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INTRODUCTION

This work of thesis is a preliminary study on the propagation of pressure waves in a square

lattice hydraulic network, with a reservoir on one vertex and a valve on each of the other

nodes, that can be closed to study the consequent water hammer effect.

In Chapter 1 a brief history of the scientific literature is presented, together with a sum-

mary description of the main mechanisms underlying pressure wave generation in a conduit

and, then, a thorough derivation of the dynamical equations governing the phenomenon.

In Chapter 2 the method of characteristics is presented, a numerical method used to solve

hyperbolic systems of coupled partial differential equations which the code used for our sim-

ulations is based on. These first two chapter take inspiration from the book by Chaundry[1]

In Chapter 3 the system studied in this work of thesis with its properties and the conditions

under which the simulations are carried out are presented. The data obtained from simulation

are reorganized into useful metrics to characterize the dangerousness of closing the valve on

each node.

In Chapter 4 the toy model for pressure wave propagation is developed and all its limits

and capabilities are shown through different analyses. .

In Chapter 5 the predictive power of the toy model described in the previous chapter is tested.
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1. WATERHAMMER

Waterhammer is a term used to denote pressure fluctuations caused by a change in the flow

of a fluid (water, in this case), that derives from the noise and damage they can cause on

the hydraulic structures, such as pipelines, pumps and valves. Nowadays, the more general

and explanatory term hydraulic transient is preferred. In this chapter, after a brief history of

waterhammer studies, the physical phenomenon is at first described in a qualitative way to

understand the main underlying mechanisms, then a thorough derivation of the equations is

presented.

1.1 Brief hystory

The study of hydraulic transients began with the investigation of the propagation of sound

waves in air and the propagation of waves in shallow waters, starting with Newton[2] and

continuing with Euler[3],[4], Lagrange[5] and Laplace[6].

The first to investigate the propagation of pressure waves in pipes was Young[7]. Helmoltz,

instead, pointed out that the velocity of pressure waves in water contained in a pipe was less

than that in unconfined water, correctly attributing this difference to the elasticity of pipe

walls.

Marey[8] conducted tests to determine the velocity of pressure waves in water and in

mercury and concluded that the wave velocity was:

• independent of the amplitude of the pressure waves;

• three times greater in mercury than in water;

• proportional to the elasticity of the tube.

Korteweg[9] was the first to determine the wave velocity considering the elasticity of both

the pipe wall and the fluid (earlier investigators had considered only one of the two at a time).

It is still debated who was the first, between Michaud[10] and Menabrea[11], to deal with

the problem of waterhammer, the phenomenon of interest in this work of thesis.
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Gromeka[12] included the friction losses in the analysis of waterhammer for the first time.

He assumed, however, that the liquid was incompressible and that the friction losses were

directly proportional to the flow velocity.

Frizell[13] developed expressions for the velocity of waterhammer waves and for the pres-

sure rise due to to instantaneous reduction of the flow. Unfortunately, Frizell’s work has not

been appreciated as much as that of his contemporaries, Joukowski and Allievi.

In 1897, Joukovski[14] conducted extensive experiments on pipes with larger dimensions

than the ones used by Weston[15] and Carpenter[16], American engineers that failed to find

agreement between theoretical and experimental results due to their pipelines being too short.

He developed the relationship between the velocity reduction and the resulting pressure rise

by using two methods: the conservation of energy and the continuity condition.

Allievi[17] developed the general theory of waterhammer from first principles and pub-

lished it in 1902. The dynamic equation that he derived was more accurate than that of

Korteweg.

Joukovski and Allievi’ works have been the base for waterhammer studies of the 20th

century.

Gray[2] and, later on, Lai[18] and Streeter[19] were the first to introduce and make popular

the method of characteristics, invented by Monge[20] at the end of the 18th century to solve

partial differential equations, for numerical waterhammer analysis.
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1.2 Description of the phenomenon

In this section the main physical causes and properties of the waterhammer effect are de-

scribed in one of the simplest examples of hydraulic system in which such phenomenon

occurs.

1.2.1 Velocity and pressure waves

Consider the hydraulic system represented in Figure 1.1, in which a rigid pipeline is attached

to a reservoir at fixed head and has a valve at distance L from the reservoir. Suppose that a

compressible fluid of density ρ0 flows inside the conduit in a steady state with velocity V0

and suppose that the pressure of the reservoir is p0.

Figure 1.1: Representation of the hydraulic system in analysis

in its initial conditions of homogeneous velocity V0 and pres-

sure p0 imposed by the reservoir head level Hres.

Figure 1.2: Representation of the hydraulic system in analysis

after the modification of the valve opening area, causing the

propagation of pressure and velocity waves.

As displayed in Figure 1.2, if the valve opening is instantaneously changed at time t = 0,

in the proximity of the valve the fluid velocity, pressure and density become V0+∆V , p0+∆p

and ρ0 +∆ρ , respectively. Such variations propagate upstream with velocity a. From the

point of view of an observer moving together with the wave front, that in this inertial reference

frame is stationary, the fluid upstream moves with velocity V0 + a, whereas downstream it

moves with velocity V0 +∆V +a. Neglecting friction, the force acting on the fluid in a small

control volume, computed as the momentum rate of change, is

F = ρ0(V0 +a)A∆V ≈ ρ0aA∆V,

where A is the section of the conduit and the approximation can be done since a� V0 as

confirmed by numerous experimental data.
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Since the net force is given by F =−A∆p and recalling the piezometric head expression

H = ρgp, one obtains

∆H =±a
g

∆V, (1.1)

where the minus sign indicates an increase (or decrease) of the pressure in correspondence of

a decrease (or increase) in velocity. This happens if the velocity variation occurs downstream;

if it happens upstream a plus sign shall be put in Equation (1.1), so that to a pressure increase

(or decrease) would correspond to a velocity increase (or decrease).

In the control volume, the mass variation due to the density change is negligible. Then,

the continuity equation imposes the mass inflow ρ0A(V0 + a) and the mass outflow (ρ0 +

∆ρ)A(V0 +∆V +a) to be equal, so that

∆V =−∆ρ

ρ0
(V0 +∆V +a)≈−∆ρ

ρ0
a, (1.2)

where the approximation is again due to a� V0 +∆V . Recalling the definition of the bulk

modulus of elasticity of a fluid K = ρ0
∆p
∆ρ

, putting together Equations (1.1) and (1.2) and

making explicit the wave speed one obtains

a =−K
∆V
∆p

=
K

aρ0
. (1.3)

Finally, one obtains a formula for the velocity of propagation of the pressure waves in a rigid

pipeline:

a =

√
K
ρ0

. (1.4)

For a thorough derivation of the pressure and velocity waves’ speed in the case of elastic pipe

walls, see Section 1.3

1.2.2 The four phases

Consider the same system as before, in which the fluid has initial velocity V0 > 0 (it flows

downstream) and initial head Hres imposed by the reservoir (Figure 1.3a). Suppose we close

the valve instantaneously at time t = 0. At the valve, the velocity changes from V = V0 to

V = 0, since the closure of the valve imposes null velocity in its proximity, so ∆V =−V0.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.3: Representation of the development of the four phases of the waterhammer phenomenon.

From Equation (1.1) we know that the head variation is now ∆H = a
gV0, so there’s an in-

crease in pressure (Figure 1.3b). The pressure and velocity waves propagate with speed a

towards the reservoir. At time t = L
a , the pressure in the entire pipeline is Hres +

a
gV0 and the

fluid is still (Figure 1.3c). Once the reservoir is reached, it imposes its head value Hres, so

that another abrupt pressure variation ∆H = −a
gV0 occurs upstream. This causes a velocity

variation ∆V =−V0 (Figure 1.3d). At time t = 2L
a , the pressure in the entire pipeline is Hres

and the velocity V = −V0 (Figure 1.3e). Once the valve is reached again, null velocity is

imposed but the velocity variation is now positive, ∆V =V0, so the head variation is negative,

∆H =−a
gV0 (Figure 1.3f). At time t = 3L

a the wave has propagated back to the reservoir and

in the pipeline the fluid is still and at a head level H = H0− a
gV0 (Figure 1.3g). Again, at the

reservoir the head value Hres is imposed, so that ∆H = a
gV0 and ∆V = V0 (Figure 1.3h). At

time t = 4L
a , the initial conditions are restored in the entire pipeline: H = Hres and V = V0

(Figure 1.3i). Then, the cycle starts over.
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In summary, the waterhammer phenomenon develops in four periodic phases:

• 1st phase: initial condition with the fluid at reservoir head level flowing rightwards;

• 2nd phase: the fluid is still and the head is above the reservoir level;

• 3rd phase: the fluid is at the reservoir head level but flows leftwards;

• 4th phase: the fluid is still again, but the head level is below the reservoir’s.

The time interval over which the phenomenon develops in its four phases is

T = 4
L
a
, (1.5)

that is the time necessary for the wave to propagate through the conduit two times, back and

forth.

Ideally, the alternation of the four phases goes on forever, but in real systems the wave

amplitude is damped by dissipation and the phenomenon, still maintaining its periodic be-

haviour, loses intensity over time.
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1.3 Equations of motion

In this section I present a derivation of the dynamic and continuity equations characterizing

an unsteady flow through closed conduits. The assumptions under which these calculations

are carried out are the following:

• flow is one dimensional and the velocity distribution is uniform over the cross section

of the conduit;

• the conduit walls and the fluid are linearly elastic;

• formulas for computing the steady-state friction losses are valid during the transient

state.

1.3.1 Dynamic equation

Consider a horizontal element of fluid with cross-sectional area A and length δx, within a

conduit (Figure 1.4). If at position x the head and discharge values are H and Q, at position

x+δx they are H + ∂H
∂x δx and Q+ ∂Q

∂x δx, respectively.

Figure 1.4: Representation of the infinitesimal control volume used to develop the dynamic equation.
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In the horizontal direction three main forces are acting on the fluid element, as shown in

Figure 1.5: pressure forces,

F1 = γA
(
H− z

)
(1.6)

and

F2 = γA
(
H +

∂H
∂x

δx− z
)
, (1.7)

and the shear force due to friction given by the Darcy-Weisbach formula,

S =
γ

g
fV 2

8
πDδx, (1.8)

where γ is the specific weight, z is the vertical coordinate, g is the gravitational acceleration,

f is the friction factor and D is the conduit diameter.

Figure 1.5: Scheme of the forces acting on the control volume.

The resultant horizontal force is

F = γA
∂H
∂x

δx− γ

g
fV 2

8
πDδx, (1.9)

so that Newton’s second law of motion, divided by the mass of the fluid element γ

gAδx, gives

dV
dt

=−g
∂H
∂x
− fV 2

2D
. (1.10)

Writing the material derivative as dV
dt = ∂V

∂ t +V ∂V
∂x ≈

∂V
∂ t , that’s shown to be a good approxi-

mation by Allievi, and replacing V 2 with V
∣∣V ∣∣, in order to account for the shear force acting

on the opposite direction with respect to the fluid’s flow, one obtains the following dynamic

equation, expressed in terms of the discharge Q:

∂Q
∂ t

+gA
∂H
∂x

+
f

2DA
Q
∣∣Q∣∣= 0, (1.11)
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1.3.2 Continuity equation

Consider a fluid element as in Figure 1.6. The volume inflow and outflow are, respectively,

Vin =V πr2
δ t, (1.12)

Vout =

(
V +

∂V
∂x

δx
)

πr2
δ t, (1.13)

so that the net volume inflow is

δVin = Vin−Vout =
∂V
∂x

δxπr2
δ t. (1.14)

Figure 1.6: Scheme of the volume changes due to net incoming flow and section area modification.

The volume change due to the fluid compressibility is

δVc =−
δ p
K

V =−∂ p
∂ t

δ t
K

πr2
δx, (1.15)

where K is the bulk modulus of elasticity of the fluid and the pressure change has been written

as δ p = ∂ p
∂ t δ t.

The Young’s modulus of elasticity under the linearly elastic conduit walls assumption is

E =
δσ

δε
=

∂ p
∂ t

δ t
r2

eδ r
, (1.16)

where e is the conduit walls’ thickness, δσ = δ p r
e is the change in hoop stress and δε = δ r

r

is the change in strain.

The radius change is, then,

δ r =
∂ p
∂ t

r2

eE
δ t. (1.17)
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The total volume change, written in terms of the conduit radius change, is

δVr = 2πrδ rδx = 2π
∂ p
∂ t

r3

eE
δ tδx, (1.18)

but it is also given by the sum of the net volume inflow and the volume change due to the

fluid compressibility, both previously computed:

δVr = δVin +δVc. (1.19)

Substituting Equations (1.12), (1.15) and (1.18) into Equation (1.19), one obtains

∂V
∂x

+
∂ p
∂ t

(
2r
eE

+
1
K

)
= 0, (1.20)

which can be written in terms of the fluid discharge and head as

a2

gA
∂Q
∂x

+
∂H
∂ t

= 0, (1.21)

where

a =

√
K

ρ
(
1+ KD

eE

) (1.22)

is the discharge and head waves’ velocity in case of elastic conduit walls.

In summary, the dynamic equation (1.11) and the continuity equation (1.21) constitute a

system of coupled hyperbolic partial differential equations, that cannot be solved analitically,

so one has to resort to numerical methods. In Chapter 2, the method of characteristics is

presented, since it is the numerical method used for the numerical simulations carried out in

this work of thesis.
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2. NUMERICAL METHODS

In this chapter the method of characteristics is presented. It is a numerical method that al-

lows to reduce a hyperbolic system of coupled differential equations to linear differential

equations, thanks to an appropriate discretization of space and time specific for waves prop-

agation in hydraulic transients. Its convergence and stability are briefly discussed and, at the

end of the chapter, boundary conditions for the system studied in this work of thesis are listed.

2.1 Method of characteristics

Calling the derived dynamical equations

L1 =
∂Q
∂ t

+gA
∂H
∂x

+
f

2DA
Q
∣∣Q∣∣= 0, (2.1)

L2 =
∂Q
∂x

+
gA
a2

∂H
∂ t

= 0, (2.2)

any linear combination would also be null, L1+λL2 = 0, for any λ . Expanding such equation,

one obtains (
∂Q
∂ t

+λ
∂Q
∂x

)
+

λgA
a2

(
∂H
∂ t

+
a2

λ

∂H
∂x

)
+

f
2DA

Q
∣∣Q∣∣= 0. (2.3)

If Q(x, t) and H(x, t) are solutions of such equation, their total derivative can be written

as
dQ
dt

=
∂Q
∂ t

+
dx
dt

∂Q
∂x

and
dH
dt

=
∂H
∂ t

+
dx
dt

∂H
∂x

, (2.4)

respectively. So, by defining dx
dt = λ = a2

λ
, that gives λ = ±a, Equation (2.3) can be finally

written as
dQ
dt
± gA

a
dH
dt

+
f

2DA
Q
∣∣Q∣∣= 0, if

dx
dt

=±a. (2.5)

In this way two different ordinary differential equations in the independent variable t were

derived from a hyperbolic system of two coupled partial differential equations, at the price of

restricting their validity to the so called characteristic lines of slope ±1
a in the x-t plane.
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Consider the simple system described in the previous chapter, represented in Figure 1.1,

and imagine to instantaneously close the valve at time t = 0. Then, pressure and velocity

waves start propagating in the upstream direction at speed a, so in the x− t plane the charac-

teristic line with slope −1
a passing by the point (L,0) represents the travelling path of such

perturbations, dividing the plane in the lower region (I), dominated by initial conditions, and

the upper region (II) influenced by the boundary condition that impose the transient state

(Figure 2.1).

Figure 2.1: Characteristic line in the case of perturbation at the downstream end of a conduit. It divides the x-t plane in a region dominated

by the initial conditions (Region I) and a region dominated by the boundary conditions imposing the transient state (Region II).

Exploiting a first order finite-difference technique, in which space and time are discretized

so that ∆x = a∆t, it is possible to compute head and discharge in a point P = (xP, tP) in the x-t

plane, knowing their value in points A=(xP−∆x, tP−∆t) upstream and B=(xP+∆x, tP−∆t)

downstream (Figure 2.2).

In fact, writing

∆Q = QP−QA, ∆H = HP−HA (2.6)

along the C+ line and

∆Q = QP−QB, ∆H = HP−HB (2.7)

along the C− line, Equations 2.5 become

QP−QA +
gA
a
(HP−HA)+

f ∆t
2DA

QA|QA|= 0 along C+ (2.8)

and

QP−QB−
gA
a
(HP−HB)+

f ∆t
2DA

QB|QB|= 0 along C−. (2.9)
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Figure 2.2: Representation of the characteristics lines C+ and C− used to derive the flow and head in point P, starting from precomputed A

and B points, in the discretized t-x plane.

Defining Ca =
gA
a and

Cp = QA +CaHA−
f ∆t

2DA
QA|QA|, (2.10)

Cn = QB−CaHB−
f ∆t

2DA
QB|QB|, (2.11)

one obtains the positive and negative characteristic equations

QP =Cp−CaHP, (2.12)

QP =Cn +CaHP. (2.13)

Solving for the unknowns QP and HP, one obtains:

QP =
Cp +Cn

2
, (2.14)

HP =
Cp−Cn

2Ca
. (2.15)

As shown in Figure 2.3, these equations can be used to compute the discharge and head

evolution in the internal points of the pipelines (white circles), but for the extremal points a

combination of such equations with some boundary conditions in needed. For example in the

downstream end of a conduit (triangles) one should use Equation (2.12) plus an appropriate

boundary condition, whereas in the upstream end (black circles) one should use Equation

(2.13) plus an appropriate boundary condition.
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Figure 2.3: Discharge and head values in points at time t are used to compute discharge and head values in points at time t +∆t. The

characteristic equations are combined with boundary conditions when needed at the extremal points.

It’s been shown that for this numerical method convergence means stability and vice

versa. It has also been found that the stability condition is

∆t
∆x
≤ 1

a
(2.16)

and is called the Courant’s stability condition.

In the next section are derived useful boundary conditions for the system studied in this

work of thesis.
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2.2 Boundary conditions

In the following subsections boundary conditions are derived in the case of the presence of a

reservoir at fixed head level and in the case of various conduits converging in and diverging

from a junction. In both derivations, it is assumed that the velocity head and head losses are

negligible.

2.2.1 Reservoir

Consider a conduit connected to a reservoir. The head in the conduit end attached to the

reservoir is fixed:

HP = Hres. (2.17)

The characteristic equation to use depends on the relative position of the reservoir: if it’s

upstream, the negative characteristic Equation (2.13) gives

QP =Cn +CaHres, (2.18)

whereas, if it is downstream, the positive characteristic Equation (2.12) gives

QP =Cp−CaHres. (2.19)

2.2.2 Conduits junction

Consider a junction of n convergent conduits (labeled with numbers from 1 to n) and m

divergent conduits (labeled with number from n+ 1 to n+m). Suppose the conduits are

all of the same length, so that they’re all divided into the same number l of sections when

discretizing space. The head at the last section of converging conduits (section labeled by

l +1) and at the beginning of diverging conduits (section labeled by 1) of the conduits is set

to be equal:

HP ≡ HPi,l+1 = HPj,1 for i ∈ {1, . . . ,n}, j ∈ {n+1, . . . ,n+m}. (2.20)
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The continuity equation requires the following condition:
n

∑
i=1

QPi,l+1 =
n+m

∑
j=n+1

QPj,1 +Qv, (2.21)

where the term

Qv = Avcv
√

2gHP (2.22)

stands for an eventual leakage due to a valve positioned on the junction node. Av is the valve

opening area, cv = 0.61 is the vena contracta coefficient and g the gravitational accelera-

tion. The discharge values are computed with the positive or negative characteristic equation

depending on the conduit converging in or diverging from the junction, respectively:

QPi,l+1 =Cpi−CaiHP for i ∈ {1, . . . ,n}, (2.23)

QPj,1 =Cn j +Ca jHP for j ∈ {n+1, . . . ,n+m}. (2.24)

Combining Equations (2.21), (2.23) and (2.24), one obtains
n

∑
i=1

Cpi−
n+m

∑
i=n+1

Cni−
n+m

∑
i=1

CaiHP = Avcv
√

2gHP. (2.25)

Then, defining

k1 =
n+m

∑
i=1

Cai, (2.26)

k2 =
n

∑
i=1

Cpi−
n+m

∑
i=n+1

Cni (2.27)

and squaring Equation (2.25), one obtains:

k2
1H2

P−2k3HP + k2
2 = 0, (2.28)

where k3 = k1k2 +(Avcv)
2g. Finally,

HP =
k3 +

√
k2

3− k2
1k2

2

k2
1

. (2.29)

In the case of closed valve the previous formula reduces to a simpler form:

HP =
k2

k1
=

∑
n
i=1Cpi−∑

n+m
i=n+1Cni

∑
n+m
i=1 Cai

. (2.30)

In order to obtain the discharges in the different conduits one can substitute HP with the

derived formula inside Equations (2.23) and (2.24).
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3. SIMULATIONS

In this chapter, it is described how we carried out the simulations of the phenomenon from

which we obtained the data to elaborate and analyze, with the purpose of finding common

patterns and trends amongst different-located nodes and different-sized networks.

3.1 Description of the system

The system studied in this work of thesis is a hydraulics network. Its geometrical structure is

that of a square lattice with n conduits per side. A water reservoir at fixed head is positioned

on the bottom-left vertex of the square. On each node there is a valve with area Av, which

is adjustable and supplies water to a user. In Fig. 3.1 such network is represented for n = 3.

The elastic pipelines, which have circular section, have length L, diameter D, wall thickness

e, roughness ε and Young modulus E.

Figure 3.1: Square lattice network with n = 3 conduits per side, with a total of (n+1)2 = 16 nodes. The nodes are numbered from below

upwards, from left to right.

18



3.2 Simulation of the phenomenon

The initial condition of the system is that of a fluid in permanent motion inside the network

and it is computed taking into account the head losses due to both the leakage on each open

valve and, to a lesser extent, the conduit walls’ roughness. We’ve used a simulation code

already written for previous works of thesis, that we integrated with an EPANET software for

an accurate computation of the initial conditions.

A simulation consists in closing at the time instant tb one of the valves in a period of time

∆tc and let the fluid’s head and flow evolve in the network, according to the equations obtained

with the method of characteristics and the appropriate boundary conditions. Recalling that, in

the simple example of Chapter 1, Section 1.2.2, the period of time in which the phenomenon

develops in its four phases is given by Equation (1.5), we let the system evolve during a

period of time ts = 24d
a , where d = 2nL is the diameter of the network, so as to observe at

least a couple of complete head oscillations on the different nodes.

Reservoir head Hres 50m

Water density ρa 1000 kg
m3

Bulk modulus Ka 2.19·109 N
m2

Conduit length L 100m

Conduit diameter D 0.25m

Conduit walls’ thickness e 0.01m

Conduit walls’ roughness ε 0.001m

Conduit Young modulus E 200 ·109 N
m2

Closing valve area Av,c 0.001m2

Other valves area Av,s 0.0001m2

Table 3.1: List of the physical properties of the fluid (water) and of the pipelines and values assigned to them in the simulations.
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In Tab 3.1 are displayed the values of the various physical quantities used in the simula-

tions. Notice that the closing valve area is one order of magnitude greater than that of the

other valves. This difference is heritage of a previous work of thesis, which had the objective

of identifying the position of a bigger valve inside a network, knowing the head variations on

all the nodes caused by the closing of such valve.

The pressure wave generated in this system has speed a = 1311m
s . The discrete time unit

is dt = 0.01s. The Courant stability condition, expressed in Equation (2.16), imposes a lower

bound for the discretization of space: dx≥ a ·dt = 13,11m. A good choice would be

dx =
L
b L

a·dt c
=

L
a·dt

b L
a·dt c

a ·dt ≥ a ·dt

so as to have the larger possible amount of equidistant points in which head and flow are

computed inside a conduit. In this specific case L=100m, so dx = 14,28m.

Once the pressure and velocity profiles are obtained in the entire network, it is possible

to derive the time evolution of the pressure on each node, thence the time evolution of the

pressure difference with respect to the initial pressure. In Figure 3.2 such profiles are reported

for every node of a n = 3 square network, upon closing at time tb = 0.5s the valve on the

bottom-right vertex (node 13) in a time interval ∆tc = 0.01s.

Figure 3.2: Time evolution of the overloads on all the nodes of the n = 3 square lattice network.
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Figure 3.3: Time evolution of the overloads on the closing valve node (node 13, blue) and on the node in which the maximum overload is

reached (node 4, red).

Figure 3.3 highlights the time evolution of the overload on the closing valve node and the

node in which the maximum overload is reached over time. It is interesting to notice that the

maximum overload is not reached on the closing valve node, but on the vertex opposite to it

(node 4). This example already shows how the effects are strongly non-local.
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3.3 Metrics

We’ve run simulations for networks with a number of conduits per side ranging from n =

3 to n = 11. For each network we’ve studied the water hammer effects, positioning the

closing valve on each node of the lattice. From the obtained data, we’ve computed metrics to

condensate information into. In this way we can characterize each node with a value, which

is representative of the effects of closing the valve on that same node.

The metrics found relevant are listed below:

• the initial overload reached on the closing valve node v immediately after the closure,

∆Hv,i = ∆Hv(tb);

• the spacial mean of the overload maxima reached on all the nodes (excluded the first

node, on which the pressure is kept constant by the reservoir),

∆HMEAN =
1

nnodes−1

nnodes

∑
j=2

max
t

∆H j(t);

• the maximum overload reached in the entire network over time,

∆HMAX = max
j

max
t

∆H j(t);

• the distance between the closing valve node and the node in which the maximum over-

load is reached, d(v,m), where

m = argmax
j

max
t

∆H j(t).

In the computation of the overall maximum, the initial overload on the closing valve

node is excluded in order to investigate only the effects subsequent to the closure, taking into

account the possibility that the maximum could be reached on the same closing valve node at

a later time.
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3.3.1 Initial overload on the closing valve

The initial overload on the closing valve is a strongly local metric, because it topologically

depends only on the number of nearest neighbors of the closing valve node.

Suppose the closing valve is on a junction of n converging conduits and m diverging

conduits (with the labeling used in Chapter 2 in the definition of the boundary conditions),

all with the same physical properties. Before the closing of the valve

n

∑
i=1

Qi =
n+m

∑
j=n+1

Q j +Qv, (3.1)

where Qv is given by 2.22. Neglecting dissipative effects, Equations 2.10 and 2.11 become

Cpi = Qi +CaH, (3.2)

Cn j = Q j +CaH, (3.3)

where H is the head before the closing of the valve. The head after the closure H ′, given by

Equation 2.30, can be written as follows:

H ′ =
∑

n
i=1 Qi−∑

n+m
j=n+1 Q j +(n+m)CaH

(n+m)Ca
=

Qv

(n+m)Ca
+H. (3.4)

Under this assumptions, the initial overload on the closing valve is, finally,

∆Hv,i =
4a

πD2 cvAv

√
2Hv(0)

g
1

nnv
, (3.5)

where nnv is the number of nearest neighbors of node v, the closing valve node.
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In Figure 3.4 is reported the initial overload relative to the square root of the starting head

level on the closing valve node as a function of the number of its nearest neighbors. The data

are taken from the simulations run on different sized square lattice networks and they are in

good agreement with Equation 3.5, despite neglecting the dissipative effects.

Figure 3.4: The theoretical (black circles) and simulated (red dots) initial overloads relative to the square roots of the steady state head level

are plotted against the number of nearest neighbors of the closing valve node.

The dependence of the initial overload on the size of the network only passes through the

initial head level, which decreases both with the increasing of the distance from the reservoir

and with the enlarging of the network, as shown in Figure 3.5.

Figure 3.5: Trend of the steady state head level on the closing valve node relative to the reservoir head level as a function of the distance

from the reservoir and of the size of the network.
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Figure 3.6 lists the histograms for different-sized networks, representing the initial over-

load reached on the closing valve nodes immediately after the closure.

Figure 3.6: Initial overload on the closing valve metric displayed for the different nodes of the n = 3 to n = 11 square lattice networks. On

the vertical axis, the overload is measured in m.
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3.3.2 Spatial mean of the maximum overloads reached on the nodes.

The spacial mean of the the temporal maxima reached on every node of the network is a good

metric for visualizing the effect that closing the valve on a node has on the entire network.

In Figure 3.7 the histograms representing such metric show how the effects are stronger if

closing valves on vertices and how they get weaker and weaker going towards the center of

the network and towards the reservoir.

Figure 3.7: Spatial mean of maximum overloads metric displayed for the different nodes of the n = 3 to n = 11 square lattice networks. On

the vertical axis, the overload is measured in m.
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One can also normalize such metric with respect to the initial overload on the valve, in

order to understand the average effect of closing the valve on a certain node, relative to the

initial effect on the same closing valve node. In Figure 3.8 it can be seen how the behaviour

of the previous histograms is maintained, but within nodes with the same number of nearest

neighbors. In particular, vertices present the lowest average relative effect and internal nodes

nearer to vertices have the highest average relative effect on the network.

Figure 3.8: Spatial mean of maximum overloads relative to the initial overload on the closing valve metric displayed for the different nodes

of the n = 3 to n = 11 square lattice networks.
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3.3.3 Spatiotemporal maximum overload reached in the entire network

The maximum overload reached in the entire network after closing the valve on a node is a

good way to characterize the same node. In Figure 3.9 are displayed the histograms repre-

senting such metric in absolute value. It is evident that the farther the closing valve node is

from the vertices, the lower the maximum overload reached in the network.

Figure 3.9: Spatiotemporal maximum overload metric displayed for the different nodes of the n = 3 to n = 11 square lattice networks. On

the vertical axis, the overload is measured in m.
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It could be informative to normalize the overall maximum with respect to the initial over-

load on the closing valve node. In this way, as displayed in Figure 3.10, one can visualize the

nodes on which closing the valve leads to the higher relative maximum overload and whether

this maximum is higher than the starting overload. For smaller networks, closing the valve on

almost all the nodes leads to a maximum overload higher than the starting one. Increasing the

size of the networks such maxima decrease in value for most of the nodes, except for the first

internal nodes near the vertices, whose maximum/starting overload ratio remains constant.

Figure 3.10: Spatiotemporal maximum overload relative to the initial overload on the closing valve node metric displayed for the different

nodes of the n = 3 to n = 11 square lattice networks.
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3.3.4 Distance between the closing valve node and the node in which the

maximum overload is reached

The previous metrics don’t give any information about the location of the maximum overload.

In Figure 3.11 every closing valve node is associated to its distance (in terms of number of

conduits) from the node in which the maximum overload is reached, normalized with respect

to the diameter of the network, i.e. the maximum distance between two nodes (2n).

Figure 3.11: Distance from the closing valve node and the node in which the maximum overload is reached metric displayed for the different

nodes of the n = 3 to n = 11 square lattice networks.
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As hinted at the beginning of the chapter, there are cases in which the maximum overload

is reached far from the closing valve node, even though the number of nodes for which this

happens seems to decrease with the enlarging of the network.

Closing the valve on the vertices not opposite to the reservoir, the maximum is always reached

on the other vertex, even though such maximum decreases in value with the enlarging of

the network, as visible in Figure 3.9, becoming even lower than the starting overload on the

closing valve. A different behaviour is registered for the internal nodes near the vertices: they

keep a constant maximum overload changing the size of the network and such maximum is

always reached near them (actually on the nearer vertex). In chapter 4 a simplified model

for the propagation of pressure waves based on a network approach is developed in order to

understand the underlying causes of these behaviours.
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4. ATTEMPT TO A PREDICTIVE MODEL BASED

ON NETWORK APPROACH

In this chapter a toy model of pressure wave propagation is developed, starting from a simpli-

fication of the characteristic equations, in order to understand the main mechanisms underly-

ing the phenomenon. For computational simplicity and clarity of exposition, a square lattice

hydraulic network with n = 3 conduits per side is taken as example.

4.1 Simplification of the equations

4.1.1 Wave branching at a junction

To understand how pressure waves behave when encountering a junction of multiple con-

duits, let’s consider again the case of a node with n converging and m diverging conduits.

Suppose that a pressure, ∆H, and a discharge, ∆Q, waves travel for the first time through a

converging (or diverging) conduit and reaches node k. Suppose the initial head on the node

is H0. Neglecting the presence of the valve, the discharges before the arriving of the waves

satisfy
n

∑
i=1

Qi =
n+m

∑
j=n+1

Q j. (4.1)

Neglecting dissipative effects, Equation (2.30) reads

H ′ =
∑

n
i=1Cpi−∑

n+m
j=n+1Cn j

nnkCa
=

=
∑

n
i=1 Qi−∑

n+m
j=n+1 Q j±∆Q+Ca∆H +nnkCaH0

nnkCa
=

=
±∆Q+Ca∆H

nnkCa
+H0,

so that the overload on the node is

∆H ′ =
1

nnk

(
±∆Q

Ca
+∆H

)
, (4.2)
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where the plus or minus sign in front of ∆Q depends on the discharge wave coming from a

converging or diverging conduit, respectively.

The discharge and head perturbations ∆Q and ∆H are related. In fact, using Equation

(2.13), one finds

∆Q =±Ca∆H. (4.3)

In this way, the overload reached at the node k is

∆H ′ =
2

nnk
∆H, (4.4)

which means that the pressure wave characterized by the overload ∆H, once it reaches node

k with nnk nearest neighbors, is reduced by a factor fk =
2

nnk
.

The validity of such derivation is limited by the fact that the wave is propagating through

this conduit for the first time. If the pressure wave already passed through such conduit,

Equation (4.3) wouldn’t be valid, but it should depend also on the overload previously reached

at that node, ∆H̃:

∆Q =±Ca(∆H−∆H̃). (4.5)

4.1.2 Wave reflection at a reservoir

Let’s see what happens to a wave reflected by the reservoir. Consider a reservoir connected by

a pipeline to a junction of m conduits. Suppose that a wave ∆H̃ propagates from the junction

towards the reservoir. At the reservoir the head is brought back to the its initial level, so

there’s no overload propagating back through the conduit, ∆H = 0 but, using Equation (4.4),

∆Q =∓Ca∆H̃. So Equation (4.2) for the overload on the junction once the wave returns from

the reservoir becomes

∆H ′ =− 1
m

∆H̃ =−1
2

2
m

∆H̃, (4.6)

so that, maintaining the reduction factor of the m-conduits junction as 2
m , we can assign to the

reservoir nodes an effective reduction factor fr = −1
2 (notice that this is just a convenience,

since the overload at the reservoir node is not actually −1
2∆H̃, but it doesn’t matter because

we know that at the reservoir nodes the overload is always null). Such derivation works even

for subsequent passages of the wave, since the reservoir head level is always re-established

in the conduit.
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4.2 Overloads computation according to the predictive model

We associated the hydraulic network to an undirected (waves can travel in both directions in a

conduit) and unweighted (all conduits share the same structural properties) graph G = (V,E),

represented in Figure 4.1. Both edges (E) and nodes (V ) in the graph mirror, respectively,

the conduits and the junctions in the hydraulic network, except for the reservoir, which is

represented by as many nodes as the number of conduits attached to it. In our case of a

square lattice with n conduits per side and with a reservoir in a vertex, it is represented by

node 1 connected to node 2 and node (n+1)2 +1 = 17 connected to node n+2 = 5.

Figure 4.1: Hydraulic newtwork (left) and its graph representation used for topological analysis (right).

To each node we assigned a reduction factor:

fk =
2

nnk
, k ∈ {2, . . . ,16} (4.7)

f1 = f17 =−
1
2
. (4.8)

Then, for each couple of nodes we computed all the paths connecting the two nodes up to

a maximum length lmax, since in principle there are infinite paths connecting two nodes. As

previously explained, we don’t consider paths of the type p = [. . . , i, j, i, . . . ],∀i, j /∈ {1,(n+

1)2 + 1} since the ways pressure and discharge waves are reflected in these cases is too

complex to be condensed in reduction factors assigned to nodes. We call paths along which

we can compute the wave propagation as direct.
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The idea is to compute the overload reached on node j at time t = t0 + l L
a after closing

the valve on node s at time t = t0 as the superposition of all the waves traveling along direct

paths of l conduits. The amplitude of a wave that travels along a path will be reduced at every

node encountered by the multiplicative reduction factor in Equations (4.7) and (4.8).

For example, let’s consider the first overload reached on node j = 16 if a unitary pressure

wave is generated on node s = 9. There are 4 paths of length l = 4 connecting nodes 9 and

16, which are represented in Figure 4.2:

pA = [9 13 14 15 16]

pB = [9 10 14 15 16]

pC = [9 10 11 15 16]

pD = [9 10 11 12 16].

Figure 4.2: From left to right, from up to bottom, representation of the four paths pA, pB, pC and pD of length l = 4 that connect node 9

(red) to node 16 (green).
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The waves propagating through these different paths give

∆HA
16 = f13 · f14 · f15 · f16 = 1 · 2

3
· 2

3
·1 =

4
9
,

∆HB
16 = f10 · f14 · f15 · f16 =

1
2
· 2

3
· 2

3
·1 =

2
9
,

∆HC
16 = f10 · f11 · f15 · f16 =

1
2
· 1

2
· 2

3
·1 =

1
6
,

∆HD
16 = f10 · f11 · f12 · f16 =

1
2
· 1

2
· 2

3
·1 =

1
6
.

The first overload reached on node j = 16 has, then, unitary amplitude:

∆H16 = ∆HA
16 +∆HB

16 +∆HC
16 +∆HD

16 =
4
9
+

2
9
+

1
6
+

1
6
= 1.

In this examples, waves traveling through all the paths can be computed by the model

because there’s no path passing though the same conduit consecutively twice or more times.

Actually, we can compute waves through all the paths, connecting the starting and ending

nodes, if and only if such paths are shortest paths, i.e. we can only compute with a certain

precision the first overload reached on each node. In the previous example, if we consider

the paths of length l = 6 between nodes 9 and 16, there are many paths that present the

same conduit consecutively twice, for example path [9 5 9 10 11 12 16], and even

thrice, for example path [9 10 9 10 11 12 16] (Figure 4.3).

(a) (b)

Figure 4.3: Examples of paths of length l = 6 between nodes 9 (red) and 16 (green), passing consecutively through the same conduit twice

(a), [9 5 9 10 11 12 16], and thrice (b), [9 10 11 10 11 12 16]. The number of yellow stripes in a conduit indicates the

number of times it is traveled.
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Furthermore, it can be shown that waves that pass consecutively through the same conduit

twice have their amplitude reduced more than if it was computed with the simplified reduction

factors of the model, but it would still be non-negative. Instead, waves passing consecutively

through a conduit thrice have their amplitude become negative often (actually always, if

there’s no dead end conduit).

As an example, in Figure 4.4 is plotted the temporal evolution of overload on node 16

after closing the valve on node 9 at 0.5s. The first overload is predicted with a light error, but

the model fails to estimate subsequent overloads, due to the absence in the model of negative

waves coming from paths that pass through the same conduit thrice or more times.

Figure 4.4: Overload time evolution on node 16 after closing

Modelization of reflected waves would be an interesting task, that we’ll leave to future stud-

ies. We want to focus now on the first overloads reached on each node, to understand the

possibilities and the limits of this toy model.
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4.3 Wave factors correction to include dissipation effects

Since the first overloads reached in the network appear to be the only ones for which the

model works well, let’s improve the prediction by introducing a general correction factor η

multiplying the reduction factors, that accounts a posteriori for dissipation effects. The first

overload reached on a node at distance l from the closing valve node, that is superposition

of many waves travelling through the different paths, is then reduced by a factor η l . In this

theoretical frame, the relative error made using no correction factor would be

εth =
(1−η l)∆H

η l∆H
= η

−l−1. (4.9)

In Figure 4.5 such relative errors, obtained comparing the model predictions without cor-

rection factor η and the simulation data, are plotted against the length of the shortest paths

between the closing valve node and the node on which the overload is measured. Fitting the

formula in Equation (4.9) to the data, we obtained an optimal value η∗ = 0.9845.

Figure 4.5: The relative error made in predicting the first overload reached on a certain node of the network is plotted against the length of

the shortest paths between the closing valve node and the node on which the overload is measured. The red squares are the data derived

from simulations and the black curve is the theoretical curve expressed in Equation (4.9) fitting the data.
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In Figure 4.6 the mean error with its standard deviation is plotted against different values

of the correction factor η . The minimal value of η coincides with the one obtained previ-

ously and the mean relative error in this case is < ε >= 0.005, so in the corrected model an

average percentage error of 0.5% is made when predicting the first overloads reached in the

network, compared to the 4% percentage error made without any correction, i.e. η = 1.

Figure 4.6: Average relative error made by the model when predicting the first overloads reached on the different nodes of the network as

a function of the correction factor η . The rightmost point, relative to η = 1 is the average relative error made without any correction. The

minimum of the curve corresponds to the optimal value of η already obtained with the data fitting.

Further studies on networks with a different topology and different structural properties, will

be necessary to validate this modelization of dissipation effects in the propagation of pressure

waves.
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4.4 Average delay and max-first connections

In Figure 4.7 the delay, in terms of difference between the length of the shortest paths and the

length of the paths that bring the maximal wave from the closing valve node to the node we’re

interested in, is plotted against the different closing valve nodes’ location. It is evident how

central nodes in the network present a higher average delay than those nodes on the borders.

We then expect that prediction for central nodes could be difficult.

Figure 4.7: Spatial mean of delay between the first arrival of the waves and the actual maximum (in terms of difference in the number of

conduits between the shortest path and the length of paths that bring the maximal wave) as a function of the closing valve node position.
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The increasing of the average delay as one considers more and more internal nodes may

be due to the fact that central nodes begin to have paths starting from them that travel along

the borders and through vertices late: this, combined with the higher number of paths with

respect to more peripherical nodes, could lead to a greater amplification of the waves at later

times.

Figure 4.8: Max-first connections for nodes with different number of nearest neighbors.

The last analysis is a topological categorization of max-first connections, i.e. couples of

nodes such that closing the valve on one node the maximum overload on the other is reached

at the first arrival of the wave, done taking into account the number of nearest neighbors of

the two nodes. In Figure 4.8 the fraction of max-first connections that involve nodes with

different number of nearest neighbors are plotted for increasing size of the network. Apart

from adjustments for smaller networks, from n = 6 on it seems that these fractions remain

stable, maybe some are slowly decreasing but studies on larger networks would be necessary

to understand the trend. The 2↔ 2 max-first fraction is constant, because there are always 3

of such nodes. Studies on different type of networks will be useful to increase statistics on

this fraction.

From this analysis, we can expect the predictive model on the n = 3 network to work well

for nodes with fewer nearest neighbors.
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5. PREDICTION RESULTS

In this chapter the predictive power and the limits of the model are tested on the n = 3 square

lattice network.

Since the first overloads reached on each node can be predicted with precision, let’s see

whether using them as a prediction for the maximum overloads is a fair choice. Let’s analyze

the performances of this predictive model for different locations of the closing valve node.

Results are not presented for every node, since there is a symmetry with respect to the di-

agonal passing through the reservoir, so that results can be mirrored with respect to this line.
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5.1 Closing valve on node 16 (4,4)

In Figure 5.1 are shown the real and predicted maximum overloads reached on each node after

closing the valve in (4,4) (node 16) and the relative error made. In this case the predictive

model works pretty well, especially on internal nodes and the borders opposite to the closing

valve node, but it makes a percentage error up to 20% on the other vertices.

(a) (b)

(c)

Figure 5.1: (a) Maximum overloads reached on each node closing the valve on node 16, that in these graphs is node (4,4). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.
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5.2 Closing valve on node 15 (4,3) (or specularly 12 (3,4))

In Figure 5.2 are displayed the histograms showing the real and predicted maximum over-

loads reached on each node after closing the valve in (4,3) (node 15) and the relative error

made. In this case the predictive model works well on the borders, but not in the internal

nodes and on side opposite to the closing valve node, especially in (1,3) (node 3), where the

maximum overload of the entire network is reached.

(a) (b)

(c)

Figure 5.2: (a) Maximum overloads reached on each node closing the valve on node 15, that in these graphs is node (4,3). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.
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5.3 Closing valve on node 14 (4,2) (or specularly 8 (2,4))

In Figure 5.3 are displayed the histograms showing the real and predicted maximum over-

loads reached on each node after closing the valve in (4,2) (node 14) and the relative error

made. As in the previous case, the predictive model on near borders works well, but on

the opposite side and internal nodes the prediction fails, especially on the node (the same as

before) in which the maximum is reached.

(a) (b)

(c)

Figure 5.3: (a) Maximum overloads reached on each node closing the valve on node 14, that in these graphs is node (4,2). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.
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5.4 Closing valve on node 13 (4,1) (or specularly 4 (1,4))

In Figure 5.4 are displayed the histograms showing the real and predicted maximum over-

loads reached on each node after closing the valve in (4,1) (node 13) and the relative error

made. The predictive model works really well on all nodes, except for light discrepancies.

The maximum overload on the entire network is predicted. Results when closing the valve

on node 4 in (1,4) are mirrored with respect to the diagonal passing through the reservoir.

(a) (b)

(c)

Figure 5.4: (a) Maximum overloads reached on each node closing the valve on node 13, that in these graphs is node (4,1). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.

46



5.5 Closing valve on node 11 (3,3)

In Figure 5.5 are displayed the histograms showing the real and predicted maximum over-

loads reached on each node after closing the valve in (3,3) (node 11) and the relative error

made. The performance of the predictive model is underwhelming, since it works well only

on vertices. The maximum overload on the entire network on the vertex in (4,4) (node 16) is

predicted, but similar critical overloads on the other internal nodes are missed by the model.

(a) (b)

(c)

Figure 5.5: (a) Maximum overloads reached on each node closing the valve on node 11, that in these graphs is node (3,3). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.
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5.6 Closing valve on node 10 (3,2) (or specularly 7 (2,3))

In Figure 5.6 are displayed the histograms showing the real and predicted maximum over-

loads reached on each node after closing the valve in (3,2) (node 10) and the relative error

made. The predictive model works well on border near the closing valve node and vertices,

but not on the other internal nodes and the farther borders. The maximum overload on the

vertex in (4,1) (node 13) is predicted.

(a) (b)

(c)

Figure 5.6: (a) Maximum overloads reached on each node closing the valve on node 10, that in these graphs is node (3,2). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.
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5.7 Closing valve on node 9 (3,1) (or specularly 3 (1,3))

In Figure 5.7 are displayed the histograms showing the real and predicted maximum over-

loads reached on each node after closing the valve in (3,1) (node 9) and the relative error

made. The performance is low on the opposite side of the network with respect to the closing

valve node, where the maximum is reached, on the farthest internal nodes and even on some

nodes on the other border connected to the reservoir.

(a) (b)

(c)

Figure 5.7: (a) Maximum overloads reached on each node closing the valve on node 9, that in these graphs is node (3,1). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.
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5.8 Closing valve on node 6 (2,2)

In Figure 5.8 are displayed the histograms showing the real and predicted maximum over-

loads reached on each node after closing the valve in (2,2) (node 6) and the relative error

made. The maximum overloads reached on the borders including the reservoir and on ver-

tices are well predicted, whereas the other maximum overloads are not, especially that in

(3,3), that is node 11, which is the maximum in the entire network.

(a) (b)

(c)

Figure 5.8: (a) Maximum overloads reached on each node closing the valve on node 6, that in these graphs is node (2,2). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.
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5.9 Closing valve on node 5 (2,1) (or specularly 2 (1,3))

In Figure 5.9 are displayed the histograms showing the real and predicted maximum over-

loads reached on each node after closing the valve in (2,1) (node 5) and the relative error

made.The model doesn’t work on the opposite side of the network. However the maximum

is predicted, since it is reached on the vertex opposite to the reservoir.

(a) (b)

(c)

Figure 5.9: (a) Maximum overloads reached on each node closing the valve on node 5, that in these graphs is node (2,1). (b) Predictions

using the first overloads reached at each node. (c) Percentage error made in the prediction on each node.
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5.10 Global results

In Figure 5.10 is reported a scheme of the hydraulic network in which nodes are colored in

green or red if, closing the valve on them, the model can or can’t predict on which node the

maximum overload is reached.

Figure 5.10: Scheme of the nodes for which, closing the valve on them, the location of the maximum overload is (green) or isn’t (red)

predicted right by the model.

Border nodes far from the reservoir and internal nodes near the reservoir seem to be the ones

for which, closing the valves on them, the maximum overload on the entire network cannot

be predicted by the model.
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In Figure 5.11 the metric that associates each node to the maximum relative overload

reached in the entire network after the closing of its valve, described and showed in Chapter

3.3.3, is displayed and compared to the maxima predicted by the model. The relative error is

also showed.

(a) (b)

Figure 5.11: (a) Real maximum relative overload reached in the entire network plotted against the location of the closing valve node. (b)

Prediction of the model of such metric. (c) Relative error made by the model.

This metric shows how the predictive model fails to grasp the dangerousness, intended as the

capability of generating local peaks of overpressure, closing valves on the border nodes far

from the reservoir.
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In Figure 5.12 the metric that associates each node to the mean of the maximum relative

overloads reached on every node after the closing of its valve, described and showed in Chap-

ter 3.3.2, is displayed and compared to the mean of the maxima predicted by the model. The

relative error is also showed.

(a) (b)

Figure 5.12: (a) Real spatial mean of the maximum relative overloads reached in the entire network plotted against the location of the

closing valve node. (b) Prediction of the model of such metric. (c) Relative error made by the model.

This metric shows how the predictive model fails to grasp the dangerousness, intended as

the capability of generating a high-peaked global average overpressure, of closing valves on

almost every node, except for the vertices, in particular the two not opposite to the reservoir.
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CONCLUSIONS

In this work of thesis, a preliminary study of pressure waves propagation has been carried

out on square lattice hydraulic networks of different sizes, with a reservoir on a vertex and

valves on every other node. Computer simulations have been carried out, closing abruptly the

valve on a node and letting the pressure and velocity waves propagate through the network.

The simulation data have been elaborated and condensed into significant metrics, such as the

maximum overload reached in the entire network or the spatial mean of the temporal maxima

reached on the different nodes, to characterize each node with the effects closing its valve

would have on the entire network. We observed a strong non-locality of the phenomenon and

peaks of overpressure even higher than that originated at the closing of the valve. A better

understanding of the propagating mechanism of pressure and velocity waves inside networks

at multi-conduits junctions was necessary. Starting from a simplification of the characteristic

equations, we derived a toy model for the propagation of pressure waves along direct paths.

We found the prediction of the overloads reached at the first arrival of the pressure waves to

be precise, so we also improved it to account for dissipation effects. We carried out an anal-

ysis to find out the statistics of max-first connections and the average delay of maxima with

respect to the first arrival of the waves. We found out that the fraction of max-first connection

between nodes with a low number of nearest neighbors is greater than that of connections

between nodes with higher number of nearest neighbors. The values of these fractions are

either stable or slightly decreasing with the enlarging of the network, after a first adjustment

for small networks. From these analysis, we expected the toy model to work better for nodes

with a smaller number of nearest neighbours, when trying to predict the real maximum over-

load with the first overload computed with the model. Then, we tried to use prediction on the

first overloads for estimating the maximum overloads on the network with n = 3 conduits per

size. The maximum overload metric is exactly reconstructed for 2-nn and 4-nn nodes (except

for a little error on node 6) and the spatial mean of temporal maxima metrics is only predicted

for 2-nn nodes.
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Further studies are required for a deeper comprehension of the power of prediction of this

model as a function of different topologies of the network it is applied to. Furthermore, more

studies on wave propagation through non-direct paths and their possible modelization will be

useful to improve predictions based on new network approaches.
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