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Abstract

Visual servoing systems for the control of robotic manipulators are becom-
ing a most relevant issue for robot application in unstructured environments.
One of these operations is the capacity of a robotic arm to find the pose of an
object and to use that information to pick it up. The goal of this thesis is the
recognition of an object by an RGB-D camera image, and the use of a robotic
arm to grasp it. To perceive that objective a Realsense D-435 camera and a
UR5 robot were used. The RGB image coming from the camera was given as
input for the Convolutional Neural Network (Mask R-CNN) utilized for the
object recognition task, while the depth image together with a simple inverse
projection transformation were used in order to find the X-Y-Z coordinates
of the previously found object. This kind of approach was applied because it
does not require a hardware with a huge computational power, can have a
Network trained on different sets of objects, and it is possible to exploit it
on camera models different from the Realsense D-435. An already trained
Network was used. At first a simulation environment, called GazeboSim, was
considered for preliminary test, and then real world experiments have been
done.
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Chapter 1

Introduction

1.1 Computer Vision
Humans take information about their surroundings with the help of their
senses. The sense of sight, it is no secret, is the most studied sense among
all the other senses [1].
Because vision is so important, attempts have been made since the 1970s to
duplicate human vision electronically using cameras or other types of sensors.
In the beginning, it was believed that the “vision task”: "would be only a
small problem and it could be solved in just one summer" (1966 Marvin
Minisky). Unfortunately, they were completely wrong. The aim of computer
vision is to characterise the world in one or more images and to recreate its
features, such as form, lighting, and colour distributions. The main point,
however, may not be the mere reproduction of vision but, the duplication
of all the background work our brain does to process and understand the
information coming from our eyes. For a human, observing and the analysing
a scene seems effortless, but for a machine it is no easy task at all.

1.1.1 Difficulty in Computer Vision
The main difficulties of computer vision could be summarized in five main
points [2]:

1. Loss of information in 3D->2D: this happens normally in cameras. They
typically project the real object into an image plane. This projection is
done by representing every point of the real object along rays on the
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2D plane. This transformation does not preserve angles and collinearity,
and due to this, the camera does not distinguish small close object from
big far one.

2. Interpretation on images: humans, because of their past experiences and
ages of evolution can interpret and distinguish every scenario without
any effort. Instead, computers’ capacity to understand images is quite
bounded, even if Artificial Intelligence (AI) has done tremendous steps
toward that direction.

3. Noise: as with every other measurement, also in vision, noise cannot be
e underestimated.

4. Too much data: video and Images occupy a lot of memory. Due to this
some applications can not be performed in real-time so easily.

5. Local view and global view: understanding the whole context may
be difficult since cameras can only catch a tiny portion of the real
surroundings.

1.1.2 Hierarchical Organization
Image understanding can be described as the effort to build a connection
between input images and previously built models of the environment. This
procedure is sorted into a few stages that are divided into a hierarchical
organization like the following [2]:

1. Perception: process that provide a computer image

2. Pre-processing: noise reduction and detail information

3. Segmentation: divides the image in object of interest

4. Description: compute characteristic that are useful to differentiate one
object from another

5. Recognition: the process that identify an object

2
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Perception

At first, light passes through the camera’s optics then it interacts with an
imaging sensor. There exist a wide range of sensors, but normally, they
all behave in the same manner, capturing the photons and then converting
them into a continuous function f(x,y) of two coordinates in the plane.
Since a computer cannot deal with continuous function an appropriate data
structure, in this case, a matrix must be used to represent an image for
computer processing. Therefore the image is digitalized at first sampling
f(x,y) and then assigning to each continuous sample a quantized value. It is
obvious that there is a connection between the level of detail in the image
and the density of the digital sample. Just to have some data a 4k TV has
3840 x 2160 pixels.

Figure 1.1: Matrix representation of pixels

Pre-processing

At this point, images are still not suitable for further analysis. They still
have all the information captured by the sensor. What they need now is to go
through the real first step of Computer Vision which is called Pre-processing.
Nevertheless, pre-processing is quite helpful in several scenarios because it
could be used to suppress all the unrelated data for our process. Example of
this process include:

• Filtering

3
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• Color balancing

• Sharpness increase

• Reduction of noise

• Geometric transformation (ex. Rotation of the image)

Concerning Filtering there exist lots of different techniques which deal with
the kind of image needed. Neighbourhood average filtering, for instance,
given an image f(x,y) creates a filtered picture g(x,y) where the intensity of
each pixel is obtained through the average of the intensities of pixels of f in
a predetermined neighbourhood of (x,y). One more example of filters is the
stencils. They are small bidimensional sets, whose coefficients are selected
to reveal a given property or feature in an image (like highlighting isolated
points).

Figure 1.2: Different kind of filtering
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Just to have a better view of Pre-processing an interesting procedure to
describe is Edge Detection. Using Edge Detection, as it is possible to guess
by the name, the main purpose is to find the Edges of objects in a picture.
This method is still a processing algorithm and therefore neither the edges
nor the things surrounding them are given a logical meaning.

Segmentation

This is the third step of Computer Vision, and it is one of the most important.
It allows subdividing the scene into its constituent parts, or objects. Seg-
mentation of an image could be complete, in which a series of images region
matching only with the object provided in the input picture is obtained,
or partial, in which regions do not exactly match uniquely with the object.
Although there is an immediate benefit in a significant reduction in data
volume, completely accurate and comprehensive segmentation of complex
scenes is typically not possible at this processing step. Therefore, normally,
segmentation is partial and then its output is provided to a higher level
process which can completely achieve our division aim.
Segmentation may be done using:

• Discontinuity: edge detection

• Similarity: thresholding and region growing

Edge detection segmentation is one of the first techniques used but it is still
reliable. Using this kind of segmentation, it is possible to find discontinuity
in grey-scale level, colour, or texture. This process, though, is not enough
to be considered a proper segmentation. This process must be followed by
an edge combination where all the edges are connected into an edge chain.
The goal is to segment an image at least partially, which is accomplished by
grouping local edges into an image where only edge chains that match existing
objects or image sections are present. Although this process, as said before,
is quite reliable, it has a series of problems due to image noise or unsuitable
information in an image. Concerning thresholding, the grey-scale level one is
the simplest segmentation process. When looking at a picture, humans can
notice that some parts of it are characterized by constant reflectivity or light
absorption. Starting from that idea it is not difficult to find a brightness
constant or threshold to properly divide objects in the scene and background.
Since it is a fast process, it can be performed in real time and due to this,
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even though it is simple, it is still widely used. In the following lines, a
simple Algorithm is reported for thresholding just to make have an idea of
how it works.

Algorithm 1 Basic thresholding
1: procedure Thresholding
2: ▷ In the picture f , look for all of the pixels f(i, j) . If f(i, j) ≥ T ,

a segmented image pixel g(i, j) is an object pixel; otherwise, it is a
background pixel.

3: end procedure

A different segmentation technique is called Region-oriented. The segmen-
tation approaches described above are based on discontinuity. Looking for
discontinuities means seeking boundaries between regions, instead in this case
the whole region is what the technique looks for. The first procedure which
falls under region-oriented segmentation is called Region growing. Starting
with a collection of seed points, areas are expanded by including nearby
pixels with comparable properties (e.g., intensity, colour, texture, etc.). Two
main problems can be immediately spot:

1. Seed selection

2. Choice of the characteristic to be used for aggregation

Description

The extraction of an object’s characteristics is the description challenge
in the visual process. After that, these traits will be helpful for object
recognition. One thing to take care of is that the description problem should
be independent of the object’s dimension, position, and orientation. But it
is not the only to take care of, it also should have enough information to
distinguish unequivocally one object from another.

Recognition

Recognition is the last step of the Computer Vision task. To perform
recognition, one more ingredient is needed, which is some knowledge about
the object to classify. Without that information, it is impossible for any kind
of algorithm to recognize an object.

6



Introduction

This step recognizes some kind of pattern or similarity between the previous
knowledge about an object and the result of all the other steps above. Pattern
recognition can be divided into two different techniques which are:

• Supervised: examples on the correspondence between pattern and target
can be provided

• Unsupervised: only a pattern is provided and the chosen algorithm
divides the present pattern in classes

A different way to distinguish the different pattern recognition techniques
could also be a division done depending on what drives the algorithm, for
example:

• Rule-driven: In this case a rule is assigned for each kind of object (e.g.,
and object have this characteristic...) For this there are different ways
to assign rules:

– Deterministic
– Probabilistic classifier (e.g. Bayesian)
– Fuzzy logic system
– ...

• Data-driven: one example to this could be a Neural Network (deep-
Neural Network,Convolutional Neural Network,etc.)

• Hybrid: it is a mixed version of the techniques listed above (neuro-
fuzzy,fuzzy-clustering)

In order to perform the recognition of an object at first the algorithm must
be trained with some data that possibly are representative of all possible
situations and then a Test and Validation phases are required. Also for these
two last phases, two different distinct datasets are necessary.
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1.2 State of the Art
The main problem with robot grasping is that there are sources of uncertainty
that do not allow the robot to perform a perfect grasp [3]. Those are:

• Perception uncertainty: cameras give a continuous stream of images, but
most of the time the information arriving at the robot is not noiseless.
Therefore the perfect pose estimation of an object from a camera is not
always possible.

• Physics uncertainty: objects have friction, masses, etc. Therefore some-
times those factors influence objects grasping

• Control uncertainty: robot actuators do not perfectly move as set.

Therefore taking into consideration these factors a lot of solutions have
been exploited, during the years.

1.2.1 2-D
In the late 90s/early 2000s depth camera were really expensive. Considering
this research focused on 2D images for object recognition. At that time,
the main algorithms for object recognition were those based on feature
descriptors. Pose estimation was possible thanks to some previously saved
models of the recognized object. This means that the object pose could be
found only if a model of the object was available and it could be compared
with the previously found object.
During the same period, there was the development of some new computer
vision algorithm which can be used for tasks such as:

• Object recognition

• Image registration

• Classification

• 3-D reconstruction

8
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These Computer Vision algorithms are able to take images as input and,
after some processes, output feature descriptors or feature vectors. The
idea behind them is to obtain a series of features which are invariant to
image transformation, so these information can be found even if the image is
distorted.

Since, over time, a lot of algorithms were created, it is worth list some of
them just to have a brief overview of what has been developed:

• Scale-invariant feature transform (SIFT) [4]

• Speeded Up Robust Features (SURF)[5]

• Binary Robust Independent Elementary Features (BRIEF) [6]

The ones listed above are just a small group of those which were developed
during that time. In figure 1.3 there is an example of a feature extractor
using SIFT.

Figure 1.3: Feature extraction using SIFT

It has found a series of features, which even if the picture on the right was
taken from a different perspective, can be found and used for the recognition
of the wanted object.
When common features have been found, therefore recognition has been
performed, it is possible to estimate the pose of the found object. To do so a
data set, where all the models’ reference frames are stored, is essential. Once
one object is identified the rotation matrix and translation vector, which
define the relationship between the two coordinate frames, can be calculated
using these datasets. Unfortunately, the uncertainty caused by improper
point matching and noisy points makes it impossible to estimate an object’s
posture with enough accuracy.

9
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1.2.2 3-D
Point Cloud

After the early 2010s and the release of cheaper depth cameras changed
everything. Figure 1.4 is one example of a depth camera. The depth
information could be used for pose estimation of the object (Information
coming from a depth camera can be seen in figure 1.5). These information
coming from the camera can be converted into a Point Cloud, which is a set
of points in space. Each of these points has its X-Y-Z position. An example
of a Point Cloud is shown in figure 1.6.
From this concept, a lot of algorithms using point cloud came out.

Figure 1.4: Microsoft Kinect Figure 1.5: Depth Image

The majority of 3-D object recognition algorithms which uses point cloud
works using a model-based approach. 3-D representations of the potential
object of interest are first processed offline. This first process creates a data
set of extracted features that in future can be used for object recognition.
Therefore features are extracted from a point cloud and then given as input
to a recognition algorithm. These features are then compared to the pre-built
data set to perform object recognition. A lot of feature extractors were
developed:

• Signature of histograms of orientations (SHOT) [7]

• Rotational projection statistics (RoPS) [8]

• 3-D tensor [9]

Once the object is identified, it is possible to do pose estimation. Also
in this case, an external data set can be used to calculate the rotation and
translation matrix.

10
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Figure 1.6: Example of a Point Cloud

Machine Learning Approach

After 2012 when A.Krizhevsky implemented Deep Convolutional Neural Net-
work (CNN) within a Graphics Process Unit (GPU) [10], image recognition
and pose estimation grew exponentially. From that time on, a lot of Neural
Networks (NN) came out. In this case, there are three main approaches. One
directly calculates the point from which the object can be picked up without
the direct recognition of the object in the scene; the second recognizes the
object and calculates its pose without any proper grasping point calculation;
the last is a mix of the previous two. There are a lot of examples of networks
which try to perform the wanted task. Object recognition, as stated, in the
previous chapter, is not a new task, but for the first time, this problem could
be solved efficiently. This approach was a revolution, it opened a new way of
object recognition, but also for object grasping. In the following years, more
and more evolved Convolutional Neural Networks came out. Some of those
networks were not only able to find and recognize a specific object but were
also capable of evaluating the best point for grasping an object.

11



Chapter 2

Tested Algorithms
Throughout the years a lot of algorithms for object recognition and pose
estimation were developed. Some of them have been tested. The algorithms
need to work with a small computational power, a limited memory storage
and at the same time have to be fast enough.

2.1 Relasense D435
It is necessary to briefly introduce the camera used for image recognition
and pose estimation because it is the main piece of hardware to perceive the
aim of this work. An Intel® RealSense™ D435 was used [11]. Figure
2.1 shows the aesthetic while figure 2.3 shows the camera dimensions. This
camera was chosen because of its depth module. The Intel® RealSense™
depth camera D435 provides high-quality depth images for a range of uses.
Applications like robots or augmented and virtual reality, where seeing as
much of the scene as possible is crucial, its wide field of view is ideal. Since
the camera has a compact form factor it can easily be used in a big variety
of scenarios.

12
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Figure 2.1: Intel® RealSense™ depth camera D435

To provide depth image, it uses stereo vision. A left imager, a right imager,
and an optional infrared projector make up the stereo vision implementation.
In low-texture environments, the infrared projector creates a non-visible
static infra red pattern to increase depth perception. The left and right
imagers take pictures of the scene and send the information to a depth
imaging (vision) processor, which uses the information to calculate the depth
of each pixel in the image by comparing points on the left and right images
and by shifting between points on the left and right images. This process of
depth estimation is perfectly summarized in figure 2.2

Figure 2.2: Depth implementation

For the aim of this work, it is essential to know the minimum distance
from camera to object for which it provides reliable depth data. In table 2.1
the minimum distances, depending on the camera resolution, are reported.

13
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Table 2.1: Minimum Depth Table

Resolution D400/D410/D415
Min-Z [mm]

D420/D430
Min-Z [mm]

1280x720 450 280
848x480 310 195
640x480 310 175
640x360 240 150
480x270 180 120
424x240 160 105

The resolution was set to 1280x720, therefore the minimum distance is
280mm. If the objects distance is less than 280mm, it is not possible to rely
on the output of the camera.

Figure 2.3: Intel® RealSense™ Depth Camera D435
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2.1.1 Realsense Pipeline code
The camera was used via a pipeline 1 [12] developed with a python library
called pyrealsense2. A RealsenseCamera class was defined to have all the
necessary configurations enabled at the same time.
The next part of the reported code allows starting both the depth sensor
and the RGB module. Once the images are processed they are converted to
NumPy 2 arrays as required by the used Neural Network.

1 c l a s s RealsenseCamera :
2 c l a s s RealsenseCamera :
3 de f __init__( s e l f ) :
4 # Conf igure depth and c o l o r streams
5 pr in t ( " Loading I n t e l Rea l sense Camera " )
6 s e l f . p i p e l i n e = r s . p i p e l i n e ( )
7

8

9 c o n f i g u r a t i o n = r s . c o n f i g ( )
10 c o n f i g u r a t i o n . enable_stream ( r s . stream . co lo r , 1280 , 720 ,

r s . format . bgr8 , 30)
11 c o n f i g u r a t i o n . enable_stream ( r s . stream . depth , 1280 , 720 ,

r s . format . z16 , 30)
12

13 # Star t streaming
14 p r o f i l e=s e l f . p i p e l i n e . s t a r t ( c o n f i g u r a t i o n )
15 a l i gned_co lo r = r s . stream . c o l o r
16 s e l f . a l i g n = r s . a l i g n ( a l i gned_co lo r )
17 s e l f . i n t r=p r o f i l e . get_stream ( r s . stream . c o l o r ) .

as_video_stream_prof i le ( ) . g e t _ i n t r i n s i c s ( )

The above code enables the camera streaming with a resolution of 1280x720,
for both the color and the depth streaming.

1 depth_image = np . asanyarray ( f i l l e d_dep th . get_data ( ) )
2 color_image = np . asanyarray ( color_frames . get_data ( ) )

1A pipeline in software engineering is a series of processing components (processes,
threads, coroutines, functions, etc.) structured so that each element’s output serves as
the subsequent element’s input; In this case the pipeline simplifies the user interaction
with the device and computer vision processing modules

2NumPy is an open source project aiming to enable numerical computing with Python.

15



Tested Algorithms

Using np.assanyarray the colour and depth frames are converted to NumPy
arrays. This conversion, as explained before, is the input to provide to the
NN model to make object recognition possible.

2.2 Algorithms
2.2.1 Find Object
Most of the algorithms used in 2D object recognition can be found in an
open-source computer vision library, called OpenCV, and can be tried
using a simple interface called Find-Object. In the search for a good
implementation to estimate the pose of an object, a ROS (section 3.1)
integration package of the Find-Object application was tried. This package
is quite simple to use. In a first phase, it displays the camera streaming and
applies this scene to the most important features of the framed objects. From
the same window, it is possible to cut out a certain area that must contain the
wanted object that later on has to be recognized. In this way the algorithm
should ideally find the object when it appears in another video/image. If
a camera with a depth sensor is available, it can also estimate the pose
of the detected object. Theoretically, this approach seemed to be suitable
for the purpose of this work, but by doing some measurements some issues
were encountered. If the object does not have a lot of particular features,
the package is not able to distinguish it from the rest of the scene; so the
pose estimation, due to the previous problem, is not precise. And, even if
the object is found, the pose estimate is completely wrong if it is at the
edge of the image. Since this package was tested with the Realsense D-435,
some preliminary measurements were made to evaluate the behaviour from
different distances. These measurements were made on a table covered with
a graph, to keep track of the position of the object and with the background
made of cardboard. The background was made of cardboard to ensure that
no additional features could interfere with the algorithm’s pose estimation.
During the experiment, the camera was held in one place and the object was
moved to different predetermined positions. By measuring the distance of
the object from the camera the actual X-Y-Z coordinates were quite reliable.
These distances were then compared to the distances by the algorithm.
The measurements were saved in an Excel, shown table 2.2
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Table 2.2: Find Object Measurements Table

Position D-435 X Y Z x_mis y_mis z_mis
CentralPos 1 37 0 0 36 -2 -7
CentralPos 2 37 17 0 55 36 -11
CentralPos 3 37 10 0 38 13 -7
CentralPos 4 37 5 0 38 7 -7
CentralPos 5 37 3 0 37 4 -7
CentralPos 6 37 -12 0 54 -24 -9
CentralPos 7 37 -7 0 53 -12 -9
CentralPos 8 37 -4 0 37 -4 -6
CentralPos 9 31 0 0 28 0,8 -6
CentralPos 10 31 17 0 0 0 0
CentralPos 11 31 10 0 31 15 -7
CentralPos 12 31 5 0 30 8 -6
CentralPos 13 31 3 0 31 5 -6
CentralPos 14 31 -12 0 54 -28 10
CentralPos 15 31 -7 0 54 -17 -11
CentralPos 16 31 -4 0 32 -5 -6
CentralPos 17 46 0 0 46 -1 -6
CentralPos 18 46 17 0 54 34 -9
CentralPos 19 46 10 0 56 23 -9
CentralPos 20 46 5 0 45 11 -7

The above table is a part of all the measurements that were taken. The
X-Y-Z coordinates are the actual positions of our object while x-mis y-mis
and z-mis are the positions estimated by the algorithm. The results were
plotted on Matlab.
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The three figures 2.4, 2.5, 2.6 show that none of the calculated position
by the algorithm can be considered reliable.

Figure 2.4: Real and Measured Value on X axis

Figure 2.5: Real and Measured Value on Y axis
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Figure 2.6: Real and Measured Value on Z axis

In some measurements the estimated position is really far away from the
real one, normally this happens when the object is near the edge of the
camera field of view. Therefore, a big drift in the 3D pose estimation is
encountered.

Figure 2.7 shows the percentage of the relative error made by the algorithm.
In this case, the error is just the difference between the real value and the
measured one, normalized to the real value.

Figure 2.7: Relative Error between Real and Measured value

The Relative Error graph shows that in some places, where the object was
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moved with respect to the camera, the error goes up to more or less 130%.
Therefore, after these experiments, this algorithm was discarded.

2.2.2 Point Cloud Library
The Point Cloud Library (PCL) is a standalone, large-scale, open project
for 2D/3D image and point cloud processing [13]. The Point Cloud Library
collects all the algorithms which concern Point Cloud processing and stores
them all in one place [14]. A specific PCL object recognition and pose
estimation pipeline was tested. It uses the pcl_recognition module, and it
aims at performing 3-D Object Recognition, also providing a transformation
matrix identifying the 6DOF pose of the recognized model as output. This
kind of recognition, after 3D description matching [15], where descriptors
between the current scene and the model in the library are computed, uses
Correspondence Grouping algorithms that group correspondences that are
geometrically consistent in the clusters and discard the ones that are not.
Unfortunately, during testing, a lot of issues were encountered.

Most of the time, since the algorithm needed a model of the object to be
found, it was not able to find any kind of correspondence between the model
that was given and the current scene. This mainly depended on two different
factors:

• The Point cloud model taken from the camera was noisy;

• During the implementation of the algorithm, it is possible to tune some
parameters to have better object recognition and pose estimation. The
main problem is that those parameters differ for every given input, and
the only way to tune the is with a trial and error process.

These issues, together with the fact that it was not suitable to gather a
point cloud model for each item, led to the conclusion that this technique
was unreliable and unusable. Therefore, also this algorithm was discarded.

2.2.3 Neural Networks
Different kinds of Neural Networks have been investigated. All the Networks
were designed either to identify the object, and the pose could be estimated
using the camera or they could directly find a good grasp point.
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Grasp Pose Detection

The Grasp Pose Detection [16] selects a grasp candidate from a point
cloud, and applies a CNN to determine if the selected candidate would be
successful. Unfortunately, even if it seemed a good candidate when the code
was implemented a grasp candidate was not possible to be found for each
point cloud file that was tested.

Dex-Net

The second implemented Neural Network was the Grasp Quality Convolu-
tional Neural Networks (GQ-CNN) [17]. This NN is part of a project called
Dex-Net whose goal is to develop highly reliable robots grasping across a
wide variety of rigid objects. Figure 2.8 shows how the Dex-Net Architecture
works. This network uses a dataset of 6.7 million synthetic point clouds,
grasps, and associated robust grasp metrics, computed with DexNet 1.0. The
resoults are used to do offline training to the Grasp Quality Convolutional
Neural Network (GQ-CNN). GQ-CNN predicts the robustness of the can-
didate grasps from depth pictures. Pairs of antipodal points in a 3D point
cloud created by a depth camera identifies a collection of several hundred
grasping possibilities. The GQ-CNN quickly identifies which grip candidate
is the strongest. In this case, since a pre-trained Network was necessary to
run the CNN, and neither one was found nor was possible to train a new one
(since a powerful GPU is necessary) it was not possible to use it. Therefore,
in this case no tests were performed.

Figure 2.8: Dex-Net Architecture
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Antipodal Robotic Grasping

The third CNN implemented, tackles the problem of generating robotic
grasping for an object is the Generative Convolutional Neural Network
(GR-ConvNet) [18].

Figure 2.9: Antipodal Grasping Architecture

As explained in figure 2.9, an RGB and aligned depth image are acquired
from an RGB-D camera. At that point, the image is pre-processed to match
the input of the Neural Network. The Generative Residual ConvNet has as
outputs quality, angle and width images, which are then used to infer the
grasp pose. Using this information together a grasp pose for the object can
be found. Concerning the code implementation of this NN, the installation
was performed and all the requirements were fulfilled. Although the grasping
point seemed good, it was decided not to use this approach.
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Deep Object Pose Estimation

Going on with Convolutional Neural Network also the DOPE ROS package
was considered [19] for object recognition and 6-DoF pose estimation from
an RGB camera. In this case, since an Invidia GPU was necessary, it was
not even possible to fulfil all the requirements. Considering that, it can be
considered as an alternative if a GPU is available.

Mask-RCNN

Since a simple and fast approach was required, Mask-RCNN [20] was tried.
An implementation of this network was tested and, as it is going to be
explained later, this was the chosen approach to perceive the aim of the work.
The Mask-RCNN is able to efficiently find and identify an object in a shown
environment. The identification is not the only output: this Network can
also draw both a bounding box 3 and a mask around the object.
The 3D pose estimation was done by combining the bounding box informa-
tion and the depth measurements coming from the camera. So the XYZ
coordinates of the desired object were estimated.

3A bounding box is the smallest box which is possible to draw around an object to
completely delimit it
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2.3 Introduction to Region-Convolutional
Neural Network

The Mask-RCNN was the selected Neural Network for object recognition.
An already trained network was used. The dataset on which the network
was trained is the COCO dataset mask_rcnn_inception_v2_coco_2018_01
_28.pbtxt [21]. Considering this, only a specific class of object can be
recognized. Among all of these sports ball and bottle were selected to
perform the experiments. Before going into details with the used Mask-RCNN
and the showing results of the performed measurement, a brief introduction to
the evolution of the R-CNN network is reported. As already said, recognition
is the last step of the Computer Vision task and the use of Neural Network
is one of the possible alternatives to perform it.

2.3.1 Evolution of R-CNN
The use of CNN was really popular in the 1990s, but then dropped making
space for support vector machine. However, after 2012, when Krizhevsky
[10] was able to use GPU to train and evaluate Networks, the interest in NN
blew up again. In 2014 the first R-CNN came out [22]. It is called R-CNN
because it combines region proposal with CNN. This new approach can be
divided into three modules:

1. The first creates a category-independent region proposal. 4

2. The second is a large convolutional neural network that extracts a fixed
length feature vector from each of the previous regions.

3. The third is a series of Support Vector Machines (SVMs)5 which identifies
the object’s class.

Figure 2.10 perfectly describes the R-CNN process.

4The region proposal process identifies a section of the image where there is the
possibility to find an object

5SVMs are supervised learning models that use learning algorithms to examine data
for classification and regression
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Figure 2.10: R-CNN regions

Doing so, from an input image, it is possible to find and categorize a series
of objects. Of course object recognition, as stated in previous chapter, is not
a new task, but for the first time, this problem could be solved efficiently
and robustly. In the following years, an evolution of that network came
out. It was called Fast R-CNN, and introduced several innovations which
improved both training and testing speed while increasing also detection
accuracy. The architecture of Fast R-CNN [23] is quite different from
its ancestor R-CNN. As shown in figure 2.11, the first stage of region
proposal is done using several convolutional and max pulling layers, which
have as output a convolutional feature map. The convolutional layers have
a series of filters which can identify specific patterns inside the proposed
region, whereas the max layers, depending on the size of the used filter, can
reduce the input dimension. Then, from the feature map, a features vector is
extracted. Each of these vectors is fed into a Fully connected network which
outputs the classes of the found objects and the bounding boxes around the
objects themselves.
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Figure 2.11: Fast R-CNN architecture

In 2016, an improved fast R-CNN came out. It was called Faster R-CNN
[24]. This new network is composed of two modules. Figure 2.12 shows that
the input image passes through a fully connected CNN. This network creates
a feature map, which is given as input to the Region Proposal Network
(RPN), the first module. The RPN creates, as output, a series of regions,
which should be, the sections where the object is located. RPN also gives an
object score, calculating the probability that the object is present in that
section or not. The RPN output is given as input to a fast R-CNN, the
second module. The peculiarity of this new approach is that, although there
are two sections, some layers of the fast R-CNN and the RPN are shared.
Since these two modules have some parts that are shared and some that are
not, to improve the training phase, it is possible to train once the shared
layers, not changing the layers that belong only to the RPN, and then train
the layers of the RPN, keeping fixed the shared layers.
The novelty of this network is that the regions where the Fast R-CNN has
to search are directed by the RPN module.
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Figure 2.12: Faster R-CNN architecture

2.4 Mask R-CNN
The Mask R-CNN [20] came out in 2018 and extended the faster R-CNN
by adding a branch. This branch is composed of some separated layers
specialized in predicting the objects’ mask. The previously described faster
R-CNN for classification and bounding box calculation are still present. In
figure 2.13 the distinction between the newly added branch and the faster
R-CNN section is shown. From the input image, the Region of Interests
in which an object might be located are first selected, then these regions
passes through some convolutional layers. At this point, the results of
the previous calculation are split into two different branches. One is able
to estimate the object classes and the object bouding boxes, the second
calculates the masks around each object found. Therefore, in addition to
the faster R-CNN outputs, a new one has been added. From figure 2.14 it
more evident the division between the two branches. This figure shows two
different implementations of the Faster R-CNN, but in addition two new
branches have been added that can calculate the mask around the object.
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Figure 2.13: Mask R-CNN

Figure 2.14: Branch Mask R-CNN

2.4.1 Code Overview
Mask R-CNN Code

A Python code [12] was used to implement the Mask R-CNN for object
recognition. It is worth taking a closer look at some of the lines of code
better understand what has been done here.
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1 s e l f . net = cv2 . dnn . readNetFromTensorflow ( " /home/ g iovanni /
Desktop/ Python_script /dnn/ frozen_inference_graph_coco . pb " , " /
home/ g iovann i /Desktop/ Python_script /dnn/
mask_rcnn_inception_v2_coco_2018_01_28 . pbtxt " )

In the beginning, some settings and file loading are necessary to make the
code work. The first thing to do is to load pre-trained files, to use the
network. In this case, since a TensorFlow 6 implementation is used, it is
necessary to load a .pbtxt file, which contains the pre-trained weights and, a
.pb file, where the model graph is stored.

1 with open ( " /home/ g iovann i /Desktop/ Python_script /dnn/ c l a s s e s . txt "
, " r " ) as f i l e _ o b j e c t :

2 f o r class_name in f i l e _ o b j e c t . r e a d l i n e s ( ) :
3 class_name = class_name . s t r i p ( )
4 s e l f . c l a s s e s . append ( class_name )

For the following passage all the classes, for which the Network is trained,
have to be put into a list. All the pre-trained classes are inside a .txt file
called classes.txt. The elements saved inside this file are the objects that
the Neural Network is able to identify.

1 de f detect_objects_mask ( s e l f , bgr_frame ) :
2 blob = cv2 . dnn . blobFromImage ( bgr_frame , swapRB=True )
3 s e l f . net . s e t Input ( blob )
4 boxes , masks = s e l f . net . forward ( [ " de tec t i on_out_f ina l " ,

" detection_masks " ] )
5 # Detect o b j e c t s
6 height , width , _ = bgr_frame . shape
7 detect ion_counter = boxes . shape [ 2 ]
8 # Object Boxes
9 s e l f . object_boxes = [ ]

10 s e l f . o b j e c t _ c l a s s e s = [ ]
11 s e l f . ob j e c t_cente r s = [ ]
12 s e l f . object_contours = [ ]
13 f o r i in range ( detect ion_counter ) :
14 box = boxes [ 0 , 0 , i ]

6Tensorflow is a complete open source machine learning platform. It has a wide range
of adaptable tools, libraries, and community resources.
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15 c l a s s_ id = box [ 1 ]
16 s co r e = box [ 2 ]
17 c o l o r = s e l f . c o l o r s [ i n t ( c l a s s_ id ) ]
18 i f s c o r e < s e l f . de t ec t i on_thre sho ld :
19 cont inue
20 # Get box Coordinates
21 x = i n t ( box [ 3 ] ∗ width )
22 y = i n t ( box [ 4 ] ∗ he ight )
23 x2 = i n t ( box [ 5 ] ∗ width )
24 y2 = i n t ( box [ 6 ] ∗ he ight )
25 s e l f . object_boxes . append ( [ x , y , x2 , y2 ] )
26 center_x = ( x + x2 ) // 2
27 center_y = ( y + y2 ) // 2
28 s e l f . ob j e c t_cente r s . append ( ( center_x , center_y ) )
29 # append c l a s s
30 s e l f . o b j e c t _ c l a s s e s . append ( c l a s s_ id )
31 # Contours
32 # Get mask coo rd ina t e s
33 # Get the mask
34 mask = masks [ i , i n t ( c l a s s_ id ) ]
35 reg_of_int_height , reg_of_int_width = y2 − y , x2 − x
36 mask = cv2 . r e s i z e (mask , ( reg_of_int_width ,

reg_of_int_height ) )
37 _, mask = cv2 . th r e sho ld (mask , s e l f . mask_threshold ,

255 , cv2 .THRESH_BINARY)
38 contours , _ = cv2 . f indContours (np . array (mask , np .

u int8 ) , cv2 .RETR_EXTERNAL, cv2 .CHAIN_APPROX_SIMPLE)
39 s e l f . object_contours . append ( contours )
40 re turn s e l f . object_boxes , s e l f . ob j e c t_c l a s s e s , s e l f .

object_contours , s e l f . ob j e c t_cente r s
41 . . . . .

After the setting passages, the RGB frame, coming from the Realsense
camera, can be used to detect the bounding boxes and the masks of the
objects. For this purpose, the method detect_object_mask is used.
Once the object is found, a bounding box is available to surround it.
(center_x,center_y) are the pixels coordinates of the centre of the bounding
box. The two pixels coordinates will be the two basic reference data for the
3D position estimation of the detected object. Figure 2.15 shows the output
of the Mask R-CNN. As it is possible to see, some objects are detected by
the Neural Network. For each object, a bounding box is drawn around it.
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Figure 2.15: Output Image Mask R-CNN

3D Pose Estimation

After the recognition passage, the next step is the estimation of the X-Y-Z
coordinates. Up to this point, the Realsense D-435 camera was only used as
a regular camera not making use of the depth sensor. The distance to the
centre of the bounding box may be calculated using this feature.
Since in the camera coordinate system, as shown in figure 2.16, the depth
value of the pixel corresponding to (center_x, center_y) is the Z coordinate,
one of the three values is found. The other two coordinates, X and Y, are
still missing.
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Figure 2.16: Camera Reference system

Let’s introduce the geometrical model of the camera [25]. As can be
seen in figure 2.17 in the image on the left X, a 3D point, is projected
onto a 2D plane (the image plane). An example of this projection can be
visualised by following the line connecting X to x. Therefore, the projection
has transformed X into x.

Figure 2.17: Camera Projection Geometry

In order to carry out this mapping of X to x (or (x,y)=f(X,Y,Z)), some
intrinsic parameters of the camera are required.

• Focal length (fx,fy): the distance between the camera centre and the
image plane times the pixel density. It describes the angle of view of a
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lens. It changes when the pixel resolution of the camera varies.

• Principal point (x0,y0): the centre of the image plane.

Therefore, the formula to perform that mapping is given by:

x = X

Z
∗ fx + x0 (2.1)

y = Y

Z
∗ fy + y0 (2.2)

This is how a 3D point is projected onto a 2D plane. In this way, however,
the depth information is lost, since each point on the line connecting the (X,
Y, Z) with (x,y) is mapped at the same point on the image plane. The line
connecting the 2D point to the 3D point is shown in 2.18.

Figure 2.18: From 3D to 2D projection
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The reconstruction of a 3D point from a bi-dimensional image requires
knowledge of at least one of the coordinates of the 3D point. In this case,
the value of the Z coordinate is determined using the depth sensor of the
Realsense camera, as mentioned earlier. Therefore, it is possible to find the
two missing coordinates by performing an inverse projection transformation
on the camera image of the scene. Knowing the centre of the bounding
box and having the distance of the object from the camera, that is the Z
coordinate, as well as some intrinsic parameters of the image (focal distance
and centre of projection), the X and Y coordinates can be calculated using
the following equations:

X = depth ∗ (cx − ppx)
fx

(2.3)

Y = depth ∗ (cy − ppy)
fy

(2.4)
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In Equations 2.3 and 2.4 the parameters are:

• depth: the distance between the camera and the centre of the bounding
box;

• cx: x coordinate of the centre of the bounding box expressed in pixel;

• cy: y coordinate of the centre of the bounding box expressed in pixel;

• ppx: horizontal coordinate of the principal point of the image, as a pixel
offset from the left edge;

• ppy: vertical coordinate of the principal point of the image, as a pixel
offset from the top edge;

• fx: focal length of the image plane, as a multiple of pixel width;

• fy: focal length of the image plane, as a multiple of pixel height;

Although, all 3 coordinates of the object have been retrieved, one more
passage has to be done. The camera might have some inclination or the X,
Y and Z coordinates might not start exactly in the middle of the camera.
This means that some compensations are necessary.

1 Xtemp= d i s t ∗( center_x− intr ins ic_param . ppx ) / intr ins ic_param . fx
2 Ytemp=d i s t ∗( center_y−intr ins ic_param . ppy ) / intr ins ic_param . fy
3 Ztemp=d i s t
4

5 s e l f . Xtarget = Xtemp − 17 .5
6 s e l f . Ytarget=(Ztemp∗math . s i n (0 )+Ytemp∗math . cos (0 ) )
7 s e l f . Ztarget= Ztemp∗math . cos (0 )+Ytemp∗math . s i n (0 )

To compensate for this fact, as it is possible to see in the code , 17.5 mm
are subtracted from the estimated X value. The Y and Z coordinates, on
the other hand, are adjusted due to the possible camera tilt.
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Main Object Recognition and Pose estimation

The code described in the previous section was part of a class called MaskRCNN
[12].
Methods and objects of this class are then used in the main code [12].

1 ret , bgr_frame , depth_frame , depth_frame_rs = r s .
get_frame_stream ( )

2 I n t r i n s i c=r s . i n t r
3 pr in t ( I n t r i n s i c )
4 # Get ob j e c t mask
5 boxes , c l a s s e s , contours , c e n t e r s = mrcnn .

detect_objects_mask ( bgr_frame )
6 # Draw ob j e c t mask
7 bgr_frame = mrcnn . draw_object_mask ( bgr_frame )
8 # Show depth i n f o o f the o b j e c t s
9 Measure =mrcnn . draw_object_info ( bgr_frame , depth_frame ,

depth_frame_rs , I n t r i n s i c )

The code reported above starts the Realsense camera streaming (rs.get
_frame_stream()) and the object recognition ( mrcnn.detect
_objects_mask
(bgr_frame), bgr_frame = mrcnn. draw_object_mask(bgr_frame)
and Measure =mrcnn.draw_object_info(bgr_frame, depth_frame,
depth_frame_rs,Intrinsic)).
Once one object is found, its X-Y-Z position is measured 3 times.

1 pub=rospy . Pub l i she r ( ’ ObjectPose ’ , Pose , queue_size=1)
2 pub . pub l i sh ( est imated_pose )

The mean value of these measurements is passed to a ROS publisher (section
3.1.1). This publisher communicates with a ROS subscriber, which is written
in the code to control the robot, giving as topic the three coordinates found.

36



Tested Algorithms

2.4.2 Measures
To estimate the precision of the previous algorithm some measurements were
made.

Environments Setup

The same environmental setup, previously used to perform the Find-Object
measurements, was used (section 2.2.1). The test bench is shown in figure
2.19. This time, 4 different depth distances were considered. They represent,
considering the camera reference system, the Z-coordinate of the object.
The distances are 310 mm, 370 mm, 410 mm, 460 mm. For each of these Z
coordinates, 10 different X positions were measured. These position do not
vary with respect to the Z-coordinate. Table 2.3 reports these X positions.
For each of these points, 100 measurements were taken. To keep track of
them, they were written in .txt files.

Table 2.3: X-coordinates

X position [mm]
-100
-70
-50
-30
0
30
50
70
100
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Figure 2.19: Environment Setup

Table 2.4 is an example of the stored measurements taken during the
experiments. They were used to estimate the accuracy of this solution and
to draw Matlab graphs.

Table 2.4: Measurements Table

X measured [mm] Y measured [mm] Z measured [mm]
6.8 -6.8 308
4.5 -7.3 308
6.5 -6.3 308
5.1 -7.1 308
6.2 -6.4 308
5.5 -7.2 308
6.1 -7.7 308
6.8 -6.7 308
6.8 -6.7 308
5.5 -7.1 308
5.8 -6.5 308
6.2 -6.7 308
6.0 -6.8 308
5.9 -6.5 308
5.7 -7.0 308
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Matlab graphs were used to better understand the algorithm used to
estimate the position of the object in space. For each of the listed positions
on the Z axis, three graphs (one for X, one for Y and one for Z) were drawn
with the real value and the resulting mean, maximum and minimum value.
The figures 2.20 2.21 and 2.22 represent the X, Y and Z measurements in
relation to the Z equal to 310 mm

Figure 2.20: X-310
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Figure 2.21: Y-310

Figure 2.22: Z-310
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As it is possible to see from the three graphs in figures 2.20 2.21 2.22
shown above the results are quite good. The first graph X-310, displayed in
figure 2.20, shows that the mean values calculated with the algorithm are
really close to the real values. In this case, there is no drift at all in any
position, even when the object has been moved left and right in relation to
the camera. So there is no weak point, as for the Find-Object algorithm.
Concerning the Y values 2.21, it is clear that the mean values are constant
around −5 mm. These values can be considered acceptable for the aim of
this work. Figure 2.22, displays the Z values at 310 mm. It is possible to
notice that, once more the mean values are not far from the real ones and,
the maximum error between the two values is around 5 mm.

To be sure that the depth distance does not negatively influence the
measurements, it is possible to analyze also a bigger distance between the
camera and the object. Down here figure 2.23, figure 2.24 and figure 2.25
represent the measurements with a Z value equal to 410 mm.

Figure 2.23: X-410
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Figure 2.24: Y-410

Figure 2.25: Z-410
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The results are similar when comparing the diagrams of Z-310 mm and
Z-410 mm. So there is no loss of precision even if the distance of the camera
to the object increases.

At last, it is also interesting to analyse the overall result. For this purpose,
two surfaces of the mean error on the X and Z axis were drawn. Figure 2.26
and figure 2.27 show the results obtained.

Figure 2.26: Mean Error Surface X axis
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Figure 2.27: Mean Error Surface Z axis

From these diagrams it is once again clear that this way of estimating the
X-Y-Z positions of the object in relation to the camera is good enough to be
used. There is no mean error greater than 8 mm for the X-axis and 5 mm
for the Z-axis.
After all the experiments on the algorithms and the precision of the camera
were completed, the work moved to a simulation environment.
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Chapter 3

Virtual Environment
Simulation
This chapter is about the simulation, which was carried out in the virtual
environment GazeboSim. The first is an introduction to the ROS framework;
the second is a section on the simulated hardware; the third section is about
the ROS packages and toolbox used to control the simulated robot. The last
section deals with the simulation performed and the code used to move the
robot.

3.1 ROS
Robot Operating System (ROS) is a flexible framework that gives various
tools and libraries for writing robotic software. It provides several features to
help developers in activities such as message transfer, distributed computing,
code reuse, and implementation of state-of-the-art algorithms for robotic
applications. There are a variety of benefits in using ROS as a programming
framework [26]:

• High-end capabilities: ROS has functions that are ready to use. For
instance, the MoveIt package in ROS may be used for motion planning for
robot manipulators, while the Simultaneous Localization and Mapping
(SLAM) and Adaptive Monte Carlo Localization (AMCL) packages in
ROS can be used for autonomous navigation in mobile robots.

• Tons of tools: ROS ecosystem is full of tools for debugging, visualization
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and simulation. Some of the most effective open source tools are rqt gui,
RViz, and Gazebo.

• Support for high-end sensors and actuators: it is possible to use numerous
device drivers and interface packages for various sensors and actuators
in robotics thanks to ROS.

• Inter-platform operability: different applications can communicate with
one another thanks to the ROS message-passing middleware.

• Modularity: the system can still work even if one node crashes.

• Concurrent resource handling: using ROS it is possible to reduce com-
plexity in computation.

3.1.1 ROS Computation Graph
A network of ROS nodes is used to do computations in ROS [26]. The
computation graph refers to this network of computation. The ROS nodes,
master, parameter server, messages, topics, services, and bags are the core
ideas in the computation graph. This graph is shown in figure 3.1.

Figure 3.1: Structure of the ROS graph layer
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A small explanation of the ROS computation graph is given below[26].

• Nodes: the processes that do computing are called nodes.

• Master: the nodes name registration and search procedures are handled
by the ROS master. Without a ROS master, nodes won’t be able to
locate one another, communicate with one another, or use services.

• Parameter server: it allows to store data. These values are accessible
and modifiable by all nodes. The ROS master includes the parameter
server.

• Topics: in ROS, each communication is delivered using a named bus
called topic. A node is publishing a topic when it sends a message
to another node. A node is said to be subscribing to a topic when it
subscribes to a topic through which it gets messages.

• Logging: logging mechanism is offered by ROS to save data. They are
referred to as bagfiles. When working with intricate robot mechanics,
bagfiles are a very helpful tool.

The graph, shown in figure 3.2, displays the topic-based communication
between the nodes:

Figure 3.2: Graph of communication between nodes using topics

Rectangles are used to represent topics, and ellipses are used to represent
nodes.
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Publisher/Subscriber

The Publisher Subscriber Interface provided by the functions of the ROS
library is the way messages are passed in ROS [27]. A ROS node can
be both a subscriber and a publisher. A publisher puts the messages of
some standard message type to a particular topic. On the other hand, the
subscriber subscribes to the topic so that it may get notified whenever a
message is posted to the topic. A publisher can to publish more than one
topic and a subscriber may also receive more than one topic. In addition,
neither the publisher nor the subscriber knows of each other’s existence. The
goal is to separate the creation and consumption of information, and the
ROS master keeps track of all the nodes IP addresses. The explanation given
up here is nicely summarized in figure 3.3. From it, it is possible to see how,
the node on the left (the publisher) sends a topic and the nodes on the right
(the subscribers) can receive it.

Figure 3.3: Publisher Subscriber Model

3.2 UR5
3.2.1 UR5 Description
The robot used for the simulation was the UR5. The extremely adaptable
Universal Robots UR5 robotic arm makes it possible to safely automate
hazardous or repetitive jobs [28]. It is the ideal cobot for carrying out minor
activities like packaging, assembling, or testing because it has a carrying
capacity of 5 kg and an operating radius of 850 mm. The UR5 is incredibly
simple to set up. A touchscreen tablet may be used to further tune the robot
once it has been manually moved to the proper places.
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The robot is composed of 6 rotational joints which allow the robot to have 6
DOF. Each joint can rotate of ±360◦ and can reach a maximum speed of
±180◦/s. The robot is almost completely made of steel besides the junctions
between links which are covered with PP plastic. The previously described
UR5 robot can be see in figure 3.4.

Figure 3.4: UR5 Robot

3.2.2 UR5 programming
The Universal Robot family of robots has a patented programming interface
called PolyScope. Using that interface the company claims that it is easy to
program the robot to move along the desired trajectory [29]. The majority
of the tasks can be completed by programming on the teach pendant. Figure
3.5 shows the teach pendant for the UR5 . It is a touchscreen tablet where
all the programming interface is displayed. Using it, it is possible to control
the robot and set safety parameters. The teach pendant has on one side
an emergency button, useful in a hazardous situation, and also the power
button.
Teaching a robot how to move is critical because tool motion is an integral
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part of a robot program. For this reason, a process must be developed to
teach the robot to move in an appropriate manner. In PolyScope, movements
of the tool are specified using a list of waypoints, or locations inside the
workspace of the robot. A waypoint can be indicated by putting the robot in
a certain place or by using software to compute it. In order to move the robot
arm to a certain position the Move tab, in figure 3.5 the display interface
shows it, can be used. It is also possible to just drag the robot arm into
position while holding the teach button on the back of the teach pendant.
Besides controlling the robot through the pendant, it is also possible to send
I/O from other devices. The technique of sending input command from a
different device is going to be explained in the following chapter.

Figure 3.5: UR teach Pendant displaying Move Tab
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3.2.3 Overview of Client Interfaces
It is worth specifying the communication interfaces which is possible to use
in the UR5. The UR robot can communicate with outside equipment via a
variety of interfaces [30]:

• Primary/Secondary Interfaces: to communicate robot state data and
receive URScript commands, UR controller servers are available. Robot
state information and other communications are sent through the main
interface. Only robot state data are transmitted through the secondary
interface. The data are mostly utilized for the controller and Graphical
User Interface (GUI) communication. Both accept 10 Hz update rate
URScript instructions. It enables remote robot control.

• The Real-time Interfaces: real-time interfaces perform similarly to pri-
mary and secondary interfaces. The controller communicates information
about the robot state and receives URScript instructions. The update
rate is the primary distinction. Real-time interface sends information at
a rate of 125 Hz.

• Dashboard Server: sending straightforward commands to the GUI
through a TCP/IP1 connection enables remote control of a Univer-
sal Robot. "Dashboard Server" is the name of this interface. The server
primary responsibilities include receiving feedback on robot condition
and setting user access levels. It may also load, run, pause, and stop
robot programs.

• Socket Communication: it may be used by the UR robot to connect with
external devices. Data may be transmitted between a robot and another
device via a socket communication. The Robot acts as a client and
other devices play the role of server in socket communication. URScript
has instructions that enable socket opening and closing as well as the
sending and receiving of various data types.

• XML-RPC: XML-RPC: it is a Remote Procedure Call technique that
transfers data between applications over sockets using Extensible Markup

1TCP/IP Protocol is developed in the next chapter section 4.2
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Language (XML)2. Using this standard the UR controller is able to call
methods/functions from a different server/program and have as response
structured data. It may be used to execute a sophisticated computation
that is not possible using URScript.

• RTDE (Real-Time Data Exchange): it is a substitution for real-time
interface. RTDE enables the UR controller to send custom state data
and accept custom set-points and register data.

Figure 3.6 is a good summary for what has been said before about robot
communication interfaces.

Figure 3.6: Communication Interfaces

One thing to point out is that, in the previous list, the TCP/IP protocol
has been appointed many times without giving a proper description and
interpretation to it. This is going to be done in the following chapter together
with the explanation of the used client interface.

2A markup language and file format for storing, sending, and recreating arbitrary data
is called Extensible Markup Language (XML)
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3.3 MoveIt!
The ability to transition from an initial position to an assigned final position
is the minimum criterion for a manipulator [26].
To have full control of a robot, the problem of motion planning must be
solved. The goal, in this case, is to create a trajectory by simply setting some
inputs and constraints for the motion controller. Controlling each joint and
manually calculating its motion could be a difficult task. Therefore, a set of
packages and tools, for doing mobile manipulation in ROS, called MoveIt!,
were used.
MoveIT! contains a set of software for motion planning, manipulation, three-
dimensional (3D) perception, collision detection and navigation. It includes
some graphical user interfaces for a new robot configuration as well as the
possibility to perform motion planning either via a User Interface (UI) or
via Application Programme Interfaces (APIs).

3.3.1 MoveIt! structure
MoveIt! has a peculiar high-level architecture with a primary node in the
middle (move_group), which is basically a bridge between the user and the
robot, and all the other nodes around it. Figure 3.7 is an overview of the
MoveIt! architecture. As it is possible to see, the move_group performes
the interation role. It combines all the different parts coming from different
sources and provide the user a selection of ROS action and services.
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Figure 3.7: MoveIt! architecture

From figure 3.7, it is evident that the move_group node gathers all
the robot data in form of topics and services, including joint state and
transformations. In the ROS Param Server, after the generation of the
MoveIt! package, all the kinematics information of the manipulator are
stored. This information is:

• Unified Robot Description Format (URDF): this is an XML format file
for representing a robot model.

• Semantic Robot Description Format (SRDF): a representation of seman-
tic information about robots.

• Configuration Files

These data are exchanged with the move_group.
Once MoveIt! has collected all the necessary data about the robot and its
setting, it is possible to control it. The C++ or Python Moveit! APIs can be
utilized to carry out tasks. Also, the RViz3 motion planning plugin, which
allows to command the robot from the RViz GUI, is a possible alternative.

3RViz is a 3D visualizer for the Robot Operating System (ROS) framework
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The move_group can be considered a link between the user and the
robot, therefore it does not run any motion-planning algorithms directly.
To do so, MoveIt! interacts with plugins for motion planning, kinematic
calculation and other functions. The robot controller, after the motion
planning, communicates with the robot using an action interface called
FollowJointTrajectoryAction.

3.4 Configuration’s packages using
Setup Assistant tool

In order to configure the robot to MoveIt!, the built in Setup Assistant Tool
was used. It is a user friendly GUI which generates SRDF, configuration
files and some code used by the move_group node.

The SFDF file provides information on the virtual joints, collision-link
pairs, and end effector joints that are configured using the Setup Assistant
Tool. The configuration files store all the information about the kinematic
solver, joint limits, controllers, etc. Launch files are used to start all the ROS
nodes necessary to run the simulation and mainly start the move_group and
the selected controller.

3.4.1 Create a New MoveIt Configuration Package
The following steps are the ones used to create the Configuration Package
throughout the MoveIt! Setup Assistant [26] [31] :

1. use the command: roslaunch moveit_setup_assistant setup
_assistant.launch to open the MoveIt! Setup Assistant
As shown in figure 3.8, it is possible to choose between the creation
of a new MoveIt! Configuration Package or edit an existing one.
Create New MoveIt Configuration Package was selected. The cre-
ation of a new package requires to select a urdf file called /univer-
sal_robot/ur_description/urdf/ ur5_robotiq85_gripper.urdf.xacro. This
urdf file contains the description of the UR5 robot, with a robotiq 2f-
85 gripper, attached to its end effector. If the loading of the file was
successful, the windows in figure 3.9 should appear.
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Figure 3.8: MoveIt! Setup Assistant

Figure 3.9: Successfully loaded file

On the right side of figure 3.9 a visualization of the robot’s model with
the end-effector connected is shown.

2. The second step was to set the self-collision. This was possible by
pushing the Generate Collision Matrix button. What should appear is
a window showing the Self-Collision matrix, as shown in figure 3.10.
This step speeds up the processing. Each link pair is examined by this
tool, which classifies each link pair as either always colliding, never
colliding, colliding in the robot’s default position, with neighbouring
links disabled, or occasionally colliding.
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Figure 3.10: Self-Collision

3. The third step was the definition of Virtual Joints used to create a
connection between the robot link and an external frame of reference.
Figure 3.11 shows that only one virtual joint was created. This joint
was called Virtual_joint and it has as a parent frame the world frame
and as child link the base_link of the UR5 robot.

Figure 3.11: Virtual Joints

4. The definition of the planning group allowed MoveIt! to create a group of
links/joints, of the robotic arm, to be considered unique, when planning
a goal position, either for the end effector or for a link. Two different
planning groups were defined in this work. One was called ur5_arm
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and the other gripper. They correspond to the chain of links from the
base link of the UR5, to the end-effector link and to the robotiq gripper,
respectively. Everything stated above is shown figure 3.12, where both
the ur5_arm group and the gripper group are defined.

Figure 3.12: Planning Groups

• ur5_arm: in the creation of the moving group the Kinematic Solver
and the type of Planning were selected.
Figure 3.13 shows the window interface where to select them.

Figure 3.13: ur5_group

The kinematic solver is responsible for the calculation of all the in-
verse kinematics. The default solver, called kdl_kinematics_plugin/
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KDLKinematicsPlugin was selected. This solver is provided by the
Oroscos KDL package and adheres the limitation outlined in the
URDF. The second setting to select is the Planner for the Planning
Group. The default planner in Moveit is the Open Motion Planning
Library (OMPL). For an optimization goal, there are particular
planners in the OMPL planning library that can be optimal for that
goal. Also in this case the suggested planner called rapidly exploring
tree (RRT), was the chosen one. In order to solve geometric plan-
ning the RRT generates a rapidly exploring tree (RRT). Therefore
RRT is a tree-based motion planner which constructs a search tree
iteratively using samples chosen at random from the state space.

5. The next step was the definition of robot poses, which include sets of
joint values for certain planning groups.

Figure 3.14: Robot Poses

From figure 3.14, it is possible to see that 3 different poses were defined.
One for the ur5_arm group:
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• home: the home position4 of the UR5 arm. Figure 3.15 shows the
default values for the robot’s joints.

Figure 3.15: Home Position

Two for the gripper group:

• open: which defines the gripper as open, shown in figure 3.16.

Figure 3.16: Open gripper

• closed: which defines the gripper as close, shown in figure 3.17 .

4The starting position of the robot
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Figure 3.17: Closed gripper

6. The last two steps were the definition of the end effector and of the
passive joints, which are the joints that move only passively by the
movement of the other joints.

Figure 3.18: End Effector

In the first passage, the gripper group was set as the End effector. This
is illustrated in figure 3.18. Then, concerning the Passive Joints some
parts of the gripper, which are not responsible for the motion, were
selected as passive parts, this is shown in figure 3.19.
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Figure 3.19: Passive Joints

After this last step, MoveIt! was ready to generate the package ur5_gripper
_moveit_config. This folder contains all the configurations and launch
files needed to simulate and control the robot.
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3.5 Gazebo Simulation
After the previous settings regarding robot control were made, grasping with
the UR5 on Gazebo can be simulated. Gazebo is a dynamic 3D simulator
that can efficiently and accurately model robots both indoor and outdoor.
Gazebo includes a physics simulation with a much higher level of detail, a
collection of sensors and interfaces for both users and programs [32].

The Gazebo environment consisted of the UR5 robot on one table, another
table in front of the robot on which the object to be grasped was placed,
and finally, on one side of the second table, a camera model used for object
recognition and 3D position estimation of the object.

Figure 3.20: Gazebo Environment
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At this point, the robot is ready to be moved. A python code [33] was
written to move the robot and place it in the correct position for grasping.

1 moveit_commander . r o s c p p _ i n i t i a l i z e ( sys . argv )
2 rospy . in it_node ( ’ move_group_python_interface ’ , anonymous=True )
3

4 robot = moveit_commander . RobotCommander ( )
5 scene = moveit_commander . P lann ingScene Inte r f a ce ( )
6

7 arm_group = moveit_commander . MoveGroupCommander( " ur5_arm " )
8

9 hand_group = moveit_commander . MoveGroupCommander( " g r ippe r " )

The main user interface in MoveIt! is provided by the RobotCommander class.
With moveit_commander.roscpp_initialize(sys.argv) the above class is
initialized. Then, a ROS node is created by writing rospy.init_node(’move
_group_python_interface’, ...). The next two passages are the creation
of a RobotCommander object, which serves as an interface to the robot as a
whole, and of a
PlanningSceneInterface object, which is required to communicate with
the world around the robot. Next, two MoveGroupCommander objects are in-
stantiated (arm_group and hand_group). These objects provide an interface
to the two joint groups .
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The groups in this case consist of the joints of the UR5 arm and the joint
of the gripper. The movements of the UR5 arm and the gripper can be
planned and executed via these interfaces.

After the initialization phase, the planning is ready to be started.
The grasping procedure has been organized in 4 consecutive steps:

1. Home Position: the robotic arm is set in a predefined position and the
gripper is opened.

2. Approaching Position: the robotic arm is moved in a position which is
close to the object.

3. Grasping Position: the robot is moved in the position for the grasping
and the gripper is closed.

4. Final Position: the robot is moved to a final position.

To put the arm in the start position, a method of the MoveGroupCommander
object is used.

1 arm_group . set_named_target ( "home" )
2 plan1 = arm_group . go ( )
3 plan1 = arm_group . stop ( )

Using the method arm_group.set_named_target("home") the robot moves
to the home position. Once the robot is in the home position, the gripper
can be opened. A similar procedure is used and a hand_group.set_named
_target("open") method is called. Figure 3.21 shows the robot, in the
simulation environment, set in the home position.
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Figure 3.21: Home position

In the next step, the robot waits for the object pose to come from the
camera. The camera code publishes the found XYZ coordinates as ROS
topic. Then, they are taken and converted, from the camera reference frame
to the world one. Figure 3.22 shows the two reference frames.

Figure 3.22: World and Camera Reference Frames
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1 pr in t ( " Waiting f o r ob j e c t pose . . . " )
2 pose_sub=rospy . wait_for_message ( " / ObjectPose " , Pose )
3 pr in t ( " Object pose found ! " )
4 #Rotation Matrix to convert the p o s i t i o n from camera to world

frame
5 Rotation_matrix=np . array ( [ [ 0 , 0 , − 1 ] , [ 1 , 0 , 0 ] , [ 0 , − 1 , 0 ] ] )
6 #Converting the p o s i t i o n to a s u i t a b l e va lue f o r the s imu l t i on
7 Camera_x=round ( pose_sub . p o s i t i o n . x /1000 ,2)
8 Camera_y=round ( pose_sub . p o s i t i o n . y /1000 ,2)
9 Camera_z=round ( pose_sub . p o s i t i o n . z /1000 ,2)

10 #Dinstance between the world and the camera frame
11 Frame_dinst=np . array ( [ 1 . 1 , 1 , 1 . 0 4 ] )
12 Point=np . array ( [ Camera_x , Camera_y , Camera_z ] )
13 #Convertion from the camera to the wor l s frame
14 World_position=Rotation_matrix . dot ( Point )+Frame_dinst
15 X_position=round ( World_position [ 0 ] , 2 )
16 Y_position=round ( World_position [ 1 ] , 2 )
17 Z_posit ion=round ( World_position [ 2 ] , 2 ) −1.13

In the pose_sub variable, the topic published by the camera node is saved.
Since the topic from the publisher is not immediately available, the ROS
method .wait_for_message is used. This method allows freezing of the robot
movement until the /ObjectPose topic is not published in ROS network.
The received pose is converted to the world frame using the following formula:


Xw

Yw

Zw

 =


wx1 wy1 wz1
wx2 wy2 wz2
wx3 wy3 wz3



Xc

Yc

Zc

 +


tx

ty

tz

 (3.1)

Where the 3x3 matrix composed is the rotation matrix, XcYcZc are the
coordinates in the camera frame and txtytz are the distances between the
camera and the world frame. These distances are tx = 1.1 m ty = 1 m
tz = 1.04 m.

Now that Xw Yw Zw are available it is possible to move the arm toward
the object.
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1 pose_target = geometry_msgs . msg . Pose ( )
2 pose_target . o r i e n t a t i o n .w = current_pose . o r i e n t a t i o n .w
3 pose_target . o r i e n t a t i o n . x= current_pose . o r i e n t a t i o n . x
4 pose_target . o r i e n t a t i o n . y = current_pose . o r i e n t a t i o n . y
5 pose_target . o r i e n t a t i o n . z = current_pose . o r i e n t a t i o n . z
6 pose_target . p o s i t i o n . x = X_position
7 pose_target . p o s i t i o n . y = Y_position
8 pose_target . p o s i t i o n . z = Z_posit ion +0.3
9 arm_group . set_pose_target ( pose_target )

10

11 plan1 = arm_group . plan ( )
12 plan1 = arm_group . go ( wait=True )

To do so, the method arm_group.set_pose_target(pose_target) is
used. It receives as input the target pose which in this case, is the object
position, with an offset on the Z axis. The offset is set because, during this
stage, the robot has to move in the approaching position. This step was
established because it allows the robot to get close to the object. Up to this
phase, the robot can move quickly without worrying about precision. Then,
in the following phase, the robot can move slower and with higher precision.
arm_group.plan() and arm_group.go(wait=True) are used to make the
robot move. Figure 3.23 displays the robotic arm in the resulting position.
As it is possible to see, the gripper is close to the object, but has an offset
on the Z-axis.

1 pose_target = geometry_msgs . msg . Pose ( )
2 pose_target . o r i e n t a t i o n .w = current_pose . o r i e n t a t i o n .w
3 pose_target . o r i e n t a t i o n . x= current_pose . o r i e n t a t i o n . x
4 pose_target . o r i e n t a t i o n . y = current_pose . o r i e n t a t i o n . y
5 pose_target . o r i e n t a t i o n . z = current_pose . o r i e n t a t i o n . z
6 pose_target . p o s i t i o n . x = X_position
7 pose_target . p o s i t i o n . y = Y_position
8 pose_target . p o s i t i o n . z = Z_posit ion
9 arm_group . set_pose_target ( pose_target )

10 plan1 = arm_group . plan ( )
11 plan1 = arm_group . go ( wait=True )

Once the robot is in this position, it is ready to be moved in the Grasping
Position.
The method arm_group.set_pose_target(pose_target) is used to make
the robot move. As it is possible to see from the code reported above, the
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Figure 3.23: Approaching position

only difference with the previous code is that now there is no offset on the
Z-axis.

The robot arm moves towards the object and as soon as it is in position,
the gripper closes. The closing of the gripper can now take place because
the end effector is in a position close enough to make the object reachable
for the gripper.

1 hand_group . set_named_target ( " c l o s ed " )
2 plan2 = hand_group . go ( wait=True )

Once more, the gripper can be simply closed using the two consecutive
methods reported above. Figure 3.24, reported below, shows the simulated
UR5 in the Grasping Position.
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Figure 3.24: Grasping position

In the last step, the object is taken and the arm can be moved to any
position. Once again the arm is moved using the arm_group.set_pose
_target(pose_target) method.
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Real World Simulation
This chapter describes the tests carried out in real world. Both the real robot
and the real camera were used to perform the experiments.

4.1 Experimental Set-Up
The experimental set-up was carried out in the DIMEAS laboratory of the
Politecnico di Torino. The UR5 is mounted on a trolley, on which the control
unit and the teach pendant are mounted, too. The robot working area was
limited so that it neither collides with the trolley itself nor goes beyond
certain limits. The Realsense camera was placed on one side of the moving
trolley, facing the trolley itself. This position was chosen to have enough
space for the object to be detected and to ensure that the robot does not
interfere with the camera acquisition. On the right side of the moving cart,
a table was placed with a PC for controlling the experimental setup and
an external monitor. In addition, a Wi-Fi router is used for the connection
between the PC and the robot. Figure 4.1 shows the previously described
experimental set-up.
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Figure 4.1: Experimental Set-Up

From this figure, it is possible to see that the UR5 robot does not have the
gripper. At this stage, a real gripper was not yet available, so all experiments
were performed without the gripper.

4.2 Socket Communication
As said in section 3.2.3, the UR robot can communicate with outside equip-
ment via a variety of interfaces. Among those listed in 3.2.3 a Socket
communication was chosen. This type of communication uses a TCP/IP [34]
[35] [36] protocol to connect with the device.

4.2.1 TCP/IP Protocol
TCP/IP protocol is not bounded by the only TCP and IP protocols, but it
is also made of some other protocols that are divide in 4 different layers.

• The network interface layer: it is in charge of transferring frames of data
between hosts connected by the same physical network.

• The internet layer: the primary duty of this layer is to route packets
from one host to another. Since the data have not yet been organized
into a frame for transmission at this level, the focus is on "packets"
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rather than "frames"1. Each packet carries the address data required for
its Internet-wide routing to the destination host. The Internet protocol,
or IP (as in TCP/IP), is the dominant protocol at this level.

• The host-to-host layer: regardless of the path or distance utilized to
deliver the message, this layer is largely in charge of ensuring data
integrity between the sender host and receiver host. At this level,
communication faults are found and fixed.

• The process and application layer: this layer offers access to the TCP/IP
stack for the user or application programs.

4.2.2 Internet Protocol Version 4
The TCP/IP suite central component is the Internet protocol (IP). From
router to router, it is essentially in charge of routing packets to their desti-
nations. The basis for this routing is the IP addresses that are included in
each packet header forwarded by IP. Version 4 (IPv4) of the protocol, which
employs a 32-bit address, is the most widely used version of IP today. The
main characteristic of the IP address is that it does not belong to the node,
as the MAC or hardware address does2, but rather it indicated the place
where the connection happened.
As it was said before the IPv4 address is composed of 32 bits.
This number is normally divided into four pieces of 1 byte, which are indi-
cated as a,b,c,d or w,x,y,z. Figure 4.2 shows the 4 bytes divided into w,x,y,z
and the binary conversion. The result of this conversion is 192.100.100.1.

From an IP address, two parts can be distinct. The network ID (NetID)
is the first component and it is composed of the first 3 numbers of the IP
address. It is a special number that uniquely identifies a particular network
and enables Internet routers to forward a packet to its target network. The
second component, known as the host ID (HostID) is the last number of
the IP address. It is a number assigned to a particular computer (host) on

1Packets and Frames are the names given to Protocol data units (PDUs) at different
network layers

2It is an unique address for each node, e.g. network interface card at the time of its
manufacture
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Figure 4.2: IP address structure

the destination network that enables the router serving that host to deliver
the packet to the host directly. The computer must know which digits of
the device address must match those of the network address. Doing so it
is possible to separate the HostID from the NetID values and it is done by
defining the so called subnet mask. The latter consists of four numbers that
must take the value 0 or 255 depending on the class of the IP address. To
set the NetID as the first three numbers it is necessary to set the subnet
mask to 255.255.255.0. For instance, in the previous example 192.100.100.0
would be the NetID, and the computer or HostID would be 1. In the case
study, a Wi-Fi router was used to route the messagges. The IP address were
169.254.123.5 for the UR5 and 169.254.123.1 for the PC. In order to set
the PC IP address to 169.254.123.1, it was connected to the network of
the Wi-Fi router and the IPv4 address was set to static.

4.2.3 Transmission Control Protocol (TCP)
TCP is a connection-oriented protocol. Before sending data, TCP creates a
connection between two hosts. Thanks to the established connection, the
protocol is able to verify if a packet has been received and to arrange for
re-transmission, if the packet is lost. TCP incurs a large extra expense in
terms of processing time and header size because of all these built-in features.
The features provided by the TCP are:

• Big data blocks divided into more manageable IP-compatible parts.

• Reconstruction of the data stream from the received packets.

• Communication of receipt.

• Socket services for multiple port connections on distant hosts.

• Packet checking and error correction
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• Flow regulation.

• Sequencing and reordering of packets.

4.2.4 Ports
TCP must be aware of the process, i.e., software program, on that specific
system the message is intended for, unlike IP, which may route the message
to the machine based on its IP address. Ports with a range of 1 to 65535 are
used for this.

Sockets

The IP address (location) and port number (process) are merged into a
functional address called a socket in order to specify both the location and
application to which a certain packet is to be transmitted. The IP address
and port number are both present in the IP header and the TCP header,
respectively. Any data transfer with TCP requires the existence of a socket
at both the source and the destination. Multiple sockets can be created via
TCP and connected to the same port.

4.3 Robot and PC Connection
As written above, the chosen type of communication between robot and
PC was the socket. The available ports of the robot, to use this type of
communication, are reported in the following table.

Table 4.1: Port characteristics of the UR5

Primary Secondary Real-Time Real-Time Exchange (RTDE)
Port no. 30001/30011 30002/30012 30003/30012 30004
Frequncy [Hz] 10 10 125 125

Receive URScript
commands

URScript
commands

URScript
commands Various data

Transmit Various data Various data Various data
1 integer
139 doubles
1116 bytes in total
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To set up the connection a python code was written. This code uses
a python library called socket. Built-in functions of this library make it
possible to create a socket endpoint on both PC and the robot.
First, the IP address of the UR5 is set as HOST and that of PC as the server.
Then, a port is chosen for data exchange. For the purpose of this work, port
30003 was chosen. The port works at a frequency of 125 Hz and can receive
URScript commands.

4.4 Data Exchange Overview
It is necessary to make an overview of how the data are exchanged between
the PC, the Realsense and the Robot. Figure 4.3 is a scheme of how data
are exchanged between devices.

Figure 4.3: Data Exchange Scheme

As can be seen from the image, the RGB-D image is taken by Mask R-CNN
and Pose Estimation Code. Once the code has performed the computations,
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the results are published as ROS topics, using two ROS publishers. These
topics are received by two ROS subscribers created in the code that moves
the robot. Once these topics are elaborated, PC sends the robot a position
to move to. Two socket endpoints are set up between the PC and the robot.

It is also worth to analyze how each code communicates with its classes.
Figure 4.4 shows how the classes of the Mask R-CNN and 3D pose estimation
code communicates. This code is divided into three different sub-codes. Two
of them are the classes Realsense and Mask R-CNN. The last one, instead,
called measure_object_dinstance_pose_ros, is the main code.

Figure 4.4: Mask R-CNN classes communication

In the main code, two objects are created, one of the Realsense class
and one of the Mask R-CNN class Using the Realsense object, the main
code starts camera streaming and provides the RGB-D images as input to
the Mask R-CNN object. The latter object returns to the main code the
estimated pose and some object information, such as the dimensions of the
bounding box and its class.
Concerning the Robot movement code its internal communication structure
is shown in figure 4.5. This code is divided into a class called PYUR and a
main code.
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Figure 4.5: Robot Movement class communication

In the main code a PYUR object is created. The figure shows that the
PYUR class receives from the main code the position where the robot has
to be moved. The main code, on the other hand, receives the connection
information as input. More details about this code will be available in the
following paragraphs.

4.5 PYUR Class
To establish the connection between the robot and PC and to manage their
communication, a Python class, called PYUR, was created. This class has
two different methods. One is responsible for creating the socket endpoints
on the robot side and on the PC side. The second method is used to send
commands to the robot via PC.
The following Python code was written to implement the connection between
the two devices.

1 de f i n i t i a l i z a t i o n ( ) :
2 HOST= ’ 16 9 . 2 54 . 1 23 . 5 ’
3 s e r v e r=’ 16 9 . 25 4 . 12 3 . 1 ’
4 PORT=30003
5 # TCP/IP connect ion
6 s=socket . socke t ( socket .AF_INET, socket .SOCK_STREAM)
7 s . connect ( (HOST, PORT) )
8 re turn (HOST, se rver , s )

The first method of the class PYUR is called initialization(). The com-
mand s=socket.socket(socket.AF_INET, socket.SOCK_STREAM) creates
a socket object s. socket.socket() receives two different inputs. The first
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is the socket_family, which defines the type of address needed. For the
purpose of this work, the IPv4 address was chosen. Therefore, to comply
with this statement socket.AF_INET is written. The second input is the
socket_type, which instead specifies the type of socket. In this case, since a
TCP socket type was chosen SOCK_STREAM is given as input.
The next command s.connect((HOST,PORT)) allows to connect to the se-
lected host through the previously defined port. Thanks to this simple
procedure the robot and the PC can now send data to each other.

The second method of the class PYUR is movel(s,pos). This method
was designed to check if the robot can move in a given position, and then
move it.

1 de f movel ( s , pos ) :
2 i f pos [ 0 ] < −0.8 or pos [ 0 ] > 0 . 8 :
3 pr in t ( "Out o f range in the X−ax i s ! ! " )
4 s . c l o s e ( )
5 qu i t ( )
6 e l i f pos [ 1 ] < −0.8 or pos [ 1 ] > 0 . 8 :
7 pr in t ( "Out o f range in the Y−ax i s ! ! " )
8 s . c l o s e ( )
9 qu i t ( )

10 e l i f pos [ 2 ] < 0 .01 or pos [ 2 ] > 1 :
11 pr in t ( "Out o f range in the Z−ax i s ! ! " )
12 s . c l o s e ( )
13 qu i t ( )
14 e l s e :
15 pr in t ( "The robot i s Moving ! " )
16 time . s l e e p (2 )
17 posa = ’ , ’ . j o i n (map( lambda x : f " {x : . 3 f } " , pos ) )
18 movel = f ’ movel (p [ { posa } ] , 0 . 3 , 0 . 1 ) \n ’
19 s . send ( movel . encode ( ) ) # Send movel to URSim
20 pr in t ( " URScript command movel : " ) # Print in fo rmat ion
21 pr in t ( " {} " . format ( movel ) )
22 re turn ( )

The movel(s,pos) methods has as inputs a socket object (s) and a
point in the robot workspace (pos). First, a check of the specified X-Y-
Z coordinates is performed. The code checks whether the pos values are
within the robot’s permitted range of motion. If the point is within the
specified range, a command is sent to the robot, using a method of the
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socket class s.send(). The sent message is the string representation of the
movel() command. movel() is part of the URScript instruction that the
robot control unit can receive. This command makes the end effector of the
robot move linearly between waypoints. The intended end effector speed and
acceleration, expressed in mm/s and mm/s2, are the variables that may be
configured for this movement type.

4.6 UR5 Grasping
In this work, two distinct codes were written concerning the movement of the
robot. The first Command UR Vision receives the 3D position of the object
and makes the robot to move according to the passages already explained in
3.5. The second code named Command UR Vision Follow was written with
the structure of the first code, but it can also check whether the object to be
grasped has moved during the grasping process. If this is the case, it can
determine the new position of the object and make the robot move there.

4.6.1 Command UR Vision

1 [HOST, se rver , s ] = PYUR. i n i t i a l i z a t i o n ( )
2 rospy . in it_node ( ’ PoseNode ’ , anonymous=True )

First, the method initialization() of the class PYUR is called. As
already explained, it is used to establish the connection between the robot
and the PC. In the second line, a ROS node (’PoseNode’) is initialised, which
is used to obtain the required information from the 3D position estimation
code.

1 home_pos = [ 0 . 2 1 9 , 0 . 1 2 7 , 0 . 416 , 2 . 247 , −2 .247 ,0 .059 ]
2 PYUR. movel ( s , home_pos )
3 time . s l e e p (3 )

After the initialisation phase, the robot is ready to be moved. As said
in section 3.5, the grasping operation is divided into 4 steps. The first
step is to send the robot arm to the so-called Home position. This is
done by writing the home_pos waypoint and giving it to the PYUR method
PYUR.movel(s,home_pos). Figure 4.6 shows the robot in the Home position.
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Figure 4.6: Home Position

1 #Camera Pose
2 pr in t ( " Waiting f o r ob j e c t pose . . . " )
3 pose_sub=rospy . wait_for_message ( " / ObjectPose " , Pose )
4 ob j e c tg ra sp=rospy . wait_for_message ( " /ObjectGrasp " , S t r ing )
5 pr in t ( " Object pose found ! " )
6 #Here we have to do frame trans fo rmat ion
7 Rotation_matrix=np . array ( [ [ 0 , 0 , 1 ] , [ − 1 , 0 , 0 ] , [ 0 , − 1 , 0 ] ] )
8 #Converting the p o s i t i o n to a s u i t a b l e va lue f o r the s imu l t i on
9 Camera_x=round ( pose_sub . p o s i t i o n . x /1000 ,3)

10 Camera_y=round ( pose_sub . p o s i t i o n . y /1000 ,3)
11 Camera_z=round ( pose_sub . p o s i t i o n . z /1000 ,3)
12 #Dinstance between the world and the camera frame
13 Frame_dinst=np . array ( [ − 0 . 2 6 , 0 . 5 3 , 0 . 1 6 5 ] )
14 #Point in the camera frame
15 Point=np . array ( [ Camera_x , Camera_y , Camera_z ] )
16 #Convertion from the camera to the wor l s frame
17 World_position=Rotation_matrix . dot ( Point )+Frame_dinst
18 X_position=round ( World_position [ 0 ] , 2 )
19 Y_position=round ( World_position [ 1 ] , 2 )
20 Z_posit ion=round ( World_position [ 2 ] , 2 )

The part of code above defines two different ROS subscribers. One receives
the estimated coordinate of the found object from the pose estimation code,
while the second receives a topic which defines the orientation of the robot
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end effector. The latter topic objectgrasp is a string, which can have two
possible values Top or Side. This topic comes from the pose estimation code,
too. During the object recognition a bounding box around the found object
is drawn. The dimensions of the bounding box are used as a distinguishing
feature to assign the value of objectgrasp. Its value depends on the height
and width dimensions. Depending on which dimension is the largest, one of
the two values of objectgrasp is assigned. If the height dimension of the
bounding box is greater than the width dimension, the subscriber receives
the value Side. If the height dimension is less than or equal to the width
dimension, it will receive the value Top. This distinction was made to select
the grasping position for the object. Therefore, the code is able to distinguish
whether an object has to be grasped on the side or from the top.
The rest of the code transforms the received X-Y-Z position from the camera
frame to the base frame of the UR5 robot (Transformation 3.1).
Figure 4.7 shows the UR5 base reference frame.

Figure 4.7: UR5 Base Reference Frame

1 i f ob j e c tg ra sp . data=="Top" :
2 Near_found_object = [ X_position , Y_position , Z_posit ion +0.3 ,

2 . 247 , −2 .247 ,0 .059 ] #Pos i t i on c l o s e to the t a r g e t + Z
o f f s e t

3 PYUR. movel ( s , Near_foud_object )
4 time . s l e e p (3 )
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5

6 e l i f ob j e c tg ra sp . data==" Side " :
7 Near_found_object = [ X_position , Y_position −0.2 , Z_posit ion +0.2 ,

0 .063 , −2.181 , −2.245] #Pos i t i on c l o s e to the t a r g e t + Z
o f f s e t , −Y o f f e s e t

8 PYUR. movel ( s , Near_foud_object )
9 time . s l e e p (5 )

Once the conversion is performed, the robot can be moved to a position
close to the object. Depending on the topic saved inside objectgrasp a dif-
ferent value for the Near_found_object waypoint is set. If the objectgrasp
string is equal to Top the robot moves near the estimated object position
with an offset on the Z-axis and the end effector facing down. Instead, if
the objectgrasp string value is Side the robot moves close to the object
position with, an offset, both on the Y-axis and the Z-axis. In the Side case
the end effector is approaching the object from one side. Figure 4.8 shows
the robot in the Close position with the objectgrasp value set to Top.

Figure 4.8: Approaching Position with objectgrasp set to Top

1 Object_pose = [ X_position , Y_position , Z_posit ion +0.1 , 2 . 247 ,
−2 .247 ,0 .059 ] #Grasping Pos i t i on

2 PYUR. movel ( s , Object_pose )
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1 Object_pose = [ X_position , Y_position −0.1 , Z_posit ion ,
0 .063 , −2.181 , −2.245] #Grasping Pos i t i on

2 PYUR. movel ( s , Object_pose )

In the next phase, the robotic arm is moved into the grasping position. In
both of the cases reported above, the grasping position corresponds to the
object position, with a smaller offset, compared to the previous one. Going
into details the first code puts a smaller offset on the Z position, instead, the
second imposes an offset only on the Y-axis. Figure 4.9 shows the robot in
the Grasping position.

Figure 4.9: Grasp Position
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1 Last_pos i t ion = [ 0 . 2 1 9 , 0 . 1 2 7 , 0 . 416 , 2 . 247 , −2 .247 ,0 .059 ] #
Last p o s i t i o n

2 PYUR. movel ( s , Last_pos i t ion )

At last, the robot is moved to a final position. In this case the final position
corresponds to the home position. Figure 4.10 shows the robot in the Last
position.

Figure 4.10: Final Position

1 s . c l o s e ( )
2 qu i t ( )

The two final lines of code are used to close the socket communication
and make the coding process end.

4.6.2 Command UR Vision Follow
The previous code was modified in order to make the robot understand if
the object has been moved, during the grasping procedure, or not. Doing so
the robotic arm can adjust its position and move toward the object.
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1 de f check_pos i t ion (X,Y, Z , X_old , Y_old , Z_old ) :
2

3 i f X!=X_old or Y!=Y_old or Z!=Z_old :
4 move=True
5 e l s e :
6 move=False
7 re turn move

The above function check_position(X, Y, Z, X_old, Y_old, Z_old)
checks if the current position and the old one are equal or not. If it founds
that, the two positions are different , it sets a flag value to True, whereas,
if the two are equal it sets the flag to False. The move flag is used to
understand if the robot has to move one more time or can go on with the
grasping procedure.

1

2 i f ob j e c tg ra sp . data=="Top" and move :
3 Near_foud_object = [X, Y, Z+0.3 , 2 . 247 , −2 .247 ,0 .059 ] #

Pos i t i on c l o s e to the t a r g e t + Z o f f s e t
4 PYUR. movel ( s , Near_foud_object )
5 time . s l e e p (3 )
6 wx=2.247
7 wy=−2.247
8 wz=0.059
9 X_old=X

10 Y_old=Y
11 Z_old=Z
12 Y_off=0
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1 e l i f ob j e c tg ra sp . data==" Side " and move :
2

3 Near_foud_object = [X, Y−0.2 ,Z+0.2 , 0 .063 , −2.181 , −2.245] #
Pos i t i on c l o s e to the t a r g e t + something Z

4 PYUR. movel ( s , Near_foud_object )
5 time . s l e e p (3 )
6 wx=0.063
7 wy=−2.181
8 wz=−2.245
9 X_old=X

10 Y_old=Y
11 Z_old=Z
12 Y_off=−0.1

The two codes reported above are very similar to those described in the
previous section. The difference is the check on the move flag. If move is
true, the robot has to adjust its position and move one more time toward
the object.

1 i f not (move) :
2 Object_pose = [X, Y+Y_off , Z+0.1 , wx , wy , wz ] #Pos i t i on c l o s e to

the t a r g e t
3 PYUR. movel ( s , Object_pose )
4 time . s l e e p (3 )
5 e x i t=Fal se

In case the move flag is set to False, the robot can go into the grasping
position.
During the code test, the robot was able to follow the object. However, since
no graphics processor was available at this stage, the robot cannot react
quickly when the object changes position. This is because each time the
object is moved, the 3D position estimation must be performed again, which
can take some time
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Chapter 5

Conclusion and Future
Development
The goal of this work is to detect an object from an RGB-D camera image
and grasp it with a robotic arm. The camera used to capture the RGB-D
image is an Intel® RealSense™ D435. The RGB image is the input of a
neural network that can detect an object and draw a bounding box around
it. The network used is a Mask R-CNN specialized in detecting objects
and drawing bounding boxes and masks around the detected object. An
already trained network is employed so that only a certain number of objects
can be detected. The depth image is used, together with the image center
and focal length, to perform an inverse transformation and calculate the 3D
coordinates of the detected object. To start camera streaming and convert
these images into the required input for the mask-R-CNN, a Python code is
used. Using the library pyrealsense2, it is possible to enable both RGB
and depth streaming. Once the image has been processed, it is converted
into NumPy arrays, which is the proper input for the neural network.
When the R-CNN mask detects an object, a bounding box is drawn around
it. At this point, the 3D coordinate of this object can be retrieved doing an
inverse projection transformation.
This measurement is performed 3 times, to get a better estimate of the 3D
position. Afterwards, the calculated object coordinates can be passed to a
ROS publisher. The published topic is received by a ROS subscriber, which
is part of the Python code written for the robot control.
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The robot employed for grasping is the UR5, CB3 series. This robot is at
first simulated in the virtual environment GazeboSim, where it is controlled
using a set of ROS packages and tools called MoveIt!.
Then, the real UR5 is deployed. The robot is controlled with a Python code.
With this code, it is possible at first to set up two socket endpoints between
PC and the robot, using the socket library, and then control the robot using
the .send() command. This allows to control the robot by entering the
URScript command movel() as input. movel() is a simple command that
makes the robot end effector move linearly between waypoints. In this case,
the waypoints corresponded to the movement the robot must make to reach
the grasping position. The end effector of the robot can approach the object
either from one side or from above, depending on the dimensions of the
drawn bounding box. The distinction is given by the largest size between
the height and the width of the bounding box.

Future developments of this project could be:

1. The use a PC with a powerful GPU, to speed up the process.

2. Train the Neural Network with a specific set of objects. These objects
may be specific objects that the robot must grasp. In this work, only
a tennis ball and a bottle were tested. This training could certainly
improve the object recognition part.

3. Use of a different Network. It might be possible to use a different
Neural Network, perhaps one of those mentioned in the second chapter.
Switching to a Network that does not recognize the objects, but finds a
grasping point directly could improve the overall speed of the system
and also the success rate in grasping an object.
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