, 2]

Initial inventory ∀ items [0, 0]
Inventory Cost ∀ items [1, 1]
Shortage Cost ∀ items [10, 10]

Maximum Inventory Capacity 200
Previously ordered quantities for item 1 [0, 0]
Previously ordered quantities for item 2 [0, 0]

Demand item 1 at each time step [4, 6], [6, 10], [1, 4], [3, 5]
Demand item 2 at each time step [1, 3], [2, 5], [2, 7], [3, 6]

Demand Probabilities item 1 [0.70, 0.30],[0.25, 0.75], [0.10,
0.90], [0.40, 0.60]

Demand Probabilities item 2 [0.60, 0.40],[0.30, 0.70], [0.15,
0.85], [0.35, 0.65]

Table 5.9: Input data values for the non-stationary optimization model

are equal to 0, of course no quantity will be delivered at the first time instants,
and the realized demand will result as shortage. However, in the following time
instants, the quantities ordered at time 0 and delivered at time 2 are correctly
optimized. This happens only at the start of the simulation, because contrary to
the stationary model that needs to be run only once, this one must be run multiple
times for covering the time horizon that we want to predict. Evidence is shown in
Table 5.10, where the quantities to buy reflect the most likely demand that will
occur. The objective function, also for the effect of the discount factor α which is
in charge of weighting in a different way the closer prediction in time with respect
to the farther ones, is equal to 258.68 euros. The computational time for running
the optimization is quite reasonable and it is equal to 1.23 seconds.

Also in this case it is possible to perform the same optimization considering the
shortage cost as lower with respect to the holding one. Results (Table 5.11) show
that the model will tend to buy the strict minimum in order to keep the inventory
as close to zero as possible. In this case, the objective function is equal to 48.48
euros, also as a result of the previously ordered quantities that in this particular
case are equal to 0. The computational time does not change significantly with
respect to the previous case.
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[t, c, ξ] It,c,ξ Ft,c,ξ Qc,t−lc

[0, 1, 1] 0 4 0
[0, 1, 2] 0 6
[0, 2, 1] 0 1 0
[0, 2, 2] 0 3
[1, 1, 1] 0 6 0
[1, 1, 2] 0 10
[1, 2, 1] 0 2 0
[1, 2, 2] 0 5
[2, 1, 1] 3 0 4
[2, 1, 2] 0 0
[2, 2, 1] 5 0 7
[2, 2, 2] 0 0
[3, 1, 1] 2 0 3.8
[3, 1, 2] 0 0
[3, 2, 1] 3 0 4.3
[3, 2, 2] 0 0

Table 5.10: Results for the stationary optimization model with holding-shortage
cost ratio equal to 1:10

Computational Complexity

Computational complexity is one of the most important metrics when evaluating
the goodness of an optimization model. In our work we sperimentally evaluate
the computational time for both our models with respect to the variation of some
meaningful parameters.

For the stationary demand case, we consider the lead time, the number of
scenarios and the number of items, both for a single optimization run and for the
whole cycle for optimizing the value of the target inventory. Results are shown in
Figure 5.15 for the former case and in Figure 5.16 for the latter.

As expected, the computational time is directly influenced by the length of the
lead time of a specific component. This is true both in the single optimization case
and in the cyclic one, since the time instants to take into account for optimizing
our objective function grow proportionally to the lead time. Also the number
of scenarios affects the growth of the time to execute the algorithm, which is
reasonable as the possible realizations of the demand to take into account increase.
Notice that the behaviour of the increment is quite similar for both cases. For
what concerns the number of items, also this value highly affects the computational
time, and the increment is quite steep. However, it is possible to notice that the
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[t, c, ξ] It,c,ξ Ft,c,ξ Qc,t−lc

[0, 1, 1] 0 4 0
[0, 1, 2] 0 6
[0, 2, 1] 0 1 0
[0, 2, 2] 0 3
[1, 1, 1] 0 6 0
[1, 1, 2] 0 10
[1, 2, 1] 0 2 0
[1, 2, 2] 0 5
[2, 1, 1] 0 0 1
[2, 1, 2] 0 3
[2, 2, 1] 0 0 2
[2, 2, 2] 0 5
[3, 1, 1] 0 0 3
[3, 1, 2] 0 2
[3, 2, 1] 0 0 3
[3, 2, 2] 0 3

Table 5.11: Results for the non-stationary optimization model with holding-
shortage cost ratio equal to 10:1

time to execute the algorithm, also when considering the iterative optimization, is
reasonably low, regardless the non linearity of the model’s constraint that of course
contribute to the increase in time.

For the non-stationary demand case, instead, we consider the number of scenarios,
the number of items, and the number of time instants up to which we perform
the prediction of the demand value. In this specific case, we do not have any
iterative optimization, thus we will only analyse the computational time for a
single optimization. Results are shown in Figure 5.17. Also in this case, the
same observations can be made, however we can notice that the time to execute
the optimization is longer with respect to the stationary case, maybe due to the
complexity of handling the optimization of the quantity to order at every time
instant, and not just at the last one anymore.
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(a) Number of items (b) Lead Time

(c) Scenarios

Figure 5.15: Computational time with respect to different parameters variation -
One single optimization
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(a) Number of items (b) Lead Time

(c) Scenarios

Figure 5.16: Computational time with respect to different parameters variation -
Cyclic optimization
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(a) Number of items (b) Time instants

(c) Scenarios

Figure 5.17: Computational time with respect to different parameters variation -
Non-Stationary case
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Comparison with naive optimization strategies

To conclude our results analysis, we verify the goodness of the proposed solution
by performing a comparison with some simple baseline policies. We evaluate the
improvement in terms of objective function value, intended as how much money
we manage to save by using the optimized strategy.
In particular, we choose three policies:

• Order always the maximum possible demand value.

• Order always the minimum possible demand value.

• Order always the mean value of the demand.

In order to asses how much we manage to save by adopting the optimal devised
strategy with respect to each one of these baselines, we adopt a simulative approach:
after having performed the optimization for the specified input values, we run 1000
simulations with the obtained best decision variables; at each iteration we randomly
extract one of the values among the possible demand scenarios and we evaluate
the corresponding cost in terms of euros; finally, we evaluate the average of all the
simulation outcomes and we compare it with the naive strategies ones.
This is done both for the stationary and for the non-stationary demand models.
The improvements are summarized in Table 5.12 and Table 5.13 both for the case
in which the inventory cost is smaller than the shortage one and viceversa.

The optimization for the stationary case is performed considering as input two
different items, with lead time equal to 2 and the following demand distribution:
[10, 20, 30] with probabilities [0.55, 0.35, 0.10] for the first item and [20, 5, 10]
with probabilities [0.60, 0.25, 0.15] for the second one. The resulting target value
for both items respectively is S1 = 15 and S2 = 5 in case of holding costs 10 times
smaller than penalty ones, while they are of course 0 in the opposite one.

The optimization for the non-stationary case is performed considering two items
with lead time equal to 3, over 10 time periods with a demand that varies each
time instant with 3 different scenario probabilities.

Model type ∆ wrt max ∆ wrt min ∆ wrt mean
Stationary demand 42,03 381,03 98,92

Non Stationary demand 724,99 941,6 52.7

Table 5.12: Improvement of cost when the holding cost is smaller than the
shortage

Results show that in all cases the implemented optimization models bring an
improvement in terms of amount of money that is spent to manage the inventory.
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Model type ∆ wrt max ∆ wrt min ∆ wrt mean
Stationary demand 1139,25 ∼0 352,84

Non Stationary demand 12.734,13 10,43 2623,43

Table 5.13: Improvement of cost when the holding cost is bigger than the shortage

Considering the relative variation in percentage with respect to the maximum,
minimum and average policies, the stationary case features an improvement of 35%,
83% and 56%, while the non-stationary case shows an improvement of 55%, 60%
and 9%.

Concerning Table 5.13, the relative gains for the stationary demand model are
96%, 0% and 88%, while for the non-stationary one 98%, 6% and 93%.

In particular we notice that, when the inventory holding cost is smaller than
the shortage one, the models perform very well in all cases, while when the holding
costs overcome the penalty ones the models’ objective functions are extremely close
to the "minimum-order" naive strategy, as the model tends to buy the least amount
of components possible to ensure the demand satisfaction.
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Chapter 6

Conclusions

In this thesis work we presented the problem of handling spare parts requests from
industrial vehicles undergoing maintenance. The proposed approach consisted of
identifying the different scenarios of components’ demand and implementing an
operational research stochastic model with the aim of minimizing the inventory
holding costs while ensuring the components’ demand satisfaction.

First, we analysed the importance of inventory management inside the broader
context of the supply chain, highlighting the benefits and the challenges of inventory
optimization, and we presented the main existing control policies and sources of
costs for spare parts management.

Then, we explored the existing literature that analyses the uncertain nature of
demand, identifying the main results in the proposed solutions both for stationary
and non-stationary demand in relation to the most common inventory control
policies. Moreover, we focused on the literature related to spare parts optimization,
which requires a specific study, and the application of forecast strategies to handle
maintenance prediction, identifying the similarities and differences with our work.

To carry out this study and answer the research questions on which it is based,
we exploited the input data about industrial vehicle maintenance history and usage
provided by Tierra S.p.A., the company with which we collaborated. These data
were used to derive meaningful information for understanding the spare parts
demand patterns. As mentioned at the beginning of the work, it is extremely
important to correctly manage the uncertain nature of the demand, since it makes
it difficult to order the right quantities of spare parts. After having pre-processed
the dataset in order to analyse its characteristics, we distinguished two cases: the
first one, in which the vehicles seemed to have short maintenance cycles with
respect to the lead time, and the second one, in which maintenance cycles were
longer, making it useful to perform predictions on the next maintenance. From the
first case it was possible to obtain a stationary distribution of the demand, while
the second was provided as input to the Random Forest regression algorithm that
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we used to predict the remaining days until the next maintenance, resulting in a
non-stationary demand behaviour.

The presence of the uncertainty generated by the vehicles’ maintenance patterns
lead to the necessity of formalizing two stochastic optimization models to handle
stationary and non-stationary spare parts requests. We implemented two mixed-
integer non linear stochastic models: the one handling stationary demand aimed at
finding an ideal target inventory level to maintain the optimal equilibrium in the
inventory, minimizing its costs yet ensuring demand satisfaction. The other, which
coped with non-stationary demand, aimed at optimizing the quantity to order at
each time instant.

As a matter of fact, the devised operational research models allowed to provide
a way to administrate the inventory in order to avoid long waiting times caused by
shortages, exploiting inventory replenishment strategies that permitted to correctly
place order quantities.

In addition to that, we gave evidence of the fact that our solution also avoided the
overstocking of items in the inventory. In particular, the two implemented models
showed an improvement in the minimization of costs with respect to some naive
order policies, easy to adopt but negatively affecting holding costs for companies.
Although the input data were not the ideal ones for performing predictions, the
model implementation presented a high scalability and could be applied to different
kinds of datasets, keeping reasonable computational times.

6.1 Future Work
While done with the utmost effort, this thesis work could be further extended and
improved in some aspects, as discussed also with the company. For instance, the
model can be applied to different categories of vehicles and adapted to the changing
necessities of the specific fleet.

Furthermore, in this work we considered the spare parts demand as the only
source of stochasticity, but the study can be further extended by taking into account
the uncertainty in the shipment time, or considering the variation of the holding
and shortage costs over time.

In addition to that, a further step can be performed considering also a shipment
cost and the possibility that if it is quite high it could be convenient to aggregate
the orders in specific time instants, deriving the information about when the order
must be placed.
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